
Published in: Changing Tides
Wolfgang Kersten, Carlos Jahn, Thorsten Blecker and Christian M. Ringle (Eds.)

ISBN 978-3-756541-95-9, September 2022, epubli

Florian Hochkamp and Markus Rabe

Outlier Detection in Data 
Mining: Exclusion of Errors or 
Loss of Information?

CC-BY-SA4.0

Proceedings of the Hamburg International Conference of Logistics (HICL) – 33



 

 

Outlier Detection in Data Mining: Exclusion of 

Errors or Loss of Information? 

Florian Hochkamp 1 and Markus Rabe 1 

1 – Technical University Dortmund  

Purpose: Our research emphasizes the importance of considering outliers in production 

logistics tasks. With a growing amount of data, we require data mining to cope with these 

tasks. We underline that the widespread exclusion of outliers in data pre-processing for 

data mining leads to a loss of information and that using outlier interpretation can be used 

to address the issue.  

Methodology: The paper discusses the data pre-processing of data mining in production 

logistics problems. Methods of outlier interpretation are collected based on a literature 

review. In addition to the literature-based investigation, the work relies on a case study that 

illustrates the individual evaluation of outliers. 

Findings:  This work shows that outliers take a special focus on the information generation. 

Within data pre-processing, a distinction must be made between an outlier as a defect and 

an outlier as a special datum. This can be conducted by methods presented in the literature. 

Originality: This paper adds to existing literature in the research field of insufficiently 

analyzed outlier interpretation and shows a need for research in data pre-processing of 

data mining.  
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1 Introduction 

In 2020, the manufacturing sector in Germany continues to be characterized by the 

quality claim of the “Made in Germany” brand with approximately 23 % share of gross 

value added in Germany (Statista, 2021), which is complemented by logistics as one of 

the most important economic fields. Steady developments in production led first to mass 

production and later to customized mass production according to Chen, et al. (2015). 

This is accompanied by a volatile competitive environment of the manufacturing 

companies. An important unique selling proposition is product quality, which enables 

companies to win customers and meet their expectations (Jacobson and Aaker, 1987). In 

order to meet the requirements of customized mass production in a competitive 

environment, various developments are being used in the context of digitization (Kusiak, 

2018). Buzzwords such as Industry 4.0, Big Data, intelligent production and 

communication systems, and business intelligence have been shaping trends in recent 

years. At the same time, these also condition the field of logistics through collaboration, 

globalization, and just-in-time production. All the mentioned trends imply information 

in companies about the heterogeneous production situations, which is indispensable for 

a modern production infrastructure (Pennekamp, et al., 2019). Addressing increasingly 

complex production systems (Alkan, et al., 2018) implies a high level of internal and 

external information exchange, so that concrete knowledge about production and 

logistics can be used for implementation, improvement, and quality assurance (Kersten, 

Blecker and Ringle, 2020). Without suitable analysis procedures, with increasing data 

volumes, contained information and contained knowledge are no longer tangible for 

analyses. This knowledge is to be interpreted as a valuable enterprise resource and, thus, 

requires special attention (Wenzel and Stolipin, 2017).  

Increasingly, knowledge discovery methods in databases (KDD) are used for this purpose, 

with data mining (DM) being the most important process step. For many manufacturing 

companies it is unclear which methods to apply in DM. An implementation of every DM 

technology requires a data pre-processing matching the specific DM algorithm, which 

deals with data quality deficiencies and ensures the structuredness of the data. While the 

literature includes manifold sources for removing noise, handling missing values, and 
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detecting outliers, a detailed analysis is rarely sought for the latter. This is exacerbated 

in the KDD context, where outliers are mostly excluded from DM after detection, resulting 

in an exclusive definition of outliers as defects without more-detailed analysis. This 

creates the possibility of information loss and, thus, risks for the analysis in the KDD 

process. Especially for critical systems and products, such a defect can have serious 

consequences. The consideration of outliers is of particular interest for various 

application areas, such as credit card fraud, clinical trials, network security (Ben-Gal, 

2005), but also fault diagnosis, detection of structural defects, time series analysis, or 

erroneous entries in databases (Hodge and Austin, 2004). Also, in the domains of 

production and logistics, time, security, and increasing costs are highly relevant for a 

detailed examination of outliers to improve analyses. 

This paper points out the critical gap in the literature in the area of outlier investigation 

in DM for manufacturing and logistics. For formal derivation of the argument, data and 

information quality are separated by their definitions. Furthermore, the relevance of a 

differentiated consideration of outliers is discussed against the background of existing 

literature. Here, a discussion of data pre-processing methods for DM takes place, 

identifying possible reasons for information loss due to outlier exclusion. The research 

reinforces the use of outlier interpretation to consider outliers in production logistic 

issues. 

The paper is structured as follows: In Section 2, the required terms are first put into 

context. Against the background of the DM literature, the terms data quality and 

information quality are separated. Furthermore, the pre-processing of data in DM is 

discussed in particular. In this context, different methods from the literature are 

compared and classified. Section 3 discusses technology support in the area of data 

analysis with a focus on dealing with outliers in the domain context. Section 4 presents a 

case study including the testing of a selected method described in the previous chapters. 

The thesis concludes in Section 5 with a summary and outlook. 
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2 Theoretical Background on Information in Outliers in 

Data Mining 

In the following sections, the necessary basics for the work are discussed and 

differentiated from related research fields. First, the necessary terms are explained, and 

data quality is distinguished from information quality in particular. After a short 

summary of the usual procedure in the KDD process, data pre-processing methods of the 

DM are classified. 

2.1 Data and Information Quality 

Both information and knowledge are based on data (North, 2022). For data to be used, 

they must first be generated, collected, or measured, and then stored. The data are then 

available in different formats, structures, and qualities in companies. While the question 

of the correct format can usually be answered in a sufficiently trivial manner, the choice 

of the appropriate structure of the database is subject of debate. Even though relational 

databases are most common in companies (Saake, Sattler and Heuer, 2019) other 

database structures up to the polyglot persistence of a data network are possible (Khine 

and Wang, 2019). In particular, NOSQL databases such as graph databases are cited as a 

natural representation option in logistics contexts such as supply chains (Hunker, 

Scheidler and Rabe, 2020). 

The stored data cannot be used directly by the viewer. According to North (2022), data 

become information when meaning is attached to them and they enable action. This 

meaning can be assigned by formal description criteria (Piro and Gebauer, 2011) or by 

the observer himself. In the context of production logistics, information includes, for 

example, details of processes, intended uses, and decision support. The interlinking of 

different information denotes North (2022) as knowledge. 

Defects are possible in data and information. The International Organization for 

Standardization (2010) defines a defect as a result-altering problem, a failure to meet 

requirements, and a designation for an error. Making a connection of the defect 

definition to data and information inevitably leads to data quality and information 



 Hochkamp and Rabe (2022) 95 

 

quality, with quality as the degree to which requirements are met (International 

Organization for Standardization, 2015). Data quality and information quality are often 

used interchangeably in the literature (Gebauer and Windheuser, 2021). Gebauer and 

Windheuser (2021) define data quality as the suitability of the dataset to fulfill quality 

characteristics and meet specified requirements. Accordingly, data quality serves 

conceptually as a classification of the problems arising during generation, collection, 

measurement, storage, and merging. Thus, high data quality is equivalent to few relevant 

errors in the dataset. The separation of data and information quality was investigated by 

preliminary work at the department IT in Production and Logistics (ITPL) and is possible 

via the data and information concept. The data quality evaluates the mapping quality 

between the real world as well as the representation by the data and the information 

quality evaluates the suitability of the data to fulfill a certain purpose (Mengering, 2021). 

Even generated data, e.g., through data farming (Brandstein and Horne, 1998), may 

contain data quality deficiencies. Measured and collected real data are mostly burdened 

with data quality deficiencies, e.g., due to faulty data collection measures, missing data, 

or definition inconsistencies (García, Luengo and Herrera, 2015). In the case of real 

production data in particular, their heterogeneity is also reflected within the data quality. 

The data quality is, thus, in the context of the structure and the format of the data, but it 

is also dependent on manifold influencing factors on the level of data storage and 

analysis (Oliveira, Rodrigues and Henriques, 2005). Collected data are subject to external 

factors at various levels, such as environmental phenomena, strategic changes, or 

changes in machine behavior. Information about the external factors is necessary to be 

able to quantify the partially influencing factors. This also requires a consideration of the 

different levels of aggregation within the available production and logistics data. Various 

works in the literature propose different dimensions to evaluate the data quality. 

Internationally used sources in this respect (Miller, 1996; Redman, 1996; Wang and 

Strong, 1996; English, 1999) have already been supplemented by German-language ones 

in preliminary work at the ITPL (Müller, 2000; Rohweder, et al., 2011) as well as examined 

in the supply chain context (Türkmenoglu, 2021). These were synthesized into the 

following dimensions: format, consistency, accuracy, completeness, comprehensibility, 

lack of redundancy, trustworthiness, accessibility, security, timely and accrual-based 
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posting, response time, relevance, and timeliness. Before using data to generate 

information, data quality can be used as an assessment, accordingly. Similarly, the 

information quality must be quantified before the information is used. 

According to the definition of information, information quality must evaluate the 

suitability of a piece of information for use. This definition of information quality is 

consistent with many sources in the literature, which describe information quality 

specifically in terms of suitability, which is evaluated intrinsically or externally, of a piece 

of information for use (Stvilia, et al., 2007). This evaluation is supported by Lee, et al. 

(2002) in the following 15 dimensions for the measurement of the information quality: 

accessibility, appropriate amount, believability, completeness, concise representation, 

consistent representation, ease of operation, free-of-error, interpretability, objectivity, 

relevancy, reputation, security, timeliness, and understandability. These differ 

significantly according to the application domain, e.g., in the context of Big Data the 

appropriate amount is questionable. The occurrence of low data and information quality 

is not synonymous with information loss, but there is a correlation. At the same time, the 

underlying data quality to which the information refers to is relevant for the information 

quality. 

While information quality is directly related to data quality, studies on the use of 

information need to consider data and information quality separately. For example, poor 

data quality does not exclusively lead to poor information quality, even if there is a 

correlation. The inherent information of each dataset can be used with caution even 

when data quality is poor. Already Parsons (1996) discusses the handling of imperfect 

information as a consequence of basing information on data that are real-world and 

uncertain. Accordingly, in addition to considering data quality as a whole, individual 

datasets must be examined for their information content and placed in the context of 

relevant data quality deficiencies. However, an unpredictable data situation is not 

synonymous with disruptions, errors, or poor planning. There may be information in the 

data that has not yet been allocated or that cannot yet be estimated. When evaluating 

the suitability of a datum for generating information, deficiencies like noise, missing 

values, and outliers exist apart from database-specific data quality. Both noise, which 

can be seen as a corruption of real data (Dong, Chan and Xu, 2007) and as an 
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unintentional obstacle for the analyst (Chandola, Banerjee and Kumar, 2009), as well as 

missing values, which do not allow use as data, are negatively associated in the context 

of data quality in the literature. In contrast, outliers occupy a separate role and are 

sharply distinguishable from noise (Chandola, Banerjee and Kumar, 2009). 

Outliers are data with a sufficiently big difference from expectation, suggesting a deviant 

mechanism of origin (Hawkins, 1980). For outliers, there is no fixed basis of occurrence 

(Barnett, 1978) which can be, e.g., a measurement error or an undetected external 

influence in the data. Aggarwal (2017) adds the terms abnormality, discordant, deviation, 

and anomaly used in the literature for outliers. Furthermore, Aggarwal names inliers, 

which, unlike outliers, do not deviate from the expected data model. Wainer (1976) lists 

the designation of fringeliers, which are to be categorized between the outliers and 

inliers and for which no direct classification as outlier or inlier is possible. An overview of 

outliers, fringeliers and inliers is shown in Figure 1. 

  

Figure 1: Concept illustration of the outlier (black), fringelier (grey) and inlier 

(white) 

Fringelier

Outlier

Inlier
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Already Beckman and Cook (1983) give reasons for dealing with outliers: special interest 

within the research question, detection of special alternative phenomena, accumulation 

of outliers, and influence of outliers. The consideration of outliers is, however, likewise in 

KDD processes and statistical procedures a part of the data pre-processing, even if 

outliers should not represent the actual investigation goal.  

It is to be expected that information can also be extracted from data declared as outliers. 

In some areas, such as quality assurance or risk analysis, sometimes explicitly the outlier 

data themselves as well as findings about the outliers represent the relevant information 

or have a significant influence on it. For this reason, outlier detection and interpretation, 

also explanation or description, receive special attention here.  

2.2 Data and Error Processing in Data Mining 

KDD is concerned with extracting useful information and knowledge from large amounts 

of digital data (Fayyad, Piatetsky-Shapiro and Smyth, 1996). Diverse process models with 

different focuses developed in KDD are presented in the literature, such as the model of 

Fayyad, Piatetsky-Shapiro and Smyth (1996), the Cross Industry Standard Process for 

Data Mining (CRISP-DM) (Wirth and Hipp, 2000) or the Sample Explore Modify Model 

Assess (SEMMA) of the SAS Institute (Azevedo and Santos, 2008). The KDD process, 

according to the overlaps of the models, is based at least on the research question, data 

selection, data pre-processing, DM, and post-processing of the data mining result 

(Scheidler and Rabe, 2021). Figure 2 gives an overview concerning the classification of 

the phase results of the KDD process according to Fayyad, Piatetsky-Shapiro and Smyth 

(1996) on the knowledge staircase (North, 2022). 

While the research question and the evaluation mostly provide the contextual reference 

to the use case, the DM is to be considered as the central aspect in the KDD process and 

to be understood as a collective term for knowledge extraction procedures. DM is already 

used in the context of production for various applications, such as quality assurance and 

improvement (Köksal, Batmaz and Testik, 2011), but also maintenance and special 

production processes (Harding, Shahbaz and Kusiak, 2006). The phase results of DM are 

patterns discovered in the data. The pattern term is polysemous in definition and 

representability in the KDD context.  
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Figure 2: Data, information, and knowledge in the KDD process based on 

Fayyad, Piatetsky-Shapiro and Smyth (1996) and North (2022) 

Nevertheless, there is the possibility to compare patterns (Geng and Hamilton, 2006) and 

to examine them for their interestingness (Silberschatz and Tuzhilin, 1995). To ensure the 

analysis quality of the KDD process, data pre-processing is essential, as it compensates 

for data quality deficiencies and is a mandatory perquisite for the application of data 

mining methods. In most KDD processes, data preparation consists of data integration, 

data cleansing, data normalization, filling missing data, identifying noise, data 

transformation, and reducing data (García, Luengo and Herrera, 2015). In this paper, a 

special focus is given to the KDD model of Fayyad, Piatetsky-Shapiro and Smyth (1996). 

Data integration addresses the merging of different data sources and the handling of the 

resulting sources of error, such as the different formatting of the weight column in 

different databases as weight in grams or kilograms. However, the model of Fayyad, 

Piatetsky-Shapiro and Smyth (1996) assumes an already integrated database.  

Data cleansing, data normalization, filling missing data, and identifying noise is 

addressed in the KDD model of Fayyad, Piatetsky-Shapiro and Smyth (1996). In data 

cleansing, data errors are corrected, which can include entry errors, data transmission 

errors, and errors in the data processing system. For example, an entry Dortmund in the 

column Postal code is cleaned. Data normalization ensures that data inappropriate to the 
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DM algorithm are converted to a different form so that new attributes with appropriate 

values can be generated and used for analysis. A treatment of missing values is essential 

for the use of most DM algorithms, insofar as they are not robust. Common practice is the 

exclusion of the respective dataset with missing values, but also an estimation of the 

missing values via dependencies and similarities to other values. When identifying noise, 

the imperfect data must be cleaned of corruptions. In particular, noise hinders the 

calculation of sharp boundaries, e.g., for clusters. At the same time, however, it also 

hinders other analyses. Solutions in the DM context provide robust learners, a partial 

exclusion of noise, or a filter to eliminate noise. 

The data transformation aggregates raw data values to adapt the value ranges or 

distributions according to the requirements of the underlying DM algorithm. Both the 

data transformation and the subsequent data reduction are assigned to the 

transformation step and not to the data pre-processing step in the KDD model of Fayyad, 

Piatetsky-Shapiro and Smyth (1996). The goal of data reduction is to address the curse of 

dimensionality, avoiding the unnecessary processing of too much data. In this process, 

data are cleverly excluded so that the DM process produces the same or a nearly identical 

result (García, Luengo and Herrera, 2015). 

The treatment of outliers different from exclusion in data pre-processing and the overall 

KDD process of Fayyad, Piatetsky-Shapiro and Smyth (1996), the CRISP-DM, and SEMMA, 

is not provided for. This leads to an incomplete knowledge discovery and consequently 

to a lower analysis quality as well as non-consideration of the formation mechanisms of 

unexpected data. Changes to the patterns, which were extracted under exclusion of the 

outliers, can influence the result of the knowledge discovery and the information 

contained therein can be lost. This is especially relevant in application fields with 

required high analysis accuracy, such as medicine, and high-performance applications, 

or with focus on data deviations, such as the considered outliers in quality control. For 

these reasons, usage-intended detection of outliers is an important, but not explicitly 

listed, step in data pre-processing. The literature on outlier detection, i.e., declaring data 

as outliers, has been extensively studied from general procedures to domain-specific 

algorithms. A good overview about the general topic of outliers can be found in 

Chandola, Banerjee and Kumar (2009) and Aggarwal (2017).  
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Figure 3: Data, information, and knowledge in the aggregated KDD process 

based on Fayyad, Piatetsky-Shapiro and Smyth (1996) and North (2022) 

In the model of Fayyad, Piatetsky-Shapiro and Smyth (1996) the selection step is 

predominantly determined by the research question and a subset is formed from the 

existing database. The database formed by this process was reduced by a large number 

of records, which changes the subsequent analysis result. For the result of the KDD 

process, it is irrelevant whether by the selection the relevant data are extracted from a 

database or exclusively relevant data are collected in a database without selection. For 

this reason, the selection step must be evaluated separately from the rest of the KDD 

process. The step of transformation, which includes data reduction and data projection, 

is integrated into data pre-processing in the context of this work. The background is the 

missing transformation of data, information, and knowledge on the knowledge staircase. 

The underlying object of consideration, i.e., data and information, is not changed, but 

the set of the respective data is reduced as well as formatted for the data mining step. 

According to the statements of Fayyad, Piatetsky-Shapiro and Smyth (1996) and Han, Pei 

and Kamber (2012), no or almost no change of the result takes place in the 
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transformation step, which is why the merging has no effects on a global level. These 

adaptions result in the presented reduced KDD model in Figure 3.  

3 Information Loss Prevention in Data Mining Pre-

processing 

In the following section, the technology-supported implementation of DM is discussed 

and outlier interpretation is considered. Here, conventional methods are distinguished 

from technology-supported methods postulated in the literature against the background 

of large datasets.  

3.1 Technology Support for Data Pre-Processing of Data 

Mining in Production Logistics 

In production logistics, more and more use is being made of technology-supported 

analysis methods such as DM. As data volumes in companies continue to grow, 

consideration of data exceeds the manual manageability and evaluation of datasets. 

Production and logistics data, most of which are stored in relational databases, are not 

only being more frequently collected by sensors, but the level of detail and the scope of 

the data are also increasing. Thus, the increase in the network size of supply chains also 

leads to more complex subordinate processes, which in turn leads to larger databases 

(Scheidler, 2017). New parameters add to the previous considerations and 

dimensionality of the data. This increases the complexity of the DM, but especially also 

that of the data pre-processing, in data reduction, data cleansing, and the consideration 

of outliers. 

Even for frequently performed analyses, subject matter experts are needed who are 

familiar with DM methods and can at the same time classify the issue under consideration 

from a technical point of view. The prevailing shortage of subject matter experts also 

necessitates extensive technical support for pre-processing and analysis execution. In 

this way, subtasks can be further automated or reduced in complexity.  
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3.2 Method of Outlier Detection and Outlier Interpretation 

Within the KDD process, outliers are addressed within the data pre-processing and as a 

result of the DM as explained in Section 2.2. Here, it is to be distinguished whether the 

outliers represent the analysis result of the DM or a research question is examined, in 

which outliers were detected as a secondary result in data pre-processing. 

In both cases, different detection methods are used, and their selection depends on 

different factors, such as the types of data, the amount of data, the knowledge about 

former outliers in the dataset, and the interpretability of the detected outliers (Aggarwal, 

2017). After applying the detection procedure, procedure-dependent results are 

presented to the analyst for his interpretation. The classification is complicated by 

possible false positives, i.e., inliers that are classified as outliers, and false negatives, i.e., 

outliers that are classified as inliers. Both types of incorrect classification occur more 

frequently in the region of fringeliers. 

Conventional detection algorithms list outliers and inliers. Here, the analyst lacks 

contextual information that facilitates interpretation. Regarding the background of the 

research question, the detected outliers are compared to the existing knowledge about 

former outliers in the dataset. Application-specific rationales are also reviewed, such as 

detected outliers before a machine failure occurred. The consequences and causes of the 

outliers can be classified by the precise technical examination and used in subsequent 

analyses of similar data. However, the effort required to interpret the respective outliers 

represents a significant disadvantage. The individual examination of each outlier quickly 

exceeds the time frame and, thus, also leads to increasing analysis costs. The ever-

increasing data volumes justify the expectation that there will also be more outliers in 

the data. At the same time, there are few analysts available due to the shortage of skilled 

labor, and this work is quite expensive. For these reasons, only specially selected outliers 

can be considered in detail or the interpretation of the outliers must be simplified.  

By using outlier scores in detection algorithms, data are ranked according to their outlier 

tendency or according to the distinctness of the outliers, without considering the 

context. Based on the ranking, the most relevant outliers should be estimated. However, 

when forming the ranking, it cannot be determined which outliers are relevant for the 
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Figure 4: Categories of outlier interpretation according to Panjei, et al. (2022) 

underlying research question. Particularly conspicuous outliers, such as decimal shifts 

resulting from entry errors, may overshadow those of technical interest. The incomplete 

examination of outliers also leaves the problem of undetected influences on the dataset 

and the question of exclusion or inclusion in analyses unresolved (cf. Section 2.2). 

Outlier interpretation methods address the above problems. Panjei, et al. (2022) provide 

the only current overview of outlier interpretation methods and Xu, et al. (2021) a 

comparison of different outlier interpretation methods with a focus on algorithmic 

effectiveness. Panjei, et al. (2022) postulate three categories of interpretation methods: 

the importance level of outliers, causal interactions between outliers, and outlying 

attributes of outliers. An overview is shown in Figure 4. 

The sources provided by Panjei, et al. (2022) particularly focus on the interpretation of the 

outlying attributes of an individual outlier. Both numerical ranking of outliers and outlying 

attributes of a group of outliers are addressed in only a few sources, causal interaction 

among outliers in two sources and categorical ranking in only one source. Panjei, et al. 

(2022) evaluate the given outlier interpretation aspects derived from the explanatory 

classification of Molnar (2019). At the same time, outliers contain information (cf. Section 

2.1) and information is provided to the analyst by methods of outlier interpretation. Both 

are, thus, dependent on information quality. A comparison of the information quality 

criteria according to Lee, et al. (2002) and the aspects of Panjei, et al. (2022) is shown in 

Table 1.  

Outlier
 Interpretation

Importance level 
of outliers

Outlying attributes 
of outliers

Casual interactions
 among outliers

Numerical ranking 
of outliers

Categorical ranking
 of outliers

Outlying attributes
of an individual 

outlier

Outlying attributes 
of a group 
of outliers
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Table 1: Comparison of criteria of outlier interpretation aspects and 

information quality criteria. *Added by the authors of this paper. 

Outlier interpretation aspects according to 

Panjei, et al. (2022) 

Information quality criteria 

according to Lee, et al. (2002) 

Contrastive - 

Selected 
Appropriate amount 

Ease of operation 

Focus on the abnormal - 

Social Interpretability 

Truthful 

Accessibility 

Believability 

Free-of-error 

Objectivity 

Reputation 

Security 

Timeliness 

Understandability 

Consistent with prior beliefs of the explainee - 

General and probable Completeness 

Understandable for the explainee* 
Concise representation 

Consistent representation 

 

By comparison of the outlier interpretation aspects and the information quality criteria 

an overlap can be identified. This paper derives the outlier interpretation quality criteria 
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from the overlap and divides it into three categories: the effect on people, the research 

question, and the mapping of reality. 

The dimensions named selected, social, and consistent with prior beliefs of the explainee 

can be mapped to the category effect on people. This category is in clear contrast to the 

information quality criteria since the information itself and not the effect on people is the 

object of consideration. Nevertheless, appropriate amount and ease of operation are 

related to selected by ensuring the relevance of the information. Interpretability and 

social can be recognized as connected, which represent the possibility of the 

interpretation kind of the respective viewer. No information quality criterion verifies that 

the information is consistent with prior beliefs of the explainee. The effect on people 

represents a central component of information loss prevention. A possible 

misinterpretation of given information is prohibited by methods of technology support 

only by a representation type adapted to the viewer. 

Contrastive and focus on the abnormal are assigned to the second category research 

question. Both find, by the attempted assurance of the information quality in the 

associated criteria, no agreement to a deviation-centered view. The intersection with the 

third category is also found here. In the context of the predefined question, the 

expressions are to be associated with a trivial validation.  

The third category of mapping of reality includes truthful as well as general and probable. 

General and probable implies a result-centered view of the completeness of given 

information, which is expressed by completeness in the information quality criteria. 

Truthful expresses the correct representation of reality on data as well as on information 

level. Therefore, most of the information quality criteria can be assigned to truthful. The 

expressions of this category are to be associated with a kind of verification.  

In the study published by Panjei, et al. (2022), presentation types, e.g., concise 

presentation and consistent presentation, find no consideration as a derived criteria. 

However, references exist, e.g., to “lookout” of Gupta, et al. (2019), which deal intensively 

with information visualization for outlier interpretation. Accordingly, the consideration 

of Panjei, et al. (2022) must be extended by understandable for the explainee, which can 

be assigned to the category effect on people. As a direct result of the comparison of the 
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work of Panjei, et al. (2022) and Lee, et al. (2002) in Table 1, an overview of the derived 

categories and dimensions of outlier interpretation quality is presented in Table 2. 

In reference back to the direct use of outlier interpretation in the context of the DM, the 

literature confirms existing relevant information in outliers. This is already to be 

considered in the data pre-processing step of the DM, which is why an inclusion of 

suitable outliers provides the analyst with additional information in the data pre-

processing and in the DM itself. The analyst's review of the information content is 

ensured by the effect on humans and understandable for the explainee in particular.  

In summary, in the case of technology support, information loss within outliers in DM can 

occur at three different levels. At the data level, outliers may not be detected or may be 

incorrectly excluded. At the information level, information may be placed in the wrong 

context or declared unimportant, creating incorrect information or excluding correct 

information. Lastly, at the human interaction level, communication problems can lead to 

incorrect evaluation of the information. 

Table 2: Derived outlier interpretation quality categories and dimensions 

  

Effect on people Research question Mapping of reality 

Selected Contrastive Truthful 

Social Focus on the abnormal General and probable 

Consistent with prior 

beliefs of the explainee 
  

Understandable for the 

explainee 
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4 Exemplary Investigation of a Technology-Supported 

Outlier Interpretation Method in Production 

In the domains of manufacturing and logistics, to the best of the authors' knowledge, 

technology support through outlier interpretation has not been significantly studied so 

far. Only Xing, et al. (2015), with an investigation of cabs in a regional traffic model, as 

well as Zhang, Diao and Meliou (2017), who use synthetically generated supply chain data 

from an airline, are in the domain of logistics. In accordance with the focus on outlying 

attributes of an individual outlier in the literature, this paper examines the category as 

an example. The case study will be based on the COIN outlier interpretation method 

provided by Liu, Shin and Hu (2018) and a production dataset. The COIN method builds 

context-based outlier scores for relevance evaluation of individual outliers.  

The copper wire production line dataset, published on Kaggle by Oscar (2020), contains 

16 days of recorded disturbance data from a production line. The application of the COIN 

method to the dataset was complemented by increasing the iteration steps to ensure 

convergence. In Figure 5, the calculated contextual outlier score of the dataset by the 

COIN method is illustrated.  

According to the study conducted by Liu, Shin and Hu (2018), the detected outliers with 

a higher outlier score are more likely to be true outliers than those with a low value. At 

the same time, they describe the outliers with high outlier score as more technically 

interesting. For example, for rows 93, 94, 102, 103, 110, 111, 121, and 126, the low outlier 

scores of the values suggest the defective machine 8, on whose basis a cluster of outliers 

was generated. Line 72 has an outlier score of 10.5 in connection with machine 8 and at 

the same time marks the point in time after which machine 8 exclusively produced 

outliers. Thus, exactly this outlier contains information of particular interest and is 

assigned a high outlier score. 
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Figure 5: Outlier score of the copper wire production line dataset computed 

with the COIN-Method 

The outliers in Figure 5 with an outlier score higher than 20 exhibit clear dependencies 

on multiple clusters and are, thus, also highlighted objects of study. Liu, Shin and Hu 

(2018) postulate for this case that they must be true outliers, but do not make any 

statement about included information. It must be recommended to consult experts of 

the production plant for these outliers. 

Based on the sources mentioned above and the exemplary study presented here, it can 

nevertheless be shown that methods of outlier interpretation can in principle also be 

applied in the domains of production and logistics. 
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5 Summary and outlook 

This paper discusses the possibilities of information loss prevention in DM data pre-

processing in the domain of production logistics. In this context, relevant definitions of 

data and information quality were gathered, and methods of outlier interpretation were 

pointed out as well as classified. At the same time, the relevance of technology support 

in the given field was highlighted and placed in the context of information loss issues. In 

particular, three levels of possible information loss sources in outlier interpretation were 

highlighted: the data level, the information level, and the human interaction level. In 

addition to the literature-based argumentation on outlier interpretation methods, the 

exemplary case study also shows a possible evaluation of the interestingness for 

information stored in outliers. Due to the incomplete literature base on outlier 

interpretation in the domains of manufacturing and logistics as well as the DM context, a 

comprehensive classification of this work is difficult. Also, the exemplary domain 

suitability study needs to be extended by the case study with close subject matter expert 

contact based on various outlier interpretation methods.  

In subsequent research the research field of outlier interpretation requires a framework 

concept for application in the KDD process. Here, the use of DM methods in outlier 

interpretation may result in a multi-phase implementation of a KDD process. A linkage of 

the KDD process with methods of outlier interpretation could generate improved analysis 

results by inclusion of all suitable information. 
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