
On Spectral Theory, Control, and Higher Regularity
of Infinite-dimensional Operator Equations

Vom Promotionsausschuss der
Technischen Universität Hamburg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von
Fabian Nuraddin Alexander Gabel

aus
Mainz

2023



1. Gutachter: PD Dr. habil. Christian Seifert
2. Gutachter: Prof. Dr. Felix L. Schwenninger

Tag der mündlichen Prüfung: 09. Juni 2023

doi:10.15480/882.5197

ORCiD: https://orcid.org/0000-0002-8053-0284

This work is licensed under a
Creative Commons Attribution 4.0 International License.

https://doi.org/10.15480/882.5197
https://orcid.org/0000-0002-8053-0284
https://creativecommons.org/licenses/by/4.0/


Summary
This work studies different physically motivated mathematical models ranging from

quantum physics and abstract non-autonomous Cauchy problems to mathematical fluid
mechanics.

In the first part, we study the approximation theory of discrete periodic Schrödinger
operators and the connections to spectral theory. In particular, we will study the applicability
of the finite section method (FSM). This method aims to solve infinite-dimensional operator
equations via a projection-based truncation technique. Under additional assumptions on
the range of the potential of the Schrödinger operator and the period length, we show that
the FSM is applicable if and only if the monodromy matrix of the Schrödinger operator
fulfills a trace condition. The applicability analysis of the finite section method demands a
study of the invertibility of Schrödinger operators that have been restricted to the half-line
and carry a Dirichlet boundary condition. For these operators, we give a set of conditions in
order to verify the operators’ invertibility. These conditions allow for implementation in a
computer algebra system in order to carry out a complete study of all periodic Schrödinger
operators with {0, λ}-valued potentials. In the course of this algorithmic study, we also
provide counterexamples to demonstrate the optimality of our results.

In the second part of this work, we study the control and observability theory of Banach-
space-valued differential equations. These equations are often denominated “abstract Cauchy
problems” and represent a generalization of ordinary differential equations to the framework
of operators on Banach spaces. This general viewpoint allows to interpret partial differential
equations as operator equations in infinite-dimensional vector spaces and to study their
solution theory employing operator theory. If the Cauchy problem features not a single
operator but a family of operators that changes as time progresses, we speak of a non-
autonomous Cauchy problem. In this class of non-autonomous Cauchy problems, we study
observation systems consisting of observation families that additionally depend on time. For
this class of systems, we derive an abstract theorem to assure final-state observability. To
this end, we extend the classical Lebeau–Robbiano strategy to the non-autonomous setting
by providing suitable counterparts of an abstract uncertainty principle and dissipation
estimate. We also study the concrete application of this result to non-autonomous diffusion
problems induced by families of strongly elliptic operators. These operators are often found
in the mathematical description of models featuring gradient-induced transport, such as
diffusion. For the class of non-autonomous diffusion equations, we prove necessary and
sufficient geometric conditions on the family of observation sets.

The last part of this work studies a fundamental model of mathematical fluid mechanics:
the Navier–Stokes equations. We study this system of partial differential equations on
planar Lipschitz domains intending to prove higher regularity of so-called weak Leray–Hopf
solutions in Lp-spaces and spaces of distributions. Our approach solves this problem by
thoroughly analyzing the linear part of the Navier–Stokes equations represented by the
Stokes operator. To this end, we develop a functional analytic framework for the Stokes
operator on Lebesgue spaces on bounded planar Lipschitz domains. In particular, we
prove that the Stokes operator is R-sectorial on Lp

σ in order to conclude its maximal Lq-
regularity. Furthermore, we show that the Stokes operator on bounded Lipschitz domains
has a bounded H∞-calculus. Building on these results, we derive a characterization of the
domains of fractional powers of the Stokes operator in terms of Bessel-potential spaces.
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Chapter 1

Introduction

Describing aspects of physical phenomena by forming abstract mathematical models is a
common practice in scientific work: the mathematical formalism allows the permeation of
the mathematical model as a means of creating insights and knowledge over the described
real-world phenomenon. The balancing act of mathematical modeling is to find a level of
complexity of the model that, on the one hand, makes it possible to analyze the model
with mathematical rigor and, on the other hand, does not compromise too much of the
expected real-world behavior. Throughout this thesis, we will visit different physically
motivated mathematical models exhibiting different degrees of complexity and study their
mathematical properties. In particular, we will deal with discrete and continuous models,
time-dependent and time-independent models, linear and non-linear models.

Discrete Stationary Models

In the first part of this thesis, we deal with discrete Schrödinger operators. These operators
are used to model physical systems on lattices and, therefore, play an important role in
theoretical solid-state physics. At its core, one considers a so-called Hamiltonian

H = ∆+ V

modeling the kinetic and potential energy of a single particle via the discrete Laplacian ∆ and
the potential V . We focus on periodic potentials V which describe a periodic tight-binding
model. Periodicity is a phenomenon often encountered in materials with a translational
symmetry which is usually found in crystalline structures like metals. Here, the spectrum
ofH is of particular interest as it allows to conclude the existence or absence of specific energy
levels and corresponding eigenfunctions of the quantum physical system. As our model
does not feature a time dependence, these eigenfunctions represent stationary equilibrium
states that a time-dependent version of the system may attain after a long time.

1



2 — Chapter 1. Introduction

The spectrum of H is also profoundly linked to the numerical analysis and approximation
theory of finite-difference operators. More concretely, the discrete Hamiltonian H of the
above tight-binding model falls into the large category of band operators for which a
powerful approximation method exists: the finite section method (FSM). This method
allows to study the approximate solvability of infinite-dimensional linear equations of the
form

Hx = b

for x, b ∈ ℓp(Z) and asks if a suitably constructed sequence of finite-dimensional approxi-
mating equations Hnxn = bn yields a well-defined sequence of approximate solutions xn to
the original problem. In this case, one calls the approximation method applicable to H.
The following graphic illustrates the approximation process for the matrix representation of
the Hamiltonian H.

H =



. . .

H1

H2

H3

H4

H5

. . .


Our goal is to establish a link between properties of the potential V and the approximation
theory of H. More precisely, we will derive a novel variety of subclasses of operators H with
periodic potential V , guaranteeing the applicability of the FSM given that H is invertible.
Furthermore, we demonstrate that the presented classes of potentials are sharp by providing
counterexamples. The contents of this chapter appeared in the article [54], the preprint [53]
and used the data and code repositories [52, 55].

Non-autonomous Linear Models

The second part of this thesis takes us from the discrete world to the continuous world and
from time-independent models to models that feature evolution and time-dependent model
parameters. More concretely, we will study parabolic equations—a generalized model for
diffusion processes. Diffusion occurs with the distribution of heat in solid media or the
concentration of substances when gradients of concentration and not convection dominate
the motion. At the heart of our model of interest lies a family of elliptic differential operators

A(t) =
∑

|α|≤m

aα(t)∂
α
x ·, t ∈ I,
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of order m ≥ 2 parametrized over a finite time interval I = [0, T ]. The family of elliptic
operators (A(t))t∈I determines the distribution of the state u, e.g., the heat or concentration,
and its evolution in time via the ordinary Banach space-valued differential equation

u̇ = −A(t)u.

Now additionally assume that we do not have access to the evolution of u directly but
only to a filtered version C(t)u(t) modeled via a family of observation operators C(t) for
t ∈ I. Based on the observations C(t)u(t), we aim to deduce a conclusion about the final
state u(T ) of our diffusion process in the form of a final-state observability estimate

∥u(T )∥ ≲
∫ T

0
∥C(t)u(t)∥ dt. (OBS)

Loosely speaking, this inequality represents a relation by which one can estimate the total
energy ∥u(T )∥ of the system at a fixed point in time T by sampling energy observation
measurements ∥C(t)u(t)∥ over time and calculating their average. The operator family
(C(t))t∈I may be interpreted as a model to account for blind spots of the observation
process, i.e., regions of the state space, where no measurements are sampled. Depending on
the concrete Banach space in which u(T ) lies, it is also possible to interpret ∥u(T )∥ as the
total mass of the system or some higher moment if one considers stochastically motivated
models.

Inequalities like (OBS) are interesting in the field of mathematical control theory as
they are closely related to the problem of steering a system’s state to a desired final
state via a control function. In particular, one searches for sufficient conditions on the
operators A and C such that the estimate (OBS) is valid. While criteria for autonomous
versions of (OBS), i.e., when the operator families A(·) and C(·) are constant, are well-
established, there exist only a few results for fully non-autonomous systems. Therefore,
in this part of the thesis, we will extend a theorem about (OBS) for constant versions of
the operator families A and C to the fully non-autonomous setting. More precisely, we
will demonstrate a novel extension of the famous Lebeau–Robbiano strategy for proving
final-state observability estimates that allows for non-autonomous families of operators
(A(t)), (C(t)) and measurable observation sets E ⊆ [0, T ].

As an application of this abstract result, we will derive an observability estimate for
non-autonomous elliptic differential operators and moving observation sets. This can be
interpreted as estimating the “energy” of a diffusion system through a series of observations
on time-dependent observation sets, i.e., observations that are subject to non-stationary
blind spots. Furthermore, we relate observability to the geometric properties of a special
class of observation operators C(t)f := f |Ω(t) given via restriction to measurable sets Ω(t).
The non-autonomy of the family (C(t)) gives rise to a new geometric property which we call
mean thickness and which generalizes the notion of thick sets. We will prove this condition
to be a necessary property for the existence of observation estimates. Some of the contents
of this chapter are also part of the article [18].

Non-linear Models

The third part of this thesis takes us to non-linear systems of equations and studies a famous
model for the description of fluid motion: the Navier–Stokes equations. Depending on the
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space dimension, this system consists of multiple conservation equations of momentum
involving the velocity u and the pressure ϕ and one conservation equation of mass:

u′ −∆u+ (u · ∇)u+∇ϕ = f in (0,∞)× Ω,

div(u) = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0 in Ω.

(NSE)

Proving the existence and uniqueness of classical solutions to (NSE) is considered one of
the most important unsolved problems of our century and is therefore part of the famous
millennium problems [76]. Nevertheless, the Navier–Stokes equations build the basis for
a plethora of complex models that are used to simulate fluid flow phenomena, e.g., for
calculating the drag of moving vehicles, the lift of an airplane, or for weather models, to
name a few.

Compared to the models discussed in the previous paragraphs, we immediately see two
factors of complexity in (NSE): first, instead of a single equation, our model consists of
a system of partial differential equations; second, it brings a non-linear convective term
(u·∇)u into the model. A suitable framework for the analysis of the Navier–Stokes equations
builds on the thorough study of the linear part of (NSE), the Stokes equations.

u′ −∆u+∇ϕ = f in (0,∞)× Ω,

div(u) = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0 in Ω.

(SE)

More concretely, one studies the operator theoretic properties of the so-called Stokes operator
which is associated with the part −∆u+∇ϕ in (SE) and aims to establish a semigroup
theory for this operator. If the Stokes semigroup fulfills suitable smoothing properties,
this opens the door to a variety of solution methods to (NSE), e.g., via iteration schemes
demonstrated in the celebrated Fujita–Kato approach. A more abstract approach to the
solution theory of (NSE) builds on the so-called maximal regularity of the Stokes operator
and proving the existence of solutions via a fixed-point argument. Here the main idea is
to treat the non-linear term (u · ∇)u as an additional inhomogeneity and to deduce the
solvability of the full Navier–Stokes equations by solving a related integral equation. All of
these techniques form a well-established framework of tools to study (NSE) on domains Ω
with sufficiently smooth boundary in the sense of differentiability. In real-world applications,
however, fluid flow problems often involve less regular rough boundaries, e.g., Lipschitz
domains like cylinders or more complicated geometries featuring edges, corners, and kinks.
For these types of domains, less is known about the existence and regularity of solutions
to (NSE).

We will study the regularity theory of solutions via the previously mentioned maximal
regularity property of the Stokes operator. More precisely, we will show that the Stokes
operator on bounded planar Lipschitz domains has the property of maximal regularity and
a bounded H∞-calculus. Furthermore, we will extend the currently known characterizations
of domains of fractional powers of the Stokes operator. These results find their application
when we transition to the full non-linear Navier–Stokes equations. Here, we will put them to
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work for the regularity theory of the Navier–Stokes equations on planar Lipschitz domains.
More precisely, we will prove a theorem on the existence of global strong solutions in
different regularity classes, improving the regularity of the classical Leray–Hopf solutions.
The contents of this chapter appeared in the article [56].
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Chapter 2

Finite Sections of Discrete
Schrödinger Operators

This chapter is based on the joint work with Dennis Gallaun, Julian Großmann, Marko
Lindner, and Riko Ukena [52, 54, 55, 53].

2.1 Introduction

Consider the one-dimensional discrete Schrödinger operator H on ℓp(Z), p ∈ [1,∞], with
potential v : Z → C, acting on a two-sided infinite sequence x : Z → C via the relation

(Hx)k = xk−1 + xk+1 + v(k)xk , k ∈ Z . (2.1)

Typically, x is an element of ℓp(Z), p ∈ [1,∞], and v is an element of ℓ∞(Z). Consequently,
H acts as a bounded linear operator on every space ℓp(Z) and may be represented by a
two-sided infinite matrix (Hij)i,j∈Z. If v is a periodic function, i.e., if there exists K > 0
such that v(k+K) = v(k) for all k ∈ Z, then H is called a K-periodic Schrödinger operator.
We will often tacitly omit the period K and call H simply a periodic Schrödinger operator.

2.1.1 The Finite Section Method

We study the following problem in the numerical analysis of operator equations: consider
the linear system Hx = b in ℓp(Z) for some p ∈ [1,∞]. If H is invertible, we want to
approximate the unique solution x via a truncation technique that replaces the original
infinite-dimensional system with a sequence of finite-dimensional linear systems Hnxn = bn,
n ∈ N. Suppose these systems are uniquely solvable for all but finitely many n. In that
case, they give rise to a sequence of solutions (xn)n∈N that serves as a finite-dimensional
approximation of x in the following sense: first, we embed each xn into ℓp(Z) by extending
the vectors of finite length with zero. Then we want the resulting sequence of vectors

6
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in ℓp(Z) to converge to x in the corresponding ℓp-norm, i.e.,

lim
n→∞

∥∥∥


...
0
xn
0
...

− x
∥∥∥
p
= 0 . (2.2)

If (2.2) is valid, then we call the FSM applicable to H.
The following classical result regarding the applicability of the FSM, cf. [100, 126],

summarizes all requirements for a successful FSM.

The finite section method is applicable to H if and only if

(a) H is invertible, and
(b) all but finitely many finite sections Hn := (Hi,j)

n
i,j=−n are invertible

(c) with uniformly bounded inverses (H−1
n ).

(2.3)

Some models also use one-sided or half-line Schrödinger operators H+ on ℓp(Z+),
Z+ := {0, 1, 2, . . . }. These operators can be seen as a restriction of H from (2.1) with a
Dirichlet boundary condition for x−1, given by

(H+x)k := xk−1 + xk+1 + v(k)xk , k ∈ Z+ , where x−1 := 0 . (2.4)

This operator is then represented by a one-sided infinite matrix (Hij)
∞
i,j=0. For one-sided

operators, the equivalence (2.3) holds analogously with H+ instead of H.
As it turns out, the applicability question is strongly related to some spectral properties

of H. In numerous works over the last decades, the class of periodic Schrödinger operators
has been extensively studied, and several methods have been developed to understand their
spectral properties. This includes Floquet–Bloch theory, see, e.g., [144, Chap. 7] and [127,
Chap. XIII.16], the transfer matrix formalism, see, e.g., [28, Sec. 3] and [91], and more
recently and generally the application of the dynamical systems formalism, see [27] and the
references therein. In this chapter, we will employ a different tool to study the spectral
theory of Schrödinger operators: limit operators, see, e.g., [99, 126]. This tool will allow us
to tailor a framework suitable for the applicability analysis of the FSM. Using limit operator
techniques, we will derive several spectral theoretic insights into two-sided and one-sided
periodic Schrödinger operators and prove optimal results regarding the applicability of the
FSM in the domain of periodic Schrödinger operators.

2.1.2 FSM-simple Operators

For some classes of operators, it turns out that one can skip the checks (b) and (c) in the
equivalence (2.3) as the invertibility of H already implies the two other conditions. In
other words, the invertibility of H implies that the FSM is applicable to H. We will call
operators that fulfill the above dichotomy FSM-simple. If H is FSM-simple, either the FSM
is applicable to H, or H is not invertible. The purpose of this chapter is to systematically
study FSM-simplicity for the class of discrete periodic Schrödinger operators.
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2.1.3 Outline

Let us outline the main results of this chapter. We derive sufficient conditions for a periodic
Schrödinger operator to be FSM-simple. This study will also lead to novel insights into the
spectral theory of one-sided periodic Schrödinger operators subject to a Dirichlet boundary
condition. The following theorem summarizes our findings.

Theorem 2.1.1. Let p ∈ [1,∞], K ∈ N, and H be a discrete K-periodic Schrödinger
operator on ℓp(Z) with potential v as defined in (2.1). The operator H is FSM-simple if
one of the following conditions is fulfilled:

(i) K ∈ N and v(n) ∈ Z for all n ∈ Z.

(ii) K ≤ 8 and v(n) ∈ {0, λ} for all n ∈ Z with a fixed λ ∈ Q.

(iii) K = 2 and v(n) ∈ R for all n ∈ Z.

If H+ is a one-sided discrete K-periodic Schrödinger operator on ℓp(Z+) given by (2.4),
then statements (i)–(iii) analogously imply that H+ is FSM-simple.

The conditions formulated in Theorem 2.1.1 are optimal in the class of periodic
Schrödinger operators.

Remark 2.1.2. (i) The 3-periodic Schrödinger operator having as potential the peri-
odic continuation of (2, 12 ,

1
2) shows that Theorem 2.1.1(i) cannot include Q-valued

potentials and (iii) cannot include period three, see Example 2.4.8.

(ii) It is not possible to drop rationality of λ in Theorem 2.1.1(ii). The 5-periodic
Schrödinger operator H having as potential the periodic continuation of 1√

2
(1, 1, 0, 1, 0)

is not FSM-simple, see Example 2.4.9.

(iii) The bound on the period length K in Theorem 2.1.1(ii) is optimal. The 9-periodic
Schrödinger operator having the periodic continuation of 1

2(1, 1, 0, 1, 0, 1, 0, 1, 1) as
potential is not FSM-simple. For a detailed study of this example, see Example 2.4.11
and the data analysis in [52].

A detailed discussion of the statements in Remark 2.1.2 and their optimality will be
presented in Section 2.4.3.

For K-periodic Schrödinger operators H on ℓp(Z) with real-valued potential v, the
invertibility is particularly easy to check, see, e.g., [123]: H is invertible if and only if at
least one of the following monodromy matrices has its trace outside the interval [−2, 2]:

M (j) :=

(
−v(K − 1 + j) −1

1 0

)
· · ·
(
−v(1 + j) −1

1 0

)(
−v(j) −1

1 0

)
(2.5)

M̃ (j) :=

(
−v(j) −1

1 0

)(
−v(1 + j) −1

1 0

)
· · ·
(
−v(K − 1 + j) −1

1 0

)
(2.6)

with j ∈ Z. In particular, for FSM-simple operators, checking the trace of one of these
matrices suffices to verify the applicability of the FSM. However, for a periodic Schrödinger
operator that is possibly not FSM-simple, in addition to the trace condition mentioned
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above, one has to check whether the matrix entries M2,1 and M1,1 of the monodromy
matrix M fulfill the condition

M2,1 ̸= 0 or |M1,1| > 1 , (2.7)

whereM runs through the set of matrices (2.5) and (2.6). The following theorem summarizes
this agenda for checking applicability of the FSM.

Theorem 2.1.3. Let p ∈ [1,∞], K ∈ N, H a discrete K-periodic Schrödinger operator on
ℓp(Z) with real-valued potential v defined by (2.1), and let H+ be the one-sided restriction
on ℓp(Z+) defined by (2.4). In addition, let M (j) and M̃ (j) be given by (2.5) and (2.6),
respectively. Then the following holds:

(i) The FSM is applicable to H if and only if | tr(M (0))| > 2 and

M (0), . . . ,M (K−1) and M̃ (0), . . . , M̃ (K−1)are subject to (2.7).

(ii) The FSM is applicable to H+ if and only if | tr(M (0))| > 2 and

M (0) and M̃ (0), . . . , M̃ (K−1)are subject to (2.7) .

In particular, the FSM is applicable to H+ if it is applicable to its periodic extension H on
ℓp(Z). Moreover, H+ is FSM-simple if H is FSM-simple.

Remark 2.1.4. It may happen that the FSM is not applicable to H but to its one-sided
restriction H+. Indeed, this is the case for the 9-periodic Schrödinger operator H having as
potential the periodic continuation of the vector 1√

2
(1, 1, 1, 0, 1, 1, 0, 1, 0), see Example 2.4.12.

2.2 Approximation of Band Operators

This section briefly introduces the finite section method for band operators. We will state
and prove several auxiliary results needed in the following sections.

2.2.1 Band Operators and the Finite Section Method

Given a discrete Schrödinger operator H as in (2.1), throughout this chapter, we will mostly
think of it as being represented by a two-sided infinite tridiagonal matrix A = (aij)i,j∈Z
defined by

A =



. . . . . .

. . . v(0) 1
1 v(1) 1

1 v(2)
. . .

. . . . . .


. (2.8)

The so-called finite section method (FSM) for H or A considers the sequence of finite
submatrices

An = (aij)
n
i,j=−n, n ∈ N , (2.9)
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and asks the following:

Are the matrices A and An invertible for all but finitely many n, and are their
inverses strongly convergent to the inverse of A?

In the case of a positive answer to the above question, we call the FSM applicable to A,
respectively. This definition is compatible with the notion of applicability used in the
introductory section 2.1.1. The convergence of the sequence of inverses (A−1

n ) to A−1 has
to be understood as strong convergence of the embedded matrices A−1

n into a two-sided
infinite matrix, similar to (2.2), i.e.,

. . . . . .

0 0 0

· · · 0 A−1
n 0 · · ·

0 0 0

. . . . . .


→ A−1 strongly for n→ ∞.

Now this approximation of A−1 can be used for solving equations Ax = b approximately
via the solutions of growing finite systems Anxn = bn.
Remark 2.2.1. (i) The first rigorous treatments of this natural approximation via finite

sections can be found in the works of Baxter [11] and Gohberg [67]. They studied
finite sections of one-dimensional Wiener–Hopf equations which can be interpreted
as continuous analogs to Toeplitz operator equations, i.e., equations that involve a
convolution-like operator. The idea of taking finite sections to solve operator equations
was subsequently extended to more general classes of operators as band-dominated
operators with scalar and operator-valued coefficients. We refer the interested reader
to [72, 126] for a state-of-the-art introduction.

(ii) In case the FSM is not applicable in the above sense, it may still be possible to
establish an applicability result by modifying the shape of the finite sections, see [101,
125].

Operators like the Schrödinger operator H, whose infinite matrix representation only
exhibits finitely many non-zero diagonals, are a well-known subject of investigation regarding
the applicability of the FSM. Operators of this type are summarized in the class of band
operators, which we introduce next.

Definition 2.2.2 (Band-width and Band Operator). A finite sum

A =
ω∑

k=−ω

Ma(k)S
k

of products of multiplication operators (Ma(k)x)n = a
(k)
n xn with a(k) ∈ ℓ∞(Z) and powers

of the right shift operator, (Sx)n = xn−1, is called a band operator with band-width ω ∈ N.

Per constructionem, a band operator A acts as a bounded operator on every ℓp(Z) with
p ∈ [1,∞]. For band operators with band-width ω, we have aij = 0 for all |i− j| > ω. In
the following, we will identify an operator A on ℓp(Z) with its usual matrix representation
(aij)i,j∈Z with respect to the canonical basis in ℓp(Z).
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Remark 2.2.3. Whenever necessary, we consider, for some index set I ⊆ Z, the space ℓp(I)
as a subspace of ℓp(Z). The terms in Definition 2.2.2 naturally carry over to operators A
on ℓp(I) by identifying them with their canonical extension by zero.

As we will see in this section, the invertibility of band operators lies at the core of the
applicability analysis of the FSM. The following proposition shows that, when investigating
the invertibility of a band operator on a space ℓq(Z), one can always fall back onto one’s
favorite ℓp(Z).

Proposition 2.2.4. Let B be a band operator on ℓp(I) for some I ⊆ Z and p ∈ [1,∞]. If B
is invertible, then B is also invertible as an operator on ℓq(I) for all q ∈ [1,∞].

Proof. First, we identify the Banach space ℓp(Z) with the p-direct sum ℓp(J)⊕ ℓp(I), where
J := Z \ I and the norm is given by

∥x⊕ y∥ :=


(
∥x∥pℓp(J) + ∥y∥pℓp(I) )

1
p if p <∞ ,

max
{
∥x∥ℓ∞(J), ∥y∥ℓ∞(I)

}
if p = ∞ .

Now, assume that B is invertible on ℓp(I). We extend the operator B to an invertible
operator A on ℓp(Z) via

A :=

(
1J 0
0 B

)
with respect to the direct decomposition ℓp(Z) = ℓp(J)⊕ ℓp(I). Here, 1J denotes the identity
on ℓp(J).

Note that, as a band operator, A is an element of the so-called Wiener algebra W , see,
e.g., [99, Sec. 3.7.3]. Due to [89, p. 5.2.10], the algebra W is closed under taking inverses; a
concise proof of this fact can also be found in [126, Cor. 2.5.4]. As an element of W, the
inverse A−1 acts boundedly on every space ℓq(Z), q ∈ [1,∞]. Consequently, the operator A
is invertible on all spaces ℓq(Z), q ∈ [1,∞]. Moreover, we have

A−1 =

(
1J 0
0 B−1

)
.

This shows that B−1 is a bounded operator on ℓq(I) for all q ∈ [1,∞].

Assuming invertibility of A on ℓp(I), the applicability of the FSM is equivalent to the
uniform boundedness of the inverses A−1

n , a concept known as stability.

Definition 2.2.5 (Stability). A sequence of operators (An)n∈N defined on ℓp(I) for p ∈ [1,∞]
is called stable if there exists n0 ∈ N such that, for all n ≥ n0, the operators An are invertible
and (A−1

n ) is uniformly bounded.

The basic result connecting the notions of applicability and stability is known as
Polski’s theorem, cf. [72, Thm. 1.4]:

The FSM is applicable to A if and only if the FSM-sequence (An) from (2.9) is
stable and A is invertible.

So Polski’s theorem above precisely consists of the equivalence (2.3) that we presented in
the introductory section.
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Furthermore, stability of (An), and hence also applicability of the FSM, is closely
connected to the entrywise limits

(ai+ln,j+ln)
∞
i,j=0

n→∞−−−→ L+ and (ai+rn,j+rn)
0
i,j=−∞

n→∞−−−→ R− (2.10)

of one-sided infinite submatrices of A, where we consider sequences (ln) and (rn) with
limn→∞ ln = −∞ and limn→∞ rn = ∞ such that the limits in (2.10) exist.

The following result summarizes the connections between the concepts applicability,
stability, and (2.10).

Lemma 2.2.6 ([22, Lem. 1.2], [125, Thm. 2.3]). Let p ∈ [1,∞].

(i) Let A be a band operator on ℓp(Z). Then the following are equivalent:

(a) The FSM is applicable to A.

(b) The FSM-sequence (An) with An = (aij)
n
i,j=−n is stable.

(c) The operator A and the limits L+ and R− from (2.10) are invertible for all
suitable sequences (ln) and (rn).

(ii) Let A+ be a band operator on ℓp(Z+). Then the following are equivalent:

(d) The FSM is applicable to A+.

(e) The FSM-sequence (An) with An = (aij)
n
i,j=0 is stable.

(f) The operator A+ and the limits R− from (2.10) are invertible for all suitable
sequences (rn).

2.2.2 Limit Operators

We now focus on the operator-theoretical tool of so-called limit operators in order to
characterize conditions (c) and (f) of Lemma 2.2.6, cf. [100, 124, 126]. In the following, let
Z− := −Z+. Note that the sets Z− and Z+ include zero.

Definition 2.2.7 (Limit Operators and Compressions). Let A be a band operator on ℓp(Z)
for p ∈ [1,∞]. An operator B ∈ ℓp(Z) with matrix representation (bij)i,j∈Z is called a limit
operator of A if there is a sequence h = (hn)n∈N ⊆ Z with limn→∞ |hn| = ∞ and

ai+hn,j+hn

n→∞−−−→ bij

for all i, j ∈ Z. In this case, we also write Ah := B and say that h is the corresponding
sequence to B. We denote the set of all limit operators of A by Lim(A). For Ah ∈ Lim(A),
we write Ah ∈ Lim+(A) or Ah ∈ Lim−(A) if the corresponding sequence h tends to +∞
or −∞, respectively. If A is a band operator on ℓp(I) for I ̸= Z, we define its sets of
limit operators lim(A) and lim±(A) to consist of the corresponding limit operators of the
zero-extension of A to ℓp(Z).

Moreover, we call both operators

A+ := (aij)
∞
i,j=0 and A− := (aij)

0
i,j=−∞

(one-sided) compressions of A.
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Note that Definition 2.2.7 yields the identities Lim±(A) = Lim(A±). In fact, the
operators L+ and R− from (2.10) correspond to the one-sided compressions of the limit
operators A(ln) and A(rn). Evidently, a limit operator Ah of a band operator A is again a
band operator with the same band-width.

We now reformulate Lemma 2.2.6 in the language of limit operators.

Proposition 2.2.8 ([22, Lem 1.2], [125, Thm. 2.3]). Let A be a band operator on ℓp(Z) for
p ∈ [1,∞]. Then the FSM is applicable to A if and only if

(i) A is invertible on ℓp(Z),

(ii) for all R ∈ Lim+(A), the compressions R− are invertible on ℓp(Z−) and,

(iii) for all L ∈ Lim−(A), the compressions L+ are invertible on ℓp(Z+).

Now let A+ be a band operator on ℓp(Z+) for p ∈ [1,∞]. Then the FSM is applicable
to A+ if and only if

(iv) A+ is invertible on ℓp(Z+) and,

(v) for all R ∈ Lim+(A+), the compressions R− are invertible on ℓp(Z−).

The restriction to a particular choice of p in Proposition 2.2.8 can be dropped, due to
Proposition 2.2.4. In subsequent parts of this chapter, this result will allow us to fall back
onto the Hilbert space case p = 2 whenever needed.

2.2.3 Spectral and Fredholm Theory

The applicability analysis of the FSM heavily depends on spectral properties of the involved
operators and their limit operators. After all, Proposition 2.2.8 requires us to verify
invertibility not only of the operator itself but also of the one-sided compressions of its
limit operators. This subsection aims to make the conditions in Proposition 2.2.8 more
accessible by providing additional tools to study invertibility. More precisely, we will link
our desired applicability property to the theory of Fredholm operators.

For a bounded linear operator A : X → Y between complex Banach spaces X and Y ,
we define its spectrum via

σ(A) :=
{
E ∈ C : A− E is not invertible

}
.

The complement ρ(A) := C \ σ(A) is called resolvent set of A. Unraveling those spectral
values E ∈ σ(A) where the operator A−E is “very far away from being invertible”—in the
sense that they either have an infinite-dimensional kernel or they fail to be surjective by
having an infinite-dimensional cokernel—leads to a property that generalizes invertibility:
Fredholmness. Positively speaking, we call a bounded linear operator A a Fredholm operator
if its kernel ker(A) and its cokernel Y/Ran(A) are finite-dimensional. Due to its finite-
dimensional (co)-kernel, a Fredholm operator always has a closed range. Now the class of
Fredholm operators gives rise to the set of spectral values

σess(A) :=
{
E ∈ C : A− E is not a Fredholm operator

}
,
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which we call the essential spectrum of A. Furthermore, let σdis(A) := σ(A)\σess(A) denote
the discrete spectrum of A. Clearly, σess(A) ⊆ σ(A).

The following lemma establishes the equivalence of the Fredholmness of a band operator
A, the invertibility of its limit operators, see [102, 124], and their injectivity on the space
ℓ∞(Z), see [24, 23]. The lemma previously appeared in this form in [103].

Lemma 2.2.9 ([103, Lem. 2.6]). Let I ∈ {Z,Z+,Z−,N} and p ∈ [1,∞]. For a band
operator A on ℓp(Z), the following are equivalent:

(a) A is a Fredholm operator on ℓp(I).

(b) All limit operators of A are invertible on ℓp(Z).

(c) All limit operators of A are injective on ℓ∞(Z).

As a consequence of Lemma 2.2.9, we derive the following set of relations between
spectra, essential spectra, and limit operators, see also [102, Cor. 12].

Proposition 2.2.10. Let A be a band operator on ℓp(I) with I ∈ {Z,Z+,Z−,N}. Then

σess(A) =
⋃

B∈Lim(A)

σ(B) .

In particular, we have:

(i) If σ(B) = σ(B′) for all B,B′ ∈ Lim(A), then σess(A) = σ(B).

(ii) If B ∈ Lim(A), then σ(B) ⊆ σess(A) ⊆ σ(A).

(iii) If I = Z and A ∈ Lim(A), then σ(A) = σess(A).

Proof. Per definitionem, E ∈ σess(A) if and only if A − E is not Fredholm. By the
equivalence (a)⇔(b) in Lemma 2.2.9, this is the case if and only if there exists some limit
operator B ∈ Lim(A) such that B −E is not invertible. But, by definition of the spectrum,
this is equivalent to E ∈ σ(B) for some B ∈ Lim(A). This proves the stated identity.

As Proposition 2.2.10(iii) shows, the Fredholm property in Lemma 2.2.9(a) is particularly
accessible for band operators A that additionally have the property A ∈ Lim(A). All
subsequent examples of Schrödinger operators in this chapter will have this property, which
is sometimes referred to as self-similarity, cf. [15, 24]. The combination of Proposition 2.2.4
with Lemma 2.2.9 leads to the following result that allows us to translate the invertibility
problem of an operator into an injectivity problem of its limit operators.

Corollary 2.2.11. Let A be a band operator on ℓp(Z) with A ∈ Lim(A). Then the following
are equivalent:

(a) All limit operators of A are injective on ℓ∞(Z).

(b) A is invertible on ℓp(Z) for all p ∈ [1,∞].

(c) A is invertible on ℓp(Z) for some p ∈ [1,∞].
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Proof. The equivalence (b)⇔(c) is immediately given by Proposition 2.2.4. Since A ∈
Lim(A) by assumption, the implication (a)⇒(c) follows from Lemma 2.2.9(c)⇒(b). Now,
as every invertible operator is in particular Fredholm, we also have the converse implica-
tion (c)⇒(a) as a consequence of Lemma 2.2.9(a)⇒(c).

Note that Corollary 2.2.11 only handles operators that are defined on ℓp(Z). However,
Lemma 2.2.6 also relies on the invertibility of one-sided compressions, i.e., operators that
are only defined on ℓp(Z−) and ℓp(Z+). Therefore, the next corollary closes this gap and
gives the corresponding result for compressions. For this, we consider only the case p = 2
in order to employ the Hilbert space adjoint A∗ of an operator A on the Hilbert space ℓ2(I)
with I ⊆ Z.

Corollary 2.2.12. Let B be a self-adjoint invertible band operator on ℓ2(Z).

(i) If the compression B− is injective on ℓ∞(Z−), then B− is invertible on ℓp(Z−) for
all p ∈ [1,∞].

(ii) If the compression B+ is injective on ℓ∞(Z+), then B+ is invertible on ℓp(Z+) for
all p ∈ [1,∞].

Proof. We only prove (i) since the proof of (ii) works completely analogously. For the proof
of (i), we note that, due to Proposition 2.2.4, it suffices to consider p = 2. As B− is injective
on ℓ∞(Z−), it is also injective on the subset ℓ2(Z−) ⊆ ℓ∞(Z−). We will show that B− has
a dense and closed range making B− also surjective.

The range of B− is dense in ℓ2(Z−). Since B is self-adjoint, its compression B− is also
self-adjoint. Therefore, the adjoint (B−)

∗ is also injective on ℓ2(Z−) which implies that the
range of B− is dense in ℓ2(Z−).

The range of B− is closed in ℓ2(Z−). Since B is invertible, it is, in particular, Fredholm
on ℓ2(Z). Consequently, Lemma 2.2.9(a)⇒(b) gives that all operators in Lim(B) ⊇
Lim(B−) are invertible on ℓ2(Z). As all limit operators of B− are invertible on ℓ2(Z), the
implication (b)⇒(a) in Lemma 2.2.9 gives that B− is Fredholm. In particular, B− has a
closed range.

The machinery of Fredholm theory provides us with results that can be put to direct
use for the study of applicability of the finite section method. Most importantly, we saw
that it suffices to study injectivity on ℓ∞ instead of invertibility on ℓp.

Let us close this introduction with the following Fredholm theoretic consequence of
Proposition 2.2.8 for a subclass of self-similar band operators.

Corollary 2.2.13. Let A be a band operator on ℓp(Z) for p ∈ [1,∞]. If A is FSM-simple
and A ∈ Lim+(A), then A+ is FSM-simple.

Proof. Let A be FSM-simple and A+ ∈ ℓp(Z+) invertible. In particular A+ is Fredholm
so that, by Lemma 2.2.9(a)⇒(b), all limit operators B ∈ Lim(A+) of A+ are invertible.
Furthermore A is invertible as A ∈ Lim+(A) = Lim(A+). Now, in virtue of the fact that A
is FSM-simple this gives that the FSM is applicable to A. In particular, Proposition 2.2.8(ii)
gives the invertibility of all one-sided compressions R− ∈ ℓp(Z−) of limit operators R ∈
Lim(A+). Hence, the FSM is also applicable to A+ as a consequence of Proposition 2.2.8(v),
and we conclude that A+ is an FSM-simple operator.
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2.3 Periodic Schrödinger Operators

In this section, we will analyze the spectral properties of periodic Schrödinger operators
and their limit operators to lay the groundwork for our applicability study of the finite
section method. We will always assume the hypothesis below.

Hypothesis 2.3.1. Let p ∈ [1,∞] and H : ℓp(Z) → ℓp(Z) be given by

(Hx)n := xn+1 + xn−1 + v(n)xn , n ∈ Z, (2.11)

with the real-valued potential v : Z → R. Assume in addition that v is periodic with period K,
i.e., v(n+K) = v(n) for all n ∈ Z.

The potential v and H from Hypothesis 2.3.1 are simply called K-periodic. Many facts
about such periodic Schrödinger operators are known, see, e.g., [42, 123, 144]. In this
section, as preparation for Section 2.4, we will interpret these facts within the framework of
limit operator theory. Thereby, we will uncover further structural insights into the class of
periodic Schrödinger operators.

2.3.1 Limit Operators and Invertibility

As we saw in Proposition 2.2.10, the toolbox of limit operators opens a way into the
study of spectral properties of an operator. Nevertheless, before diving into limit operator
theory, let us first introduce a powerful representation of periodic Schrödinger operators via
2× 2-matrices. This representation manages to encapsulate a lot of spectral properties as
follows. Assume an operator H subject to Hypothesis 2.3.1. If we choose an energy E ∈ R
and a vector x ∈ ker(H − E), the defining relation (2.11) yields the eigenvalue equation

0 = ((H − E)x)n = xn+1 + xn−1 + (v(n)− E)xn , n ∈ Z .

This scalar-valued three-term recurrence leads to the vector-valued two-term recursion(
xn+1

xn

)
=

(
E − v(n) −1

1 0

)(
xn
xn−1

)
, n ∈ Z. (2.12)

We call the 2× 2-matrix in (2.12) the transfer matrix

T (n,E) :=

(
E − v(n) −1

1 0

)
, n ∈ Z. (2.13)

The transfer matrices (2.13) all belong to the symplectic group Sp(2,C), i.e., they satisfy
the relation

T (n,E)T
(
0 −1
1 0

)
T (n,E) =

(
0 −1
1 0

)
.

As a consequence of this relation, every matrix in Sp(2,C) has determinant 1, which,
in terms of the spectrum, tells us that the eigenvalues always form a pair of reciprocals
{λ, λ−1}.

The potential v of a K-periodic Schrödinger operator gives rise to K transfer matrices,
and the multiplication of these matrices leads to the so-called monodromy matrix

M(E) := T (K − 1, E) · · · T (1, E)T (0, E) , (2.14)
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which, similar to (2.12), establishes the K-step recursion(
x(j+1)K

x(j+1)K−1

)
=M(E)

(
xjK
xjK−1

)
, j ∈ Z. (2.15)

In order to ease notation, we will employ the abbreviations T (n) := T (n, 0) and M :=M(0)
whenever the context excludes ambiguities. As we will see, the trace of a monodromy
matrix already encodes all the information needed to study the spectral properties of
the corresponding infinite-dimensional operator. This fact makes monodromy matrices
particularly useful for numerical calculations.

The following lemma builds the bridge between the limit operator theory from Sec-
tion 2.2.2 and periodic Schrödinger operators.

Lemma 2.3.2. Assume Hypothesis 2.3.1.

(i) Every limit operator of H is again a K-periodic Schrödinger operator and

Lim(H) =
{
S−kHSk : k = 0, . . . ,K − 1

}
= Lim+(H) = Lim−(H) ,

where S denotes the right-shift operator, i.e., (Sx)n = xn−1 for all n ∈ Z. In
particular, the operator H is self-similar, i.e., H ∈ Lim(H).

(ii) σ(B) = σ(H) for all B ∈ Lim(H).

(iii) For E ∈ R, let MH(E) denote the monodromy matrix of H. If B ∈ Lim(H) with
monodromy matrix MB(E), then tr(MB(E)) = tr(MH(E)) for all energies E ∈ R.

Proof. Ad (i). Let B ∈ Lim(H) with corresponding sequence (hk)k∈N. By Definition 2.2.7,
the sequence of representation matrices (Hk)k∈N with Hk := S−hkHShk converges entrywise
to the representation matrix of B. As the diagonal of H consists of the periodic continuation
of w := (v(0), . . . , v(K − 1)), the diagonal of the shifted matrix Hk consists of a periodic
continuation of the permutation (v(−hk), . . . , v(K − 1 − hk)) of w. Hence, in order to
converge, the sequence (Hk) has to be eventually constant. This proves that B = S−kHSk

for some k ∈ {0, . . . ,K − 1}.
The other inclusion is straightforward: consider the sequence h = (k + n ·K)n∈N with

corresponding limit operator Ah. Then

S−kHSk = lim
n→∞

S−(k+n·K)HSk+n·K = Ah ∈ Lim(H) .

Ad (ii). This follows from the fact that the right-shift operator is an isomorphism on
ℓp(Z).

Ad (iii). From part (i), it follows that the monodromy matrix for B is given by

MB(E) = T (τ(K − 1), E) · · · T (τ(1), E) T (τ(0), E) ,

where (τ(K−1), . . . , τ(1), τ(0)) is just a cyclic permutation of (K−1, . . . , 1, 0). Consequently,
properties of the trace yield tr(MB(E)) = tr(M(E)).

Remark 2.3.3. As a consequence of Lemma 2.3.2(ii), H and all limit operators B ∈ Lim(H)
are simultaneously invertible, the invertibility of one operator B ∈ Lim(H) is equivalent to
the invertibility of all operators in Lim(H).
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The complete description of the limit operators of a periodic Schrödinger operator from
Lemma 2.3.2 now allows for a powerful characterization of invertibility.

Lemma 2.3.4. Assume Hypothesis 2.3.1. The periodic Schrödinger operator H is invertible
on ℓp(Z) for any p ∈ [1,∞] if and only if H is injective on ℓ∞(Z).

Proof. Let H be injective on ℓ∞(Z). By Lemma 2.3.2(i), all limit operators of H are
shifts of H and hence, also injective on ℓ∞(Z). In particular, by Lemma 2.3.2(i), we have
H ∈ Lim(H). Now, Corollary 2.2.11(a)⇒(b) gives that H is invertible on ℓp(Z) for all
p ∈ [1,∞]. The converse implication follows from Corollary 2.2.11(c)⇒(a).

The following proposition resembles a well-known result about the spectrum of periodic
Schrödinger operators, which can be described by a trace condition for the monodromy
matrix, see, e.g., [123]. We give a non-standard proof employing limit operator techniques.

Proposition 2.3.5. Assume Hypothesis 2.3.1 and let E ∈ R. Then E ∈ σ(H) if and only
if the trace condition |tr(M(E))| ≤ 2 holds.

Proof. We prove the equivalence of the negative statements, i.e., we show that H − E is
invertible if and only if | tr(M(E))| > 2. We divide the proof into three steps.

Step 1. Note that H − E is invertible on ℓp(Z) if and only if, for all (α, β) ̸= (0, 0), the
two-sided sequence (

M(E)n
(
α
β

))
n∈Z

(2.16)

is unbounded. Indeed, by Lemma 2.3.4, invertibility on ℓp(Z) is equivalent to H − E being
injective on ℓ∞(Z). Using (2.12) and the K-step recursion formula (2.15) for a solution to
the eigenvalue equation (H − E)x = 0 gives (2.16). Injectivity of H now demands that
the kernel sequence x is unbounded, i.e., x ̸∈ ℓ∞(Z). Of course, x is unbounded if the
subsequence (2.16) is unbounded. Conversely, if the subsequence (2.16) is bounded, so will
be x as the missing entries of x can always be computed by applying at most K− 1 transfer
matrices to the sequence (2.16).

Step 2. We show that the sequence (2.16) is unbounded for all pairs (α, β) ̸= (0, 0) if
and only if M(E) has two distinct real eigenvalues. Clearly, (2.16) is unbounded for all
pairs (α, β) ̸= (0, 0) if and only if both eigenvalues λ1, λ2 of M(E) fulfill the condition

|λi| ≠ 1, i ∈ {1, 2}. (2.17)

Indeed, as M(E) is symplectic,

det(M(E)) = λ1 · λ2 = 1 (2.18)

and the eigenvalues of M(E) form a pair of reciprocals. This implies that, if both eigenvalues
are distinct and real, the modulus of one of them needs to be strictly larger than 1, which
proves that (2.16) will be unbounded.

Conversely, assume that both eigenvalues fulfill λ1 = λ2 ∈ R. Then, by (2.18), |λi| = 1,
i ∈ 1, 2, contradicting the condition (2.17). Now assume that M(E) has two proper complex
eigenvalues. As M(E) ∈ R2×2, we have λ2 = λ1 and hence again |λi| = 1, i ∈ {1, 2},
contradicting (2.17).
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Step 3. Lastly, note that M(E) has two distinct real eigenvalues if the characteristic
polynomial of the matrix M(E)

pM(E)(λ) = λ2 − tr(M(E))λ+ 1

has two distinct real solutions. However, having two distinct real solutions is equivalent
to the discriminant of pM(E) being strictly positive, which is equivalent to the condition
tr(M(E))2 > 4.

Corollary 2.3.6. Assume Hypothesis 2.3.1. Then H is invertible if and only if | tr(M)| > 2.
In this case, the eigenvalues λ1, λ2 of M fulfill the relation |λ1| > 1 > |λ2|.

Proof. The stated equivalence follows from Proposition 2.3.5 by setting E = 0. The relation
for the eigenvalues is a direct consequence of the considerations made in Step 2 of the proof
of Proposition 2.3.5.

In the following examples, we illustrate the use of the trace condition from Proposi-
tion 2.3.5 for determining the spectrum of periodic Schrödinger operators.

Example 2.3.7. (i) If the potential v has period K = 1 with v(0) ∈ R, we get for the
trace that tr(M(E)) = E − v(0) and σ(H) = [−2 + v(0), 2 + v(0)].

(ii) If the potential v has period K = 2 with v(0) = −1 and v(1) = 1, we get for the trace
that tr(M(E)) = E2 − 3 and σ(H) = [−

√
5,−1] ∪ [1,

√
5].

(iii) More generally, for a 2-periodic potential, we have

tr(M(E)) = −2 + (E − v(0))(E − v(1)) = E2 − E(v(0) + v(1)) + v(0)v(1)− 2 .

This shows that we will have two spectral bands, namely

σ(H) =
[1
2
(v(0) + v(1)−

√
δ), min{v(0), v(1)}

]
∪

[
max{v(0), v(1)}, 1

2
(v(0) + v(1) +

√
δ)
]
,

where δ := 16+v(0)2−2v(0)v(1)+v(1)2 = 16+(v(0)−v(1))2 denotes the discriminant
of the polynomial tr(M(E))− 2. Observe that δ > 0.

(iv) For a potential v with period 3 given by v(0) = 0, v(1) = 1, and v(2) = 0, we get
tr(M(E)) = E3 − E2 − 3E + 1. Therefore, the spectrum is given by

σ(H) = [−
√
3,−1] ∪ [1−

√
2, 1] ∪ [1 +

√
2,
√
3].

The following corollary summarizes the observation of Example 2.3.7: the number of
spectral bands is bounded by the period of the potential v.

Corollary 2.3.8. Assume Hypothesis 2.3.1. The spectrum of H consists of at most K
bands. More precisely, there are numbers a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ aK ≤ bK with

σ(H) =
K⋃
i=1

[ai, bi] .

Proof. The trace of M(E) gives us a polynomial pK in the variable E with degree K. As
Proposition 2.3.5 shows, a real number E lies in σ(H) if and only if −2 ≤ pK(E) ≤ 2. The
real zeros of the polynomials pK + 2 and pK − 2 give us the numbers {ai, bi}i=1,...,K .
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2.3.2 One-sided Periodic Schrödinger Operators

During the applicability analysis of the FSM, one also needs to check the invertibility of
one-sided compressions of limit operators. Therefore, this section aims at gaining control
over the spectrum of one-sided periodic Schrödinger operators. More precisely, we will
derive a condition for one-sided operators similar to the trace condition from Corollary 2.3.6.
This condition will solely work with monodromy matrices and allows us to check whether a
one-sided compression is invertible.

If H is a periodic Schrödinger operator on ℓp(Z), we let H+ denote its one-sided
compression on ℓp(Z+) subject to the Dirichlet boundary condition x−1 := 0. Analogously,
let H− denote its one-sided compression on ℓp(Z−) subject to the Dirichlet boundary
condition x1 := 0. The matrix representation of H± coincides with the respective one-sided
compressions from Definition 2.2.7.

Recall from Proposition 2.2.8 that checking applicability of the FSM involves compres-
sions R− on ℓp(Z−) and L+ on ℓp(Z+). The following lemma shows that methods aiming
to deduce invertibility of one-sided periodic Schrödinger operators only need to consider
compressions on ℓp(Z+).

Lemma 2.3.9. Assume Hypothesis 2.3.1. Let HR denote the Schrödinger operator with
the reversed potential vR(n) := v(−n), n ∈ Z. Then the following holds:

(i) σ(H) = σ(HR) and σ(H−) = σ(HR
+).

(ii) σ(B) = σ(H) for all B ∈ Lim(H) ∪ Lim(HR).

(iii) If B ∈ Lim(H) ∪ Lim(HR) with monodromy matrix MB(E), then tr(MB(E)) =
tr(M(E)) for all energies E ∈ R.

Proof. Ad (i). Consider the flip operators

Φ: ℓp(Z) → ℓp(Z), (xn)n∈Z 7→ (x−n)n∈Z,

and
Φ− : ℓp(Z+) → ℓp(Z−), (xn)n∈Z+ 7→ (x−n)n∈Z− .

Clearly, Φ and Φ− are isomorphisms. The claims for the spectra of H and H− follow from
the identities H = ΦHRΦ−1 and

H− = Φ−H
R
+Φ

−1
− . (2.19)

Indeed, for x ∈ ℓp(Z−), we have, on the one hand, for all n ≥ 0,

(H−x)−n =

{
x−1 + v(0)x0 if n = 0,

x−n−1 + v(−n)x−n + x−n+1 else.
(2.20)

On the other hand, note that, for all n ≥ 0,

(Φ−H
R
+Φ

−1
− x)−n = (Φ−(H

R
+Φ

−1
− x))−n = (HR

+Φ
−1
− x)n = (HR

+(Φ
−1
− x))n .

A case distinction shows

(Φ−H
R
+Φ

−1
− x)−n =

(Φ−1
− x)1 + vR(0)(Φ−1

− x)0 if n = 0,

(Φ−1
− x)n−1 + vR(n)(Φ−1

− x)n + (Φ−1
− x)n+1 else.

(2.21)
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Using the definition of the potential vR and the flip operator Φ−, the comparison of
(2.21) with (2.20) yields the claimed identity (2.19). A similar proof works for the identity
involving Φ.

Ad (ii). If B ∈ Lim(H), this is a consequence of Lemma 2.3.2(ii). If B ∈ Lim(HR), we
have σ(B) = σ(HR) by Lemma 2.3.2(ii). As σ(H) = σ(HR) by part (i), the claim follows.

Ad (iii). Without loss of generality, it suffices to show the identity for E = 0. In
accordance with our notation, we set MB :=MB(0).

To prove the equality of traces note that, for B ∈ Lim(H), the claim follows from
Lemma 2.3.2(iii). From the same result, it follows that, for B ∈ Lim(HR), we have
the equality tr(MB) = tr(MHR). Consequently our claim follows, once we show that
tr(MH) = tr(MHR), where MH and MHR denote the monodromy matrices of H and HR,
respectively.

To this end, we use the following relation between a transfer matrix T (n) and its inverse

T (n)−1 = F−1 T (n)F with F−1 = F :=

(
0 1
1 0

)
. (2.22)

In terms of the monodromy matrices, relation (2.22) translates to

F−1MH F = T (K − 1)−1 · · · T (0)−1 =M−1
HR .

Taking the trace above produces the identity

tr(MH) = tr(F−1MH F ) = tr
(
M−1

HR

)
= tr

(
M

HR

)
,

where the last equality holds for every real symplectic 2× 2-matrix.

Remark 2.3.10. Note that Lemma 2.3.9 extends the results of Lemma 2.3.2(ii) and (iii).
Considering Lemma 2.3.9(iii), it is evident from Proposition 2.3.5 that the trace condition
is simultaneously fulfilled for all operators in Lim(H) ∪ Lim(HR) implying the equality of
all spectra. Consequently, Lemma 2.3.9(iii) implies part (ii) and the same argument holds
for the corresponding parts of Lemma 2.3.2.

In order to study the invertibility of one-sided compressions H+, we will present a
representation of the spectrum σ(H+). Recall that H ∈ Lim(H) = Lim+(H) = Lim(H+)
thanks to Lemma 2.3.2(i). Therefore, by Proposition 2.2.10(ii), we have that σ(H) ⊆ σ(H+).
As we will see in the next lemma, σ(H) = σess(H+) such that σ(H+) \ σ(H) consists of the
discrete spectrum σdis(H+).

Lemma 2.3.11. Assume Hypothesis 2.3.1. Then σess(H+) = σ(H).

Proof. Recall from Proposition 2.2.10 that the essential spectrum of H+ equals the union
of all spectra of limit operators B ∈ Lim(H+). Due to Lemma 2.3.2(i) the limit operators
of H+ and H coincide such that

σess(H+) =
⋃

B∈Lim(H)

σ(B).

By Lemma 2.3.2(ii), σ(B) = σ(H) for all limit operators B ∈ Lim(H). This gives the
claimed identity.
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As Lemma 2.3.11 shows, passing from H to the one-sided compression H+ may lead to
eigenvalues in the spectrum. Therefore, our main goal during the applicability analysis of
the FSM will be to determine whether 0 will become an eigenvalue of H+.

Remark 2.3.12. Our proof of Lemma 2.3.11 uses Proposition 2.2.10, which is a general result
about the essential spectrum of band operators employing its limit operators. However, in
the case of periodic Jacobi operators, there exist more elementary proofs for the identity
σess(H+) = σ(H), see, e.g., [135, Thm. 7.2.1].

Before we present a formula for the spectrum σ(H+), we introduce the following notation.
Define

Ha..b :=



v(a) 1

1 v(a+ 1)
. . .

. . . . . . . . .
. . . v(b− 1) 1

1 v(b)


(2.23)

for a, b ∈ Z+ with a ≤ b. Furthermore, recall the following recursion formula for tridiagonal
matrices of the form (2.23)

det(Ha..b+1) = v(b+ 1) det(Ha..b)− det(Ha..b−1),

with: det(Ha..a−1) := 1, det(Ha..a−2) := 0,
(2.24)

which is a direct consequence of Laplace’s expansion formula.
The following proposition is based on Hagger’s work [73, Thm. 4.42(i)] and gives the

promised insight into the spectrum of one-sided compressions.

Proposition 2.3.13. Assume Hypothesis 2.3.1 with period K ≥ 2. Then

σ(H+) = σ(H) ∪
{
E ∈ R :M(E)2,1 = 0 and |M(E)1,1| < 1

}
. (2.25)

In particular, H is invertible if H+ is invertible. Furthermore, for the entries of M(E), we
have the representation formula

M(E) = (−1)K−1

−det(H0..K−1 − E) −det(H1..K−1 − E)

det(H0..K−2 − E) det(H1..K−2 − E)

 . (2.26)

Proof. We proceed in two steps.
Step 1. Note that formula (2.26) follows once we show for all K ∈ N

MK−1(E) =

det(E −H0..K−1) −det(E −H1..K−1)

det(E −H0..K−2) −det(E −H1..K−2)

 , (2.27)

where we introduced the notation MK−1(E) := T (K − 1, E) · · · T (0, E) in order to ease
the upcoming induction proof of the next step. Indeed, (2.27) gives

MK−1(E) =

 (−1)K det(H0..K−1 − E) (−1)K det(H1..K−1 − E)

(−1)K−1 det(H0..K−2 − E) (−1)K−1 det(H1..K−2 − E)

 .
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Step 2. We prove (2.27) via induction over K ∈ N. Let K = 1. Then

M0(E) = T (0, E) =

(
E − v(0) −1

1 0

)
.

Now, as a consequence of (2.24), the representation (2.27) holds as det(E − H0..−1) =
det(E −H1..0) = 1, det(H0..−2) = 0, and det(E −H0..0) = E − v(0).

For K+1, the induction step, assume that (2.27) holds for some K ∈ N. The induction
hypothesis gives the decomposition

MK(E) = T (K,E) ·MK−1(E)

=

(
E − v(K) −1

1 0

)
·

det(E −H0..K−1) −det(E −H1..K−1)

det(E −H0..K−2) −det(E −H1..K−2)

 .

As
(E − v(K)) det(E −H0..K−1)− det(E −H0..K−2) = det(E −H0..K)

and
−(E − v(K)) det(E −H1..K−1) + det(E −H1..K−2) = −det(E −H1..K)

by the recursion formula (2.24), this gives the claim.
Step 3. Here, we prove the decomposition (2.25). Note that the original formulation in

Hagger’s work [73] states that, for a tridiagonal matrix representation of H with upper and
lower diagonals having the constant value 1, we have the decomposition

σ(H+) = σess(H+) ∪
{
bounded connected components of C \ σess(H+)

}
∪
{
E ∈ σ(H0..K−2) : |det(H0..K−1 − E)| < 1

}
,

(2.28)

cf. [73, Thm. 4.42(i)].
For the first set on the right-hand side of (2.28), recall that σess(H+) = σ(H) as a

consequence of Lemma 2.3.11.
Next, note that the second set in the decomposition (2.28) is empty. Indeed, by

Corollary 2.3.8, we know that σ(H) equals a finite union of bounded intervals. This implies
that C \ σess(H+) = C \ σ(H) consists of a single unbounded connected component.

Finally, we have that E ∈ σ(H0..K−2) if and only if det(E −H0..K−2) = 0. We use this
fact to rewrite the third set in (2.28) via the representation formula (2.26). This proves the
claimed identity (2.25).

Remark 2.3.14. (i) As σ(H) = σess(H+) ⊆ σ(H+) by Lemma 2.3.11, the spectrum of
the compression H+ on ℓp(Z+) can only be larger than the spectrum of H and the
difference can only be given by eigenvalues of H+. Proposition 2.3.13 shows that
σdis(H+) ⊆ σ(H0..K−2). Techniques that are part of the Floquet–Bloch theory allow
to localize these eigenvalues, see, e.g., [31, Thm. 4.4.9], [123], and [144, Chap. 7]. In
particular, for periodic band operators, one can show that these eigenvalues exhibit
an interlacing property, i.e., there is always at most one so-called Dirichlet eigenvalue
inside the gaps of σ(H), see [54, Prop. 3.9].
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(ii) Together with Corollary 2.3.6, formula (2.25) facilitates numerical calculations of the
spectrum of one-sided periodic Schrödinger operators by reducing the computations
to finding zeros of polynomials. We will exploit this fact in Section 2.4.2 in order to
systematically study a large class of periodic potentials.

Example 2.3.15. (i) Consider the 2-periodic Schrödinger operator H from Exam-
ple 2.3.7(iii). For the spectrum of H+, we calculate according to Proposition 2.3.13

σ(H0..2−2) = σ
(
v(0)

)
= {v(0)}

and

det(H0..1 − v(0)) = det
((v(0)− v(0) 1

1 v(1)− v(0)

))
= −1,

which implies σdis(H+) = ∅ and thus σ(H+) = σ(H).

(ii) For the 3-periodic Schrödinger operator from Example 2.3.7(iv), we find

σ(H+) = σ(H) ∪
{
−

√
5− 1

2

}
.

As we saw in Corollary 2.3.6, the trace of the monodromy matrix M of a periodic
Schrödinger operator H gives us a sufficient condition to decide whether 0 ∈ σ(H) and
thereby control the invertibility of H on ℓp(Z). We also need to control whether 0 ∈ σ(H+)
to ensure the invertibility of the corresponding one-sided compression H+ on ℓp(Z+). More
precisely, we need to control whether 0 is a Dirichlet eigenvalue of H+, i.e., an eigenvalue
that stems from the transition from H to the compression H+ by imposing a Dirichlet
condition. The description of the spectrum of σ(H+) in Proposition 2.3.13 suggests that,
in addition to the trace of M , we will need control over the matrix entries M1,1 and M2,1

in order to know about the Dirichlet eigenvalues of H+. This relation is described in the
following proposition.

Proposition 2.3.16. Assume Hypothesis 2.3.1. Let H be invertible on ℓp(Z), and let
M :=M(0) denote its monodromy matrix. Then the following are equivalent:

(a) The compression H+ is not injective on ℓ∞(Z+).

(b) The compression H+ is not invertible on any ℓp(Z+).

(c)
(
1
0

)
is an eigenvector of M with corresponding eigenvalue λ subject to |λ| < 1.

(d) M2,1 = 0 and |M1,1| < 1.

Proof. From Proposition 2.2.4, we know that (b) is independent of the value p ∈ [1,∞].
Choosing p = ∞, the statement (a)⇒(b) follows directly.

The implication (b)⇒(a) follows from Corollary 2.2.12(ii) for p = 2.
The equivalence (c)⇔(d) is straightforward. Indeed, the 2 × 2-matrix M has the

eigenvector
(
1
0

)
if and only if M2,1 = 0. The corresponding eigenvalue is then λ =M1,1.

It remains to show the equivalence (a)⇔(c). To this end, assume that (a) holds. This
means that H+x = 0 has a bounded solution x ∈ ℓ∞(Z+) \ {0}. Recall that x−1 = 0 due
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to the homogeneous Dirichlet boundary condition. The K-step recursion formula (2.15) for
the eigenvalue equation of the one-sided Schrödinger operator gives us that(

xK
xK−1

)
=M

(
x0
x−1

)
=M

(
1
0

)
,

which inductively leads to the sequence(
xnK
xnK−1

)
=Mn

(
1
0

)
, n ∈ Z+. (2.29)

By Corollary 2.3.6, the invertibility of H gives for the eigenvalues λ1, λ2 of M the relation
|λ1| > 1 > |λ2|. Let furthermore (ξ1, ξ2) be a corresponding basis of eigenvectors of M .
Expressing the initial vector

(
1
0

)
in (2.29) through the basis (ξ1, ξ2) yields(

xnK
xnK−1

)
=Mn(αξ1 + βξ2) = αλn1ξ1 + βλn2ξ2 , n ∈ Z+ , (2.30)

for some α, β ∈ R. By means of (2.30), we necessarily have α = 0. Indeed, as x is bounded
by assumption, the sequence on the left-hand side of (2.30) is bounded. Furthermore,
|λ1| > 1. Therefore,

(
1
0

)
cannot have a component in the direction of ξ1, i.e., α = 0.

Consequently,
(
1
0

)
is an eigenvector of M to the eigenvalue λ2 subject to |λ2| < 1. This

shows (c).
Finally, assume that (c) holds. Then, for all 0 ≤ j ≤ K − 1 and n ∈ Z+,(

xnK+j

xnK+j−1

)
= T (j − 1) · · · T (0)Mn

(
1
0

)
= λn T (j − 1) · · · T (0)

(
1
0

)
.

As |λ| < 1, this shows that the sequence x = (xj)j∈Z+ is bounded and (a) holds.

Remark 2.3.17. The equivalence (b)⇔(d) in Proposition 2.3.16 can also be seen as a direct
consequence of Proposition 2.3.13. Indeed, if 0 ∈ σ(H+) \ σ(H), then M2,1 = 0 and
|M1,1| < 1 by (2.25).

Corollary 2.3.18. Assume Hypothesis 2.3.1. Let H be invertible on ℓp(Z), and let M :=
M(0) denote its monodromy matrix. Then the following are equivalent:

(a) The compression H+ is invertible on ℓp(Z+).

(b) M2,1 ̸= 0 or |M1,1| > 1.

If we consider a periodic Schrödinger operator with integer-valued potential, Proposi-
tion 2.3.16 leads to the following result about the invertibility of one-sided compressions
H+.

Proposition 2.3.19. Assume Hypothesis 2.3.1 with v(n) ∈ Z for all n ∈ Z. If H is
invertible on ℓp(Z), then

(i) H+ is invertible on ℓp(Z+) and

(ii) H− is invertible on ℓp(Z−).
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Proof. Ad (i). Let H be invertible on ℓp(Z). In particular H is invertible on ℓ∞(Z) by
Proposition 2.2.4. Let us show that H+ is injective on ℓ∞(Z+). Indeed, for the sake of a
contradiction, let us assume the contrary, i.e., let H+ be not injective on ℓ∞(Z+). Then, by
Proposition 2.3.16(a)⇔(d), M2,1 = 0 and |M1,1| < 1. In particular, M is upper triangular
with eigenvalues M1,1 and M2,2. However, as v(n) ∈ Z for all n ∈ Z, we have M ∈ Z2×2,
and this gives M1,1 ∈ Z. Together with |M1,1| < 1 this implies M1,1 = 0, which is impossible
since det(M) = 1 for symplectic matrices. So H+ needs to be injective on ℓ∞(Z+). Finally,
Corollary 2.2.12(ii) gives that H+ is invertible on ℓp(Z+).

Ad (ii). Since H is invertible, HR is invertible by Lemma 2.3.9(i). Applying (i) to HR

in place of H shows that HR
+ is invertible on ℓp(Z+). But, by the flip identity (2.19) from

the proof of Lemma 2.3.9(i), H− is invertible on ℓp(Z−).

Remark 2.3.20. Note that it is possible to prove Proposition 2.3.19 without relying on the
periodicity of the potential and only assuming Fredholmness of H instead of invertibility.
The proof considers the realization of H on ℓ2(Z) and shows invertibility of H+ by Fredholm
theory arguments, see [104, Thm. 1.1].

2.3.3 Periodic Schrödinger Operators with {0, λ}-valued Potentials

In the main results of Section 2.3.1 and Section 2.3.2, the potential v of the Schrödinger
operator H was merely assumed to be periodic. In particular, a K-periodic potential was
allowed to attain K different values. Let us introduce a subclass of periodic potentials
based on the examples announced in Remark 2.1.2(ii) and (iii) and Remark 2.1.4. These
examples share that the underlying periodic potential only takes the two values 0 and λ > 0.
For this setting, consider the following modification of the defining equation (2.1)

(Hx)k = xk−1 + xk+1 + λ v(k)xk , k ∈ Z , (2.31)

where we have factored out the so-called coupling constant λ > 0 such that v is merely a
{0, 1}-valued potential. Given the parametrization of (2.31), we will study for which values
of λ the FSM is applicable to the corresponding operator H in the upcoming section.

The interest in {0, λ}-valued potentials and operators of the form (2.31) is motivated
by the numerical analysis of a subclass of discrete aperiodic Schrödinger operators for which
the potential v is given as a Sturmian potential

vα,θ(k) := χ[1−α,1)(kα+ θ mod 1) , (2.32)

where the additional parameters α ∈ [0, 1] \ Q and θ ∈ [0, 1) denote the irrational slope
and offset, respectively, cf. [107, 131]. In the following, when we speak about a discrete
aperiodic Schrödinger operator, we will always mean a one-dimensional discrete Schrödinger
operator with potential vα,θ denoted by Hλ,α,θ.

As a Sturmian word’s slope α is irrational, the corresponding potential vα,θ is not
periodic. It was recently shown in [103] that the well-known Fibonacci Hamiltonian, which
results for the choice of α = (

√
5 − 1)/2 and θ = 0 in (2.32), is indeed FSM-simple.

Studies aiming to extend this result to larger ranges of α led to the inspection of an
additional natural approximation method relying on periodic Schrödinger operators of the
form (2.31) as approximants to Hλ,α,θ, see, e.g., [53, Sec. 5]. Let us call this method periodic
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Figure 2.1: Approximation of the spectrum of the one-sided Fibonacci Hamiltonian and
its limit operators restricted to energies E ∈ [−1, 1]. The band spectrum of the two-sided
periodic Schrödinger approximants Hm, m ∈ N, is represented by the color gray. The
point spectrum of the one-sided periodic Schrödinger operators B+ ∈ Lim(Hm)∪Lim(HR

m),
described by Theorem 2.3.13, is represented by the color green.
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approximation. Figure 2.1 shows the spectra of the sequence of periodic approximants to
the Fibonacci Hamiltonian and its one-sided compression.

Recall that the FSM described in Section 2.2 is an approximation method resembling
the classical truncation strategy of using finite-rank operators to approximate an infinite-
rank operator. In contrast to the FSM, the periodic approximation uses infinite-rank
operators as approximants. Just as the FSM, periodic approximation can be interpreted as
a truncation technique: truncate the Sturmian potential at an index K ∈ Z+ and extend
the truncation periodically. Then use the resulting periodic operators as approximants. In
fact, this truncation strategy resembles the operator theoretic analog of the approximation
of irrational numbers via truncated continued fractions where one approximates α ∈ R \Q
via αm := pm

qm
with suitably chosen qm and pm. We refer the interested reader to [83, 90]

for details on the approximation of irrational numbers via continued fractions.
One can show, that periodic approximation creates a sequence of periodic operators

converging pointwise to an aperiodic operator and that the invertibility of the periodic
approximants implies the invertibility of the aperiodic limit. More precisely, we have the
following classical result from Bellissard [16] for aperiodic Schrödinger operators. See
also [53, Rem. 5.13].

Proposition 2.3.21 ([16, Prop. 4]). Let Hλ,α,θ be an aperiodic Schrödinger operator, and
let E ∈ R. Then E ∈ ρ(Hλ,α,θ) if and only if the condition

∃m ≥ 0 :
∣∣tr (Mλ,αm,0(E)

)∣∣ > 2 and
∣∣tr (Mλ,αm+1,0(E)

)∣∣ > 2 (2.33)

holds, where qm ∈ N is given by the m-th rational approximant pm
qm

to α for m ∈ N and
Mλ,αm,0(E) denotes the monodromy matrix corresponding to the approximating periodic
Schrödinger operator Hλ,αm,0.

The following corollary connects Proposition 2.3.21 to the invertibility problem of all
limit operators of a given aperiodic Schrödinger operator. For a proof, see [53, Cor. 5.16].

Corollary 2.3.22. Let Hλ,α,θ be an aperiodic Schrödinger operator. All limit operators of
Hλ,α,θ are invertible if and only if

∃m ≥ 0 :
∣∣tr (Mλ,αm,0(0)

)∣∣ > 2 and
∣∣tr (Mλ,αm+1,0(0)

)∣∣ > 2 . (2.34)

Example 2.3.23. Let Hλ,α,0 be an aperiodic Schrödinger operator with α = (
√
5− 1)/2

and λ ∈ R. Then,

tr(Mλ,α6,0(0)) = λ(18λ2 − 8) ,

tr(Mλ,α7,0(0)) = λ(−108λ4 + 84λ2 − 13) .

For λ > 1
6(3 +

√
3) =: λ0 ≈ 0.788675, we have

tr
(
Mλ,α6,0(0)

)
> 2 and tr

(
Mλ,α7,0(0)

)
< −2 .

Hence, by Corollary 2.3.22, for λ > λ0, all limit operators of the Fibonacci Hamilto-
nian Hλ,α,0 are invertible. The bound λ0 may be further improved by considering higher
orders of approximation. Considering the polynomial tr(Mλ,α8,0(0)), however, does not
improve the result despite being algebraically solvable as well. Figure 2.2 visualizes the
spectra of the periodic approximations for m = 5, 6, 7, 8 with special emphasis on the
previously derived bound λ0, see also [29, Sec. 7.1].
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Figure 2.2: Spectra of the periodic approximations Hλ,αm
:= Hλ,αm,0 for m = 5, 6, 7, 8 of

the scaled Fibonacci Hamiltonian Hλ,α,0, where α = (
√
5− 1)/2 and λ > 0. If λ > λ0, then

0 ̸∈ σ(Hλ,α,0) as σ(Hλ,α,0) ⊆ σ(Hλ,αm,0) ∪ σ(Hλ,αm+1,0) by Corollary 2.3.21 and all limit
operators of Hλ,α,0 are invertible by Corollary 2.3.22.
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For more details on the periodic approximation of aperiodic Schrödinger operators, we
refer the reader to the works [53] and [16].

Summing up, despite their simplicity, their crucial role in the approximation theory
of aperiodic Schrödinger operators motivates the study of periodic Schrödinger operators
with {0, λ}-valued potentials. The following section will therefore analyze this building
block of the periodic approximation method by studying the invertibility properties of the
approximants.

2.4 Finite Section Method for Periodic Schrödinger Operators

In this section, we dive into the applicability analysis of the FSM. The following proposition
is a variant of the general strategy encoded in Proposition 2.2.8 adapted to its use in the
setting of periodic Schrödinger operators.

Proposition 2.4.1. Assume Hypothesis 2.3.1. Then the FSM is applicable to H if and
only if the following operators are invertible:

(i) H,

(ii) all L+ with L ∈ Lim(H), and

(iii) all L̃+ with L̃ ∈ Lim(HR).

Similarly, the FSM is applicable to H+ if and only if the following operators are invertible:

(iv) H+ and

(v) all L̃+ with L̃ ∈ Lim(HR
+).

Proof. Note the identity Lim(H) = Lim+(H) = Lim−(H) which follows from Lemma 2.3.2.
Therefore, comparing Proposition 2.4.1 with Proposition 2.2.8, the only thing to show
is the equivalence of Proposition 2.4.1(iii) and Proposition 2.2.8(ii). But this is a direct
consequence of Lemma 2.3.9(i) and the flip identity (2.19). With the same argument, the
conditions for the one-sided operator H+ follow.

As a consequence of Proposition 2.4.1, one +an visualize the regions of applicability of
the FSM by considering a union of spectra of limit operators. Let us fix a set decomposition
suitable for visualization in the following corollary.

Corollary 2.4.2. Assume Hypothesis 2.3.1. The FSM is applicable to H if and only if

0 ̸∈ σ(H) ∪
⋃{

σdis(B+) : B ∈ Lim(H) ∪ Lim(HR)
}
. (2.35)

Proof. Proposition 2.4.1 implies that the FSM is applicable to H if and only if 0 ̸∈ σ(H)
and 0 ̸∈ σ(B+) for all B ∈ Lim(H) ∪ Lim(HR). Recall from Lemma 2.3.9(ii) that all limit
operators B ∈ Lim(H)∪Lim(HR) have the same spectrum as H. In particular, this means
that, for the FSM to be applicable to H, we need 0 ̸∈ σ(H) and that 0 is not a Dirichlet
eigenvalue of B+ for all B ∈ Lim(H)∪Lim(HR). This is precisely the statement (2.35).
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For the subclass of {0, λ}-valued potentials from Section 2.3.3, we will visualize the
set (2.35) for different choices of v while varying the coupling constant λ > 0. Figure 2.3
visualizes (2.35) for the periodic continuation of w = λ · (1, 1, 0, 1), Figure 2.4 for the
periodic continuation of w = λ · (1, 1, 0, 1, 0), and Figure 2.5 for the periodic continuation of
w = λ · (1, 1, 0, 1, 0, 1, 0, 1, 1). All of the plots feature examples of potentials that can either
be generalized to a larger class of similar potentials or serve as borderline cases illustrating
the optimality of the results of Theorem 2.1.1 which we are going to prove in this section.
We will revisit the latter two choices of w in Section 2.4.3. The underlying spectral data
for the figures and the corresponding code for their calculation is available in [55].
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Figure 2.3: Union (2.35) of spectra for H with the 4-periodic potential v being the periodic
extension of w = λ · (1, 1, 0, 1) while λ changes along the vertical axis. The spectral bands
are shown in gray and the Dirichlet eigenvalues in green. Looking at the vertical line E = 0,
the plot suggests that, whenever H is invertible, then all the B+ and B− are invertible. We
will show in Section 2.4.2 that all 4-periodic operators with a {0, λ}-valued potential are in
fact FSM-simple.

The outline of this section is as follows: we first prove Theorem 2.1.3 as this result
will serve as agenda for the further applicability analyses that need to be carried out in
order to study the concrete situation of integer-valued and {0, λ}-valued potentials in
Theorem 2.1.1. We will also present the algorithm that allowed the systematic study of
{0, λ}-valued potentials up to period 9. Lastly, we prove that our presented applicability
results for periodic Schrödinger operators are optimal.

2.4.1 Applicability Analysis of the Finite Section Method

Recall from Proposition 2.4.1 that the applicability of the FSM builds on the invertibility
of the operator H itself and selected one-sided compressions of limit operators of H and its
reversed counterpart HR. In Section 2.3, we learned how to characterize invertibility of
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Figure 2.4: Union (2.35) of spectra for H with the 5-periodic potential v being the periodic
extension of w = λ · (1, 1, 0, 1, 0) while λ changes along the vertical axis. The spectral
bands are shown in gray and the Dirichlet eigenvalues in green. We see that one Dirichlet
eigenvalue crosses the vertical line E = 0 at height λ = 1√

2
. For this λ, the operator

H is invertible, but the FSM is not applicable. In Section 2.4.2, we detect this example
algebraically, and, in Example 2.4.9, we prove that this operator is indeed not FSM-simple.

periodic Schrödinger operators via their monodromy matrices. Theorem 2.1.3 now builds the
bridge between the abstract requirements for the applicability of the FSM and the concrete
structure of periodic Schrödinger operators. More precisely, we will use the characterization
of invertibility in terms of monodromy matrices as presented in Proposition 2.3.16.

Proof of Theorem 2.1.3. Ad (i). Without loss of generality, we assume that H is invertible.
Indeed, if the FSM is applicable, this follows per definitionem, and, if | tr(M)| > 2, this is a
consequence of Corollary 2.3.6.

Let us now verify conditions (ii) and (iii) from Proposition 2.4.1. To this end, let
B ∈ Lim(H) ∪ Lim(HR) with monodromy matrix M . Due to Lemma 2.3.2(i), there exists
j ∈ {0, . . . ,K − 1} with B = S−jHSj or B = Sj−1HRS−j+1. In particular, M =M (j) or
M = M̃ (j) in the formulation of Theorem 2.1.3.

Let us show that B+ is invertible. Indeed, H is invertible by assumption, and σ(B) =
σ(H) = σ(HR), as a consequence of Lemma 2.3.9(ii). Finally, under the assumption that
the monodromy matrix M of B fulfills M1,2 ̸= 0 or |M1,1| > 1, Corollary 2.3.18(b)⇒(a)
implies that B+ is invertible on ℓp(Z+). As B was chosen arbitrarily, the proof for (i)
follows from Proposition 2.4.1.

Ad (ii). It is no loss of generality to assume invertibility of H+. Indeed, as in part (i),
it follows per definitionem if the FSM is assumed to be applicable to H+. For the converse
implication, this follows from the trace condition | tr(M)| > 2 and the assumption that the
monodromy matrix M of H+ is subject to the statement

“ M2,1 ̸= 0 or |M1,1| > 1 ”.

In fact, the invertibility of H+ now follows with the same argument as the invertibility of
B+ in part (i). By the characterization of limit operators from Lemma 2.3.2(i), we can
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Figure 2.5: Union (2.35) of spectra for H with the 9-periodic potential v being the periodic
extension of w = λ · (1, 1, 0, 1, 0, 1, 0, 1, 1) while λ changes along the vertical axis. The
spectral bands are shown in gray and the Dirichlet eigenvalues in green. At E = 3 and
λ = 2, two spectral bands merge into one before breaking up again. We observe that one
Dirichlet eigenvalue crosses the vertical line E = 0 at height λ = 1

2 . Consequently, for
λ = 1

2 , the operator H is invertible, but the FSM is not applicable. Unlike for periods of
length K < 9, this crossing happens at a rational value of λ. In Section 2.4.2, we show how
to detect this example algebraically, and, in Example 2.4.11, we prove that this operator is
indeed not FSM-simple.
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reuse this argument furthermore to conclude the invertibility of all compressions B+ of
limit operators B+ ∈ Lim(HR). This shows (iv) and (v) from Proposition 2.4.1 and thereby
concludes the proof of (ii).

Finally, assume that H is FSM-simple. As H ∈ Lim(H) = Lim+(H) by Lemma 2.3.2(i),
Corollary 2.2.13 gives that also H+ needs to be FSM-simple.

Given the overlap of requirements of the parts for H and H+ in Proposition 2.4.1, it
is natural to ask whether the applicability of the FSM to H+ is indeed sufficient for the
applicability to H. As we will see in Example 2.4.12 this is not always the case. However,
note that the following additional structural assumption on the potential v guarantees
simultaneous applicability of the FSM to H+ and H.

Definition 2.4.3 (Palindrome). Let w ∈ RK , K ∈ N. If

w = (w0, w1, . . . , wK−2, wK−1) = (wK−1, wK−2, . . . , w1, w0) =: w
R,

we call w a palindrome.

Corollary 2.4.4. Assume Hypothesis 2.3.1. If there exists j ∈ {0, . . . ,K − 1} such that
S−j v Sj is the periodic extension of a palindrome, then

{M (j) : j = 0, . . . ,K − 1} = {M̃ (j) : j = 0, . . . ,K − 1}.

In particular, in this case, the FSM is applicable to H if and only if it is applicable to H+.

Let us continue our applicability analysis of the FSM for periodic Schrödinger operators
and prove Theorem 2.1.1.

Proof of Theorem 2.1.1. It suffices to analyze the case for the two-sided infinite operator H.
Indeed, Theorem 2.1.3 implies that the one-sided compression H+ is FSM-simple once the
same holds for H. Our guideline will be to verify the conditions of Proposition 2.4.1.

Ad (i). Let the potential v be integer-valued, and assume that the corresponding
Schrödinger operator H is invertible. Let B ∈ Lim(H) ∪ Lim(HR). We want to show
that B+ is invertible. As H was assumed to be invertible, the same holds for HR as
a consequence of Lemma 2.3.9(i). Furthermore, the limit operator B is invertible as a
consequence of Lemma 2.3.2(ii). As v is integer-valued, the invertibility of the one-sided
compression B+ now follows from Proposition 2.3.19(i). As B was chosen arbitrarily, this
verifies conditions (ii) and (iii) from Proposition 2.4.1.

Ad (ii). This is proven via the algorithmic analysis carried out in [52]. We postpone
the description of the algorithm to Section 2.4.2 below.

Ad (iii). Let H be a 2-periodic Schrödinger operator with real-valued potential v. Let
B ∈ Lim(H)∪Lim(HR). As a consequence of Lemma 2.3.2(i), B is again 2-periodic. Recall
that Example 2.3.15(i) showed that the spectrum of one-sided compressions of 2-periodic
Schrödinger operators does not add any Dirichlet eigenvalues. Hence, σ(B+) = σ(B). By
Lemma 2.3.9(ii), we furthermore have σ(B) = σ(H). Joining the former two spectral
identities shows that if H is invertible, then B+ is invertible. As B was chosen arbitrarily,
this verifies conditions (ii) and (iii) from Proposition 2.4.1.

For a 2-periodic potential, Figure 2.6 shows a plot of the critical region outside of
which the trace condition is fulfilled and the FSM is applicable to H as a consequence of
Theorem 2.1.1(iii).
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Figure 2.6: For a general 2-periodic potential v, Example 2.3.7(iii) showed that tr(M(0)) =
−2 + v(0)v(1). For all points (v(0), v(1)) lying outside of the closed gray region, we have
| tr(M(0))| > 2. Hence, the FSM is applicable to the 2-periodic Schrödinger operator H
with potential (v(0), v(1)) as a consequence of Theorem 2.1.1(iii).

2.4.2 Algorithmic Analysis of {0, λ}-valued Potentials

In this section, we present an algorithm for finding non-FSM-simple operators with {0, λ}-
valued periodic potentials. As our algorithm performs an exhaustive search, its outcomes
can be used to prove a positive result for specific periods K ∈ N by not finding such
examples. Recall from Section 2.3.3 that, for K ∈ N and w ∈ {0, 1}K , we consider the
potential v ∈ {0, λ}Z as the periodic extension of λ · w with corresponding Schrödinger
operator H subject to Hypothesis 2.3.1.

The algorithm will build on Hagger’s spectral representation formula (2.25) and, more
specifically, on the invertibility result from Corollary 2.3.18 by analyzing the zeros of the
entry M2,1 of the monodromy matrix M for a given potential v. Before we go into details,
let us note the following lemma about the structure of the matrix entry M2,1.

Lemma 2.4.5. Let λ ∈ R, w ∈ {0, 1}K , K ∈ N, and v be the K-periodic extension of λ ·w.
Let M be the corresponding monodromy matrix from formula (2.14), and let pM2,1(λ) denote
the entry at position (2, 1) of M as a polynomial in λ. If K ≤ 9 and deg(pM2,1(λ)) ≥ 1,
then the polynomial equation

pM2,1(λ) = 0

has a solution in radicals.

Proof. Recall from (2.14) that

M =

(
−v(K − 1) −1

1 0

)
· · ·
(
−v(1) −1

1 0

)(
−v(0) −1

1 0

)
. (2.36)
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It is clear from (2.36) that each entry of M is a polynomial of degree at most K. If K ≤ 4,
this proves the claim by well-known results from algebra. For K > 4, we proceed in three
steps.

Step 1. Let us prove that the claim follows once we can show that M2,1(λ) is always an
even or an odd polynomial. Indeed, if M2,1(λ) is odd with deg(M2,1(λ)) ∈ {5, 7, 9}, we may
factorize M2,1 as λ · p(λ) =M2,1(λ) with an even polynomial p having deg(p) ∈ {4, 6, 8}. In
particular, q(µ) := p(µ2) is a polynomial of degree 2, 3, or 4, respectively, such that one
can determine the roots of q via the standard formulas. A similar argument works in the
case that deg(M2,1(λ)) ∈ {6, 8}.

Step 2. In this step, we show that, for the verification of Step 1, it suffices to only
work with the periodic continuation v of the constant word λ · w = (λ, . . . , λ) of length K
and show that, for this particular choice, the symmetry of the polynomial entries of the
corresponding monodromy matrix M follows the pattern

M ∼
(

odd even
even odd

)
, for K odd, M ∼

(
even odd
odd even

)
, for K even, (2.37)

where the entries even or odd determine whether the corresponding polynomial entry of M
is an even or an odd polynomial, respectively. Indeed, assume that (2.37) holds and we are
given a non-constant {0, λ}-valued K-periodic potential v.

In order to avoid confusion, let Mv denote the monodromy matrix of the K-periodic
Schrödinger operator with potential v and Mλ the monodromy matrix of the K-periodic
Schrödinger operator with constant potential equal to the value λ. By (2.37), each entry
of Mλ will be a linear combination of either even or odd monomials. Transitioning from
Mλ to Mv, this means that a monomial λk in an entry of Mλ will correspond to a product
v(j1) · · · v(jk) in the corresponding entry of Mv, where 0 ≤ j1 < j2 < · · · < jk ≤ K − 1.
Clearly, if v(jl) = 0 for some l ∈ {1, . . . , k}, the whole product will cancel, leaving the
overall symmetry of the polynomial unchanged. The symmetry also remains unchanged if
v(jl) = λ for all l ∈ {1, . . . , k}.

Step 3. Given the constant potential v(k) = λ for all k ∈ Z, we will show that the
symmetry pattern (2.37) holds via induction: for the base case, a short calculation reveals
that (2.37) holds for K = 2 and K = 3. Indeed,

M =

(
−λ −1
1 0

)
, for K = 1, M =

(
λ2 − 1 λ
−λ −1

)
, for K = 2.

For the induction step, assume that the claim holds for some K ∈ N. If K is even, for
K + 1, we decompose (2.36) as

M =

(
−λ −1
1 0

)
·
(

even odd
odd even

)
=

(
−λ · even − odd −λ · odd − even

even odd

)
.

If K is odd, for K + 1, we decompose (2.36) as

M =

(
−λ −1
1 0

)
·
(

odd even
even odd

)
=

(
−λ · odd − even −λ · even − odd

odd even

)
.

A comparison with (2.37) proves the claimed symmetry.

The overall goal of our algorithmic study is the following:
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For a fixed period length K, find all {0, λ}-valued K-periodic potentials for which
the corresponding monodromy matrix M fulfills | tr(M)| > 2 and M2,1 = 0.

If the algorithm fails to find any such potential, we conclude that the trace condition
| tr(M)| > 2 mutually excludes M2,1 = 0. In other words, every one-sided compression H+

of a K-periodic Schrödinger operator H with {0, λ}-valued potential subject to | tr(M)| > 2
will have a monodromy matrix with entry M2,1 ≠ 0 and thus be invertible as a consequence
of Corollary 2.3.18. In particular, this means that the FSM is applicable to each of these
operators by Proposition 2.4.1.

Our algorithm now proceeds as follows: for a fixed period K and every w ∈ {0, 1}K ,
use formula (2.14) to compute the monodromy matrix M = M(0) of the K-periodic
Schrödinger operator having as potential v the periodic extension of λ ·w. The four entries
Mi,j , i, j ∈ {1, 2}, of the matrix M are given by polynomials pMi,j (λ) in λ. In virtue of
Lemma 2.4.5, we can compute the zeros of pM2,1(λ) exactly by radicals up to the period
length K = 9. Filter the list of all potentials by keeping only those with at least one zero
λ∗ ∈ Q and have the trace of M be greater than 2 in modulus. Per constructionem, the
resulting list of potentials contains all {0, λ}-valued potentials of length K that lead to
non-FSM-simple Schrödinger operators. We claim that this list remains empty for K ≤ 8.
The proof of this statement follows from the data in [52].

Example 2.4.6. We demonstrate the outcomes of the algorithm above for {0, λ}-valued
potentials of period K = 3 in Table 2.1. We conclude that, for K = 3, all w ∈ {0, 1}3, and
all λ ∈ R, the implication

M2,1 = 0
Tab. 2.1
=⇒ | tr(M)| ≤ 2

Prop. 2.3.5
=⇒ H is not invertible (2.38)

is valid. The contraposition of (2.38) then shows

H invertible
(2.38)
=⇒ M2,1 ̸= 0

Cor. 2.3.18
=⇒ H+ is invertible. (2.39)

By Lemma 2.3.9(ii), all B ∈ Lim(H) ∪ Lim(HR) are invertible if H is invertible. We
apply the reasoning (2.39) with B ∈ Lim(H) ∪ Lim(HR) in place of H and derive that
all corresponding compressions B+ are invertible if H is invertible. We conclude by
Proposition 2.4.1 that the FSM is applicable to H if H is invertible. As Table 2.1 considers
all possible {0, λ}-valued 3-periodic potentials this shows that all these potentials lead to
FSM-simple operators.

For every period K, there is a total of 2K potentials needed to check in order to replicate
the procedure outlaid in Example 2.4.6. In order to handle this exponential complexity, we
implemented the algorithm using the computer algebra system SageMath [129] and Jupyter
Notebooks [84]. Recall that, thanks to Lemma 2.4.5, all relevant roots can be determined
by analytic formulas which allows for purely symbolic computations throughout the whole
program. The complete study up to 9-periodic potentials and the corresponding code have
already been published in [52].

Remark 2.4.7. A careful study of the results provided in [52], shows that, if K ∈ {1, 2, 3, 4}
and λ ∈ R, then all discrete K-periodic Schrödinger operators with a {0, λ}-valued potential
are FSM-simple. See also Example 2.4.9 for the optimality of this statement.
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λ · w M zeros of pM2,1 tr(M) at zeros

(0, 0, 0)
(

0 1
−1 0

)
∅ 0

(λ, 0, 0)
(

λ 1
−1 0

)
∅ λ

(0, λ, 0)
(

0 1
−1 λ

)
∅ λ

(0, 0, λ)
(

λ 1
−1 0

)
∅ λ

(λ, λ, 0)
(

λ 1
λ2−1 λ

)
{−1, 1} 2λ {−2, 2}

(λ, 0, λ)
(
2λ 1
−1 0

)
∅ 2λ

(0, λ, λ)
(

λ −λ2+1
−1 λ

)
∅ 2λ

(λ, λ, λ)
(

−λ3+2λ −λ2+1
λ2−1 λ

)
{−1, 1} −λ3 + 3λ {−2, 2}

Table 2.1: Systematic study of all {0, λ}-valued potentials with period K = 3. For
every sequence w ∈ {0, 1}3, the monodromy matrix M corresponding to the periodic
continuation v of λ · w is computed. Then all zeros of the entry M2,1 as a polynomial
pM1,2(λ) are determined. Finally, in the last column, the trace of M is calculated yielding
a function in λ which is then evaluated at each zero of pM2,1(λ).

2.4.3 Optimality of the Applicability Results

In this section, we will prove that, in the setting of periodic Schrödinger operators, the
results presented in Theorem 2.1.1 and Theorem 2.1.3 are optimal. In particular, we will
provide counterexamples showing that neither the conditions on the period length K nor
the set of values for λ can be relaxed. Moreover, we show that H and H+ do not need to
be simultaneously FSM-simple.

Optimality of Integer-valued Potentials

Example 2.4.8. Consider the 3-periodic Schrödinger operator H with potential v(0) = 2,
v(1) = 1

2 , and v(2) = 1
2 . The operator and its limit operators have the monodromy matrices

M (0) =

(
2 3

4

0 1
2

)
, M (1) =

(
2 0

−3
4

1
2

)
, and M (2) =

(
1
2 0

0 2

)
.

All matrices have trace 5
2 > 2. Therefore, H and its limit operators are invertible by

Corollary 2.3.6. Note that

M
(2)
2,1 = 0 and |M (2)

1,1 | =
1

2
< 1
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so that M (2) fulfills condition (d) of Proposition 2.3.16. The equivalence of this condition
with Proposition 2.3.16(b) gives that the one-sided compression B+ with B = S−2HS2 ∈
Lim(H) is not invertible. Hence, H is not FSM-simple, and we see that we can neither
drop the condition on integer-valuedness nor the restriction to 2-periodic potentials in
Theorem 2.1.1(i) and (iii), respectively.

Note that S−2HS2 is the periodic extension of the palindrome (12 , 2,
1
2). As a consequence

of Corollary 2.4.4, H+ is not FSM-simple.

Optimality of {0, λ}-valued Potentials with Rational λ

Example 2.4.9. The 5-periodic Schrödinger operator H having as potential the periodic
continuation of

1√
2
(1, 1, 0, 1, 0)

has the monodromy matrix

M =

(
− 1√

2
−1

0 −
√
2

)
,

see [52].
For the monodromy matrix, we have | tr(M)| > 2 but also M2,1 = 0 and |M1,1| < 1.

Hence, H is invertible by Corollary 2.3.6 but H+ is not invertible as a consequence of
Proposition 2.3.16. This shows that H is not FSM-simple.

Remark 2.4.10. Another example similar to Example 2.4.9 can be found in the Bachelor
thesis [157].

Optimality of 8-periodic {0, λ}-valued Potentials

Example 2.4.11. Consider the 9-periodic Schrödinger operator H having as potential the
periodic continuation of

w :=
1

2
(1, 1, 0, 1, 0, 1, 0, 1, 1)

has the monodromy matrix

M =

(
−1

2 0
0 −2

)
,

see [52]. We have | tr(M)| = 5
2 > 2, whence H is invertible by Corollary 2.3.6. But M2,1 = 0

such that H+ is not invertible and the FSM is not applicable to H.

Simultaneous Applicability of the FSM

Example 2.4.12. Consider the 9-periodic Schrödinger operator H having the periodic
continuation of

1√
2
(1, 1, 1, 0, 1, 1, 0, 1, 0)
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as its potential. One may check that, for the corresponding monodromy matrix M (1) of the
limit operator B = S−1HS ∈ Lim(H), one has that

M (1) =

(
− 1√

2
2

0 −
√
2

)

and therefore, the FSM is not applicable to H, as B+ is not invertible. However, in
contrast to Example 2.4.9, the results of [52] show that, for all monodromy matrices of
operators B ∈ Lim(HR), the conditions of Theorem 2.1.3(ii) are satisfied. Hence, the FSM
is applicable to H+.



Chapter 3

Observability and Control of
Non-autonomous Cauchy Problems

This chapter is based on the joint work with C. Bombach, C. Seifert, and M. Tautenhahn [18].

3.1 Introduction

Let X and Y be Banach spaces, T > 0, (A(t))t∈[0,T ] a family of operators on X

A(t) : Dom(A(t)) → X,

and (C(t))t∈[0,T ] a family of bounded operators C(t) : X → Y . Consider the following
system of operator equations

ẋ(t) = −A(t)x(t), t ∈ (0, T ], x(0) = x0,

y(t) = C(t)x(t), t ∈ [0, T ],
(3.1)

where the first equation in (3.1) describes the evolution of a state function x driven by the
operators A(t) and the second equation describes the observation function y as the linear
image of the state function x under the operators C(t). We are interested in the following
question.

For a given measurable subset E ⊆ [0, T ] and r ∈ [1,∞], does there exist a constant
Cobs ≥ 0 such that, for all initial values x0 ∈ X, the estimate

∥x(T )∥X ≤ Cobs


(∫

E ∥y(t)∥rY dt
)1/r

, r ∈ [1,∞),

ess supt∈E ∥y(t)∥Y , r = ∞,
(3.2)

holds?

In case of a positive answer to the question above, we say that the system (3.1) satisfies a
final-state observability estimate in Lr(E;Y ). Loosely speaking, final-state observability
allows one to retrieve information about the final state x(T ) by just observing the system
through the measurements y(t) at times t ∈ E.

In case the families (A(t))t∈[0,T ] and (C(t))t∈[0,T ] are constant, final-state observability
for (3.1) has been studied thoroughly in the Hilbert space case both in abstract and

41
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in concrete situations. Autonomous self-adjoint Schrödinger operators A in L2(Ω) with
bounded domain Ω ⊆ Rd and a projection Cu = u|ω for suitable subsets ω ⊆ Ω were
considered in [50, 94] as well as in [9, 68, 112, 113] for the case of unbounded domains.
Moreover, second order elliptic operators A in L2(Ω) for bounded domains Ω ⊆ Rd have
been studied in [121], where also E in (3.2) is just a measurable subset of [0, T ]. Of
particular interest in understanding the case of unbounded domains is the specification of
necessary and sufficient geometric conditions on Ω for observability, which were established
in [41, 155] in the case of Hilbert spaces. In the Banach space case, a characterization of
observability in terms of geometric conditions was given in [19, 61]. In the non-autonomous
setting, results on Ornstein–Uhlenbeck operators on Hilbert spaces can be found in [12, 13].

3.1.1 Abstract Observability and Applications

Our approach to final-state observability is based on the Lebeau–Robbiano strategy, which
originates in the works [78, 94, 95] and can be summarized as follows.

Given an evolution family generated by the non-autonomous operators A(t) subject
to an abstract dissipation estimate and a family of observation operators C(t)
subject to an uncertainty estimate, there exists a constant Cobs such that the
final-state observability estimate (3.2) holds.

All of the above will be made precise in Section 3.3. Originally, the Lebeau–Robbiano
strategy was applied in the setting of C0-semigroups on Hilbert spaces, see the references
above, and subsequently generalized to C0-semigroups on Banach spaces [19, 60, 61]. We
will continue this path by extending the strategy of establishing a final-state observability
estimate by proving dissipation and uncertainty in the setting of evolution families and
non-autonomous Cauchy problems. The main application of our observability theorem is
the following:

Consider an observation system (3.1) consisting of a parabolic equation in Rd

u̇ = −A(t)u = −
∑

|α|≤m

aα(t)∂
αu

with time-dependent uniformly elliptic differential operators A(t) and observation
operators C(t) that are given via the restriction u|Ω(t) of functions u on Rd to a time-
dependent family of observability sets Ω(t) ⊆ Rd. Then, under suitable geometric
assumptions on the family (Ω(t))t∈[0,T ], a final-state observability estimate (3.2)
holds.

More precisely, we analyze the connection between final-state observability estimates and
the geometry of the observability sets. First and as an extension of the results known
for the autonomous setting, in Theorem 3.4.4, we show that a uniformly thick family of
observability sets Ω(t) guarantees the existence of a final-state observability estimate. Then,
in Theorem 3.4.8, we derive a converse implication to Theorem 3.4.4 which builds upon a
weaker notion of thickness.
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3.1.2 Approximate Null-controllability and Duality

Before we step into the theory of our non-autonomous observability problem, let us describe
the dual perspective on this problem. Despite not being crucial for the proofs of the
results to follow, this will enrich the theory presented here by widening the perspective of
applicability of the presented results.

Given a final time T > 0, consider the system

ẋ(t) = −A(t)x(t) +B(t)u(t), t ∈ (0, T ], x(0) = x0, (3.3)

where (B(t))t∈[0,T ] is a family of bounded linear operators B(t) : U → X for some Banach
space U . For control systems (3.3), one may formulate the following question.

For a given measurable subset E ⊆ [0, T ] and r ∈ [1,∞], does there exist a
function u ∈ Lr(0, T ;U) with suppu ⊆ E such that x(T ) = 0?

In case the above question has a positive answer for all initial states x0 ∈ X, we say that
the system (3.3) is null-controllable in Lr(0, T ;U) with control function supported in E.
Problems like (3.3) for example appear in the field of controllability of partial differential
equations, where (A(t))t∈[0,T ] is a family of differential operators and each B(t) = 1Ω(t) is
a multiplication operator on Lp(Rd) representing a family of control subsets (Ω(t))t∈[0,T ],
cf. [12, 25, 93, 109].

In the case of a reflexive Banach space X, the system (3.3) is null-controllable in
Lr(0, T ;U) with control function supported in E if and only if the dual system for all initial
values x0 ∈ X ′

ẋ(t) = −A(t)′x(t), t ∈ (0, T ], x(0) = x0,

y(t) = B(t)′x(t), t ∈ [0, T ],

satisfies a final-state observability estimate in Lr/(r−1)(E;U ′), cf. [21, Rem. 2.1]. The above
equivalence also holds for general Banach spaces X under the assumption that U is reflexive
and r ∈ (1,∞), see [161, Thm. 2.1].

If X is not reflexive, or, if r ∈ (1,∞] and U is reflexive, then final-state observability is
still equivalent to the following property:

For all measurable subsets E ⊆ [0, T ], there exists C ≥ 0, such that, for all ε > 0
and all x0 ∈ X, there exists u ∈ Lr(0, T ;U) subject to the conditions suppu ⊆ E,
∥u∥Lr(0,T ;U) ≤ C∥x0∥X , and ∥x(T )∥X < ε.

In fact, the above property is a variant of so-called approximate null-controllability and
equivalent to null-controllability for reflexive Banach spaces. More precisely, the system (3.3)
is approximately null-controllable if and only if the corresponding dual system satisfies a
final-state observability estimate, see [21, 37, 153, 161].

3.1.3 Outline

Let us outline the content of this chapter. We start by introducing the abstract framework of
evolution families for non-autonomous Cauchy problems in Section 3.2. Then we introduce
the concrete class of elliptic differential operators that will form the example setting in
which we apply our abstract result in Section 3.4. In Section 3.3, we derive sufficient
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conditions for observability of abstract non-autonomous systems. Building on this abstract
result, we will verify these properties in the setting of differential operators and relate
geometric conditions of the sets of observations to final-state observability in Section 3.4.

3.2 Evolution Families and Elliptic Operators

3.2.1 Abstract Non-autonomous Cauchy Problems

For Banach spaces X and Y , let L(X,Y ) denote the set of bounded linear operators from
X to Y . Similarly, set L(X) := L(X,X). Let T > 0, and let A(t) : Dom(A(t)) → X,
0 ≤ t ≤ T , be a family of operators in X. Furthermore, let us always assume that the
operators A(t) are closed with common domain Dom(A(t)) =: D for all t ∈ [0, T ], where D
densely embeds into X, and that the mapping A : [0, T ] → L(D,X) is strongly measurable.
In particular, all graph norms ∥ · ∥A(t) are equivalent.

Consider the homogeneous initial value problem

ẋ(t) = −A(t)x(t), t ∈ (0, T ], x(0) = x0, (NACP)

where x0 ∈ X. We will call (NACP) the non-autonomous Cauchy problem for A. Cauchy
problems generalize the idea of systems of ordinary differential equations to infinite-
dimensional spaces while maintaining the core concept of a linear differential equation:
a linear relation between a state function x and its time derivative ẋ. Several notions
of solution to (NACP) exist in the literature that differ in the required amount of time
regularity and space regularity of the sought state function, see, e.g., [108, Def. 4.1.1], [43,
Sec. II.6]. Common to all notions of solution is that they all need to interpret the identities
for ẋ(t) and x(0) in a well-defined sense. Throughout this chapter, we will make use of the
following concept of solutions for (NACP); see [120, Chap. 4, Def. 2.8].

Definition 3.2.1 (Strong Solution). A function x : [0, T ] → X is said to be a strong solution
of (NACP) if x ∈ W1,1(0, T ;X) ∩ L1(0, T ;D), x(0) = x0, and ẋ(t) = −A(t)x(t) for almost
all t ∈ (0, T ).

In the case of a time-independent family of operators A(t) = A, the operator semigroup
approach to Cauchy problems consists of a collection of techniques that aim at expressing
solutions to (NACP) based on spectral properties of the operator A. The following definition
provides a natural generalization of operator semigroups to the context of non-autonomous
Cauchy problems.

Definition 3.2.2 (Evolution Family). Let T > 0. A two-parameter family of bounded
linear operators (U(t, s))0≤s≤t≤T on X is called an evolution family if

(a) U(s, s) = Id and U(t, s)U(s, r) = U(t, r) for 0 ≤ r ≤ s ≤ t ≤ T .

If, additionally,

(b) (t, s) 7→ U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T ,

then we say that the evolution family (U(t, s)) is strongly continuous.
An evolution family (U(t, s)) is called exponentially bounded if there exist M ≥ 1 and

ω ∈ R such that ∥U(t, s)∥L(X) ≤Meω(t−s) for all 0 ≤ s ≤ t ≤ T .
An evolution family (U(t, s))0≤s≤t≤T is called a (strongly continuous) evolution family

for A if in addition to conditions (a) (and (b)) the following conditions are satisfied:
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(c) For all 0 ≤ s < T and xs ∈ D, the function x : [s, T ] → X defined by x(t) = U(t, s)xs
is in W1,1(s, T ;X) ∩ L1(s, T ;D) and satisfies ẋ(t) = −A(t)U(t, s)xs for almost all
t ∈ (s, T ).

(d) For all 0 < t ≤ T and xT ∈ D, the function x : [t, T ] → X defined by x(s) = U(T, s)xT
is in W1,1(t, T ;X) ∩ L1(t, T ;D) and satisfies ẋ(s) = U(T, s)A(s)xT for almost all
s ∈ (t, T ).

Since the early works by Sobolevskĭı [136] and Tanabe [141], non-autonomous Cauchy
problems (NACP) and evolution families have been extensively studied by various authors,
see, e.g. [2, 43, 108, 119, 120, 140, 160] and the references therein. Most of the aforementioned
resources share the algebraic condition (a) in their definition of the evolution family (U(t, s))
but rely on other regularity assumptions (b), (c), and (d) and also assume other regularity
properties of the operator family (A(t)). We chose the above definition for compatibility
with the weak regularity assumptions on strong solutions in the sense of Definition 3.2.1.
This will allow us to directly derive a closed formula for the evolution family to a family of
differential operators in Section 3.4. A similar approach to deriving an evolution family
was also taken in [12, Prop. 19].

The more general way to construct an evolution family for the initial value prob-
lem (NACP) is far more involved and usually demands further regularity assumptions on
the family of operators (A(t)) in terms of time regularity and also compatibility of their
resolvents. We refer the interested reader to [108, Chap. 6] and [120, Chap. 5].
Remark 3.2.3. (a) The condition in Definition 3.2.2(c) states that u(t) := U(t, 0)u0 defines

a strong solution of (NACP) on [0, T ] in the sense of Definition 3.2.1. Just as in the
setting of autonomous Cauchy problems and one-parameter semigroups, the evolution
family works as a “solution operator”.

(b) Every strongly continuous evolution family is exponentially bounded. This fact is
trivially true on the triangle 0 ≤ s ≤ t ≤ T . In contrast to the case of one-parameter
semigroups, this fact remains no longer true once we allow T = ∞. Indeed, the
evolution family U(t, s) = exp(t2−s2) on X = C is not exponentially bounded, cf. [43,
Sec. IV.9.6] as can be seen by estimating U(t, t/2). Note, however, that one may have
an exponentially bounded evolution family that is not strongly continuous. This is
precisely the setting we will cover in our main result in Section 3.3.

(c) Every strongly continuous one-parameter semigroup (S(t))0≤t≤T gives rise to a strongly
continuous evolution family via US(t, s) := S(t− s) for 0 ≤ s ≤ t ≤ T .

(d) Throughout the literature, an evolution family is also referred to as an evolution
system, evolution operator, evolution process, propagator, or fundamental solution.

In the following proposition, we relate the existence of an evolution family for A
with the uniqueness of strong solutions for (NACP). The proof is an adaptation of [58,
Prop. 3.3.4 and Cor. 3.3.5] and [59, Prop. 4.5] to the setting outlaid by Definition 3.2.1 and
Definition 3.2.2.

Proposition 3.2.4. Let T > 0 and (U(t, s))0≤s≤t≤T be an evolution family for A.

(a) If (NACP) has a strong solution u ∈ W1,1(0, T ;X) ∩ L1(0, T ;D), then it satisfies

u(t) = U(t, s)u(s) for 0 ≤ s ≤ t ≤ T.
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In particular, strong solutions are unique.

(b) If (Ũ(t, s))0≤s≤t≤T is a further evolution family for A, then Ũ = U .

Proof. Ad (a). We want to show that, for all ψ ∈ C∞
c (0, T ) and 0 ≤ s ≤ t ≤ T , the identity∫ t

s
U(t, r)u(r)ψ′(r) dr = 0 (3.4)

holds, i.e., the mapping r 7→ U(t, r)u(r) is locally constant. This will then imply u(t) =
U(t, t)u(t) = U(t, s)u(s) which proves the claim. We carry out a density argument in three
steps.

Step 1. We first prove the claim for u ∈ C1(0, T )⊗D = span{φ · x : φ ∈ C1(0, T ), x ∈ D}.
Let φ ∈ C1(0, T ) and x ∈ D such that u(t) = φ(t)x. Then, for all ψ ∈ C∞

c (0, T ), property (c)
of evolution families reveals that∫ T

0
U(t, r)u(r)ψ̇(r) dr =

∫ T

0
U(t, r)x ∂r(φψ)(r) dr −

∫ T

0
U(t, r)xφ̇(r)ψ(r) dr

= −
∫ T

0
U(t, r)A(r)u(r)ψ(r) dr −

∫ T

0
U(t, r)u̇(r)ψ(r) dr

= 0,

where ∂r denotes a weak derivative and the last equality holds because u is a strong solution
to (NACP) by assumption. Linearity of the integral yields (3.4).

Step 2. Assume that u ∈ C1((0, T );D). By [149, Prop. 44.2], there exists a sequence
(un) in C1(0, T ) ⊗D such that (un) and the sequence of time derivatives (u̇n) converge
uniformly to u and u̇, respectively. Dominated convergence implies that (3.4) holds also for
u ∈ C1((0, T );D). Indeed, recall that the graph norms of A(t) are equivalent by assumption,
which gives rise to the estimate

∥U(t, r)A(r)un(r)∥X ≤ ∥U(t, r)∥L(X)∥A(r)un(r)∥X ≲ ∥un(r)∥D <∞.

Step 3. Assume that u ∈ W1,1(0, T ;X) ∩ L1(0, T ;D). First-order reflections, cf. [44,
Thm. 5.4.1], yield an extension ũ ∈ W1,1(R;X) ∩ L1(R, D) with ũ(t) = u(t) for t ∈ (0, T ).
Using a δ-sequence (φn)n∈N in C1(R), one can show that (φn ∗ ũ)|(0,T ) ∈ C1((0, T );D).
Taking the limit n→ ∞ and possibly passing to a subsequence, we have that

∂t(φn ∗ ũ)|(0,T ) → u̇ ∈ L1(0, T ;X) and (φn ∗ ũ)|(0,T ) → u ∈ L1(0, T ;D) .

Thus, we observe that (3.4) also holds in the general case.

Ad (b). Let (Ũ(t, s)) be a further evolution family and xs ∈ D. By Remark 3.2.3(a), the
mapping t 7→ Ũ(t, s)xs defines a strong solution to (NACP) on [s, T ]. Furthermore, by
part (a), strong solutions are unique. The representation formula for strong solutions gives

Ũ(t, s)xs = U(t, s)xs

for all 0 ≤ s ≤ t ≤ T . Density of D in X now gives the claim.
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3.2.2 Properties of Non-autonomous Elliptic Operators

In this subsection, we apply the abstract theory of Section 3.2.1 to non-autonomous parabolic
equations with time-dependent coefficients. We aim to define a family of non-autonomous
differential operators and derive Lp-bounds for the associated evolution family. We will
define these operators in terms of Fourier multipliers with symbols given via complex
polynomials. To this end, we define the Fourier transformation F : S(Rd) → S(Rd) on the
Schwartz space via

(Fu)(ξ) :=
∫
Rd

e−ix·ξu(x) dx, ξ ∈ Rd.

As usual, we extend F and its inverse F−1 to automorphisms of the space of tempered
distributions S ′(Rd). The inverse is given as

(F−1u)(x) =
1

(2π)d

∫
Rd

eix·ξu(ξ) dξ, x ∈ Rd.

In the following, we will tacitly identify L1
loc(Rd) with a subspace of S ′(Rd) subject to

the canonical embedding u 7→ ιu with

ιu(φ) :=

∫
Rd

u(x)φ(x) dx, φ ∈ S(Rd) .

Definition 3.2.5 (Non-autonomous Elliptic Homogeneous Polynomial). Let m ∈ N. For
each multi-index α ∈ Nd

0 with |α| ≤ m, let aα : [0, T ] → C be a complex-valued function.
We call a : [0, T ]× Rd → C defined via

a(t, ξ) :=
∑

|α|≤m

aα(t)(iξ)
α, t ∈ [0, T ], ξ ∈ Rd,

non-autonomous polynomial of degree m. The principal symbol am of a is given by

am(t, ξ) :=
∑

|α|=m

aα(t)(iξ)
α, t ∈ [0, T ], ξ ∈ Rd.

We say that a is uniformly strongly elliptic with respect to t if there exists an ellipticity
constant c > 0 such that, for all t ∈ [0, T ] and ξ ∈ Rd, the principal part am fulfills the
ellipticity estimate

Re am(t, ξ) ≥ c |ξ|m. (3.5)

Remark 3.2.6. (a) The presence of the factor iα in the definition of a and am is motivated
by our application of differential operators. In fact, we will see that one can easily
associate the polynomial a(t, ·) with a differential operator A(t) :=

∑
|α|≤m aα(t)∂

α
x

on Lp(Rd) by means of the Fourier transform; cf. [43, Sec. IV.5].

(b) The principal part am is positive homogeneous of degree m, i.e. am(t, λξ) = λmam(t, ξ)
for all ξ ∈ Rd and λ > 0. In fact, the above identity holds for all λ ∈ R, but we
refrain from calling am : Rd → C homogeneous as the domain and codomain are not
vector spaces over the same field.
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(c) Note that the uniform strong ellipticity of a implies that m is even. In particular, we
will always have m ≥ 2 for the degree of the non-autonomous polynomial a. Indeed,
note that, for all ξ ∈ Rd and t ∈ [0, T ],

Re am(t,−ξ) =

{
Re am(t, ξ) if m mod 2 = 0,

−Re am(t, ξ) if m mod 2 ̸= 0.

Assuming that the ellipticity estimate (3.5) holds, in the case m mod 2 ̸= 0, we get
that

−Re am(t, ξ) = Re am(t,−ξ) ≥ c |ξ|m and Re am(t, ξ) ≥ c |ξ|m .

Adding both inequalities yields c ≤ 0 for the ellipticity constant in contradiction
to the assumption c > 0. Thus m needs to be even as the ellipticity estimate (3.5)
enforces a positive sign of the term Re am(t, ξ).

As mentioned in Remark 3.2.6(a), strongly elliptic non-autonomous polynomials give
rise to a certain class of differential operators if they are used as the symbol of a Fourier
multiplier.

Definition 3.2.7. Let a be a non-autonomous polynomial of degree m ≥ 2. For t ∈ [0, T ],
we define A(t) : S ′(Rd) → S ′(Rd) by

A(t)u := F−1(a(t, ·)Fu) =
∑

|α|≤m

aα(t)∂
αu .

We call the family (A(t))t∈[0,T ] the operator family associated with a. If, furthermore, a is
uniformly strongly elliptic, we call (A(t))t∈[0,T ] elliptic.

The following proposition summarizes the functional analytic properties of the operators
A(t) from Definition 3.2.7. For proofs of the results, we refer the interested reader to the
monographs of Grafakos [69] and Haase [71].

Proposition 3.2.8. Let a : [0, T ]×Rd → C be a uniformly strongly elliptic polynomial and
A(t) : S ′(Rd) → S ′(Rd) the operator family associated with a. Then the following statements
hold.

(a) A(t) leaves S(Rd) invariant for all t ∈ [0, T ].

For p ∈ [1,∞] and t ∈ [0, T ], let Ap(t) := A(t)|Lp(Rd) denote the part of A(t) in Lp(Rd).

(b) For 1 ≤ p <∞ and t ∈ [0, T ], Ap(t) is a closed and densely defined operator.

(c) For 1 < p <∞, we have Dom(Ap(t)) = Wp,m(Rd).

(d) For p = 1, we have the inclusions W1,m(Rd) ⊆ Dom(A1(t)) ⊆ W1,m−1(Rd).

Let m ∈ N and a a uniformly strongly elliptic polynomial, and let (A(t)) denote the
associated operator family. Due to Proposition 3.2.8, we see that Dom(Ap(t)) does not
depend on t. Using the notation from Section 3.2.1, let write D := Dom(Ap(t)), t ∈ [0, T ],
in the following. For p ∈ [1,∞), we associate the non-autonomous Cauchy problem

u̇(t) = −Ap(t)u(t), t ∈ (0, T ], u(0) = u0 ∈ Lp(Rd) (3.6)

to the operator family (Ap(t))t∈[0,T ]. We will now define an evolution family for (Ap(t))t∈[0,T ]

and study its continuity properties.
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Lemma 3.2.9. Let m ≥ 2 and a a uniformly elliptic non-autonomous polynomial with
complex-valued coefficient functions aα : [0, T ] → C, |α| ≤ m. Furthermore, let c > 0 denote
the uniform ellipticity constant from (3.5). Assume that aα ∈ L1(0, T ) for all α. For all
c0 ∈ (0, c), there exists ω ≥ 0 such that∫ t

s
Re a(τ, ξ) dτ ≥ (t− s)c0 |ξ|m − (t− s)ω, ξ ∈ Rd, 0 ≤ s < t ≤ T. (3.7)

In particular, e−
∫ t
s a(τ,·) dτ ∈ S(Rd).

Proof. We have Re am(t, ξ) ≥ c |ξ|m for all t ∈ [0, T ] and ξ ∈ Rd. Thus, for c0 ∈ (0, c), we
estimate∫ t

s
Re a(τ, ξ) dτ ≥ (t− s)c0 |ξ|m + (t− s)(c− c0) |ξ|m +

∑
|α|<m

∫ t

s
Re(aα(·) iα) dτ ξα.

Now consider the polynomial

b(ξ) := (t− s)(c− c0)|ξ|m + (t− s)b′(ξ) := (t− s)(c− c0)|ξ|m + (t− s)
∑

|α|<m

bα ξ
α

with

bα :=
1

t− s

∫ t

s
Re(aα(τ)i

α) dτ .

Choose R > 0 such that

(c− c0) |ξ|m ≥ −
∑

|α|<m

bα ξ
α for all |ξ| > R,

and let ω := max{|b′(ξ)| : ξ ∈ Rd, |ξ| ≤ R} ≥ 0. We may now estimate∫ t

s
Re a(τ, ξ) dτ ≥ (t− s)c0 |ξ|m − ω

which proves estimate (3.7).
Now consider the function e−

∫ t
s a(τ,·) dτ . Clearly, the function is smooth. For the decay

property, note that, for all ξ ∈ Rd and 0 ≤ s < t ≤ T ,

e−
∫ t
s a(τ,ξ) dτ ≤ e−(t−s)ω e−(t−s)c0|ξ|m .

This proves our claim.

Under assumptions of Lemma 3.2.9, we may define a two-parameter family of opera-
tors U(t, s) : S ′(Rd) → S ′(Rd), 0 ≤ s ≤ t ≤ T , by

U(s, s)u := u, U(t, s)u := F−1
(
e−

∫ t
s a(τ,·) dτFu

)
, t > s. (3.8)

The next lemma collects several algebraic and functional analytic properties of the
operator family (U(t, s))0≤s≤t≤T .
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Lemma 3.2.10. Let a be a uniformly elliptic non-autonomous polynomial with coeffi-
cients aα ∈ L1(0, T ). Let (U(t, s))0≤s≤t≤T be the operator family defined in (3.8).

(a) For 0 ≤ s < t ≤ T , the operator U(t, s) is given as a convolution operator with kernel
pt,s ∈ S(Rd) defined as

pt,s := F−1e−
∫ t
s a(τ,·) dτ . (3.9)

(b) For 0 ≤ r ≤ s ≤ t ≤ T , we have that

U(s, s) = Id and U(t, r) = U(t, s)U(s, r).

Moreover, pt,r = pt,s ∗ ps,r for all 0 ≤ r < s < t ≤ T .

(c) For p ∈ [1,∞] and 0 ≤ s ≤ t ≤ T , the operator U(t, s) leaves Lp(Rd) invariant. In
particular, ∥U(t, s)u∥Lp(Rd) ≤ ∥pt,s∥L1(Rd)∥u∥Lp(Rd) for all u ∈ Lp(Rd).

Proof. Ad (a). This follows from Lemma 3.2.9 and the fact that the Fourier transform is
an isomorphism on S(Rd).

Ad (b). The proof of (b) is straightforward from the definitions of the operator family
(U(t, s))0≤s≤t≤T in (3.8) and of its kernel in (3.9).

Ad (c). Statement (c) is a consequence of Young’s inequality, see, e.g., [69, Thm. 1.2.10].

Let (U(t, s))0≤s≤t≤T be as in (3.8) and p ∈ [1,∞]. For 0 ≤ s ≤ t ≤ T , we define

Up(t, s) := U(t, s)|Lp(Rd) . (3.10)

By Lemma 3.2.10, the operators (Up(t, s)) are bounded on Lp(Rd) and defines an evolu-
tion family on Lp(Rd) in the sense of Definition 3.2.2(a). In fact, the evolution family
(Up(t, s))0≤s≤t≤T can be seen as the solution operator to the non-autonomous Cauchy
problem (3.6) induced by (Ap(t))t∈[0,T ]. The following theorem summarizes all of these
properties.

Theorem 3.2.11. Let a be a uniformly strongly elliptic polynomial of degree m ≥ 2 with
coefficients aα ∈ L∞(0, T ) for |α| ≤ m. Let (U(t, s))0≤s≤t≤T be defined as in (3.8).

(a) Let p ∈ [1,∞]. Then (Up(t, s))0≤s≤t≤T is an exponentially bounded evolution family.

(b) Let p ∈ (1,∞). Then (Up(t, s))0≤s≤t≤T is the unique evolution family for the family
of operators (Ap(t))t∈[0,T ].

In order to prepare for the proof of Theorem 3.2.11, we will proceed in 3 Steps. First, we
will show that the kernel pt,s is subject to Gaussian bounds that are uniform with respect to
s, t. Then we will show that the family is exponentially bounded and strongly continuous.
In the last step, we establish the announced relation between the evolution family (3.10)
and the non-autonomous Cauchy problem (3.6).
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Step 1. Kernel Estimates and Exponential Boundedness.

We will show that we can find Gaussian bounds for the kernel pt,s for 0 ≤ s < t ≤ T defined
in (3.9).

Lemma 3.2.12. Let m ≥ 2 and a a uniformly elliptic non-autonomous polynomial with
complex-valued coefficient functions aα : [0, T ] → C, |α| ≤ m. Furthermore, let c > 0 denote
the uniform ellipticity constant from (3.5). Assume that aα ∈ L∞(0, T ) for all |α| ≤ m.
Then the following statements hold.

(a) For all c0 ∈ (0, c), there exists ω ≥ 0 depending only on c, c0 and aα, |α| < m, such
that, for all 0 ≤ s < t ≤ T and all ξ ∈ Rd,∫ t

s
Re a(τ, ξ) dτ ≥ (t− s) c0 |ξ|m − (t− s)ω.

(b) There exist C1, C2 ≥ 0 and ω ≥ 0 such that, for all 0 ≤ s < t ≤ T and all x ∈ Rd,

|pt,s(x)| ≤ C1
1

(t− s)d/m
eω(t−s) e−C2

(
|x|m/(t−s)

)1/m−1

.

In particular, for all p ∈ [1,∞] and 0 ≤ s < t ≤ T , we have

∥Up(t, s)∥L(Lp(Rd)) = ∥pt,s∥L1(Rd) ≤ C1 e
ω (t−s)

∫
Rd

e−C2|x|m/(m−1)
dx.

Proof. Ad (a). We proceed similarly to the proof of Lemma 3.2.9. By ellipticity, we have
Re am(t, ξ) ≥ c |ξ|m for all t ∈ [0, T ] and ξ ∈ Rd. Thus, for c0 ∈ (0, c), we estimate∫ t

s
Re a(τ, ξ) dτ ≥ (t− s)c0 |ξ|m + (t− s)(c− c0) |ξ|m +

∑
|α|<m

∫ t

s
Re(aα(τ) i

α) dτ ξα

≥ (t− s)
(
c0 |ξ|m + (c− c0) |ξ|m +

∑
|α|<m

ξαbα

)
,

where

bα := min
{
Re(aα(τ) i

α) : τ ∈ [0, T ]
}
, |α| < m.

Choose R > 0 such that

(c− c0) |ξ|m +
∑

|α|<m

bα ξ
α ≥ 0 ,

and let

ω := max
{∣∣ ∑

|α|<m

bα ξ
α
∣∣ : |ξ| ≤ R

}
≥ 0 .

We may now estimate ∫ t

s
Re a(τ, ξ) dτ ≥ (t− s)

(
c0 |ξ|m − ω

)
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which proves our claim.

Ad (b). We follow the argument in [143, Prop. 1]. Note that, although a(t, ·) is defined
on Rd, we can extend it to Cd for all t ∈ [0, T ]. Let 0 ≤ s < t ≤ T , x ∈ Rd. Then, for
η ∈ Rd, we obtain via the change of variables formula

pt,s(x) =
1

(2π)d

∫
Rd

eix·ξe−x·ηe−
∫ t
s a(τ,ξ+iη) dτ dξ.

We decompose the polynomial a as follows

Re a(τ, ξ + iη) = Re a(τ, ξ) + Re a(τ, iη) + Re a0(τ)

+ Re
∑

|α|≤m
α ̸=0

aα(τ)
∑
β≤α
β ̸=0,α

(
α

β

)
(iξ)β(−η)α−β .

In view of part (a), there exist c0, c1, c2 > 0 such that, for all 0 ≤ s < t ≤ T and all
ξ, η ∈ Rd, we have∫ t

s
Re a(τ, ξ) + Re a(τ, iη)+Re a0(τ) dτ

≥ (t− s)
(
c0|ξ|m + c1|η|m − c2 − ∥a0(·)∥L∞(0,T )

)
.

(3.11)

Furthermore, note that, for all ξ ∈ Rd and 1 ≤ k ≤ m, we may estimate

|ξ|k ≤ 1 + |ξ|m.

Now Young’s inequality for products gives that, for all ε > 0, ξ, η ∈ Rd, and 1 ≤ k, l ≤ m,
we have

|ξ|l|η|k−l ≤ ε |ξ|m + q(ε) |η|m + ε+ q(ε),

where q(ε) depends continuously on ε. In particular, for each ε > 0, there exists q = q(ε) > 0
such that ∑

1≤k≤m
1≤l≤k−1

|ξ|l|η|k−l ≤ ε |ξ|m + q
(
|η|m + 1

)
. (3.12)

We introduce the constant

c3 := 2 sup
|α|≤m
α ̸=0

∥aα(·)∥L∞(0,T )

∑
β≤α
β ̸=0,α

(
α

β

)
.

Now (3.12) with ε = c0
2 c3

gives us the estimate

Re
∑

|α|≤m
α ̸=0

aα(τ)
∑
β≤α
β ̸=0,α

(
α

β

)
(iξ)β(−η)α−β ≥ −c3

∑
1≤k≤m
1≤l≤k−1

|ξ|l |η|k−l

≥ −c0
2
|ξ|m − c3 q (|η|m + 1).

(3.13)
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Using (3.11) and (3.13) we arrive at∫ t

s
Re a(τ, ξ + iη) dτ ≥ (t− s)

(c0
2
|ξ|m − σ|η|m − ω

)
,

where σ := c1 + c3q and ω = c2 + ∥a0(·)∥L∞(0,T ) + c3 q. Hence, we can estimate

|pt,s(x)| ≤
1

(2π)d

∫
Rd

e−x·η e−
∫ t
s Re a(τ,ξ+iη) dτ dξ

≤ 1

(2π)d

∫
Rd

e−x·η e−(t−s)(
c0
2

|ξ|m−σ |η|m−ω) dξ

= C1
1

(t− s)d/m
e−x·η eω (t−s) e(t−s)σ |η|m ,

where C1 :=
1

(2π)d

∫
Rd e

− c0
2

|ξ|m dξ. Now, for η := 1
2(

|x|
σ (t−s))

1/(m−1) x
|x| , we obtain

|pt,s(x)| ≤ C1
1

(t− s)d/m
eω (t−s) e−C2

(
|x|m/(t−s)

)1/m−1

,

where C2 :=
2m−1−1

2m . Thus, integration yields the assertion for ∥pt,s∥L1(Rd).
For the description of the norm of Up(t, s), note that Lemma 3.2.10(a) gives that,

for p ∈ [1,∞], the operator Up(t, s) is the convolution operator with kernel pt,s, and
Lemma 3.2.10(c) yields ∥Up(t, s)∥L(Lp(Rd)) = ∥pt,s∥L1(Rd).

Step 2. Strong Continuity.

We now show that (Up(t, s))0≤s≤t≤T is strongly continuous for p ∈ [1,∞). Our approach
extends a similar result for the classical setting of diffusion semigroups, see [43, Sec. II.2.13].
As a consequence of duality theory for evolution families, cf. [43, Sec. I.5.14] and [7,
Sec. 7.2], the evolution family (U∞(t, s))0≤s≤t≤T will be strongly continuous with respect
to the weak∗-topology.

We start with a subspace of S ′(Rd) that can be identified with a subset of C∞(Rd).
Let OM(Rd) denote the multiplier space

OM(Rd) :=
{
f ∈ C∞(Rd) : ∀g ∈ S(Rd), α ∈ Nd

0 : ∥f∥g,α <∞
}
,

where the family of seminorms (∥ · ∥g,α)g,α is defined via

∥f∥g,α := sup
x∈Rd

|g(x) ∂αf(x)| , f ∈ C∞(Rd),

and induces a locally convex topology on OM(Rd), cf. [130, Chap. 7, §5, p. 243] and [86,
Exmp. 5.3]. The following proposition shows that convergence on compact sets is compatible
with the convergence on OM.

Proposition 3.2.13. Let (fn)n∈N in C∞(Rd) and f ∈ C∞(Rd) such that, for all α ∈ Nd
0,

we have supn∈N ∥∂αfn∥L∞(Rd) <∞ and ∂αfn → ∂αf uniformly on compact sets. Then (fn)

is a sequence in OM(Rd), f ∈ OM(Rd), and fn → f in OM(Rd).
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Proof. First note that, since smooth functions with bounded derivatives belong to OM(Rd),
we obtain fn ∈ OM(Rd) for all n ∈ N. Indeed, if ∂αfn is bounded, then, in particular, it
decays faster than the reciprocal of every polynomial, cf. [69, Rem. 2.2.3]. Note that, by
assumption, we have that, for all x ∈ Rd and α ∈ Nd

0,

|∂αfn(x)| ≤ sup
n∈N

∥∂αfn∥L∞(Rd) =: Cα .

As fn → f uniformly on compact sets, the convergence is also pointwise such that we also
have |∂αf(x)| ≤ Cα for all α ∈ Nd

0 which yields f ∈ OM(Rd).
Now let us show that the convergence of fn → f is also in OM(Rd). To this end, let

α ∈ Nd
0 and g ∈ S(Rd), and let ε > 0. Choose a compact set K ⊆ Rd such that

sup
x ̸∈K

|g(x)| ≤ ε

2 supn∈N ∥∂α(fn − f)∥L∞(Rd) + 1
.

Furthermore, choose N ∈ N such that, for all n ≥ N , we have

sup
x∈K

|∂α(fn − f)(x)| ≤ ε

2 ∥g∥L∞(Rd) + 1
.

Then we observe

∥fn − f∥g,α = sup
x∈Rd

|g(x) ∂α(fn − f)(x)|

≤ sup
x∈K

∣∣∣g(x) ∂α(fn − f)(x)
∣∣∣+ sup

x ̸∈K

∣∣∣g(x) ∂α(fn − f)(x)
∣∣∣

≤ ε

2
+
ε

2
= ε .

As ε was chosen arbitrarily, we have fn → f in OM(Rd).

Corollary 3.2.14. If aα(·) ∈ L∞(0, T ) for all |α| ≤ m, the corresponding evolution
family (U(t, s))0≤s≤t≤T from (3.8) is strongly continuous on S(Rd).

Proof. Let 0 ≤ s ≤ t ≤ T . Let ((tn, sn))n∈N be a sequence of points in [0,∞) × [0,∞)
subject to 0 ≤ sn ≤ tn ≤ T for all n ∈ N with limit (tn, sn) → (t, s). For n ∈ N, set

fn := e−
∫ tn
sn

a(τ,·) dτ ∈ C∞(Rd).

Let furthermore f := limn→∞ fn denote the pointwise limit. Clearly,

f = e−
∫ t
s a(τ,·) dτ ∈ C∞(Rd).

Let us show that (fn)n∈N fulfills the requirements of Proposition 3.2.13. First, note that
the convergence of (fn)n∈N and its partial derivatives is also uniform on compact subsets of
Rd. Indeed, let K ⊆ Rd be a compact subset. By dominated convergence∫ T

0

(
1[sn,tn](τ)− 1[s,t](τ)

)
a(τ, ξ) dτ → 0
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for n→ ∞ uniformly for all ξ ∈ K as we have∫ T

0
|1[sn,tn](τ)− 1[s,t](τ)| ∥b(τ, ·)∥L∞(K) dτ → 0,

where b(ξ) :=
∑

|β|≤m ∥aβ(·)∥L∞(0,T )ξ
β , ξ ∈ Rd. This shows that

fn(ξ) = e−
∫ tn
sn

a(τ,ξ) dτ → e−
∫ t
s a(τ,ξ) dτ = f(ξ)

for n → ∞ uniformly in K. Repeating this argument for partial derivatives ∂αfn, one
proves that

∂αfn → ∂αf

for all α ∈ Nd
0 uniformly on compact subsets K ⊆ Rd. As a consequence of Lemma 3.2.12(b),

we furthermore have that supn∈N ∥fn∥L∞(Rd) <∞ for all α ∈ Nd
0.

Proposition 3.2.13 now implies that fn → f in OM(Rd). Let g ∈ S(Rd). Then
Fg ∈ S(Rd) and the convergence fn → f in OM(Rd) implies fnFg → f Fg in S(Rd).
Thus,

U(tn, sn)g = F−1(fnFg) → F−1(f Fg) = U(t, s)g

for n→ ∞ in S(Rd) by continuity of F−1.

Corollary 3.2.15. Let p ∈ [1,∞). Then (Up(t, s))0≤s≤t≤T is strongly continuous. Moreover,
(U∞(t, s))0≤s≤t≤T is strongly continuous with respect to the weak∗-topology.

Proof. Since S(Rd) ↪→ Lp(Rd) is dense for p ∈ [1,∞), Corollary 3.2.14 yields that the family
(Up(t, s))0≤s≤t≤T is strongly continuous for p ∈ [1,∞). Indeed, let f ∈ Lp(Rd) and (fk)k∈N
an approximating sequence in S(Rd). By Lemma 3.2.12(b) we have (Up(t, s))0≤s≤t≤T for
all p ∈ [1,∞). In particular, there exists C > 0 such that

∥U(t, s)∥L(Lp(Rd)) ≤ C

Now, given ε > 0, choose k0 ∈ N such that ∥f − fk∥Lp(Rd) ≤ ε
3C for all k ≥ k0, and choose

n0 ∈ N such that ∥(U(tn, sn)− U(t, s))fk∥Lp(Rd) ≤ ε
3 for all n ≥ n0. Then

∥U(tn, sn)f − U(t, s)f∥Lp(Rd) ≤ ∥U(tn, sn)(f − fk)∥Lp(Rd) + ∥(U(t, s)− U(tn, sn))fk∥Lp(Rd)

+ ∥(U(t, s)(f − fk)∥Lp(Rd)

≤ ε .

As ε was chosen arbitrarily, we see that

U(tn, sn) → U(t, s)

for n→ ∞ strongly in Lp(Rd). This gives the first assertion.
For 0 ≤ s ≤ t ≤ T , we have U∞(t, s) = V1(t, s)

′, where (V1(t, s))0≤s≤t≤T is the
L1-realization of the evolution family (V (t, s))0≤s≤t≤T on S(Rd) associated with the non-
autonomous polynomial

b : [0, T ]× Rd → C, (t, ξ) 7→
∑

|α|≤m

(−1)|α| aα(t) (iξ)
α
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which inherits its uniform strong ellipticity from a since m is even. Indeed,

Re bm(t, ξ) =
∑

|α|=m

(−1)mRe aα(t) (iξ)
α =

∑
|α|=m

Re aα(t) (iξ)
α = Re am(t, ξ) .

Thus, the second assertion follows from the first assertion for (V1(t, s)).

Step 3. (Up(t, s))0≤s≤t≤T as an Evolution Family for (Ap(t))t∈[0,T ].

Now, we establish the relation between the evolution family (Up(t, s))0≤s≤t≤T and the
family of differential operators (Ap(t))t∈[0,T ].

Proposition 3.2.16. Let p ∈ (1,∞) and u ∈ D = Wm,p(Rd).

(a) Let 0 ≤ s < T . Then Up(·, s)u ∈ W1,1(s, T ; Lp(Rd)) ∩ L1(s, T ;D) and, for almost all
t ∈ (s, T ), we have ∂t(Up(t, s)u) = −Ap(t)Up(t, s)u.

(b) Let 0 < t ≤ T . Then Up(t, ·)u ∈ W1,1(t, T ; Lp(Rd)) ∩ L1(t, T ;D) and, for almost all
s ∈ (t, T ), we have ∂s(Up(T, s)u) = Up(T, s)Ap(s)u.

Proof. Ad (a). By Young’s inequality and the L1-bound of the kernel from Lemma 3.2.12(b),
we observe Up(·, s)u ∈ L1(s, T ; Lp(Rd)). Note that (s, T ) ∋ t 7→ pt,s is weakly differentiable
and ∂tpt,s = −Ap(t)pt,s for all t ∈ (s, T ). For the weak derivative of Up(·, s)u, we have

∂t(Up(t, s)u) = ∂t(pt,s ∗ u) = (∂tpt,s) ∗ u = (−Ap(t)pt,s) ∗ u
= pt,s ∗ (−Ap(t)u) = −Ap(t)(pt,s ∗ u) = −Ap(t)Up(t, s)u

for almost all t ∈ (s, T ). In particular, the closedness of Ap(t) implies Up(t, s)u ∈ D for
almost all t ∈ (s, T ).

Recall that D = Wp,m(Rd) and the Sobolev norm and the graph norms ∥ · ∥Ap(t) are
equivalent, i.e., there exists C > 0 such that

1

C
∥v∥Wp,m(Rd) ≤ ∥v∥Ap(t) ≤ C ∥v∥Wp,m(Rd)

for all t ∈ [s, T ] and v ∈ D which follows from uniform strong ellipticity of a and the
boundedness of the coefficients aα, see [71, Thm. 8.2.1 and Sec. 8.6]. In particular,
∥Ap(t)u∥Lp(Rd) ≤ C ∥u∥Wp,m(Rd) for all t ∈ [s, T ], and therefore∫ T

s
∥Ap(t)u∥Lp(Rd) dt <∞,

so, by Young’s inequality and the kernel bound from Lemma 3.2.12(b), we observe that
∂tUp(·, s)u ∈ L1(s, T ; Lp(Rd)) as well as Up(·, s)u ∈ L1(s, T ;D).

Ad (b). The proof of statement (b) follows the same lines as the proof of (a).

We are now in position to prove that the evolution family (Up(t, s))0≤s≤t≤T , p ∈ (1,∞),
is indeed the unique evolution family for the family (A(t))t∈[0,T ] of elliptic differential
operators.

Proof of Theorem 3.2.11. Ad (a). By Lemma 3.2.10, (Up(t, s))0≤s≤t≤T is an evolution
family. Lemma 3.2.12(b) yields the exponential bound.

Ad (b). For 1 < p < ∞, Proposition 3.2.16 yields that (Up(t, s))0≤s≤t≤T is an evolution
family for (Ap(t))t∈[0,T ]. The uniqueness follows from Proposition 3.2.4.
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3.3 Observability for Evolution Families on Measurable Sets
in Time

This section aims at presenting a novel extension of the Lebeau–Robbiano strategy in order
to deduce observation estimates for evolution families on Banach spaces and time-dependent
families of observation operators. To this end, we will extend the strategy presented in [111]
to the non-autonomous setting. We want to emphasize that the approach given in this
section is able to handle uncertainty principles that are only defined on a measurable set
E ⊆ [0, T ] which is made possible by a fine-tuned version of the results presented in the
author’s joint work with Clemens Bombach, Christian Seifert, and Martin Tautenhahn.
Our main result is similar to [12, Thm. 13] which in turn is based on [13, Thm. 2.1]. In
contrast to the cited resources, our theorem works for evolution families on general Banach
spaces and not only Hilbert spaces. In particular, projections are not needed, the evolution
families only need to be bounded, not contractive, and the evolution family does not need
to be continuous at all. It is natural to assume these less restrictive conditions as they
mimic the autonomous case as shown in [61]. However, the non-autonomous generalization
also comes with a further degree of freedom that allows for different restrictions to be made
in terms of the uncertainty estimate. We want to emphasize that this proof will not rely
on the validity of an interpolation estimate, contrasting the strategy presented in [156,
Thm. 1.2]; see also the discussion in [61, Rem. 2.2]. More precisely, we will derive the
interpolation estimate as a byproduct of our proof at the end of this section.

3.3.1 Density Point Induced Partitions of Measurable Sets

This section contains the measure theoretical foundations for the telescoping series argument
to be applied in the proof of our main theorem in Section 3.3.2. Here and in the following,
for a measurable set E ⊆ R, let |E| denote its Lebesgue measure.

Definition 3.3.1. Let E ⊆ R a measurable subset. We call ℓ ∈ E a density point of E, if

lim
r→0

|[ℓ− r, ℓ+ r] ∩ E|
2r

= 1 .

Furthermore, we let D(E) denote the set of all density points of E.

The following remark lists some easy observations and classical results regarding density
points.

Remark 3.3.2. (a) Loosely speaking, a density point of E is a point whose small neigh-
borhoods are almost entirely covered by E, see, e.g., [139, p. 106] and [138, Sec. I.2.1].
Sometimes a density point is also called Lebesgue point or point of Lebesgue density
of E.

(b) If D(E) ̸= ∅ then |E| > 0.

(c) For all ℓ ∈ R, we have

1 =

∣∣[ℓ− r, ℓ+ r]
∣∣

2r
=

∣∣[ℓ− r, ℓ+ r] ∩ E
∣∣

2r
+

∣∣[ℓ− r, ℓ+ r] ∩ ∁E
∣∣

2r
.
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In particular, if ℓ ∈ D(E), then

lim
r→0

∣∣[ℓ− r, ℓ+ r] ∩ ∁E
∣∣

2r
= 0.

(d) As a consequence of Lebesgue’s density theorem, almost every point ℓ ∈ E is a density
point of E. In particular, |D(E)| = |E|.

(e) For an interval I = [a, b], a < b, we have D(E) = (a, b).

(f) If E ⊆ F then D(E) ⊆ D(F ).
The following lemma generalizes the observation from Remark 3.3.2(e) to the case of

measurable subsets.

Lemma 3.3.3. Let E ⊆ R measurable and ℓ ∈ E a density point of E. Then

lim
r→0

∣∣[ℓ, ℓ+ r] ∩ E
∣∣

r
= 1 and lim

r→0

∣∣[ℓ− r, ℓ] ∩ E
∣∣

r
= 1 .

In particular, for E ⊆ [a, b], a < b, we always have {a, b} ∩D(E) = ∅.

Proof. Indeed, monotonicity of the Lebesgue integral implies

|[ℓ, ℓ+ r] ∩ E|
r

≤ 1 and
|[ℓ− r, ℓ] ∩ E|

r
≤ 1 for all r > 0. (3.14)

Now assume that there exists r0 > 0 and ε > 0 such that, for all r ≤ r0, we have

|[ℓ, ℓ+ r] ∩ E|
r

< 1− ε.

As ℓ is a density point of E, there also exists r1 ≤ r0 such that |[ℓ−r1, ℓ+r1]∩E| > 2r (1− ε
2).

But then
|[ℓ− r1, ℓ] ∩ E|

r1
=

|[ℓ− r1, ℓ+ r1] ∩ E|
r1

− |[ℓ, ℓ+ r1] ∩ E|
r1

> 2− ε− 1 + ε = 1 ,

which contradicts (3.14). This proves the first identity of Lemma 3.3.3. The second identity
follows with the same argument.

The following proposition is an improved version of [12, Prop. 14] and [154, Lem. 2.3].
See also [105, p. 256–257] for a similar statement. Our extension provides not only the
explicit dependence on the involved parameters but also optimizes the outcome of the proof
strategy presented in [12].

Proposition 3.3.4. Let T > 0 and E ⊆ [0, T ] measurable with positive Lebesgue measure,
and let

0 < ϱ < 1 and 0 < q ≤ ϱ2

4− 2ϱ
<

1

2
. (3.15)

Then, for almost every ℓ ∈ E, there exists a sequence (ℓm)m∈N in (ℓ, T ) ∩ E with limit
limm→∞ ℓm = ℓ and subject to ℓ < ℓm+1 < ℓm < · · · < ℓ1 satisfying

ℓm+1 − ℓm+2 ≥ q (ℓm − ℓm+1) (3.16)

and ∣∣∣[ℓm+1, ℓm+1 +
ℓm − ℓm+1

2

]
∩ E

∣∣∣ ≥ ϱ
ℓm − ℓm+1

2
, m ∈ N . (3.17)
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Figure 3.1: Allowed range of pairs (ϱ, q) from (3.15) such that Proposition 3.3.4 holds.
There is a one-to-one correspondence between values 0 < q < 1

2 and the optimal 0 < ρ < 1
given via the relation q = ϱ2/(4−2ϱ). The specific pair (ϱ, q) = (34 ,

1
12) used in [12, Prop. 15]

has been marked with a cross.

The region described by (3.15) is depicted in Figure 3.1.

Proof of Proposition 3.3.4. Let 0 < q < 1
2 . We want to specify a range of possible values

ϱ ∈ (0, 1) such that the statements of Proposition 3.3.4 are valid. We divide our proof into
three steps.

Step 1. Let us show that it suffices to prove the following statement.

For all density points ℓ ∈
⋃

j∈ND(Ej), where

Ej :=
{
σ ∈ E :

∣∣[σ, σ + r] ∩ E
∣∣ > ϱ r, for all 0 < r <

1

j

}
, j ∈ N,

there exists j0 ∈ N and a decreasing sequence (ℓm)m∈N in (ℓ, T ) ∩ Ej0 with
limm→∞ ℓm = ℓ and subject to the conditions (3.16) and (3.17).

Indeed, the given sequence (ℓm)m∈N lies in (ℓ, T ) ∩ E as Ej0 ⊆ E per constructionem
and, furthermore, fulfills the estimates (3.16) and (3.17) by assumption. Thus the only
thing left to show is that |E| = |

⋃
j∈ND(Ej)|. Note that, per constructionem, we have the

inclusions

Ej ⊆ Ej+1 and D(Ej) ⊆ D(Ej+1), j ∈ N. (3.18)

Furthermore, Lemma 3.3.3 implies that, for every ℓ ∈ D(E), there exists j0 ∈ N such that
ℓ ∈ Ej for all j ≥ j0. Therefore

D(E) ⊆
⋃
j∈N

Ej .
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Lebesgue’s density theorem now tells us that |D(E)| = |E| and |D(Ej)| = |Ej | for all j ∈ N.
Using monotonicity and continuity from below, it follows that

|E| = |D(E)| ≤
∣∣∣ ⋃
j∈N

Ej

∣∣∣ = lim
j→∞

|Ej | = lim
j→∞

|D(Ej)| =
∣∣∣ ⋃
j∈N

D(Ej)
∣∣∣ ≤ |E|. (3.19)

Inequality (3.19) now proves that |E| =
∣∣⋃

j∈ND(Ej)
∣∣.

Step 2. In order to prove the initial statement of Step 1, let us fix j ∈ N and ℓ ∈ D(Ej).
Since ℓ is a density point of Ej , Lemma 3.3.3 yields the existence of r0 such that∣∣[ℓ, ℓ+ r] ∩ E

∣∣ ≥ ∣∣[ℓ, ℓ+ r] ∩ Ej

∣∣ > ϱ r for all 0 < r ≤ r0. (3.20)

It is no loss of generality, to additionally impose the condition 0 < r0 < min{ℓ − T, 1j }.
Let us inductively construct a decreasing sequence (ℓm)m∈N with ℓm ∈ [ℓ, ℓ + r0] ∩ Ej ,
limm→∞ ℓm = ℓ, and ∣∣[ℓ, ℓm] ∩ E

∣∣ > ϱ (ℓm − ℓ) for all m ∈ N. (3.21)

For the induction start, let m = 1 and note that the set [ℓ, ℓ + r0] ∩ Ej has positive
Lebesgue measure as a consequence of (3.20) with r = r0. In particular, we may choose an
arbitrary point ℓ1 ∈ (ℓ, ℓ+ r0] ∩Ej . Then ℓ1 will fulfill (3.21) with m = 1. Indeed, this is a
consequence of (3.20) with r = ℓ1 − ℓ ≤ r0.

For the rest of the proof, let us set

κ := min
{2
ϱ
− 3, 1

}
=


2
ϱ − 3 if 1

2 ≤ ϱ ,

1 if ϱ < 1
2 .

(3.22)

and carry out the induction step as a case distinction depending on the value of ϱ.

Step 3. Here we treat the case 1
2 ≤ ϱ < 1. Let m ≥ 1, and assume we have the finite

sequence ℓ < ℓm < ℓm−1 < · · · < ℓ1 fulfilling (3.21). We want to choose our next sequence
element

ℓm+1 ∈ Sm ∩ Ej ,

where we defined

Sm :=
[
ℓ+

1− ϱ

1 + κ
(ℓm − ℓ) , ℓ+

ϱ+ κ

1 + κ
(ℓm − ℓ)

]
, m ∈ N.

As a consequence of the definition of κ in (3.22), we have

0 <
1− ϱ

1 + κ
<
ϱ+ κ

1 + κ
< 1 (3.23)

implying |Sm| > 0 for all m ∈ N. Indeed, note that −1 < 1 − 2ϱ < 2/ϱ − 3 ≤ κ for all
ϱ ∈ [12 , 1). Rearranging terms gives

1− 2ϱ < κ ⇐⇒ 1− ϱ < κ+ ϱ ⇐⇒ 1− ϱ

1 + κ
<
κ+ ϱ

1 + κ
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which shows the validity of (3.23).
Let us show that |Sm∩Ej | > 0. Indeed, assuming |Sm∩Ej | = 0, we get by decomposing

the interval [ℓ, ℓm] that∣∣[ℓ, ℓm] ∩ Ej

∣∣ = ∣∣[ℓ , ℓ+
1− ϱ

1 + κ
(ℓm − ℓ)

]
∩ Ej

∣∣+ ∣∣[ℓ+ ϱ+ κ

1 + κ
(ℓm − ℓ) , ℓm

]
∩ Ej

∣∣
≤ 1− ϱ

1 + κ
(ℓm − ℓ) +

(
1− ϱ+ κ

1 + κ

)
(ℓm − ℓ)

= 2
1− ϱ

1 + κ
(ℓm − ℓ)

≤ ϱ (ℓm − ℓ),

where the validity of the latest estimate is due to the definition of κ in (3.22). But this
estimate now contradicts our induction hypothesis (3.21). Thus Sm ∩ Ej must have a
non-zero measure. In particular, there exists a point ℓm+1 ∈ Sm ∩ Ej . As a consequence
of (3.23) and the definition of Sm, we have that ℓ < ℓm+1 < ℓm < ℓ1. In particular, the
estimate 0 < ℓm+1 − ℓ < ℓ1 − ℓ ≤ r0 is valid. In virtue of (3.20) with r = ℓ − ℓm+1, this
gives ∣∣[ℓ, ℓm+1] ∩ E

∣∣ ≥ ∣∣[ℓ, ℓm+1] ∩ Ej

∣∣ > ϱ (ℓm+1 − ℓ).

This concludes our inductive definition in the case ϱ ≥ 1
2 . Per constructionem, we have

ℓm+1 ∈ Sm for all m ∈ N. The definition of Sm gives

0 ≤ ℓm+1 − ℓ ≤ ρ+ κ

1 + κ
(ℓm − ℓ) ≤ · · · ≤

(ρ+ κ

1 + κ

)m
(ℓ1 − ℓ) .

As ρ+κ
1+κ < 1, this shows limm→∞ ℓm = ℓ.
Let us show that the sequence (ℓm)m∈N fulfills the conditions (3.16) and (3.17). To this

end, fix m ∈ N and recall that ℓm, ℓm+1 ∈ [ℓ, ℓ+ r0] ∩ Ej per constructionem. This implies
that

0 < r :=
ℓm − ℓm+1

2
<
r0
2

and the definition of Ej now gives∣∣[ℓm+1, ℓm+1 + r] ∩ E
∣∣ > ϱ r

which proves (3.17). Furthermore, ℓm+2 ∈ Sm+1 ∩ Ej implies

1− ϱ

1 + κ
(ℓm+1 − ℓ) ≤ ℓm+2 − ℓ ≤ ϱ+ κ

1 + κ
(ℓm+1 − ℓ) . (3.24)

In particular, the second estimate in (3.24) implies that

−ℓm+2 ≥ −ℓ− ϱ+ κ

1 + κ
(ℓm+1 − ℓ) = −ϱ+ κ

1 + κ
ℓm+1 +

ϱ− 1

1 + κ
ℓ . (3.25)

The first estimate in (3.24) for ℓm+1 ∈ Sm ∩ Ej gives that

ℓm − ℓ ≥
(
1− ϱ

ϱ+ κ
+ 1

)
ℓm − 1 + κ

ϱ+ κ
ℓm+1 =

1 + κ

ϱ+ κ
(ℓm − ℓm+1) . (3.26)
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Using first estimate (3.25), then (3.24), and lastly (3.26), we get that

ℓm+2 − ℓm+1 ≥
(
1− ϱ+ κ

1 + κ

)
ℓm+2 −

1− ϱ

1 + κ
ℓ =

1− ϱ

1 + κ
(ℓm+2 − ℓ)

≥
(
1− ϱ

1 + κ

)2

(ℓm+1 − ℓ)

≥ (1− ϱ)2

(1 + κ) (ϱ+ κ)
(ℓm+1 − ℓm+2).

Using that κ = 2
ρ − 3, we get

ℓm+1 − ℓm+2 ≥
(1− ϱ)2

(2ϱ − 2)(ϱ+ 2
ϱ − 3)

(ℓm − ℓm+1) =
ϱ2

4− 2ϱ
(ℓm − ℓm+1) ≥ q (ℓm − ℓm+1)

for all q ≤ ϱ2

4−2ϱ . This proves our claim in the case ϱ ≥ 1
2 .

Step 4. We now treat the case ϱ < 1
2 . Recall from (3.22) in Step 2 that κ = 1 now.

Furthermore, recall that ℓ1 ∈ (ℓ, ℓ+ r0] ∩ Ej fulfills (3.21) for m = 1, i.e.,∣∣[ℓ, ℓ1] ∩ E∣∣ > ϱ (ℓ1 − ℓ).

Now, let m ≥ 1, and assume we have the finite sequence ℓ < ℓm < ℓm−1 < · · · < ℓ1
fulfilling (3.21). We want to choose

ℓm+1 ∈ Sm ∩ Ej ,

where we defined

Sm :=
[
ℓ+

ϱ

1 + κ
(ℓm − ℓ), ℓ+

1− ϱ+ κ

1 + κ
(ℓm − ℓ)

]
, m ∈ N.

As κ = 1, we have 0 < ϱ
1+κ <

1−ϱ+κ
1+κ < 1 such that |Sm| > 0 for all m ∈ N.

Let us show that |Sm ∩ Ej | > 0. Indeed, similar to the case ϱ ≥ 1
2 in Step 3, we get

under the assumption |Sm ∩ Ej | = 0 that∣∣[ℓ, ℓm] ∩ Ej

∣∣ ≤ 2ϱ

1 + κ
(ℓm − ℓ) = ϱ (ℓm − ℓ),

where the validity of the latest identity is due to κ = 1. But this estimate now contra-
dicts (3.21), i.e., our induction hypothesis. Thus there exists a point ℓm+1 ∈ Sm ∩ Ej . Per
constructionem, we have ℓm+1 < ℓm, and ℓm+1 automatically fulfills the estimate ℓm+1−ℓ <
r0. In virtue of (3.20) with r = ℓ− ℓm+1, this gives∣∣[ℓ, ℓm+1] ∩ E

∣∣ ≥ ∣∣[ℓ, ℓm+1] ∩ Ej

∣∣ > ϱ (ℓm+1 − ℓ).

This concludes our inductive definition in the case ϱ < 1
2 . As in Step 3, one now shows that

ℓm+1 ∈ Sm for all m ∈ N implies limm→∞ ℓm = ℓ.
Let us show that the sequence (ℓm)m∈N fulfills the conditions (3.16) and (3.17). To this

end, fix m ∈ N and recall that ℓm, ℓm+1 ∈ [ℓ, ℓ+ r0] ∩ Ej per constructionem. This implies
that

0 < r :=
ℓm − ℓm+1

2
<
r0
2
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and the definition of Ej now gives∣∣[ℓm+1, ℓm+1 + r] ∩ E
∣∣ ≥ ϱ r

which proves (3.17). Furthermore, ℓm+2 ∈ Sm+1 ∩ Ej implies

ϱ

1 + κ
(ℓm+1 − ℓ) ≤ ℓm+2 − ℓ ≤ 1− ϱ+ κ

1 + κ
(ℓm+1 − ℓ) . (3.27)

Note that this estimate has the same structure as the corresponding estimate (3.24) in
Step 2. Using that 1− ϱ ≥ 1

2 , the calculation in Step 2 shows mutatis mutandis that, for
the choice of q ≤ ϱ2

4−2ϱ ,

ℓm+1 − ℓm+2 ≥
ϱ2

(1 + κ)(1− ϱ+ κ)
(ℓm − ℓm+1) =

ϱ2

4− 2ϱ
(ℓm − ℓm+1)

≥ q (ℓm − ℓm+1) .

This concludes our proof in the case ϱ < 1
2 .

Let us also note the following proposition which is an adapted version of [121, Prop. 2.1].
See also [47, Lem. 2.1.5] for a similar statement.

Proposition 3.3.5. Let E ⊆ [0, T ] be a measurable set with positive Lebesgue measure.
For almost every point ℓ ∈ E and for each 0 < q < 1, there exists a sequence (ℓm)m∈N in
(ℓ, T ) with limit limm→∞ ℓm = ℓ and subject to ℓ < ℓm+1 < ℓm < · · · < ℓ1 satisfying

ℓm+1 − ℓm+2 = q (ℓm − ℓm+1) (3.28)

and

ℓm − ℓm+1 ≤ 3 |E ∩ (ℓm+1, ℓm)| , m ∈ N . (3.29)

Remark 3.3.6. Observe that, due to the fixed step size in (3.28), in comparison with
Proposition 3.3.4, the partitioning sequence (ℓm)m∈N cannot be chosen in E.

Proof of Proposition 3.3.5. As pointed out in Lemma 3.3.3, we have E ⊆ (0, T ). Let us fix
a density point ℓ ∈ E and q ∈ (0, 1). We divide the proof into three steps.

Step 1 . In this step, we define the sequence (ℓm)m∈N and derive identity (3.28). Furthermore,
we will show that the sequence is strictly decreasing.

As ℓ is a density point, Remark 3.3.2(c) gives the existence of r0 depending on q such
that

|∁E ∩ (ℓ− r, ℓ+ r)| < 1− q

2 (1 + q)
|E ∩ (ℓ− r, ℓ+ r)| for all r < r0. (3.30)

Let us set r̃0 := min{r0, T − ℓ} and fix ℓ1 subject to ℓ < ℓ1 < ℓ + r̃0. Now let (ℓm)m∈N
denote the sequence defined via

ℓm+1 := ℓ+ qm(ℓ1 − ℓ), m ∈ N. (3.31)
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As q < 1 by assumption, it is clear from the definition (3.31) that

ℓ < ℓm+1 < ℓm < · · · < ℓ1. (3.32)

The definition (3.31) also shows that

ℓm+1 − ℓm+2 = (qm − qm+1)(ℓ1 − ℓ) = q (qm−1 − qm)(ℓ1 − ℓ) = q (ℓm − ℓm+1)

which verifies (3.28). For further usage, let us also note the following identity which follows
directly from (3.31)

ℓm+1 − (2ℓ− ℓm) = (qm + qm−1)(ℓ1 − ℓ) =
1 + q

1− q
(1− q)qm−1(ℓ1 − ℓ)

=
1 + q

1− q
(qm−1 − qm)(ℓ1 − ℓ) =

1 + q

1− q
(ℓm − ℓm+1) .

(3.33)

Step 2 . In this step, we show that it suffices to prove that

|∁E ∩ (ℓm+1, ℓm)| < 1

2

(
|E ∩ (ℓm+1, ℓm)|+ |(ℓm+1, ℓm)|

)
for all m ∈ N. (3.34)

Indeed, partitioning the interval (ℓm+1, ℓm) and using (3.30) gives

ℓm − ℓm+1 = |(ℓm+1, ℓm)| = |E ∩ (ℓm+1, ℓm)|+ |∁E ∩ (ℓm+1, ℓm)|

≤ 3

2
|E ∩ (ℓm+1, ℓm)|+ 1

2

(
ℓm − ℓm+1

)
.

Rearranging terms yields the desired estimate (3.29).

Step 3 . Let us verify the estimate (3.34). Let m ∈ N, and choose r = ℓm − ℓ. Note
that, in virtue of the choice of ℓ1 in Step 2 and the monotonicity (3.32), we have r < r0.
Furthermore, the monotonicity of the sequence (ℓm)m∈N implies

2ℓ− ℓm < ℓ− (ℓm − ℓ) < ℓ < ℓm+1. (3.35)

Now, using (3.35) to pass to a larger interval and θ = ℓm − ℓ in (3.30), we get

|∁E ∩ (ℓm+1, ℓm)| < |∁E ∩ (2ℓ− ℓm, ℓm)| < 1− q

2 (1 + q)
|E ∩ (2ℓ− ℓm, ℓm)|. (3.36)

Using estimate (3.35) to split up the interval (2ℓ− ℓm, ℓm+1) leads us to the estimate

|E ∩ (2ℓ− ℓm, ℓm)| ≤ |(2ℓ− ℓm, ℓm+1)|+ |E ∩ (ℓm+1, ℓm)|

=
1 + q

1− q
(ℓm − ℓm+1) + |E ∩ (ℓm+1, ℓm)|,

(3.37)

where the latest step is due to the identity (3.33). Plugging (3.37) into (3.36) yields (3.34)
and concludes our proof.
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3.3.2 Non-autonomous Lebeau–Robbiano Strategy

In this section, we prove our main theorem on abstract observability of non-autonomous
observation systems. To this end, we will adapt a well-established method known as the
Lebeau–Robbiano strategy to our non-autonomous observation system (3.1). The name of
this strategy attributes to the seminal works of Lebeau, Robbiano, Zuazua, and Jerison
[78, 94, 95]. The core of this strategy is based on the validity of an abstract uncertainty
principle, a dissipation estimate for a range of so-called spectral parameters, and a relation in
their respective growth or decay rate. More precisely, in the setting of autonomous systems,
i.e. C(t) = C, t ∈ [0, T ], and one-parameter semigroups (S(t))t∈[0,T ], these estimates are of
the form

∀λ > 0 ∀x ∈ X : ∥Pλx∥X ≲ eλ
γ1 ∥CPλx∥Y (aUCP)

and

∀λ > 0 ∀0 ≤ t ≤ T ∀x0 ∈ X : ∥(Id− Pλ)S(t)x0∥X ≲ e−λγ2 tγ3∥x0∥X , (aDE)

see, e.g., [61]. It is a further essential ingredient of the Lebeau–Robbiano strategy to
prove that the growth rate γ1 in (aUCP) is strictly smaller than the decay rate γ2 of the
dissipation estimate (aDE).

For our non-autonomous adaptation of the Lebeau–Robbiano strategy, our observation
system (3.1) will always be subject to the following hypothesis.

Hypothesis 3.3.7. Let X and Y be Banach spaces, T > 0, E ⊆ [0, T ] measurable
with positive Lebesgue measure, and (U(t, s))0≤s≤t≤T an exponentially bounded evolution
family on X. Let C : [0, T ] → L(X,Y ) be essentially bounded on E, and assume that
[0, T ] ∋ t 7→ ∥C(t)U(t, 0)x0∥Y is measurable for all x0 ∈ X. Let (Pλ)λ>0 be a family
in L(X). Assume that there exist d0, d1, γ1 > 0 such that

∀λ > 0 ∀x ∈ X : ∥Pλx∥X ≤ d0 e
d1λγ1

ess inf
{
E ∋ τ 7→ ∥C(τ)Pλx∥Y

}
(essUCP)

and d2 ≥ 1 and d3, γ2, γ3 > 0 with γ2 > γ1 such that

∀λ > 0 ∀0 ≤ s ≤ t ≤ T ∀xs ∈ X : ∥(Id− Pλ)U(t, s)xs∥X ≤ d2 e
−d3λγ2 (t−s)γ3∥xs∥X . (DE)

Remark 3.3.8. (a) In comparison to the autonomous case presented in [61], one notices
several additions that may seem cumbersome. They are, however, strictly necessary
if one evaluates the nature of the final-state observability estimate. Note that the
final-state observability estimate involves integration over the set E. It is therefore
natural to assume that the involved ingredients of the Lebeau–Robbiano strategy
hold essentially uniformly on E as well.

(b) Due to the strict inequality γ2 > γ1 of decay and growth rate, the dissipation effect
will asymptotically dominate the uncertainty effect introduced by the observation
operators C(t) for λ→ ∞. This will be the crucial ingredient in the proof of our main
theorem as this will allow us to balance ∥U(t, 0)x0∥X and ∥C(t)U(t, 0)x0∥Y making
available a telescoping series argument also known as Miller’s trick [111].
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(c) Note that the evolution family (U(t, s))0≤s≤t≤T in Hypothesis 3.3.7 does not need to be
explicitly related to a non-autonomous operator family. Indeed, as Theorem 3.3.9 will
show, no differentiability properties of (U(t, s)) are assumed. However, in applications,
one usually starts off with a non-autonomous Cauchy problem (NACP). This problem
usually comes with a notion of well-posedness which in turn gives rise to an associated
evolution family as the solution operator to the problem. While the existence of
such an evolution family may be a delicate matter, Hypothesis 3.3.7 does not pose
restrictions in terms of any type of continuity, contractivity, or differentiability on the
involved evolution family. In particular, the hypothesis and the related Theorem 3.3.9
do not “see” any operators that may be associated with (U(t, s)). Only the algebraic
property (a) of Definition 3.2.2 is required.

(d) A further generalization of the classical uncertainty estimate for the case of constant
observation operators C is given in [18]. There, the authors used the following
uncertainty principle that is uniform for all t ∈ [0, T ]

∀λ > 0 ∀x ∈ X : ∥Pλx∥X ≤ d0 e
d1λγ1

inf
{
[0, T ] ∋ τ 7→ ∥C(τ)Pλx∥Y

}
(uniUCP)

Note, however, that this generalization is highly sensitive with regards to the properties
of the family of observation operators (C(t))t∈[0,T ]. More precisely, estimate (uniUCP)
involves the entire set [0, T ] despite the final-state observability estimate only involving
integration over E. Furthermore, as the integral is not affected by deviations of C(t)
on sets of Lebesgue measure zero, one would expect the input to exhibit the same
behavior. However, if C(t) = 0 for a single point t ∈ [0, T ] \E, then (uniUCP) would
imply that Pλ = 0 for all λ > 0 and the proof of [18, Thm. 3.3] would no longer be
accessible.

Theorem 3.3.9. Assume Hypothesis 3.3.7, let r ∈ [1,∞], and let E ⊆ [0, T ] be measurable
with positive Lebesgue measure. Then there exists Cobs ≥ 0 such that, for all x0 ∈ X, we
have the final-state observability estimate

∥U(T, 0)x0∥X ≤


Cobs

(∫
E ∥C(t)U(t, 0)x0∥rY dt

) 1
r
, r ∈ [1,∞),

Cobs ess supt∈E ∥C(t)U(t, 0)x0∥Y , r = ∞.

(3.38)

The main idea of the proof of Theorem 3.3.9 will be to construct a telescoping series
argument based on the sequence (ℓm)m∈N from Proposition 3.3.5. The telescoping series
argument has been the leitmotif in previous proofs of observability estimates building
on methods developed by Miller [111], which were later used in the works by Phung and
Wang [121, Thm. 1.1], Apraiz, Escauriaza, Wang, and Zhang [6, Thm. 7], Wang and Zhang
[156, Thm. 1.2], and Beauchard, Egidi, and Pravda-Starov [12]. However, [6, 156] build
their proofs on an interpolation result of the operators U(t, s) and C(t)U(t, s) which is not
needed as the following streamlined proof shows. See Section 3.3.3 on further information
regarding interpolation estimates.

Proof of Theorem 3.3.9. Let us fix x0 ∈ X. We divide the proof into four steps.
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Step 1 . Let us show that it suffices to prove the final-state observability estimate (3.38) for
the case r = 1. Indeed, assuming that (3.38) holds for r = 1, let r ∈ (1,∞]. Then, for all
x0 ∈ X, we estimate by Hölder’s inequality

∫
E
∥C(t)U(t, 0)x0∥Y dt ≤


|E|1−

1
r

(∫
E ∥C(t)U(t, 0)x0∥rY dt

) 1
r for r <∞,

|E| ess supt∈E ∥C(t)U(t, 0)x0∥Y for r = ∞.

(3.39)

Consequently, the theorem’s statement follows by multiplying the observability constant Cobs

for r = 1 with the corresponding power of |E|.

Step 2 . Before we continue with the proof, let us introduce shorthand notation for recurring
expressions. For all 0 ≤ t ≤ T and λ > 0, we define for the state function

F (t) := ∥U(t, 0)x0∥X , Fλ(t) := ∥PλU(t, 0)x0∥X ,

F⊥
λ (t) := ∥(Id− Pλ)U(t, 0)x0∥X

(3.40)

and analogously for the observations

G(t) := ∥C(t)U(t, 0)x0∥Y , Gλ(t) := ∥C(t)PλU(t, 0)x0∥Y ,
G⊥

λ (t) := ∥C(t)(Id− Pλ)U(t, 0)x0∥Y .
(3.41)

With this notation, we need to prove that there exists Cobs ≥ 0 such that

F (T ) ≤ Cobs

∫
E
G(t) dt . (3.42)

Step 3 . In this step, we show that there exist constants c̃1, c̃2 such that, for all 0 ≤ s < t ≤ T ,
t ∈ E, and all ε ∈ (0, 1), we have the estimate

F (t) ≤ c̃1 exp

(
c̃2

(
1

t− s

) γ1γ3
γ2−γ1

)(
ε−1G(t) + εF (s)

)
. (3.43)

By transition to a subset Ẽ ⊆ E with |Ẽ| = |E|, it is no loss of generality to assume
that (essUCP) holds with inf instead of ess inf and that (C(t))t∈E is uniformly bounded.
Note that the uncertainty estimate (essUCP) and uniform boundedness of (C(t))t∈E
in L(X,Y ) give

Fλ(t) ≤ d0 e
d1λγ1

Gλ(t) and G⊥
λ (t) ≤ ∥C(·)∥E,∞ F⊥

λ (t) for all t ∈ E. (3.44)

where ∥C(·)∥E,∞ := supt∈E ∥C(t)∥L(X,Y ) <∞. By the algebraic property (a) of evolution
families in Definition 3.2.2 and the dissipation estimate (DE), we obtain for all 0 ≤ s ≤ t
the estimate

F⊥
λ (t) =

∥∥(Id− Pλ)U(t, s)U(s, 0)x0
∥∥
X

≤ d2 e
−d3λγ2 (t−s)γ3F (s). (3.45)

Then we estimate Gλ(t), t ∈ E, using the triangle inequality and the second estimate
in (3.44) via

Gλ(t) ≤ G(t) +G⊥
λ (t) ≤ G(t) + ∥C(·)∥E,∞ F⊥

λ (t). (3.46)
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Using the triangle inequality and concatenating the estimates (3.44), (3.45), and (3.46), we
obtain for all 0 ≤ s < t ≤ T , t ∈ E, and all λ > 0

F (t) ≤ Fλ(t) + F⊥
λ (t) ≤ d0 e

d1λγ1
Gλ(t) + d2 e

−d3λγ2 (t−s)γ3F (s)

≤ d0 e
d1λγ1

G(t) +
(
d0∥C(·)∥E,∞ + 1

)
d2 e

d1λγ1−d3λγ2 (t−s)γ3F (s)

≤ c̃1 e
f(λ)
(
e

1
2
d3λγ2 (t−s)γ3G(t) + e−

1
2
d3λγ2 (t−s)γ3F (s)

)
, (3.47)

where we defined

c̃1 := max
{
d0, (d0∥C(·)∥E,∞ + 1) d2

}
≥ 1 and f(λ) := d1λ

γ1 − 1

2
d3λ

γ2(t− s)γ3 .

Let us optimize f(λ) with respect to λ before we continue estimating (3.47). Recall
that, by assumption, we have 0 ≤ s < t and γ2 > γ1. A straightforward calculation reveals
that f is maximal for the choice

λ∗ :=

(
2 d1γ1
d3γ2

) 1
γ2−γ1

(
1

t− s

) γ3
γ2−γ1

> 0 .

Consequently, f may be estimated via

f(λ) ≤ f(λ∗) = c̃2

(
1

t− s

) γ1γ3
γ2−γ1

, (3.48)

where we introduced the constant

c̃2 :=

(
2 d1γ1
d3γ2

) γ1
γ2−γ1

d1

(
1− γ1

γ2

)
.

Using estimate (3.48), we can further estimate F (t), t ∈ E, in (3.47) via

F (t) ≤ c̃1 exp

(
c̃2

(
1

t− s

) γ1γ3
γ2−γ1

)(
e

1
2
d3λγ2 (t−s)γ3G(t) + e−

1
2
d3λγ2 (t−s)γ3F (s)

)
. (3.49)

Let us concentrate on the behavior of the linear factors in front of G(t) and F (s). Note
that the left-hand side of inequality (3.49) and the constants c̃1, c̃2 are independent of λ.
Now observe that, for all ε ∈ (0, 1), there exists λ∗ > 0 such that

ε = e−
1
2
d3λ

γ2
∗ (t−s)

γ3
.

As the prefactor of G(t) in (3.49) is precisely the reciprocal ε−1, this shows the validity
of (3.43) for all ε ∈ (0, 1).

Step 4 . In this step, we show the final-state observability estimate employing a telescoping
series argument. Since (U(t, s))0≤s≤t≤T is an exponentially bounded evolution family, there
exist M ≥ 1 and ω ∈ R such that

F (τ) = ∥U(τ, t)U(t, 0)x0∥X ≤Meω(τ−t)F (t) ≤Meω+TF (t) for all 0 ≤ t ≤ τ ≤ T,
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where ω+ := max{ω, 0}. We apply the estimate (3.43) from Step 3 and obtain for all
0 ≤ s < t < τ ≤ T , t ∈ E, and ε ∈ (0, 1)

F (τ) ≤M c̃1 exp

(
c̃2

(
1

t− s

) γ1γ3
γ2−γ1

+ ω+T

)(
ε−1G(t) + εF (s)

)
. (3.50)

By Proposition 3.3.5 for a fixed density point ℓ ∈ E and q :=
(
3
4

) γ2−γ1
γ1γ3 < 1, there exists a

strictly decreasing sequence (ℓm)m∈N in [0, T ] with ℓm → ℓ such that, for all m ∈ N, we
have the relations

δm+1 = q δm and
∣∣∣(ℓm+1, ℓm) ∩ E

∣∣∣ ≥ δm
3
, (3.51)

where δm := ℓm − ℓm+1, m ∈ N. Let us fix m ∈ N and define

ξ := ℓm+1 +
δm
6
, s = ℓm+1 and τ = ℓm.

Then, for all t ∈ (ξ, ℓm), we have t − s ≥ ξ − ℓm ≥ δm/6. Inserting this into (3.50), we
obtain for all t ∈ (ξ, ℓm) ∩ E and all ε ∈ (0, 1) that

F (ℓm) ≤ c̃3 exp

 c̃4

δ
γ1γ3
γ2−γ1
m

(ε−1G(t) + εF (ℓm+1)
)
, (3.52)

where

c̃3 :=M c̃1 exp(ω+T ) ≥ 1 and c̃4 := c̃2 6
γ1γ3
γ2−γ1 > 0.

Now choose

ε := (c̃3)
−1 q exp

− 2 c̃4

δ
γ1γ3
γ2−γ1
m

 < 1.

For this choice of ε, estimate (3.52) reads

F (ℓm) ≤ (c̃3)
2q−1 exp

 3 c̃4

δ
γ1γ3
γ2−γ1
m

G(t) + q exp

− c̃4

δ
γ1γ3
γ2−γ1
m

F (ℓm+1).

Rearranging terms yields

exp

− 3 c̃4

δ
γ1γ3
γ2−γ1
m

F (ℓm)− q exp

− 4 c̃4

δ
γ1γ3
γ2−γ1
m

F (ℓm+1) ≤ (c̃3)
2 q−1G(t). (3.53)

Furthermore, by (3.51), we have the following estimate for integral means on (ξ, ℓm) ∩ E

1

|(ξ, ℓm) ∩ E|

∫ ℓm

ξ
1E(t)G(t) dt ≤

6

δm

∫ ℓm

ℓm+1

1E(t)G(t) dt. (3.54)
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Taking the integral mean in (3.53) with respect to t on (ξ, ℓm)∩E and using (3.54), we
obtain after multiplying both sides of the resulting inequality with δm

δm exp

− 3 c̃4

δ
γ1γ3
γ2−γ1
m

F (ℓm)− δm+1 exp

− 3 c̃4

δ
γ1γ3
γ2−γ1
m+1

F (ℓm+1)

≤ 6 (c̃3)
2 q−1

∫ ℓm

ℓm+1

1E(t)G(t) dt.

Note that the constants c̃3 and c̃4 do not depend on m. Summing over all m ∈ N in the
inequality above and noting that δm → 0, ℓm → ℓ, and supm∈N F (ℓm) <∞, a telescoping
sum argument yields

δ1 exp

− 3 c̃4

δ
γ1γ3
γ2−γ1
1

F (ℓ1) ≤ 6 (c̃3)
2 q−1

∫ ℓ1

ℓ
1E(t)G(t) dt.

Now we may deduce the estimate

F (ℓ1) ≤ 6 (c̃3)
2 q−1 δ−1

1 exp

 3 c̃4

δ
γ1γ3
γ2−γ1
1

∫
E
G(t) dt.

Finally, exponential boundedness of the evolution family gives F (T ) ≤ Meω(T−ℓ1)F (ℓ1).
This shows that there exists Cobs ≥ 0 such that the final-state observability estimate (3.42)
holds.

Remark 3.3.10. (a) As Step 1 of the proof of Theorem 3.4.4 shows, it is possible to choose
an observability constant Cobs that is uniform in r ∈ [1,∞]. Indeed, let C(r)

obs denote
the observability constant for fixed r as shown in the proof. From (3.39), we see
that we may estimate C(r)

obs ≤ (1 + |E|)C(1)
obs for all r ∈ [1,∞] in order to deduce a

observability constant uniform in r.

(b) If E = [0, T ], we cannot rely on Proposition 3.3.5 for the sequence (ℓm)m∈N. Instead,
we directly define

ℓ := 0, ℓm+1 := qmT for m ∈ N0 and q :=

(
3

4

) γ2−γ1
γ1γ3

such that ℓ1 = T and an improved version of relation (3.51)

δm+1 = q δm and |(ℓm+1, ℓm) ∩ E| = δm

is still valid. Setting ξ = ℓm+1 + δm/2, one can reproduce the proof of Theorem 3.3.9
mutatis mutandis and derive the following estimate on the constant Cobs in Theo-
rem 3.3.9 which does not depend on a density point ℓ or the sequence (ℓm).

Cobs ≤
C1

T 1/r
exp

(
C2

T
γ1γ3
γ2−γ1

+ C3T

)
,
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where we employ the definition T 1/∞ := 1 and the constants

C1 :=
2M3(c̃1)

2

q(1− q)
, C2 := 3 c̃2

(
2

1− q

) γ1γ3
γ2−γ1

, C3 := 3ω+

with

c̃1 := max
{
d0, (1 + d0∥C(·)∥∞)d2

}
and c̃2 :=

(
2d1γ1
d3γ2

) γ1
γ2−γ1

d1

(
1− γ1

γ2

)
.

Thus, Theorem 3.3.9 yields a non-autonomous version of the results in [61, Thm. 2.1]
and [19, Thm. A.1].

3.3.3 Interpolation Estimate

Step 3 of the proof of Theorem 3.3.9 is also the main ingredient to proving the following
interpolation estimate that is inspired by [156, Thm. 1.2] which in turn attributes the main
idea of the proof to [6, Thm. 6]. In the cited sources, a similar interpolation estimate is proven
in the case of Hilbert spaces and one-parameter semigroups. Here, we present a version
that is tailored to its use in the setting of abstract Banach spaces and evolution families,
keeping track of the dependency of the constants on the parameters of Hypothesis 3.3.7.
This interpolation estimate can be interpreted as a multiplicative version of the ε-based
additive balancing of F and G in estimate (3.43).

Proposition 3.3.11. Assume Hypothesis 3.3.7. Then there exist C̃1, C̃2, C̃3 ≥ 0 such that,
for all x0 ∈ X and 0 ≤ s < t ≤ T , we have that

∥U(t, 0)x0∥X ≤ C̃1 exp

(
C̃2

(t− s)
γ1γ3
γ2−γ1

+ C̃3(t− s)

)
∥C(t)U(t, 0)x0∥

1
2
Y ∥U(s, 0)x0∥

1
2
X .

with constants C̃1, C̃2, C̃3 ≥ 0 depending only on the parameters of Hypothesis 3.3.7.

Remark 3.3.12. (a) Proposition 3.3.11 allows for more freedom in the interpolation. In
fact, as shown in [18, Thm. 3.5], one may introduce an interpolation parameter θ ∈
(0, 1) to balance between both factors ∥C(t)U(t, 0)x0∥Y and ∥U(s, 0)x0∥X . However,
this comes with the consequence of an additional θ-dependency in the constants C̃1

and C̃2.

(b) For autonomous systems on Hilbert spaces with self-adjoint generator A with purely
discrete spectrum, the interpolation estimate in Proposition 3.3.11 is equivalent to
the uncertainty principle (essUCP) with spectral projectors Pλ, see [122, Thm. 2.1].
Note that in this case, the dissipation estimate (DE) is a trivial fact for orthogonal
projections.

We start by recalling a standard interpolation argument formulated in the following
lemma. See also [128, p. 110] or [92, Lem. 5.2] for similar statements.

Lemma 3.3.13. Let F1, F2, G ≥ 0 and θ ∈ (0, 1). If there exist constants C,D ≥ 0 such
that

F2 ≤ DF1 (3.55)
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and

F2 ≤ C
(
ε−

θ
1−θG+ εF1

)
for all ε ∈ (0, 1] , (3.56)

then

F2 ≤ max

{
C

θθ(1− θ)1−θ
, D
( θ

1− θ

)1−θ
}
F θ
1G

1−θ.

In particular, if there exist constants C,D ≥ 0 such that

F2 ≤ C
(
ε−1G+ εF1

)
for all ε ∈ (0, 1] (3.57)

and (3.55) hold, then

F2 ≤ max {2C, D}F 1/2
1 G1/2.

Proof. If F1 = 0 or G = 0, the statement is obvious. Indeed, if F1 = 0, inequality (3.55)
yields F2 = 0. If G = 0, inequality (3.56) yields F2 ≤ CεF1 for all ε ∈ (0, 1]. Letting ε→ 0
gives the claim also in this case.

For the rest of the proof, let us assume F1, G > 0. Interpreting the right-hand side
of (3.56) as a function of ε ∈ R+ and optimizing with respect to ε, we see that this function
is minimal for

ε0 :=

(
θG

(1− θ)F1

)1−θ

> 0 .

If ε0 > 1, by inequality in (3.55) and the definition of ε0, we observe

F2 ≤ DF θ
1F

1−θ
1 = DF θ

1

(
θG

(1− θ)ε
1/(1−θ)
0

)1−θ

< D

(
θ

1− θ

)1−θ

F θ
1G

1−θ.

If ε0 ≤ 1, inequality (3.56) holds and gives

F2 ≤ C

(
ε
− θ

1−θ

0 G+ ε0F1

)
=

C

θθ(1− θ)1−θ
F θ
1G

1−θ.

Proof of Proposition 3.3.11. Let λ > 0, x0 ∈ X, and 0 ≤ s < t ≤ T . Recall the notation
introduced in (3.40) and (3.41). We want to verify the assumptions of Lemma 3.3.13 for

F1 = F (t), F2 = F (s), and G = G(t).

From Step 3 of the proof of Theorem 3.3.9, recall the additive ε-balancing (3.43)

F (t) ≤ c̃1 exp

(
c̃2

(
1

t− s

) γ1γ3
γ2−γ1

)(
ε−1G(t) + εF (s)

)
for all ε ∈ (0, 1], (3.58)

with

c̃1 = max
{
d0, (1 + d0∥C(·)∥∞)d2

}
and c̃2 =

(
2d1γ1
d3γ2

) γ1
γ2−γ1

d1

(
1− γ1

γ2

)
.
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This establishes assumption (3.57) from Lemma 3.3.13 with

C = c̃1 exp

(
c̃2

(
1

t− s

) γ1γ3
γ2−γ1

)
.

Let ε ∈ (0, 1). Note that assumption (3.55) is valid for D =Meω+(t−s) as a consequence of
the additivity and exponential boundedness of (U(t, s))

F (t) = ∥U(t, s)U(s, 0)x0∥X ≤Meω+(t−s)F (s) (3.59)

where ω+ := max{ω, 0}.
Consequently, Lemma 3.3.13 is applicable and yields the estimate

F (t) ≤ max{2C,D}G(t)
1
2F (s)

1
2 . (3.60)

Note that

max{2C,D} ≤ 2Mc̃1 exp

(
c̃2

(
1

t− s

) γ1γ3
γ2−γ1

+ ω+(t− s)

)
.

Setting C̃1 := 2Mc̃1, C̃2 := c̃2, and C̃3 := ω+, the statement of the proposition follows.

3.4 Observability for Non-autonomous Elliptic Operators

In this section, we show an observability estimate for the evolution family (Up(s, t))0≤s≤t≤T

from Subsection 3.2.2.

3.4.1 Geometric Conditions and Uncertainty Estimates

Loosely speaking, a thick subset is a set such that the portion of it in a hypercube is
bounded away from zero no matter where the hypercube is located. In the following, given
a measurable set Ω ⊆ Rd, let |Ω| denote its Lebesgue measure.

Definition 3.4.1 (Thick Set). Let L ∈ (0,∞)d and ϱ > 0.

(a) A set Ω ⊆ Rd is called (L, ϱ)-thick if Ω is measurable and, for all x ∈ Rd, we have∣∣∣∣∣Ω ∩

(
d

×
i=1

(0, Li) + x

)∣∣∣∣∣ ≥ ϱ

d∏
i=1

Li.

(b) Let T > 0. A family (Ω(t))t∈[0,T ] of sets Ω(t) ⊆ Rd is called mean (L, ϱ)-thick on [0, T ]

if Ω(t) is measurable for all t ∈ [0, T ], the mapping [0, T ]× Rd ∋ (t, x) 7→ 1Ω(t)(x) is
measurable, and, for all x ∈ Rd, we have

1

T

∫ T

0

∣∣∣∣∣Ω(t) ∩
(

d

×
i=1

(0, Li) + x

)∣∣∣∣∣ dt ≥ ϱ

d∏
i=1

Li.
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(c) Let T > 0. A family (Ω(t))t∈[0,T ] of sets Ω(t) ⊆ Rd is called uniformly (L, ϱ)-thick on
[0, T ] if Ω(t) is (L, ϱ)-thick for all t ∈ [0, T ] and the mapping [0, T ]× Rd ∋ (t, x) 7→
1Ω(t)(x) is measurable.

We call Ω ⊆ Rd thick if there exist L ∈ (0,∞)d and ϱ > 0 such that Ω is (L, ϱ)-thick.
Likewise, (Ω(t))t∈[0,T ] is called mean/uniformly thick if it is mean/uniformly (L, ϱ)-thick
on [0, T ] for some L ∈ (0,∞)d and ϱ > 0.

Note that equivalent notions of (mean/uniform) thickness are obtained by replacing the
hypercubes×d

i=1(0, Li) with balls B(0, R) with some radius R > 0.

Example 3.4.2. (a) Let Ω = R. Then Ω is (L, ϱ) thick for all L, ϱ > 0.

(b) Let Ω =
⋃

k∈Z[2k, 2k + 1]. Then Ω is (L, ϱ) thick for all L > 1 and ϱ ≤ L−1
L .

(c) Let Ω = [0,∞). Then Ω is not thick.

(d) Let Ω1 := [0,∞), Ω2 := (−∞, 0], and

Ω(t) :=

{
Ω1 if t ∈ [0, 1) ,

Ω2 if t ∈ [1, 2] .

Then (Ω(t))t∈[0,2] is mean (L, 1/2)-thick for all L > 0 but not uniformly thick.

3.4.2 Sufficient and Necessary Conditions for Observability

Lemma 3.4.3. Let a be a uniformly strongly elliptic polynomial of degree m ≥ 2 with
coefficients aα ∈ L∞(0, T ) for |α| ≤ m and (U(t, s))0≤s≤t≤T be defined as in (3.8). For
each t ∈ [0, T ], let Ω(t) ⊆ Rd be measurable, and assume that [0, T ]×Rd ∋ (t, x) 7→ 1Ω(t)(x)

is measurable. Let p ∈ [1,∞] and u0 ∈ Lp(Rd). Then [0, T ] ∋ t 7→ ∥1Ω(t)Up(t, 0)u0∥Lp(Rd) is
measurable.

Proof. By Corollary 3.2.15, (Up(t, s))0≤s≤t≤T is strongly continuous for p ∈ [1,∞) and
strongly continuous w.r.t. the weak∗-topology for p = ∞. For p ∈ [1,∞), this implies that
[0, T ] ∋ t 7→ ∥1Ω(t)Up(t, 0)u0∥Lp(Rd) is measurable. For p = ∞, the measurability follows
from the variational description of the L∞-norm via the canonical pairing with L1-elements
and the strong continuity of (U∞(t, s))0≤s≤t≤T w.r.t. the topology σ(L∞(Rd),L1(Rd)).
Indeed, one can show that the mapping

[0, T ] ∋ t 7→ ∥1Ω(t)U∞(t, 0)u0∥L∞(Rd)

is lower-semicontinuous.

Our first result shows that uniform thickness implies an observability estimate.

Theorem 3.4.4. Let a be a uniformly strongly elliptic polynomial of degree m ≥ 2 with
coefficients aα ∈ L∞(0, T ) for |α| ≤ m. Let (U(t, s))0≤s≤t≤T as in (3.8). Let (Ω(t))t∈[0,T ]

be uniformly thick on [0, T ]. Let E ⊆ [0, T ] be measurable with positive Lebesgue measure
and r ∈ [1,∞]. Then there exists Cobs ≥ 0 such that, for all p ∈ [1,∞] and u0 ∈ Lp(Rd),
we have

∥Up(T, 0)u0∥Lp(Rd) ≤ Cobs


(∫

E ∥(Up(t, 0)u0)|Ω(t)∥rLp(Ω(t)) dt
)1/r

, r ∈ [1,∞),

ess supt∈E ∥(Up(t, 0)u0)|Ω(t)∥Lp(Ω(t)), r = ∞.
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Remark 3.4.5. In the situation of Theorem 3.4.4, if E = [0, T ], we obtain

Cobs ≤
C1

T 1/r
exp
( C2

T
γ1γ3
γ2−γ1

+ C3T
)

for some C1, C2, C3 ≥ 0, γ1 = γ3 = 1, and γ2 = m; cf. Remark 3.3.10.

Before we come to the proof of Theorem 3.4.4, let us note the following results that
will be needed to derive the uncertainty principle and the dissipativity estimate for the
application of Theorem 3.3.9.

We start by introducing a family of smooth frequency cutoffs. Let η ∈ C∞
c ([0,∞)) with

0 ≤ η ≤ 1 such that η(r) = 1 for r ∈ [0, 1/2] and η(r) = 0 for r ≥ 1. For λ > 0, we define

χλ : Rd → R, χλ(ξ) := η
( |ξ|
λ

)
.

Since χλ ∈ S(Rd) for all λ > 0, we have F−1χλ ∈ S(Rd). For λ > 0, we define

Pλ : L
p(Rd) → Lp(Rd), Pλf := (F−1χλ) ∗ f.

Then, for all λ > 0, the operator Pλ is a bounded linear operator, the family (Pλ)λ>0 is
uniformly bounded by ∥F−1χ1∥L1(Rd). Furthermore, for all f ∈ S(Rd), we have Pλf ∈
S(Rd), FPλf = χλFf ∈ S(Rd), and suppFPλf ⊆ {y ∈ Rd : |y| ≤ λ} ⊆ [−λ, λ]d, see [61,
Thm. 3.3] for details.

The next result gives a dissipativity estimate for evolution families associated with the
principal part of a polynomial.

Proposition 3.4.6 ([19, Prop. 3.2]). Let m ≥ 2 and

V (t, s)u := F−1e−(t−s)|·|mFu, u ∈ S ′(Rd), 0 ≤ s ≤ t ≤ T.

Then there exists Km,d ≥ 0 such that, for all p ∈ [1,∞], λ > 0, and u ∈ Lp(Rd),

∥(Id−Pλ)V (t, s)u∥Lp(Rd) ≤ Km,d e
−2−m−3(t−s)λm∥u∥Lp(Rd) .

For the uncertainty principle, we will use the seminal Logvinenko–Sereda theorem in its
quantitative version due to Kovrijkine, cf. [85, Thm. 3] and [106].

Theorem 3.4.7 (Logvinenko, Sereda, Kovrijkine). There exists K ≥ 1 such that, for all
p ∈ [1,∞], λ > 0, ϱ ∈ (0, 1], L ∈ (0,∞)d, (L, ϱ)-thick sets Ω ⊆ Rd, and u ∈ Lp(Rd) subject
to suppFu ⊆ [−λ, λ]d, we have

∥u∥Lp(Rd) ≤ d0 e
d1 λ ∥u∥Lp(Ω)

with the constants

d0 = e
Kd ln

(
Kd

ρ

)
and d1 = 2|L|1 ln

(Kd

ρ

)
.

We are now in the position to prove Theorem 3.4.4.
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Proof of Theorem 3.4.4. This proof consists of two parts. In the first part, we will show
a dissipativity estimate, and, in the second part, we will derive an abstract uncertainty
estimate. As both estimates do not depend on the value of p, it follows from Theorem 3.3.9
that also the observability constant Cobs can be chosen independently of p.

Since a is uniformly strongly elliptic, there exists c > 0 such that, for all t ∈ [0, T ]
and all ξ ∈ Rd, we have Re am(t, ξ) ≥ c |ξ|m. We define the uniformly strongly elliptic
polynomials b, b̃ : [0, T ]× Rd → C by

b(t, ξ) := |ξ|m and b̃(t, ξ) :=
c

2
|ξ|m

and set ã := a− b̃. Note that ã is also uniformly strongly elliptic with ellipticity constant c
2 .

Let (V (t, s))0≤s≤t≤T , (Ṽ (t, s))0≤s≤t≤T , and (Ũ(t, s))0≤s≤t≤T be the evolution families
as in (3.8) for the polynomials b, b̃, and ã, respectively. Note that Ṽ (t, s) = V ( c2 t,

c
2 s) for

all 0 ≤ s ≤ t ≤ T . Indeed, we have, according to the definition (3.8),

V (
c

2
t,
c

2
s ) = F−1e−( c

2
t− c

2
s)|ξ|mF = F−1e−(t−s) c

2
|ξ|mF = Ṽ (t, s) .

Let p ∈ [1,∞]. For f ∈ Lp(Rd) and 0 ≤ s ≤ t ≤ T , we have by definition

Up(t, s)f = F−1
(
e−

∫ t
s (b̃(τ,·)+ã(τ,·)) dτFf

)
= F−1

(
e−

∫ t
s b̃(τ,·) dτFF−1

(
e−

∫ t
s ã(τ,·) dτFf

))
= Ṽp(t, s)Ũp(t, s)f.

By Proposition 3.4.6, we infer that there exists Km,d ≥ 0, depending only on m and d, such
that, for all λ > 0, all f ∈ Lp(Rd), and all 0 ≤ s ≤ t ≤ T , we have

∥(Id−Pλ)Vp(t, s)f∥Lp(Rd) ≤ Km,d e
−2−m−3(t−s)λm∥f∥Lp(Rd).

Thus, we also conclude

∥(Id−Pλ)Ṽp(t, s)f∥Lp(Rd) ≤ Km,d e
−2−m−4c(t−s)λm∥f∥Lp(Rd).

Moreover, by Theorem 3.2.11, there exist M̃ ≥ 1 and ω̃ ∈ R depending on ã and therefore
on a such that ∥Ũp(t, s)∥L(Lp(Rd)) ≤ M̃eω̃(t−s) for all 0 ≤ s ≤ t ≤ T . Note that we can
choose ω̃ = ω, where ω is an exponential growth rate for (Up(t, s))0≤s≤t≤T . Indeed, this
follows by choosing the same c0 = c

4 in Lemma 3.2.12(a) and observing that the constant c3
in the proof of Lemma 3.2.12(b) only depends on a uniform upper bound on the coefficients’
modulus. Thus, for λ > λ∗ := (2m+4max{ω, 0}/c)1/m, f ∈ Lp(Rd), and 0 ≤ s ≤ t ≤ T , we
arrive at

∥(Id− Pλ)Up(t, s)f∥Lp(Rd) = ∥(Id− Pλ)Ṽp(t, s) Ũp(t, s)f∥Lp(Rd)

≤ Km,d e
−2−m−4 c (t−s)λm

M̃ eω(t−s)∥f∥Lp(Rd)

≤ Km,d M̃ e−(t−s) 2−m−3 c λm∥f∥Lp(Rd).

(3.61)

Let L ∈ (0,∞)d and ϱ > 0 such that (Ω(t))t∈[0,T ] is uniformly (L, ϱ)-thick, f ∈ Lp(Rd),
and λ > 0. Since suppFPλf ⊆ [−λ, λ]d, the Logvinenko–Sereda theorem, Theorem 3.4.7,
implies

∥Pλf∥Lp(Rd) ≤ e−Kd ln(ϱ/Kd) e−2K|L|1 ln(ϱ/Kd)λ ∥(Pλf)|Ω(t)∥Lp(Ω(t)) (3.62)
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for all t ∈ [0, T ], where K ≥ 0 is a universal constant.
By (3.61), (3.62), Theorem 3.2.11(a), and Lemma 3.4.3, we conclude that Hypothesis

3.3.7 is satisfied with Y = Lp(Rd) and C(t) the restriction operator on Ω(t) for t ∈ [0, T ].
Therefore, Theorem 3.3.9 yields the assertion.

The following theorem will show a partial converse of Theorem 3.4.4, namely that a
final-state observability estimate implies that the family (Ω(t))t∈[0,T ] is mean thick. For
the pure Laplacian on L2(Rd) and time-independent set of observability, such a result has
first been shown in [41, 155]. In the autonomous case, this has been generalized to strongly
elliptic operators in Lp(Rd) in [61, Thm. 3.3]. We also refer to [12, Thm. 5], where a similar
result is shown for the non-autonomous Ornstein–Uhlenbeck equation.

Theorem 3.4.8. Let m ≥ 2 and a be a uniformly strongly elliptic polynomial of degree
m with coefficients aα ∈ L∞(0, T ) for |α| ≤ m. Let (Ω(t))t∈[0,T ] such that Ω(t) ⊆ Rd

is measurable for all t ∈ [0, T ], and [0, T ] × Rd ∋ (t, x) 7→ 1Ω(t)(x) is measurable. Let
(U(t, s))0≤s≤t≤T be as in (3.8). Let p, r ∈ [1,∞), and assume there exists Cobs ≥ 0 such
that, for all u0 ∈ Lp(Rd), we have

∥Up(T, 0)u0∥Lp(Rd) ≤ Cobs

(∫ T

0
∥Up(t, 0)u0|Ω(t)∥rLp(Ω(t)) dt

)1/r
.

Then the family (Ω(t))t∈[0,T ] is mean thick.

Proof. Our proof is inspired by the ideas in [12, 41, 155]. Let us show the contrapositive:
assume that the family (Ω(t))t∈[0,T ] is not mean thick. Then there exists a sequence (xn)n∈N
in Rd such that, for all n ∈ N, we have

1

T

∫ T

0
|Ω(t) ∩ B(xn, n)|r/p dt <

1

n
. (3.63)

Let f ∈ S(Rd), ∥f∥Lp(Rd) = 1, and set fn := f(· − xn) for n ∈ N. Let t ∈ (0, T ) and n ∈ N.
Then Up(t, 0)fn = pt,0 ∗ fn = pt,0 ∗ f(· − xn). Moreover,

∥(Up(t, 0)fn)|Ω(t)∥
p
Lp(Ω(t)) = ∥1Ω(t) Up(t, 0)fn∥pLp(Rd)

= ∥1Ω(t) pt,0 ∗ f(· − xn)∥pLp(Rd)
= ∥1(Ω(t)−xn) pt,0 ∗ f∥

p
Lp(Rd)

= ∥1(Ω(t)−xn)∩B(0,n) pt,0 ∗ f∥
p
Lp(Rd)

+ ∥1(Ω(t)−xn)(1− 1B(0,n)) pt,0 ∗ f∥
p
Lp(Rd)

.

(3.64)

We first estimate the first summand on the right-hand side of (3.64). As a consequence
of Lemma 3.2.12(b), there exists C ≥ 0 such that ∥pt,0∥pLp′ (Rd)

≤ C for all t ∈ (0, T ), where
1
p′ +

1
p = 1. By Hölder’s and Young’s inequality, we estimate

∥1(Ω(t)−xn)∩B(0,n) pt,0 ∗ f∥
p
Lp(Rd)

≤ |(Ω(t)− xn) ∩ B(0, n)| ∥pt,0∥pLp′ (Rd)

≤ C |Ω(t) ∩ B(xn, n)|.
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For the second summand on the right-hand side of (3.64), we have by Lemma 3.2.12(b),
Hölder’s inequality, and the Fubini–Tonelli theorem

∥1(Ω(t)−xn)(1− 1B(0,n)) pt,0 ∗ f∥
p
Lp(Rd)

≤ ∥(1− 1B(0,n)) pt,0 ∗ f∥
p
Lp(Rd)

≤
∫
∁B(0,n)

(∫
Rd

C1 e
ωt e−C2|z|m/(m−1)

∣∣∣f(x− t1/mz)
∣∣∣ dz)p dx

= Cp
1e

pω+T

∫
∁B(0,n)

(∫
Rd

e−C2|z|m/(m−1)

dz
)p/p′∫

Rd

e−C2|z|m/(m−1)
∣∣∣f(x− t1/mz)

∣∣∣p dz dx

≤ Cp
1e

pω+T
(∫

Rd

e−C2|z|m/(m−1)

dz
)p/p′∫

Rd

∫
∁B(0,n)

e−C2|z|m/(m−1)
∣∣∣f(x− t1/mz)

∣∣∣p dx dz.

Let us focus on estimating the double integral over Rd × ∁B(0, n) in the previous
calculation by splitting it up. To this end, let ε > 0. Then there exist n0 ∈ N and R > 0
such that ∫

∁B(0,n0)
|f(y)|p dy ≤ ε and

∫
∁B(0,R)

e−C2|z|m/(m−1)

dz ≤ ε .

Consequently, for n ≥ n0 + T 1/mR, we have ∁B(0, n)− t1/mB(0, R) ⊆ ∁B(0, n0) and∫
Rd

∫
∁B(0,n)

e−C2|z|m/(m−1)
∣∣∣f(x− t1/mz)

∣∣∣p dx dz

=

∫
B(0,R)

∫
∁B(0,n)

e−C2|z|m/(m−1)
∣∣∣f(x− t1/mz)

∣∣∣p dx dz

+

∫
∁B(0,R)

∫
∁B(0,n)

e−C2|z|m/(m−1)
∣∣∣f(x− t1/mz)

∣∣∣p dx dz

≤ ε

∫
B(0,R)

e−C2|z|m/(m−1)

dz + ε∥f∥p
Lp(Rd)

.

Thus,

sup
t∈[0,T ]

∥1(Ω(t)−xn) (1− 1B(0,n))pt,0 ∗ f∥
p
Lp(Rd)

→ 0 (3.65)

as n tends to ∞. By (3.63), (3.64), and (3.65) we obtain∫ T

0
∥(Up(t, 0)fn)|Ω(t)∥rLp(Ω(t)) dt→ 0

as n tends to ∞. Since, ∥Up(T, 0)fn∥Lp(Rd) = ∥pT,0 ∗ f∥Lp(Rd) > 0 for all n ∈ N, an
observability estimate does not hold.

Remark 3.4.9. (a) Combining Theorem 3.4.4 and Theorem 3.4.8, we observe that uni-
formly thick observability sets allow for a final-state observability estimate, while such
an estimate only implies that the observation sets are mean thick. It is an interesting
question whether it is possible to close this gap, either by finding a suitable condition
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on the observation sets which is equivalent to a final-state observability estimate,
or by proving that an observability estimate holds for mean thick sets. Even in the
setting of Hilbert spaces and for autonomous problems, i.e., p = r = 2 and A(·)
time-independent, an answer to this question is still open. However, for a certain class
of non-autonomous diffusive evolution equations governed by the Ornstein–Uhlenbeck
operator, it has recently been proven in [3] that the corresponding equation is cost-
uniform approximately null-controllable, if and only if the family (Ω(t))t∈[0,T ] is mean
thick.

(b) If the family of sets (Ω(t))t∈[0,T ] does not depend on t, then uniform thickness is equiv-
alent to mean thickness. In this case, one can prove the statement of Theorem 3.4.8
for r = ∞ as well.



Chapter 4

Strong Solutions to the Navier–Stokes
Equations in Planar Lipschitz
Domains

This chapter is based on the joint work with Patrick Tolksdorf [56].

4.1 Introduction

Consider the Stokes resolvent problem
λu−∆u+∇ϕ = f in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω
(4.1)

in a bounded Lipschitz domain Ω ⊆ Rd, d ≥ 2. Here, u denotes the velocity field and ϕ
denotes the pressure. The resolvent parameter λ is supposed to lie in a sector

Σθ :=
{
z ∈ C \ {0} : |arg(z)| < π − θ

}
, θ ∈ (0, π) ,

in the complex plane, see Figure 4.1. Note there are different ways to define sectors
depending on the meaning of the opening angle θ. In this chapter, we will follow the
convention used by Shen in [134].

In the discipline of mathematical fluid mechanics, the Stokes resolvent problem has
been the subject of a plethora of studies. Let us mention a few results to catch a glimpse
of the rich theory of the Stokes operator. For results on smooth domains, one may consult
the classical work by Giga [65] for the case of bounded domains. The Stokes operator on
infinite layers Ω = Rd−1 × (−1, 1) was discussed by Abels in [1]. Non-smooth domains and
a possibly non-compact boundary are treated in [5], [17], [46], and [63]. For results on the
regularity theory of the Stokes operator on Lipschitz domains, one may consult the seminal
works [134] and [88], and, for an application to the Navier–Stokes equations on Lipschitz
domains, [147]. The Stokes operator on exterior domains was discussed in, e.g., [20] and
[148].

A natural tool in the study of the Stokes problem is the Helmholtz decomposition of
the function spaces one aims to analyze. More precisely, this decomposition allows one to

80
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Σθ

θ

θ

Figure 4.1: Sketch of the sector Σθ :=
{
z ∈ C \ {0} : |arg(z)| < π − θ

}
, θ ∈ (0, π), in the

complex plane.

eliminate the pressure ϕ from the equation system and thus reduce the number of unknowns.
We say that the Helmholtz decomposition of Lp(Ω;Cd) exists if there is a decomposition

Lp(Ω;Cd) = Lp
σ(Ω)⊕Gp(Ω),

where Lp
σ(Ω) denotes the closure in Lp(Ω;Cd) of

C∞
c,σ(Ω) :=

{
φ ∈ C∞

c (Ω;Cd) : div(φ) = 0
}

and where

Gp(Ω) :=
{
g ∈ Lp(Ω;Cd) : g = ∇Φ for some Φ ∈ Lp

loc(Ω)
}
.

In other words, if the Helmholtz decomposition of Lp(Ω;Cd) exists, then the closed subspace
Lp
σ(Ω) is a complemented subspace and the spaces Lp(Ω;Cd) and Lp

σ(Ω) ⊕ Gp(Ω) are
isomorphic Banach spaces. The bounded projection onto the space Lp

σ(Ω) is called the
Helmholtz projection and is denoted by Pp.

In the case p = 2, the Helmholtz projection P2 is an orthogonal projection, and G2(Ω)
is the orthogonal complement to L2

σ(Ω) with respect to the L2-inner product. In particular,
the Helmholtz decomposition of L2(Ω;Cd) exists for all open sets Ω, see, e.g., [137]. However,
the situation for p ̸= 2 is different and much more sensitive to the underlying geometry and
regularity of ∂Ω. Even smoothness of ∂Ω does not imply for certain unbounded domains
the existence of the Helmholtz decomposition as the classical example of Maslennikova
and Bogovskĭı [110] shows. Also, irregularity of the boundary destroys the existence of
the Helmholtz decomposition in certain Lp-spaces. This is shown in the works of Fabes,
Mendez, and M. Mitrea [45] and of D. Mitrea [114]. Indeed, in [45] it is proved that, for
each bounded Lipschitz domain Ω ⊆ Rd, d ≥ 3, there exists a constant ε > 0 such that the
Helmholtz decomposition exists on Lp(Ω;Cd) whenever∣∣∣1

p
− 1

2

∣∣∣ < 1

6
+ ε. (4.2)
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In particular, it is shown that this range of numbers p is sharp, i.e., for each 1 < p <∞ that
does not lie in the interval [3/2, 3], a bounded Lipschitz domain is constructed such that
the Helmholtz decomposition of Lp(Ω;Cd) fails. An analogous result was proved in [114,
Thm. 1.1] for bounded planar Lipschitz domains. Here, the Helmholtz decomposition exists
on Lp(Ω;C2) whenever ∣∣∣1

p
− 1

2

∣∣∣ < 1

4
+ ε. (4.3)

While the existence of the Helmholtz decomposition may indicate a rich functional
analytic theory of the Stokes operator, see, e.g., [62], it is by no means necessary as the
article [17] shows.

However, based on this heuristic, the results in [45] led Taylor to conjecture in [142]
that, for each three-dimensional bounded Lipschitz domain, there exists ε > 0 such that, for
each p in the range (4.2), the Stokes operator gives rise to a bounded analytic semigroup.
In 2001, one year after Taylor formulated this conjecture, Deuring [34] constructed bounded
Lipschitz domains such that, for p large enough, the Stokes operator indeed fails to generate
even a strongly continuous semigroup on Lp

σ(Ω). Compare also the discussion of Deuring’s
result in the article of Monniaux and Shen [118, Sect. 6].

M. Mitrea and Monniaux were able to prove Taylor’s conjecture for the Stokes operator
but with Neumann type boundary conditions in 2009, see [115]. In 2012, Taylor’s original
conjecture was finally settled in the affirmative by Shen [134]. Later Shen’s result was
extended by Dikland to the case of weighted Lp-spaces [35]. Analogously to Taylor,
D. Mitrea [114] conjectured that the Stokes operator gives rise to a bounded analytic
semigroup on Lp

σ(Ω) in two-dimensional bounded Lipschitz domains Ω if p is subject
to (4.3). In the author’s joint work with Patrick Tolksdorf [56], an affirmative solution of
the conjecture stated in [114, Conj. 1.2] was given thereby proving the following theorem.

Theorem 4.1.1. Let Ω ⊆ R2 be a bounded Lipschitz domain and θ ∈ (0, π/2). Then there
exists ε > 0 such that, for all p that satisfy (4.3), there exists a constant C ≥ 0 such that,
for all f ∈ Lp

σ(Ω) ∩ L2
σ(Ω) and λ ∈ Σθ, the unique weak solutions u ∈ W1,2

0 (Ω;C2) and
ϕ ∈ L2(Ω) with

∫
Ω ϕ dx = 0 to (4.1) satisfy

(1 + |λ|)∥u∥Lp
σ(Ω) ≤ C ∥f∥Lp

σ(Ω). (4.4)

Here, ε depends on θ, the Lipschitz character of Ω, and diam(Ω) and C depends on θ, p,
the Lipschitz character of Ω, and diam(Ω).

This result opens the door to further functional analytic studies of the Stokes operator
on planar Lipschitz domains as we will show in this chapter.

4.1.1 The Stokes Operator and the Stokes Semigroup on Lp
σ(Ω)

To put Theorem 4.1.1 into a functional analytic context, this section aims to briefly introduce
the Stokes operator on the Lp-scale. Before we start, let us introduce the scale of solenoidal
Sobolev functions

W1,p
0,σ(Ω) := C∞

c,σ(Ω)
∥·∥W1,p(Ω;C2) , 1 < p <∞.
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The Stokes Operator on L2
σ(Ω)

On the Hilbert space L2
σ(Ω), define the Stokes operator as the realization of the sesquilinear

form

a : W1,2
0,σ(Ω)×W1,2

0,σ(Ω) → C, (u, v) 7→
∫
Ω
∇u · ∇v dx :=

2∑
α,β=1

∫
Ω
∂αuβ∂αvβ dx.

Then the domain of the Stokes operator A2 on L2
σ(Ω) is defined as

Dom(A2) :=
{
u ∈ W1,2

0,σ(Ω) : ∃f ∈ L2
σ(Ω) : ∀v ∈ W1,2

0,σ(Ω) it holds a(u, v) =

∫
Ω
f · v dx

}
and, for u ∈ Dom(A2) with corresponding function f ∈ L2

σ(Ω), we set

A2u := f.

With this definition, A2 is densely defined, closed, and self-adjoint on L2
σ(Ω), see, e.g., [82].

Sometimes the Stokes operator is introduced differently focusing more on the operator
participants of the Stokes problem (4.1). More precisely, we have the following equivalent
definition of the Stokes operator on bounded Lipschitz domains, cf. [116, Thm. 4.7].

Proposition 4.1.2. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then the domain of the
Stokes operator A2 can equivalently be described via

Dom(A2) =
{
u ∈ W1,2

0,σ(Ω) : ∃ϕ ∈ L2(Ω) : −∆u+∇ϕ ∈ L2
σ(Ω)

}
,

where −∆u+∇ϕ ∈ L2
σ(Ω) denotes a regular distribution with representative in L2

σ(Ω). In
particular,

A2u = −∆u+∇ϕ

for all u ∈ Dom(A2) and ϕ ∈ L2(Ω) such that −∆u+∇ϕ ∈ L2
σ(Ω).

As a consequence of the Lax–Milgram lemma and Poincaré’s inequality, we see that A2

is invertible on L2
σ(Ω). Indeed, note that with the constant c > 0 from Poincaré’s inequality,

|a(u, u)| = ∥∇u∥2L2(Ω,C2×2) ≥
1

2
∥∇u∥2L2(Ω,C2×2) +

1

2 c2
∥u∥2L2(Ω,C2),

which shows that the form a is coercive. Additionally, a is continuous as a consequence
of Hölder’s inequality. So, by the Lax–Milgram lemma, for each f ∈ L2

σ(Ω), there exists a
unique u ∈ W1,2

0,σ(Ω) such that, for all v ∈ W1,2
0,σ(Ω), we have

a(u, v) =

∫
Ω
f · v dx .

In particular, u ∈ Dom(A2) and A2u = f . This gives 0 ∈ ρ(A2).
Furthermore, for each θ ∈ (0, π), the Lax–Milgram lemma applied to the form

aλ : W
1,p
0,σ(Ω)×W1,p

0,σ(Ω) → C, (u, v) 7→ λ

∫
Ω
u · v dx+

∫
Ω
∇u · ∇v dx
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together with the inverse triangle inequality for sectors gives that each λ ∈ Σθ is contained
in the resolvent set ρ(−A2). Then, testing the resolvent equation (4.1) with the solution
u ∈ W1,2

0,σ(Ω) and applying Poincaré’s and Hölder’s inequality yields the bound

(1 + |λ|)∥(λ+A2)
−1f∥L2

σ(Ω) ≤ C ∥f∥L2
σ(Ω), λ ∈ Σθ, f ∈ L2

σ(Ω), (4.5)

with C ≥ 0 only depending on θ and diam(Ω). Indeed, Poincaré’s inequality and the reverse
triangle inequality for sectors yield the coercivity estimate

|aλ(u, u)| ≥ C1

(
|λ| ∥u∥2L2(Ω;C2) + ∥∇u∥2L2(Ω;C2×2)

)
≥ C2 (|λ|+ 1) ∥u∥2L2(Ω;C2) (4.6)

with C1 > 0 depending on θ and C2 > 0 depending on θ and diam(Ω). For the estimate (4.5),
let f ∈ L2

σ(Ω) and u ∈ Dom(A2) such that (λ+A2)u = f . Then Hölder’s inequality gives

|aλ(u, u)| =
∣∣∣ ∫

Ω
(λ+A2)u · udx

∣∣∣ ≤ ∥u∥L2
σ(Ω)∥f∥L2

σ(Ω). (4.7)

Now the estimate (4.5) follows by plugging (4.6) and (4.7) together. In particular, this
shows that we have {0} ∪ Σθ ⊆ ρ(−A2) with a resolvent estimate for the case of p = 2.

Theorem 4.1.1 now tells us that the operator (λ+A2)
−1 restricts/extends (depending

on whether p ≥ 2 or p < 2) to a bounded operator on Lp
σ(Ω) for p satisfying (4.3) and that

this restriction/extension (λ+A2)
−1
p satisfies the bound

(1 + |λ|)∥(λ+A2)
−1
p f∥Lp

σ(Ω) ≤ C∥f∥Lp
σ(Ω), λ ∈ Σθ, f ∈ Lp

σ(Ω). (4.8)

The Stokes Operator on Lp
σ(Ω)

Let us now introduce the Stokes operator on Lp
σ(Ω) for p ̸= 2. For p > 2 satisfying (4.3),

the realization of A2 on Lp
σ(Ω) is denoted by Ap and given as the part of A2 in Lp

σ(Ω), i.e.,

Dom(Ap) :=
{
u ∈ Dom(A2) ∩ Lp

σ(Ω) : A2u ∈ Lp
σ(Ω)

}
, Apu := A2u for u ∈ Dom(Ap).

With this definition, the estimate (4.8) now implies that λ ∈ ρ(−Ap) and that (λ+Ap)
−1 =

(λ+A2)
−1
p holds. In particular, as C∞

c,σ(Ω) ⊆ Dom(Ap), the operator Ap is densely defined
and, furthermore, closed.

For p < 2 satisfying (4.3) and 1/p + 1/p′ = 1, define Ap to be the Lp
σ-adjoint of the

operator Ap′ . This implies that Ap is closed and densely defined as well. Moreover, as A2

is self-adjoint, we find that (λ+Ap)
−1 = (λ+A2)

−1
p .

With these definitions of the Stokes operator on Lp
σ(Ω), Theorem 4.1.1 ensures that Ap

is an invertible and sectorial operator. In particular, we have the following corollary to
Theorem 4.1.1 which forms the departure point for the journey in the next sections.

Corollary 4.1.3. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0
such that, for all p that satisfy (4.3), the operator −Ap generates an exponentially stable
analytic semigroup on Lp

σ(Ω). The constant ε depends only on the Lipschitz character of Ω
and diam(Ω).
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4.1.2 Functional Analytic Consequences and Outline

Let us outline the functional analytic consequences of the resolvent estimates for the Stokes
operator and the analyticity of the Stokes semigroup. Rigorous definitions of the involved
function spaces and operators will follow in the respective sections, together with the proofs
of the outlined results.

In the case p = 2, the domains of the fractional powers Dom(Aα
2 ) for 0 ≤ α < 3/4

were characterized in terms of suitable Bessel-potential spaces H2α,2
0,σ (Ω) by M. Mitrea and

Monniaux [116, Thm. 5.1]. The following theorem gives an Lp
σ-version of this result. This

generalizes the results of Giga [66, Thm. 3] from the smooth situation to the situation of
planar and bounded Lipschitz domains.

Theorem 4.1.4. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exist ε > 0 and
δ ∈ (0, 1] such that, for all 1 < p <∞ and 0 < θ < 1 satisfying (4.3) and either

θ <
1

2
+

1

2p
if

1

2
− 1

p
≤ δ

2
or θ <

1

p
+

1 + δ

4
if

1

2
− 1

p
>
δ

2
,

we have with equivalent norms that

Dom(Aθ
p) = H2θ,p

0,σ (Ω).

In particular, Theorem 4.1.4 characterizes the domain of the square root of Ap via

Dom(A
1
2
p ) = W1,p

0,σ(Ω). As a corollary of Theorem 4.1.4 and the Gagliardo–Nirenberg
inequality, see, e.g., [49] for a detailed proof, we obtain the following Lp–Lq-smoothing
estimates for the Stokes semigroup.

Corollary 4.1.5. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0 such
that, for all 1 < p ≤ q <∞ satisfying (4.3), there exists C ≥ 0 such that

∥e−tApf∥Lq
σ(Ω) ≤ Ct

−( 1
p
− 1

q
)∥f∥Lp

σ(Ω), t > 0, f ∈ Lp
σ(Ω),

and

∥∇e−tApf∥Lq(Ω;C2×2) ≤ Ct
− 1

2
−( 1

p
− 1

q
)∥f∥Lp

σ(Ω), t > 0, f ∈ Lp
σ(Ω).

In order to prove Theorem 4.1.4, we show that the H∞-calculus of Ap is bounded. Here,
we say that an injective operator A on a Banach space X that is sectorial of some angle
ω ∈ [0, π) has a bounded H∞-calculus if, for some θ ∈ (0, π − ω), there exists C ≥ 0 such
that, for all bounded analytic functions f on a sector Σθ, the estimate

∥f(A)∥L(X) ≤ C sup
z∈Σθ

|f(z)|

holds. The expression f(A) is to be understood in the sense of a regularization of the
natural functional calculus for sectorial operators, cf. [71, Sect. 2.3].

Theorem 4.1.6. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0 such
that, for all p that satisfy (4.3), the H∞-calculus of Ap is bounded.
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The boundedness of the H∞-calculus will be deduced by using a comparison principle
due to Kunstmann and Weis [88] in which the Stokes operator is compared to the Dirichlet-
Laplacian. A crucial ingredient for this comparison principle is the R-sectoriality of the
Stokes operator—a property that is well-known to be equivalent to maximal Lq-regularity.

Theorem 4.1.7. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0 such
that, for all p that satisfy (4.3) and for all 1 < q <∞, the Stokes operator Ap has maximal
Lq-regularity.

Additionally to this theorem, we employ the square root property Dom(A
1/2
p ) = W1,p

0,σ(Ω)
as a special case of Theorem 4.1.4 to transfer the maximal regularity property from the
ground space X = Lp

σ(Ω) to the ground space X = W−1,p
σ (Ω) := [W1,p′

0,σ (Ω)]
∗. Here we also

establish the maximal Lq-regularity property for the weak Stokes operator defined on the
space W−1,p

σ (Ω).
Finally, these properties will be used to investigate regularity properties of Leray–Hopf

weak solutions to the Navier–Stokes equations in a bounded Lipschitz domain Ω ⊆ R2.
u′ −∆u+ (u · ∇)u+∇ϕ = f = f0 + P2 div(F ) in (0,∞)× Ω,

div(u) = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0 in Ω.

(4.9)

Weak solutions in the Leray–Hopf class

LH∞(Ω) := L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω))

are known to exist since the seminal works of Leray [96, 97, 98] and Hopf [75]. In particular,
in the two-dimensional case and if Ω is smooth enough, e.g., if the boundary is C1,1-regular,
then Leray–Hopf weak solutions u to (4.9) with F = 0 and u0 and f0 regular enough, are
known to be unique and regular, i.e., we have that

u ∈ L∞(0,∞;W1,2
0,σ(Ω)) ∩ L2(0,∞;W2,2(Ω;C2)) ∩W1,2(0,∞; L2

σ(Ω)),

see, e.g., [137, Thm. V.1.8.1]. If Ω is merely Lipschitz regular, then such regularity properties
break down in general. The final theorem of this chapter establishes suitable regularity
properties of Leray–Hopf weak solutions in this geometric setting.

Theorem 4.1.8. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0,
depending only on the Lipschitz geometry of Ω, such that the following statements are valid.

(a) For all 1 < s < 2 and 1 < p < 2 that satisfy

1− 1

s
=

1

p
− 1

2
<

1

4
+ ε

and all Leray–Hopf weak solutions

u ∈ L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω))
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to (4.9) with initial data u0 and force f = f0 satisfying

u0 ∈
(
Lp
σ(Ω),Dom(Ap)

)
1− 1

s
,s

and f0 ∈ Ls(0,∞; Lp
σ(Ω)),

one has that

u ∈ W1,s(0,∞; Lp
σ(Ω)) ∩ Ls(0,∞; Dom(Ap)).

(b) For all 1 < p <∞ that satisfy (4.3), all 1 < s <∞ that satisfy

1

p
+

1

s
= 1,

and all Leray–Hopf weak solutions

u ∈ L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω))

to (4.9) with initial data u0 and force f = P2 div(F ) satisfying

u0 ∈
(
W−1,p

σ (Ω),W1,p
0,σ(Ω)

)
1− 1

s
,s

and F ∈ Ls(0,∞; Lp(Ω;C2×2)),

one has that

u ∈ W1,s(0,∞;W−1,p
σ (Ω)) ∩ Ls(0,∞;W1,p

0,σ(Ω)).

4.2 The L2-Dirichlet Problem for the Stokes Resolvent System

Before we dive into the proofs of the results outlined in the previous section, let us briefly
discuss the groundwork laid by our extension of Shen’s resolvent estimates of the Stokes
operator. In d ≥ 3, Shen’s proof of the resolvent estimates fundamentally bases on the
resolution of the L2-Dirichlet problem for the Stokes resolvent system [134, Thm. 1.1]. For
the case of d = 2 this problem was resolved in the author’s master thesis [51]. An overview
of the full proof can be found in [56]. To formulate this problem, we state the following
lemma and definition, cf. [133, p. 208].

Lemma and Definition 4.2.1. Let Ξ ⊆ Rd, d ≥ 2, be a bounded Lipschitz domain. There
exists α > 1 depending only on d and the Lipschitz character of Ξ such that each of the sets

γinα (q) :=
{
x ∈ Ξ : |x− q| < α dist(x, ∂Ξ)

}
, q ∈ ∂Ξ,

γexα (q) :=
{
x ∈ Ξ

c
: |x− q| < α dist(x, ∂Ξ)

}
, q ∈ ∂Ξ,

contains a cone of fixed height and aperture with vertex at q. In this case, we call the family
{γinα (q) : q ∈ ∂Ξ} an interior and {γexα (q) : q ∈ ∂Ξ} an exterior family of non-tangential
approach regions.

In the following, we fix a value of α > 1 subject to Lemma and Definition 4.2.1.
The notions of the non-tangential maximal function and non-tangential convergence are
introduced as follows.
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Definition 4.2.2. Let Ξ ⊆ Rd, d ≥ 2, be a bounded Lipschitz domain and {γinα (q) : q ∈ ∂Ξ}
a corresponding family of non-tangential approach regions. For a function u : Ξ → Cm,
m ∈ N, the interior non-tangential maximal function of u is defined as

(u)∗in(q) := sup
{
|u(x)| : x ∈ γinα (q)

}
, q ∈ ∂Ξ.

Similarly, for a function v : Ξ
c → Cm and an exterior family of non-tangential approach

regions {γexα (q) : q ∈ ∂Ξ}, the exterior non-tangential maximal function of v is defined
analogously and denoted by (v)∗ex.

For a function f : ∂Ξ → Cm, we say that u = f in the sense of non-tangential convergence
from the inside if

lim
x∈γin

α (q)
x→q

u(x) = f(q), a.e. q ∈ ∂Ξ,

and we call f the non-tangential limit of u inside of Ξ. Analogously, we say that v = f in
the sense of non-tangential convergence from the outside if

lim
x∈γex

α (q)
x→q

v(x) = f(q), a.e. q ∈ ∂Ξ,

and we call f the non-tangential limit of v outside of Ξ.

For a bounded Lipschitz domain Ξ ⊆ Rd, d ≥ 2, with connected boundary and λ ∈ Σθ,
consider the Dirichlet problem

λu−∆u+∇ϕ = 0 in Ξ,

div(u) = 0 in Ξ,

u = g on ∂Ξ,

(u)∗in ∈ L2(∂Ξ),

(Dir)

where the equality u = g on ∂Ξ is to be understood in the sense of non-tangential convergence
from the inside. Due to the condition div(u) = 0, the divergence theorem implies that
the normal component of g, i.e., g · n, has average zero on ∂Ξ. Thus, the definition of the
boundary space

L2
n(∂Ξ) :=

{
g ∈ L2(∂Ξ;Cd) :

∫
∂Ξ
g · n dσ = 0

}
seems natural. The key ingredient that allowed Shen to prove the counterpart to The-
orem 4.1.1 in three and more dimensions is the following resolution of the L2-Dirichlet
problem:

Theorem 4.2.3 (L2-Dirichlet problem). Let Ξ ⊆ Rd, d ≥ 2, be a bounded Lipschitz domain
with connected boundary and let θ ∈ (0, π/2). To every resolvent parameter λ ∈ Σθ and
every function g ∈ L2

n(∂Ξ), there exists a unique smooth function u : Ξ → Cd that satisfies
(u)∗in ∈ L2(∂Ξ) and a smooth function ϕ : Ξ → C that is unique up to the addition of
constants such that (Dir) is satisfied. Moreover, there exists a constant C ≥ 0 such that

∥(u)∗in∥L2(∂Ξ) ≤ C ∥g∥L2(∂Ξ). (4.10)

The constant C depends only on d, θ, the Lipschitz character of Ξ, and on constants α, β ≥ 0
that satisfy α ≤ diam(Ξ) ≤ β.
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The case d ≥ 3 of Theorem 4.2.3 was already proved by Shen [134, Thm. 5.5]. In order to
make the main idea of the proof accessible for the case d = 2, one needs to derive estimates
on fundamental solutions of the Stokes resolvent problem, which have representations as
so-called double layer potentials. For details on the proof, we refer the interested reader to
[134] and to [56] for a detailed analysis of the peculiarities of the two-dimensional case. For
an introduction to the method of layer potentials, we refer to [10, 133, 152].

4.3 Functional Analytic Properties of the Stokes Operator

In this section, we will prove several functional analytic properties of the Stokes operator.

4.3.1 R-Sectoriality and Maximal Regularity

Let us recall the definition of the sector

Σθ := {z ∈ C \ {0} : |arg(z)| < π − θ}, θ ∈ (0, π).

In this section, we want to prove that the Stokes operator on a bounded planar Lipschitz
domain admits the property of maximal Lq-regularity which will be a crucial ingredient in
our treatment of solutions to the Navier–Stokes equations in Section 4.4.

Recall that, for all x ∈ X and f ∈ Lq(0,∞;X), 1 < q <∞, the unique mild solution to
the abstract Cauchy problem induced by an operator A{

u̇(t) +Au(t) = f(t), t ≥ 0,

u(0) = x
(ACP)

is given by Duhamel’s formula

u(t) = e−tAx+

∫ t

0
e−(t−s)Af(s) ds ,

cf. [8, Prop. 3.1.16].

Definition 4.3.1. For 1 < q < ∞, we say that A : Dom(A) ⊆ X → X has maximal
Lq-regularity if, for x = 0 and all f ∈ Lq(0,∞;X), the unique mild solution to (ACP)
satisfies u(t) ∈ Dom(A) for almost every t > 0 and Au ∈ Lq(0,∞;X).

Remark 4.3.2. In the case of Definition 4.3.1, u is also weakly differentiable with respect to t
and satisfies u̇ ∈ Lq(0,∞;X). By employing the closed graph theorem, the mere fact that u̇
and Au lie in Lq(0,∞;X) implies the existence of C > 0 such that, for all f ∈ Lq(0,∞;X),
the stability estimate

∥u̇∥Lq(0,∞;X) + ∥Au∥Lq(0,∞;X) ≤ C ∥f∥Lq(0,∞;X)

holds. Note that Definition 4.3.1 only takes into account homogeneous initial values x = 0.
Furthermore, it is well known, see, e.g., [38, Thm. 2.1], that u ∈ Lq(0,∞;X) if and only if
0 ∈ ρ(A). In this case, one has a stability estimate of the form

∥u∥Lq(0,∞;X) + ∥u̇∥Lq(0,∞;X) + ∥Au∥Lq(0,∞;X) ≤ C ∥f∥Lq(0,∞;X). (4.11)
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This estimate (4.11) and with it the regularity of u can be extended to mild solutions
with inhomogeneous initial data u(0) = x for all x coming from the real interpolation
space (X,Dom(A))1−1/q,q, cf. [146, Prop. 2.2.3]. In this case, the stability estimate general-
izes to

∥u∥Lq(0,∞;X) + ∥u̇∥Lq(0,∞;X) + ∥Au∥Lq(0,∞;X) ≤ C
(
∥f∥Lq(0,∞;X) + ∥x∥(X,Dom(A))

1− 1
q ,q

)
.

Notice further that the property that A has maximal Lq-regularity is independent of q,
see [38, Thm. 4.2] or [39, Thm. 7.1] and the references given there.

Our proof of the maximal Lq-regularity of the Stokes operator will go through establishing
another property of operators that we introduce next.

Definition 4.3.3. Let X and Y denote Banach spaces over C and A : Dom(A) ⊆ X → X
a closed linear operator.

(i) The operator A is said to be sectorial of angle ω ∈ [0, π) if

σ(A) ⊆ Σπ−ω

and if, for all ω < θ < π, the family
(
λ(λ+A)−1

)
λ∈Σθ

⊆ L(X) is bounded.

(ii) A family of operators T ⊆ L(X,Y ) is said to be R-bounded from X to Y if there
exists a constant C > 0 such that, for all k0 ∈ N, (Tk)k0k=1 ⊆ T , and (xk)

k0
k=1 ⊆ X, the

inequality ∥∥∥ k0∑
k=1

rk(·)Tkxk
∥∥∥
L2(0,1;Y )

≤ C
∥∥∥ k0∑

k=1

rk(·)xk
∥∥∥
L2(0,1;X)

(4.12)

holds. Here, rk(t) := sgn(sin(2kπt)) are the Rademacher functions. We also define
the R-bound of T as R(T ) := inf{C > 0 : (4.12) holds}.

(iii) The operator A is said to be R-sectorial of angle ω ∈ [0, π) if

σ(A) ⊆ Σπ−ω

and if, for all ω < θ < π, the family
(
λ(λ+A)−1

)
λ∈Σθ

⊆ L(X) is R-bounded.

Remark 4.3.4. (i) By taking k0 = 1, one sees that R-boundedness implies boundedness
of a family of operators. If X and Y are isomorphic to a Hilbert space, then R-
boundedness is equivalent to the boundedness of the family of operators, see [33,
Rem. 3.2].

(ii) If X is a subspace of Lp(Ω;Cm) for some 1 < p <∞, m ∈ N, and Ω ⊆ Rd Lebesgue-
measurable, then there exists C > 0 such that, for all k0 ∈ N and (fk)

k0
k=1 ⊆ X, it

holds that

1

C

∥∥∥ k0∑
k=1

rk(·)fk
∥∥∥
L2(0,1;X)

≤
∥∥∥[ k0∑

k=1

|fk|2
] 1

2
∥∥∥
Lp(Ω)

≤ C
∥∥∥ k0∑

k=1

rk(·)fk
∥∥∥
L2(0,1;X)

. (4.13)

This means that R-boundedness in Lp-spaces is equivalent to so-called square function
estimates, see [87, Rem. 2.9].
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(iii) The operator −A generates a strongly continuous bounded analytic semigroup on X if
and only if A is densely defined and sectorial of angle ω ∈ [0, π/2), see [43, Thm. II.4.6].
Moreover, this semigroup is exponentially stable if 0 ∈ ρ(A). A short calculation
reveals that the condition 0 ∈ ρ(A) follows if one can show the boundedness of the
family of operators

(
(1 + λ)(λ+A)−1

)
λ∈(0,∞)

, cf. [43, Prop. II.5.24].

If X is a closed subspace or quotient of a reflexive Lp-space, then the question of
R-sectoriality is intimately related to the question of the maximal Lq-regularity of the
generator −A : Dom(A) ⊆ X → X of a bounded analytic semigroup through a seminal
result of Weis [159, Thm. 4.2].

Theorem 4.3.5 (Weis). Let 1 < p <∞ and X a closed subspace or quotient of Lp(Ω;Cm).
If −A : Dom(A) ⊆ X → X is the generator of a bounded analytic semigroup, then A has
maximal Lq-regularity for 1 < q < ∞ if and only if A is R-sectorial of angle ω for some
ω ∈ [0, π/2).

The presented version of Theorem 4.3.5 is a special version of the original result by
Weis, which holds for the class of so-called UMD-spaces. However, we will not go into
details with the definition of UMD-spaces as the reflexive Lp-spaces as well as all closed
subspaces and quotient spaces of these Lp-spaces have the UMD-property, see, e.g., [32],
and these will be the only spaces that appear in our investigation.

Motivated by the relation in Theorem 4.3.5, we now aim at establishing R-sectoriality
of angle ω = 0 for the Stokes operator on Lp

σ(Ω) for suitable p. By virtue of Remark 4.3.4(i)
and (iii) and Theorem 4.3.5, this will readily prove Theorem 4.1.1, Corollary 4.1.3, and
Theorem 4.1.7.

Proof of the R-sectoriality of the Stokes Operator. The proof is decomposed into five steps.

Step 1: the case p = 2. Let θ ∈ (0, π). Recall from Section 4.1.1 that the Lax–Milgram
lemma directly implies that {0}∪Σθ ⊆ ρ(−A2). Furthermore, for any f ∈ L2(Ω;C2), define
u := (λ+A2)

−1P2f . Then, testing the resolvent equation with u and applying Poincaré’s
inequality, one directly obtains the inequality

(1 + |λ|) ∥u∥L2
σ(Ω) ≤ C ∥f∥L2(Ω;C2). (4.14)

The constant C ≥ 0 depends only on θ, and diam(Ω). By virtue of Remark 4.3.4(i), this
implies that the family

(
(1 + |λ|)(λ+A2)

−1P2

)
λ∈Σθ

⊆ L(L2(Ω;C2),L2
σ(Ω)) is R-bounded.

As P2 acts as the identity on L2
σ(Ω), this readily settles the R-sectoriality in the case p = 2.

Step 2: reformulation into an ℓ2-valued boundedness estimate in the case p ≥ 2. Let p ≥ 2.
A combination of Definition 4.3.3(ii) and Remark 4.3.4(ii) shows the validity of the following
statement, cf. [146, Prop. 2.3.4]:

The family
(
(1 + |λ|)(λ+A2)

−1P2|Lp

)
λ∈Σθ

is R-bounded from Lp(Ω;C2) into Lp
σ(Ω) if and

only if there exists C ≥ 0 such that, for all k0 ∈ N and all (λk)k0k=1 ⊆ Σθ, the operator

T
(λk)

k0
k=1

: Lp(Ω; ℓ2(C2)) → Lp(Ω; ℓ2(C2)),
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f = (fk)k∈N 7→



(1 + |λ1|)(λ1 +A2)
−1P2|Lpf1

...
(1 + |λk0 |)(λk0 +A2)

−1P2|Lpfk0
0
...


is well-defined and satisfies

∥T
(λk)

k0
k=1

f∥Lp(Ω;ℓ2(C2)) ≤ C ∥f∥Lp(Ω;ℓ2(C2)). (4.15)

In other words, the family of all operators that can be formed by the procedure above is
uniformly bounded.

Step 3: verification of (4.15) for certain values of p > 2. To verify (4.15), one employs the
following vector-valued version of the Lp-extrapolation theorem of Shen [145, Thm. 4.1],
see [132, Thm. 3.3] for the scalar-valued version. Note that, in comparison to Shen’s
result [132, Thm. 3.3] this result does not assume any type of regularity of the involved
sets other than measurability.

Theorem 4.3.6 (Shen, Tolksdorf). Let X be a Banach space, Υ ⊆ R2 be Lebesgue-
measurable and bounded, M ≥ 0, and let T ∈ L(L2(Υ;X)) with ∥T∥L(L2(Υ;X)) ≤ M.

Suppose that there exist constants p > 2, R0 > 0, α2 > α1 > 1, and C ≥ 0 such that the
following statement is valid: for all balls B(x0, r) with 0 < r < R0, which are either centered
on ∂Υ, i.e., x0 ∈ ∂Υ, or satisfy B(x0, α2r) ⊆ Υ, and all compactly supported f ∈ L∞(Υ;X)
with f = 0 in Υ ∩ B(x0, α2r), the estimate(

1

r2

∫
Υ∩B(x0,r)

∥Tf∥pX dx

) 1
p

≤ C
(

1

r2

∫
Υ∩B(x0,α1r)

∥Tf∥2X dx

) 1
2

(4.16)

holds. Then, for each 2 < q < p, the operator T restricts to a bounded linear operator on
Lq(Υ;X), with operator norm bounded by a constant depending on p, q, α1, α2, C, M, R0,
and diam(Υ).

See Figure 4.2, for an accessible visualization of the main playgrounds in Theorem 4.3.6.
Remark 4.3.7. (i) We say that an operator satisfies a weak reverse Hölder estimate if it

satisfies (4.16). The original version of Theorem 4.3.6 comes with an additional term
on the right-hand side of (4.16) which will not be needed in our case.

(ii) One interpretation of (4.16) is to see it as a quantification of the non-locality of the
operator T in the following sense. By assumption, f is compactly supported in Υ
and vanishes on B(x0, α2r) ∩Υ. For a local operator, i.e., an operator that preserves
the locality of the input in terms of the support of the output, a weak reverse Hölder
estimate like (4.16) would trivially hold as both sides of the inequality would be
identically zero. For a non-local operator, like, e.g., a Fourier transformation, however,
the support of the output may drastically change making (4.16) non-trivial.

We will need the next lemma on a reverse trace-estimate, whose proof can be found
in Wei and Zhang [158, Lem. 3.3]. Wei and Zhang originally formulated the result for
Lipschitz domains Ω ⊆ Rd, d ≥ 3, but the proof works mutatis mutandis also for the case
d = 2 for which we state the result here. See also [10, Lem. 3.3].
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Υ

x0 ∈ ∂Υ

supp(f)

Υ

supp(f)
x0

α2rα1r

Figure 4.2: Illustration of the two cases in Shen’s extrapolation Theorem 4.3.6 for which one
needs to verify the weak reverse Hölder estimate (4.16). The left part considers x0 ∈ ∂Υ
and the right part x0 with B(x0, α2r) ⊆ Υ. The weak reverse Hölder estimate now aims at
estimating the Lp-norm of Tf inside Υ ∩ B(x0, r), i.e., the innermost dark disc, versus the
L2-norm of Tf inside Υ ∩ B(x0, α1r), i.e., the middle gray disc for all compactly supported
functions f with supp(f) ∩ B(x0, α2, r) = ∅.

Lemma 4.3.8. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists a constant
C ≥ 0 depending only on the Lipschitz constant of Ω such that, for all measurable functions
h : Ω → CN with interior non-tangential maximal function (h)∗in, we have the estimate

∥h∥L4(Ω;CN ) ≤ C ∥(h)∗in∥L2(∂Ω;CN ) . (4.17)

Remark 4.3.9. Note that Lemma 4.3.8 will fix the maximal value p such that the Stokes
operator Ap will be R-sectorial. In particular, for p = 4 we have p′ = 4

3 , such that we
see (4.3) reflected in this estimate. This also shows that the technique employed in the
following can neither yield better results for domains that are more regular than Lipschitz
nor for domains that have a value p that does not fulfill (4.3) while still having a Helmholtz
projection.

Verification of the weak reverse Hölder estimate (4.16) and application of Theorem 4.3.6.
We apply Theorem 4.3.6 as follows: first of all, we fix some notation regarding the bounded
Lipschitz domain Ω ⊆ R2. Let M ≥ 0 denote the Lipschitz constant of Ω. Define for r > 0
the “cylinder”

D(r) :=
{
(x1, x2) ∈ R2 : |x1| < r and |x2| < (1 +M)r

}
.

Note that the height (1 +M)r is chosen such that each cylinder D(r) also contains the
cone-like sets γinα (0) ⊆ D(r) and γexα (0) ⊆ D(r) for a suitably chosen α. Furthermore,
let R0 > 0 be such that, for each x0 ∈ ∂Ω, there exists a Lipschitz continuous function
η : R → R with η(0) = 0 and ∥η′∥L∞(R) ≤M such that, for all 0 < r < R0, one has after a
possible rotation of the coordinate system that

D(r) ∩ [Ω− {x0}] =
{
(y1, y2) ∈ R2 : |y1| < r and η(y1) < y2 < (1 +M)r

}
=: Dη(r)

and

D(r) ∩ [∂Ω− {x0}] =
{
(y1, y2) ∈ R2 : |y1| < r and y2 = η(y1)

}
=: Iη(r).
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Notice that

B(0, r) ⊆ D(r) and D(2r) ⊆ B(0, α1r) (4.18)

with

α1 := 2
√

1 + (1 +M)2 .

Furthermore, let us remark that the Lipschitz cylinders Dη(r) are in fact Lipschitz domains
with Lipschitz constant comparable to M . Additionally, the Lipschitz character is uniform
with respect to all parameters if the radius r is bounded from below. For a detailed proof
of the remarked facts, see, e.g., [146, Lem. 1.3.25].

Now, choose X := ℓ2(C2), Υ := Ω, and p0 := 4. Let further θ ∈ (0, π/2), k0 ∈ N, and
let (λk)

k0
k=1 ⊆ Σθ. For T being defined by T := T

(λk)
k0
k=1

, we know by Steps 1 and 2 that

the operator T is bounded on L2(Ω; ℓ2(C2)) and that the operator norm is bounded by the
constant C from (4.14). As this constant is uniform with respect to k0 and all choices of
(λk)

k0
k=1 ⊆ Σθ, we choose M := C.
Now, if we can establish the validity of (4.16) uniformly in those parameters as well, the

family of all such operators T restricts to a bounded family of operators in Lq(Ω; ℓ2(C2))
for all q subject to 2 ≤ q < p. Here, the parameter p still has to be fixed.

We concentrate first on verifying (4.16) for points in x0 ∈ ∂Ω. Let α2 := 3
√
1+(1+M)2,

and let 0 < 2r < R0. Finally, let f ∈ L∞(Ω; ℓ2(C2)) have compact support with f = 0 in
Ω ∩ B(x0, α2r).

For 1 ≤ k ≤ k0 define uk := (λk +A2)
−1P2fk and notice that uk ∈ W1,2

0,σ(Ω). We remark
that, by virtue of [116, Cor. 5.7], uk is even Hölder continuous in Ω. Thus, e.g., by [137,
Thm. III.2.1.1(b)], there exists a unique pressure πk ∈ L2(Ω) with average zero such that

λkuk −∆uk +∇πk = P2fk in Ω,

div(uk) = 0 in Ω,

uk = 0 on ∂Ω.

Using the Helmholtz decomposition of L2(Ω;C2) in order to write P2fk = fk −∇hk with
some hk ∈ G2(Ω), we find, since fk vanishes in Ω ∩ B(x0, α2r), with ϕk := πk + hk that

λkuk −∆uk +∇ϕk = 0 in Ω ∩ B(x0, α2r),

div(uk) = 0 in Ω ∩ B(x0, α2r),

uk = 0 on ∂Ω ∩ B(x0, α2r).

(4.19)

Inner regularity, see, e.g., [57, Thm. IV.4.3], now implies that the solutions uk and ϕk are
smooth in Ω ∩ B(x0, α2r).

By translation, rotation, and rescaling of Ω, we may assume that x0 = 0, that r = 1,
and that uk and ϕk solve (4.19) in Dη(2). Let 1 < s < 2, and let gk,s := uk|∂Dη(s). By
Theorem 4.2.3, there exist vk,s and ϑk,s solving the Stokes resolvent problem with resolvent
parameter λk in the Lipschitz domain Ξ := Dη(s) and boundary data gk,s. Notice that the
boundary datum is, in fact, the trace of uk itself. Moreover, since uk is Hölder continuous
in Dη(s) ⊆ Ω, its interior non-tangential maximal function (uk)

∗
in lies in L2(∂Dη(s)) so that,

by uniqueness of the solution, we must have that uk = vk,s.
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Finally, notice that Lemma 4.3.8 gives us for every complex-valued measurable function
h the validity of the estimate(∫

Dη(s)
|h|4 dx

) 1
4

≤ C

(∫
∂Dη(s)

|(h)∗in|2 dσ(x)

) 1
2

, (4.20)

where the constant C ≥ 0 only depends on the Lipschitz constant M . Thus, by virtue of
inequality (4.20) and Theorem 4.2.3, we find that(∫

Dη(1)

[ k0∑
k=1

∣∣(1 + |λk|)uk
∣∣2] 4

2
dx

) 2
4

≤ C

∫
∂Dη(s)

{([ k0∑
k=1

∣∣(1 + |λk|)uk
∣∣2] 1

2
)∗
in

}2
dσ(x)

≤ C

∫
∂Dη(s)

k0∑
k=1

|(1 + |λk|) (uk)∗in|2 dσ(x)

≤ C

∫
∂Dη(s)\Iη(s)

k0∑
k=1

∣∣(1 + |λk|)uk
∣∣2 dσ(x).

Notice that the constant C is independent of s. Integrating this inequality over all slices
in s ∈ (1, 2), the co-area formula, cf. [48, Thm. 3.2.12], yields(∫

Dη(1)

[ k0∑
k=1

|(1 + |λk|)uk|2
] 4

2
dx

) 2
4

≤ C

∫ 2

1

∫
∂Dη(s)\Iη(s)

k0∑
k=1

∣∣(1 + |λk|)uk
∣∣2 dσ(x) ds

≤ C

∫
Dη(2)

[ k0∑
k=1

|(1 + |λk|)uk|2
] 2

2
dx,

which is, after taking the square root and using the inclusion relations (4.18), already the
weak reverse Hölder estimate (4.16) with p = p0.

The same strategy can be employed to establish this weak reverse Hölder estimate on
balls B(x0, 1) such that B(x0, α2) ⊆ Ω. Indeed, note that, in this case, the localized Stokes
resolvent system (4.19) reads{

λkuk −∆uk +∇ϕk = 0 in B(x0, α2r),

div(uk) = 0 in B(x0, α2r).

Again, by translation, rotation, and rescaling of Ω, we may assume that x0 = 0, r = 1 and
uk and ϕk are solutions of resolvent system on B(0, α2). In particular, by inner regularity,
uk and ϕk are smooth and the trace of uk on ∂B(0, s) is well-defined for all 1 ≤ s ≤ α2.
Furthermore, Theorem 4.2.3 on the uniqueness of the solution to the L2-Dirichlet problem
with boundary data gk,s := uk|∂B(0,s) gives that (uk)

∗
in ∈ L2(∂B(0, s)). Now we may

calculate using [158, Lem 3.3] on balls B(0, s)(∫
B(0,1)

[ k0∑
k=1

∣∣(1 + |λk|)uk
∣∣2] 4

2
dx

) 2
4

≤ C

∫
∂B(0,s)

{([ k0∑
k=1

∣∣(1 + |λk|)uk
∣∣2] 1

2
)∗
in

}2
dσ(x)

≤ C

∫
∂B(0,s)

k0∑
k=1

|(1 + |λk|)uk|2 dσ(x)
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which, after an integration over all s ∈ (1, α2), gives(∫
B(0,1)

[ k0∑
k=1

|(1 + |λk|)uk|2
] 4

2
dx

) 2
4

≤ C

∫
B(0,α2)

[ k0∑
k=1

|(1 + |λk|)uk|2
] 2

2
dx. (4.21)

After taking the square root on both sides of (4.21), the weak reverse Hölder estimate (4.16)
with p = p0 and balls with an open α2-neighborhood still contained in Ω follows.

We could now apply Theorem 4.3.6 directly and obtain the result that T
(λk)

k0
k=1

∈
L(L2(Ω, ℓ2(C2))) restrict to bounded linear operators on Lq(Ω, ℓ2(C2)), 2 < q < 4, subject
to the estimate

∥T
(λk)

k0
k=1

f∥Lq(Ω;ℓ2(C2)) ≤ C ∥f∥Lq(Ω;ℓ2(C2))

with C only depending on q, α1, α2, θ0, R0, and diam(Ω). However, the range of possible q
can be further improved by the so-called self-improving property of weak reverse Hölder
estimates, see, e.g., [64, Thm. 6.38]. More precisely, having these weak reverse Hölder
estimates at hand, the Vitali covering lemma gives the validity of these weak reverse Hölder
estimates on all balls B(x0, r) such that Ω∩B(x0, α2r) ̸= ∅, cf. the proof of [145, Lem. 4.2].
Then, the self-improving property yields the validity of (4.16) with p = p0 + ε for some
ε > 0 depending only on the Lipschitz character of Ω and θ. As all parameters are uniform
with respect to (λk)

k0
k=1, we conclude that (4.15) holds for all 2 < p < 4 + ε with a uniform

constant C > 0.

Step 4: the case p < 2. Let 1 < p < 2 be such that its Hölder conjugate exponent p′

satisfies (4.3). Since Ap is defined to be the adjoint of Ap′ , the R-sectoriality follows by
duality, see [81, Lem. 3.1].

Step 5: conclusion. Having established the R-sectoriality of Ap on Lp
σ(Ω) for 2 ≤ p < 4 + ε

via square function estimates in Steps 1, 2, and 3 as well for (4 + ε)′ < p ≤ 2 via duality in
Step 4, we conclude the proof of Theorem 4.1.1, Corollary 4.1.3, and Theorem 4.1.7.

Remark 4.3.10. At first sight, the choice of p0 = 4 may seem arbitrary, but it is actually
very important for the proof to go through, cf. Remark 4.3.9.

4.3.2 Boundedness of the H∞-calculus

To introduce the boundedness of the H∞-calculus, define for θ ∈ (0, π) the so-called
Dunford–Riesz class

H∞
0 (Σθ) :=

{
f : Σθ → C : f holomorphic and ∃ ε, C ≥ 0 : ∀z ∈ Σθ : |f(z)| ≤

C |z|ε

(1 + |z|)2ε

}
.

Let A : Dom(A) ⊆ X → X be a sectorial operator of angle ω ∈ [0, π) on a complex Banach
space X. Then for any θ ∈ (0, π − ω) and ϑ ∈ (θ, π − ω) one defines for f ∈ H∞

0 (Σθ)

f(A) :=
1

2πi

∫
∂Σϑ

f(λ)(λ−A)−1 dλ.

Here, the path ∂Σϑ is understood to be running counterclockwise. Using the sectoriality
of A and the fact that f ∈ H∞

0 (Σθ) it is clear that f(A) ∈ L(X). If A is densely defined
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and has a dense range, then the question of whether there exists C ≥ 0 such that, for all
f ∈ H∞

0 (Σθ), one has

∥f(A)∥L(X) ≤ C sup
z∈Σθ

|f(z)|

is the question of the boundedness of the H∞(Σθ)-calculus of A [71, Prop. 5.3.4]. Our
interest in the H∞-calculus is for the connection of domains of fractional powers of A and
the complex interpolation spaces between X and Dom(A). Indeed, given the boundedness
of the H∞(Σθ)-calculus of a sectorial operator A one finds with equivalent norms that

Dom(As) =
[
X,Dom(A)

]
s
, s ∈ (0, 1), (4.22)

cf. [71, Thm. 6.6.9]. That, for θ ∈ (0, π), the H∞(Σθ)-calculus of the Stokes operator on
Lp
σ(Ω) for ∣∣∣1

p
− 1

2

∣∣∣ ≤ 1

2d
+ ε

and d ≥ 3 is indeed bounded, is a result of Kunstmann and Weis [88, Thm. 16]. In
the following, we will review their proof to confirm that their result stays valid in the
two-dimensional case. The proof will be divided into three steps.

Step 1: the density of the domain and the range. The density of the domain of the Stokes
operator was already discussed in Section 4.1.1.

Let us show that the range of the Stokes operator is dense. Since 0 ∈ ρ(Ap), we know
that Ap is injective. Moreover, by the results from Subsection 4.3.1, we know that Ap is
sectorial. The sectoriality combined with the reflexivity of Lp

σ(Ω) implies the validity of the
following algebraic and topological decomposition

Lp
σ(Ω) = ker(Ap)⊕ ran(Ap),

see [71, Prop. 2.1.1. h)]. Here, ker(Ap) denotes the kernel of Ap and ran(Ap) its range.
Since ker(Ap) = {0}, this gives that ran(Ap) is dense in Lp

σ(Ω).

Step 2: the comparison principle of Kunstmann and Weis. The boundedness of the H∞(Σθ)-
calculus of Ap shall be deduced by that of the Dirichlet-Laplacian −∆p on Lp(Ω;C2). That
the H∞(Σθ)-calculus of −∆p is indeed bounded follows for example by combining the facts
that the semigroup (et∆p)t≥0 satisfies heat kernel bounds, see, e.g., Davies [30, Cor. 3.2.8],
and that −∆2 has a bounded H∞(Σθ)-calculus on L2(Ω;C2) as a consequence of the spectral
theorem for self-adjoint operators with a result of Duong and Robinson [40, Thm. 3.1].

The comparison principle of Kunstmann and Weis now reads as follows, see [88, Thm. 9].

Theorem 4.3.11 (Comparison Principle). Let X and Y be Banach spaces. Let R : Y → X
and S : X → Y be bounded linear operators satisfying RS = IdX . Let B have a bounded
H∞(Σσ)-calculus in Y for some σ ∈ (0, π), and let A be R-sectorial in X. Assume that
there are functions φ,ψ ∈ H∞

0 (Σν) \ {0} where ν ∈ (0, σ) and C1, C2 ≥ 0 such that, for
some β > 0 and all ℓ ∈ Z,

sup
1≤s,t≤2

R
{
φ(s2j+ℓA)Rψ(t2jB) : j ∈ Z

}
≤ C1 2

−β|ℓ| and (4.23)

sup
1≤s,t≤2

R
{
φ(s2j+ℓA)′S′ψ(t2jB)′ : j ∈ Z

}
≤ C2 2

−β|ℓ| . (4.24)

Then A has a bounded H∞(Σν)-calculus on X.
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Remark 4.3.12. The original result of Kunstmann and Weis is even stronger as they actually
do not assume A to be R-sectorial but only almost R-sectorial.

Kunstmann and Weis provided in [88, Prop. 10 and Prop. 11] also tools for establish-
ing (4.23) and (4.24) which are summarized below.

Proposition 4.3.13. In the setting of Theorem 4.3.11, suppose that there exist α0 > 0 and
C ≥ 0 such that, for α = ±α0, we have

RDom(Bα) ⊆ Dom(Aα), ∥AαRy∥X ≤ C ∥Bαy∥Y for all y ∈ Dom(Bα), (4.25)

and

SDom(Aα) ⊆ Dom(Bα), ∥BαSx∥Y ≤ C ∥Aαx∥X for all x ∈ Dom(Aα). (4.26)

Then Condition (4.23) and Condition (4.24) hold for the choice C1 = C2 = C, β = α0, and
φ(λ) = ψ(λ) = λ2α0(1 + λ)−4α0.

Let us assume for a moment that the assumptions of Proposition 4.3.13 are verified
for the choice X = L2

σ(Ω), Y = L2(Ω;C2), R = P2, S being the inclusion of L2
σ(Ω) into

L2(Ω;C2), A = A2, and B = −∆2. Let φ,ψ ∈ H∞
0 (Σν) \ {0} denote the functions provided

by Proposition 4.3.13. Then we would find constants C1, C2 > 0 and some β > 0 such that

sup
1≤s,t≤2

R
{
φ(s2j+ℓA2)Rψ(−t2j∆2) : j ∈ Z

}
≤ C12

−β|ℓ| and (4.27)

sup
1≤s,t≤2

R
{
φ(s2j+ℓA2)

′S′ψ(−t2j∆2)
′ : j ∈ Z

}
≤ C22

−β|ℓ| (4.28)

for all ℓ ∈ Z. Let further p satisfy

0 <
1

2
− 1

p
<

1

4
+ ε,

where ε > 0 is small enough such that Ap is R-sectorial on Lp
σ(Ω). Notice that also −∆p is

R-sectorial on Lp(Ω;C2) due to the Gaussian upper bounds of the heat semigroup, see [74,
Thm. 3.1]. Now, the R-sectoriality of these two operators together with [80, Lem. 3.3]
implies that the two sets{

φ(s2j+ℓAp) : s > 0, j, ℓ ∈ Z
}
⊆ L(Lp

σ(Ω))

and {
ψ(−t2j∆p) : t > 0, j ∈ Z

}
⊆ L(Lp(Ω;C2))

are R-bounded. Next, since singletons of bounded operators are always R-bounded and
since products of R-bounded sets of operators are R-bounded as well, cf. [33, Prop. 3.4],
we find that also{

φ(s2j+ℓAp)Rψ(−t2j∆p) : s, t > 0, j, ℓ ∈ Z
}
⊆ L(Lp(Ω;C2),Lp

σ(Ω))

is R-bounded. Finally, since R-boundedness implies uniform boundedness, there exists
C ≥ 0 such that

sup
ℓ∈Z

sup
1≤s,t≤2

R
{
φ(s2j+ℓAp)Rψ(−t2j∆p) : j ∈ Z

}
≤ C.
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Using the interpolation result in [80, Prop. 3.7] together with (4.27), one finds a constant
C ≥ 0 such that, for 2 < q < p with

1

q
=

1− θ

2
+
θ

p
for some 0 < θ < 1,

the following estimate holds for all ℓ ∈ Z

sup
1≤s,t≤2

R
{
φ(s2j+ℓAq)Rψ(−t2j∆q) : j ∈ Z

}
≤ C 2−(1−θ)β|ℓ|.

Consequently, with the definitionsX = Lq
σ(Ω), Y = Lq(Ω;C2), R = Pq, S being the inclusion

of Lq
σ(Ω) into Lq(Ω;C2), A = Aq, and B = −∆q, Condition (4.23) of Theorem 4.3.11 is

satisfied.
Condition (4.24) follows in a similar fashion by noticing that, due to self-adjointness,

we have that

ψ(−t2j∆p)
′ = ψ(−t2j∆′

p) ≃ ψ(−t2j∆p′)

and

ψ(t2jAp)
′ = ψ(t2jA′

p) ≃ ψ(t2jAp′).

Moreover, the dual operator S′ of S is identified with an operator on Lp′(Ω;C2) as follows.
Let f ∈ Lp(Ω;C2)′, and let f ∈ Lp′(Ω;C2) denote its canonical identification. Then, for
g ∈ Lp′

σ (Ω), one calculates

⟨S′f , g⟩(Lp
σ)′,L

p
σ
= ⟨f , Sg⟩(Lp

σ)′,L
p
σ
= ⟨f, g⟩Lp′ ,Lp = ⟨f,Ppg⟩Lp′ ,Lp = ⟨Pp′f, g⟩Lp′

σ ,Lp
σ
.

Consequently, the operator

φ(s2j+ℓAp)
′ S′ ψ(−t2j∆p)

′

may be identified with the operator

φ(s2j+ℓAp′)Pp′ ψ(−t2j∆p′).

Now, the same argument leading to (4.23) can be used to establish (4.24). The only
difference is to use the R-sectoriality of Ap′ on Lp′

σ (Ω) and of −∆p′ on Lp′(Ω;C2). Hence,
besides the verification of the conditions of Proposition 4.3.13 on the L2-scale, this establishes
the boundedness of the H∞-calculus of the Stokes operator on the Lp

σ-scale and thus proves
Theorem 4.1.6.

Step 3: verification of the conditions from Proposition 4.3.13. Let us briefly introduce a
suitable scale of function spaces of smoothness s ∈ R and integrability p ∈ R, the so-called
Bessel-potential spaces, see [14, 70, 77, 116, 150, 151] for proofs of the stated results and
for further information. Bessel-potential spaces can be interpreted as a generalization of
Sobolev spaces Wk,p(R2;C2) where the order k is allowed to be non-integer. Consider the
Fourier multiplier

F−1(1 + | · |2)s/2F(f), f ∈ S(R2;C2). (4.29)
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Since the function ξ 7→ (1 + |ξ|2)s/2 is smooth and grows at most polynomially for |ξ| → ∞,
the multiplier (4.29) is well defined, cf. [70, Sec. 6.2.1]. If fs := F−1(1 + | · |2)s/2Ff ∈
Lp(R2;C2), then one can show that f must have been in Lp(R2;C2) as well. Indeed,

f(x) =
(
F−1(1 + | · |2)−s/2Ffs

)
(x) = Js(fs)(x),

where Js is the so-called Bessel-potential which is known to map Lp(R2;C2) to Lp(R2;C2),
see [70, Cor. 6.1.6(a)]. One way to define Bessel-potential spaces Hs,p, for s > 0 would be
to set it as the space of all functions f ∈ Lp(R2;C2) such that there exists f0 ∈ Lp(R2;C2)
with Js(f0) = f . We will however use a different approach to the definition which directly
includes all s ∈ R. For s ∈ R and 1 < p <∞, we define the Bessel-potential space on R2 by

Hs,p(R2;C2) :=
{
f ∈ S(R2;C2)′ : F−1(1 + | · |2)s/2F(f) ∈ Lp(R2;C2)

}
,

with the norm

∥f∥Hs,p(R2;C2) := ∥F−1(1 + | · |2)s/2F(f)∥Lp(R2;C2).

Note that for s ∈ N0, we have Hs,p(R2,C2) = Ws,p(R2,C2), i.e., the scale of Bessel-
potential spaces extends the classical scale Sobolev spaces. The counterpart of Hs,p(R2;C2)
on domains Ω ⊆ R2 is defined via restriction

Hs,p(Ω;C2) :=
{
RΩ(g) : g ∈ Hs,p(R2;C2)

}
,

where RΩ restricts distributions to Ω and the corresponding norm is given by the natural
quotient norm

∥f∥Hs,p(Ω;C2) := inf
g∈Hs,p(R2;C2)

RΩ(g)=f

∥g∥Hs,p(R2;C2).

Indeed, also here, we have for s ∈ N0 the identification Hs,p(Ω;C2) = Ws,p(Ω;C2). To
incorporate traces that vanish at the boundary of Ω, one defines

Hs,p
0 (Ω;C2) :=

{
RΩ(g) : g ∈ Hs,p(R2;C2), supp g ⊆ Ω

}
with the quotient norm

∥f∥Hs,p
0 (Ω;C2) := inf

g∈Hs,p(R2;C2)

supp g⊆Ω

∥g∥Hs,p(R2;C2). (4.30)

The spaces Hs,p
0 (Ω;C2) and Hs,p(Ω;C2) coincide if −1 + 1/p < s < 1/p. Thus, if this

condition applies, we may also write Hs,p
0 (Ω;C2) for Hs,p(Ω;C2) if this simplifies the

notation. Moreover, C∞
c (Ω;C2) is dense in Hs,p

0 (Ω;C2) for all s ∈ R and 1 < p < ∞.
Finally, for s > 0, the space Hs,p

0 (Ω;C2) is reflexive. In particular, it holds for 1/p+1/p′ = 1
that

Hs,p
0 (Ω;C2)′ = H−s,p′(Ω;C2) and H−s,p′(Ω;C2)′ = Hs,p

0 (Ω;C2).
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If we consider Bessel-potential spaces as subspaces of scalar-valued tempered distributions
S(R2)′, we just write Hs,p(R2), Hs,p(Ω), and Hs,p

0 (Ω).
The solenoidal counterparts of these spaces are defined for s > −1 + 1/p as the Stokes

scale associated with the Lipschitz domain Ω and are given by

Hs,p
0,σ(Ω;C

2) := C∞
c,σ(Ω)

∥·∥
H
s,p
0 (Ω;C2) .

We remark that this definition is in line with the scale used by Mitrea and Monniaux due
to their result in [116, Prop. 2.10].

We will need the following result about the Helmholtz projection on Bessel-potential
spaces [116, Prop. 2.16 (II)].

Proposition 4.3.14 (Mitrea, Monniaux). For |s| < 1
2 , the Helmholtz projection P acts as

a bounded linear projection on Hs,2(Ω;C2) and yields the following topological direct sum:

Hs,2(Ω;C2) = Hs,2
0,σ(Ω)⊕∇Hs+1,2(Ω) .

Furthermore, Hs,2
0,σ(Ω) is the range of P and is reflexive with Hs,2

0,σ(Ω)
′ = H−s,2

0,σ (Ω).

In the next step, we establish a relation between the scales of Bessel-potential spaces
from Proposition 4.3.14 and suitable interpolation and extrapolation scales of Banach spaces
that are induced by fractional powers of A2 and −∆2, see [87, Def. 15.21].

For a given Banach space X, a sectorial operator A : Dom(A) → X with 0 ∈ ρ(A), and
α ∈ R, we define

Ẋα,A := (Dom(Aα), ∥Aα · ∥X)∼

to be the completion of the domain Dom(Aα) with respect to the homogeneous graph norm.

Remark 4.3.15. (i) For X reflexive, we have a natural isomorphism
(
Ẋα,A

)′
=
(
X ′).

−α,A′ ,
see [87, Prop. 15.23]. In particular, if X is a Hilbert space and A is self-adjoint, then(
Ẋα,A

)′
= Ẋ−α,A via the usual identification of A with A′ via the Riesz isomorphism.

(ii) For sectorial operators with 0 ∈ ρ(A), the scale
(
Ẋα,A

)
coincides with the usual

extrapolated fractional power scale of order 1 or the interpolation-extrapolation scale
according to [4, Thm. V.1.3.8 and Thm. V.1.5.4]. In particular, for α > 0, the domain
Dom(Aα) is already complete with respect to the homogeneous graph norm as a
consequence of the closed graph theorem.

The following proposition, whose first part is due to Mitrea and Monniaux [116, Thm. 5.1],
characterizes the fractional power domains of the Stokes operator A2 and the Dirichlet-
Laplacian −∆2 on L2(Ω;C2) in terms of the Bessel-potential spaces from Proposition 4.3.14.

Proposition 4.3.16. Let |s| < 1
2 . Then(

L2
σ(Ω)

).
s/2,A2

= Hs,2
0,σ(Ω) and

(
L2(Ω;C2)

).
s/2,−∆2

= Hs,2
0 (Ω;C2). (4.31)

In particular, for s > 0,

Dom(A
s/2
2 ) = Hs,2

0,σ(Ω) and Dom((−∆2)
s/2) = Hs,2

0 (Ω;C2). (4.32)
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Proof. We only prove the facts for the Stokes operator. The corresponding facts for the
Dirichlet-Laplacian follow, e.g., from [79, Sect. 7].

We start with the case s > 0. By virtue of the invertibility of A2 and of Remark 4.3.15 (ii),
we only have to calculate Dom(A

s/2
2 ). Since A2 is self-adjoint, its H∞-calculus on L2

σ(Ω) is
bounded, see, e.g., [33, Sect. 2.4]. Thus, employing (4.22), one finds that

Dom(A
s/2
2 ) =

[
L2
σ(Ω),Dom(A

1/2
2 )

]
s
.

Furthermore, it is known that Dom(A
1/2
2 ) = W1,2

0,σ(Ω), see, e.g., [137, Lem. III.2.2.1] and
that the arising interpolation space is computed as[

L2
σ(Ω),W

1,2
0,σ(Ω)

]
s
= Hs,2

0,σ(Ω),

see [116, Thm. 2.12].
Now, let s < 0. Using Proposition 4.3.14, the fact that A2 is self-adjoint, the isomorphism

from Remark 4.3.15 (i), and the result for the case s > 0 yield

Hs,2
0,σ(Ω) = H−s,2

0,σ (Ω)′ =
((
L2
σ(Ω)

).
−s/2,A2

)′
=
(
L2
σ(Ω)

).
s/2,A2

which completes the proof of the statement.

For B2 := −∆2 and s > 0, the following diagram summarizes the interplay of Proposi-
tion 4.3.14 (vertical arrows) and Proposition 4.3.16 (horizontal arrows).

Hs,2
0 Dom(B

s/2
2 ) L2

Hs,2
0,σ Dom(A

s/2
2 ) L2

σ

P

≃ B
s/2
2

P2

≃ A
s/2
2

We have now gathered all the prerequisites needed to verify the conditions from
Proposition 4.3.13. As in Step 2, we let X = L2

σ(Ω), Y = L2(Ω;C2), R = P2, and use for
S : X → Y the inclusion map. Furthermore, we fix some 0 < α0 < 1/4, and we carry out
the proof in two separate cases depending on the sign of the parameter α.

The case α = α0 > 0. In this case,

R Dom(Bα
2 ) = RH2α,2

0 (Ω;C2) = H2α,2
0,σ (Ω) = Dom(Aα

2 )

by (4.32), Proposition 4.3.14, and the characterization of the fractional power domains of
the Dirichlet-Laplacian. Moreover, for all y ∈ H2α,2

0 (Ω;C2), one estimates

∥Aα
2Ry∥L2

σ(Ω) ≲ ∥Ry∥
H2α,2

0,σ (Ω)
≲ ∥y∥H2α,2(Ω;C2) ≲ ∥Bα

2 y∥L2(Ω;C2) . (4.33)

This gives Condition (4.25) for α > 0. Similarly, we verify that

SDom(Aα
2 ) = H2α,2

0,σ (Ω) ⊆ H2α,2
0 (Ω;C2) = Dom(Bα

2 )

and calculate for every x ∈ H2α,2
0,σ (Ω)

∥Bα
2 Sx∥L2(Ω;C2) = ∥Bα

2 x∥L2(Ω;C2) ≲ ∥x∥
H2α,2

0,σ (Ω)
. (4.34)
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This gives Condition (4.26) for α > 0.

The case α = −α0 < 0. For the case of negative exponents, the inclusions on the left-hand
side of (4.25) and (4.26) are straightforward since Dom(Aα

2 ) = L2
σ(Ω) and Dom(Bα

2 ) =
L2(Ω;C2) as sets. The first inclusion follows from the classical mapping properties of the
Helmholtz projection on L2, see [137, Lem. 2.5.2], while the second one is trivial.

The boundedness estimate in Condition (4.25) follows via duality from (4.34). Indeed,
let y ∈ L2(Ω;C2) and g ∈ L2

σ(Ω). Then

⟨Aα
2RB

−α
2 y, g⟩L2

σ ,L
2
σ
= ⟨y,B−α

2 SAα
2 g⟩L2,L2 ,

and the claim follows by taking the supremum over all g. For the remaining part of
Condition (4.26), note that, since α < 0, we have A−α

2 x ∈ Dom(Aα
2 ) = L2

σ(Ω) implying the
identity SA−α

2 = RA−α
2 . Now, the desired estimate follows via duality from (4.33) as, for

x ∈ L2
σ(Ω) and h ∈ L2(Ω;C2), we have

⟨Bα
2 SA

−α
2 x, h⟩L2,L2 = ⟨x,A−α

2 RBα
2 h⟩L2

σ ,L
2
σ
.

4.3.3 Domains of Fractional Powers

This section deals with the calculation of domains of fractional powers for the Stokes
operator on Lp

σ(Ω). This extends the results from the case p = 2 established in [116,
Thm. 5.1]. The same approach could also be used to extend the results in three and higher
dimensions in the Lp

σ-situation, where currently only the domains of Aθ
p are characterized

for 0 ≤ θ ≤ 1/2. As a preparation, we state a regularity result for the Poisson problem for
the Stokes system with homogeneous Dirichlet boundary conditions, initially formulated
by Dindoš and Mitrea [36, Thm. 5.6] and later improved by Mitrea and Wright [117,
Thm. 10.6.2]. We remark that this theorem is formulated in terms of Besov spaces Bs

p,q

and Triebel–Lizorkin spaces Fs
p,q and that we present the particular case of Bessel-potential

spaces satisfying the relation Hs,p = Fs
p,2.

Theorem 4.3.17 (Mitrea, Wright). Let Ω ⊆ R2 be a bounded Lipschitz domain. Then
there exists 0 < δ ≤ 1 depending only on Ω such that, for all 1 < p < ∞ and 0 < s < 1
satisfying either

0 <
1

p
< s+

1 + δ

2
and 0 < s ≤ 1 + δ

2
(4.35)

or

−1 + δ

2
<

1

p
− s <

1 + δ

2
and

1 + δ

2
< s < 1 , (4.36)

the Stokes system 
−∆u+∇ϕ = f in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω

has for all f ∈ Hs+1/p−2,p(Ω;C2) unique solutions u ∈ Hs+1/p,p(Ω;C2) and ϕ ∈ Hs+1/p−1,p(Ω)
with ϕ unique up to the addition of constants. Moreover, there exists a constant C ≥ 0
depending only on p, s, and Ω such that the following estimate holds

∥u∥
H

s+1
p ,p

(Ω;C2)
+ ∥ϕ∥

H
s+1

p−1,p
(Ω)

≤ C ∥f∥
H

s+1
p−2,p

(Ω;C2)
.
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Remark 4.3.18. Let 1 < p <∞. If f ∈ Lp
σ(Ω), then f ∈ Hs+1/p−2,p(Ω;C2) for all s ∈ (0, 1).

Indeed, this follows from the embedding property Hs1,p(Ω;C2) ⊆ Hs2,p(Ω;C2), −∞ < s2 <
s1 <∞ of Bessel-potential spaces, cf. [116, Sec. 2.1]. Thus, for all f ∈ Hs+1/p−2,p(Ω;C2),
with s subject to (4.35) or (4.36), Theorem 4.3.17 gives the existence of a unique solution
u ∈ Hs+1/p,p(Ω;C2) ⊆ Lp

σ(Ω). In particular u ∈ Dom(Ap) such that

Dom(Ap) ⊆
⋂
s

H
s+ 1

p
,p
(Ω;C2),

where the intersection is taken over all s ∈ (0, 1) that either satisfy (4.35) or (4.36). If
δ = 1, then (4.36) is void what implies that

Dom(Ap) ⊆
⋂

t<1+ 1
p

Ht,p(Ω;C2).

If δ ∈ (0, 1), the first inequality in (4.36) implies that s must satisfy

s < min
{
1,

1

p
+

1 + δ

2

}
.

A calculation of the minimum reveals that

Dom(Ap) ⊆
⋂

t<1+ 1
p

Ht,p(Ω;C2) if
1

2
− 1

p
≤ δ

2
(4.37)

and that

Dom(Ap) ⊆
⋂

t< 2
p
+ 1+δ

2

Ht,p(Ω;C2) if
1

2
− 1

p
>
δ

2
. (4.38)

Let us note the following embedding result for the domain of the Stokes operator. The
following lemma is an adapted version of [147, Lem. 2.5] for the case of d = 2.

Lemma 4.3.19. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0 such
that, for all ∣∣∣1

p
− 1

2

∣∣∣ < 1

4
+ ε,

we have the continuous embedding

W2,p
0,σ(Ω) ⊆ Dom(Ap).

In particular, the representation formula

Apu = −Pp∆u, u ∈ W2,p
0,σ(Ω), (4.39)

is valid.
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Proof. The proof of this in three or more dimensions is presented in [147] and carries over
mutatis mutandis to the case of d = 2. For completeness, we provide the short proof. Let
u ∈ W2,p

0,σ(Ω). We divide the proof into two parts.

Step 1. Assume p ≥ 2. In particular ∆u ∈ Lp(Ω;C2). As a consequence of the results for
the Helmholtz projection on Lp(Ω;C2) proved by D. Mitrea in [114, Thm. 4.4], there exists
Φ ∈ Lp

loc(Ω), such that

−∆u = −Pp∆u− (Id−Pp)∆u = −Pp∆u−∇Φ.

This proves (4.39).

Step 2. Let p < 2 and u ∈ W2,p
0,σ(Ω) and choose a sequence (un)n∈N in C∞

c,σ(Ω) with un → u

in W2,p(Ω;C2). In particular un ∈ W2,2
0,σ(Ω) for all n ∈ N. As Pp and P2 are compatible,

formula (4.39) for A2 shows that (A2un)n∈N is a Cauchy sequence in Lp
σ(Ω). Recall that Ap

is defined as the closure of A2 in Lp
σ(Ω). Consequently, we have that u ∈ Dom(Ap) and

conclude using the boundedness of the Helmholtz projection Pp that

Apu = lim
n→∞

A2un = lim
n→∞

−P2∆un = −Pp lim
n→∞

∆un = −Pp∆u .

This proves the validity of the representation formula (4.39).

We are now ready to prove the embedding of the Bessel-potential spaces into domains
of fractional powers Dom(Aθ

p) from Theorem 4.1.4.

Theorem 4.3.20. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0
such that, for all 1 < p <∞ satisfying (4.3) and all 0 < θ < 1, the continuous embedding

H2θ,p
0,σ (Ω) ⊆ Dom(Aθ

p) (4.40)

holds. Furthermore, there exists 0 < δ ≤ 1 such that, if θ and p additionally satisfy either

θ <
1

2
+

1

2p
if

1

2
− 1

p
≤ δ

2
(4.41)

or

θ <
1

p
+

1 + δ

4
if

1

2
− 1

p
>
δ

2
, (4.42)

we have with equivalent norms that

H2θ,p
0,σ (Ω) = Dom(Aθ

p).

Proof. The boundedness of the H∞-calculus of Ap by Theorem 4.1.6 and its consequence
for complex interpolation (4.22) imply that[

Lp
σ(Ω),Dom(Aα

p )
]
θ
= Dom(Aαθ

p ) (4.43)

for α > 0. Moreover, we find by Lemma 4.3.19 the continuous embedding[
Lp
σ(Ω),W

2,p
0,σ(Ω)

]
θ
⊆
[
Lp
σ(Ω),Dom(Ap)

]
θ
. (4.44)
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Due to the interpolation result in [116, Thm. 2.12], it is known that the interpolation space
on the left-hand side of (4.44) coincides with H2θ,p

0,σ (Ω). Taking α = 1 in (4.43) results in
the continuous embedding stated in (4.40). Let us restate this embedding with r instead of
p and s instead of θ for further reference:

For any 1 < r <∞ satisfying (4.3) and any s ∈ (0, 1) it holds that

H2s,r
0,σ (Ω) ⊆ Dom(As

r). (4.45)

Now we prove the converse inclusion to (4.45). To this end, let δ ∈ (0, 1] be given by The-
orem 4.3.17. We assume first that θ fulfills both estimates (4.41) and (4.42) simultaneously
and with an additional lower bound, i.e.,

1− δ

4
+

1

2p
< θ < min

{1
2
+

1

2p
,
1

p
+

1 + δ

4

}
. (4.46)

A straightforward calculation shows that the minimum can be calculated as

min
{1
2
+

1

2p
,
1

p
+

1 + δ

4

}
=


1
2 + 1

2p if 1
2 − 1

p ≤ δ
2 ,

1
p + 1+δ

4 if 1
2 − 1

p >
δ
2 .

We want to deduce the desired embedding (4.45) by establishing that the fractional power

A−θ
p : Lp

σ(Ω) → H2θ,p
0,σ (Ω). (4.47)

is well-defined and bounded. Indeed, per definitionem, for u ∈ Dom(Aθ
p), we have Aθ

pu ∈
Lp
σ(Ω). The validity of (4.47) now implies u = A−θ

p Aθ
p u ∈ H2θ,p

0 (Ω;C2).
Let us establish (4.47). Since

H2θ,p
0,σ (Ω) = H2θ,p

0 (Ω;C2) ∩ Lp
σ(Ω)

holds due to [116, Cor. 2.11] and since A−θ
p is bounded from Lp

σ(Ω) to Lp
σ(Ω), it suffices to

prove the boundedness of

A−θ
p : Lp

σ(Ω) → H2θ,p
0 (Ω;C2). (4.48)

The following diagram summarizes the mapping properties of the operator A−θ
p , including

the claim (4.48).

Lp
σ

A−θ
p A−θ

p

Lp
σ ∩ H2θ

0

= H2θ
0,σ
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In order to verify the boundedness property (4.48), we find by the self-adjointness of A2

and of the projection P2 for f ∈ C∞
c,σ(Ω) and g ∈ C∞

c (Ω;C2) that∣∣∣ ∫
Ω
A−θ

p f · g dx
∣∣∣ = ∣∣∣ ∫

Ω
P2A

−θ
2 f · g dx

∣∣∣ = ∣∣∣ ∫
Ω
f ·A−θ

p′ Pp′g dx
∣∣∣

≤ ∥f∥Lp
σ(Ω) ∥A

−θ
p′ Pp′g∥Lp′ (Ω;C2) .

(4.49)

Since H−2θ,p′(Ω;C2)′ = H2θ,p
0 (Ω;C2) and since C∞

c (Ω;C2) is dense in H−2θ,p′(Ω;C2), cf. [150,
Thm. 3.5(i)], the boundedness property (4.48) follows from (4.49) once it is shown that
there exists C ≥ 0 such that, for all g ∈ C∞

c (Ω;C2), it holds

∥A−θ
p′ Pp′g∥Lp′ (Ω;C2) ≤ C ∥g∥H−2θ,p′ (Ω;C2). (4.50)

To this end, we find by virtue of the first inequality in (4.46) combined with Remark 4.3.18
that

ran(A−1
p′ ) = Dom(Ap′) ⊆ H

2(1−θ),p′

0,σ (Ω). (4.51)

Indeed, if p is subject to (4.46), then the following calculation shows for δ ∈ (0, 1]

1

2p
≤ 1− δ

4
+

1

2p

(4.46)
< θ ⇐⇒ 1− 1

p′
=

1

p
< 2θ ⇐⇒ 2(1− θ) < 1 +

1

p′
.

This settles the embedding questions if 1
2 − 1

p ≤ δ
2 via (4.37) if we choose s = 2(1− θ) and

p = p′ in Remark 4.3.18. If p is subject to the condition 1
2 − 1

p >
δ
2 , we have that 1

2p <
1−δ
4

and can further estimate

3

2
− 3

2p′
=

3

2p
<

1− δ

4
+

1

p

(4.46)
< θ ⇐⇒ 2− 4θ

3
<

2

p′
<

2

p′
+

1 + δ

2

which shows that, for the choice of s = 2(1− θ) and p = p′ in Remark 4.3.18, we have the
desired embedding via (4.38).

The embedding (4.51) enables us to use (4.45) with r = p′ and s = 1− θ to deduce that

∥A−θ
p′ Pp′g∥Lp′ (Ω;C2) = ∥A1−θ

p′ A−1
p′ Pp′g∥Lp′ (Ω;C2) ≤ C ∥A−1

p′ Pp′g∥H2−2θ,p′
0,σ (Ω;C2)

.

Define u := A−1
p′ Pp′g and let ϕ denote the associated pressure. Then u and ϕ solve the

Stokes system given by 
−∆u+∇ϕ = Pp′g in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω.
(4.52)

Now, by virtue of the Helmholtz decomposition of Lp(Ω;C2), see [114, Thm. 4.4], the
function Pp′g is given by g +∇h for some h ∈ W1,p′(Ω). It follows that u and ϕ− h solve
system (4.52) but with right-hand side g instead of Pp′g. Now, define s := 1 + 1/p − 2θ.
Then the conditions imposed on θ in (4.46) imply that s and p′ satisfy (4.35) so that
Theorem 4.3.17 implies that

∥u∥
H2−2θ,p′

0,σ (Ω)
≤ C ∥g∥

H−2θ,p′ (Ω;C2)
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which in turn shows that (4.50) holds. This concludes the proof in the case where θ satisfies
the lower bound in (4.46).

To get rid of the lower bound in (4.46), we proceed via interpolation. Note that the
interpolation result on the Stokes scale [116, Thm. 2.12] gives[

Hs0,p0
0,σ (Ω),Hs1,p1

0,σ (Ω)
]
ϑ
= Hs,p

0,σ(Ω) (4.53)

for all 1 < p <∞, −1+ 1
pi
< si, i ∈ {0, 1}, ϑ ∈ [0, 1], 1

p
:= 1−ϑ

p0
+ ϑ

p1
, and s := (1−ϑ)s0+ϑs1.

Now, for general θ subject to (4.41) or (4.42), chose a good value α with

α > 0 subject to the upper and lower bounds in (4.46) satisfying 0 < θ < α. (α gd.)

Then we calculate using (4.53), the general interpolation result for fractional powers (4.43),
and the corresponding result for α

Dom(Aθ
p) = Dom(A

α θ
α

p )

(4.43)
=

[
Lp
σ(Ω),Dom(Aα)

]
θ
α

(α gd.)
=

[
H0,p

0,σ(Ω),H
2α,p
0,σ (Ω)

]
θ
α

(4.53)
= H

2α θ
α
,p

0,σ (Ω) = H2θ,p
0,σ (Ω).

This proves the result also for general θ > 0.

4.3.4 The Weak Stokes Operator

In this section, we expand our functional analytic framework by a Stokes-like operator
on spaces of regular distributions. This operator will prove to be helpful in Section 4.4
for establishing higher regularity of solutions to the Navier–Stokes equations with the
right-hand side in divergence form, cf. [26, Sect. 7].

For the course of this section, let Ω ⊆ R2 be a bounded Lipschitz domain and ε > 0 such
that, for all p that satisfy (4.3), the operator −Ap generates a bounded analytic semigroup.
Moreover, for 1/p+ 1/p′ = 1, let Φ:

[
Lp′
σ (Ω)

]∗ → Lp
σ(Ω) denote the canonical isomorphism

between the antidual
[
Lp′
σ (Ω)

]∗ and Lp
σ(Ω) with the duality pairing

⟨Φ−1u, v⟩[
Lp′
σ

]∗
,Lp′

σ
= ⟨u, v⟩

Lp
σ ,L

p′
σ
=

∫
Ω
u · v dx, u ∈ Lp

σ(Ω), v ∈ Lp′
σ (Ω).

We regard Φ−1 also as the canonical inclusion of Lp
σ(Ω) into W−1,p

σ (Ω) via

⟨Φ−1u, v⟩
W−1,p

σ ,W1,p′
0,σ

= ⟨u, v⟩
Lp
σ ,L

p′
σ
, u ∈ Lp

σ(Ω), v ∈ W1,p′

0,σ (Ω).

In this sense, we define the weak Stokes operator Ap in W−1,p
σ (Ω) by Dom(Ap) :=

Φ−1W1,p
0,σ(Ω) and

Ap : Dom(Ap) ⊆ W−1,p
σ (Ω) → W−1,p

σ (Ω), w 7→
[
v 7→

∫
Ω
∇Φw · ∇v dx

]
.

Recall that, by Theorem 4.3.20 and the invertibility of A′
p, cf. Theorem 4.1.1 and Re-

mark 4.3.4(iii), the square root of the Stokes operator is an isomorphism

A
1
2
p′ : W

1,p′

0,σ (Ω) → Lp′
σ (Ω) .
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This fact allows to deduce the relation[
A

1
2
p′
]∗
Φ−1 ∈ Isom(Lp

σ(Ω),W
−1,p
σ (Ω))

and use the operator
[
A

1
2
p′
]∗
Φ−1 as a similarity transform that connects Ap and Ap, namely

Ap =
[
A

1
2
p′
]∗
Φ−1 ◦Ap ◦A

− 1
2

p Φ =
[
A

1
2
p′
]∗
Φ−1 ◦Ap ◦ Φ

[
A

− 1
2

p′
]∗
. (4.54)

The representation formulas (4.54) were derived in [26, Lem. 5.1] for the case d = 3.
However, the presented proof carries over mutatis mutandis to the case d = 2.

Permanence properties of the class of R-sectorial operators dictate that Ap inherits
the R-sectoriality of Ap, see, e.g., [33, Sect. 4.1]. In particular, the representation (4.54)
induces a representation of the resolvents

(λ+Ap)
−1 =

[
A

1
2
p′
]∗
Φ−1 ◦ (λ+Ap)

−1 ◦ Φ
[
A

− 1
2

p′
]∗
, (4.55)

see the proof of [33, Prop. 1.3 (iv)]. The following result is a corollary of (4.55) in terms of
a similar semigroup and its implication on maximal regularity.

Proposition 4.3.21. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0
such that, for all p that satisfy (4.3), the following statements are valid.

(i) ρ(Ap) = ρ(Ap) and −Ap generates a bounded analytic semigroup (e−tAp)t≥0 on
W−1,p

σ (Ω).

(ii) For u ∈ W−1,p
σ (Ω) and f ∈ Lp

σ(Ω), the following two identities hold for all t ≥ 0

e−tApu =
[
A

1
2
p′
]∗
Φ−1e−tApΦ

[
A

− 1
2

p′
]∗
u and Φ−1e−tApf = e−tApΦ−1f.

In particular, the weak Stokes semigroups are consistent on the W−1,p
σ -scale.

(iii) Ap has maximal Lq-regularity for 1 < q <∞.

4.4 Global Strong Solutions to the Navier–Stokes Equations
in Planar Lipschitz Domains

This section is devoted to proving the regularity properties of Leray–Hopf weak solutions
to the Navier–Stokes equations (4.9) stated in Theorem 4.1.8. Let

u ∈ LH∞(Ω) = L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω))

be such a solution. Sufficient conditions on u0 and f for the existence of a solution u
are that u0 ∈ L2

σ(Ω) and that f = f0 + P2 div(F ) with f0 ∈ L1(0,∞; L2
σ(Ω)) and F ∈

L2(0,∞; L2(Ω;C2×2)), see, e.g., [137, Thm. V.3.1.1]. These solutions further satisfy the
energy inequality

E∞(u) :=
1

2
∥u∥2L∞(0,∞;L2(Ω;C2)) + ∥∇u∥2L2(0,∞;L2(Ω;C2×2))

≤ 2∥u0∥2L2
σ(Ω) + 4∥F∥2L2(0,∞;L2(Ω;C2×2)) + 8∥f0∥2L1(0,∞;L2

σ(Ω)),

see, e.g., [137, Eq. V.(3.1.13)]. The key to establishing the higher regularity result for
Leray–Hopf weak solutions lies in the following two nonlinear estimates whose proofs can
be found in [137, Lem. V.1.2.1 and Rem. V.1.2.2].
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Lemma 4.4.1. (i) For all 1 ≤ s < 2, there exists a constant C ≥ 0 depending only on s
such that, for all 1 ≤ p < 2 satisfying

1

p
+

1

s
=

3

2

and all

u ∈ L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω)),

one has

∥(u · ∇)u∥Ls(0,∞;Lp(Ω;C2)) ≤ CE∞(u).

(ii) For all 1 ≤ s ≤ ∞, there exists a constant C ≥ 0 depending only on s such that, for
all 1 ≤ p <∞ satisfying

1

p
+

1

s
= 1

and all

u ∈ L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω)),

one has

∥u⊗ u∥Ls(0,∞;Lp(Ω;C2×2)) ≤ CE∞(u).

Relying on the maximal regularity results proved in Section 4.3.1, we are now in the
position to prove Theorem 4.1.8 which we restate here for convenience.

Theorem 4.1.8. Let Ω ⊆ R2 be a bounded Lipschitz domain. Then there exists ε > 0,
depending only on the Lipschitz geometry of Ω, such that the following statements are valid.

(a) For all 1 < s < 2 and 1 < p < 2 that satisfy

1− 1

s
=

1

p
− 1

2
<

1

4
+ ε

and all Leray–Hopf weak solutions

u ∈ L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω))

to (4.9) with initial data u0 and force f = f0 satisfying

u0 ∈
(
Lp
σ(Ω),Dom(Ap)

)
1− 1

s
,s

and f0 ∈ Ls(0,∞; Lp
σ(Ω)),

one has that

u ∈ W1,s(0,∞; Lp
σ(Ω)) ∩ Ls(0,∞; Dom(Ap)).
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(b) For all 1 < p <∞ that satisfy (4.3), all 1 < s <∞ that satisfy

1

p
+

1

s
= 1,

and all Leray–Hopf weak solutions

u ∈ L∞(0,∞; L2
σ(Ω)) ∩ L2(0,∞;W1,2

0,σ(Ω))

to (4.9) with initial data u0 and force f = P2 div(F ) satisfying

u0 ∈
(
W−1,p

σ (Ω),W1,p
0,σ(Ω)

)
1− 1

s
,s

and F ∈ Ls(0,∞; Lp(Ω;C2×2)),

one has that

u ∈ W1,s(0,∞;W−1,p
σ (Ω)) ∩ Ls(0,∞;W1,p

0,σ(Ω)).

Proof. Ad (a). First of all, notice that, as a consequence of [137, Thm. IV.2.4.1], one has
that ∫ t

0
e−(t−τ)A2A

− 1
2

2 P2 div(u(τ)⊗ u(τ)) dτ ∈ Dom(A
1
2
2 )

for almost every t > 0 and the weak solution u fulfills the integral equation

u(t) = e−tA2u0 +

∫ t

0
e−(t−τ)A2f0(τ) dτ −A

1
2
2

∫ t

0
e−(t−τ)A2A

− 1
2

2 P2 div(u(τ)⊗ u(τ)) dτ ,

see [137, Thm. V.1.3.1]. Since the Stokes semigroups are consistent on the Lp
σ-scale and since

by assumption u0 ∈ Lp
σ(Ω) and f0 ∈ Ls(0,∞; Lp

σ(Ω)), one can replace the L2
σ-semigroups

by the Lp
σ-semigroups. Notice further that div(u(τ) ⊗ u(τ)) = (u(τ) · ∇)u(τ) since u is

divergence-free. Now, Lemma 4.4.1(i) implies that (u · ∇)u ∈ Ls(0,∞; Lp(Ω;C2)). In
particular, for almost every 0 < τ < t, one has that (u(τ) · ∇)u(τ) ∈ Lp(Ω;C2) which
implies that

e−(t−τ)A2A
− 1

2
2 P2 div

(
u(τ)⊗ u(τ)

)
= A

− 1
2

2 e−(t−τ)ApPp(u(τ) · ∇)u(τ). (4.56)

Note that, in identity (4.56), the semigroup generated by −A2 and the square root of A2

commute as a consequence of the functional calculus for A2. Furthermore, we also used the
consistency of the Helmholtz projections Pp here which is a consequence of the uniqueness

of the Helmholtz decomposition on Lp(Ω;C2). Since A− 1
2

2 is a bounded operator on L2
σ(Ω),

one can pull this operator in front of the integral, yielding

u(t) = e−tApu0 +

∫ t

0
e−(t−s)Apf0(τ) dτ −

∫ t

0
e−(t−τ)ApPp(u(τ) · ∇)u(τ) dτ .

Consequently, u is a mild solution to the linear equation{
u′(t) +Apu(t) = f0(t)− Pp(u(t) · ∇)u(t), t > 0,

u(0) = u0.
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Note that we have f0−Pp(u ·∇)u ∈ Ls(0,∞; Lp
σ(Ω)). By Theorem 4.1.7, the Stokes operator

on Lp
σ(Ω) has maximal Ls-regularity and thus fulfills

u ∈ W1,s(0,∞; Lp
σ(Ω)) ∩ Ls(0,∞; Dom(Ap)).

Ad (b). Let u be the Leray–Hopf weak solution corresponding to the initial value u(0) = u0
and the right-hand side f = P2 div(F ). In particular, u can be represented via the
representation formula

u(t) = e−tA2u0 +A
1
2
2

∫ t

0
e−(t−τ)A2A

− 1
2

2 P2 div
(
F (τ)− u(τ)⊗ u(τ)

)
dτ , (4.57)

for almost every t > 0. Now, Lemma 4.4.1(ii) implies that u⊗ u ∈ Ls(0,∞; Lp(Ω;C2×2)).
As in Subsection 4.3.4, let again Φ: [Lp′

σ (Ω)]∗ → Lp
σ(Ω) denote the canonical isomorphism

between [Lp′
σ (Ω)]∗ and Lp

σ(Ω). We will need the identity

Φ−1A
− 1

2
2 P2 div(F ) =

[
A

− 1
2

2

]∗ P2 div(F ) (4.58)

on W−1,2
σ (Ω). Indeed, the characterization of A− 1

2
2 P2 div by means of functionals as

described in [137, Lem. III.2.6.2] gives that, for F ∈ L2(Ω;C2×2) and v ∈ C∞
0,σ(Ω),〈

Φ−1A
− 1

2
2 P2 div(F ), v

〉
W−1,2

σ ,W1,2
0,σ

=
〈
A

− 1
2

2 P2 div(F ), v
〉
L2
σ ,L

2
σ

=
〈
P2 div(F ), A

− 1
2

2 v
〉
W−1,2

σ ,W1,2
0,σ

=
〈 [
A

− 1
2

2

]∗ P2 div(F ), v
〉
W−1,2

σ ,W1,2
0,σ
.

If we now bring the representation of the semigroup for the weak Stokes operator A2 from
Proposition 4.3.21(ii) together with identity (4.58), we see that

Φ−1A
1
2
2 e

−tA2A
− 1

2
2 P2 div(F ) = e−tA2 P2 div(F ) (4.59)

for all F ∈ L2(Ω;C2×2) and t > 0. Following the idea of the proof of [26, Thm. 3.3],
applying the embedding Φ−1 to equation (4.57), and using (4.59) and the consistency of
the semigroups (e−tAp)t≥0, see Proposition 4.3.21(ii), yields

Φ−1u(t) = e−tAp Φ−1u0 +

∫ t

0
e−(t−τ)Ap Pp div

(
F (τ)− u(τ)⊗ u(τ)

)
dτ

for almost every t > 0. Consequently, Φ−1u is a mild solution to the linear equation{
U ′(t) +Ap U(t) = Pp div

(
F (t)− u(t)⊗ u(t)

)
, t > 0,

U(0) = Φ−1u0.

Proposition 4.3.21(iii) on the maximal regularity of the weak Stokes operator now implies

Φ−1u ∈ W1,s(0,∞;W−1,p
σ (Ω)) ∩ Ls(0,∞; Φ−1W1,p

0,σ(Ω)).

We arrive at the desired regularity result by translating this result into terms of u.
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Combining Theorem 4.1.8 with embeddings of Dom(Ap) into Bessel-potential spaces
leads to the following corollary.

Corollary 4.4.2. In the situation of Theorem 4.1.8(a), the solution u satisfies

u ∈ W1,s(0,∞; Lp
σ(Ω)) ∩ Ls(0,∞; Hα,p

0,σ(Ω))

for any 0 < α < 1 + 1/p.

Proof. Notice that Dom(Ap) embeds for 1 < p < 2 continuously into Hα,p
0,σ(Ω) by Re-

mark 4.3.18. The rest follows by Theorem 4.1.8(a).
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[136] P. E. Sobolevskĭı. “Equations of parabolic type in a Banach space”. Russian. In:
Trudy Moskov. Mat. Obšč. 10 (1961), pp. 297–350.

[137] H. Sohr. The Navier-Stokes Equations. Mod. Birkhäuser Class. Basel: Springer, 2001.
doi: 10.1007/978-3-0348-0551-3.

[138] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Prince-
ton: Princeton Univ. Press, 1971. doi: 10.1515/9781400883882.

[139] E. M. Stein and R. Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert
Spaces. Princeton: Princeton Univ. Press, 2005. doi: 10.1515/9781400883882.

[140] H. Tanabe. Equations of evolution. Vol. 6. Monographs and Studies in Mathematics.
London: Pitman, 1979.

[141] H. Tanabe. “On the equations of evolution in a Banach space”. In: Osaka J. Math.
12 (1960), pp. 363–376. doi: ojm/1200690003.

[142] M. E. Taylor. “Incompressible Fluid Flows on Rough Domains”. In: Semigroups of
Operators: Theory and Applications. Ed. by A. V. Balakrishnan. Basel: Birkhäuser,
2000, pp. 320–334. doi: 10.1007/978-3-0348-8417-4_32.

[143] A. F. M. Ter Elst and D. W. Robinson. “Elliptic operators on Lie groups”. In: Acta
Appl. Math. 44 (1996), pp. 133–150. doi: 10.1007/BF00116519.

[144] G. Teschl. Jacobi operators and complete integrable nonlinear lattices. Vol. 72. Math.
Surveys Monogr. Providence, RI: Amer. Math. Soc., 2000. url: https://www.mat.
univie.ac.at/~gerald/ftp/book-jac/jacop.pdf (visited on 09/05/2023).

[145] P. Tolksdorf. “R-sectoriality of higher-order elliptic systems on general bounded
domains”. In: J. Evol. Equ. 18 (2018), pp. 323–349. doi: 10.1007/s00028-017-
0403-5.

[146] P. Tolksdorf. “On the Lp-theory of the Navier-Stokes equations on Lipschitz domains”.
PhD thesis. TU Darmstadt, 2017. url: http://tuprints.ulb.tu-darmstadt.de/
5960/ (visited on 06/30/2022).

[147] P. Tolksdorf. “On the Lp-theory of the Navier–Stokes equations on three-dimensional
bounded Lipschitz domains”. In: Math. Ann. 371 (2018), pp. 445–460. doi: 10.1007/
s00208-018-1653-4.

[148] P. Tolksdorf and K. Watanabe. “The Navier–Stokes equations in exterior Lipschitz
domains: Lp-theory”. In: J. Differential Equations 269 (2020), pp. 5765–5801. doi:
10.1016/j.jde.2020.04.015.

[149] F. Treves. Topological Vector Spaces, Distributions and Kernels. Vol. 25. Pure and
applied mathematics. New York, NY: Acad. Press, 1967.

https://doi.org/10.1007/s00205-012-0506-7
https://doi.org/10.1007/s00205-012-0506-7
https://doi.org/10.1007/978-3-0348-0551-3
https://doi.org/10.1515/9781400883882
https://doi.org/10.1515/9781400883882
https://doi.org/ojm/1200690003
https://doi.org/10.1007/978-3-0348-8417-4_32
https://doi.org/10.1007/BF00116519
https://www.mat.univie.ac.at/~gerald/ftp/book-jac/jacop.pdf
https://www.mat.univie.ac.at/~gerald/ftp/book-jac/jacop.pdf
https://doi.org/10.1007/s00028-017-0403-5
https://doi.org/10.1007/s00028-017-0403-5
http://tuprints.ulb.tu-darmstadt.de/5960/
http://tuprints.ulb.tu-darmstadt.de/5960/
https://doi.org/10.1007/s00208-018-1653-4
https://doi.org/10.1007/s00208-018-1653-4
https://doi.org/10.1016/j.jde.2020.04.015


124 — Bibliography

[150] H. Triebel. “Function spaces in Lipschitz domains and on Lipschitz manifolds.
Characteristic functions as pointwise multipliers”. In: Rev. Mat. Complut. 15 (2002),
pp. 475–524. doi: 10.5209/rev_REMA.2002.v15.n2.16910.

[151] H. Triebel. Theory of Function Spaces II. Mod. Birkhäuser Class. Basel: Springer,
1992. doi: 10.1007/978-3-0346-0419-2.

[152] G. Verchota. “Layer potentials and boundary value problems for Laplace’s equation
on Lipschitz domains”. PhD thesis. University of Minnesota, 1982.

[153] A. Vieru. “On null controllability of linear systems in Banach spaces”. In: Systems
Control Lett. 54 (2005), pp. 331–337. doi: 10.1016/j.sysconle.2004.09.004.

[154] G. Wang. “L∞-Null Controllability for the Heat Equation and Its Consequences
for the Time Optimal Control Problem”. In: SIAM J. Control Optim. 47 (2008),
pp. 1701–1720. doi: 10.1137/060678191.

[155] G. Wang, M. Wang, C. Zhang, and Y. Zhang. “Observable set, observability, inter-
polation inequality and spectral inequality for the heat equation in Rn”. In: J. Math.
Pures Appl. 126 (2019), pp. 144–194. doi: 10.1016/j.matpur.2019.04.009.

[156] G. Wang and C. Zhang. “Observability inequalities from measurable sets for some
abstract evolution equations”. In: SIAM J. Control Optim. 55 (2017), pp. 1862–1886.
doi: 10.1137/15M1051907.

[157] L. Weber. “One-dimensional Quasicrystals, Finite Sections, and Invertibility”. Ger-
man. Bachelor thesis. Technische Universität Hamburg, 2018.

[158] W. Wei and Z. Zhang. “Lp resolvent estimates for constant coefficient elliptic
systems on Lipschitz domains”. In: J. Funct. Anal. 267 (2014), pp. 3262–3293. doi:
10.1016/j.jfa.2014.08.010.

[159] L. Weis. “Operator-valued Fourier multiplier theorems and maximal Lp-regularity”.
In: Math. Ann. 319 (2001), pp. 735–758. doi: 10.1007/PL00004457.

[160] A. Yagi. “Abstract quasilinear evolution equations of parabolic type in Banach
spaces”. In: Boll. Unione Mat. Ital. 5 (1991), pp. 341–368.

[161] X. Yu, K. Liu, and P. Chen. “On null controllability of linear systems via bounded
control functions”. In: 2006 American Control Conference. Piscataway: IEEE, 2006,
pp. 1458–1461. doi: 10.1109/ACC.2006.1656423.

https://doi.org/10.5209/rev_REMA.2002.v15.n2.16910
https://doi.org/10.1007/978-3-0346-0419-2
https://doi.org/10.1016/j.sysconle.2004.09.004
https://doi.org/10.1137/060678191
https://doi.org/10.1016/j.matpur.2019.04.009
https://doi.org/10.1137/15M1051907
https://doi.org/10.1016/j.jfa.2014.08.010
https://doi.org/10.1007/PL00004457
https://doi.org/10.1109/ACC.2006.1656423

	Contents
	Introduction
	Finite Sections of Discrete Schrödinger Operators
	Introduction
	The Finite Section Method
	FSM-simple Operators
	Outline

	Approximation of Band Operators
	Band Operators and the Finite Section Method
	Limit Operators
	Spectral and Fredholm Theory

	Periodic Schrödinger Operators
	Limit Operators and Invertibility
	One-sided Periodic Schrödinger Operators
	Periodic Schrödinger Operators with {0,λ}-valued Potentials

	FSM for Periodic Schrödinger Operators
	Applicability Analysis of the Finite Section Method
	Algorithmic Analysis of {0,λ}-valued Potentials
	Optimality of the Applicability Results


	Observability and Control of Non-autonomous Cauchy Problems
	Introduction
	Abstract Observability and Applications
	Approximate Null-controllability and Duality
	Outline

	Evolution Families and Elliptic Operators
	Abstract Non-autonomous Cauchy Problems
	Properties of Non-autonomous Elliptic Operators

	Observability on Measurable Sets in Time
	Density Point Induced Partitions of Measurable Sets
	Non-autonomous Lebeau–Robbiano Strategy
	Interpolation Estimate

	Observability for Non-autonomous Elliptic Operators
	Geometric Conditions and Uncertainty Estimates
	Sufficient and Necessary Conditions for Observability


	Strong Solutions to the Navier–Stokes Equations in Lipschitz Domains
	Introduction
	The Stokes Operator and the Stokes Semigroup on Lp
	Functional Analytic Consequences and Outline

	The L2-Dirichlet Problem for the Stokes Resolvent System
	Functional Analytic Properties of the Stokes Operator
	R-Sectoriality and Maximal Regularity
	Boundedness of the H-infinity-calculus
	Domains of Fractional Powers
	The Weak Stokes Operator

	Global Strong Solutions to the Navier–Stokes Equations

	Bibliography

