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Abstract: Tracking and localizing objects is a central
problem in computer-assisted surgery. Optical coher-
ence tomography (OCT) can be employed as an optical
tracking system, due to its high spatial and temporal
resolution. Recently, 3D convolutional neural networks
(CNNs) have shown promising performance for pose
estimation of a marker object using single volumetric
OCT images. While this approach relied on spatial in-
formation only, OCT allows for a temporal stream of OCT
image volumes capturing the motion of an object at high
volumes rates. In this work, we systematically extend 3D
CNNs to 4D spatio-temporal CNNs to evaluate the impact
of additional temporal information for marker object
tracking. Across various architectures, our results
demonstrate that using a stream of OCT volumes and
employing 4D spatio-temporal convolutions leads to a
30% lower mean absolute error compared to single vol-
ume processing with 3D CNNs.
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Introduction

Minimally invasive surgery (MIS) enables fewer post-
operative complications compared to open surgery, by
significantly reducing the access incisions and surgery
trauma [1]. However, performing MIS is a challenging task,
due to a limited field of view and lacking perception of
force feedback, which requires computer-assisted surgery,
particularly precise surgery tool tracking. In this regard,
several vision-based approaches using images and videos

have been proposed [2]. While 2D images and videos only
provide 2D spatial information, typical tissue structures

and object movements are inherently three dimensional.

Therefore, for manymedical applications using volumetric

imaging is preferable or required, e.g. for prostate radiation

therapy [3], or for precise pose estimation of a marker ob-

ject [4]. Some modalities provide not only volumetric im-

ages, but also allow for imaging with a high temporal

resolution, such as optical coherence tomography (OCT),

and hence can be used as an imaging modality for an op-

tical tracking system [5, 6].
To overcome the limitations of classical tracking ap-

proaches, which rely on handcrafted features limited to
specific application scenarios such as skin [6] or eye
motion tracking [7], deep learning has been proposed
recently. In particular, 3D convolutional neural networks
(CNNs) have shown promising results for precisely
localizing small objects based on OCT-data [4]. This
approach employed 3D CNNs on a single volumetric im-
age, allowing to turn arbitrary small objects into a marker
for pose estimation. However, as OCT allows for a tem-
poral stream of OCT image volumes, it seems reasonable
that the preceding image volumes at high volume rates
may carry information on the object’s motion. This leads
to the challenging problem of 4D deep learning, which is
largely unexplored so far and has only been addressed in
a few applications such as functional magnetic resonance
imaging [8], computed tomography [9] and OCT-based
force estimation [10] as well as OCT-based tissue motion
estimation [11].

In this work, we systematically extend 3D CNNs to 4D
spatio-temporal data processing and evaluate whether a
streamofOCT volumes improves object position estimation
performance. Spatio-temporal processing with CNNs can
be done by stacking multiple frames into the channel
dimension [12], or by using full or factorized spatio-
temporal convolutions [13, 14]. Even though these
methods have shown promising performance for video
analysis tasks [12, 13, 14], it is largely unclear how CNNs
perform with 4D, as they have not been systematically
studied. Therefore, we evaluate four widely used CNN ar-
chitectures and consider several different types of convo-
lutions for 4D data processing. We employ volume
stacking, factorized, and full spatio-temporal
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convolutions, and compare the position estimation per-
formance to single volume processing. For systematic
evaluation of our methods, we consider the problem of
position estimation of a marker object, with a specialized
OCT setup which enables fast acquisition of sufficient 4D
data with a well-defined ground-truth.

Materials and methods

Network architectures

We evaluate four differentmethodswith four different architectures to
predict the current position of a marker object using a stream of OCT
volumes. Similar to a previous approach [4], we define our own ar-
chitectures following the architecture principles of four widely used
state-of-the-art architectures, ResNet, Inception, ResNeXt, and Den-
senet. Each of our custom architecture consists of an initial part with
five convolutional layers, followed by architecture modules, shown in
Figure 1. Note, the number of building blocks inside the modules are
tuned based on validation performance. For each architecture, we
evaluate four different types of convolutions, see Figure 2.

First, we consider a previous approach onmarker object tracking
[4], and use 3D convolutions applied to single volumetric images,
which is our baseline. (3D)

Second, we stack multiple consecutive volumes into the channel
dimension of the network’s input and use a 3D convolution. (3D-C)

Third, we examine factorized spatio-temporal convolutions [14],
which split a full spatio-temporal convolution into a temporal and a
spatial convolution. Every single spatio-temporal convolution is
replaced by two successive factorized 4D convolutions. Note, there are
no native implementation of 4D operations available for standard li-
braries such as Tensorflow or PyTorch. Hence, we implement our
custom 4D convolution and pooling operation in Tensorflow, using
multiple native 3D convolution and pooling operations across multi-
ple time-shifted volumes. (F-4D)

Fourth, we consider 4D spatio-temporal convolutions and
replace each 3D convolution and 3D pooling with the corresponding
4D counterparts. (4D)

The networks are trained for 350 epochs with a batch size of 18
and Adam for optimization of the mean squared error (MSE) loss
function.

Data set

For data acquisition, we use a commercially available swept-source
OCT device (OMES, OptoRes), a second scanning stagewith twomirror
galvanometers, an achromatic lens, a marker object, and a holder for
the marker object. The marker object is made of a polyoxymethylene

block with a size of 1 mm3. The whole setup is shown in Figure 3.
We consider volumes with a size of 32 × 32 × 32 with a corresponding
field of view (FOV) of 3 × 3 × 3.5 mm, and an acquisition speed of
833 volumes per second. Our OCT setup is enhanced with a second
scanning stage with two mirror galvanometers controlled by stepper
motors,which enable to shift the FOV in the lateral dimensions. Also, a
third motor shifts the FOV in the axial dimension, by setting the
pathlength of the OCT’s reference arm. In this way, our OCT-setup
allows for shifting the FOV in all spatial directions withoutmoving the
scan head. This can be utilized for automatic OCT volume acquisition
and ground-truth annotation. In particular, instead of moving the

Figure 1: Each of our custom architecture
consists of an initial part with five
convolutional layers, followed by
architecture modules that represent
subsequent architecture blocks. Note, the
first block in each module downsamples
the input dimensions by a factor of two. The
different architecture blocks are (a) ResNet,
(b) Inception (c), ResNeXt, and (d)
Densenet. We use a global average pooling
(GAP) layer after the last module, and the
output is directly fed into a fully connected
output layer (FC).

Figure 2: The different convolutions we employ: (3D) 3D spatial
convolution; (3D-C) 3D convolution, with temporal information
stacked into the channel dimension; (F-4D) Factorized 4D spatio-
temporal convolution; (4D) 4D spatio-temporal convolution.
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marker object, we move the FOV of the OCT and the current motor
positions represent the relative marker position in the FOV.

Next, we repeat the following steps and define a set of target
motor positions that shift the FOV, representing smooth marker
movements. First, a set of 60 to 90 target positions nj are randomly
generated for the three stepper motors. Then, piecewise cubic spline

interpolation f : R+ → R
3, τ↦ f(τ) is used to obtain a smooth function

connecting the target positions, f(τj) � nj. Afterward, 500 motor
points are sampled from the piecewise cubic spline function f(τ)with
equidistant parameter values τ. Note, this does not lead to equidistant
data points, due to the curvature of the spline function. We repeat this
procedure, to obtain the full data set with 7,000 examples. Afterward,
we acquire one volumetric image for each target motor positions, that
serve directly as ground truth annotation. In summary, we use
5000 volumes for training and 1000 each for validating and testing our
models. For our experiments, we evaluate a sequences length of five

consecutive volumes. The corresponding target t ∈ R3 refers to the last
position in one sequence.

Results

We report themean absolute error (MAE) and relativemean
absolute error (rMAE) for our experiments in Table 1. The
MAE is given in μm based on a calibration between galvo
motor steps and image coordinates. The rMAE is relative to
the target’s standard deviation. Overall, using temporal
data improves performance for all architectures, while 4D
spatio-temporal convolutions perform best. On average the
inference times are 6 ms and 20 ms for 3D and 4D archi-
tectures, respectively.

Discussion and conclusion

Our results in Table 1 show that using a sequence of volumes
consistently outperforms single volume usage. This agrees
with our expectation that a temporal stream of volumetric
images should improve position estimates. Analyzing the
different types of temporal processing shows that increasing
complexity of the 4D image processing results in better pre-
dictions. Stacking the volume sequence in the channel
dimension already improves performance by 15% on average
compared to using a single volumetric input, while the
number of parameters remain similar. This indicates that

even with processing only at the network’s input, valuable
temporal information can be extracted. Note that temporal
information is lost after the first convolution operation,
because no temporal convolutional operation is performed
[13]. Using 4D factorized convolutions instead improves per-
formance by 25% on average compared to using a single
volumetric input, and the number of parameters is only
increased by less than 11%. This shows that the 4D data
structure can be leveraged by factorized convolutions similar
to previous findings on 3D spatio-temporal data [14]. Finally,
full 4D spatio-temporal convolutions lead to the best perfor-
mance, demonstrating that 4D CNNs are able to extract
valuable spatio-temporal features from 4D data. Moreover,
our methods perform consistently across different network
architectures. Notably, the type of network architecture only
hasaminor impacton theerrors,whileDensenet results in the
lowest overall error. The more costly 4D convolutions also
affect inference times,whichwouldbe important for real-time
tracking. While the 3D CNNs can provide position estimates

Figure 3: The experimental setup: Marker object (left); OCT setup (right). The marker object is attached to a holder.

Table : Comparison of the different architectures with the different
types of convolutions.

Type MAE (μm) rMAE Parameters

ResNet
D . ± . . ± . 

D-C . ± . . ± . 

F-D . ± . . ± . 

D . ± . . ± . 

Inception
D . ± . . ± . 

D-C . ± . . ± . 

F-D . ± . . ± . 

D . ± . . ± . 

ResNeXt
D . ± . . ± . 

D-C . ± . . ± . 

F-D . ± . . ± . 

D . ± . . ± . 

Densenet
D . ± . . ± . 

D-C . ± . . ± . 

F-D . ± . . ± . 

D . ± . . ± . 
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with up to 166 Hz, our 4D CNNs still achieve 50 Hz. Consid-
ering that there are no optimized 4D operations available yet,
these results are promising for real-time applications such as
motion tracking. Overall, we provide a comprehensive study
of 4D spatio-temporal CNNs in comparison to their 3D coun-
terparts and demonstrate that position estimations of an ob-
ject can be improved significantly when a stream of volumes
is used. As our methods are generic, they can be easily
transferred to other tasks or imaging modalities where se-
quences of volumetric images are of interest, e.g., motion
tracking based on volumetric ultrasound ormagnetic particle
imaging.
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