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Abstract
Today’s public Internet availability and capabilities
allow manifold applications in the field of multime-
dia that were not possible a few years ago. One
emerging application is the so-called Networked Mu-
sic Performance, standing for the online, low-latency
interaction of musicians. This work proposes a
stand-alone device for that specific purpose and is
based on a Raspberry Pi running a Linux-based op-
erating system.
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1 Introduction

The ways of today’s online communication are
versatile and rapidly evolving. The trend went
from text-based communication, over audio-
based communication, and finally constituted in
multimedia-based communication. One arising
branch of online communication is the so-called
Networked Music Performance (NMP), a spe-
cial application of Audio over IP (AoIP). It al-
lows musicians to interact with each other in
a virtual acoustic space by connecting their in-
struments to their computers and a software-
based link-up. This procedure allows artistic
collaborations over long distances without the
need of traveling and hence, can enrich the life
of artists. Instead of increasing the content di-
mensionality and therefore the data rate, the
challenge in AoIP is to fulfill a certain delay
threshold that still allows musical interaction.

For the purpose of providing an easy-to-use
system realization, an all-in-one device, entitled
the JamBerry, is presented in this work. The
proposed system, as shown in Fig. 1, consists
of the well-known Raspberry Pi [1] and several
custom hardware extensions. These are neces-
sary since the Raspberry Pi does not provide
high-quality audio output and no audio input at
all. Furthermore, the proposed device includes
several hardware components allowing a quick

and simple connection of typical audio hard-
ware and instruments. The Raspberry Pi itself
can be described as chip-card-sized single-board
computer. It was initiated for educational pur-
poses and is now widely-used, especially in the
hardware hobbyist community since it provides
various interfaces for all sorts of extensions.

Figure 1: The JamBerry Device

The paper is structured as following. An in-
troduction into the topic of Audio over IP is
given in Section 2, including the requirements
and major challenges when building such a sys-
tem. Section 3 gives a detailed view on the ac-
tual AoIP software running on the JamBerry.
The necessary extensions of the Linux audio
drivers and the integration in the ALSA frame-
work is depicted in Section 4. The custom hard-
ware extensions to the Raspberry Pi are ex-
plained in Section 5. Section 6 highlights the ca-
pabilities of the JamBerry in the contexts of au-
dio and network parameters, whereas conclud-
ing thoughts can be found in Section 7.

2 Audio over IP

Transmission of Audio over IP-based networks
is nowadays a wide-spread technology with two
main applications: Broadcasting audio streams
and telephony applications. While the first one
provides no return channel, the second one al-
lows for direct interaction over large distances.
Although, the requirements in terms of audio



quality and latency for playing live music to-
gether are not fulfilled by current telephony sys-
tems.

The massive spreading of broad-band Inter-
net connections and increase in network reliabil-
ity allows the realization of AoIP systems now.
Therefore, this topic gained much research at-
tention in the last years. A good introduction
into the topic of Networked Music Performances
and the associated problems can be found in [2],
while [3] gives an extensive overview of existing
systems.

An early approach was SoundWIRE [4] by
the Center for Computer Research in Music and
Acoustics (CCRMA), where later JackTrip [5]
was developed. JackTrip includes several meth-
ods for counteracting packet loss such as over-
lapping of packets and looping of data in case
of a lost packet. It is based on the JACK sound
system, just like NetJack [6] that is now part of
JACK itself. To avoid the restriction to JACK,
Soundjack [7] is based on a generic audio core
and hence, allows cross-platform musical online
interaction.

The Distributed Musical Rehersal Environ-
ment [8] focuses on preparing groups of musi-
cians for a final performance without the need
to be at the same place. Remote rehersal is
also one of the applications of the DIAMOUSES
framework [9] that has a very versatile platform
including a portal for arranging jam sessions,
MIDI support and DVB support for audience
involvement.

2.1 Requirements

The goal of this project was to build a com-
plete distributed music performance system to
show the current state of research and estab-
lish a platform for further research. The sys-
tem is supposed to be usable in realistic envi-
ronments such as rehearsal rooms. Therefore,
it should be a compact system that integrates
all important features for easy to setup jam-
ming sessions. This includes two input chan-
nels with various input capabilities to support
high-amplitude sound sources such as keyboards
or preamplified instruments, as well as low-
amplitude sound sources like microphones and
passive guitar pickups. Furthermore, it should
drive headphones and provide line-level output
signals.

The system should support sampling rates
of 48 kHz with a bit depth of 16 bit. Higher
values do not provide much benefit in quality.

Furthermore, no further signal processing steps,
depending on highly-detailed signaled represen-
tations, are involved. To allow the interaction
with several musicians but still stick to the com-
putational constraints of the Raspberry Pi, the
system shall support up to four interconnected
JamBerries.

2.2 Challenges

Transmission of audio via the Internet is
considerably different from point-to-point dig-
ital audio transmission techniques such as
AES/EBU [10] and even Audio over Ether-
net (AoE) techniques like Dante or EtherSound
[11]. The transmission of data packets via the
Internet is neither reliable nor properly pre-
dictable. This leads to audio data being consid-
erably delayed or even vanished in the network.

This is commonly counteracted by using large
data buffers where the packets arriving in ir-
regular time intervals are additionally delayed
so that late packets can catch up. Unfortu-
nately, large buffers are contradictory to the re-
quirements of distributed music performances
since a minimum latency is essential. Inter-
action of several musicians is solely achievable
when the round trip delay does not exceed a
certain threshold [12; 13]. Secondly, even large
buffers do not prevent dropouts resulting from
lost packets. Therefore, this project takes two
completive approaches:

• Audio data packets that do not arrive in
time are substituted by a technique called
error concealment. Instead of playing back
silence, audio is calculated from preceding
data.

• The data buffer length is dynamically ad-
justed to the network conditions. This en-
ables minimum latency while still providing
good audio quality.

3 Software System

The AoIP software itself is a multi-threaded
C++11 application running in user space. It
accesses the audio hardware via the well-known
ALSA [14] library. The user interaction takes
place via a WebSocket interface that enables the
use of a JavaScript/HTML GUI that can be ac-
cessed via the integrated touchscreen as well as
from a remote PC or tablet. The WebSocket
interface is provided by a library [15] written
during this project running the WAMP [16] pro-
tocol.
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Figure 2: Data flow of the JamBerry software

The data flow of the audio through the soft-
ware is depicted in Fig. 2. Audio is captured
from the hardware via the ALSA library. As
soon as a block (120 or 240 samples) of new data
is available, it is taken by the CaptureController
that mixes the signal down to a single channel.
Transmitting multiple streams is possible, too,
but provides a negligible benefit in this scenario.
The data can be transmitted as raw data. Al-
ternatively, the required data rate can be re-
duced by utilization of the Opus [17; 18] low-

latency coding procedure. The encoding is done
by the EncoderStream that passes the data to
the sender for sending it to all connected peers
via unicast UDP. Currently, there is no discov-
ery protocol implemented, so the peers have to
be entered manually. As soon as the data is re-
ceived at the receiver, it is decoded and pushed
into the receiver buffer queue. The Playback-
Controller mixes the data from various sources
and enables ALSA to access the result. Thus,
a continuous reading of data is realized. In the
case of missing data an error concealment pro-
cedure is triggered to replace the missing data
and avoid gaps in the playback. The current
implementation utilizes the concealment proce-
dure from the Opus codec, since its complexity
is low in contrast to other known concealment
strategies [19; 20; 21]. Alternatively, the last
block can be repeated until newer data arrives
(so-called ”wavetable mode” as in [5]). The
queuing process at the receiver is explained in
more detail in the following.

3.1 Adaptive Queuing

In order to achieve minimum latency while
maintaining good audio quality, the length of
the audio buffer is adjusted to the network con-
ditions within the playback thread. The corre-
sponding control routine is depicted in Fig. 3.
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Figure 3: Process of Playback Thread

The ALSA data queue is kept very short to
avoid unnecessary delays that would increase
the overall latency. The PlaybackController
monitors the state of ALSA and just before the
hardware will request new data, it is written to
the ALSA buffer. Whenever current audio data
exists in the moment of the hardware request,
this data is utilized. In the case of missing data,
the error concealment routine is triggered to
produce the corresponding data. The computa-



tion of concealment data takes some time. This
period of time is taken into account to provide
the data just at the right point in time.

In order to maintain a reasonable buffer size,
a simple open-loop control was implemented. A
buffer size that is unreasonably large would re-
sult in useless delay. When the buffer is too
small, a major part of the audio packets arrives
too late. Although a certain amount of packets
can be concealed, the audio quality decreases
with a rising amount of lost packets.

Right after a new connection was established,
the buffer size is set to a very high value. In the
following few seconds, the length of the queue in
samples Q is measured and the standard devi-
ation σQ is calculated. After the measurement
phase is over, the optimal queue length is cal-
culated as

Qopt = β · σQ, (1)

where the constant β ≥ 1 accounts for pack-
ets outside the range of the standard deviation.
When the current queue length is outside the
interval

[Qopt −Qtol, Qopt +Qtol], (2)

the corresponding number of samples is dropped
or generated. Once the queue is adjusted to the
current network characteristic, this occurs very
infrequently so the audible effect is insignificant.
The parameters β and Qtol are used to trade-off
the amount of lost packets, and therefore the
audio quality, against the latency.

4 Linux Kernel Driver

The Raspberry Pi has neither audio input nor
proper audio output. The existing audio output
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Figure 4: Structure of ASoC and the embed-
ment into the Linux audio framework

is driven by a pulse-width modulation (PWM)
interface providing medium quality audio. For-
tunately, there is another possibility for audio
transmission: The Broadcom SoC on the Rasp-
berry Pi provides a digital I2S interface [22] that
can be accessed by pin headers. Together with
an external audio codec as explained in the next
section, this enables high quality audio input
and output. However, the Linux kernel lacked
support for the I2S peripheral of the Rasp-
berry Pi. An integral part of this project was
therefore to write an appropriate kernel driver.

Since this driver should be as generic as pos-
sible, it is implemented as a part of the ALSA
System on Chip (ASoC) framework. It is a sub-
system of ALSA tailored to the needs of embed-
ded systems that provides some helpful abstrac-
tions that makes it easy to adapt the driver for
use with other external hardware. Actually, to-
day there is quite a large number of both open
and commercial hardware that uses the driver
developed during this project.

Fig. 4 depicts the general structure of ASoC
as used for this project. When an application
starts the playback of audio, it calls the cor-
responding function of the ALSA library. This
again calls the appropriate initializers for the in-
volved peripheral drivers that are listed in the
machine driver. In particular this is the codec
driver that is responsible for control commands
via I2C, the I2S driver for controlling the digital
audio interface, and the platform driver for com-
manding the DMA engine driver. DMA (Direct
Memory Access) is responsible for transmitting
audio data from the main memory to the I2S
peripheral and back. The I2S peripheral for-
wards this data via the I2S interface to the audio
codec. For starting the playback of the codec,
the codec driver will send an appropriate com-
mand by using the I2C subsystem. The codec
driver is used for transmitting other codec set-
tings such as volume, too.

These encapsulations and generic interfaces
are the reason for the software structure’s flex-
ibility and reusability. For using a new audio
codec with the Raspberry Pi, only the codec
driver and the slim machine driver have to be
replaced. In many cases only the wiring by the
machine driver has to be adapted since there
are already many codec drivers available. The
spreading of these drivers is based on the fre-
quent usage of ASoC on different platforms.



5 Hardware

Since the Raspberry Pi does not provide proper
analog audio interfaces, major effort was spent
designing audio hardware, matching the NMP
requirements. Furthermore, a touchscreen for
user-friendly interaction was connected that re-
quires interfacing hardware. Due to these ex-
tensions, the JamBerry can be used as a stand-
alone device without the need of external pe-
ripherals such as a monitor.

An overview of the external hardware is de-
picted in Fig. 5. The extension’s functionality
is distributed module-wise over three printed
circuit boards: A codec board that contains
the audio codec for conversion between analog
and digital domain. It is stack mounted on the
Raspberry Pi. This board is connected to the
amplifier board that contains several amplifiers
and connectors. The third board controls the
touchscreen and is connected to the Raspberry
Pi via HDMI. In the following, the individual
boards are explained in more detail.
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Figure 5: Hardware Overview

5.1 Codec Board

The main component on the digital audio board
is a CS4270 audio codec by Cirrus Logic. It has
integrated AD and DA converters that provide
sample rates of up to 192 kHz and a maximum
of 24 bits per sample. It is connected to the I2S
interface of the Raspberry Pi for transmission of
digital audio and to the I2C interface for con-
trol. A linear voltage regulator provides power
for the analog part of the audio codec, while
the digital part is directly driven by the voltage
line of the Raspberry Pi. The audio codec is
controlled by an external master clock genera-
tor. This enables fine-grained synchronization

of the sampling frequency on different devices
and prevents clock drifts as shown in [23]. The
MAX9485 clock generator provides this possi-
bility by a voltage controlled oscillator that can
be tuned by an external DAC.

5.2 Amplifier Board

The analog audio board is designed to provide
the most established connection possibilities.
On the input side two combined XLR/TRS con-
nectors allow the connection of various sources
such as microphones, guitars or keyboards.
Since these sources provide different output lev-
els that have to be amplified to line-level for
feeding it into the audio codec, a two-stage non-
inverting operational amplifier circuit is placed
channel-wise in front of the AD conversion unit.
It is based on OPA2134 amplifiers by Texas In-
struments that have proven their usability in
previous guitar amplifier projects. The circuit
allows an amplification of up to 68 dB.

On the output side a direct line-level output
is provided as well as a MAX13331 headphone
amplifier. It can deliver up to 135 mW into
32 Ω headphones. Furthermore, the analog au-
dio board contains the main power supply for
the JamBerry.

5.3 Touchscreen Driving Board

In order to provide enough display space for a
pleasant usage experience, but still maintain a
compact system size, a 7 ” screen size is used.
A frequently used, thus reliable, and afford-
able resistive touchscreen of that size is the
AT070TN92. For using it together with the
Raspberry Pi, a video signal converter is needed
to translate from HDMI to the 24 bit parallel in-
terface of the TFT screen. This is provided by a
TFP401A by Texas Instruments. The touch po-
sition on the screen can be determined by mea-
suring the resistance over the touch panel. This
measurement is subject to noise that induces
jittering and results in imprecise mouse point-
ers. The AD7879-1W touch controller is used
to conduct this measurement since it provides
integrated mean and median filters that reduce
the jitter and is controlled via I2C. The same
interface is provided by a DAC for controlling
the backlight of the TFT. An additional cable
connection for the I2C connection was avoided
by reusing the DDC interface inside the HDMI
cable as carrier for the touch and brightness in-
formation.



6 Evaluation

The system was evaluated in terms of overall
latency introduced by the network as well as
audio quality.

6.1 Network

In order to evaluate the behavior of the system
under various and reproducible network condi-
tions, a network simulator was implemented.
Fig. 6 shows the use of a single JamBerry device
connected to the simulator that bounces the re-
ceived data back to the sender.

Raspberry Pi

Audio Codec

Echo Server Simulator

Figure 6: Software Evaluation System

For calibrating the simulator to real condi-
tions a network connection of 13 hops to a
server, located in a distance of 450 km, is used.
Fig. 7 shows the distribution of the packet de-
lay. The average delay is about 18 ms with a
standard deviation of 4 ms.
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Figure 7: Time series and histogram of the
packet delay over the test route

The overall latency is measured by generating
short sine bursts and feeding them into the Jam-
Berry. This signal is compared to the resulting
output signal by means of an oscilloscope. In
addition, GPIO pins of the Raspberry Pi are
toggled when the sine burst is processed in dif-
ferent software modules as presented in Sect. 3.
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Figure 8: Journey of a Sine Burst

A resulting oscillogram can be seen in Fig. 8.
The overall latency is about 40 ms. The time
between sending and reception is 15 ms. This
matches the time for the actual transmission.
Between decoding and mixing, the packet is de-
layed in the buffer queue for about 16 ms. This
buffering is needed to compensate the high jitter
of the connection.

For the following evaluation, the overall la-
tency is measured by using the above method
while recording the amount of lost packets.
Fig. 9 demonstrates the influence of factor β
in Eq. (1) while having a constant jitter vari-
ance of 9.5 ms2. With low β, the optimal queue
length is short, so the overall latency is short,
too. Although, since there is less time for late
packets to catch up, the amount of packet loss
is very high. With increasing β, the amount
of lost packets decreases, but the latency in-
creases. Since sophisticated error concealment
algorithms can compensate up to 2% packet
loss [19], a constant β = 3 is chosen for the
next evaluation, which is illustrated in Fig. 10.
It demonstrates how the control algorithm han-
dles various network conditions. With increas-
ing network jitter variance, the system is able
to adapt itself by using a longer queue length.
This increases the overall latency, but not the
packet loss so the audio quality stays constant.



6.2 Audio

The evaluation of the JamBerry’s audio qual-
ity was performed module-wise. Therefore, the
audio output, audio input, the headphone am-
plifier and pre-amplifiers were independently in-
spected. First of all, the superiority of the pro-
posed audio output in contrast to the original
PWM output shall be demonstrated.

-20 -10 -6 -3 0

−80

−60

−40

−20

0

Level in dBFS

T
H
D

in
d
B

PWM output Codec output

Figure 11: THD of the Raspberry Pi PWM and
the codec board output for a 1 kHz sine using
different signal levels

If a 1 kHz sine tone is replayed using both
outputs accordingly and inspect the correspond-
ing output spectra, as done in Fig. 12, it be-
comes apparent that the quality is increased
significantly using the new codec board. The
PWM output introduces more distortion, visi-
ble in Fig. 12 in form of larger harmonics at mul-
tiples of the fundamental frequency. For exam-
ple, the amplitude of the first harmonic differs
in about 40 dB. Also the noise floor at higher

Level THD SNR

in dBFS in dB in dB

Outputs

PWM output 0 -57 55

Codec output 0 -81 80

Input

Codec input 0 -91 71

Table 1: Digital audio hardware characteristics

Gain THD SNR

in dB in dB in dB

Amplifiers

Headphone 16 -85 79

Input 17 -81 66

Input 34 -74 48

Table 2: Analog audio hardware characteristics

frequencies is significantly lower. A difference
of up to 10 dB can be recognized in Fig. 12. At
50 Hz ripple voltage from the power supply can
be seen. Using a power supply of higher quality
can reduce this disturbance.

The distortion and noise, audio hardware in-
troduces to audio signals signal is typically ex-
pressed in total harmonic distortion (THD) and
Signal-Noise-Ratio (SNR), respectively. THD
describes, in most conventions, the ratio of the
energy of harmonics, produced by distortion,
and the energy of the actual signal. In contrast,
SNR represents the ratio between the original
signal energy and the added noise.

The THD’s of the two outputs are illustrated
for several signal levels in Fig. 11. Apparently,
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the THD of the new codec board is at least
−20 dB lower than the original output for all
analyzed signal levels.

These outcomes and the corresponding mea-
surement results of the other audio hardware
modules are listed in Tab. 1 and 2. The identi-
fied values should allow a high-quality capturing
and playback of instruments. Analog amplifica-
tion is always connected with the addition of
noise. Therefore, the values of the input am-
plifier decrease with an increase of gain. For
achieving even better quality, the flexibility of
the device allows for connection of almost any
kind of music equipment, like favored guitar am-
plifiers or vintage synthesizers.

7 Conclusions

The goal of this project was to create a stand-
alone device, called the JamBerry, capable of
delivering the well-known experience of a dis-
tributed network performance in a user-friendly
way. The device is based on the famous Rasp-
berry Pi and is enhanced by several custom
hardware extensions: a digital and an analog ex-
tension board, providing high-quality audio in-
terfaces to the Raspberry Pi, and a touchscreen
to allow standalone operation of the device.

The performance was evaluated under lab
conditions and the authors assume that the sys-
tem and especially the audio quality shall sat-
isfy the need of most musicians. Besides the de-
scribed device design proposal, the main author
shares the ALSA kernel driver that is included
in the Linux mainline kernel since version 3.14
allowing the versatile connection of the Rasp-
berry Pi with external audio hardware.
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