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Abstract

Several methods for computing the smallest eigenvalues of a symmetric and
positive definite Toeplitz matrix T have been studied in the literature. The
most of them share the disadvantage that they do not reflect symmetry prop-
erties of the corresponding eigenvector. In this note we present a Lanczos
method which approximates simultaneously the odd and the even spectrum
of T at the same cost as the classical Lanczos approach.
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1 Introduction

Several approaches have been reported in the literature for computing the smallest
eigenvalue of a real symmetric, positive definite Toeplitz matrix. This problem is
of considerable interest in signal processing. Given the covariance sequence of the
observed data, Pisarenko [14] suggested a method which determines the sinusoidal
frequencies from the eigenvector of the covariance matrix associated with its mini-
mum eigenvalue.

Cybenko and Van Loan [3] presented an algorithm which is a combination of bisec-
tion and Newton’s method for the secular equation. Replacing Newton’s method by
a root finding method based on rational Hermitian interpolation of the secular equa-
tion Mackens and the present author in [11] and [12] improved this approach sub-
stantially. Hu and Kung [8] considered a safeguarded inverse iteration with Rayleigh
quotient shifts, and Huckle [9], [10] studied the spectral transformation method.



Trench [15] and Noor and Morgera [13] generalized the method of Cybenko and Van
Loan to the computation of the complete spectrum. A disadvantage of all of these
approaches is that neither of them exploits symmetry properties of the eigenvectors.

Let J, = (0int1-i)ij=1,..n denote the (n,n) flipmatrix with ones in its secondary
diagonal and zeros elsewhere. A vector # € IR" is called symmetric if + = J,z,
and it is called skew-symmetric (or anti-symmetric) if @ = —J, . It is well known
(cf. Andrew [1], Cantoni and Butler [2]) even for the larger class of symmetric and
centrosymmetric matrices that every eigenspace of a matrix C, in this class (i.e.
Cotl—int1—; = ¢;j for every 1,5 = 1,...,n) has a basis of vectors which are either
symmetric or skew-symmetric, and that there exists a basis of IR" consisting of [n/2]
symmetric and |n/2| skew-symmetric eigenvectors of C,. We call an eigenvalue A
of €, even and odd, respectively, if there exists a corresponding eigenvector which
is symmetric and skew-symmetric, respectively.

In [18] and [19] we improved the methods of [11] and [12] for computing the smallest
eigenvalue of a symmetric Toeplitz matrix T, using even and odd secular equations
and hence exploiting the symmetry properties of the eigenvectors of 7T),.

Andrew [1], Cantoni and Butler [2] and Trench [16] (the latter for symmetric Toeplitz
matrices only) took advantage of symmetry properties to reduce the eigenvalue
problem for €, to two eigenproblems of half the dimension. For a symmetric Toeplitz
matrix T, € R", T,, = (t,_;|), their approach is as follows:

If n = 2m is even then T,, may be rewritten as
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The second equation ([:]TZJm + 1)@ = A @ of (1) is equivalent to
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(JwHE 4+ 1, T Jo)e = (HypJp + T = A,

and therefore x is a symmetric eigenvalue of T,, if and only if & = #(1 : m) is an
eigenvector of

(T + Hyp )& = \i. (2)

Similarly @ is a skew-symmetric eigenvector of T), if and only if & = x(1 : m) is an
eigenvector of

(T — Hypdy )7 = A3 (3)



Hence the eigenvalue problem T,,2 = Az has been reduced to two eigenvalue problems
of dimension m = n/2. Ilf n = 2m+1 is odd then in an analogous way the eigenvalue
problem can be reduced to two eigenproblems of dimensions m and m + 1.

Andrew [1] and Cantoni and Butler [2] derived (2) and (3) and the corresponding
equations for odd dimension n but they did not specify methods for the solution of
these problems. Trench [16] applied the methods from [15] to problems (2) and (3)
taking advantage of the fact that H,, := H,,J,, is a Hankel matrix and employing
fast algorithms for the solution of linear systems with Toeplitz-plus-Hankel matrices

(cf. Heinig, Jankowski and Rost [7]).

In this note we consider a symmetry exploiting variant of the Lanczos method. It
is well known that the accuracy of an approximation to an eigenvalue A obtained
by the Lanczos method is influenced mainly by the relative separation of A from
the other eigenvalues of T),. The bigger the separation is the better is the approx-
imation. Therefore to compute the smallest eigenvalue of T, (or the lower part of
the spectrum of T,) it is often advantageous to apply the inverted Lanczos method,
i.e. to determine the approximation from the projection of the eigenvalue problem
Ttz = A1z to the Krylov space Kip(T7 1, u) := span {u, T u, ..., T 1 u} (cf. [5],
9)).

Obviously, if the initial vector u is symmetric or skew-symmetric then the whole
Krylov space K¢(T !, u) belongs to the same symmetry class (and the same state-
ment holds for Kj(T,,u) or the vector spaces constructed in a rational Krylov
method or in Davidson’s method. Hence, the following considerations hold for these
methods, too). For the restriction of T, to the space of symmetric vectors and to
skew-symmetric vectors the gaps between consecutive eigenvalues usually will be
bigger than for the original matrix T},. Thus, if the symmetry class of the principal
eigenvector is known in advance then the computation of the smallest eigenvalue by
the inverted Lanczos method can be accelerated by choosing the initial vector u in
the appropriate symmetry class.

However, the symmetry class of the principal eigenvector is known in advance only
for a small class of Toeplitz matrices. The following result was given by Trench [17]:

Theorem 1:
Let

is

1
T = (i ismtens 3= — [ F(O)cos(j0)d0, 5 =0,1,2,0on =1,
0

where F' @ (0,7) — IR is noninereasing and F(0+) =: M > m := F(n—). Then for
every n the matriz T, has n distinct eigenvalues in (m, M), its even and odd spectra
are interlaced, and its largest eigenvalue is even.

In general the smallest odd and even eigenvalues of T, have to be determined and
the smaller one of them is the requested principal eigenvalue of T),.

In Section 2 we specify an algorithm which simultaneously executes the inverted
Lanczos method for a symmetric and for a skew-symmetric initial vector. It is im-



portant to note that in every step only one linear system with system matrix 7}, has
to be solved. Moreover, for symmetry reasons the level-1-operations in the Lanczos
method have to be performed only for the upper half of the vectors. Therefore, if
s € IR" 1s symmetric and a € IR" is skew-symmetric then the method produces
orthonormal bases of the Krylov spaces Ki(T7',s) and Kx(T ', a) essentially at
the same cost as the Lanczos method for T,, and a general initial vector uw. In Sec-
tion 3 we report on extensive numerical examples which demonstrate the favourable
behaviour of the method.

2 A symmetry exploiting Lanczos method

Let T, := (t|i_j|)i7j:17...7n be a symmetric and positive definite Toeplitz matrix. The
key to the simultaneous Lanczos methods with symmetric and skew-symmetric
initial vectors is the following simple fact: If v € IR"™ solves the linear system
T,v = w then the symmetric part vy := 0.5(v + J,v) of v solves the linear sys-
tem T,v, = 0.5(w + J,w) =: ws, and the skew-symmetric part v, := v — v, solves
the linear system T,v, = w — ws.

This observation leads to the following basic form of the
Symmetry Exploiting Lanczos Iteration

Let py = Jp1 # 0, 1 = —Jq1 # 0 be given initial vectors.
SetﬁOZ(SO:O;pOZQOZO;

p1=p1/llplls @ = q/l|lal;
for k= 1,2, ... until convergence do
W = pr + Gk
solve T\,v = w for v
vs = 0.5 % (v + J,v); v, = 0.5 (v — J,0);
ap = vl * py; Ve = V) K s
Vg = Vg — Qg * pp — Bt * Prot; Vg = Vg — Yk * Qr — Op—1 * Qr—1;
Br = ||vs|l; Ok = ||vall;
Pt = Us/ B Qht1 = Va/Ok;
end

The iteration on the left is exactly the Lanczos method for T}, with the symmetricini-
tial vector py, and on the right we have the Lanczos method with the skew-symmetric
initial vector ¢;. Selective or even full re-orthogonalization could be incorporated on
either side. However, since we are interested in the smallest eigenvalue of T, only and
since for the inverted Lanczos method this eigenvalue can be expected to converge
first re-orthogonalization is not necessary. This consideration is supported by the
large number of examples that we considered and on which we report in Section 3.

The symmetry exploiting Lanczos iteration simultaneously determines orthogonal



matrices Py, := [p1,pa, ..., pr] and Q¢ := [¢1, ¢z, - . ., gx] and two tridiagonal matrices

ar 0 QTR 0
Sy = L h and Ap = 0
e B e T Gk
0 Br-1 oy 0 Oh—1 Vk

where S, = PIT 1P, and Ay, = QIT-1Q, is the orthogonal projection of 77! to
the Krylov space K(T7!, p1) and Kr(T7', q1), respectively. Hence the eigenvalues of
Sy, and Ay are the Ritz values approximating the even and odd eigenvalues of 7)7!.

If vy =: 1/ps is the maximal eigenvalue of Sj with corresponding normalized eigen-

vector y then it is well known (cf. [4]) that there exists an eigenvalue k =: 1/X of
T-1 such that

|vs = & < [ Bryl, (4)

ie.
w < s Byl =t ps. (5)
Likewise if v, =: 1/, is the maximal eigenvalue of A; and z denotes a normalized

eigenvector corresponding to v, then there exists an eigenvalue k =: 1/X of T such
that

)\_ a

Rtol bl = (%)
Hence, each of the intervals [ps — o5, s+ 0], 05 := pspes/(1—ps), and [fta— 04, pra+04),
04 := papta/(1 — pg), contains at least one eigenvalue of T,. In all of our examples
p:= min{ps — o5, g — 0.} was a lower bound of the minimum eigenvalue of T,,.

However, this is not necessarily the case depending on the minimum of the angles
between the eigenvector of T, corresponding to the minimum eigenvalue and the
initial vectors p; and ¢;. To be on the save side one may determine the Schur
parameters of T}, — pl, by Durbin’s algorithm after the method terminated.

Each of the vectors v, and pj on the right of the algorithm is symmetric and each of
the vectors v, and ¢ is skew-symmetric. Hence, the level-1-operations in the body
of the symmetry exploiting Lanczos iteration can be performed for the upper half
of the vectors only, and the following procedure results.

Let [1;¢], t € IR"™', be the first column of the symmetric and positive definite
Toeplitz matrix T, of even dimension n = 2m. The following MATLAB func-
tion [la,k]=seli(t,m,tol) determines an approximation to the smallest eigen-
value of T, such that the relative error is smaller than tol. k& is the dimension
of the Krylov space that is needed to obtain this accuracy. A MATLAB function
v=solve_toeplitz(t,n,w) which yields the solution v of T),v = w is used.



function [la,k]=seli(t,m,tol);

p=rand(m,1); g=rand(m,1);
p=p/sqrt (2*p’*p); q=q/sqrt (2*q’*q) ;
err=1; k=0;
while err > tol

k=k+1;

w(1l:m)=q+p; w(m+1i:n)=flipud(p-q);
v=solve_toeplitz(t,n,w);
vs=0.5%(z(1:m)+flipud(z(m+1:n))); va=z(1l:m)-vs;

ms (k,k)=2%vs’*p; ma (k,k)=2*va’*q;
vs=vs-ms(k,k) *p; va=va-ma(k,k)*q;
if k>1

vs=vs-ms(k,k-1)*p_old; va=va-ma(k,k-1)*q_old;
end
[evs,las]=eig(ms); [eva,laal=eig(ma) ;
[las,is]=sort(diag(las)); [laa,ial=sort(diag(laa));
ms (k,k+1)=sqrt(2*vs’*vs); ma(k,k+1)=sqrt (2*va’*va);
ms (k+1,k)=ms(k,k+1); ma(k+1,k)=ma(k,k+1);

if laa(k) < las(k)
err=abs(ms(k+1,k)*evs(k,is(k)))/las (k) ;

else

err=abs(ma(k+1,k)*eva(k,ia(k)))/laa(k); end
p_old=p; q-old=q;
p=vs/ms(k+1,k); g=va/ma(k+1,k);
end;

la=min(1/las(k),1/laa(k));

The modifications for Toeplitz matrices of odd dimension n = 2m + 1 are obvious.

3 Numerical Considerations

The most costly step in the algorithms of Section 2 is the solution of the linear
system

T.v=w. (7)

(7) can be solved efficiently in one of the following two ways. Durbin’s algorithm for
the corresponding Yule-Walker system supplies a decomposition LT, LT = D where
L is a lower triangular matrix and D is a diagonal matrix. Hence, in every iteration
step the solution of equation (7) requires 2n* flops. This method for solving system
(7) is called Levinson-Durbin algorithm.

For large dimensions n equation (7) can be solved using the Gohberg-Semencul
formula for the inverse 7' (cf. [6])
1

T = m(GGT — HHT), (8)



Table 1. Average number of flops and iteration steps

dim Lanczos method SELI
flops steps flops steps
32 |3.68k4 (1.13E5) | 7.53 | 2.78kK4 (8.60F4) | 5.73
64 | 1.02E5 (4.39E5) | 8.00 | 8.00E4 (3.39E5) | 6.15
128 | 3.27E5 (9.39E5) | 7.95 | 2.51E5 (7.04E5) | 5.89
256 | 1.28K6 (2.17F6) | 8.35 |9.67FE5 (1.62F6) | 6.07
512 | 5.20E6 (5.11FE6) | 8.73 |3.83FK6 (3.77F6) | 6.16
1024 | 2,16 £7 (1.25E7) | 9.24 | 1.58E7 (9.38K6) | 6.45
where
1 0 0 0 0 0 0 0
Y1 1 0 Yn—1 0 0 0
G = Y2 Y1 1 0 and H := | Yn—2 Yn-1 O 0
Yn-1 Yn-2 Yn-3 --- 1 (7 Y2 Y3 0

are Toeplitz matrices and y denotes the solution of the Yule-Walker system T,,_;y =
t.

The advantages associated with equation (8) are at hand. Firstly, the representation
of the inverse of T}, requires only n storage elements. Secondly, the matrices G, G,
H and HT are Toeplitz matrices, and hence the solution T~ !w can be calculated in
only O(n logn) flops using the fast Fourier transform. Experiments show that for
n > 512 this approach is actually more efficient than the Levinson-Durbin algorithm.

To test the improvement of the symmetry exploiting Lanczos iteration upon the
ordinary Lanczos method we considered Toeplitz matrices

T =63 0Toms, (9)

i=1

where ¢ is chosen such that the diagonal of 7' is normalized to 1, n; and 0, are
uniformly distributed random numbers in the interval [0,1] and Ty = (cos(6(i —

I)))ij=1,..n (cf. Cybenko and Van Loan [3]).

For each of the dimensions n = 32, 64, 128, 256, 512 and 1024 we considered
100 test examples. Table 1 contains the average number of flops and the average
dimension k& of the Krylov spaces needed to determine an approximation to the
smallest eigenvalue with relative error less than 107%. Here we solved the linear
systems using the Levinson-Durbin algorithm. In parenthesis we added the average
number of flops using the Gohberg-Semencul formula.



Huckle [9] suggested to use the error estimate corresponding to (4) after a small
number of steps of the inverted Lanczos process to obtain a good lower bound o
of the smallest eigenvalue of T, and to continue with the spectral transformation
Lanczos method with this shift, i.e. the Lanczos method for (7, — ol,)'. The
example above demonstrates that after a very small number of Lanczos steps a good
approximation of the smallest eigenvalue is derived. Hence, the variant of Huckle
usually will not pay.

4 Concluding remarks

In this note we presented a symmetry exploiting variant of the inverted Lanczos
method to determine the smallest eigenvalue of a real symmetric and positive definite
Toeplitz matrix which improves the classical Lanczos method considerably. In the
numerical examples we solved Toeplitz systems by the Levinson-Durbin algorithm
or by the Gohberg-Semencul formula. Superfast Toeplitz solvers can be incorporated
as well reducing the complexity of the method to O(n(logn)?).
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