
Forwarding Strategies for
6LoWPAN-Fragmented IPv6 Datagrams

Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von
Andreas Weigel

aus
Potsdam, Deutschland

2017

Date of Oral Examination September 05th, 2017

Chair of Examination Board Prof. Dr. Heiko Falk

Institute of Embedded Systems
Hamburg University of Technology

First Examiner Prof. Dr. Volker Turau

Institute of Telematics
Hamburg University of Technology

Second Examiner Prof. Dr. Andreas Timm-Giel

Institute of Communication Networks
Hamburg University of Technology

Acknowledgment

Several people supported me in the long, difficult and sometimes frustrating process
of finishing this dissertation. I want to seize the opportunity to express my deeply felt
gratitude towards them.

First, I would like to thank my supervisor Prof. Turau for his guidance, encourage-
ment and intellectual input, but also for being the kind of superior he is.

I would like to thank my colleagues, who made everydays work at the institute a
pleasant experience. Special thanks go to my “roommates” Bernd-Christian Renner,
Martin Ringwelski and Florian Kauer for bearing with me and my curses and com-
plains and for providing so much valuable input. Further, I’d like to thank Stefan
Unterschütz and Martin Ringwelski for their implementation work on CometOS and
its 6LoWPAN module and the numerous fruitful discussions.

I want to thank my parents for their genes and the continuous support I experienced
throughout my life. And finally: Thanks Susanne, for your encouragement and help
and for taking on life together with me.

Andreas Weigel
Lüneburg, November 2017

Abstract

Recent efforts towards a fully standardized protocol stack (RPL, CoAP, 6LoWPAN)
for “low power and lossy networks” (LLNs) contribute to realize the vision of the
Internet of Things. 6LoWPAN is a central building block among these protocols,
enabling the transmission of IPv6 datagrams using the IEEE 802.15.4 protocol for
wireless mesh networks. To provide IPv6’ minimal MTU of 1280 bytes by means of
the 127 byte frames of IEEE 802.15.4, 6LoWPAN defines a fragmentation mechanism.
However, the use of fragmentation is suspected to amplify existing problems for the
communication in LLNs and thereby decrease reliability.

This dissertation explores the impact of 6LoWPAN fragmentation on the reliabil-
ity of transmissions for the LLN-typical collection traffic pattern and implementation
strategies to improve this reliability. The two route-over forwarding methods “Assem-
bly” and “Direct” are considered as basic implementations. The former reassembles
a datagram at every IPv6 hop, the latter uses a cross-layer approach to forward indi-
vidual fragments as soon as they arrive.

An extension to a bit-error-based analytical model for fragmented 6LoWPAN trans-
missions is developed to estimate the number of created frames and to better reflect
current implementation realities. Furthermore, simulative and testbed studies are car-
ried out to evaluate the basic implementations and the extension developed as part of
the dissertation, adaptive rate-restriction.

Based on the results of these parameter studies, the author proposes a mechanism
called “6LoWPAN Ordered Forwarding” (6LoOF), which is designed to prevent local
short-term congestion by suspending transmissions at nodes that overhear ongoing
transmissions in the neighborhood. Evaluation of 6LoOf in simulation and two dif-
ferent testbeds show that – especially in combination with adaptive rate restriction
– it significantly improves the reliability of the transmission for large 6LoWPAN-
fragmented IPv6 datagrams, in some cases reducing the number of dropped datagrams
by 50 %.

Furthermore, inconsistent results between simulation and testbed triggered a de-
tailed analysis of the used MAC layer, which relied on the CSMA/CA mechanism
provided by the transceiver hardware. This experimental analysis shows that the re-
alization of IEEE 802.15.4 in hardware on many current transceivers severely impacts
the reliability of transmissions in multi-hop traffic scenarios, potentially biasing results
of research obtained with communication stacks using these realizations.

Contents

1 Introduction 1

2 Problem Statement 5
2.1 IEEE 802.15.4 . 5
2.2 6LoWPAN . 6

2.2.1 Compression and Fragmentation 6
2.2.2 6LoWPAN Routing Schemes 8
2.2.3 Basic Route-Over Forwarding Techniques 8
2.2.4 Adjacent Protocols . 9
2.2.5 LFFR . 11
2.2.6 6TiSCH . 11

2.3 Applications . 11
2.4 Energy Availability . 12
2.5 Goals of Evaluation . 13

3 Analytic Model for 6LoWPAN-Fragmented Forwarding 15
3.1 Motivation and State of The Art . 15

3.1.1 Motivation . 15
3.1.2 State of the Art . 16

3.2 Model . 17
3.2.1 Link-Layer Model . 17
3.2.2 Multi-Hop Model . 18

3.3 Evaluation . 21
3.3.1 Persistent vs. Non-Persistent 21
3.3.2 Multi-Hop Transmissions . 22
3.3.3 Additional Bits in Direct Mode 23

3.4 Conclusions . 24

4 Simulation Model and Environment 27
4.1 Frameworks and Tools . 27

4.1.1 OMNeT++ . 27
4.1.2 MiXiM . 28
4.1.3 CometOS . 29

4.2 Physical Layer Model . 29
4.2.1 Available Models for Wireless Sensor Networks 29
4.2.2 Choosing an Appropriate Model 31
4.2.3 A Measurement-Based Physical Layer 31

4.3 Automated Model Creation . 34
4.3.1 Topology Monitor . 34
4.3.2 Post-Processing . 35

i

Contents

4.4 Confidence Intervals . 38

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams 39
5.1 Related Work . 39
5.2 Modes . 41

5.2.1 Enhanced Direct Modes . 41
5.2.2 Retry Control . 42

5.3 6LoWPAN Implementation . 42
5.4 Experiment Setup . 44

5.4.1 Testbed . 44
5.4.2 Simulation . 47
5.4.3 Network Topologies . 48
5.4.4 Traffic . 50
5.4.5 Link Layer Configuration . 50

5.5 Evaluation . 51
5.5.1 First Set of Experiments . 51
5.5.2 Second Set of Experiments . 56
5.5.3 Explanation of Results . 58

6 Hardware-Assisted IEEE 802.15.4 Transmissions 61
6.1 Hypothesis . 61
6.2 Capturing Node State in Real-Time 62
6.3 Experiment Setup . 64
6.4 Evaluation . 66

6.4.1 Direct Mode . 66
6.4.2 Direct-ARR Mode . 68

6.5 Conclusions . 70

7 Basis Forwarding Techniques Revisited – a Parameter Study 73
7.1 Experiment and Simulation Setup . 73

7.1.1 Testbed . 73
7.1.2 Simulation . 74

7.2 Validation of RS-C . 75
7.2.1 PRR . 75
7.2.2 Drop Causes – 6LoWPAN Layer 76
7.2.3 Drop Causes – Link Layer . 77

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters 79
7.3.1 macMaxFrameRetries . 81
7.3.2 macMinBe . 82
7.3.3 macCcaMode . 84
7.3.4 macMaxBe . 86
7.3.5 UDP packet size LUDP . 86
7.3.6 Latency . 90
7.3.7 Pull-Based Collection . 90

7.4 Summary . 91

8 6LoWPAN Ordered Forwarding - 6LoOF 93
8.1 The 6LoOF Mechanism . 93

ii

Contents

8.1.1 Snooping . 94
8.1.2 Probing . 94
8.1.3 6LoOF Definition . 96

8.2 Implementation . 105
8.3 Experiment setup . 106

8.3.1 Testbeds . 106
8.3.2 Memory Usage . 111
8.3.3 Simulation Environment . 113

8.4 Evaluation: 6LoOF vs Plain Forwarding 113
8.4.1 6LoOF Parameters . 113
8.4.2 TB-IoT Experiments . 118
8.4.3 TB-D Experiments . 123
8.4.4 Simulation . 126
8.4.5 Summary . 137

9 Conclusion and Outlook 139

Bibliography 143

iii

List of Figures

2.1 6LoWPAN fragmentation headers . 7
2.2 Message flow in Assembly and Direct 9
2.3 Standard protocol stack for low-power lossy networks 10
2.4 Application scenario example . 14

3.1 Direct forwarding: enumeration of cases 20
3.2 Model evaluation: expected number of bits persisting/non-persisting . 22
3.3 Model evaluation: path length and retransmissions 22
3.4 Model evaluation: expected number of bits Assembly/Direct 23
3.5 Model evaluation: number of fragments 24

4.1 Extension of MiXiM classes . 33
4.2 Determination of thermal noise . 34
4.3 pe,frame against SINR . 35
4.4 Derivation of normal distribution (first step) 36

5.1 6LoWPAN implementation for CometOS 42
5.2 CometOS protocol stacks for experiments 44
5.3 Bit-error models BFSK and DSSS/O-QPSK 48
5.4 Routing trees for different networks . 49
5.5 Chain network: PRR . 51
5.6 Chain network: latency . 52
5.7 Star network: PRR . 53
5.8 Long-Y network: PRR . 54
5.9 Long-Y network: latency . 54
5.10 RS-A vs. TB-A: PRR . 55
5.11 RS-A network: latency . 56
5.12 RS-B and TB-B: PRR . 57
5.13 Testbed: latency for different forwarding modes 57

6.1 Explanation of “no-RX-while-TX” . 62
6.2 State machine for Software MAC . 63
6.3 State machine for AACK MAC . 64
6.4 Experiment setup: schematic . 65
6.5 Experiment setup: photo . 65
6.6 Sequence of states; AACK MAC, Direct mode, run 0, datagram 1 . . . 67
6.7 Sequence of states; Software MAC, Direct mode, run 0, datagram 0 . . 67
6.8 Sequence of states; AACK MAC, Direct-ARR mode, run 0, datagram 5 69
6.9 Sequence of states; AACK MAC, Direct-ARR mode, run 0, datagram 2 69

v

List of Figures

7.1 Node location and routing tree of TB-C 73
7.2 Network topologies for the parameter study 74
7.3 Validation experiment: PRR in simulation and testbed 75
7.4 Validation experiment: drop causes at 6LoWPAN layer 77
7.5 Validation experiment: drop causes at IEEE 802.15.4 link layer 78
7.6 Parameter study: macMaxFrameRetries 80
7.7 Parameter study: drop causes . 81
7.8 PRR against BEmin . 82
7.9 Drop causes against BEmin . 83
7.10 Parameter study, macCcaMode: PRR 84
7.11 Parameter study, macCcaMode: drop causes 85
7.12 Parameter study, macMaxBe: PRR . 86
7.13 Parameter study: PRR against LUDP; BEmin = 5 87
7.14 Parameter study: PRR against LUDP; BEmin = 3 87
7.15 Parameter study, LUDP: drop causes 88
7.16 Parameter study: latency . 89
7.17 Pull-based approach: collection duration and PRR 91

8.1 6LoOF concept . 95
8.2 6LoOF hidden terminal collisions at suspended nodes 95
8.3 6LoOF state machine . 97
8.4 6LoOF stop timer . 100
8.5 6LoOF node starving . 102
8.6 6LoOF deadlock prevention . 103
8.7 6LoOF implementation in CometOS 105
8.8 Topology of TB-D and RS-D1 . 106
8.9 Experiment setup for the IoTLab . 108
8.10 TB-IoT: node selection at IoTLab . 109
8.11 TB-IoT: routing topology . 109
8.12 Topologies for simulation environment 112
8.13 6LoOF parameter study: nNSWC,max 114
8.14 6LoOF parameter study: PRR vs. Tto 115
8.15 6LoOF parameter study: BE6LoOF,min, BE6LoOF,max 116
8.16 6LoOF parameter study: nqsa . 117
8.17 6LoOF parameter study: PRR vs. xEPN 117
8.18 TB-IoT: PRR . 119
8.19 TB-IoT: PRR vs. xEPN . 120
8.20 TB-IoT: drop causes . 121
8.21 TB-IoT: radio sniffers . 122
8.22 TB-D: PRR for xEPN set/cleared . 123
8.23 TB-D: drop causes . 125
8.24 TB-D: individual runs . 126
8.25 TB-D: PRR testbed/simulation and drop reasons 127
8.26 6LoOF simulation: PRR overview testbed-derived networks 128
8.27 6LoOF simulation: PRR overview idealized networks 129
8.28 6LoOF simulation: drop causes . 131
8.29 6LoOF simulation: time spent in 6LoOF states 132

vi

List of Figures

8.30 6LoOF simulation: fairness . 133
8.31 6LoOF simulation: UDP packet size 135
8.32 6LoOF simulation: frame duration for LUDP = 400 B 135
8.33 Pull-based data collection: throughput 137

vii

List of Tables

3.1 Default parameter values . 21

5.1 Time synchronization: parameters . 46
5.2 IEEE 802.15.4 link layer configuration 50

6.1 802.15.4 MAC parameters for all configurations 66
6.2 Average success rate of datagrams . 66
6.3 Fragment counts: Direct mode . 68
6.4 Fragment count: Direct-ARR . 70
6.5 Fragment count confidence intervals 70

7.1 Topology creation: configuration of transmission power 74
7.2 Validation experiments: IEEE 802.15.4 and 6LoWPAN configuration . 75
7.3 Validation experiment: PRR in simulation and testbed 76
7.4 Varying and fixed parameters used in the study 79
7.5 Determined IEEE 802.15.4 MAC parameters 92

8.1 Header dispatch type for explicit probing notification 96
8.2 Actions and variables of 6LoOF state machine 99
8.3 6LoOF-specific objects . 106
8.4 Sniffer counting categories . 110
8.5 6LoOF experiments: memory usage . 111
8.6 Parameters for 6LoOF . 114
8.7 6LoOF parameter setting . 118
8.8 6LoOF testbed evaluation parameters 118
8.9 TB-IoT configuration parameters . 119
8.10 TB-D configuration . 123
8.11 6LoOF simulation λB . 128

ix

1 Introduction

Since the beginning of the 2000s, a class of networks termed wireless sensor networks
(WSNs) have received the attention of a large research community. These usually
feature a large number of small, resource- and energy-constrained devices that form a
wireless mesh network to realize a sensing, monitoring or control task. At the time of
writing, a typical node can be expected to possess from 4 to 32 KiB of RAM and 64
to 512 KiB of program memory, drawing current in the order of a few tens of mA with
the transceiver active and a few µA when it is sleeping. Due to the nature of wireless
communication channels, links between devices are often asymmetric and lossy, prone
to interference by other wireless technologies and of transient nature due to changes
in the environment. These properties also lead to the classification of low power, lossy
networks (LLNs) for typical WSNs.

In recent years new names like cyber-physical systems, internet of things or industry
4.0 have emerged and show that the interest in ubiquitous autonomously communi-
cating systems is unbroken.

Said attention brought forth a large number of protocols specifically tailored to
cater the specialties of WSNs. Ranging from the “alphabet soup” of MAC protocols
([Ali+06]) over a plethora of routing protocols and corresponding link-quality metrics
to transport protocols replacing the ubiquitous but for wireless lossy communication
not terribly well-suited TCP, all layers of the communication stack have received due
attention. When the dust settled, standardization efforts were launched to order the
chaos.

Industry standards like ZigBee and WirelessHART based on the IEEE Standard
for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal
Area Networks (IEEE 802.15.4) were among the first of such efforts. Some years
later, the Internet Engineering Task Force (IETF) instituted several working groups
dealing with standardization of protocols for LLNs. Among them, the “IPv6 over
Networks of Resource-Constrained Nodes” (6lo) defined mechanisms to enable the
transmission of IPv6 datagrams over IEEE 802.15.4 networks, called 6LoWPAN. Its
main responsibilities are compression of the comparatively large IPv6 and UDP/TCP
headers to prevent the huge control overhead in combination with 127 B payload in
standard IEEE 802.15.4 frames and fragmentation of large datagrams that do not
fit a IEEE 802.15.4 frame even after compression. The Routing Protocol for Low
Power and Lossy Networks (RPL) and the Constrained Application Protocol (CoAP)
complete the fully standardized stack for that class of networks.

Considering the fragmentation of large datagrams it is intuitively clear that splitting
up a datagram and transmitting the individual fragments one after the other does not
improve the overall reliability of the reception of a datagram. Every single fragment
has to arrive for the datagram to be successfully received and on paths that incorporate
several wireless transmission hops, sending out a whole bunch of them can further
degrade the reliability when frames belonging to the same datagram content with
each other to acquire the wireless channel, that is, if they they can even “hear” each

1

1 Introduction

other – otherwise, senders along the same path are likely to cause hidden terminal
collisions between consecutive fragment transmissions.

While arguably a large number of applications can be satisfied with small data
payloads and low data rates and therefore are not overly concerned the issue of frag-
mentation, a number of applications with demand for large payloads and data rates
exist. Examples for such applications are smart metering and structural health mon-
itoring. Both produce comparatively large application data that periodically has to
be collected and forwarded or processed. In the other traffic direction, over-the-air-
programming (OTAP) of nodes usually is concerned with the transport of large data
blobs to reprogram nodes within a wireless network.

With fragmentation being expected to have some impact on the performance of
transmissions of large datagrams, it is desirable to have some quantitative information
available on exactly how strong this impact can be. At the time of writing, several
studies exist that examine the performance of 6LoWPAN fragmentation using either
analytical models or in most cases very simple experimental setups with only a few
number of wireless hops. All of them only cover the most basic forwarding strategies.
While some problems are identified, at the moment no comprehensive evaluation of
the 6LoWPAN fragmentation in more realistic multi-hop network environments and
considering enhancements to the forwarding exist.

This dissertation aims at providing such a comprehensive overview over 6LoWPAN
fragmentation and contains several contributions towards this aim. To be able to
better assess the influence of fragmentation on reliability, an extension to an existing
analytical model that better captures the realities of current 6LoWPAN implementa-
tions is presented. With the help of the model, it is possible to get an estimate of the
impact of fragmentation in multi-hop networks.

Furthermore, a parameter study with regard to the IEEE 802.15.4 MAC and im-
plementation parameters like the available data buffer size is carried out in simulation
and a testbed of 13 nodes. It provides an overview about suitable configuration of the
underlying IEEE 802.15.4 MAC in multi-hop traffic collection scenarios.

Because of initially inexplicable results in various testbed setups that deviated
strongly from corresponding simulations, a detailed examination of the state of the
MAC and PHY layers was carried out and revealed that the implementation of the
so-called “extended operating mode” of the used transceiver hardware caused the reli-
ability of transmissions to drop dramatically. While this effect is especially strong for
the traffic pattern caused by 6LoWPAN fragmentation, it can be generalized to other
scenarios as well and may cause bias to experiment results, whenever the extended
operating mode of this transceiver or similar modes of operation on other transceivers
is used.

To improve the overall reliability of fragmented transmissions, a novel forwarding
strategy is proposed. The 6LoWPAN ordered forwarding (6LoOF) protocol is designed
to reduce contention for the wireless channel between nodes especially in collection
traffic scenarios, while being compliant to the 6LoWPAN standard. A thorough eval-
uation of 6LoOF is presented in simulation and two testbed scenarios, facilitating the
open experiment platform of the IoTLab.

Some of the above mentioned contributions have also been published as a research
paper or article. Some chapters of this dissertation are based on and reuse parts of

2

these papers. The following list provides an overview on the publications reappearing
in this dissertation and clarifies the part of work done by me and the other authors.

• Chapter 3 is based on [WT14], which was created by me.

• Chapter 5 is based on [Wei+14b]. Martin Ringwelski provided the majority
of the 6LoWPAN implementation for CometOS, the idea to the progress-based
retry control (PRC) forwarding mode and was involved in the evaluation. I
developed the Direct-ARR mode, created most simulation scenarios and was
responsible for a major part of the evaluation. Andreas Timm-Giel and Volker
Turau gave feedback and made suggestions with regard to evaluation and editing.

• Chapter 6 is based on [WT15], which was created by me.

• Chapter 4 introduces CometOS ([UWT12]), which was initiated by Stefan Un-
terschütz and developed by Stefan Unterschütz, me and Florian Kauer.

This dissertation is structured as follows: Chapter 2 introduces the problem domain,
points out the most important protocols and approaches and defines the research goals
of the dissertation. The analytical model developed as part of this dissertation is intro-
duced in Chapter 3. This chapter also discusses the output of the model for a certain
sets of inputs, including different paths lengths, number of fragments, retransmissions
and different forwarding strategies. Chapter 4 describes the used frameworks and
tools for simulation environment and testbed deployments and the simulation model.
Furthermore, the approach to derive simulation models from testbed deployments that
serves as a validation mechanism of the simulation model is introduced. Chapter 5
contains a study on basic forwarding strategies for 6LoWPAN fragments of large IPv6
datagrams. Due to a combination of sub-optimal physical link layer model and the
transceiver’s operating mode chosen for the testbed, this chapter can be character-
ized as a “lessons learned” chapter. The issue of this operating mode is examined in
detail in Chapter 6. An experimental methodology to assess the impact of the used
transceivers “extended operating mode” is developed and applied. Chapter 7 contains
a revised parameter study of 6LoWPAN forwarding strategies using simulations and
a testbed environment. The 6LoOF protocol is introduced and described in detail in
Chapter 8. Furthermore, an evaluation of the 6LoOF protocol in comparison to the
basic forwarding modes is presented. The dissertation is concluded in chapter 9.

3

2 Problem Statement

This chapter introduces IEEE 802.15.4 and 6LoWPAN, discusses basic forwarding
strategies for 6LoWPAN fragmentation, and introduces a typical protocol stack for
the Internet of Things (IoT). Application scenarios are presented to support the sig-
nificance of evaluating 6LoWPAN fragmentation performance. Furthermore, the op-
eration in energy-constrained networks is discussed and goals of the experimental and
simulative evaluation carried out in this dissertation are stated.

In this and the following chapters, the text refers to units of data that are trans-
mitted by a node or a protocol layer, i.e., “packets”. To avoid confusion, in this
dissertation the following nomenclature is used:

• frame: A data frame (header + PHY service data unit (PSDU)) in context of
the IEEE 802.15.4 protocol, i.e., data packets used by the link layer.

• fragment: A frame carrying 6LoWPAN fragmentation information and part of
a datagram as payload.

• datagram: An IPv6 datagram. Represented by multiple fragments, if 6LoWPAN
fragmentation is applied.

• packet: A datagram carrying UDP header and payload of the TCP/IP appli-
cation layer. In the context of this dissertation it translates into a single IPv6
datagram.

2.1 IEEE 802.15.4

The “IEEE Standard for Local and metropolitan area networks – Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs)” (in this thesis referred to as
IEEE 802.15.4) was first published in 2003, with major revisions in 2006, 2011 and
2016 [06; 11a; 16]. It defines several physical (PHY) layers and a medium-access
layer (with several extensions) for low-rate wireless networks. One of the most widely
used PHYs for sensing application, for which also a large number of transceivers is
available, is the one operating in the 2.4 GHz ISM band. IEEE 802.15.4 is used as
PHY and MAC layer for the industry standard ZigBee [12b] and the IETF standard
6LoWPAN [Mon+07].

IEEE 802.15.4 defines two general operating modes: beacon-enabled and non-
beacon-enabled. The former employs so-called beacons, which are regularly broad-
casted by the coordinator of a personal area network (PAN coordinator). By means
of those beacons, a superframe structure is established, which consists of a contention
access period (CAP) and a contention-free period (CFP). In the former, nodes content
for access of the channel using a slotted carrier sense multiple access with collision
avoidance (CSMA/CA) protocol and may also try to allocate a guaranteed time slot

5

2 Problem Statement

(GTS) from the CFP. In the latter, nodes can use a previously allocated GTS to com-
municate with the PAN coordinator. During the guaranteed time slots that are not
allocated to a node, this node may turn off its transceiver to save energy, which is the
only possibility for duty cycling explicitly defined by the standard. Other protocols
may define low-power listening or low-power probing techniques but are out of the
scope of the IEEE 802.15.4 standard.

Until recently, the beacon-enabled mode only supported single hop, i.e., star topolo-
gies. An extension to IEEE 802.15.4, the distributed synchronous multi-channel ex-
tension to IEEE 802.15.4 (DSME) [12a], describes a method to extend this TDMA
scheme to multiple hops and multiple channels. A similar direction takes another
extension named TSCH [WPG15], which also uses a TDMA scheme, albeit without
making use of the beacon-enabled mode’s superframe structure. TSCH is derived from
the industry standard WirelessHART [10]. While TSCH defines the mechanisms for
nodes to communicate according to an existing communication schedule, it does not
provide any protocols to actually establish such a schedule. Recent research efforts in
that direction are Orchestra [Duq+15] and 6top, which is a standardization effort by
the IETF currently in draft state [WV16].

The non-beacon mode operates without any superframe structure or regular bea-
cons. Nodes transmit frames using an unslotted CSMA/CA protocol, which includes
a random backoff period, a clear channel assessment (CCA) and subsequent backoffs
in case the channel is considered busy.

Independently of the mode used, IEEE 802.15.4 defines retransmissions and ac-
knowledgment frames for unicast transmissions. Receivers of a frame transmit an
acknowledgment after they receive a unicast frame with the Ack Request flag set in
the frame control field. The ACK is sent after a short delay without executing the
CSMA/CA mechanism.

2.2 6LoWPAN

Being the protocol this thesis examines, the 6LoWPAN protocol is introduced in this
section, with the main focus on 6LoWPAN fragmentation.

2.2.1 Compression and Fragmentation

The reasons for the existence of the 6LoWPAN protocol are twofold: First, IPv6
specifies a minimal maximum transmission unit (MTU) of 1280 B for any link-layer
protocol below it. To transport IPv6 datagrams over an IEEE 802.15.4 link-layer
with a maximum PHY layer payload of 127 B, fragmentation at the 6LoWPAN layer
is necessary to present an interface to the IPv6 layer that supports a sufficiently large
MTU.

Secondly, the headers for IPv6 (40 B) and UDP (8 B) or TCP (20 B) are large
compared to the typical maximum PHY frame payload of 127 B. The IEEE 802.15.4
MAC header occupies up to 25 B and AES-CCM-128 encryption may use up another
21 B. Hence, the available payload size for a UDP packet in one frame can be reduced
to 33 B. Complete use of these 33 B yields an overhead ratio of 74.4 % (adding 2 B for
PHY header and the start of frame delimiter (SFD)). To reduce this high overhead
ratio, 6LoWPAN defines several compression algorithms (HC1 and HC2), which in

6

2.2 6LoWPAN

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 2 3

1 1 0 0 0 datagram size datagram tag

6LoWPAN FRAG 1 header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 2 3

1 1 1 0 0 datagram size datagram tag

datagram offset

6LoWPAN FRAG N header

Figure 2.1: 6LoWPAN fragmentation headers

turn are updated by 6LoWPAN IPHC header compression (IPHC) [HT11]. While
compression is an important topic especially for small IPv6 datagrams with only a
handful of bytes payload, it is seen as a problem orthogonal to the performance of the
fragmentation mechanism.

To implement fragmentation, 6LoWPAN defines two different fragmentation head-
ers, one for a first fragment (FRAG 1) and a different one for any subsequent fragment
(FRAG N; Fig. 2.1). Both include the uncompressed size of the IPv6 datagram and
a tag to identify the datagram the fragment belongs to. The FRAG N header addi-
tionally carries an offset field, which defines the position of the fragment within the
whole datagram given in a unit of 8 octets.

Provided with experience concerning the fragmentation of large data blocks while
working at the iEZMesh project, I expected fragmentation to amplify existing prob-
lems in multi-hop wireless mesh networks. iEZMesh was a project funded by the
German government. One of the application requirements identified for the project
was the collection of smart meter measurement tables sized 1 kB to 3 kB. With the
link-layer supporting frame sizes of 128 B, the preconditions are similar to those found
with large fragmented IPv6 datagrams over IEEE 802.15.4. To satisfy the require-
ments, we implemented a fragmentation mechanism at the transport layer, together
with an actual retransmission scheme for individual fragments based on negative ac-
knowledgments. The evaluation of the performance yielded significant reliability is-
sues for the large data blocks [Wei+14a], even in the presence of the mechanism for
retransmissions.

Considering that the loss of a single fragment leads to the loss of a whole data-
gram and the fact that typical wireless transmissions are inherently lossy due to the
properties of wireless channels, collisions and interference, I expect that 6LoWPAN
fragmentation is confronted with similar issues and that transmissions of large IPv6
datagrams via 6LoWPAN may exhibit low reliability. Further it is to be expected
that the impact of fragmentation increases with the number of fragments and the
length of a route. These considerations motivate the evaluation of the performance
of fragmentation and several forwarding strategies and the development of the new
forwarding protocol 6LoOF, which are presented in this thesis.

7

2 Problem Statement

2.2.2 6LoWPAN Routing Schemes

With 6LoWPAN, routing in general can be performed at two different layers. First,
a layer at the level 2.5 of the 6LoWPAN adaptation layer implements the routing.
In that case, some mesh routing protocol has to emulate a full broadcast domain
at the physical level for the IPv6 layer. This variant is called ımesh-under routing
[HC08; Cho+09]. Thereby, link-local addresses and link-local multi-cast can easily
be used from an IPv6 layer perspective and IPv6-based protocols can theoretically
be left unchanged. An example for this is the neighbor discovery protocol [Nar+07].
Neighbor discovery makes extensive use of link-layer multicasts, which have to be
translated to flooding the mesh network. This means that the mesh routing protocol
has to provide potentially complex mechanisms to offer reliable operation over a multi-
hop mesh network, which is far from trivial. Moreover, such mechanisms are already
available at the IPv6 network layer and have to be recreated for the layer 2.5 mesh
routing [HC08].

The other possibility is to delegate routing decisions to the IPv6 layer: Every hop
in a meshed 6LoWPAN network becomes an IPv6 routing hop. This routing scheme
is called ıroute-over [HC08]. Using route-over has several implications. First, global
IPv6 addresses ([Nar+07]) have to be used, because IPv6 forbids routing of link-local
addresses. That makes the original HC1 and HC2 compression algorithms impracti-
cal and is one reason for the introduction of the IPHC and 6LoWPAN next header
compression (NHC) [HT11]. With regard to fragmentation, route-over also means
that datagrams – sticking to a strict separation of layers – have to be reassembled at
each intermediate hop of the 6LoWPAN mesh network, because fragmentation is then
handled below the network layer.

With the creation of RPL [Win+12], a standardized routing protocol for low-power
and lossy networks at the IPv6 layer is available to be used with a route-over rout-
ing scheme, which perfectly fits the usual demands on routing protocols for typical
6LoWPAN wireless mesh networks. Considering the arguments, I decided to focus on
the evaluation of route-over, as it allows building a completely standardized protocol
stack and avoids the awkward emulation of a single hop broadcast domain above a
lossy multi-hop wireless mesh network.

2.2.3 Basic Route-Over Forwarding Techniques

As described in Sect. 2.2.2, using the route-over routing scheme implies reassembling
a datagram at every intermediate node of the wireless mesh network. This is the
first basic and most straightforward forwarding strategy and is called Assembly or
Assembly mode throughout the thesis. During the whole process of reassembling the
datagram, all fragments have to be stored in some buffer, even at intermediate nodes,
which are not concerned with the content of the datagram. Hence, for each datagram
in transit, buffer space for the whole datagram has to be available. Considering typical
resource-constraint hardware for wireless sensor networks, this is a non-negligible issue.
Furthermore, reassembling at every intermediate hop prevents pipelining of fragments
on longer (> 3) paths. Therefore, an unnecessary large end-to-end latency can be
expected (Fig. 2.2).

In contrast to this approach, which strictly preserves layer separation, a cross-layer
approach can be employed, which is called Direct or Direct mode in the remainder of

8

2.2 6LoWPAN

v1 l0 v2 l1 v3 l2 v4
m1

m2

...

mn
m1

m2

...

mn
m1

m2

...

mn

(a) Assembly

v1 l0 v2 l1 v3 l2 v4

m1

m2

...

mn

m1

m2

...
mn

m1

m2

...

mn

(b) Direct

Figure 2.2: Message flow in Assembly and Direct modes. The Direct mode has poten-
tial for pipelining as well as an increased probability for collisions.

the thesis. For each incoming first fragment, the information necessary to identify and
process subsequent fragments of the datagram is stored in a “virtual fragment buffer”.
The buffer is called virtual, because it does not store the payload data the fragment
carries, but only the metadata, i.e., information about progress and identity of the
fragment. The fragment itself is immediately scheduled for transmission to the next
hop, which is queried directly from the IPv6 layer. This is always possible, because
the IPv6 header does always fit the first fragment. Subsequent fragments then are
matched against the entries in the virtual fragment buffer and routed along the same
path. Note that the Assembly mode also uses the same path, but the moment at
which the routing decision is taken is different: with Assembly, it is the reception of
the last fragment, with Direct, the reception of the first fragment.

Using the Direct mode, datagrams have only to be stored for reassembly at their
IPv6 destination (or the 6LoWPAN border router). Hence, it provides good potential
for saving buffer space. Furthermore, pipelining on long paths becomes possible and
thereby the overall latency can potentially be reduced. On the other hand, immediate
forwarding also gives rise to self-interference. Fragments are prone to interfere with
their predecessors, which have already advanced on the routing path. This can be
especially harmful at the node two hops farther down the path, because such a node
usually will be a hidden-terminal. In this situation, the clear-channel assessment
part of IEEE 802.15.4’s CSMA/CA algorithm is not able to prevent a collision. This
increased potential for collisions is also implied in Fig. 2.2.

2.2.4 Adjacent Protocols

The IPv6-based standardized protocol stack for resource constrained networks and
devices then could be the one shown in Fig. 2.3.

Above the described combination of a route-over 6LoWPAN adaption layer and the
IPv6 network layer with RPL as routing protocol, the combination of UDP [Pos80]
and CoAP [SHB14] is used at the transport and application layers.

9

2 Problem Statement

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

6LoWPAN

IPv6 RPL

UDP

CoAP

Application

Figure 2.3: Standard protocol stack for low-power lossy networks

CoAP is similar in spirit to Hypertext Transfer Protocol (HTTP) in defining ad-
dressable resources as RESTful services. Additionally, it defines simple reliability
features, a basic congestion control mechanism and a binary representation to in-
crease efficiency. Hence, it takes on some responsibilities of a transport layer. Current
standardization and research efforts for CoAP focus, among others, on congestion
control [BGD15; Bet+15; JDK15] and blockwise CoAP transport [BS16]. The latter
introduces a mechanism to CoAP to split up large payloads into smaller blocks with
the target of avoiding to burden lower layers with “conversation state that is better
managed in the application layer”[BS16]. This includes 6LoWPAN fragmentation and
aims at reducing the need for it and thereby is fundamentally different from the ap-
proach presented in this thesis, which is to improve the performance of 6LoWPAN
fragmentation.

The RPL protocol [Win+12] defines a tree-based routing for low-power lossy net-
works, such as wireless sensor networks or cyber-physical systems. Its main ideas are
derived from the collection tree protocol [Gna+09]. It builds bi-directional routing
trees by two core mechanisms:

• Beacons called DIOs are used to form routes towards a single destination: the
root of the destination oriented directed acyclic graph (DODAG). The DIOs
propagate from the DODAG root through the network governed by the Trickle
algorithm [Lev+11].

• Communication in the opposite direction is enabled by letting each node in the
tree periodically send so-called DAOs to the DODAG root. That way, reverse
routes are installed either at each intermediate node (storing mode) or exclu-
sively at the root, which uses source routing to transmit to arbitrary nodes.

RPL has been extensively evaluated [TOV10; HC11; YCI13; CMN14; KG14; Ise+15]
and is emerging as the protocol of choice for static low power and lossy networks.

10

2.3 Applications

2.2.5 LFFR

Observing the same high probability for datagram losses when using fragmentation
that is discussed in Sect. 2.2.1, Thubert and Hui proposed a recovery mechanism for
6LoWPAN fragments at the 6LoWPAN layer itself within an IETF draft [TH14]. This
protocol works with negative acknowledgments (NACKs), issued by the 6LoWPAN
module at the IPv6 destination of a datagram. Every NACK includes a bit vector,
which marks the missing fragments. NACKs are “routed” back to the origin of the
datagram by using a reverse lookup and exchange of 6LoWPAN tag information that
is stored at the nodes and carried in the NACK, respectively.

The enhancements to 6LoWPAN forwarding of fragments presented in this thesis
could be combined with LLN fragment forwarding and recovery (LFFR) to further
improve the reliability of transmissions of large datagrams. However, at the time of
writing, the draft [TH14] has expired and has not been renewed so far.

2.2.6 6TiSCH

As described in Sect. 2.1, TSCH extension to IEEE 802.15.4 does not define any
mechanism to actually create and deploy a communication schedule for a network.
The IETF 6TiSCH working group was founded to tackle this problem and recently
published a draft for the 6top protocol [WV16] and a general architecture of using
6LoWPAN over TSCH [Thu15].

2.3 Applications

6LoWPAN is mainly designed with the goal of transporting small datagrams using the
IEEE 802.15.4 link layer. Its compression mechanisms reduce the overhead caused by
IPv6 and upper layer protocol headers and for small payloads achieve to stuff an IPv6
datagram into a single IEEE 802.15.4 frame. However, given the minimum maximum
MTU of 1280 B defined for IPv6, datagrams of this size are completely legal and there-
fore – I argue – will be used by future applications and should achieve an acceptable
performance. Furthermore, there are already several applications from the field of
wireless sensor networks which exhibit traffic patterns involving the transmission of
large data objects.

A part of the advanced metering infrastructure, which in turn is a part of the efforts
towards smart grids, is smart metering, i.e., the automated report of consumption
data of customers to utilities. While in past days, this communication was restricted
to the consumption values for a whole year, the realization of smart grids demands
for detailed load profiles with a much finer temporal granularity. Such can come
in sizes from several hundred bytes to several kibibytes, depending on the type of
the meter. One option for the transport of such data are wireless mesh networks.
Within the iEZMesh project [Wei+14a], requirements to transport load profiles of
up to 3 KiB every 15 min were identified. While the proposed solution included a
proprietary network protocol stack, a realization of such requirements with an IPv6
stack including 6LoWPAN is thinkable.

Another application scenario that potentially produces a large amount of data is
structural health monitoring of buildings and structures like bridges, which has al-
ready triggered research efforts on transport protocols for large data objects [Pae+05;

11

2 Problem Statement

Kim+07b; Kim+07a; PG10; Kur+12]. For these applications, data is created with
high frequencies and sent to a sink for offline analysis. Approaches exists to reduce the
data volume by shifting the computational effort to the sensor nodes and exchanging
partial results among nodes [Boc+11], but have been tested only with very simple one-
hop topologies. Similar with regard to the amount of data created are applications for
earthquake, volcano monitoring [Wer+06; Suz+07] and image processing applications
for, e.g., environmental monitoring [Ko+10].

In general, wherever “large” – in the sense of not fitting a IEEE 802.15.4 frame –
data has to be transferred to a data sink, 6LoWPAN fragmentation has to be applied.

2.4 Energy Availability

For many applications in the field of wireless sensor networks or the IoT, a part of
the participating nodes are powered by batteries or energy harvesters that do not
yield enough for the node to be in an “always-on” state. A large number of research
efforts for wireless sensor networks has therefore been directed at the development of
low-power protocols, aiming at the extension of the lifetime of individual nodes or the
whole network [MLT08; Bue+06]

Current available IEEE 802.15.4 transceivers consume a nearly equal amount of
power in RX and TX state. For example, the Atmel AT86RF231 consumes 12.3 mA
in RX and 14 mA in TX states according to the datasheet [14]. Put into sleep mode,
on the other hand, most current transceivers draw current less than 1 µA. There-
fore, to effectively reduce energy consumption, transceivers have to be duty cycled.
Dominant techniques to achieve low duty cycles are low-power listening [Bue+06] and
low-power probing [MLT08]. The former is usually implemented by either repeating
the transmission of a frame multiple times (until the receiver wakes up and notices the
activity) or by using long preambles. The latter takes an opposite approach: nodes
ready to receive send a short probing frame to signal their readiness and senders stay
active and listen for such a probe if they have something to send. Both approaches are
mainly applicable for low-data rate applications – if nodes have to transmit continu-
ously, the reduction in energy conservation is decreased. Also, low-power mechanisms
trade savings in energy consumption with increased latency and decreased throughput
due to waiting for other nodes’ active phases.

To the best of my knowledge, there is no low-power listening or probing mechanism
standardized for IEEE 802.15.4. According to [11a], nodes that act as routers in non-
beacon enabled PANs have to be always on, because they can not know when a frame
will be transmitted to them [Wat+16]. In beacon-enabled networks (Sect. 2.1), nodes
can sleep in the contention free period during slots unused by them.

Various energy harvesting technologies have been proposed to allow for sustainable
operation of sensor nodes [SK11]. Different technologies have been evaluated, ranging
from photovoltaics over thermoelectric to piezoelectric. Harvesting solutions can be
further differentiated by the type of storage system they use. Typically, at least one
rechargeable battery is used. Additionally, supercapacitors, which allow for a near-
infinite number of recharge cycles are integrated as primary storage to prevent many
unnecessary shallow recharge cycles of the main battery [Ren13].

Most existing solutions aim at supporting nodes that are duty-cycled. However,
with solar panels of a given dimension and a suitable environment, it is possible to

12

2.5 Goals of Evaluation

provide enough power for perpetual operation of always-on nodes. This has been
demonstrated in a field test during the HelioMesh project, where solar panels were
used to provide the energy for the motors of heliostats as well as an attached sensor
node [Unt14].

Current IEEE 802.15.4 transceivers, e.g., the Atmel ATmega256RFR2, offer a low
power RX state, cutting the current consumption by a factor of two. While the
concrete working details of this mode of operation of the mentioned transceiver are not
published by Atmel, I suspect that this mode implements a straightforward 50 % duty
cycling scheme at the level of IEEE 802.15.4 symbols that activates the transceiver as
soon as the preamble is received. It is claimed that activation of this mode decreases
the receiver sensitivity by about 3 dB. While such transceiver supported energy saving
modes can in their current state not be expected to replace more advanced low-power
listening or probing techniques, they can help to reduce the overall energy consumption
of routing nodes to allow for smaller dimensions of harvesters.

2.5 Goals of Evaluation

As stated in Sect. 2.2.1, the main goal of this dissertation is to evaluate the perfor-
mance of 6LoWPAN fragmentation and the different forwarding strategies for large
IPv6 datagrams. Furthermore, techniques to improve the situation are to be devel-
oped and their performance compared to the existing approaches. This is done for
IEEE 802.15.4/6LoWPAN networks that use the non-beacon enabled mode of oper-
ation and assume that at least routing nodes within a network are always on. There
are several reasons for this decision:

• The sending of large datagrams implies comparatively high data rates. For
those, low-power listening or probing techniques are not well suited.

• At the time of writing, there is no standardized low-power mode of operation
for IEEE 802.15.4, other than nodes sleeping in the CFP. The beacon-enabled
modes, however, are not standardized for multi-hop operation until very recently
with the proposal of DSME. Aiming at a fully standardized protocol stack, I
decided to go for the unslotted operation with always-on nodes.

• Of the potential applications introduced in Sect. 2.3, smart metering can employ
several grid-powered nodes (at electricity meters) and other applications (envi-
ronmental, structural monitoring) are eligible for a backbone of routing nodes
with generously dimensioned harvesting solutions.

Recent TDMA-based extensions to IEEE 802.15.4 (DSME, IPv6 over the TSCH
mode of IEEE 802.15.4e (6tisch)) are promising alternatives to also provide good per-
formance for large fragmented datagrams but are not considered in this dissertation.
They yet have to prove that the proposed scheduling solutions work in large networks
and with larger payloads [Wat+16].

A typical application scenario may employ the IETF stack described in Sect. 2.2.4.
Fig. 2.4 shows a topology similar to those obtained from a testbed in the iEZMesh
project. While during the project proprietary protocols were used, the network could
also utilize an IETF stack and contain a number of always-on nodes that form a

13

2 Problem Statement

Figure 2.4: Application scenario with routing (blue) and leaf nodes (gray). The topol-
ogy is similar to the routing topology observed during a field test in the
iEZMesh smart metering project. The central node represents the wireless
sink.

RPL routing tree, complemented by a number of RPL leaf nodes that do not actively
participate in forwarding of data. Different from the routing nodes, these leaf nodes
are expected to sleep most of the time and become active only when they have data
to send. The extensions to IPv6 neighbor discovery for 6LoWPAN defines message
formats and options to existing message formats to cope with such leaf nodes.

14

3 Analytic Model for 6LoWPAN-Fragmented
Forwarding

This chapter introduces an extension to an existing analytical model for 6LoWPAN-
fragmented transmissions of IPv6 datagrams.

3.1 Motivation and State of The Art

This section discusses the motivation for the creation of the model and provides an
overview on existing related work.

3.1.1 Motivation

There are two major reasons to analytically model the process of 6LoWPAN fragment
forwarding. First, for a fragmented datagram to be received successfully, all fragments
belonging to that datagram have to be received successfully. It is intuitively clear that
increasing the size of the datagram and hence the number of fragments decreases the
probability for success on lossy wireless links, especially if transmissions via multiple
hops are considered. Instead of relying on intuition, an analytical model can help to
quantify this issue.

Secondly, between the two basic forwarding modes introduced in Sect. 2.2.3, there
is a major difference in how they handle fragments of datagrams that get lost during
reception. By definition, the Assembly mode will never forward any fragments of an
incompletely received datagram: if any fragment gets lost, the datagram will not be
sent to the IP layer and therefore will not be routed further. The Direct mode, on
the other hand, forwards fragments as soon as they arrive. Thus, even if a datagram
is lost early on the path, some of its fragments may propagate through the network
without adding to the overall goodput. To quantify the magnitude of this effect is
another motivation for creating a model.

Finally, there are two diametrically different approaches to handle the situation of
a failed transmission of a fragment:

1. Assume the fragment and therefore the whole datagram is lost and in conse-
quence, abort transmission of the whole datagram – this is called non-persisting
strategy in the remainder of the thesis.

2. Continue sending fragments even after a transmission failure of a fragment and
also continue sending subsequent fragments if a fragment is missing. In the
former case, there is a probability that not the fragment, but the ACK was
lost and therefore the datagram is not lost as a whole – this is called persisting
strategy in the remainder of the thesis.

15

3 Analytic Model for 6LoWPAN-Fragmented Forwarding

By means of an analytical model, these different approaches can be evaluated. I
expect the persisting strategy to increase the success rate of datagrams marginally
and at the same time to exhibit a comparatively large number of sent frames due
to failed datagrams whose remains continue to propagate through the network. For
this reason, the persisting strategy is not ideal for route-over schemes without any
end-to-end recovery mechanism of fragments.

3.1.2 State of the Art

Several research efforts have been undertaken to analyze the performance of 6LoWPAN
fragmentation over IEEE 802.15.4 networks using analytical models.

The model presented in Section 3.2 is derived from the model of Ayadi et al., who
analyzed the efficiency of different TCP segment sizes ([AMR11]). Their model is
based on bit error probabilitys (BEPs) that are stochastically independent. Frag-
mented datagrams, link-layer retransmissions, forward error correction and multiple
hops are modeled. Typical effects of wireless channels like collisions, quality degrada-
tion or (self-) interference, on the other hand, are not captured by a channel model
based solely on BEPs. The persistent strategy is used in case of failures. For a given
set of input parameters, a datagram success rate and the expected number of bits sent
can be determined with their model.

Subsequent work of Ayadi et al. [Aya+11] reuses their basic model and extend
it to assess the effectiveness of LLN Fragment Forwarding and Recovery (LFFR),
which is described within an internet draft of the IETF ROLL working group [TH14]
and has expired at the time of writing. LFFR defines a layer-2.5 transport protocol
for 6LoWPAN fragments, which enables the 6LoWPAN layer to retransmit individual
fragments triggered by negative acknowledgments from the receiver. For this scenario,
their assumption that nodes continue sending fragments although a former fragment
has failed, is a reasonable one.

A different approach that tries to take into account collisions and is not specifically
tailored to typical 6LoWPAN scenarios has been followed by Di Marco et al. [Di +12],
which is in turn based on [Bia06]. Their models are based on Markov chains and model
the transmission of frames over multiple hops by state transitions, taking into account
clear-channel assessment, backoffs and link-layer retries. Output values of this model
are latency, energy consumption (derived from a node’s state) and reliability. This
approach is potentially much more accurate than a model based solely on bit-errors,
which neglects any potential and impacts of collisions between frames. However, their
model is based on average rates of arrival and therefore can not capture the effect that a
large number of frames arrive at a node simultaneously, as it is typically the case using
fragmentation. The effect of a thus filled transmission queue is an increased probability
for self-induced interference, which is neglected by the model (Sect. 2.2.3). This model
was also extended by Meier and Turau, who added the handling of downstream traffic
[MT15]. The extended model also recognizes the possibility for acknowledgments with
data frames and with each other and take into account the increased probability of
collisions after a collision (because two nodes start transmitting at the same time).

An analytical model that does take into account 6LoWPAN fragmentation and
transmission of large datagrams was introduced by Ludovici, Di Marco, Calveras
and Johansson [Lud+14]. It is used to compare the performance of CoAP’s block-
wise transfer [BS16], which is still being standardized at the time of writing, and

16

3.2 Model

6LoWPAN fragmentation. Their results suggest that “6LoWPAN fragmentation out-
performs CoAP blockwise transfer with regard to latency independently from the
update generation rate and the number of nodes”. CoAP blockwise transfer exhibits
a higher reliability in congested traffic scenarios. The model is restricted to single-hop
scenarios and therefore not applicable to the multi-hop scenarios considered in this
thesis.

3.2 Model

The model is an extension of the one presented by Ayadi et al. and follows the
same approach taken to derive probabilities and expectation values presented in their
paper [AMR11]. It calculates the number of expected bits sent and the frame success
probability (FSP) depending on link BEPs, the number of link-layer attempts and
a forward error correction (FEC), i.e., a redundancy ratio which yields a number
of correctable bit errors. It is assumed that bit errors are independent of each other.
Additionally, it is assumed that duplicates are detected by the 6LoWPAN layer, which
is realistic as it needs to keep track of the state of fragmented datagrams anyway.

As described in Sect. 3.1.2, the major difference between the existing model and
the extension is the handling of failures and partial failures. While Ayadi et al. let a
sender always send all fragments, I assume that a sender gives up on a datagram in case
of a failure or partial failure. I also consider both forwarding techniques introduced
in Sect. 2.2.3 in that context: Assembly and Direct mode. I implemented both the
extended model and the original model of Ayadi. The latter was slightly modified to
get comparable resulting quantities. Consistent with Sect. 3.1.1, the extended model
for Assembly and Direct mode is referred to as non-persisting model, the original
model is referred to as persisting model in the remainder of this thesis.

3.2.1 Link-Layer Model

At the link layer, three different outcomes of a transmission are defined:

• The transmission failed (probability pf,k)

• The transmission partially failed, i.e., the frame arrived but the ACK was never
received (probability pp,k)

• The transmission was successful, frame and ACK arrived (probability ps,k)

At their hearts, both models are based on the pe,k of a link k. In case of the occurrence
of an uncorrectable bit error, the transmission is considered unsuccessful, yielding the
introduced probabilities as

pf,k = 1−
c∑
i=0

(LF

i

)
pie,k(1− pe,k)LF−i (3.1)

pp,k = (1− pf,k)(1− (1− pe,k)LA) (3.2)

ps,k = (1− pf,k)(1− pe,k)LA = 1− (pp,k + pf,k) (3.3)

17

3 Analytic Model for 6LoWPAN-Fragmented Forwarding

with the number of correctable bit errors c and the link layer frame sizes LF and LA

for a data and Ack frame, respectively. I stick with the approach from [AMR11] to
model FEC only for the data packet, not the acknowledgment. While the model itself
thereby regards the possibility of a FEC mechanism, for the evaluation in this chapter
I consider c = 0 and do not go into further details about the derivation of the number
of fragments for a given datagram size.

Based on those basic formulas, the probabilities for success, partial failure and
failure after r send attempts can be derived as

P s,k =

r∑
j=1

ps,k(1− ps,k)j−1 =

r∑
j=1

ps,k

j−1∑
i=0

(j − 1

i

)
pip,kp

j−1−i
f,k (3.4)

Pp,k = (pp,k + pf,k)r − prf,k =

r∑
j=1

(r
j

)
pjp,kp

r−j
f,k (3.5)

P f,k = prf,k (3.6)

and the conditional expectation value for the number of sent bits in each case can
then be derived by enumerating all possible outcomes after r attempts as

Hs,k =
1

P s,k

 r∑
j=1

ps,k

j−1∑
i=0

(j − 1

i

)
pip,kp

j−1−i
f,k (jLF + (i+ 1)LA)

 (3.7)

Hp,k =
1

Pp,k

(
r∑
i=1

(r
i

)
pip,kp

r−i
f,k (rLF + iLA)

)
(3.8)

Hf,k =
1

P f,k
rLFP f,k = rLF (3.9)

Hsp,k =
1

1− P f,k

(
Pp,kHp,k + P s,kHs,k

)
(3.10)

where Hy,k is the expected number of bits sent in case of success, partial failure or
failure on link k, with the corresponding probability Py,k. In addition to the values
for the three possible outcomes, I define as Hsp,k the expected number of bits sent in
case of a success or a partial failure. The formulas presented so far are basically those
introduced by Ayadi et al. [AMR11], extended by an index to identify a certain hop
and a slight rearrangement due to the different results which partial failures produce
in the multi-hop model.

3.2.2 Multi-Hop Model

We define the route the fragments have to traverse as a series of hops (wireless links)
k numbered from 1 to n. Moving to this multiple hop, multiple fragment scenario, we
get for the probability of success and failure of a datagram consisting of m fragments

18

3.2 Model

Ps and Pf , independent of the actual forwarding mode:

Ps(h0, h,m) =

h∏
k=h0

(Pm−1
s,k (P s,k + Pp,k)), (3.11)

Pf(h0, h,m) =

h∑
k=h0

Ps(h0, k − 1,m)

(
m−1∑
x=1

Px−1
s,k Pp,k +

m∑
x=1

Px−1
s,k P f,k

)
, (3.12)

where h0 is the index of the first hop, h the index the final hop and m the number of
fragments sent. For example, Ps(1, 8, 10) is the probability of success for a datagram
fragmented into 10 fragments on a route of 8 hops, the bit error probabilities pe,k

have to be defined accordingly for each link. For the last fragment sent, a partial
failure is sufficient, because it does not matter whether the sender would give up on
the datagram afterwards.

With the Assembly mode, no fragments of a failed datagram are propagated any
further after the first fragment failure. The expected number of bits sent in Assembly
mode EA therefore is

EA(h0, h,m) = Ps(h0, h,m)EA
s (h0, h,m) + Pf(h0, h,m)EA

f (h0, h,m) (3.13)

EA
s (h0, h,m) =

h∑
i=h0

((m− 1)Hs,i +Hsp,i) (3.14)

EA
f (h0, h,m) =

1

Pf(h0, h,m)

h∑
k=h0

Ps(h0, k − 1,m)×

(
m−1∑
x=1

((x− 1)Hs,k +Hp,k + EA
s (h0, k − 1,m))Px−1

s,k Pp,k

+

m∑
x=1

((x− 1)Hs,k +Hf,k + EA
s (h0, k − 1,m))Px−1

s,k P f,k

)
(3.15)

where EA
s and EA

f are the conditional expectation values of the number of bits sent
in case of success and failure, respectively.

While the conditional expectation value of the number of bits sent in case of success
is the same for the Direct mode, for the case of a failure all fragments that have already
been transported to the next hop along the route have to be taken into account and
their contribution to the overall number of bits sent has to be considered. To include
all those possible outcomes, I define ED(h0, h,m,Hacc, P) by means of a recursive
formula. In order to simplify presentation and to foster understandability, I omit the
parameters h0, h, m, k, and Hacc in formulas for ED, Mp, Mf , and Hz in equations
(3.16) to (3.19). Mp and Mf contain the actual recursion:

19

3 Analytic Model for 6LoWPAN-Fragmented Forwarding

vi vi+1 vi+2

0

0 X
1

0 X
1 X
2

0 X
1 X
2 X
3

··
·

0

0 X
1

0 X
1 X
2

0 X
1 X
2 X

0

0 X
1

0 X
1 X

· · ·

Figure 3.1: Illustration of cases to consider for Direct forwarding in case of a transmis-
sion failure of a fragment. At node vi, transmission failures of fragments
0 to 3 is shown. A Failure at fragment 3 means, that at node vi+1 a par-
tial datagram of 3 fragments will be transmitted, which can again fail at
fragments 0 to 2 or succeed, leading to a transmission of two fragments at
node vi+2 and so on. Dotted lines indicate the missing cases not explicitly
shown.

E
D

=

{
PHacc, h < h0 ∨m = 0

PPs(h0, h,m)
(
EA

s (h0, h,m) +Hacc

)
+ P

∑h
k=h0

(Mp +Mf) , else

(3.16)

Mp =

m−1∑
x=1

E
D

(k + 1, h, x,Hp,Ps(h0, k − 1,m)P
x−1
s,k Pp,k) (3.17)

Mf =

m∑
x=1

E
D

(k + 1, h, x− 1, Hf ,Ps(h0, k − 1,m)P
x−1
s,k P f,k) (3.18)

with

Hz = Hacc + (x− 1)Hs,k +Hz,k + EA
s (h0, k − 1,m), z ∈ {p, f} (3.19)

As for the Assembly mode, the formula sums up the expectation values for the link
layer transmission multiplied by the corresponding probability for failures at a certain
hop and a certain fragment. However, a failure of the xth fragment on the kth hop
means a partial datagram of x − 1 (or x in case of partial failure) fragments will be
send from hop k + 1 to hop h (Fig. 3.1). This is captured by applying the recursion,
additionally passing the accumulated expectation value of the number of bits sent so
far (parameter Hacc) and passing the product of corresponding probabilities (param-
eter P). Thereby, all possible cases are enumerated. In the initial formula Hacc and

20

3.3 Evaluation

Table 3.1: Default parameter values

Parameter Value Parameter Value
r 5 c 0
h0 1 h 8
m 12 pe,k 2.4244× 10−4

P are set to 0 and 1, respectively. For example, the expected number of bits sent to
send 10 fragments via hops 1 to 5 then can be obtained by ED(1, 5, 10, 0, 1).

3.3 Evaluation

To evaluate the impact of the different forwarding techniques, the model is fed with
different scenarios varying BEP, denoted as pe , number of link-layer attempts, number
of hops and number of fragments. The potential use of FEC (c > 0) is not evaluated
further. For all scenarios, LF = 119 B is used, including 11 B MAC header and 2 B
PHY header, leaving an 802.15.4 payload of 106 B. A link-layer acknowledgment of 7 B
size is assumed. Unless specified differently, I set the non-varying input parameters
to the values shown in Table 3.1. Besides the overall probability of success for a
transmission, the model’s main output metric is the expected number of bits sent,
which indicates the amount of energy used for transmission as well as the overall traffic
load produced. In the following, additional subscripts P and NP indicate persisting
and non-persisting forwarding strategy (see Section 3.2), respectively.

While the model allows for a different BEP to be assigned to each link, for the
evaluation presented here I used equal rates for all links. To calculate results, the
model was implemented as a Mathematica module. Results were calculated and com-
pared with different guarantees for precision, so that numerical instabilities biasing
the results can be ruled out.

3.3.1 Persistent vs. Non-Persistent

First, the difference between persisting and non-persisting forwarding is assessed by
comparing the output from the original model with the extended version. On the one
hand, I expected the probability of success for the persisting strategy to be slightly
higher than for the Assembly and non-persisting Direct mode, because partial failures
on a link are counted as an overall success with regard to the transmission of a frag-
ment. On the other hand, the expected number of bits sent should be significantly
higher for the persisting approach, as even in the case of a failure a sender continues
sending all remaining fragments. Figure 3.2 shows a comparison of the two strategies
for different values of the BEP. Subscripts P and NP denote quantities for persisting
and non-persisting strategy, respectively.

While the effect of persisting on the probability of success is comparatively small –
for the shown BER values it stays below 0.03 –, the impact on the expected number
of bits sent is significant. Note also that in a real network, failures are likely caused
by interfering transmissions of other nodes. Continuing transmissions after a failure
may therefore also impact other, not-yet-failed, transmissions. In the light of those

21

3 Analytic Model for 6LoWPAN-Fragmented Forwarding

0.8

0.85

0.9

0.95

1

P
ro

ba
bi

li
ty

of
Su

cc
es

s

Ps,P

Ps,NP

10−4 10−3.9 10−3.8 10−3.7 10−3.6 10−3.5

1

1.5

2

2.5

pe,k

R
at

io
of

ex
p
ec

te
d

nu
m

b
er

of
bi

ts
se

nt

ED
NP/EA

NP

EP/E
A
NP

Figure 3.2: Comparison of the ratios of the number of expected bits sent (left y-axis)
and the probability of success (right y-axis) for persisting (subscript P)
and non-persisting (subscript NP) approaches against the BEP (pe).

results, using such a persisting strategy for the given scenario is considered inadvis-
able. Therefore, in the remaining evaluation, the focus is shifted to the non-persisting
method.

3.3.2 Multi-Hop Transmissions

Figure 3.3a indicates the impact of the number of hops and retransmissions for ap-
plying 6LoWPAN fragmentation: It shows the probability of successful transmission

1 2 3 4 5 6 7 8

0.4

0.6

0.8

1

Number of Hops h

P
s
,N

P

r=3
r=4
r=5
r=6

(a) Probability of success Ps,NP against
number of hops for different maxi-
mum numbers of retransmissions

2 4 6 8

1

1.1

1.2

Number of Hops h

E
D N
P

E
m

in

r=3
r=4
r=5
r=6

(b) Normalized expectation value of num-

ber of bits sent ED
NP/Emin against

number of hops for different maximum
numbers of retransmissions

Figure 3.3: Influence of number of hops and the maximum number of retransmissions,
non-persistent mode

22

3.3 Evaluation

10−4 10−3 10−2
0

0.5

1

1.5

2

2.5

pe,k

R
at

io
of

ex
p
ec

te
d

nu
m

b
er

of
bi

ts
,
pr

ob
ab

il
it
y

of
su

cc
es

s

ED
NP/EA

NP

(ED
f,NP − EA

f,NP)/Emin (failure case)
Ps,NP

Figure 3.4: Non-persisting mode; Ratio of expected number of bits sent in Direct
(ED

NP) and Assembly mode (ED
NP), together with overall probability of

success and the difference in bits for the number of bits sent in case of
failure for both modes, normalized by Emin, against BEP.

Ps,NP of a large, 6LoWPAN-fragmented datagram for one to eight hops and for dif-
ferent maximum numbers of link-layer retransmissions r. It can be seen that Ps,NP

decreases for an increasing number of hops. The effect is more strongly pronounced
for smaller values of r. For the given pe and r = 3 (the default value defined in
the IEEE 802.15.4 standard), Ps,NP drops below 0.4 at eight hops. A higher max.
number of link-layer retransmissions counters this effect: for r = 6, Ps,NP only drops
a few percent below 1.

Additionally considering the expected number of bits sent (normalized by the mini-
mum number of bits needed for the complete transmission), shown in Fig. 3.3b, it can
be seen that the improved probability for success is bought by increasing the number
of frames sent. For r = 6, more than 25 % more bits than for a “perfect” run are sent.
The increased number of bits does not have any effect on the probability of success
in the presented model. In a real network, this increased traffic volume may increase
the probability of collisions and therefore potentially reduce the positive effect on the
overall probability of success of increasing r. Still, the result indicate that a larger
number of retransmissions in general increases the probability of success.

3.3.3 Additional Bits in Direct Mode

Figure 3.4 shows the ratio of expectation values of bits sent for Direct and Assem-
bly modes (ED

NP/E
A
NP) along with the overall probability for success of the whole

datagram Ps,NP, which is the same for both forwarding techniques. For success rates
approaching 1 and 0, the difference between the expected number of bits sent in Di-
rect and Assembly forwarding modes approaches zero. However, for a probability of
success of 0.81 a ratio of 1.04 can be observed, i.e., a 4 % increase compared to the

23

3 Analytic Model for 6LoWPAN-Fragmented Forwarding

0 2 4 6 8 10 12
0.8

0.85

0.9

0.95

1

Number of fragments m

P
s
,N

P

pe,k = 0.00049
pe,k = 0.00035
pe,k = 0.00024

(a) Probability of success

0 2 4 6 8 10 12

0

0.1

0.2

Number of Fragments m

E
D f
,N

P
−

E
A f
,N

P
E

m
in

pe,k = 0.00024

(b) Normalized difference between Direct
and Assembly mode

Figure 3.5: Influence of number of fragments (datagram size) for several values of pe,k

and r = 5

Assembly mode. With lower probabilities of success, an even higher ratio ED
NP/E

A
NP

can be observed.

This difference is exclusively caused by the direct mode’s conditional expectation
value of bits sent in case of a failure. To better illustrate this increased number of bits
in direct mode in case of a failure, I added the difference of the corresponding condi-
tional expectation values of Direct and Assembly mode to the plot, normalized by the
minimum number of bits needed for a successful transmission ((ED

f,NP−E
A
f,NP)/Emin).

In case of failure, the direct mode produces about one fourth of the minimum number
of bits needed for successful transmission more than the Assembly mode. The prob-
abilities for success being equal, this difference is caused exclusively by fragments of
datagrams that have already been lost at some node.

The normalized difference between Direct and Assembly mode in case of failure
(ED

f,NP−E
A
f,NP)/Emin) is also evaluated against the number of fragmentsm (Fig. 3.5b).

As expected, there is no difference for only a single fragment – Direct and Assembly
behave exactly in the same way for this case. With the number of fragments increasing,
the normalized difference increases, though with a decreasing slope.

It can also be seen that for an increase in the number of fragments, the probability
of success decreases (Fig. 3.5a). The higher the BEP, the more pronounced is the
effect. For higher BEP, even the used parameter setting of r = 5 yields probabilities
of success for a large number of fragments approaching 0.8.

3.4 Conclusions

This chapter presents an analytical model based on the BEP of a link. Due to the
fact that it does neither model channel contention nor (self-) interference nor issues
like queue sizes and buffer drops, its accuracy is clearly limited. However, for a given
bit-error rate, the quantitative results can help to estimate the impact of important
parameters on 6LoWPAN-fragmentation.

24

3.4 Conclusions

Given a significant probability for errors, which is a usual case for real wireless
networks, it shows that the combination of a large number of fragments and and a large
number of hops dramatically decreases the overall probability of success of a datagram
transmission and is thereby consistent with the my expectation. Increasing the number
of retries counters the effect, albeit at the cost of additional frames sent. If those
additional frames can actually have a negative impact on the overall datagram success
rate is evaluated by simulation and testbed experiments (Chapter 5 and Chapter 7).

It could also be seen, that a persisting strategy on the one hand increases the
probability of success slightly, but on the other hand produces a large number of
additional fragments in the network in comparison to the non-persisting strategy.
Furthermore, it was shown that in case of failure, the Direct mode creates about
25 % more fragments than the Assembly mode. These additional fragments do not
contribute to the goodput of the network. However, the share of these fragments in
the total number of fragments is small for datagram success rates of more than 80 %
and therefore is not expected to have a significant influence on the performance in
real networks.

25

4 Simulation Model and Environment

The proposed enhancements to a 6LoWPAN implementation (Sect. 5.2.1), including
6LoOF (Sect. 8), are evaluated by simulations and testbed experiments. Simulations
were mainly used to perform parameter studies that were too expensive in terms of
time for testbed experiments. To obtain meaningful results, the model used by the
simulation environment has to reflect properties of the real world that have an impact
on the behavior of the simulation. This means that a reasonably accurate model
for the IEEE 802.15.4 physical layer operating in the 2.4 GHz ISM band has to be
implemented. Furthermore, the simulation model has to be validated [WGG10]. This
chapter introduces the used simulation tools and modeling frameworks (Sect. 4.1). It
furthermore discusses methods to model the physical layer of wireless transmissions
and describes the one taken for this thesis (Sect. 4.2). Lastly the approach taken to
produce simulation scenarios from measured data to validate the simulation model
(Sect. 4.3) is described.

4.1 Frameworks and Tools

This section introduces the simulation environment and frameworks that were utilized
to obtain the measurement data.

4.1.1 OMNeT++

The OMNeT++ simulation framework [Var99; Var+01; VH08] has been around since
1997. While being a generic “discrete event simulation environment”, it is mainly used
for simulation of wired, wireless and mobile communication networks. OMNeT++
itself does not contain any simulation models. Support for a large number of internet
protocols and more recently also for an increasing number of wireless protocols and
models for the physical layer is provided by the INET model suite.

OMNeT++ is based on modules, which communicate with each other by passing
messages to gates. The simulation model is then defined by connecting the gates be-
tween modules and the C++-implementation of the individual modules. By adhering
to this general concept, a loose coupling of reusable components can be realized.

Various tools are available for debugging, verification and analysis. These reach
from “watching” network packets in slow motion within the provided graphical user
interface over detailed event logs capturing all message passing events to statistics
recording and graphical analysis of those.

I chose OMNeT++ as simulation environment, because of its openness for aca-
demic purposes, the described modular design and availability of several extensions
for advanced modeling of the physical layer. Furthermore, another open and popu-
lar simulation environment, ns3 [RH10], was not as well developed at the time the
decision was made.

27

4 Simulation Model and Environment

4.1.2 MiXiM

One thing lacking from the OMNeT++/INET-combination until recently, were sophis-
ticated models for the physical layer. Among the available solutions providing those
was the MiXiM framework [Köp+08; Wes+09], which also contains models for mobil-
ity, batteries and mac protocols. Castalia [PTB10] is another simulator, which is based
on OMNeT++’s event engine and which is focused on PHY layer models for wireless
sensor and body area networks. For this thesis and CometOS (Sect. 4.1.3), MiXiM
was chosen, because it easily integrates into existing OMNeT++ projects and pro-
vides sophisticated means to provide physical models as well as a basic IEEE 802.15.4
link layer implementation. At the time of writing, both the original MiXiM project
and Castalia seem to be abandoned, but parts of MiXiM are being refactored and
integrated into INET.

MiXiM’s physical layer simulation is realized by a customizable (by inheritance)
BasePhyLayer module. This module is responsible for the transmission and reception of
AirFrames. When transmitting an AirFrame, it is passed to all potential receivers and
nodes within interference range of the sender. The actual receivers are determined
by a ConnectionManager to avoid expensive calculations for nodes that are not within
interference range. Reception then comprises three steps:

• Pass the AirFrame to a ChannelInfo object, which keeps track of all incoming
frames for a node.

• Pass the Signal to all active analogueModels for processing

• Pass the AirFrame to a Decider.

The latter two actions offer entry points for customization. First, the type of the
Decider can be configured and it is also possible to create new Deciders by creating a new
subclass. The Signal, which is attached to the AirFrame, is processed by analogueModels.
A Signal consists of information about the signal strength (depending on the node’s
transmission power) and information about its temporal extent and its spatial origin.
Each analogueModel calculates an attenuation and attaches it to the Signal, resulting in
a Mapping (a matrix-like data structure) that represents signal strength at the receiving
node for different points in time and optionally different frequencies.

The actual decision about whether a frame is received correctly then is delegated to
the decider by calling it at least at the beginning and end of a frame transmission. The
more sophisticated Deciders bundled with MiXiM check if the strength of an incoming
signal is strong enough to be received at all and if another signal is already being
received (in which case, the new signal is not received). “Strong enough” here means
that during the SFD, the SINR of the incoming signal does not cause a bit error.
To calculate the SINR, all incoming and processed (attenuated by the analogueModels)
Signals stored in the ChannelInfo object are considered. At the end of a frame reception,
the decider is called again and determines if a bit error has occurred within the frame.
The calculation of bit error probability depends on the used modulation technique
and the SINR. The MiXiM-provided Deciders then either pass the received frame or
the information that the frame was dropped to the connected MAC module.

Thereby, MiXiM provides an simulation of the physical layer at the bit level [WGG10].
It is also able to model collisions of frames by means of the ChannelInfo module.

28

4.2 Physical Layer Model

4.1.3 CometOS

The protocols evaluated in this thesis are implemented in CometOS. CometOS is –
similar to OMNeT++ – based on modules that exchange messages via gates. This
similarity is deliberate. Several adapter classes enable modules written for CometOS
to be executable as OMNeT++ simulations. Thereby, CometOS aims to provide a
framework for rapid protocol development and verification.

In addition to the simulation capabilities via OMNeT++, CometOS provides a
core framework that provides modules, gates and message passing, as well as a non-
preemptive scheduler for arbitrary platforms. A platform-dependent implementation
of a very slim platform abstraction layer (PAL) is required for the core functions to
work. Additional PALs define interfaces for typical communication buses (UART,
TWI, SPI), low-level IO (GPIOs), watchdog timer, persistent memory and a link
layer for wireless communication. The latter is used by a platform-independent mod-
ule named MacAbstractionLayer, which offers a unified interface for protocol stacks
running within an OMNeT++ simulation or a specific hardware platform.

We chose the link layer as level of abstraction between simulation and hardware-
based platforms, because several transceivers already support extended operation
modes, which implement the complete CSMA/CA protocol and automatic acknowl-
edgments and retransmissions in hardware and therefore provide a good match for
this level of abstraction. Relying on such extended operating modes proved to be
hazardous, as explored in Chapter 6.

Additional features of CometOS are support for cross-layering by attaching meta
information to messages and support for simple synchronous and asynchronous remote
function calls. Furthermore, interface files and typemaps are provided to facilitate the
creation of a Python interface and language bindings using the software interface gen-
erator (SWIG) [Bea96]). Thereby, an existing protocol stack implementation can be
augmented by Python scripts to create a powerful “basestation” that can be employed
to control a wireless network or run automated experiments within a network. This
approach has been used heavily during the evaluation phase of this thesis (Sections 5.4
and 8.4).

CometOS was designed with the domain of wireless sensor networks in mind and
therefore is lightweight enough to run on resource-constrained embedded hardware
(e.g., Atmel ATmega128RFA1). Contrary to other popular lightweight operating sys-
tems for wireless sensor networks (TinyOS [Lev+05], Contiki [DGV04]), CometOS also
allows and makes use of dynamic memory allocation, similar to RIOT OS ([Bac+13]).

4.2 Physical Layer Model

There are numerous models available to simulate the physical layer of wireless net-
works, which can be distinguished by the aspect of wireless channels they model.
This section discusses several approaches and describes the approach taken for the
simulation studies carried out in this thesis.

4.2.1 Available Models for Wireless Sensor Networks

Empirical path loss models determine the signal strength observed by a receiver de-
pendent on the distance between sender and receiver, antenna gains and a set of

29

4 Simulation Model and Environment

parameters that have to be set according to environmental factors – line of sight
or not, indoor, outdoor, urban or rural area, etc., are typical environmental factors
[Sey05; Rap02]. Pure path loss models do not have a stochastic component, i.e., will
always produce the same results for the same set of parameters.

Log-normal shadowing models add a stochastic component to the attenuation of
path loss models. It models the obstruction of transmission paths by large objects,
resulting in varying signal strengths for equal distances, known as flat fading. They
have also been shown to reflect the behavior for indoor wireless sensor networks with
good accuracy [NH93; ZK04; Rap02]. An example is the log-distance path loss model
[Rap02], which combines a deterministic path-loss with a stochastic log-normal shad-
owing component.

Stochastic fading models try to capture the effects caused by multi-path propagation
of wireless signals. A signal traveling along different paths due to reflections may cause
self-interference at the receiver. Additionally, moving transmitters and/or receivers
are subject to the Doppler spread. These effects can lead to attenuation of the signal
(fading). Rayleigh and Rician distributions can be used to model different categories
of fading [Sey05].

MiXiM defines analogueModels of each category: SimplePathloss, LogNormalShadowing

and JakesFading (which is an implementation of Rayleigh fading). A fundamentally
different approach is based on deriving received signal strengths from recorded mea-
surements within real testbeds.

Lee et al. [LCL07] examine this possibility to use actual real-world traces of samples
of the received signal strength indicator (RSSI) to more accurately model noise. The
authors measure signal strengths of noise with a CC2420 radio transceiver to create
noise traces. Different methods to produce an actual noise value within a simulation
based on those traces are introduced and evaluated, ranging from naive sampling over
an algorithm they called closest-fit pattern matching to correlation distortion [Joh94].
In conclusion, the closest-fit pattern matching method is identified as a promising
candidate to especially model time-dependent interference more accurately.

The idea to base the physical layer on traces of real-world networks is carried farther
by Rusak and Levis [RL08], who extend the general idea to traces of the signal strength
of received data frames rather than sampling noise. Basically, the same closest-fit pat-
tern matching (CPM) algorithm is applied. It is augmented by algorithms to estimate
the signal strength for frames that were not successfully received and by algorithms to
correct for the noise that is measured in addition to the signal strength at reception
of a frame. Their approach acknowledges the fact that, in real networks, a correlation
exists between the number of consecutive successful or failed frame receptions and the
probability of success for the next frame. The “classic” stochastic models on the other
hand, consider consecutive frame transmissions as independent.

As metric to measure the accuracy of either model, the Kantorovich-Wasserstein dis-
tance [GS84] between the conditional packet delivery [Sri+10] functions is employed.
The authors claim that their approach significantly increases accuracy of the simu-
lation of a physical layer. Especially for a low-PRR link, the chosen metric shows a
much better match of their CPM approach in comparison to a log-normal shadowing
and constant signal strength simulation techniques. However, results are only shown
for so-called intermediate links, which exhibit packet reception rates of 58.5 % and
82.5 %. This distorts the result, because, good links, which account for a large part

30

4.2 Physical Layer Model

of the links, depending on which study of wireless transmissions is consulted, exhibit
a much less time-variant behavior [Sri+10], and hence can be modeled accurately by
the log-normal shadowing and constant signal strength approaches.

4.2.2 Choosing an Appropriate Model

The subject of examination for this thesis has been stated as the performance of
different forwarding strategies for 6LoWPAN-fragmented datagrams. The simulation
model has to reflect important aspects of wireless communication accurately. At
the same time, characteristics that are not important, should be abstracted from
[WGG10].

Path Loss

This thesis is not concerned with the prediction of the performance of a 6LoWPAN-
enabled wireless network based on the real world position of its nodes, i.e., to guide and
prepare its deployment or to determine if it can fulfill certain application requirements.
Therefore, I argue that empirical path loss models that convert positions of nodes and
a large parameter set into a distribution of received signal strengths do not add any
specific value to the subject of examination. In contrast, they even complicate the
creation of a meaningful network topology and its validation. Most path loss models
require configuration by various parameters (Sect. 4.2.1). Thereby, validation of the
simulation model is complicated by the task to first tune those parameters to the
environment of a potential testbed.

Collisions and Channel Contention

Considering multi-hop communication paths, hidden-terminal collisions and channel
contention are expected to have tremendous impact on the overall performance. Frag-
mentation of datagrams implies that a sender will transmit multiple IEEE 802.15.4
frames in direct succession and thereby give rise to self-interference along the path.
Modeling collisions reasonably well is therefore considered of high importance.

Variation of Received Signal Strength

Even in static environments, i.e., networks of position-fixed nodes, the link quality
may vary between frames. Moving people and objects can slightly alter propagation
paths or shadow a dominant path and thereby change the wireless channel [Bac+12].
Analogous to the argument against modeling path loss, one may argue, that even for
a constant distance/received signal strength between fixed nodes, a random factor
can be introduced by calculating bit error rates from the signal-to-noise ratio. Hence,
randomization of the RSSI would not add any new aspect to the model. However, this
reasoning neglects that without some stochastic component, the SINR for interfering
transmissions of any pair of two nodes in the network will then also be constant.

4.2.3 A Measurement-Based Physical Layer

In consequence of the discussion in Sect. 4.2.2, I chose to use a PHY layer simulation
model that essentially mimics log-normal shadowing, but instead of using some path

31

4 Simulation Model and Environment

loss model to calculate average received signal strength, the average RSSI value can
be configured directly for each link. This allows the easy creation of simple “ideal”
networks, as well as the creation of simulation scenarios derived from measurement
data collected in real testbeds. Furthermore, comparison of evaluation results collected
by simulation and experiments in the same testbed can serve as a validation for the
overall simulation model.

The signal strength stays constant during the duration of a single frame and is only
randomized once at the start of the reception using the provided log-normal distri-
bution. An SINR is calculated between the signal under investigation and all other
signals on the same IEEE 802.15.4 channel. Adjacent or alternate channel interfer-
ence is not considered, because the adjacent channel rejection of current transceivers
is good enough (> 32 dB) for the issue to be of no practical importance as long as
interferers are not situated in very close proximity to a receiver [Wei10].

The chosen approach does not take into account temporal correlation of packet
delivery success and failure like the one introduced in Sect. 4.2.1. As discussed, such
temporal correlation is mainly a concern for the class of intermediate links and hence
is an important factor to consider especially for link quality estimation and routing
decisions. However, the scope of the studies presented in this thesis is 6LoWPAN
fragmentation, which takes place between the link layer and the routing layer.

Carrying this argument farther, it was also decided to use a static routing scheme at
the network-layer. On the one hand, this means that if routes are lost due to temporal
degradation of a link, the performance during an experiment run will suffer greatly.
On the other hand, changing of routes in a network also has non-negligible influence
on the overall performance, albeit to a less extent than a disconnected network. There
even exist proposals to define some topology metric that reflects the capabilities of
the network for any given time [Puc+10] to counter such issues when comparing the
performance of different routing protocols in real testbeds.

Both approaches – static and dynamic routing – cannot prevent changes in the un-
derlying real network topology. Using a static routing scheme, a disconnected network
can be detected relatively easy and can then be removed from the set of runs. Be-
ing not interested in the routing protocol itself and recognizing that a parametrizable
protocol like RPL [Win+12] does in itself add to the overall parameter space, I went
with a static routing scheme at the network layer.

Another reason for choosing the simpler log-normal stochastic model is a more
practical one. The widespread (e.g., M3 OpenNode of the IoTLab) Atmel AT86RF231
transceiver only reports RSSI and energy detection (ED) values of down to −90 dBm,
which is 10 dB above its sensitivity. Reported RSSI values of −90 dBm for incoming
packets therefore do not carry very much information. The method to collect trace-
based data described in Sect. 4.2.1 is therefore difficult to apply with that transceiver.

Further properties of the simulation model are described by means of its imple-
mentation for the MiXiM framework, version 2.1. To facilitate an approach with user-
defined link properties, existing classes were extended by inheritance (Fig. 4.1). A sim-
plified UML sequence diagram shows the collaboration between those classes for the
reception of an AirFrame, which is similar to the description given in Sect. 4.1.2. Main
difference to the default MiXiM behavior is the introduction of the EmpiricDeciderBase

class. This class adds an attenuation mapping corresponding to the configured link

32

4.2 Physical Layer Model

1

1

create

BasePhyLayer

PhyLayer

EmpiricModelPhy

Decider

BaseDecider

EmpiricDeciderBase

EmpiricDecider

BaseConnectionManager

StaticConnectionManager

�interface�
DeciderToPhyInterface

Figure 4.1: Extension of MiXiM classes

quality to the signal of an AirFrame the first time it is processed. Delegating the re-
sponsibility to add the attenuation mapping to an analogueModel would be preferable,
but has not been possible with MiXiM version 2.1, as those are only passed the signal
itself, but not the AirFrame, from which source and destination address can be derived.

The actual decision about receiving or dropping of the AirFrame is then performed
in processSignal methods. The model operates at the bit domain and derives a bit
error probability for every bit from the S(I)NR of the signal according to

BEP =
8

15
×

1

16
×

16∑
k=2

−1k
(16

k

)
e(20×SINR×(1

k
−1)), (4.1)

as defined in [11a]. The given formula does take into account the direct-sequence
spread-spectrum technique and the O-QPSK modulation IEEE 802.15.4 defines for
the 2.4 GHz ISM bands. It further assumes that interference can be modeled as
additive white Gaussian noise, which is reasonable for interferers like those based on
IEEE 802.11, which use a larger bandwidth than IEEE 802.15.4. As discussed by
Son et al. [SKH06], the assumption is not entirely accurate for interference by other
IEEE 802.15.4 transmissions.

Available IEEE 802.15.4 transceivers operating in the 2.4 GHz band are not able
to transmit and receive frames at the same time. MiXiM also reflects this behavior
by adding an attenuation to the signal that results in an S(I)NR of 0. Using (4.1) to
calculate the bit error rate, this S(I)NR yields a bit error probability of pBER=0.5.
This is reasonable, given that additive white Gaussian noise (AWGN) may randomly
produce a correct value even in the absence of any signal. However, this results in a
non-negligible probability that an SFD is received with the radio being in TX state,
causing the MAC layer module to enter inconsistent states (or to assert). Therefore, an
additional check for an S(I)NR of 0 was added to the decider to prevent the simulation
model from ever receiving a frame while being in transmission state.

33

4 Simulation Model and Environment

−6 −4 −2 0 2 4 6

10−11

10−8

10−5

10−2

101

0.442 dB

1%

SNR [dB]

p
e
,f
ra

m
e

fo
r

a
20

B
P

SD
U

Figure 4.2: Determining the thermal noise for a transceiver sensitivity of −100 dBm

As no further forward error correction or bit interleaving is used in IEEE 802.15.4,
the bit error probability is directly applied to the part of an incoming frame under
examination. The EmpiricDecider does not perform an explicit CRC calculation, but
rather assumes that a bit error leads to a CRC failure and hence a dropped frame.
Thus, if a bit error occurs, the decider passes a message to the MAC module informing
it about the dropped frame.

In addition to the signals of interfering frames, a thermal noise signal is applied to
any incoming frame’s signal. The value for the power of the thermal noise floor was
derived from the sensitivity of the used transceiver. Sensitivity is defined as received
signal strength, for which – assuming an AWGN channel – the frame error probability
(FEP) of a 20 B PSDU is lower than 1 %. As can be seen from Fig. 4.2, this is true
for a thermal noise of Ntherm = −100.442 dBm.

The MAC module implements the IEEE 802.15.4 unslotted CSMA/CA algorithm
[06], with the slight difference that the status of the channel is only checked once at the
end of the CCA period of 128 µs. The implemented MAC module also supports the
different CCA modes defined by IEEE 802.15.4-2006. The simulation model above
the data link layer is defined by the corresponding protocols and described in the
corresponding implementation sections (5.3, 8.2).

4.3 Automated Model Creation

To create a simulation scenario from a real testbed, data about received signal strengths
among all nodes of the network has to be collected and evaluated.

4.3.1 Topology Monitor

To collect link quality statistics from a real testbed, I implemented a module Topolo-
gyMonitor. Placed on top of a TxPowerLayer module, which uses CometOS’ facilities
for meta data attachment to influence the transmission power of a frame, it collects

34

4.3 Automated Model Creation

−3 −2 −1 0 1 2 3 4 5 6
10−12

10−8

10−4

100

SNR[dB]

p
e
,f
ra

m
e

20B PSDU
96B PSDU

Figure 4.3: FEP (pe,frame) against SINR for different frame sizes

statistics about a node’s neighborhood. Two parameters govern its behavior: a period
and a frame size. When activated, the TopologyMonitor transmits a broadcast frame
with the configured size at a random point in time during each period. The RSSI of
incoming frames as reported by the radio driver and its square value are accumulated
and stored for each source address, i.e., neighbor. Additionally, the overall count of re-
ceived frames and the number of occurrences of the minimum RSSI value of −90 dBm
(see Sect. 4.2.3) is stored. Each node also keeps track of the number of broadcast
frames sent.

The frame size was chosen as 96 B to reflect the size of data frames during a
6LoWPAN fragmentation experiment. Using frames of smaller size slightly under-
estimates the potential for frame errors (Fig. 4.3). The interval of sending was set
to Tinterval = 2 s to reach a reasonable trade-off between introducing a probability
for collisions, which are not desired, and the runtime necessary to get a significant
number of samples. The probability for an interval without any collisions under the
assumption of independent frame transmissions can be calculated as

Pnone =

[
1− (n− 1)

Ttx

Tinterval

]n
(4.2)

with Ttx being transmission duration for a frame and n the number of nodes within
interference range. The formula neglects that transmissions are actually not inde-
pendent due to the CSMA/CA algorithm, that usually not all n nodes will be within
interference range of each other and that frames are not always transmitted completely
within the interval. For a network of 13 nodes (like the Telematics testbed), for the
given values a probability of

Pnone =

[
1− (13− 1)

(96 + 10 + 2 + 4)× 8bit

2× 250 kbit

]13

≈ 0.75 (4.3)

can be estimated as worst case for the probability of no frame collisions within a single
broadcast interval.

4.3.2 Post-Processing

The data containing RSSI and the number of frames is used to create a log-normal
distribution of incoming RSSI values and to determine a static routing topology.

35

4 Simulation Model and Environment

−106 −102 −98 −94 −90 −86 −82
0

1

2

·10−2

RSSI[dBm]

E
st

im
at

ed
P

D
F

0

0.2

0.4

0.6

0.8

1

R
el

.
fr

eq
ue

nc
y

in
bi

ns

Figure 4.4: Derivation of normal distribution from data collected by the TopologyMon-
itor; Resulting normal distribution (left y-axis) and relative frequency of
samples in bins (right y-axis)

Estimate Normal Distribution

As described in Sect. 4.2.3, the transceiver used for the testbed experiments (Atmel
ATmega128RFA1) does report RSSI and ED values with a minimum value of Pmin =
−90 dBm. However, average values of −90 dBm can be observed for links with an
expected transmission count (ETX, [De +03]) of near 1 as well as links with much
larger ETX. Given the transceiver’s sensitivity of −100 dBm this does not come as a
surprise.

To get a better estimate of each link in terms of a fixed average plus stochastic
log-normal component, the samples of the received signal strength are classified into
three bins and for each the number of frames ncase is determined (Fig. 4.4):

• “regular” bin (nregular): number of frames with RSSI > Pmin

• “minimum” bin (nmin): all logged minimum values (Sect. 4.3.1)) fall into this
category (Pmin ≥ RSSI > Ploss)

• “loss” bin (nloss): all frames that have not been received are considered to fall
into this category (RSSI < Ploss)

The boundary for lost frames is set to Ploss = −102 dBm. These three bins are then
used to calculate the parameters of a corresponding normal distribution. Given the
cumulative distribution function of the normal distribution

F (x) =
1

2

(
1 + erf

(
x− µ
√

2σ2

))
, (4.4)

and the number of samples in each bin known, a system of two equations can be
created:

(I) F (Pmin) =
nmin + nloss

nall

(II) F (Ploss) =
nloss

nall
,

(4.5)

36

4.3 Automated Model Creation

which is equivalent to

(I) Xm = erf−1

(
2
nmin + nloss

nall
− 1

)
=

Pmin − µ√
σ2

(II) Xl = erf−1

(
2
nloss

nall
− 1

)
=

Ploss − µ√
σ2

,

(4.6)

with erf−1(x) being the inverse of the erf function. Solving the system for for µ and
σ2 yields

µ =
XmPloss −XlPmin

Xm −Xl
(4.7)

σ2 = 0.5

(
Pmin − Ploss

Xm −Xl

)2

(4.8)

Considering all three bins (the “regular” bin is implicitly included by adding to the
total number of frames sent), this method yields a unique normal distribution.

A problem with this approach is caused by frames that are lost due to interference,
e.g., collisions with other frames. Those may cause a distribution with a large number
of frames in the regular bin and a significantly smaller number of frames in the min-
imum and loss bins, with nloss > nmin. To mitigate this problem, sample mean and
unbiased sample variance are directly calculated from all regular samples, ignoring
the frames in the other bins, if the number of regular frames is much larger than the
number of frames in the other bins. “Much larger” in this context means that the
other bins contain less than 0.5 % of the frames in the regular bin. Additionally, in the
other case, for each sample in the minimum and loss bins, a value is drawn from the
derived normal distribution. These newly created values and the actually measured
values from the regular bin are then considered a complete sample. The sample mean
and variance of this sample then define the final normal distribution.

The thus calculated distributions with µRSSI and variance define the physical layer
of the simulation model and are used as link properties by the StaticConnectionManager

and the EmpiricDecider (see Sect. 4.2.3).

Static Routing Topology

The link properties as derived in Sect. 4.3.2 are – in combination with the recorded
ETX values – also used as input to determine the static routing topology of the
simulation model. They form a weighted directed graph representing the network
connectivity. To tackle the problem of time-variant links that may cause a static
topology to become disconnected (as discussed in Sect. 4.2.3), some adjustments are
made to the weights. As basic weight, the measured ETX value is used. Penalties to
this basic weight are applied for links with an average RSSI below a certain threshold
and links with highly varying RSSI to derive the adjusted weight w:

w =

{
ETX + kabs × (RSSIth − RSSI) + kσ2 × σ2

RSSI RSSI < RSSIth
ETX + kσ2 × σ2

RSSI else
(4.9)

37

4 Simulation Model and Environment

Hence, links with a good and stable RSSI are preferred to those with a weak and
highly varying RSSI, depending on the constant penalty factors kabs and kσ2 . The
adjusted weight of the two edges between any two nodes u and v (one for each direction
of communication) is then further combined to a bi-directional weight:

wbi = wuv × wvu (4.10)

The resulting weight yields the ETX for the unicast transmission of a frame under
the assumption that frame and acknowledgment have the same probability of success.
While this assumption does not hold true due to the different frame sizes of ACK and
data frames, bi-directional (and not asymmetric) links are needed nonetheless. The
routing topology is found by applying the Dijkstra algorithm [Dij] to the undirected
graph with the bi-directional weights.

4.4 Confidence Intervals

To make significant statements about the results collected from experiments and simu-
lations, multiple runs of all experiment configurations were conducted and confidence
intervals calculated for the expectation values of measured quantities. Student’s t-
distribution was used to calculate confidence intervals according to[

x̄− t(1−α
2

;n−1)
S
√
n
, x̄+ t(1−α

2
;n−1)

S
√
n

]
, (4.11)

with sample mean x̄, the sample variance S2 and the (one-sided) (1 − α
2

)-percentile
of the t-distribution with n − 1 degrees of freedom, t(1−α

2
;n−1). Unless specified

differently, 95 % confidence intervals where calculated, resulting in α = 0.05.

38

5 Basic Forwarding Techniques for
6LoWPAN-Fragmented Datagrams

This chapter introduces a first simulative and experimental evaluation of basic and
enhanced route-over forwarding strategies for 6LoWPAN. The results are included in
this thesis because they illustrate the necessity of an accurate simulation model as
developed in Chapter 4.

5.1 Related Work

Ludovici et al. evaluated different 6LoWPAN forwarding techniques for IPv6 data-
grams with and without fragmentation [LCC11]. They analyzed end-to-end delay and
packet reception rate (PRR) for a single sender for two route-over and two mesh-
under schemes for a line topology of up to five TelosB nodes. They call the modes
they define in addition to plain route-over and mesh-under “enhanced route-over” and
“controlled mesh-under”. The former uses basically the same approach as our Direct
(2.2.3): fragments are forwarded immediately and upon reception of the first fragment
a virtual circuit is installed, which is used to route subsequent fragments along the
same path. The latter mode adds additional checks to the mesh-under forwarding
process. If a node receives an out-of-order fragment, it solicits its predecessor for the
missing fragment. If the missing fragment is not recovered, the node will stop forward-
ing any fragments belonging to that datagram. In contrast, their plain mesh-under
forwarding also forwards fragments of datagrams that have already been lost.

The results of Ludovici et al. show comparatively high end-to-end latency for the
route-over forwarding mode. This is attributed to the reassembly of the whole data-
gram at every hop. The other three modes perform similar to each other, with plain
mesh-under exhibiting slightly higher latency, especially for the shorter paths. Consid-
ering the packet reception rates, high losses for larger fragments have been observed.
For mesh-under, controlled mesh-under and enhanced route-over, the loss rates in-
crease (non-linearly) from 0 for datagrams of 100 B to over 0.4 for datagrams of 1100 B,
with plain mesh-under performing worst. The high loss rates were attributed to colli-
sions on the wireless channel. Considering the short distance of only four hops, with
only a single node transmitting, the measured performance appears to be very bad.
For the plain route-over mode, the performance in terms of loss rate is significantly
better (below 0.04) for “small” datagrams, i.e., those with a payload of less than 900 B.
For larger datagrams, buffer drops cause the drop rate to increase to 0.58 for data-
grams of 1100 B, i.e., even worse than the mesh-under mode. In general, the results
show a need for further investigation of 6LoWPAN fragmentation performance.

Bhunia et al. carried out similar experiments and also analyzed end-to-end delays
and loss rates for a small testbed of three nodes. Like Ludovici et al. they used
TelosB motes running the TinyOS blip stack [DC12]. Their results are in accord with

39

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

those of Ludovici et al. and also show very high loss rates when transmitting large
datagrams (> 900 B). A modified route-over scheme, which is claimed to implement
a retransmission procedure for missed fragments is shown to slightly outperform the
plain modes in the given scenario.

Toscano and Lo Bello evaluated the performance of ZigBee [12b] and 6LoWPAN for
low-power industrial scenarios [TB12]. They also used TelosB nodes running TinyOS
with the TKN154 [Hau09] to realize a beacon-enabled IEEE 802.15.4 cluster-tree and
the blip stack for the 6LoWPAN network, applying low-power listening. Care was
taken to tune the duty-cycles of the two different schemes to comparable values and
an analysis of how to choose the correct settings for beacon and superframe order for
beacon-enabled mode and the active and sleeping periods for 6LoWPAN networks is
presented. For low data rate applications they evaluated latency, packet reception rate
and update time (the time between packet receptions). From the observed results, a
number of conclusions are drawn:

• 6LoWPAN duty cycle depends on the overall network load, making it difficult
to plan energy consumption beforehand.

• The IEEE 802.15.4/ZigBee network is able to support lower duty cycles with
acceptable performance.

• For higher duty cycles, 6LoWPAN exhibits smaller end-to-end delays and higher
reliability.

Wang et al. [Zhu+13] proposed a technique for mesh-under routing in 6LoWPANs,
which reassembles packets at some intermediate nodes. Evaluating route-over, mesh-
under and their chained mesh-under routing (C-MUR) in a testbed consisting of six
nodes arranged in a line topology, they observed that C-MUR achieves a latency
between mesh-under and route-over and a better packet reception rate than both for
an increasing number of fragments.

A typical issue encountered in multi-hop mesh networks is self-interference, as de-
scribed in Sect. 2.2.3. This was recognized in the research community of wireless sensor
networks. In their publication on the collection tree protocol (CTP), which heavily
inspired RPL, Gnawali et al. proposed to decrease the maximum rate at which nodes
forward frames via CTP [Gna+09]. They determined the optimal delay experimen-
tally in a small testbed. Optimal in that sense means achieving the best trade-off
between reliability and throughput. Based on this investigation, they set the interval
a node waits after each transmission to 1.5 to 2.5 times the expected transmission
time.

The Flush protocol for bulk data transfer [Kim+07a] also recognizes the need to
delay consecutive transmissions along the same path. It installs two mechanisms to
prevent self-interference. First, information about transmission time estimates of a
node and its successor are piggybacked to every data frame. This information is
snooped by preceding nodes on the path and used to adapt their own transmission
rate. Secondly, nodes refrain from transmitting with higher rates than any other node
along the path. This information is propagated from the destination (root of a routing
tree) back to the origin of the transmission.

40

5.2 Modes

5.2 Modes

This section introduces the enhancements made to the basic forwarding modes intro-
duced in Sect. 2.2.3. Those are evaluated in addition to the plain Direct and Assembly
modes.

5.2.1 Enhanced Direct Modes

With the plain Direct mode, nodes forward an incoming fragment (or add it to a
transmission queue) immediately. The transmission rate is thus governed by the rate
of incoming frames. This can lead to problematic self-interference between fragments
of the same datagram that are sent along the same path, which is typically the case
in collection traffic patterns.

To prevent such self-interference, the strategy followed by CTP (see Sect. 5.1) is
adopted at the 6LoWPAN layer in two different flavors. The first flavor basically leaves
the CTP mechanism unchanged. Observing the mean transmission time for typical
6LoWPAN fragments of 96 B size and a IEEE 802.15.4 minimum backoff exponent of
3, the expected transmission time is set to T tx = 6 ms. These 96 B are comprised by
80 B 6LoWPAN payload, 5 B 6LoWPAN fragmentation header and 11 B IEEE 802.15.4
MAC header. After each transmission, a node waits for an interval of

1.5T tx ≤ Td ≤ 2.5T tx, (5.1)

before allowing the next transmission. This technique is called direct with Rate Re-
striction (Direct-RR mode).

There are some issues with this strategy that lead to the definition of a second fla-
vor. Depending on the position in the network and the available links to other nodes,
as well as the current traffic situation, the transmission time at different nodes or
at a single node may vary. Additionally, the overall transmission time does strongly
depend on the configuration of the IEEE 802.15.4 link layer. Especially the backoff
exponent has a strong influence, because before each transmission at least one backoff
is executed. For example, minimum backoff exponents macMinBe of 3 and 5 yield an
expectation value for the first backoff of 1.12 ms and 4.96 ms, respectively. Considering
a raw transmission time for a 96 B frame of 3.264 ms, the backoff phase does signifi-
cantly contribute to the overall transmission time. Therefore, I propose a technique
that adapts the interval between transmissions according to an estimation of the aver-
age transmission time based on measurements. This is implemented by continuously
monitoring the transmission times reported by the link layer. The measured value
then is smoothed by applying an exponentially weighted moving average (EWMA):

T tx,i = αT txcurr + (1− α)T tx,i−1, (5.2)

with T txcurr being the duration of the transmission for the last frame as reported by
the MAC layer. The actual delay interval then is again derived from 5.1. This mode
is called direct mode with adaptive rate-restriction (Direct-ARR). In comparison
to the mechanism implemented by Flush, which is based on snooping piggybacked
information from the frames of successor nodes, it can be executed with solely lo-
cal information. Hence, to use Direct-ARR, no changes to the standardized frame
format are necessary. The smoothing factor was set to α = 0.75 in the 6LoWPAN
implementation.

41

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

IPForward

UDPICMP

Lowpan LowpanQueue

�interface�
QueueObject

QueueFrame QueuePacketMAL

�interface�
FragmentHandler

DirectHandler

AssemblyHandler

StaticRoutingTable

NeighborDiscovery

StaticRouting

Figure 5.1: High level UML class diagram of 6LoWPAN implementation; double lines
represent CometOS message exchange

5.2.2 Retry Control

This chapter also includes an approach from a different angle. With 6LoWPAN frag-
mentation, the loss of a single fragment results in the loss of the whole datagram,
unless some recovery mechanism is applied. Fragments that have been transmitted
up to that point have been transmitted in vain and produced network traffic that
does not add to the goodput of the network. In lossy wireless networks, link layer
retransmissions are desperately needed to prevent high loss rates, which can also be
concluded from the results of the analytical model presented in Sect. 3.3. This is
taken into account by setting the number of link layer retries to the IEEE 802.15.4
maximum value of 7 (cf. Sect. 5.4). To further prevent the loss of nearly completely
transmitted datagrams, the idea of PRC is to increase the number of maximum frame
retransmissions the more fragments have been transmitted already. With sdg being
the size of the fragmented datagram and sdg,trans the accumulated size of fragments
already transmitted of that datagram, the number of retries rPRC is calculated by

rPRC = 7 + 8×
sdg,trans

sdg
. (5.3)

This results in a number of 7 to 15 MAC retransmissions, with 15 being the maximum
number provided by the transceiver’s hardware-supported automatic acknowledgment
mode (see Sect. 6.1) used for the testbed experiments described in this chapter.

5.3 6LoWPAN Implementation

Figure 5.1 shows the high-level structure of the 6LoWPAN module for CometOS. For
simplification, the result of an additional refactoring for the implementation of LFFR

42

5.3 6LoWPAN Implementation

(cf. Sect. 2.2.5) is not depicted here. The main component is the Lowpan module, which
interacts via CometOS message passing with the IEEE 802.15.4-like link layer module
at one and the IPv6 module at the other side. If Lowpan detects a fragmentation header,
it passes the incoming fragment to a FragmentHandler.

The FragmentHandler interface represents the actual and virtual reassembly buffers
used for the Assembly and Direct modes of operation (Fig. 5.1). Note that the former
is needed in both modes of operation for reassembling datagrams that are destined to
a node.

The AssemblyHandler delegates the reassembling process to a DatagramReassembly ob-
ject, which manages identification (tag, size, source address), decompression, transit
status (bit vector of arrived 8 octet units), timeout information and data storage.

The maximum duration of the (virtual) reassembly process is bounded by a timeout,
which is implemented by an aging algorithm. A single timer is initialized to fire
every Ito. Given a timeout period Tto, the creation of a reassembly or virtual buffer

forwarding process is initialized with a counter Nto =
⌈
Tto
Ito

⌉
+ 1 and is decremented

by one every Ito. The counter always reaches zero after a duration in the interval
[Tto, Tto + Ito], in which case the timeout is fired and the process aborted. Because
only a single timer is needed to implement this strategy (in contrast to one timer
for every reassembly process) memory and CPU resources can traded for accuracy of
the timeout. Our 6LoWPAN implementation uses a most trivial configuration with
Ito = Tto.

IPHC decompression and compression are implemented according to RFC6282 [HT11]
and are not described in detail in this thesis.

In a similar way, DirectHandler uses PacketInformation objects that manages the state
of an IPv6 datagram in transit. Different from DatagramReassembly, it has to addition-
ally store the outgoing tag of the datagram, which is fixed after the DirectHandler

asked the IPv6 module for a routing decision.
Both fragment handlers use a global 6LoWPAN buffer to store datagrams and

fragments. The AssemblyHandler always tries to reserve space in the buffer for the
whole incoming datagram upon reception of the first fragment. As soon as fragments
are transmitted successfully, the buffer space is partially released.

The actual forwarding of fragments is managed by a generic queue, which accepts
objects that implement the QueueObject interface. This interface contains methods
to generate frames, process replies from the link layer and and retrieve some status
information. There are two basic types of object representing the different concepts.

• A QueuePacket represents a complete datagram. Objects of this type are added
to the queue for datagrams originating at a node in both modes of operation
and for forwarded datagrams in Assembly mode, i.e., every time a data request
is received from the IPv6 module.

• A QueueFrame represents a single fragment and is enqueued every time a 6LoWPAN
fragment is received from the MAC layer in Direct mode.

The Lowpan module queries the queue for the next object every time it is ready to send,
i.e., a transmission has finished and the rate restriction mechanism (if used) allows
the next transmission. As soon as a link-layer response is received, the result is passed
to the corresponding QueueObject, which is responsible for updating the transmission

43

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

MacDisp

TxPwrAODV TssDisp

NwkDisp 6loDisp Tss

SRL OTAP Lowpan Topo

RA IP Routing

UDP TrafficICMP

0 1 2

10 6lo 0

0

NIS

MACSC

MacDisp

AODV TssDisp

NwkDisp 6loDisp Tss

SRL PyOTAP Lowpan Topo

PyRA IP Routing

UDP PyTrafficICMP

0
1

2

10 6lo 0

0

SC

Basestation Gateway node

Figure 5.2: CometOS stack used at the at the basestation and the node attached to the
basestation, with control stack (blue) and 6LoWPAN stack (green). ’Py’-
prefixed modules are specialized basestation modules. Dashed lines repre-
sent message-passing connections via CometOS gates. Numbers represent
protocol identifiers added to/removed from a frame by the dispatcher mod-
ule.

status. This comprises checking for completion of the transfer or – in case of failure
– to delete all traces of the datagram in the buffer. This implementation implies that
datagrams encapsulated in a QueuePacket are handled continuously until completion.
QueueFrame-encapsulated fragments of datagrams in transit may interleave with each
other or with a complete QueuePacket-encapsulated datagram originating at the node.

5.4 Experiment Setup

This section describes the simulated network topologies and the configuration of the
testbed experiments. Furthermore, the mechanism used for time synchronization in
the testbed is introduced. The presented evaluation is subdivided into two sets of
simulations and experiments, simply named first and second set of experiments. Dif-
ferences between those two sets are described in the corresponding subsection.

5.4.1 Testbed

For the purpose of validation, we used a testbed consisting of 13 dresden electronic
deRFmega128-22A00 modules equipped with an Atmel ATmega128RFA1 controller
with integrated IEEE 802.15.4 transceiver operating in the 2.4 GHz ISM band. It
provides 128 KiB of program memory and 16 KiB of RAM, which was enough to run

44

5.4 Experiment Setup

the implementation of the 6LoWPAN stack for CometOS next to a wireless control
stack (Fig. 5.2). The actual data traffic was sent through the former, while the control
stack was used for topology measuring, OTAP and the control of experiment runs and
collection of data. This experiment control is implemented as a set of python scripts,
wrapped around a version of the protocol stack compiled for the native platform. This
construct is called basestation in the remainder of the dissertation. It makes use of
the remote access feature of CometOS to communicate with nodes in the testbed.

The node directly attached to the data sink on the PC runs a slightly different
software stack. Instead of being directly attached to the CsmaMac, the MacDis-
patcher is connected to a so-called NetworkInterfaceSwitch module. This module in
turn is connected to a SerialComm and the CsmaMac modules, which provide the
same packetized interface to layers above. Depending on the link layer target address,
the NetworkInterfaceSwitch chooses one of the two modules (or both in case of a
broadcast) to forward the request to. The NetworkInterfaceSwitch was configured to
forward all traffic destined to nodes with an IEEE 802.15.4 short address < 0x100,
which includes the basestation with address 0, to the SerialComm. From the per-
spective of the protocol stack, this setup is transparent, i.e., the node attached to the
basestation acts as if it had a very reliable link towards node 0, without any knowledge
that this node is attached via a serial communication.

The CometOS implementation of the link layer interface makes use of the extended
operating mode of the transceiver, which means that the CSMA/CA algorithm and
automatic acknowledgments and retransmissions are performed by the transceiver.
For both sets of experiments, the routing topology was equal to that used in the
corresponding simulation scenario. During experiments, a transmission power of
1.8 dBm was used for all frames passing through the TxPowerLayer. Other frames were
transmitted using the maximal transmission power of the Atmel ATmega256RFR2 of
3.5 dBm.

While this configuration guarantees smooth operation of the control stack and the
time synchronization (cf. Sect. 5.4.1), it causes an inconsistency with respect to trans-
mission power of IEEE 802.15.4 acknowledgments. The radio driver can briefly change
the transmission power for outgoing frames, which is realized by attaching some meta-
information to the frame. The software acknowledgment layer, however, does not know
for which frames it should use a deviating transmission power and therefore transmits
all frames with the default, maximal transmission power. Hence, all acknowledgments
are sent with a different transmission power than the data frame and thereby have a
larger transmission and interference range. With the ACKs being comparatively short
and being transmitted shortly after the corresponding data frame, we expected the
influence of this anomaly to be of lesser importance.

Time Synchronization

To determine end-to-end latency of UDP packets in the testbed, some time synchro-
nization mechanism is necessary. Therefore, implemented a simple and portable syn-
chronization mechanism for CometOS was implemented. The only assumption it
makes about the underlying hardware-dependent radio driver (PHY layer), is that
it is able to detect some defined event during the transmission of a frame at trans-
mitter and receiver, e.g., the start or end of a transmission. The radio driver used
for the experiments described in this chapter uses the RX END interrupt, because

45

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

accuracy iMin iMax k noReset

5 ms 50 ms 12 5 false

Table 5.1: Parameters for CometOS simple time synchronization mechanism

a TX START interrupt is not available with at the Atmel ATmega128RFA11. This
point in time is then considered to refer to the same point in real time at both nodes,
neglecting the propagation delay of the frame. For the purpose of determining the
latency of large datagrams, which is in the order of several tens of milliseconds, a
propagation delay of about 1 µs (for 300 m) is considered negligible.

The synchronization mechanism uses a two kinds of broadcasts to propagate a joint
network time from a master node to all nodes in the network. Every time update
consists of two messages:

• The InitialMessage contains only a depth field containing the distance of the
sender (in hops) to the master of the time synchronization process. A receiver
stores a local timestamp corresponding to a defined event of the reception.

• The TimestampMessage contains the network timestamp of the defined event. This
timestamp is used by the receiver for synchronization.

Only nodes that consider themselves as synchronized transmit time updates. Hence,
time updates originate at the master first and propagate into the network from there.
Nodes only process time updates that originate from “parents”, i.e., nodes nearer to
the sink.

The transmission of time updates is governed by the Trickle algorithm [Lev+11].
Nodes only transmit a timer update if they haven’t received k consistent transmissions
of other nodes. Consistent in that context means that a time update from a parent
does not deviate from the current network time of a node by a configurable accuracy
parameter. If, on the other hand, an inconsistent time update is received, the time
synchronization mechanism optionally resets Trickle to enable fast propagation of
this time update through the network. Because such a reset of Trickle temporarily
increases the traffic significantly, an option to prevent resetting was added. Thereby,
after a starting phase, time updates are sent using a fixed interval range, reducing the
burstiness of the time synchronization traffic at the cost of allowing some inaccuracies
in time synchronization.

For the testbed, Trickle was configured according to Tbl. 5.1, yielding a interval
range for time updates of [51.2 s, 102.4 s] in a stable state. The used board (dresden
electronic deRFmega128-22A00, [11b]) connects the Atmel ATmega128RFA1 clock
input to a crystal oscillator with a maximum deviation of ±10 ppm and therefore the
clock drift between any two nodes in the network should stay below 0.2 ms for an
update period. To verify that the time synchronization mechanism did only send a
negligible number of frames, the number of transmissions and resets was logged and
recorded for each node at the end of each experiment. Thereby, it could be verified
that the interval of time updates corresponded to the maximum Trickle interval.

1This restriction and the fact that the extended mode of operation is used is the reason for making
the time synchronization flexible

46

5.4 Experiment Setup

Memory usage

For our first set of experiments, the 6LoWPAN layer of our implementation had a
6LoWPAN data buffer of 2000 B. This buffer is used for reassembly, buffering en-
queued fragments and as a data storage for datagrams to be transmitted. For the
second set of experiments we reduced the buffer size to the IPv6 minimum MTU of
1280 B.

In the Assembly Mode, we set assembly_entries to 10, i.e., up to 10 datagrams can
be reassembled at the same time (given that their combined size fits into the buffer).
Because the Direct modes only reassemble datagrams which are destined to the node
itself, we reduce this value to 4 for those. The direct modes use a virtual fragment
buffer, which keeps track of the state of up to 15 in-transit datagrams. With this
configuration, both modes use about the same amount of RAM yielding a basis for a
fair comparison. Concerning program memory, our implementation of the Direct mode
uses 3910 B more than the corresponding implementation of the Assembly mode. As
the Direct mode basically has to provide the same assembly service for packets destined
to the node itself, plus offering the additional services for direct forwarding, this is to
be expected. The rate-restricted modes mainly use a single variable of 2 B to store
the current estimated transmission time and a CometOS timer object which is started
after each transmission corresponding to 5.1.

While the nodes are constrained with regard to the size of the 6LoWPAN data buffer
and data structures storing information reassembly or forwarding, for all experiments
we provided the base station with buffers and structures large enough to not cause
any drops of datagrams. We deem this approach reasonable as we expect 6LoWPAN
border routers to be slightly more powerful devices, equipped with larger memories.

5.4.2 Simulation

The configuration of the simulation adopts the methodology presented in Chapter 4,
with some exceptions. For our first set of experiments, we used a formula successfully
applied in the iEZMesh project (Sect. 2.2.1), which used a sub-GHz transceiver and
binary frequency shift keying (BFSK) and consequently calculated the pe,BFSK by

pe,BFSK = 0.5× erfc

(√
SINR

2

)
. (5.4)

This does not accurately represent the direct sequence spread-spectrum (DSSS)
technique used at the IEEE 802.15.4 link layer and therefore shows a quite differ-
ent curve compared to the one obtained by applying 4.1. The mismatch is shown
in Fig. 5.3. Using the formula for BFSK, the FEP, denoted by pe,frame, starts to
decrease at much larger values for signal to noise ratio (SNR) and the slope of the
decrease is less steep. This was accounted for by setting the thermal noise to a lower
value of N0 = −105 dBm to get reasonable error probabilities for typical RSSI values
between −85 dBm and −95 dBm. While this mitigates the inaccuracy of the model
for transmissions in case only the thermal noise has to be considered, in case of in-
terference the model still behaves differently from one using (4.1) to model DSSS.
With (5.4), interference between frames most certainly causes frame drops unless one
signal is significantly stronger than the other one, i.e., SINR > 12 dB. This is different

47

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

−6 −4 −2 0 2 4 6 8 10 12 14 16 18
10−12

10−9

10−6

10−3

100

SNR[dB]

p
e
,f
ra

m
e

DSSS
BFSK

Figure 5.3: FEP (pe,frame) to SNR for BFSK modulation and IEEE 802.15.4-DSSS
with O-QPSK for a PSDU of 96 B. For BFSK the FEP curve is shifted
and decreasing with a slope less steep.

from the DSSS model, for which interference between frames of slightly different signal
strength do not necessarily lead to a loss of both frames. The decision to stick with
5.4 to calculate the FEP proved to introduce an unfavorable bias to the simulation
results, which will be discussed in Sect. 5.5.3.

The second set of experiments uses the more accurate formula to calculate the BEP
that is provided by the IEEE 802.15.4 standard and a thermal noise as defined in
Sect. 4.2.3.

The protocol stack used for the simulations above the MacAbstractionLayer is re-
stricted to the 6LoWPAN stack (cf. Fig. 5.2). The control stack, TxPowerLayer and
time synchronization modules are not employed in a simulation environment.

5.4.3 Network Topologies

The evaluation in the first set of experiments concentrated on four different topologies
(Fig. 5.4). The first three topologies are idealized, artificial constructs. The “Chain”
network (Fig. 5.4a) was chosen as a network with potential for pipelining. In stark
contrast, the “Star” network has a maximum diameter of three and therefore does not
have any pipelining potential, but employs a bottle neck with regard to contention
for the wireless channel and buffer space at its central node (Fig. 5.4b). Finally, the
Long-Y network can be seen as a mixture of the two. In those three idealized networks,
links are nearly perfect in the absence of interference, i.e., the FEP is near zero. Note
that for these networks, the routing tree and the actual wireless connections between
the nodes form the same graph. This means that in the Long-Y network, node 100
and 200 are hidden-terminal from each others perspective when transmitting towards
node 7.

The two “RealSim” networks were created from data collected in a real testbed
with the method described in Sect. 4.2.3. RS-A was evaluated in the first set of

48

5.4 Experiment Setup

0 1 2 3 4 5 6 7 8 9

(a) Chain

0 1

100

200

300

400

500

600

700

101

201

301

401

501

601

701

(b) Star

0 1 7

100

200

101

202

107

207

(c) Long-Y

0 21FD 21FE

21FC

21FF

2201

2204

2205

2214

2217

2203

2219

2206

221A

(d) RS-A / TB-A

0 21FD 21FC

21FE21FF 2201

2203

2205

2206
2204

2214 2217

2219

221A

(e) RS-B / TB-B

Figure 5.4: Network routing trees for the different topologies. Edges represent static
routes, the dark gray node is the sink.

49

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

macMinBe (1st|2nd) macMaxBe macMaxCSMABackoffs macMaxFrameRetries

3|5 8 5 7

Table 5.2: Configuration of IEEE 802.15.4 link layer; macMinBe was varied between
1st and 2nd set of experiments

experiments, RS-B in the second. Although the real nodes were deployed in the same
rooms along a corridor in an office building at Hamburg University of Technology,
the time between the first and second set of experiments was several months and the
nodes had to be repositioned slightly. Therefore we decided to recreate the (routing)
topology for the simulation. The resulting topologies are still similar with regard to
average path length (3.62 for the first, 3.92 for the second set of experiments).

Instead of trying to simulate the serial connection in the testbed between basestation
and the attached node (see Sect. 5.4.1), in the simulation environment we used a
wireless link with a constant strong signal of −50 dBm.

During some preliminary experiments, some links showed a strongly time-variant
behavior, i.e., the network became disconnected. To counter that effect, we measured
the topology twice, once to determine a routing topology (for testbed and simulation)
with lower transmission power of −6.5 dBm and once to collect link statistics for the
simulation with a higher one of 1.8 dBm. Thereby, routes are chosen more pessimisti-
cally and more distant nodes are more likely to be within transmission range (but also
interference range).

5.4.4 Traffic

We evaluated the performance of a collection traffic pattern for all networks. All nodes
in the network periodically sent UDP packets of different sizes to the sink. To prevent
nodes from transmitting all at the same time, the interval i between two consecutive
UDP packet transmissions was randomized:

i = I +
1

2λ
, (5.5)

with I being uniformly distributed in
[
0, 1
λ

]
and λ = λB

LUDP
, where λB and LUDP

denote the transmission rate of payload and the size of the individual UDP packet,
respectively. This ensures a maximum interval between transmissions of UDP packets
from an arbitrary node in the network of imax = 3

2λ
. This traffic pattern simulates a

collection of periodic data from all nodes in the wireless network.
All nodes transmitted a constant total payload of 240 000 B and 48 000 B towards

the data sink in simulation and testbed, respectively. Hence, the total number of UDP
packets increased and the interval between the transmission of UDP packet decreased
with increasing payload size, while the average transmission rate in terms of payload
data was constant.

5.4.5 Link Layer Configuration

Because short tests with another macMinBe showed significantly different results for
the RS network in simulation, we conducted a second set of experiments for the slightly

50

5.5 Evaluation

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0.7

0.8

0.9

1

LUDP [B]

P
R

R

Ass Dir Dir-RR Dir-ARR

Figure 5.5: PRR of the Chain network for different payload sizes; λB = 37.5 B/s

changed RS-B network with a different configuration of the IEEE 802.15.4 MAC layer.
The configuration of the IEEE 802.15.4 unslotted MAC is shown in Tbl. 5.2. We set
the value for macMaxFrameRetries to the maximum value specified in IEEE 802.15.4.

5.5 Evaluation

We evaluated PRR and end-to-end latency of the transmitted UDP packets. Latency
is shown only for the maximum payload size of 1200 B. For each run, we included
a warm-up and cool-down phase of five packets, which were transmitted but not
considered for evaluation.

The latency plots show the distribution of latency values against the length of the
routing path. Latency values are depicted as boxplots, representing minimum and
maximum values by whiskers, 10th and 90th percentiles by the boxes and the median
by the middle bar. The latency plots additionally contain an additional y-axis at the
right showing the PRR, averaged over all runs and for nodes with the same distance
from the sink.

The PRR plots show sample mean of the averaged PRR of all nodes in the network.
In the simulation environment, all experiments were repeated at least five times, in
the testbed four times. 95 % (two times the standard error) confidence intervals are
shown for the PRR plots of the testbed results. Note that in many cases, the confidence
intervals for results obtained by simulation were tiny and are sometimes covered by
the mark.

5.5.1 First Set of Experiments

For the first set of experiments, we evaluated the Chain, Star, Long-Y and RS-A
network topologies.

51

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(a) Assembly Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(b) Direct Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(c) Direct-RR Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9

500

1,000

1,500

Hop

La
te

nc
y

[m
s]

(d) Direct-ARR Mode

Figure 5.6: Per hop latency and PRR in the Chain network with λB = 37.5 B/s and
1200 B UDP payload; first set of experiments

Chain Network

In the Chain, the rate-restricted modes achieved better PRR – near 1 for packet sizes
of up to 800 B – compared to the Assembly mode (Fig. 5.5), while the plain Direct
mode heavily suffers from packet losses caused by frame collisions. Main drop reason
in Assembly mode is lack of buffer space for reassembly, which is an issue especially for
payload sizes ≥ 400 B. The steep drop of the PRR at 50 B payload for the Direct mode
is caused by a lack of IPv6 request objects at the 6LoWPAN layer. Those messages
are used by the DirectHandler to store addresses of fragmented datagrams in transit.
Note that a UDP packet of 50 B payload has to be fragmented with our configuration
and hence requires setting up transit state, which is not the case for 25 B packets.
100 B packets, on the other hand, are transmitted with a smaller frequency, reducing
the required number of IPv6 request objects.

As expected, the direct modes exhibited lower median latency values, especially for
nodes more distant to the sink (Fig. 5.6). With the plain Direct mode, the effect is
less pronounced and the variation of the latency is considerably larger than for the
Assembly mode and the rate-restricted modes. Considering the decrease of the PRR
with increasing distance of a node to the sink, the larger and more varying latency
in Direct mode can be explained with a comparatively large number of fragment re-

52

5.5 Evaluation

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
0.8

0.85

0.9

0.95

Payload [B]

P
R

R
Ass Dir Dir-RR Dir-ARR
Ass-PRC Dir-PRC Dir-RR-PRC Dir-ARR-PRC

Figure 5.7: PRR of the Star network for different payload sizes; λB = 37.5 B/s

transmissions, even for successful UDP packets, which leads to increased transmission
times. The rate-restricted modes both show a significantly smaller median latency,
with the Direct-ARR mode achieving the smallest. On the other hand, larger max-
imum latencies can be observed for all direct modes in comparison to the Assembly
mode.

Applying PRC does improve the resulting PRR of the plain Direct mode by 0.03,
the other modes are unaffected. Hence, result for PRC are omitted for clarity.

Star Network

In the Star, no forwarding mode achieved a PRR of 1. With high potential for collisions
at the central node and no potential for pipelining, but also less potential for self-
interference, the overall performance of the different forwarding modes was similar,
with the Assembly mode showing the best PRR for most payload sizes (Fig. 5.7).
We attributed this to the fact that for the most distant nodes, self-interference may
occur when the central node is forwarding fragments of datagrams that are still in
transmission at the source node. The drop of the PRR in Assembly mode for the
largest payload again was caused mainly by lack of available buffer space.

For payloads of 200 B and 400 B, the Direct mode slightly outperformed the rate-
restricted modes, which on the other hand achieve a better PRR for larger and smaller
payloads. The Star network is the topology that showed the largest effect of the PRC
retry control mode: it increased the PRR by 0.02 to 0.04.

Long-Y Network

Similar to the Chain, the two rate-restricted modes performed almost identically
(Fig. 5.8). As observed for the other topologies, the Assembly mode performance
decreased for large payload sizes, mainly due to buffer drops. For these payloads, As-
sembly was outperformed by the rate-restricted direct modes. In plain Direct mode,
the PRR dropped to values below 0.6.

53

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200

0.4

0.6

0.8

1

Payload [B]

P
R

R

Ass Dir Dir-RR Dir-ARR

Figure 5.8: PRR of the Long-Y network for different payload sizes; λB = 37.5 B/s

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(a) Assembly Mode

0

0.2

0.4

0.6

0.8

1

P
R

R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(b) Direct Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(c) Direct-RR Mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

500

1,000

1,500

2,000

Hop

La
te

nc
y

[m
s]

(d) Direct-ARR Mode

Figure 5.9: Per hop latency and PRR in the Long-Y network with λB = 37.5 B/s and
1200 B payload; first set of experiments

54

5.5 Evaluation

0 200 400 600 800 1,000 1,200
0.2

0.4

0.6

0.8

1

Payload [B]

P
R

R
Ass Dir Dir-RR Dir-ARR

0 200 400 600 800 1,000 1,200
0.2

0.4

0.6

0.8

1

Payload [B]

Figure 5.10: Comparing the packet reception rates of the RS-A and the TB-A networks
with a byterate of 37.5 B/s; first set of experiments

With the high potential for pipelining of fragments, the rate-restricted modes (Direct-
RR: 395 ms, Direct-ARR: 392 ms) achieved median latencies of less than one third of
that of the Assembly mode (1311 ms) for the largest payload size (Fig. 5.9). Again this
came at the cost of a higher distance between 10th and 90th percentile and larger max-
imum latencies. Different from the Chain network, the rate-restricted direct modes
showed a drop of the PRR beyond the bottleneck node (node 7 in Fig. 5.4c), which
also does not occur in Assembly mode.

RS and Testbed

Figure 5.10 shows the PRR of RS-A and TB-A networks, respectively. Payloads of
50 B, 200 B and 800 B were not evaluated in the testbed, but only in the simulation.
Compared to to the results obtained from the idealized network topologies, the dif-
ferent direct modes exhibited a significantly worse PRR in relation to the Assembly
mode. The difference was even more pronounced for the results from the testbed. In
contrast to the results from the idealized network topologies, the Direct-ARR mode
clearly outperformed the Direct-RR mode by as much as 0.2.

Considering the results for latency in the RS-A simulation (Fig. 5.11), we observed
another difference to the idealized topologies, especially Chain and Long-Y. Although
there is some potential for pipelining, the median latency was not smaller but slightly
larger with the Direct modes in comparison to the Assembly mode. Also, the PRR
dropped steeply for nodes that were four hops or more distant from the sink. For
Direct and Direct-RR modes, it dropped below and to values slightly above 0.2, re-
spectively. Only the Direct-ARR mode achieved an average PRR of more than 0.6 for
all distances. This indicates that the Direct-ARR mode successfully adapts to addi-
tional delays caused by retransmissions or additional CSMA/CA backoffs. The latter
can be expected to occur more often in the RS topologies, because the nodes use a
higher-than-necessary transmission power resulting in a larger interference range and
hence an increased probability for failed clear channel assessments (cf. Sect. 5.4.3).

55

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(a) Assembly mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(b) Direct mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(c) Direct-RR mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(d) Direct-ARR mode

Figure 5.11: Per hop latency and PRR in the RS-A network with 37.5 B/s and 1200 B
payload; first set of experiments

Because this also decreases the possibilities for pipelining, it partially explains that
the direct modes did not achieve better latencies than the Assembly mode.

5.5.2 Second Set of Experiments

Changing the macMinBe parameter from 3 to 5 was expected to have a significant
impact on the overall performance. With macMinBe = 3, the first backoff is chosen
from the interval [0 ms, 2.56 ms]. This is even smaller than the raw transmission time
for an IEEE 802.15.4 PSDU of 96 B (plus PHY header and SFD) of 3.136 ms and
hence causes a high probability of interfering frame transmissions in hidden-terminal
scenarios. Note that after a failed transmission, i.e., no acknowledgment was received,
IEEE 802.15.4 starts the retransmission resetting the current backoff exponent to
macMinBe.

With macMinBe = 5, the initial first backoff phase is in the interval [0, 9.92 ms]. If
two nodes start sending at the same time and a frame size of 96 B is assumed, the
probability that the two frames do not interfere, is[

1− (2− 1)
3.072 ms

12.992 ms

]2

≈ 0.58. (5.6)

56

5.5 Evaluation

0 200 400 600 800 1,000 1,200
0.2

0.4

0.6

0.8

1

Payload [B]

P
R

R

Ass Dir Dir-ARR

0 200 400 600 800 1,000 1,200
0.2

0.4

0.6

0.8

1

Payload [B]

Figure 5.12: Comparing the packet reception rates of the RS-B and the TB-B networks
with a byterate of 37.5 B/s; second set of experiments

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(a) Assembly mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(b) Direct mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

1,500

2,000

2,500

Hop

La
te

nc
y

[m
s]

(c) Direct-ARR mode

0

0.2

0.4

0.6

0.8

1

P
R

R

1 2 3 4 5 6 7

500

1,000

Hop

La
te

nc
y

[m
s]

(d) Assembly mode (first set)

Figure 5.13: Per hop latency and PRR in the testbed with 37.5 B/s and 1200 B pay-
load; second set of experiments, except Fig. 5.13d, which is a result for
macMinBE=3 and is shown for reference (note the different scale on the
left y-axis)

57

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

Recall also that for the second set of experiments, the BEP for a frame was calculated
according to (4.1) in the physical layer model of the simulation.

Figure 5.12 shows the results for the second set of experiments. While the Assembly
mode only had a slightly higher PRR compared to the first set of experiments, the
Direct and Direct-ARR modes dramatically improved for the largest UDP packets by
about 0.4 and 0.13, respectively. Both performed better than the Assembly mode
in this regard. The decrease for payloads of 800 B can be explained by the reduced
buffer size used during the second set. The configuration allowed only a single 800 B
datagram to fit the 6LoWPAN data buffer and therefore increases the number of
drops.

Completely different are the results obtained from the testbed. Different from
the simulation environment, the only property of the configuration changed was the
macMinBe. Here, the Direct mode, though improved by 0.15, did not achieve an even
comparable PRR to that of the Direct-ARR mode. Then again, the Direct-ARR mode
did not improve in comparison to the first set of experiments and achieves a much
lower PRR than the Assembly mode, which showed a very similar performance as in
the first set.

The latency plots obtained from the testbed (Fig. 5.13) showed an increase of the
median end-to-end latency for the Assembly mode in comparison to the first set of
experiments (Fig. 5.13d), which was to be expected with the increased macMinBe.
Also, the direct modes achieved better median latency values than the Assembly
mode. However, the more striking observation was, that the PRR, while being near
1 for the direct modes at nodes that are not more than three hops away from the the
sink, dropped steeply for more distant nodes. For the plain Direct mode, the PRR
even approaches 0 for nodes more that 5 hops distant from the sink. For Direct-ARR,
the curve had a similar shape, but the decrease did not fall below 0.3 which is still a
dramatically bad performance.

A look at the reasons for dropped fragments revealed that for the Assembly mode,
drops due to the lack of buffer space in the 6LoWPAN buffer was the primary reason,
while for the direct modes, unsuccessful link-layer transmissions caused the majority
of packet losses.

The increase of macMinBe in the second set of experiments did not have the ex-
pected effect in the testbed experiment. While the latency slightly increased, the
overall PRR did not improve by amounts comparable to the simulation environment.

5.5.3 Explanation of Results

At the time this first set of experiments was executed, we tried to explain the observed
differences in results between simulation and testbed with the nature of the real world
environment:

• People were moving around constantly at daytime during the experiments.

• Numerous IEEE 802.11 hotspots, using the same ISM band may have caused
additional interference.

• The transient behavior of wireless links over time may have caused temporal
degradation of the link quality between pairs of nodes.

58

5.5 Evaluation

• The mechanism for time synchronization sporadically put an additional small
load on the real network.

In combination with the also degrading PRRs in simulation for the first set of exper-
iments, which showed at least similar tendencies to the results from the testbed, the
explanation seemed reasonable. The stated reasons, however, fail to explain satisfac-
torily, why the PRR of the Assembly mode deviates only slightly between simulation
and testbed experiments.

Additionally, the PRR dropped to 0.5 and below 0.3 for the Direct mode in the
testbed environment in simulation and testbed, respectively. The average byterate of
the traffic generator was equal in all experiments (λB = 37.5 B). Multiplying this value
with the average path length in the RS networks results in an (lower bound) estimate
for the overall payload data rate of 1.08 kbit/s for the first and 1.176 kbit/s for the
second set of experiments. These data rates are not terrifically high in comparison
to the IEEE 802.15.4 raw data rate of 250 kbit, even if CSMA/CA, header overhead
and additional acknowledgments are considered. This does clearly not represent a
congestion scenario. Therefore, the observed performance is unacceptably low.

This reasoning is supported by the fact that changing the BEP calculation in the
simulation and using a different macMinBe changed the results, in spite of the smaller
6LoWPAN data buffer, while the testbed results remained virtually unchanged.

Another attempt to explain the results, especially of the second set of experiments,
was to make the varying signal strength between retransmissions (drawing a new
RSSI from a log-normal distribution; cf. Sect. 4.2.3) responsible for more successful
transmissions even in the presence of interference. We deemed this change of the
calculation of the BEP to be responsible for the simulation model underestimating the
probability of interference between frames leading to corrupted frames at the receiving
node(s) and thereby producing unrealistically good results. However, this explanation
neglects the fact that in the testbed experiment, the change from macMinBe = 3 to
macMinBe = 5 did not lead to significantly different results.

The results clearly imply that the simulation model did not represent the reality
satisfactorily. A first attempt to get a better fit involved the introduction of a so-
called decider correction factor (DCF). This DCF additionally attenuated the signal
of an incoming frame by a certain value if interfering frames were present. Thereby,
we wanted to increase the number of frames lost due to interference. This method did
indeed decrease the overall PRR slightly, but the results were still completely different
from those obtained from the testbed.

I eventually identified the extended operating mode (Sect. 5.4.1) of the transceiver as
possible cause for the bad performance observed in the testbed. This mode is activated
by putting the transceiver into TX ARET state, which then automatically performs
CSMA/CA backoffs, clear channel assessment and automatic retransmissions. In this
state, the transceiver is not able to receive any incoming frames, which means that
it becomes “deaf” during the backoff phase. In Chapter 6, I examine the impact of
this property and show that it is responsible for the vast majority of frame losses.
This realization triggered the conduction of a revisited parameter study, which used
the more accurate model for the bit error probability in simulation and a different
implementation of the MacAbstractionLayer and is presented in Chapter 7.

In conclusion of the presented results, the major shortcoming of the presented ex-
periment setup was the use of an inadequate formula for the BEP in the simulation

59

5 Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams

environment (Sect. 5.4.2). It caused interfering frames to be lost with a probability
near 1 and – in contrast to the conclusions drawn then – overestimated the impact of
interference in the real network. In combination with the unanticipated effects caused
by the extended operating mode, simulation and testbed showed strikingly bad but
seemingly plausible and consistent results. The execution of additional configurations
clearly showed that there existed some mismatch between testbed and simulation
model. Therefore, the results presented in this chapter underline how important an
accurate simulation model and its validation are.

60

6 Hardware-Assisted IEEE 802.15.4
Transmissions

In this chapter, the reasons for the difference between results from simulation and
testbeds as observed in Sect. 5.5 are examined. The realization of the transmission
in hardware, including the CSMA/CA mechanism, is identified as the culprit in this
regard.

6.1 Hypothesis

Possible reasons for the pronounced differences between Assembly and Direct modes
are discussed in Sect. 5.5. However, these fail to explain, why for the Assembly mode
the results from simulation and testbed are very similar, while they differ dramatically
for the Direct modes. Especially in the second set of experiments, which uses the
formula to calculate the BER as given by the IEEE 802.15.4 standard, the difference
is large. One remaining significant distinction between simulation environment and
testbed is, that the protocol stack employed in the testbed makes use of Atmel’s
ATmega256RFR2 transceivers [14] extended operating mode.

This mode provides two additional basic states, RX AACK and TX ARET. En-
tering the former state activates automatic acknowledgments, which are sent au-
tonomously by the transceiver. Its counterpart is the TX ARET state, which enables
automatic retransmissions for unicast frames. With TX ARET, the transceiver also
handles the CSMA/CA protocol of IEEE 802.15.4, i.e., employs a backoff phase and
clear channel assessment (and additional backoffs in case of busy channels). A similar
automatic mode of operation is found in Microchip’s MRF24XA [15]. Such hardware-
assisted operating modes are compelling as they can reduce the complexity of the
radio driver and link layer and potentially reduce the protocol stack’s program and
data memory1, the number of peripherals (timer) and the load on the CPU. Addi-
tionally, the processing is faster that way and thereby can speed up the transmission
speed of a frame. However, such extended operating modes deactivate the reception
of frames in TX ARET mode. In consequence, no frame can be received during the
whole backoff/CCA phase.

In a scenario with multiple hops and 6LoWPAN fragmentation, I expect this “no-
RX-while-TX” property of the extended operating mode to be responsible for a large
number of frame losses, especially using one of the Direct modes. With multiple
frames being available for sending at once (due to fragmentation), on a multi-hop
route there is a high probability for consecutive frames to “interfere” in the sense
that a subsequent frame is transmitted while it predecessor frame is pending in TX -
ARET state at the next-hop node. Figure 6.1 illustrates this situation for an extended

1Of the implementations described in Sect. 6.2, the AACK MAC is smaller than the Software
MAC by 5280 bytes ROM and 578 bytes RAM

61

6 Hardware-Assisted IEEE 802.15.4 Transmissions

2

1

2

1

no-Rx-while-TX

Time

· · ·

· · ·

RX-while-TX

Time

N
o
d
e

IDLE RX TX BO RX TX PENDING TX RADIO

Figure 6.1: Example for sequence of states for two nodes on a multi-hop path leading
to the loss of a frame transceivers with “no-RX-while-TX”, while “RX-
while-TX” transceivers receive all frames

operating mode (“no-RX-while-TX”) and a “RX-while-TX” implementation. In the
former case, a frame is sent repeatedly into the deaf next hop node, which performs
consecutive backoffs and therefore is unable to receive the frame until the sender gives
up after a number of retransmissions. Goal of the experiments conducted in this
chapter is to verify this assumption.

6.2 Capturing Node State in Real-Time

Three approaches can be applied to evaluate the extended operating modes’ impact
on the overall performance:

• An analytical approach, based on a model similar to the one proposed by Lu-
dovici et al. [Lud+14], but extended to a multi-hop scenario.

• A simulative approach, using a model which captures the behavior of such an
extended operating mode.

• An approach comparing two implementations in a testbed, with the possibility
to capture the sequence of states of each node’s MAC layer.

I decided to adopt the third approach to be able to eliminate any inaccuracies and
limitations introduced by modeling the behavior. As representative for the extended
operating mode, I use the MAC layer implementation for the ATmega256RFR2 that is
included in CometOS (Sect. 4.1.3, [UWT12]). This implementation is called “AACK
MAC” in the remainder of the thesis. As a reference, I ported the radio stack for
the ATmega128RFA1 (which is nearly identical to the ATmega256RFR2) of TinyOS
to CometOS. The TinyOS radio stack was chosen, because it is widely used and
modularized. This layer implements the control of the transmission process comprising
acknowledgments, retransmissions, backoffs and clear-channel assessment in software.
I also created an alternative backoff layer, which implements the unslotted CSMA/CA
of 802.15.4 and replaces the default TinyOS backoff mechanism. This implementation
is referred to as Software MAC throughout the thesis.

Keeping track of the accurate sequence of states of each node’s MAC layer poses
two major difficulties. First, the memory needed to store a large number of state
changes is not available on the resource-constrained nodes which already contain a

62

6.2 Capturing Node State in Real-Time

IDLE

TX BO

TX RF TX WAIT TX ACK

TX DONE

RXRX

RX DLRX DL RX ACKRX ACK

RX TX PDRX TX PD

RX DL TX PDRX DL TX PD

RX ACK TX PDRX ACK TX PD

RX DONE

RF TX END

TX START

RX DONE

R
F

T
X

E
N
D

R
F

R
X

E
N
D

TX BO FAIL

RX DONE

T
X
R
ET

RY

R
F

R
X

E
N
D

RX DONE,
RX DROPPED

RF TX END

RX DONE

R
F
T
X
ST

A
RT

R
F

R
X

S
T
A
R
T

TX
BO

FAIL

TX START

R
F

T
X

E
N
D

RX DROPPED,
RX DONE

TX
RE

TR
Y

RF RX START

TX FAIL,
TX SUCCESS

TX
FA

IL,

TX
SU

CC
ES

S

TX RETRY

RF RX DROPPED,
RX DROPPED

R
X

D
O
N
,
R
X

D
R
O
P
P
E
D
,
R
F

R
X

D
R
O
P
P
E
D

RF TX START

R
F

R
X

S
T
A
R
T

TX BO FAIL

RX DONE,
RX DROPPED,

RF RX DROPPED

TX START

RF TX START

R
F

R
X

S
T
A
R
T

TX FAIL, TX SUCCESS,
RX DROPPED, RX DONE

TX
STA

RT

RF RX START

IDLE RX TX BO RX TX PENDING TX RADIO

Figure 6.2: State machine for Software MAC

complete IPv6/6LoWPAN stack plus a parallel stack to control the execution of ex-
periments. Secondly, time synchronization with the accuracy of some µs between
nodes is necessary to accurately interpret state sequences locally. To achieve such
a synchronization, additional frames on the wireless channel are necessary, interfer-
ing with the data frames of the experiment. For those reasons, I pursued a different
approach and instrumented both MAC layer implementations to encode all relevant
events as a 4 bit value and signal them to another microcontroller using plain GPIO
ports.

I decided to directly output the present event instead of keeping track of the com-
plete state machine within a node throughout the different layers of the radio stack.
This was done in order to make the instrumentation of code as non-intrusive as pos-
sible. In consequence, only four CPU cycles (250 ns) are needed to update the value
of the GPIO port to signal a new event.

63

6 Hardware-Assisted IEEE 802.15.4 Transmissions

IDLE

TX BO

TX RF TX ACK

RXRXTX PENDINGTX PENDING

T
X
ST
A
R
T T

X
B
O
FA

IL

RF TX END

R
F
T
X
ST
A
R
T

TX REQUEST

RX DONE

RF TX END

RF TX END

T
X
R
E
T
R
Y

RF RX START

TX FAIL,
TX SUCCESS

TX REQUEST

RF RX START
RF TX END

IDLE

RX

TX BO

RX TX PENDING

TX RADIO

Figure 6.3: State machine for AACK MAC and legend for aggregated states

I took two steps to arrive at a simplified state machine that contains all the relevant
information about the MAC layer’s state of each node. First, I identified the events and
states necessary to unambiguously reconstruct the sequence of states from a sequence
of events and created a detailed state machine for each of the two implementations
(Figures 6.2 and 6.3). Secondly, several states of the detailed versions were subsumed
under a smaller subset of states relevant to the evaluation. Our goal is to especially
recognize the occurrences and results of situations, in which a sender transmits, while
the destination node is in a backoff phase.

For the Software MAC, I therefore distinguish between “normal” RX states and
those RX states, during which the transceiver is processing a transmission request
as well (marked by a TX PD suffix in Fig. 6.2). The latter are subsumed under
an RX TX PENDING state. Additional subsumed states for both implementations
are IDLE, TX BO (CSMA backoff), RX (receiving) and TX RF (sending). Those
are represented by different shades/patterns in Fig. 6.2. Note that for the AACK
MAC there is no straightforward way to determine if a started reception has been
successfully finished. This also includes the reception of frames not destined for this
node – in both cases, there is only the absence of an interrupt. Therefore, nodes are
often recorded to remain in an “RX” state after an unsuccessful or discarded (filtered)
reception, instead of going back to IDLE. As I am exclusively interested in counting
“RX-while-TX” occurrences, this does not bias the results in any way.

6.3 Experiment Setup

The actual testbed consisted of four ATmega256RFR2 nodes (labeled 105, 10E, 10D
and 10F in Fig. 6.4) in a single large room (about 8× 4m), spaced about two to three
meters from each other. Customized Cat5 patch cables were used to connect the
transceiver’s GPIO ports to 16 pins of PORT C of an ARM Cortex-M4 on Freescale’s
FRDM-K64F evaluation board, as shown in Figures 6.4 and 6.5. The Cortex-M4
executed a simple application with two chained timers, configured to yield a combined
timer precision of 266 2

3
ns. This application sampled the state of the 16 input pins

in a busy loop and stored every stable (constant for one tick of the timer) change of

64

6.3 Experiment Setup

10F 10D

10E

105

RaspPi FRDM-K64F

PC Basestation

PC

Ethernet/TCP

UART

UART

Radio Link/Static Route

GPIO connection cable

Figure 6.4: Schematic diagram of experimental setup

Figure 6.5: Wireless and sampling nodes, and Raspberry Pi controller of experiment

65

6 Hardware-Assisted IEEE 802.15.4 Transmissions

minBe maxBe csmaBackoffs maxFrameRetries CCA mode CCA TH

5 8 5 7 0 -90 dBm

Table 6.1: 802.15.4 MAC parameters for all configurations

Mode Software MAC AACK MAC

Direct 97 % 21.6 %
Direct-ARR 99.6 % 79.5 %

Table 6.2: Average success rate of datagrams

their value with the corresponding timestamp. The CPU ran at 120 MHz, which was
fast enough to sample the input port several times per timer tick. The chosen timer
precision, in turn, ensured that no event was missed – the minimum duration between
two events was observed to be larger than 4 µs. Upon another GPIO signal, results
were sent via UART to a PC and the memory was reset. This signal was generated
by the actual base station controlling the traffic generator for the experiment and
forwarded via TCP to a Raspberry Pi, which drove the pin.

The nodes used a static routing table to forward the IP datagrams. Only node 105
sent 20 datagrams of 1200 bytes payload to the PC base station. Thereby, additional
cross-interference between fragments of datagrams originating at different nodes was
eliminated from the experiment. The sending interval was fixed to 4 s, which is more
than twice the maximal observed end-to-end delay for a datagram to arrive (or fail).
The transmission power of the transceivers was set to the minimal value of −16.5 dBm
to realize multiple radio hops between the nodes. Other 802.15.4 MAC parameters
were kept constant at the values used in the second set of experiments described in
Sect. 5.5 (see Table 6.1). Nodes were configured to use the unslotted CSMA-CA
mechanism.

Apart from the Direct mode, I also evaluated the Direct-ARR mode, which improved
the reliability for large datagrams (Sect. 5.5). For each MAC layer implementation I
carried out experiments using the plain Direct and the Direct-ARR mode, resulting
in four different configurations. All experiments were repeated 50 times.

6.4 Evaluation

6.4.1 Direct Mode

The overall success rate for datagrams sent with the Software MAC in Direct mode
is dramatically better than that of the AACK MAC (Table 6.2). In comparison to a
97 % success rate with the Software MAC, on average, only 21.6 % of the datagrams
reached their destination with the AACK MAC.

The main reason for the observed performance is illustrated in Fig. 6.6. It shows the
(aggregated) sequence of states all nodes pass through during a complete transmission
of a datagram. As expected, during the transmission of the 18 fragments, a situation
occurs in which the next receiver on the path (node 0x10E) enters the TX ARET
state for long enough, that the sending node unsuccessfully tries to send a frame to it

66

6.4 Evaluation

4000 4060 4120 4180 4240 4300 4360 4420 4480 4540 4600

0x105

0x10e

0x10d

0x10f

Time [ms]

N
o
d
e

IDLE RX TX BO RX TX PENDING TX RADIO

Figure 6.6: Sequence of states; AACK MAC, Direct mode, run 0, datagram 1

0 45 90 135 180 225 270 315 360 405 450

0x105

0x10e

0x10d

0x10f

Time [ms]

N
o
d
e

IDLE RX TX BO RX TX PENDING TX RADIO

Figure 6.7: Sequence of states; Software MAC, Direct mode, run 0, datagram 0

(recall that during TX ARET, the transceiver is unable to receive any frame). This
pattern can be observed in slight variations for most of the datagrams in all runs for
the AACK MAC in Direct mode.

The Software MAC’s superior performance can be mainly attributed to the different
behavior concerning the reception of frames while being in some TX state (Fig. 6.7).
The occasions in which a node received frames while being in a back-off state for
it’s own transmission are marked as RX TX PENDING in the plot. It can be seen
that allowing these receptions of frames does not lead to any losses of frames pending
for transmission, but on the contrary significantly reduces the number of necessary
retransmissions for the sending node.

Departing from individual datagrams to a more general view, the number of frag-
ments in certain combinations of events at the sending node and state at the receiving
node were extracted from the experiment data. Table 6.3 shows the summed up and
averaged results for the first two nodes of the path (105, 10E).

Comparing these data, it can be observed that the number of total fragments sent
(fragRequests) reaches only 57.7 % of the number of fragments needed for a com-
plete transmission (fragRequests (max)) of the datagram, because often senders had
to give up the transmission due to a completely failed transmission of a fragment.

67

6 Hardware-Assisted IEEE 802.15.4 Transmissions

Software MAC AACK MAC

(0) fragRequests (theo. max) 720.00 720.00
(1) fragRequests 717.10 99.6 % of (0) 415.30 57.7 % of (0)

(2) fragSuccessDstTx 518.48 0
(3) fragSuccessDstNonTx 198.38 398.76
(4) fragFailDstTx 81.96 13.6 % of (7) 423.08 100.0 % of (7)
(5) fragFailDstNonTx 23.44 10.6 % of (8) 4.44 1.1 % of (8)
(6) fragFailTotal 105.40 14.7 % of (1) 427.52 102.9 % of (1)

(7) fragDstTxTotal 600.44 423.08
(8) fragDstNonTxTotal 221.82 403.20

Table 6.3: Average fragment counts of Software MAC and AACK MAC over 50 runs;
Direct forwarding mode

Furthermore, there is a difference in the relative and absolute number of retries and
transmission failures caused by frames that were transmitted to a sender that was in
some TX state (TX BO or TX RF), denoted as fragFailDstTx. For the AACK MAC,
nearly all (99 %) failed frame transmissions are caused by such frames, compared to
77.8 % for the Software MAC. Also, for the Software MAC, the ratio of failed transmis-
sions with receiver-TX and receiver-non-TX states (fragFailDstNonTx) against their
respective totals (fragDstTxTotal, fragDstNonTxTotal) are not far apart from each
other: 13.6 % vs. 10.6 %. This suggests that the probability of a successful transmis-
sion is only slightly higher if the receiving node is in an idle state for the Software
MAC. Possible explanations for this small difference are:

• A Transmission started during a CCA by the receiver is lost with the used
implementation (during CCA, SHR detection is disabled).

• Sender and receiver perform their CCA at nearly the same time and both start
sending.

Much more pronounced is the overall number of failures, which is only 14.7 % of
the total number of transmission requests for the Software MAC, but 102.9 % for the
AACK MAC. This means that, using the AACK MAC, on average there is about one
retransmission for every initial transmission request.

Finally, a higher percentage of fragFailDstNonTx for the Software MAC over the
AACK MAC (10.6 % vs 1.1 % of all fragments with the receiver in a non-TX state)
is observable. A possible explanation can be found in the fact that, with the Soft-
ware MAC, on average more fragments reach the nodes farther down the path and
thereby increase the number of collisions due the hidden terminal problem, which is
not captured by the selected metrics.

6.4.2 Direct-ARR Mode

Using adaptive rate restriction increases the average datagram success rate of the
Software MAC slightly, that of the AACK MAC greatly (Table 6.2).

68

6.4 Evaluation

20000 20060 20120 20180 20240 20300 20360 20420 20480 20540 20600

0x105

0x10e

0x10d

0x10f

Time [ms]

N
o
d
e

IDLE RX TX BO RX TX PENDING TX RADIO

Figure 6.8: Sequence of states; AACK MAC, Direct-ARR mode, run 0, datagram 5

8000 8060 8120 8180 8240 8300 8360 8420 8480 8540 8600

0x105

0x10e

0x10d

0x10f

Time [ms]

N
o
d
e

IDLE RX TX BO RX TX PENDING TX RADIO

Figure 6.9: Sequence of states; AACK MAC, Direct-ARR mode, run 0, datagram 2

Figures 6.8 and 6.9 show the sequences of states with AACK MAC and Direct-
ARR mode for a successful and an unsuccessful datagram transmission, respectively.
Figure 6.8 illustrates how the additional delay of the Direct-ARR mode mitigates
the risk of deaf receivers. However, due to the inherent random nature of the length
of backoffs in 802.15.4 and random failures on the the wireless channel, the delay
mechanism does not completely prevent situations, in which again the sender tries to
get its fragment to a receiver in TX ARET state, as shown in Fig. 6.9.

Observing the results of 50 runs, I found that the by far dominating cause for losses
and retransmissions for the AACK MAC are again those fragments, which where lost
due to the sender being in TX ARET state (Table 6.4). As for the Direct mode,
the number of transmission failures caused by a receiver-TX state is two orders of
magnitude larger than that of transmission failures with a receiver-non-TX state.

However, the relative (in comparison to the number of fragments transmissions
requested in total) and absolute number of transmission failures is greatly reduced
by the Direct-ARR mode, from 427.52 (102.9 %) to 116.5 (17.6 %). Considering the
simple traffic scenario with a single sender and only four hops, the performance of the
AACK MAC can still be regarded as disastrous, especially compared with the 99.9 %
achieved by the Software MAC.

69

6 Hardware-Assisted IEEE 802.15.4 Transmissions

Software MAC AACK MAC

(0) fragRequests (theo. max) 720.00 720.00
(1) fragRequests 719.92 99.99 % of (0) 661.62 91.90 % of (0)

(2) fragSuccessDstTx 87.80 12.20 % of (1) 0.00
(3) fragSuccessDstNonTx 632.10 87.80 % of (1) 657.28
(4) fragFailDstTx 16.72 16.00 % of (7) 114.80 100.00 % of (7)
(5) fragFailDstNonTx 42.44 6.30 % of (8) 1.70 0.26 % of (8)
(6) fragFailTotal 59.16 8.20 % of (1) 116.50 17.60 % of (1)

(7) fragDstTxTotal 104.52 114.80
(8) fragDstNonTxTotal 674.54 658.98

Table 6.4: Average fragment counts of Software MAC and AACK MAC over 50 runs;
Direct-ARR forwarding mode

Software MAC AACK MAC

Direct Direct-ARR Direct Direct-ARR

fragRequests 2.3 0.16 16.23 8.84

fragSuccessDstTx 6.4 4.64 na na
fragSuccessDstNonTx 5.9 4.67 16.75 9.27

fragFailDstTx 3.8 1.93 14.58 6.84
fragFailDstNonTx 2.7 5.88 0.64 0.82

Table 6.5: Confidence intervals of average fragment counts for all configurations

Most clearly, the effect of the rate restriction is shown by rows (7) and (8) of Ta-
ble 6.4. Apart from preventing hidden-terminal collisions, it also reduces the number
of occasions during which senders transmit toward a receiver in TX state. Thereby, the
overall ratio of fragments sent during receiver-TX and fragments sent during receiver-
non-TX is more than inverted for the Software MAC and significantly changed for the
AACK MAC. Interestingly, the absolute number of fragments is nearly the same for
both MAC implementations (rows (7) and (8)).

Confidence intervals for all experiments were omitted for clarity from the results
tables and are shown in Table 6.5.

6.5 Conclusions

In this chapter, an experimental setup to analyze the sequence of events and states
of the MAC layer within a 6LoWPAN network was presented, focusing on the trans-
mission of fragmented large datagrams with the cross-layered Direct and Direct-ARR
modes. The results of the experiments in a testbed of four nodes forming a simple line
topology have shown, that the extended operating mode of the hardware transceiver
is responsible for the bad performance and the observed difference to the results from
simulation. Additional mechanisms like rate restriction can significantly improve the
performance by preventing situations in which packet losses typically occur, but an

70

6.5 Conclusions

implementation using the extended operating mode is still not competitive and biases
experiment results significantly. Moreover, it does so in a rather devious way, which
is difficult to distinguish from hidden terminal collisions or random sources of frame
loss, especially in cases where the reduction is less dramatic, e.g., for the Direct-ARR
mode.

Although only a small testbed was evaluated, it is obvious that the degradation of
performance can not be expected to be less severe in larger networks and/or networks
with a larger diameter. Application scenarios that involve consecutive transmissions of
multiple frames along the same route employing an unslotted CSMA/CA mechanism
therefore should avoid using hardware-assisted transmissions in their current state.

This conclusion has triggered a revision of the experiments in Sect. 5.5 using the
Software MAC, which is presented in Chapter 7. For the evaluation of the 6LoOF
protocol (Chapter 8), I also use the Software MAC implementation in the testbed
experiments.

71

7 Basis Forwarding Techniques Revisited – a
Parameter Study

In consequence of the results of the experiments described in Chapter 5 and Chap-
ter 6, a parameter study with a configuration corresponding to the insights gained
was conducted. This chapter introduces the new setup and configuration and presents
an evaluation for the forwarding modes Assembly, Direct and Direct-ARR. The main
goal of the evaluation is to identify a useful configuration of IEEE 802.15.4 parameters
for the 6LoOF evaluation.

7.1 Experiment and Simulation Setup

This section describes the configuration of testbed and simulation. I used the collection
traffic pattern that was introduced in Sect. 5.4.4. The total traffic amount was set to
120 000 B in simulation and testbed to prevent the simulations, which explored a much
larger parameter space, from running for too long due to a large number of runs. The
configuration of implementation specific parameters was not changed in comparison to
the one presented in Sect. 5.4.1 and hence the memory usage of Assembly and Direct
mode was nearly identical.

7.1.1 Testbed

For this parameter study, the Software MAC as described in Sect. 6.2 was employed
in the testbed. A new testbed containing 13 nodes in rooms along the corridor on the
fourth floor of our office building was installed. In comparison to the network used
for the evaluation in Chapter 5, the position of nodes was slightly changed. Fig. 7.1
shows a rough ground plan containing the location of all nodes. The nodes are dresden
electronic deRFmega256-23T00 wireless transceiver modules, equipped with an Atmel
ATmega256RFR2. Apart from some additional minor functionality of the transceiver

0

100
101 102

103
104

105

106

107

108 109 10A
10B

10C

Figure 7.1: Locations of TB-C nodes and routing tree of TB-C

73

7 Basis Forwarding Techniques Revisited – a Parameter Study

P tx,exp P tx,topo

6.5 dBm −0.5 dBm

Table 7.1: Transceiver transmission power for experiment and TopologyMonitor run

0 100 105

106

101 107

102
104

109

10A108

103

10B10C

(a) RS-C, TB-C

0 1 2 3 4 5 6 7 8 9 10

(b) Chain-11

Figure 7.2: Network topologies for the parameter study

and twice as much program and data memory, this controller/transceiver system-
on-chip is identical to the Atmel ATmega128RFA1 employed in earlier experiments
(Sect. 5.4.1).

The routing topology (Fig. 7.2) of the TB-C network was obtained as described
in Sect. 4.2.3. As before, a different transmission power was used for the run of the
TopologyMonitor and the actual experiment. These are shown in Table 7.1. All runs
in the testbed were repeated five times.

7.1.2 Simulation

The actual parameter study was carried out in the simulation environment, because
it took several days to weeks to execute the experiments with a significant number of
runs in the testbed. The parameter set employed in the simulations included that of
the testbed experiments for validation, but further varies most IEEE 802.15.4 MAC
parameters, the size of the 6LoWPAN data buffer and the payload size. I examined
the three surviving modes of operation Assembly, Direct and Direct-ARR.

Three network topologies were evaluated: a line topology and two different flavors of
the RS-C network (Fig. 7.2). The links in the Chain-11 network are all configured with
the same link quality of RSSI = −50 dBm and no variance. The two RS-C networks
use the same routing tree but different link configurations. The two configurations
use links obtained from the TopologyMonitor with the transmission power of P tx,exp

and P tx,topo , respectively. Hence, one configuration represents the configuration of
TB-C, the other the configuration that could be used in the testbed, if links would be
less time-varying.

74

7.2 Validation of RS-C

Q BEmin BEmax macMaxCSMABackoffs r

1280 B 5 8 5 7

Table 7.2: IEEE 802.15.4 and 6LoWPAN configuration for validation experiments

RS-C2 TB-C

0.6

0.7

0.8

0.9

1.0

1.1

0.6

0.7

0.8

0.9

1.0

1.1

3
7
.5

B
s −

1
7
5
B
s −

1

50 200 800 1200 50 200 800 1200

LUDP [B]

P
R

R

Mode
Ass

Dir

Dir-ARR

Figure 7.3: Validation experiment; Comparison of average PRR obtained from TB-C
and RS-C for two different application data rates. The results between
simulation and testbed are largely consistent.

The simulation runs for validation of the testbed were repeated five times. To
further decrease the size of the confidence intervals while retaining viable runtimes,
this number was increased to 15 for the larger-scale study.

7.2 Validation of RS-C

I used a subset of the parameter space to perform a validation of the simulation model
as shown in Table 7.2. The configuration of this validation experiment is shown in
Table 7.2 for the 6LoWPAN buffer size Qand the IEEE 802.15.4 CSMA/CA configu-
ration values macMinBe (BEmin), macMaxBe (BEmax) and macMaxCSMABackoffs,
as well as the maximum number of retransmissions macMaxFrameRetries (r).

7.2.1 PRR

Figure 7.3 shows the PRR obtained from simulation and testbed runs averaged over all
nodes against size of an individual UDP packet LUDP for the three different operating
modes and two different (application traffic) byte rates. The same values are shown
again in Table 7.3 for exact reference. As a general result, it can be seen that simulation

75

7 Basis Forwarding Techniques Revisited – a Parameter Study

λB [B s−1] LUDP [B] Network PRR
Assembly Direct Direct-ARR

37.5 800 TB-C 0.822 0.933 0.976
37.5 800 RS-C 0.874 0.936 0.968

37.5 1200 TB-C 0.843 0.859 0.934
37.5 1200 RS-C 0.870 0.860 0.891

75 800 TB-C 0.726 0.888 0.946
75 800 RS-C 0.750 0.863 0.904

75 1200 TB-C 0.693 0.751 0.847
75 1200 RS-C 0.743 0.735 0.778

Table 7.3: Validation experiment; average PRR values for the two largest payload
sizes and different total byterate λB (rows) from simulation and testbed
(columns) with comparable configuration.

and testbed results exhibit similar behavior. For the two largest payloads, the PRR
decreases significantly. This effect is more pronounced for the higher application data
rate. For the Assembly mode with the two largest UDP payloads, a steep drop of the
PRR can be observed from almost 1 to below 0.9 and 0.8 for a data rate of 37.5 B
and 75 B, respectively. Both simulation and testbed show the Direct-ARR mode
performing best for large datagrams. The plain Direct mode achieves nearly identical
values in simulation and testbed, regardless of the configuration setting.

All modes consistently reach a PRR of almost 1 for UDP payloads of 200 B, while the
PRR for 50 B packets is significantly lower with the higher data rate in the simulation.
At this point, the testbed results deviate from the simulation. The Direct mode shows
nearly identical behavior, but Direct-ARR (with a very large confidence interval) and
Assembly (reaching a PRR of nearly 1) are different in the testbed. In simulation, the
drop is caused by a lack of message structures used by 6LoWPAN and IPv6 layer to
communicate, which cannot be observed in the testbed to the same extent, except for
the Direct-ARR mode.

For the scenarios evaluated, there is also a consistent bias in the results for the
Assembly and the Direct-ARR modes. The Assembly mode achieves an average PRR
in simulation which is by 0.027 to 0.052 higher than the corresponding results from
the testbed. In contrast, the Direct-ARR mode consistently achieves a 0.012 to 0.069
higher PRR in the testbed. In consequence, the Direct-ARR outperforms the Assem-
bly mode by a significantly larger margin in the testbed for the given settings.

7.2.2 Drop Causes – 6LoWPAN Layer

Analyzing the causes for dropped datagrams shown in Fig. 7.4 for the higher of the
evaluated data rates and UDP payloads of 1200 B, it can be observed that general
trends again can be observed in testbed and simulation. The vast majority of drops
in Assembly mode is caused by a lack of space in the data buffer. Given a 6LoWPAN
buffer size of Q = 1280 B, which forces the 6LoWPAN module to drop fragments
if more than one datagram of those sizes is reassembled, this does not come as a

76

7.2 Validation of RS-C

RS-C2 TB-C

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

A
ss

D
ir

D
ir-A

R
R

10
0

10
5

10
6

10
1

10
7

10
2

10
4

10
8

10
9

10
A

10
3

10
B

10
C

av
g

10
0

10
5

10
6

10
1

10
7

10
2

10
4

10
8

10
9

10
A

10
3

10
B

10
C

av
g

Node Id and avg

#
da

ta
gr
am

s
(n
or
m
)

dropReason
MacFail

BufferFull

Figure 7.4: Drop causes for each node and average for the whole network, normalized
by the total number of UDP packets transmitted per node. Data rate of
λB = 75 B s−1

surprise. It explains the steep drop of the PRR for the Assembly mode. The testbed
results show a slightly larger number of datagrams dropped due to failures at the
link layer compared to those obtained by simulation. The same can be stated for the
Direct mode. While the overall PRR of the Direct mode is nearly identical, the ratio
of drops due to link layer failures and due to lack of buffer space is nearly inverse
between testbed and simulation.

The Direct-ARR mode shows results different from Assembly and Direct mode: the
number of link layer failures and the number of buffer drops in the testbed is smaller
than for the corresponding simulation environment.

In addition to these general observations, it can also be seen that the direct neighbor
of the basestation drops more datagrams due to link layer failures in the simulation
environment than in the testbed. This is a direct cause of modeling this last hop
as wireless link, in contrast to the testbed which uses a serial connection that is not
governed by the CSMA/CA algorithm and exposed to interference by other node’s
transmissions.

7.2.3 Drop Causes – Link Layer

A closer look at the causes for drops by the IEEE 802.15.4 link layer reveals that
for all examined network topologies a consecutively failed CCA is responsible for the
largest share of drops. Figure 7.5 shows the data for the RS-C2 network and the
corresponding TB-C. Again, the general trend observed in the simulation is confirmed
by the testbed experiment: Direct and Direct-ARR lose considerably more datagrams
due to drops at the link layer than Assembly. However, while in the simulated RS-C2

77

7 Basis Forwarding Techniques Revisited – a Parameter Study

RS-C2 TB-C

0

1

2

0

1

2

3
7
.5

B
s −

1
7
5
B
s −

1

Ass Dir Dir-ARR Ass Dir Dir-ARR

Mode

#
fr

am
es

(n
or

m
) retries

#retries6

#retries7

#CCA_fail

#fail

Figure 7.5: Causes of drops at the IEEE 802.15.4 link layer averaged over all nodes,
normalized by the total number of UDP packets transmitted per node for
simulated and testbed networks (columns) and total byterate λB (rows).
Additionally the number of frames with a large number of frame retrans-
missions is shown.

network frames are dropped exclusively due to CSMA/CA failures, in TB-C, frames
were also dropped because the maximum number of retransmissions is reached. Note
that this can be implicitly deduced from the fact that numCSMAFails is smaller than
the numOutgoingNotAcknowledged metric. The number of retransmissions for each
frame has not been recorded in the testbed during this evaluation and is depicted as 0
in the plot, while for the simulation environment the depicted 0 represents the actual
number of frames with a corresponding number of retransmissions.

The fact that CSMA/CA drops are the sole reason for frame drops in the simulation
also explains the surprisingly large number of frames dropped by the link layer at the
basestation-attached node: The excellent link quality installed between the two nodes
does not save it from CSMA/CA failures.

Additionally, large confidence intervals can be observed for the total number of
frames dropped in the testbed experiments for the higher data rate. With the confi-
dence intervals for drops caused by buffer drops being comparatively smaller, it can be
deduced that the number of drops due to consecutively failed link layer retransmissions
varies strongly between runs.

These results shed some more light on the behavior of the overall PRR between
simulation and testbed. For both data rates, the testbed drops significantly more
frames after the maximum number of link layer retransmissions. The arguments stated
in Sect. 5.5.3 enumerating reasons for frames losses in the testbed, while not logically
sound for the results in that section, provide a possible explanation for the effect
observed here.

78

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters

r BEmin BEmax macCcaMode Q [B]
3,5,7 3,5,6 7,8 0,3 1280, 2560, 3840

LUDP [B] λB [B s−1] Tto [ms] forwarding modes
50,200,800,1200 112.5 2000 Assembly, Direct, Direct-ARR

Table 7.4: Varying and fixed parameters used in the study

For this validation, I used IEEE 802.15.4 CCA mode 0, i.e., the CCA fails when
an IEEE 802.15.4-conforming frame is detected or an energy detection determines
an energy level on the channel that is larger than the macCcaTh, which is set to
−90 dBm. The former in both cases is translated to “the CCA fails if a frame is
being received”. The latter is realized in the simulation environment simply checking
the signal strength on the channel once, 128 µs after the CCA has started, instead
of performing an energy detection as done at nodes in the testbed. Both Assembly
and Direct-ARR mode loose less frames due to CSMA/CA failures in testbed than
in simulation – the simulation environment obviously fails more often when executing
the CCA in those cases. Contradicting the general trend, for the Direct mode, this
number in the testbed is larger. With the available data, I can not offer a satisfying
explanation for this result.

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4
Parameters

In this parameter study, the performance in terms of PRR and latency for three
different network topologies is evaluated: a variant of the Chain from Sect. 5.4.3 that
contains an additional node (Chain-11) and the two flavors of the RS-C network,
RS-C2 and RS-C1. The number of hops the generated UDP packets have to traverse
in total are nearly equal: 55 for the Chain-11 network, 57 for the two RS networks.
This makes the networks roughly comparable in terms of the total raw traffic load
λB,total, which can be defined by

htotal =

∑
l∈L

len(l)

 (7.1)

λB,total =htotal × λB (7.2)

with L being the set of all routes participating in given collection traffic pattern and
len(l) being the number of hops (the length) of a single path.

The overall configuration of the traffic generator is unchanged. It sends UDP packets
with an average constant byterate as specified in (5.5).

One goal of the study is to reduce the number of parameters for the evaluation of
the 6LoOF study by determining good values for most scenarios that may then remain
constant. With buffer drops being the main cause of packet drops in the validation
experiments (Sect. 7.2.2) due to a 6LoWPAN data buffer of the size of the IPv6 min-
imum MTU, the impact of using larger data buffers was also examined. Furthermore,
the IEEE 802.15.4 macMinBe (BEmin) has shown a high level of influence on the

79

7 Basis Forwarding Techniques Revisited – a Parameter Study

2560B 3840B

0.50

0.75

1.00

0.50

0.75

1.00

0.50

0.75

1.00

C
hain-11

R
S-C

2
R

S-C
1

3 5 7 3 5 7

r

P
R

R

Mode
Ass

Dir

Dir-ARR

Figure 7.6: PRR against r for different buffer sizes (cols) and networks (rows). For
the shown cases, increasing r in all cases increases reliability. UDP
payload=1200 B, macCcaMode=3, BEmin=5, BEmax=8

overall reliability of transmissions in the initial study and is therefore examined for
its default value and larger values. To get an indication if the macMaxBe (BEmax)
has a similar influence, e.g., by shortening the overall transmission duration, a second
setting is evaluated in this regard.

The analytical model presented in Sect. 3.2 indicates that a large number of retrans-
missions successfully prevents rapidly decreasing end-to-end reliability, but is not able
to assess the influence of a large number of frame retransmissions on collision prob-
abilities or the utilization of buffer space. The macMaxFrameRetries (r) is varied to
evaluate the impact of this parameter.

Although macMaxCSMABackoffs was set to the allowed maximum value according
to IEEE 802.15.4, the majority of frames were dropped because of a failed CSMA/CA
procedures. Therefore, an alternative IEEE 802.15.4 CCA mode (four different vari-
ants are specified) (CCA) was evaluated. The CCA mode 0 was employed in the
experiments presented in Chapters 5 and 7. It corresponds to “Detection of a sig-
nal with the modulation and spreading characteristics of this standard” OR “Energy
above the threshold” of the IEEE 802.15.4 standard [11a]. macCcaMode=3 changes
the logical operator between the two conditions to an “AND” and thereby increases
the aggressiveness of the CCA, which is expected to lead to less failed CSMA/CA
procedures.

An overview of all settings is given in Table 7.4. For each configuration, 15 runs
were executed, yielding a total of 19440 (1296 parameter combinations) runs for each
network.

80

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters

Ass Dir Dir-ARR

0

300

600

900

0

300

600

900

0

300

600

900

C
hain-11

R
S-C

2
R
S-C

1

3 5 7 3 5 7 3 5 7

r

#
da

ta
gr
am

s dropReason
MacFail

BufferFull

OutOfHandlers

OutOfMessages

Figure 7.7: Drop causes against r for the different networks and forwarding modes.
The number of drops due to lack of buffer space increase slightly for RS
networks, but the overall number of drops decreases with increasing r

7.3.1 macMaxFrameRetries

First, the influence of the maximum number of frame retransmissions on the PRR is
examined. In all cases, a larger number of maximum frame retransmissions increases
the average PRR in most network/parameter combinations. In the worst case, the
PRR stays constant, which is the case for the RS-C2 network with macCcaMode
0, because the sole reason for the dropping of frames is a failure of the CSMA/CA
mechanism (cf. Sect. 7.2.3). This is exemplarily shown in Fig. 7.6. The Chain-11
network achieves a PRR of almost 1 with the maximum value for r = 7 as specified
by IEEE 802.15.4. RS-C2 and RS-C1 also benefit from a larger r.

Figure 7.7 additionally shows the drop causes for the same configuration and for
a 6LoWPAN buffer size Q = 2560 B. Although the number of buffer drops slightly
increases with increasing r, this effect is more than compensated by a decreasing
number of drops at the link layer.

In conclusion, there was no configuration for which allowing more frame retrans-
missions caused a decrease of the overall PRR. This observation is consistent with the
analytical model. Considering that the routes in our setup are static, this result is in
line with my expectations. In consequence, the parameter r from is set to r = 7 for
the remaining evaluation.

81

7 Basis Forwarding Techniques Revisited – a Parameter Study

1280B 2560B 3840B

0.50

0.75

1.00

0.50

0.75

1.00

0.50

0.75

1.00

C
hain-11

R
S-C

2
R

S-C
1

3 5 6 3 5 6 3 5 6

BEmin

P
R

R

Mode
Ass

Dir

Dir-ARR

Figure 7.8: PRR against BEmin for different buffer sizes (cols) and networks (rows).
LUDP = 1200 B

7.3.2 macMinBe

The minimum backoff exponent of the unslotted CSMA/CA of IEEE 802.15.4 is ex-
pected to have a large influence of the overall performance. Especially in multi-hop
scenarios, a larger setting decreases the probability of self-interference between con-
secutive 6LoWPAN fragments (cf. Sect. 5.5.2). First, the results are discussed for a
LUDP = 1200 B, BEmax = 8 and macCcaMode = 0.

As can be seen, both Direct modes benefit by the BEminincreasing from 3 to 5
(Figure 7.8). In contrast, the Assembly mode, which is much more prone to buffer
drops, does only achieve a higher PRR for the larger Q analyzed. With the smallest
buffer, the PRR even decreases significantly with increasing BEmin. For the given
configuration, the Direct-ARR mode shows the best results in the RS networks for
BEmin = 5. With BEmin ∈ [3, 6], the PRR is lower. The PRR achieved by plain
Direct mode, on the other hand, further increases for BEmin = 6 and the effect is
more strongly pronounced for larger values of Q.

A larger BEmin increases the probability for the Direct mode to avoid busy chan-
nels and hidden-terminal collisions more often, whereas the Direct-ARR mode cannot
further profit and even exhibits a decreased PRR. Note that the best PRR achieved
by the Direct-ARR mode, however, is in the worst case only slightly lower (RS-C2,
largest buffer) and otherwise slightly higher than the best result of the Direct mode.

The causes for drops (Fig. 7.9) reveal the issue that causes the Direct-ARR to
lose more packets for BEmin = 6. The number of timeouts increases significantly
although the number of drops due to other reasons decreases in comparison to the
smaller BEmin. Note that the number of timeouts is difficult to interpret, because
a lost datagram will cause multiple (duplicate) timeout counting events: one at the
node where the datagram is initially lost and one at each node that has already
received at least one fragment belonging to that datagram. MAC failures and buffer
drops may also cause duplicate counting events, but for those cases already forwarded

82

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters

Ass Dir Dir-ARR

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C
hain-11

R
S-C

2
R
S-C

1

3 5 6 3 5 6 3 5 6

BEmin

#
da

ta
gr
am

s

dropReason
MacFail

BufferFull

OutOfHandlers

OutOfMessages

Timeout

Figure 7.9: Drop causes against BEmin for different networks and forwarding modes.
LUDP = 1200 B; Direct-ARR is still competitive to Direct, but suffers
from the increasing number of timeouts (though no fragment is lost) for
BEmin = 6

fragments have a good chance to be transported successfully to their final destination
(and thereby not trigger another counting event of that kind). However, an increasing
number of timeouts and a decreasing number of other drop causes at the same time
imply more datagrams have been dropped by a timeout event initially. With the
Assembly mode, the ratio of other drop causes to timeouts is about 1; for every
dropped datagram, the same datagram times out at the next hop node.

Especially for the idealized Chain-11 network, the Direct-ARR mode achieves a
significantly higher PRR for BEmin = 3. It can also be seen that this advantage of
the Direct-ARR over the Direct mode, melts away with increasing BEmin, even when
not considering the large number of timeouts. On the other hand, in the comparison of
simulation results and testbed experiment the Direct-ARR mode consistently achieved
slightly better results (due to less MAC failures) in the testbed, while the Direct mode
lost more datagrams to MAC failures.

The PRR achieved by the Assembly mode with the largest examined buffer size
(Q=3840 B) is best for BEmin = 5, regardless of the network topology. For BEmin =
3, especially in the more complex RS networks, MAC failures can be observed, for
BEmin = 6, buffer drops occur.

With BEmin = 6 achieving an only slightly better a PRR only for a small number
of cases and causing timeouts of datagrams for the Direct-ARR mode, I settle for
BEmin = 5 as a compromise for following experiments and the 6LoOF evaluation.

83

7 Basis Forwarding Techniques Revisited – a Parameter Study

Figures 7.8 and 7.7 also provide some insight into the effect of the 6LoWPAN buffer
size. Especially the Assembly mode benefits from larger buffers. Considering that
with Assembly, whole datagrams have to be stored at intermediate nodes, this has
been expected. The Direct modes lose much less datagrams to buffer drops and hence
benefit less strongly from a larger buffer. Although nodes have to put the complete
UDP payload into the 6LoWPAN buffer once the traffic generator generates a packet
(and thereby also have to store 1200 B), even for the smallest buffer size the available
space increases with each transmitted fragment. In general, the Direct modes cope
better with smaller buffers.

7.3.3 macCcaMode

1280B 2560B 3840B

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

0.6
0.7
0.8
0.9
1.0

C
hain-11

R
S-C

2
R

S-C
1

Ass Dir Dir-ARR Ass Dir Dir-ARR Ass Dir Dir-ARR

Mode

P
R

R

macCcaMode
0

3

Figure 7.10: PRR against forwarding mode; for different networks and buffer sizes,
examining macCcaMode 0 and 3. macCcaMode0 performs better in com-
plex scenarios with many weak links.

The impact of the macCcaMode strongly depends on the network topology under
examination. In the idealized Chain-11 network, the transmission and interference
range is modeled comparable to a unit disc, where each node is within the com-
munication radius of only the nodes next to it. Hence, the macCcaMode does not
significantly change the results for that network. In contrast, the RS-C2 network uses
a unnecessarily high transmission power, thereby increasing interference and trans-
mission range far beyond the next hop node. In RS-C1, on the other hand, routes are
chosen according to the transmission range.

Figure 7.10 shows the resulting PRR plot. In RS-C2, macCcaMode 3 consistently
achieves higher PRRs than macCcaMode 0 for all modes and buffer sizes. In the
RS-C1 network, the effect is inverted and macCcaMode 0 performs better.

The reason for the diametrical behavior is shown in Figure 7.11. In conformance
with the observations from the validation (cf. Sect. 7.2.3), the dominating cause for
the drop of datagrams at the MAC layer are continuously failing CCAs. The MAC

84

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters

0 3

0

200

400

600

0

200

400

600

R
S-C

2
R

S-C
1

Ass Dir Dir-ARR Ass Dir Dir-ARR

Mode

#
fr

am
es

retries
#retries6

#retries7

#CCA_fail

#fail

Figure 7.11: Link layer drop causes against forwarding mode; for different RS networks
and macCcaMode. The more defensive approach of macCcaMode 0 leads
to a large number of CSMA/CA backoff failures, the more aggressive
mode 3 to more failures after unsuccessful retransmissions

drops the frame and thereby the datagram after macMaxCSMABackoffs CCA retries.
In the RS-C2, the more aggressive macCcaMode 3 significantly reduces the number
of such CSMA/CA failures at the expense of a small increase of drops due to failed
retransmissions.

For the RS-C1 network, a small share of the drops is caused by failed transmissions
with macCcaMode 0. With the more aggressive macCcaMode 3, there is only a
negligible number of drops caused by CSMA/CA failures, but a significant increase
in drops due to transmission failures can be seen. The latter effect overshadows the
former and hence the observed PRR can be explained.

RS-C1 represents the more realistic network topology, because a good routing pro-
tocol will always try to find the shortest reliable routes. Therefore, I decide to use
the more defensive macCcaMode 0 in following experiments. This is also the mode
supported by the radio driver used for the transceivers in the testbed.

The fact that RS-C2 with macCcaMode 3 outperforms RS-C1 with macCcaMode 0
in terms of reliability, does not serve as an argument against mode 0, however. It
has to be considered that higher transmission power does improve the reliability in
absence of interference and it also decreases the number of potential hidden terminals
in this network, because the diameter of the transmission range graph is much smaller
than that of routing graph. Therefore, the comparison is inherently unfair. A fair
comparison should use routes that have been determined using the same transmission
power, which is likely to decrease the resulting diameter of the routing graph as well.

Given the results of the more aggressive macCcaMode 3, it is possible that a
lower macCcaTh, e.g., −95 dBm improves the performance. With the Atmel AT-
mega128RFA1, however, the employed macCcaTh of −90 dBm is the minimal possible
value already (cf. Sect. 4.2.3). Therefore, this possibility was not investigated.

85

7 Basis Forwarding Techniques Revisited – a Parameter Study

1280B 2560B 3840B

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

C
hain-11

R
S-C

2
R

S-C
1

Ass Dir Dir-ARR Ass Dir Dir-ARR Ass Dir Dir-ARR

Mode

P
R

R

macMaxBe
7

8

Figure 7.12: PRR against forwarding mode for different networks, Q and BEmax.
LUDP = 1200 B

7.3.4 macMaxBe

With the number of retransmissions set to the maximum specified by IEEE 802.15.4,
macMaxBe potentially also has influence on the performance.

Among all examined configurations, none is to be found that increases the reliability
for BEmax = 7 (Fig. 7.12). The same is true for a macCcaMode of three. The causes
for drops (omitted here) show that, while the number of buffer drops slightly increases,
this effect is compensated by a more strongly reduced number of drops caused by MAC
failures. Hence, I chose the IEEE 802.15.4 default value BEmax = 8 as constant value
for the evaluation of 6LoOF.

7.3.5 UDP packet size LUDP

Finally, I examine the influence of LUDP on the reliability. With the traffic generation
as presented in Sect. 5.4.4, the expectation value of the average (application payload)
data rate is independent of the size of the individual UDP packet. Instead, the interval
between packet transmissions is adapted. It has to be stressed that the PRR is calcu-
lated for the individual UDP packet, there is no relation between them. Therefore, a
PRR of 0.9 has a different meaning for small 100 B packets and large 1200 B packets,
because in the latter case, all consecutive fragments have to arrive successfully – if
exactly every tenth fragment is lost, the PRR would be 0. The comparison may still
provides some insight for applications that exhibit a larger number of smaller data
blocks, e.g., in a scenario similar to the one described in Sect. 2.5.

Figures 7.13 and 7.14 show the PRR obtained for different UDP packet sizes LUDP

for BEmin = 5 and BEmin = 3, respectively. The results for LUDP = 50 B are
omitted, because these exhibit a very low PRR, which is exclusively caused by a too
small number of CometOS message structures. It can be seen that with increasing
LUDP, the PRR significantly decreases. For LUDP = 200 B, it is greater than 0.9 for

86

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters

1280B 2560B 3840B

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

C
hain-11

R
S-C

2
R

S-C
1

200 800 1200 200 800 1200 200 800 1200

LUDP [B]

P
R

R

Mode
Ass

Dir

Dir-ARR

Figure 7.13: PRR against LUDP; different networks, Q and forwarding modes.
BEmin = 5, BEmax = 8, macCcaMode = 0.

1280B 2560B 3840B

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

C
hain-11

R
S-C

2
R

S-C
1

200 800 1200 200 800 1200 200 800 1200

LUDP [B]

P
R

R

Mode
Ass

Dir

Dir-ARR

Figure 7.14: PRR against LUDP; different networks, Q and forwarding modes.
BEmin = 3, BEmax = 8, macCcaMode = 0

87

7 Basis Forwarding Techniques Revisited – a Parameter Study

Ass Dir Dir-ARR

0

1

2

0

1

2

R
S-C

2
R
S-C

1

200 800 1200 200 800 1200 200 800 1200

LUDP [B]

#
da

ta
gr
am

s
(n
or
m
)

dropReason
MacFail

BufferFull

OutOfHandlers

OutOfMessages

Figure 7.15: Drop causes (total number of packets, normalized by number of packets
transmitted per node) against LUDP for different networks and forward-
ing modes. Q = 2560 B, BEmin = 5, BEmax = 8, macCcaMode0

all modes, networks and buffer sizes and both settings of BEmin, approaching 1 for
most cases.

This indicates that, for the given data rate, it is not advisable to combine smaller
packets into larger one, although the reduction of overhead caused by additional IPv6
and UDP headers might be appealing. Because no 6LoWPAN contexts for advanced
compression were distributed in the network, only most basic compression is performed
and the overhead per UDP packet amounts to 44 B

The causes for drops of datagrams at the 6LoWPAN layer show the reason for the
lower PRR achieved for LUDP = 200 B (Fig. 7.15). It is caused by a consistently
smaller number of packets dropped due to MAC failures, complemented by a larger
number of buffer drops, increasing with the packet size. A small number of 200 B
packets get dropped due to missing buffer handlers with the Direct-ARR mode, which
are used to manage chunks of memory in the 6LoWPAN data buffer. Their number is
governed by the size of a 6LoWPAN fragment in a way that there are enough handlers
to fill the buffer. However, as the IPv6 header is stored in a different structure, the
first fragment (and the last) use up a buffer handler but not as much buffer space,
which explains the observed behavior. Increasing the number of handlers can prevent
losses from that source but will consequently lead to BufferFull failures.

88

7.3 6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters

0

1000

2000

0

1000

2000

0

1000

2000

A
ss

D
ir

D
ir-A

R
R

1 2 3 4 5 6 7 8 9

Hops

L
at

en
cy

[m
s]

(a) Chain-11

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

A
ss

D
ir

D
ir-A

R
R

1 2 3 4 5 6

Hops

L
at

en
cy

[m
s]

(b) RS-C1

Figure 7.16: Latency against distance from sink (values accumulated for all nodes
with that distance); BEmin = 5, BEmax = 8, r = 7, macCcaMode0,
Q = 2560 B

89

7 Basis Forwarding Techniques Revisited – a Parameter Study

7.3.6 Latency

I use a combination of violin and boxplot to depict the end-to-end latency. The
boxplots show median as horizontal bar and the lower and upper quartile as box. The
whiskers represent the minimum or maximum values if these lie within 1.5 times the
inter-quartile range; if not, the whiskers represent the most distant measured value
lying within 1.5 times the inter-quartile range. Values outside of this range are plotted
individually. The violin plots are cut at 1.5 times the inter-quartile range, too.

It can be seen that for the line topology, both Direct modes benefit from pipelining
and achieve a lower median latency than the Assembly mode at the most distant
node. The upper quartiles of both Direct modes are also lower than the median of
the Assembly mode, which increases linearly with the distance. On the other and,
the latency varies less with Assembly, even for nodes farther from the sink. Direct
and Direct-ARR show similar median values, but the inter-quartile range is larger for
Direct-ARR.

For the RS-C1 network, the Assembly mode outperforms the Direct-ARR mode in
terms of median latency and again exhibits a smaller inter-quartile range. Latencies of
Direct and Assembly perform quite similar in all aspects. For this network topology,
the Direct modes clearly cannot utilize the potential for pipelining.

7.3.7 Pull-Based Collection

A most simple alternative to push-based collection is a pull-based approach, i.e., the
sink node polls every node in turn for its data. This approach, while arguably not a
very sophisticated one, is attractive for a number of reasons:

• It is guaranteed that only one traffic flow is active at the same time. Interfer-
ence does only occur between fragments of the same datagram and this can be
prevented by using the Assembly mode.

• The overhead for sending an expectably small (fitting on IEEE 802.15.4 frame)
request message becomes relatively small with the size of the data block re-
quested. For example, with LUDP = 1200 B there is one small IEEE 802.15.4
frame for the request and 18 large frames (fragments) for the data.

With a larger network diameter, the potential for parallel transmissions that do not
interfere with each other increases, but the overall total throughput is still bounded
by one third of the throughput of a single link, because the last hop towards the
sink always represents a bottle neck. To achieve a higher throughput, a push-based
approach therefore needs to utilize the potential for parallel transmissions without
being slowed down by interference between multiple flows.

To be able to quantitatively compare these approaches, additional experiments were
run. For those, the basestation/sink requests the transmission of an 1200 B data block
from all nodes in a round-robin fashion by means of a very small (2 B) CoAP message.
The sink always waits for the current datagram to complete or a timeout of 3 s to
occur before it requests the next one. For 100 runs, the average duration of collecting
200 data blocks from all nodes and the total PRR was recorded.

The results show that the Assembly mode achieves the fastest average collection
time for the RS networks. A possible explanation can be found in the fact that

90

7.4 Summary

10000

10500

11000

11500

Ass Dir Dir-ARR

Mode

co
lle

ct
io

n
ti

m
e

[m
s]

Network RS-C2 RS-C1

(a) Duration for one collection

0.85

0.90

0.95

1.00

RS-C2 RS-C1

Network
P

R
R

Mode
Ass

Dir

Dir-ARR

(b) PRR of data collection

Figure 7.17: Collection duration and PRR for pull-based approach for the two RS
networks

the Direct modes have a PRR below one, which means that the sink has to wait
for a timeout occasionally. This increases the overall duration. However, though
Direct-ARR achieves a better PRR than the Direct, its duration for one collection is
larger.

Using the average duration for 200 UDP packets with Assembly in the RS-C1
network as reference (10 673.6 ms) yields an average payload data rate of approx.
112.4 B s−1. This rate is all but equal to the data rate used for the push-based
collection traffic scenario examined in this chapter (112.5 B s−1). The PRR of the
pull-based collection with Assembly is almost 1 and hence it outperforms all RS net-
work configurations of push-based collection examined in this chapter. Even arguing
that the used RS networks have a rather small diameter and comparatively mean link
characteristics, this has to be considered a rather bleak result.

7.4 Summary

Compared with the experiments presented in Chapter 5, the simulation and testbed
setup presented in this chapter produce results that match each other significantly
better (cf. Sect. 7.2). Differences can be observed with regard to the causes for
dropped frames at the 6LoWPAN layer and at the link layer. However, general trends
and effects can be observed in both environments and the results show the same
tendencies, albeit not necessarily the same absolute numbers. Therefore, I deem the
simulation a viable tool to perform a large-scale parameter study and evaluation of
the 6LoOF protocol (Sect. 8.4 and 7.3). Nevertheless, the conduction of testbed
experiments to re-validate simulation results is continued for evaluation of 6LoOF.

91

7 Basis Forwarding Techniques Revisited – a Parameter Study

r BEmax macCcaMode BEmin

7 8 0 5

Table 7.5: IEEE 802.15.4 MAC configuration parameters found to provide good per-
formance for collection of large, 6LoWPAN-fragmented datagrams

The results of the conducted study have shown that there is a tremendous influence
of the configuration of the IEEE 802.15.4 MAC parameters on the reliability that can
be achieved in a multi-hop and multi-fragment collection traffic scenario.

For some parameters, it is possible to identify a setting that is beneficial for all or
most of the examined scenarios, others were more difficult to assess. macMaxBe and
macMaxFrameRetries clearly belong to the former, macCcaMode and macMinBe to
the latter category. To prevent parameter explosion (considering that 6LoOF comes
with its own set of parameters), I settled for the values shown in Table 7.5 for the
following experiments.

Furthermore, it can be stated that the Assembly mode performs well in terms of
reliability in the examined RS scenarios. Although being the most straightforward
implementation, it is not impacted as strongly by the CSMA/CA or link layer trans-
mission failures the Direct modes suffer from. With enough memory available for a
large 6LoWPAN data buffer, it outperforms both Direct modes in terms of reliability,
even for BEmin = 6.

The behavior is different in the idealized Chain-11, for which the Direct-ARR mode
outperforms the other two modes. I assume that it benefits from the narrow inter-
ference range, which only reaches to the adjacent node in the line topology, yielding
an average degree of two for the graph created by the “within interference range”
relation. Hence, it can be assumed that the adaptive rate-restriction is able to pre-
vent interference in many cases. In the RS-C2 and RS-C1 network, the degree of
the link/interference graph is 11.85 and 11.15, respectively. This leads to more failed
CCAs and retransmissions and thereby increases the variance of the average trans-
mission duration T tx . Due to the EWMA smoothing, I expect the rate-restriction to
work less effectively if the variance of T tx is large.

Examining a most simple pull-based collection approach, the superiority of this
method compared a push-based collection with randomized transmission intervals has
been discovered for the examined network topologies and UDP packet sizes of 1200 B.
In consequence, the evaluation of the 6LoOF protocol also considers data rates with the
potential for higher throughput than the corresponding pull-based collection approach.

92

8 6LoWPAN Ordered Forwarding - 6LoOF

This chapter introduces 6LoWPAN ordered forwarding, which was created as part of
this doctoral thesis. The 6LoOF mechanism’s goal is to avoid the typical problems
encountered in the presence of 6LoWPAN fragmentation, as described in Chapter 7.

8.1 The 6LoOF Mechanism

All forwarding strategies presented in Sect. 7.3 (Assembly, Direct and Direct-ARR)
exhibit packet reception rates significantly less than 100 %. The main reasons for
the packet drops are full forwarding buffers and consecutively failed clear channel
assessments on the wireless channel in Assembly and Direct modes, respectively. I
assume that these losses in the Direct modes mainly occurred in situations in which
multiple nodes try to forward large, fragmented datagrams within the same neigh-
borhood, which resulted in increased channel contention and increased traffic volume,
i.e., a local congestion. In consequence, an increased number of fragments and thereby
datagrams were lost at the link layer in spite of repeated retransmissions.

6LoOF is an extension for direct forwarding that aims at reducing the number of
concurrent transmissions in the immediate neighborhood of nodes. This is realized by
utilizing the information provided by the 6LoWPAN fragmentation mechanism and
adapting the rate at which nodes transmit their 6LoWPAN fragments. Simplistically
speaking, nodes that overhear their current next hop forwarding fragments belonging
to a different datagram will completely stop the transmission of their current data-
gram to allow for faster forwarding and less contention. As soon as transmission of
the “foreign” datagram succeeded, the suspended transmission is reactivated. This
mechanism implements a congestion control with a narrow spatial and temporal scope.
As it does not directly influence end-to-end sending rates, it does not prevent network
congestion when the overall offered traffic is above the capacity of the network. I
expect higher layers (TCP, CoAP) to deal with end-to-end congestion control.

This treatment of datagrams as traffic flows that suspend other traffic flows implies
that nodes do not forward individual 6LoWPAN fragments using a FIFO approach
as in the straightforward direct forwarding strategies. Instead, nodes always forward
whole datagrams, i.e., they order incoming fragments by their belonging to a certain
datagram. Thus, the terms current next hop and active datagram here and in the
remainder of the chapter describe the link layer destination of the datagram that is
currently forwarded and this datagram itself, respectively. Note that with a route-over
approach, even using direct forwarding (cf. Sect. 2.2.3), this next hop does not change
during transmission of a single datagram.

93

8 6LoWPAN Ordered Forwarding - 6LoOF

8.1.1 Snooping

6LoOF heavily relies on snooping of 6LoWPAN frames prefixed by a fragmentation
header to (re-) identify datagrams sent by other IPv6 routers. A node especially needs
to identify transmissions of its current datagram originating at the current next hop
for this datagram. Using route-over forwarding, the datagram_tag changes with every
wireless hop. In consequence it is necessary to combine IPv6 header information and
6LoWPAN fragmentation header to achieve a reasonably accurate identification of
datagrams. 6LoOF implements two different checks when it overhears a transmission
of its current next hop.

First, snooping the first fragment of a datagram, IPv6 header fields source and
destination are used for comparison. Note that the basic IPv6 header always fits the
first fragment (cf. Sect. 2.2.1). Using the IPv6 header, the node can use destination
and source address along with the size of the datagram to check if the transmitted
fragment is part of the node’s active datagram and thereby can decide whether to suc-
ceed with its transmission or suspend it. The corresponding 6LoWPAN datagram_tag

is stored as metadata for the active datagram and is used to check further overheard
fragments.

Secondly, if a FRAG N header is decoded without having a tag stored for the
current datagram, 6LoOF resorts to a sanity check. The fragment header’s size and
offset field are checked to determine if the overheard fragment may be part of the
active datagram, i.e., sizes have to be equal and the overheard offset smaller than the
current one for the fragment. Note that in case of false positives, this makes 6LoOF
behave similar to the corresponding non-6LoOF forwarding mode with regard to the
rate of transmissions.

For snooping to work, it has to be assumed that wireless links between nodes are
symmetric. All IEEE 802.15.4 unicast data traffic uses link-layer ACKs to confirm re-
ception of a transmission, i.e., transmissions are only considered successful if a match-
ing link-layer ACK is received. Routing protocols used above a IEEE 802.15.4 link
layer also have to consider that fact. Therefore, the assumption that wireless links are
symmetric between adjacent nodes in a routing graph is reasonable.

8.1.2 Probing

The general concept is illustrated in Fig. 8.1. Here, nodes A and B use node C as their
next hop. Node C decides to forward the fragments of node A. This is overheard by
nodes A and B (Fig. 8.1b). The former recognizes its active datagram and continues
transmitting fragments, the latter recognizes a different datagram and stops sending
(Fig. 8.1c). Only after node B overhears the last fragment of A’s datagram (Fig. 8.1c),
it enters state Sending again (Fig. 8.1d).

A problem with using a snooping-based approach is that in the absence of overheard
frames, a node is not able to know if this absence is due to its next hop currently
suspending its transmission or simply due to a random loss of frames on the wireless
channel. In the latter case, nodes should continue transmitting to get a chance to
snoop from their successor. In the former case, however, it is not advisable to continue
sending fragments to such a suspended node, as transmissions are likely to cause
hidden-terminal collisions at the suspended node. Figure 8.2 illustrates this issue
with node D being the suspended node. Furthermore, ACK frames sent from D to C

94

8.1 The 6LoOF Mechanism

Idle Sending Stopped

Ak,1

Bj,1

A

B

C D

(a) Initial situation

Ak,1

A

B

C D

Ak,1

Ak,1

(b) B snoops and stops

Ak,n

A

B

C D

Ak,n

Ak,n

(c) Eventually, last fragment n
of datagram Ak is trans-
mitted; node B leaves state
Stopped

Bj,1

A

B

C D

Bj,1

Bj,1

(d) Node B overhears own frag-
ment and enters state Send-
ing

Figure 8.1: Illustration of the general concept behind 6LoOF

FiAk

Idle Sending Stopped

0

A

B

C D

E

F

Ak

Ak

Fi

Fi

Figure 8.2: Potential hidden terminal collisions at a suspended node D

95

8 6LoWPAN Ordered Forwarding - 6LoOF

Dispatch Header

11 010xxx FRAG1 EPN
11 110xxx FRAG1 EPN

Table 8.1: Proposed header dispatch types to signal a node’s probing state (explicit
probing notification)

may also cause collisions at F with the traffic flow from E to F. In situations, in which
there is more than a single sender, the suspended node’s buffer also has to store the
incoming data without being able to empty it, up to a point at which the datagram
has to be dropped.

To mitigate this problem, a probing state for 6LoOF nodes is introduced. Nodes that
do not snoop any fragment originating at their current next hop after a defined number
of sent fragments enter this state. Similar to the CSMA/CA protocol of IEEE 802.15.4,
probing nodes exponentially reduce the frequency of their transmissions until they are
able to snoop a fragment from the current next hop. Thereby, contention on the
wireless channel is reduced if a confirming fragment was lost or the current next hop
is suspended. Considering that the loss may also have been caused by a collision on
the wireless channel, reducing the rate of transmissions is a reasonable measure to
take for both cases.

Additionally, nodes forwarding towards a probing node have no possibility to know
that this node is probing. In consequence, such nodes will snoop a “probing” fragment
and if it matches their own datagram, will continue transmitting at a normal rate,
governed solely by the rate restriction mechanism as described in Sect. 5.2.1. To
prevent nodes from transmitting to probing nodes at normal rate, additional header
types for 6LoWPAN can be specified. These use the same format as FRAG 1 and
FRAG N header of RFC 4944 ([Mon+07]), but a different dispatch to signal the
probing state of a node. The dispatch values are chosen from the reserved range of
dispatch values and do not interfere with any currently used dispatch values. They
are shown in Table 8.1.

With the first draft of 6LoOF, preventing probing nodes to receive data at maximum
rate was considered important enough to to justify an alteration of the 6LoWPAN
standard headers. Reviewing this issue, it was concluded that sending to a probing
node at maximum rate is less harmful than thought initially. Given a routing topology
that tries to prevent unnecessarily long routes, a node that sends towards a probing
node is usually two hops away from the node in state Stopped that causes the node
to probe. While this is by no means a guarantee that the stopped node is outside the
interference range of the sending node, there is a good probability that the strength
of potentially interfering signal is much lower than that of the fragments the stopped
node is trying to snoop. Therefore, the usage of these header dispatch types is optional
for 6LoOF and is defined by the boolean parameter useEpnFlag xEPN. The impact
of this parameter is examined in Sect. 8.4.1.

8.1.3 6LoOF Definition

Figure 8.3 on the following page shows a UML statechart defining the core of the
6LoOF protocol.

96

Idle

entry/nswc=0
entry/sendingAllowed=true

Active

Alive

entry/sendingAllowed=true

Sending

entry/probeFlag=false

Probing

entry/be= max(BE6LoOf,min+1, BE6LoOf,max)

Stalled

entry/sendingAllowed=false
exit/sendingAllowedCallback()

Stopped

entry/be= BE6LoOf,min

entry/scheduleStopTimer(e.fHdr)
exit/cancelStopTimer()

ProbingBo

entry/scheduleProbeTimer(be)
entry/probeFlag=true
exit/cancelProbeTimer()

6LoOF

SNOOP FOREIGN(e)/updateAv(e)

SENT(e)/nswc++;

[!checkAv(e.nH) && nswc ≤ NSWC max]/

[else]/be=BE6LoOf,min

SENT(e)/nswc++ [else]/be=BE6LoOf,min

[nswc <= NSWC max || nhIsDest(e.nH)]/

TIMER
FIRED/

SENT(e)/

TIMER FIRED/

SNOOP1(e)/

[addressMatch(getActiveDg(),e.dg)]/setActiveTag(e.fHdr); nswc=0

[else]/

SNOOP N(e)/

[matchesActiveQo(e.fHdr)]/nswc=0

SNOOP1 EPN(e)/

[addressMatch(getActiveDg(),e.dg)]/setActiveTag(e.fHdr); be=BE6LoOf,min

SNOOPN EPN(e)/

[matchesActiveQo(e.fHdr)]/be=BE6LoOf,min

SENT LAST || SEND ABORTED || SWITCH QUEUE OBJ/

Figure 8.3: UML statechart – Core of the 6LoOF protocol

8 6LoWPAN Ordered Forwarding - 6LoOF

Short explanations are given for the events used to trigger transitions:

• SNOOP FOREIGN: a fragment originating from a node different from the cur-
rent next hop has been overheard

• all other SNOOP-prefixed events denote an overheard fragment originated at
the node’s current next hop:

– SNOOP1: a fragment with header FRAG 1, i.e., the first fragment of a
datagram

– SNOOP N: a fragment with header FRAG N

– A trailing EPN denotes that a modified (see Sect. 8.1.1) fragmentation
header has been received

• SENT: a fragment has been sent by the 6LoWPAN layer

• SENT LAST: the last fragment of a datagram has been sent by the 6LoWPAN
layer

• TIMER FIRED: the stop or probe timer has expired

• SWITCH QUEUE OBJ: the 6LoWPAN layer has moved on to transmit a new
datagram because the current datagram starved

• SEND ABORTED: the 6LoWPAN layer has dropped the current datagram, e.g.,
due to a transmission failure at the link layer

• ENQUEUE INTERF: a fragment originating at our current next hop was en-
queued, potentially deadlocking the queues at both nodes

The used function calls and variables are defined in Table 8.2. In the following, ad-
ditional mechanisms of 6LoOF and the less obvious entries of Table 8.2 are explained.

Timers

There are two timers involved in the execution of the 6LoOF protocol. These trig-
ger a single event, which is treated differently depending on the active state. The
probe timer is used to quickly reduce the frequency of transmissions at a node upon
encountering an uncertain situation, i.e., not snooping any relevant fragment. As a
basic unit to calculate its delay period, it employs the same EWMA estimate of the
average transmission duration as the adaptive rate restriction forwarding mode (see
Sect. 5.2.1). Thereby, the probing delay is calculated as

Tprobe = 2beT txk (8.1)

with k being a pseudo-random number with k ∈ [0.5, 1) and T tx the current estimate
for the duration of a link layer transmission. The current probe timer exponent
be is governed by its initial (minimum) value BE6LoOf,min and its maximum value
BE6LoOf,max.

98

8.1 The 6LoOF Mechanism

be probing exponent; to calculate backoff in probing
state

nswc number of fragments sent without snooping from cur-
rent next hop

sendingAllowed output; denotes if 6LoOF allows sending
probeFlag output; signals probing state to 6LoWPAN module

NSWC max 6LoOF parameter nNSWC,max

BE6LoOf,max 6LoOF parameter BE6LoOF,max

BE6LoOf,min 6LoOF parameter BE6LoOF,min

e.fHdr fragment information (size, offset, tag)
e.nH IEEE 802.15.4address of current next hop
e.dg IPv6 datagram object

addressMatch() match IPv6 source and destination address
matchesActiveQo() match by tag or sanity check (Sect. 8.1.1)

setActiveTag() attach received 6LoWPAN tag to active datagram
getActiveDg() returns the currently active IPv6 datagram (cf.

Sect. 8.1)
nhIsDest() returns true, if current next hop equals the destina-

tion of the fragment

scheduleStopTimer() start timer to guarantee leaving state Stopped even-
tually

scheduleProbeTimer() schedule probing backoff
cancelStopTimer() stop the stop timer

cancelProbeTimer() stop the probe timer

checkAv() returns true, if a recent transmission from the current
next hop has been overheard

updateAv() set or clear bit for neighbor based on snooped
6LoWPAN frame

sendingAllowedCallback() signal 6LoWPAN layer that 6LoOF allows sending
the next fragment

Table 8.2: Variables and actions (functions) used in the 6LoOF state machine

99

8 6LoWPAN Ordered Forwarding - 6LoOF

Idle Sending Probing Stopped

Am,1

Bk,i

A

B

C D

(a) Initial situation

Bk,i

A

B

C D

Bk,i

Bk,i

(b) Stopping A

Bk,i+1

A

B

C D

Bk,i+1

Bk,i+1

(c) Datagram Bk lost

Am,1

A

B

C D

Am,1

Am,1

(d) Snooping fails

Am,2

A

B

C D

(e) Stop timer fires

Am,2

A

B

C D

Am,2

Am,2

(f) A recovered

Figure 8.4: Working of the stop timer; after transmission failure of C (8.4d), A could
become suspended infinitely. The stop timer puts A back into ProbingBo
(8.4f)

100

8.1 The 6LoOF Mechanism

The stop timer is necessary to prevent a node from being stuck in state Stopped.
Consider the three nodes in Fig. 8.4. Node A entered state Stopped after snooping
fragment Bi,k. If datagram Bi is lost due to a buffer overflow or consecutively failing
transmissions at the link layer, node B will eventually stop sending fragments be-
longing to it. In consequence, node A has no means to assess the situation without
snooping another fragment. One fragment of Aj has to be present at C, because A
always transmits at least one fragment in probing state. However, there is no guar-
antee that A successfully snoops such a fragment when it is transmitted by C. If no
fragment is snooped, C starves while A is stuck in state Stopped. Therefore, a node
always starts a timer upon entering state Stopped, with a duration of

Tstop =

datagram size−23datagram offset
e.fHdr.size

T txkstop

2
, (8.2)

T tx × kstop represents the average waiting time between forwarding two fragments
with the Direct-ARR mode (Sect. 5.2.1). Tstop is half the estimated time it would
take this node to finish the transmission of the current next hop’s active datagram. If
this timer is triggered, the nodes enters state ProbingBo to transmit new fragments
and eventually be able to snoop a confirming transmission.

Initial Transitions

Before some datagram arrives at a node, the node remains in state Idle. Another
important decision concerns the state to enter upon sending the first datagram. To
simplify this decision, nodes permanently monitor their neighborhood for transmis-
sions. Ideally, a node stores information on individual transmissions of all neighbors,
including the information necessary to calculate a stop timer delay as given in (8.2). It
could then enter state Stopped directly without causing any interference to the ongo-
ing transmission of its next hop. First, however, this would incur additional memory
costs (for at least datagram size and datagram offset), growing linearly with the size
of the routing table, i.e., the number of potential next hops. Secondly, directly en-
tering state Stopped denies a node the chance to leave this state by snooping one of
its own fragments (because it never sent any) in case its current next hop drops the
datagram that was responsible for letting the node enter state Stopped.

Therefore, 6LoOF only flags each entry in its routing table with an activity bit.
updateAv() sets this bit if any FRAG N header is snooped that does not denote the
last fragment of a datagram, in which case the bit is cleared. Receiving an event SENT
with a node that is flagged active as next-hop destination, a node enters ProbingBo
instead. Note that this single-bit flag has a good chance to not occupy any additional
memory, because an entry in a routing table usually contains a variable for prefix
length, which can be restricted to 7 bit (sensible prefix lengths are in the range [1, 128]).

If the current next hop is considered idle, the 6LoOF parameter “number sent
without confirmation” (NSWC max) governs how long a node will stay in state Send-
ing if it does not snoop its own fragments being forwarded by the current next hop.
NSWC max specifies the number of fragments to transmit without such a confirmation
(cf. Fig. 8.3).

101

8 6LoWPAN Ordered Forwarding - 6LoOF

Ak,1

A
k,2

Idle Sending Stopped

0

A

B

C D

E

F

Ak,1

Ak,1

Figure 8.5: Scenario leading to a node starving; new incoming datagrams are blocked
at node F, because no new fragments arrive for datagram Ak, which is at
the head of the transmission queue

Prevention of Node Starving

Because 6LoOF forwards datagrams in an orderly fashion, a mechanism has been im-
plemented to prevent nodes from “starving unnecessarily”. Different from the straight-
forward direct modes, a node always tries to forward all fragments belonging to one
datagram before moving to another (Sect. 8.1). This property makes the idea of sus-
pending transmissions viable in the first place. A fragment of datagram Ak that is
lost at a former node on the route, however, causes a node farther down the route
to block on that datagram. This is illustrated in Fig. 8.5, where node F is starving
after transmission of Ak,1, because Ak,2 has been lost at C. The active datagram Ak
is at the head of the transmission queue at node F and no new fragments are going
to arrive. Note that node F has no way of knowing that the datagram Ak has been
lost. If node E starts transmission of a datagram, this new datagram will be enqueued
after Ak and is blocked until either datagram Ak is removed due to a timeout or is
removed from the head of the queue by some other means.

Waiting for the regular timeout in the order of seconds to take care of the starving
datagram is clearly undesirable. The situation is therefore resolved by allowing a
node to postpone the transmission of such a datagram after it encountered an empty
active datagram for a specified number of times, governed by the 6LoOF parameter
queueSwitchAfter (nqsa). Thereby, datagrams that are already lost are put to the end
of the queue and eventually timeout without blocking active datagrams. If, on the
other hand, the datagram is still alive, i.e., the lack of fragments has been caused by
mere delays and not losses, the transmission can still be completed at a later time.

In general, a node always tries to transmit the next fragment immediately (Direct),
after a delay (Direct-ARR) or when being allowed to transmit by the 6LoOF module.
If this first attempt fails, because the active datagram is not able to provide the
next fragment, 6LoOF recoils and waits for the next fragment to arrive. This method
achieves that datagrams are only pushed back to the queue if there are other datagrams
waiting to be sent. Senders of these other datagrams, however, enter state ProbingBo
on not snooping any of their fragments. Thus the rate of incoming fragments is
governed by the probing algorithm.

To reduce the reaction time in such situations, I also experimented with a method
that instead schedules a new transmission attempt after a period of T tx has elapsed.

102

8.1 The 6LoOF Mechanism

Ak
A
k

H
k

HkHk
Hk

Ak Ak

G

H

A

B

C D F

(a) Example for special case with trivial cycle

Ak
A
k

Ak Ak
H
k

H
kHk

Hk

G

H

A

B

C D

E

F

(b) Example for general case with arbitrary-length cy-
cles

Figure 8.6: Emergence of a Deadlock in 6LoOF with routes for two different datagrams
originating at nodes A and H

Preliminary tests, however, have shown that this variant does not achieve an improve-
ment in terms of reliability or latency and is therefore not considered further.

In addition to the presented push back scheme, 6LoOF also checks incoming frag-
ments for being a successor of the currently active datagram. This is the case if link
layer source and destination addresses match and the incoming inbound tag is larger
than the inbound tag of the active datagram. Receiving a datagram with that younger
tag implies that the node’s current predecessor also has switched to forwarding a dif-
ferent datagram. If in this situation the active datagram does not have any fragments
available for transmission, it is pushed back to the end of the queue, because no new
matching fragments will be received for this datagram.

Note that a similar issue may also appear the other way around, i.e., consider node
F dropping Ak, e.g., due to an unsuccessful transmission towards node 0. In this case,
node D can never snoop a confirming fragment and will transmit at snooping rate, it
is snoop-starving. A fragment being lost in spite of link-layer retransmissions in many
cases indicate the occurrence of a large traffic volume leading to a crowded wireless
channel or buffer drops. Reducing the transmission rate in those cases is reasonable.
However, in some cases this behavior is potentially too conservative.

A possibility to allow a predecessor node to be informed about such a lost datagram
is the transmission of a dummy fragment upon reception of a fragment that belongs
of the dropped datagram. However, a modification to the existing header types would
have to be used in that case, similar to the proposal in Table 8.1. Unfortunately, this
issue and the potential mitigation were discovered too late in the process of completing
the dissertation to be incorporated into the evaluation.

103

8 6LoWPAN Ordered Forwarding - 6LoOF

Deadlocks

Another important consideration is deadlock prevention. As shown in Fig. 8.6, it is
enough for two nodes to route datagrams along the same path in opposite directions
to create a deadlock. Both nodes hear the other node forwarding some datagram
different from their own and enter state Stopped. Only after a timeout they transmit
another fragment, eventually snoop the other node’s fragment and enter state Stopped
again. Note that the two problematic nodes do not have to directly send to each other
for the problem to occur (Fig. 8.6b).

It is assumed that each route in a network forms a directed acyclic graph. If the
graph resulting in the union of all routing graphs contains a cycle, then there are at
least two nodes in danger of a deadlock. In Fig. 8.6b, node D may stop on overhearing
the transmission Hk,i from node F and node E will stop on overhearing Ak,j from
node C. The major issue with the general case is, that it cannot be detected by either
node without extensive additional information about the history of a datagram.

For this work, however, I assume that RPL ([Win+12]) is the routing protocol of
choice for typical applications in LLNs. Considering the scope of 6LoWPAN and the
focus on collection traffic in this thesis, this is a reasonable assumption (see Sect. 2.2.4).
RPL always creates a routing tree and routes upstream and downstream traffic along
the same branch of that tree. Even one-to-one traffic is routed along the tree by routing
up towards a common ancestor and from there down to the destination. While the
tree may become corrupted at some point and temporary routing loops may form, the
protocol employs means to recover from the failure. In such a situation, a deadlock
in 6LoOF is not the most urgent problem to solve. Therefore, it is assumed that the
routing protocol above 6LoOF forms routing paths that result in a network topology
(by union of all paths) that contains only trivial circles.

On this assumption, 6LoOF employs a simple deadlock recognition and avoidance
strategy. For every incoming fragment, a node checks if this fragment originates at
the next-hop destination of its active datagram. A reverse lookup in the neighbor
discovery’s neighbor cache ([Nar+07]) can be employed for this task. If the incoming
fragment indeed originates from the current next hop, the IPv6 source address of
incoming and active datagram is compared to decide which datagram to forward. In
that case, the datagram originating at the node with the smaller address proceeds,
while the other datagram is rotated to the end of the transmission queue.

Edges of the Network

A node performing the final transmission of a datagram towards the IPv6 destination
or the edge of the wireless network can not rely on snooping to govern its transmission
behavior. Thus, nodes determining that next hop and destination address are equal
always stay in state Sending for the duration of the transmission. In general, the
destination may also be located outside the 6LoWPAN wireless network. Assuming
the usage of the RPL protocol as above, the DODAG root can be used to catch those
cases and to reliably determine whether to enter the “send always” mode.

104

8.2 Implementation

1 1

IPForward

UDPICMP

Lowpan 6LoOF

LowpanQueue DgOrderedLowpanQueue

�interface�
QueueObject

QueueFrame QueuePacket NextHopTagStoringObj

InOrderDgInOrderDgFrag QueuePacketWrapper

MAL

StaticRoutingTable

NeighborDiscovery

StaticRouting

Figure 8.7: 6LoOF implementation in CometOS

8.2 Implementation

I implemented 6LoOF for CometOS [UWT12]1. The 6LoOF module is integrated
(Fig. 8.7) into the refactored 6LoWPAN IPv6 stack (Sect. 5.3).

The LowpanOrderedForwarding module is responsible to execute the actual state ma-
chine. The Lowpan module generates events, transmits the actual fragments and man-
ages the queue functions (Sect. 8.1.3). Before transmitting, it always checks if it is
allowed to do so by the LowpanOrderedForwarding module. 6LoOF-specific functionality
is localized in sending and enqueueing methods of the LocalCongestionAvoider module,
the Lowpan module and the LowpanQueue (Fig. 8.7). The latter two can be replaced by
objects of different subclasses and the former part is only active if these are realized
by the corresponding 6LoOF objects. This design allows 6LoOF to be (de-)activated
at runtime.

The 6LoOF implementation alters the behavior of the 6LoWPAN queue by pro-
viding a new subclass for LowpanQueue and new subtypes of QueueObjects (Fig. 8.7).
The DgOrderedQueue stores NextHopStoringQueueObject objects instead of QueueObjects.
NextHopStoringQueueObject add the ability to attach 6LoWPAN tags to datagrams as
they are snooped by 6LoOF. Datagrams originating at a node are therefore also
wrapped by QueueObjectWrapper objects. While the plain 6LoWPAN implementation

1https://github.com/CometOS/CometOS

105

8 6LoWPAN Ordered Forwarding - 6LoOF

object type additional RAM used

DgOrderedQueue 7 B (more flexible queue structure)
QueueObjectWrapper 5 B per object
InOrderDg 9 B per object
InOrderDgFrag 4 B per object

Table 8.3: 6LoOF-specific objects

0

100

GW
101 102

103
104

105

106

107

108 109 10A
10B

10C

Figure 8.8: TB-D, location of nodes and routing tree for TB-D and RS-D1

enqueued incoming fragments as QueueFrames individually, for 6LoOF they are matched
by their tag and stored as a linked list of InOrderDgFrag in InOrderDg objects. Thereby,
the ordering of datagrams is realized.

Compared to the plain Lowpan implementation, 6LoOF requires additional program
and data memory, which can be attributed mainly to the necessity to keep track of
fragmentation header tags used by next hop nodes and the described wrapper objects.
As individual implementations may vary, the data for the CometOS implementation
is provided in Table 8.3.

8.3 Experiment setup

The setup for the employed testbeds as well as the configuration of all simulation
scenarios for the evaluation of the 6LoOF protocol is described in this section.

8.3.1 Testbeds

Two different testbeds were employed for the evaluation of 6LoOF. In addition to
a variant of the testbed at the Hamburg University of Technology (cf. Sect. 7.1.1),
another one located at the IoTLab in France [Fam+14; Adj+15] was used.

At Hamburg University of Technology

First, I facilitated another variant of the Telematics testbed, similar to the ones used
for evaluation of the basic and enhanced forwarding modes (cf. Sect. 5.4.1 and 7.1.1).
Different from these formerly used testbeds, it employs a serial-to-wireless bridge node
attached to the basestation (i.e., the script controlling the experiment, cf. Sect. 5.4.1)
via the SerialComm instead of a node that contains a complete network stack. The
setup was slightly changed in that way because the simulation model was not able to

106

8.3 Experiment setup

adequately capture the transparent serial link on the last hop (cf. Sect. 7.2.2). With
the new setup, there still exists the additional serial connection, but the setup above
layer two is equal. Furthermore, hacks to circumvent the problem that the last hop
communication could not be snooped become unnecessary. The location of nodes in
the corridor of our office building and the resulting routing tree are shown in Fig. 8.8.

The serial-to-wireless bridge complicates time synchronization between basestation
and neighboring nodes because any InitialMessage or TimestampMessage may be buffered
in the forwarding queue. To retain the capacity for time synchronization over the
bridged link, the TimeSyncWirelessBridge module inspects incoming frames, deter-
mines their service time and modifies the frame correspondingly. Furthermore, to
configure the parameters of the IEEE 802.15.4 CSMA/CA of the bridge node’s trans-
ceiver, a dedicated remote access module is installed. The distinction between frames
to forward and frames destined to the bridge node itself is made by their protocol
dispatch identifier paths.

At IoTLab

Secondly, I employed the IoTLab, specifically the site at Grenoble, to conduct larger-
scale experiments with the 6LoOF protocol. CometOS, including the Software MAC,
was ported to the M3 OpenNode platform used in the IoTLab. This wireless module is
comprised of a STM32F103REY ARM Cortex M3 MCU and the Atmel AT86RF231
wireless transceiver. The M3 OpenNode nodes assigned to an experiment expose
their UART interface via a TCP connection to the user. To prevent the issue with
inconsistent transmission power in the Telematics testbeds caused by the use of the
wireless link for control traffic and time synchronization with maximal transmission
power (cf. Sect. 5.4.1), the connections of the protocol stack were slightly changed
to use those serial connections instead of wireless links. Furthermore, the AODV
implementation used for the control stack’s routing layer did not scale very well to the
larger network and encountered issues with regard to its reliability and performance.

Tunneling the packetized SerialComm including its simple stop-wait automatic re-
peat request (ARQ) via TCP from a local machine via the SSH gateway of IoTLab
site at Grenoble to the M3 OpenNode nodes proved to be prohibitively slow, espe-
cially the connection towards the M3 OpenNode employed as bridge node. Another
alternative would have been to execute the basestation script at the SSH gateway of
the Grenoble site, but cascading incompatibilities (starting with the available version
of Python) ruled out this opportunity.

Apart from the M3 OpenNode nodes, the IoTLab also has some more powerful
A8 Nodes installed, that run an embedded Linux, which proved powerful enough to
run the basestation script. The A8 Nodes are also serially connected to a slightly
modified M3 OpenNode located on the same board. This M3 OpenNode node was
used as wireless bridge. Because M3 OpenNodes and A8 Nodes are located in different
sub-networks and are not allowed to communicate with each other directly, a complex
forwarding scheme had to be installed to establish a link from the basestation to the
M3 OpenNodes serial interface for experiment control.

The IoTLab experiment was created and initialized via the IoTLab-CLI from a local
machine at Hamburg University of Technology. In addition to acquiring and flashing
the necessary set of nodes at the Grenoble site, this initialization script triggers several
actions at the SSH gateway of the Grenoble Site:

107

8 6LoWPAN Ordered Forwarding - 6LoOF

A8

SSH-GW

A8-M3

M31

A8-M3 gateway

Basestation

IoTNode

Serial Dispatcher

TSSBridge

SC MAC

Disp

RA

SC

SerialMac

6loDisp

BS Stack

RA-GW

RA

SRL

TCP

TCP

Bounce

SerialDisp SC2

SC1

...

SCn

SSH

SC

SRL

RA

MAC

6lodisp

M3 Stack

TCP

...

22

i

Figure 8.9: Experiment setup for the IoTLab

• Create virtual serial interfaces via socat, which connect via TCP to the available
TCP port of each M3 OpenNode, tunneling the serial connection via TCP.

• Launch the application SerialDispatch, which dispatches all frames from the
basestation to the serial connection corresponding to the destination address
and vice versa. The mapping between serial interfaces and addresses (IoTLab
uid) is realized by the IoTLab node id.

• Start collection of wireless sniffer data (cf. Sect. 8.3.1).

• Wait for the A8 Node node to boot and launch the actual basestation script.

The basestation in turn establishes a connection to the SerialDispatch application,
wires its control stack to the corresponding TCP module and starts execution of
the configured experiment runs. The setup resulting from those actions is shown in
Fig. 8.9.

The wireless links at the IoTLab proved to be much more stable, yielding less
fluctuating network topologies. Hence, I was able to perform the actual experiment
and the collection of topology information with the same transmission power. The
methodology used was the one described in Sect. 4.2.3, with RSSIth = −80 dBm,
kabs = 0.1 kσ2 = 0.002.

108

8.3 Experiment setup

1m

Figure 8.10: Nodes selection at Grenoble site comprising the TB-IoT network; green:
experiment nodes, blue: basestation and gateway node, red: sniffer nodes

0

A4839579

B268 A677 A478 2861

9183 9567 B877 9982 1162 A779 A283

8871 A183 A383 A079 9769 9177 9883

9082 9879 9072 B078 A569

B177 9168 A172 9071

B279 B482

9267 9167 A476

9472

B780

C268

Figure 8.11: Static routing topology of TB-IoT and RS-IoT networks

109

8 6LoWPAN Ordered Forwarding - 6LoOF

none foreign own

RSSI = −90 dBm nidle nf,idle no,idle

−90 dBm < RSSI ≤ −80 dBm n90 nf,90 no,90

−80 dBm < RSSI n80 nf,80 no,80

Table 8.4: Counting categories for sniffer nodes resulting from the two dimensions
signal strength (columns) and decoded IEEE 802.15.4 signal (rows). For
the latter, ’none’ indicates no IEEE 802.15.4 signal, ’foreign’ and ’own’ a
decoded signal with a different and the same IEEE 802.15.4 network ID,
respectively

Radio Sniffers

The 2.4 GHz ISM band at both locations was not or only partially under my control.
Both locations are potentially exposed to a large amount of IEEE 802.11 traffic. At
TB-D, I could rule out other IEEE 802.15.4 traffic using the same channel, at the
IoTLab testbed, this was not possible. Therefore, I additionally installed several
sniffer nodes at both location that checked the channel for ongoing IEEE 802.15.4
transmissions and other traffic. The sniffers periodically measured the current RSSI
on the channel.

Each measurement is categorized according to the two dimensions signal strength
and type of signal as shown in Table 8.4. Corresponding counters keep track of the
number of measurements in each category. To support categorization, the sniffer nodes
use a special stripped-down radio driver. The type of signal is distinguished in two
stages. First, every measurement that is not taken between an RX START and RX -
END interrupt is put into the ’none’ category. Then, the destination PAN id field of
the IEEE 802.15.4 MAC header’s frame control field of the IEEE 802.15.4 MAC header
(FCF) is used to categorize if the frame belongs to my experiment or to an experiment
of another user, which uses the same channel. The signal strength dimension is directly
derived from the RSSI value as reported by the Atmel ATmega256RFR2 or Atmel
AT86RF231.

Because the RX START interrupt and the MAC header cannot be decoded in-
stantly to determine the type of signal, some measurements cannot be categorized
immediately. These are instead buffered until the decision can be made. Further-
more, acknowledgment frames do not carry a MAC header and are instead categorized
according to the last snooped data frame. The mechanism is not perfect. Acknowl-
edgments may be matched wrongly and more errors can be introduced by collisions
of frames. In case of a collision of frames, only one or even no SFD can be decoded,
causing the measurements to be erroneously categorized as ’none’. However, the pur-
pose of the sniffers is to notice significant traffic from other networks in the area. Test
with a co-located IEEE 802.15.4 network using a different PAN id have shown that
number of measurements categorized as foreign for such a setup is several orders of
magnitude higher than the numbers produced by wrong categorization.

110

8.3 Experiment setup

Assembly Direct Direct-LOOF

data buffer 3840 3840 3584
AssemblyHandler 585 121 121
QueuePacket 390 78 78
FifoLowpanQueue 19 19 0
queue size 20 120 72
buffer handlers 300 300 280

DirectHandler 0 184 183
QueueFrame 0 540 504

DgOrderedQueue 0 0 26
QueueObjectWrapper 0 0 10
InOrderDg 0 0 135
InOrderDgFrag 0 0 224

6LoWPAN to IPv6messages 580 116 116
IPv6 to 6LoWPAN messages 480 900 900

total 6214 6227 6243

Table 8.5: Memory usage of CometOS 6LoOF implementation in B for the different
forwarding modes as used during experimental/simulative evaluation of the
6LoOF protocol

8.3.2 Memory Usage

As explained in Sect. 8.2, 6LoOF occupies some additional memory compared to the
other forwarding modes. To allow for a fair comparison, the size of the data buffer
was adjusted to make up for the additional memory required by the 6LoOF imple-
mentation. The total memory demand may vary among different implementations of
6LoWPAN and 6LoOF.

The memory usage of the CometOS IPv6 stack with and without 6LoOF is shown
in Table 8.5. The Assembly mode has to reassemble each datagram at each hop,
therefore, it needs a larger number of metadata structures for that purpose, which is
reflected in the larger memory demand for the AssemblyHandler. The Direct forwarding
modes, on the other hand, potentially need a larger 6LoWPAN queue and a QueueFrame

object for every incoming fragment (QueueFrame and queue size). The CometOS imple-
mentation uses dynamic memory allocation for QueueFrames and message type objects,
in which case the maximum memory demand is given. 6LoOF, on the other hand,
needs additional wrapper structures and metadata (cf. Sect. 8.2), which occupy some
additional memory. Therefore, the size of the data buffer for 6LoOF was chosen to be
256 B smaller than that of the other forwarding modes. Thereby, the memory demand
of all forwarding modes is about equal. Note that this does also apply for other sizes
of the data buffer, because the other implementation parameters are independent of
the size of the data buffer.

111

8 6LoWPAN Ordered Forwarding - 6LoOF

0 1 3 4 14 15

(a) Chain-16

0 1 5

100

200

101

202

105

205

(b) Y3-6

0 1 2 3

100 101 102 103

200 201 202 203

300 301 302 303

400 401 402 403

500 501 502 503

(c) Y6-4

012

100

101

102

200

201

202

300

301

302

400

401

402

500501502

600

601

602

700

701

702

800

801

802

900

901

902

(d) Y10-3

0

101

102

103

104

105

106

107

108

201

202

203

204

205

206

207

208

301

302

303

304

305

306

307

308

(e) X3-8

Figure 8.12: Network routing trees for the idealized network topologies. Edges repre-
sent static routes, the dark gray node is the sink.

112

8.4 Evaluation: 6LoOF vs Plain Forwarding

8.3.3 Simulation Environment

The idealized network topologies employed in the evaluation of the 6LoOF protocols
are shown in Fig. 8.12. Those are similar to the networks presented in Chapter 5,
but care was taken that the overall number of hops when summing up the length of
paths of all nodes to the sink is about equal. In addition to the “Y-networks” (Y3-6,
Y6-4 and Y10-3), which exhibit a single bottleneck node and a different number of
arms of different lengths, a long chain of nodes and a network with three arms that
only interfere at the sink were used (Chain-16 and X3-8). As before, the links in all
of these networks were idealized, i.e., the shown routing topology corresponds to the
transmission and interference range. Each wireless link is set to an average RSSI of
−88 dBm with a variance of 49 dB.

8.4 Evaluation: 6LoOF vs Plain Forwarding

This section presents the results of the experimental and simulative evaluation of the
6LoOF protocol. First, the influence of the 6LoOF parameters is investigated with
a simulative parameter study in the RS-C network. Secondly, results of experiments
in testbeds at Hamburg University of Technology and the IoTLab are shown. Those
results are used to validate corresponding simulations, which additionally investigate
a wider parameter space and additional, idealized network topologies.

The IEEE 802.15.4 MAC and 6LoOF parameters were fixed to values determined
in the corresponding parameter studies (Sect. 7.3 in Table 7.5.

The traffic pattern used for this evaluation is the one described in Sect. 5.4.4, i.e., a
periodic data collection with transmission intervals that were randomized by a uniform
distribution.

Results that represent a counter, e.g., the number of dropped fragments or data-
grams or the number of fragments that underwent a certain number of retransmis-
sion attempts, in some cases are normalized. Unless stated otherwise, the number
of requested UDP transmissions for that experiment is used as normalization fac-
tor. Thereby the counter values become comparable between runs with different UDP
packet size (LUDP) and/or a different total number of packets. Some counted values
are depicted as stacked bar plots. With these, each segment represents the share of
dropped fragments a certain failure is responsible for. The segments are not ordered
by their size and the topmost segment does not implicitly stretch over the other
segments below it.

8.4.1 6LoOF Parameters

The influence of the 6LoOF parameters nNSWC,max, BE6LoOF,max, BE6LoOF,min,
nqsa and xEPN as well as that of the 6LoWPAN timeout Tto was evaluated in the
simulation environment using the RS-C network topology (see Sect. 7.1.2), i.e., variant
which used equal transmission power for the experiment and the construction of the
topology.

The set of parameters is shown in Table 8.6. Note that the configuration of the
IEEE 802.15.4 MAC layer does not change for the remaining 6LoOF evaluation pre-
sented in this section and is chosen corresponding to the results of the parameter study
presented in Sect. 7.3.

113

8 6LoWPAN Ordered Forwarding - 6LoOF

forwarding mode BE6LoOF,min BE6LoOF,max nNSWC,max Q [B]
Dir-LOOF, Dir-ARR-LOOF 1,2,3 4,5,6,8 1,2,4,8 3584

macMaxFrameRetries macMinBe macMaxBe macCcaMode LUDP

7 5 8 0 1200

queueSwitchAfter useEpnFlag λB [B s−1] Tto [s]
1,2,3,8 0 (no), 1 (yes) 112.5,150 2,3,4,5,6

Table 8.6: Parameter values for 6LoOF parameter study

Dir-LOOF Dir-ARR-LOOF

0.75

0.80

0.85

0.90

0.95

1.00

1 2 4 8 1 2 4 8

nNSWC,max

P
R

R

λB

112.5Bs−1

150Bs−1

Figure 8.13: PRR against nNSWC,max parameter for different values of λB and for-
warding modes (columns), and BE6LoOF,min = 2, BE6LoOF,max = 5,
nqsa = 3; nNSWC,max does have only small influence on the overall PRR

Due to the large parameter space, it is not possible to provide an all-encompassing
overview about the results of all combinations of parameters. Therefore, only the
significant results are provided, fixing other parameters to retain clarity.

NSWC max: nNSWC,max

Figure 8.13 shows the influence of the parameter nNSWC,max, which governs the num-
ber of fragments to transmit without receiving a snooped confirmation before a node
enters the state ProbingBo. We can see that the overall influence of the parameter
on the average PRR over all nodes is very limited. The most pronounced change in
PRR can be observed for the combination of using the Direct-LOOF forwarding with
the lower application payload data rate of λB = 112.5 B s−1. For this configuration,
the average PRR drops from 0.924 to 0.904 for values of nNSWC,max of 1 and 8, re-
spectively. However, for the higher application data rate of λB = 150 B s−1, an nearly
inverse trend can be observed. This observed limited influence can be explained by
two facts:

114

8.4 Evaluation: 6LoOF vs Plain Forwarding

Dir-ARR-LOOF

0.7

0.8

0.9

1.0

2000 3000 4000 5000 6000

Tto[ms]

P
R

R

λB

112.5Bs−1

150Bs−1

Figure 8.14: PRR of Direct-ARR-LOOF mode against Tto; BE6LoOF,min = 2,
BE6LoOF,max = 5, nNSWC,max = 1, nqsa = 3

• Nodes continuously monitor their vicinity and check for activity of their neigh-
bors before transmitting and enter state Probing upon beginning a new trans-
mission and finding their current next hop busy.

• The parameter only influences the behavior if no fragment is snooped, i.e., the
current next hop is in state Stopped or snooping fails.

Considering these results nNSWC,max was fixed to 1 for the remaining evaluation.

6LoWPAN Timeout: Tto

As shown in Fig. 8.14, the 6LoWPAN timeout Tto (cf. Sect 5.3) has a strong influence
on the average PRR for the evaluated setup. For Tto = 2000 ms, as used with the
plain and enhanced Assembly and Direct forwarding modes, the Direct-ARR-LOOF
mode exhibits a PRR that is about 0.08 lower than the PRR for Tto = 5000 ms. This
indicates that a non-negligible number of datagrams remains at some node for longer
than the timeout period.

A possible explanation of this observation can be found in the inverse of the “node
starving”-problem described in Sect. 8.1.3: A fragment of a datagram is lost on a
subsequent hop, a node situated ahead of the node that lost the fragment will stop
to receive confirmations by snooping. Furthermore, this situation is indistinguishable
from a node that has merely entered state Stopped and only waits for a following link
to become available again and from failed snooping of fragments. Therefore, the node
waiting for an opportunity to forward it’s fragment can only do so at the snooping
rate, when no other snooped fragments cause it to enter state Stopped itself. This

115

8 6LoWPAN Ordered Forwarding - 6LoOF

1 2 3

0.75

0.80

0.85

0.90

0.95

1.00

4 5 6 8 4 5 6 8 4 5 6 8

BE6LoOF,max

P
R

R

λB

112.5Bs−1

150Bs−1

Figure 8.15: PRR of Direct-ARR-LOOF mode against BE6LoOF,max for different
value of λB and BE6LoOF,min (columns); nqsa = 3, nNSWC,max = 1.

issue is also suspected to be one of the major problems of the 6LoOF mechanism in
its form as presented in this thesis.

Minimum and Maximum Probing Exponents: BE6LoOF,min, BE6LoOF,max

Examination of the backoff exponents of the 6LoOF probing timer also revealed a
limited influence for the given network. The results for Direct-ARR-LOOF with a
buffer of Q = 3584 B and nqsa = 3 are shown in Figure 8.15, which governs when
the 6LoOF protocol pushes a datagram to the end of its transmission queue after
this datagram was not able to provide new fragments (cf. Sect. 8.1.3). The PRR
is lower for the larger examined values of BE6LoOF,max, independently from λB and
BE6LoOF,min. The overall difference between BE6LoOF,max = 4 and BE6LoOF,max =
8 is less than 0.025. The overall influence of the BE6LoOF,min parameter on the
PRR even less pronounced. For the higher of the two data rates λB = 150 B s−1,
the PRR curve is shifted to lower values for BE6LoOF,min = 3. For the lower data
rate of λB = 112.5 B s−1, BE6LoOF,min = 2 exhibits the highest PRR. Similar to the
nNSWC,max parameter, the influence on the PRR is limited. BE6LoOF,min = 2 and
BE6LoOF,max = 4 were chosen as parameters for further evaluation.

Push Back Stale Datagrams: nqsa

Similar observations can be made for the nqsa parameter (Fig. 8.16). For the higher
of the examined data rates λB = 150 B s−1, the highest PRR is achieved for nqsa = 1,
the lowest for nqsa = 8. With λB = 112.5 B s−1, in contrast, the lowest PRR is
observed for nqsa = 1. nqsa = 3 was chosen as a compromise.

116

8.4 Evaluation: 6LoOF vs Plain Forwarding

3584B

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 8

nqsa

P
R

R

λB

112.5Bs−1

150Bs−1

Figure 8.16: PRR of Direct-ARR-LOOF mode against nqsa for two different values of
λB; BE6LoOF,min = 2, BE6LoOF,max = 4

112.5Bs−1 150Bs−1

0.75

0.80

0.85

0.90

0.95

1.00

4 5 6 8 4 5 6 8

BE6LoOF,max

P
R

R

xEPN

0

1

Figure 8.17: PRR of Direct-ARR-LOOF mode against BE6LoOF,max with xEPN set
and cleared for varying λB; BE6LoOF,min = 2

117

8 6LoWPAN Ordered Forwarding - 6LoOF

BE6LoOF,min BE6LoOF,max nqsa nNSWC,max Tto (ms)

2 4 3 1 5000

Table 8.7: 6LoOF parameters used for evaluation

Q [B] LUDP [B]

3840 (3584) 1200

Table 8.8: Traffic generator parameters for 6LoOF evaluation in testbed

useEpnFlag: xEPN

Figure 8.17 shows the impact of explicit probing notification. As can be seen, it
is rather limited. Only for BE6LoOF,max = 8 the PRR without using the flagging
mechanism (cf. Sect. 8.1.2) is more than 0.01 lower than the corresponding PRR
using the mechanism. For the other observations the PRR is lower by less than
0.01. These findings support the hypothesis that flagging outgoing fragments does
not greatly improve the performance of 6LoOF in terms of reliability. In the light
of those results, not using the flagging mechanism is clearly preferred, especially as
it allows an implementation of 6LoOF without alteration to the 6LoWPAN fragment
header format.

6LoOF Parameters: Summary

This section examined the influence of the parameters defined for the 6LoOF protocol
on the average PRR for the examined traffic scenario and forwarding modes. One
reason for the limited impact is that they change the behavior of 6LoOF mainly in
situations that represent an error case. For example, the nqsa parameter influences the
handling of the 6LoWPAN transmission queue only if subsequent fragments belonging
to the active datagram are missing. Apart from nodes that encounter a stopped node
as their next hop, probing is used only when snooping fails.

The 6LoOF parameters are fixed for the comparative evaluation of 6LoOF with the
other forwarding modes to the values shown in Table 8.7.

8.4.2 TB-IoT Experiments

Due to the contention for the nodes in the IoTLab with other researchers and a com-
paratively large number of runs to get sound results for both testbed experiments, the
configuration of the traffic generator was restricted to the values shown in Table 8.8.
xEPN was varied for both testbeds. The transmission rate of UDP packets λB was
constant within each testbed but adapted to the examined network topology.

During the experiment at the Grenoble site of the IoTLab, nodes used the same
transmission power that was used to determine the network topology (cf. Sect. 8.3.1).
λB was set in a way to produce a total network traffic (considering all paths of all
nodes as in (7.2)) of λB,total = 6600 B. This configuration is shown in Tbl. 8.9.

118

8.4 Evaluation: 6LoOF vs Plain Forwarding

λB[B s−1] P tx [dBm] xEPN

37.5 -2.5 0,1

Table 8.9: Parameter setting for TB-IoT experiment

RS-IoT TB-IoT

0.75

0.80

0.85

0.90

0.95

1.00

1200 1200

LUDP [B]

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

Figure 8.18: PRR of TB-IoT testbed and derived simulation scenario; xEPN = 1

PRR in Comparison to Simulation

Figure 8.18 shows the PRR obtained in the IoTLab and a corresponding simulation
scenario derived using the method described in Sect. 4.3. The results show that for
the given configuration, the 6LoOF mechanism achieves the best performance of all
forwarding modes in terms of PRR, in simulation and testbed. With a PRR of 0.982
the PRR obtained by the Direct-ARR-LOOF mode is larger by 0.037 than that of
the Assembly mode (0.945) and by 0.026 than that of the Direct-ARR (0.956). To
the plain Direct mode, the gap is significantly larger. Note that while the difference
seems small it can be also translated to losing less than half as many datagrams than
the next-best forwarding mode. The Direct-LOOF mode, with exception of the plain
Direct mode, achieves a lower PRR than the other modes.

Comparing the results from the testbed with the corresponding simulation, the most
notable difference is the better PRR exhibited by Direct and Direct-LOOF modes. The
Direct-LOOF forwarding achieves a PRR slightly higher than that of the Assembly
mode and also outperforms the Direct-ARR mode. The Direct mode achieves a PRR
that is 0.14 higher than the one observed in the testbed. In general, the other modes
perform slightly better in the simulation environment. While Direct-ARR-LOOF still
is the mode with the highest PRR, the margin is less pronounced in the simulation
environment.

The influence of the xEPN parameter is shown in Fig. 8.19. The results support the
statement in Sect. 8.4.1 – xEPN = 1 does not have a significant positive influence on
the average PRR and therefore the flagging mechanism can be deactivated.

119

8 6LoWPAN Ordered Forwarding - 6LoOF

0 1

0.75

0.80

0.85

0.90

0.95

1.00

T
B

-IoT

1200 1200

LUDP [B]

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

Figure 8.19: PRR of IoTLab testbed for xEPN ∈ [0, 1] (columns)

Drop Causes

Looking at the causes for dropped fragments (Fig. 8.20), we can observe that the by
far dominating cause for lost fragments are transmission failures at the link layer.
Further investigation reveals that among the causes for these drops a consecutively
failed CCA and in consequence a failed CSMA/CA is the dominant one. This is
true for both simulation and testbed environment and corresponds to the findings in
Sect. 7.3.3. The notable differences in simulation and testbed environment for the
different forwarding modes can be directly translated to the observations made for
the PRR.

Sniffing

In general, the experiments at the Grenoble site of the IoTLab have been executed
at night in a rather quite environment with regard to interference by other wireless
technologies. The installed sniffers record a basic noise, which is supposed to be caused
by idle beaconing of IEEE 802.11 access points and misinterpretation of transmission
belonging to the experiment network itself (cf. Sect. 8.3.1). This “background noise”
shows no significant correlation with the results of the experiment. However, with one
set of experiments, a more significant interference was recorded.

Figure 8.21 shows a normalized number of registered non-idle sniffer measurements
plotted against real-time together with a scatter plot of the average PRR obtained for
the Assembly mode. It can be seen that during one of last sets of experiments, the PRR
decreases significantly while at the same time the number of non-idle measurements
increases significantly. Similar results can be observed for the other forwarding modes
(except Direct-ARR-LOOF, whose runs in that period were invalid and removed due to
nodes crashing during that particular set of experiments) during the execution of this
set of experiments. This result also explains the slightly higher confidence intervals
observable in Fig. 8.19, which shows the results of the experiment with significant

120

8.4 Evaluation: 6LoOF vs Plain Forwarding

RS-IoT TB-IoT

0.00

0.05

0.10

0.15

0.20
A
ss

D
ir

D
ir
-A

R
R

D
ir
-L
O
O
F

D
ir
-A

R
R
-L
O
O
F

A
ss

D
ir

D
ir
-A

R
R

D
ir
-L
O
O
F

D
ir
-A

R
R
-L
O
O
F

Mode

#
da

ta
gr
am

s
(n
or
m
)

dropReason
MacFail

BufferFull

(a) Drop causes

RS-IoT TB-IoT

0

2

4

6

A
ss

D
ir

D
ir

-A
R

R

D
ir

-L
O

O
F

D
ir

-A
R

R
-L

O
O

F

A
ss

D
ir

D
ir

-A
R

R

D
ir

-L
O

O
F

D
ir

-A
R

R
-L

O
O

F

Mode

#
fr

am
es

(n
or

m
) retries

#retries6

#retries7

#CCA_fail

#fail

(b) IEEE 802.15.4 MAC drop causes

Figure 8.20: Drop causes for fragments of IoTLab testbed and derived simulation sce-
nario

121

8 6LoWPAN Ordered Forwarding - 6LoOF

Ass

0.00

0.25

0.50

0.75

1.00

MÃďr 28 Apr 04 Apr 11 Apr 18 Apr 25

time

P
R
R

Sniffer
208

251

287

Figure 8.21: Working of the radio sniffer during IoTLab experiment. Scatter plot
showing the PRR along with the normalized step plot of the number of
sniffer measurements registering unrecognizable signals with an energy in
the interval [−80,−90] dBm: n90 × 10. Results are shown for all three
sniffer nodes (see Fig. 8.10)

sniffer activity. This shows that the installed radio sniffers are viable to detect periods
of increased interference by other networks.

Summary

There are several possible approaches to explain significantly better performance of the
non-delayed Direct modes in the simulation environment, as observed in Sect. 8.4.2.
First, the simulation model may underestimate the busyness on the wireless channel,
i.e., the CCA fails more often in the real testbed due an energy detection yielding a
result that is larger than the macCcaTh of −90 dBm. However, the data obtained
from the radio sniffers show a ratio of busy to total measurements of below 1 % most
of the time and therefore rule out this possibility.

Secondly, it is possible that the simulation underestimates the capability of the
transceiver to successfully decode the IEEE 802.15.4 SFD of an incoming frame even
if the signal is weak. Recall that the used transceiver tries to completely receive a frame
before it is ready to receive another one and the used macCcaMode reports a channel
as busy if a frame is currently being decoded. Therefore, an increased capability to
successfully decode the SFD of weak signals can worsen the overall performance of
the testbed. During topology construction, all received frames with a received signal
strength of −90 dBm were put into a bin representing RSSI values in the interval
[−90,−100] dBm. A link that primarily produces measurements of this uncertain
type results in a simulated link with an average RSSI in the interval [−90,−100] dBm.
As shown in Fig. 4.3, the simulation model will successfully decode an SFD with a
probability near 1, which does not provide much room for underestimation. However,
during construction of the topology, only frames received successfully, i.e., with a

122

8.4 Evaluation: 6LoOF vs Plain Forwarding

λB [B s−1] P tx [dBm] xEPN

112.5 -3.5 0,1

Table 8.10: Parameter setting for TB-D experiment

TB-D

0.75

0.80

0.85

0.90

0.95

1.00

0 1

xEPN

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

Figure 8.22: PRR in TB-D against xEPN

correct CRC are actually passed to the TopologyMonitor. Frames with a successfully
decoded SFD but a failed CRC check are discarded and are not counted. This means
that some “SFD-capable” links may exist in the testbed that are not recorded in the
corresponding simulation environment and thereby produce the described effect.

8.4.3 TB-D Experiments

Due to the observed fluctuation of link qualities, the experiment in the testbed at
Hamburg University of Technology used a slightly increased transmission power P tx

compared to the transmission power used to determine the routing topology. The
transmission rate of UDP packets in the traffic generator was set to generate a total
traffic rate of λB,total = 4387.5 B s−1.

PRR and xEPN

At a first glance, the results from the TB-D contrast those obtained from the IoTLab
and simulations.

Figure 8.22 suggests that without using the flagging mechanism (cf. Sect. 8.1.2), the
average PRR achieved by the Direct-ARR-LOOF forwarding mode drops by 0.1, along
with similarly strong pronounced drops of all other modes. The comparatively large
confidence interval also hint at a strong fluctuation in the results for individual runs.

123

8 6LoWPAN Ordered Forwarding - 6LoOF

It has to be noted that while the experiments for the non-6LoOF forwarding modes
were repeated along with those for the 6LoOF modes, the value of xEPN does not
have any influence on the behavior of those modes. Therefore, the xEPN parameter
can not be the sole source of influence in this case.

Drop Causes

Examining the number of fragments dropped and the corresponding causes (Fig. 8.23a),
it becomes evident that a major part of dropped fragments was caused by the node
with id 101. Furthermore, different from earlier observations, a dominant reason for
a dropped fragment at the link-layer were consecutively failing retransmissions (and
not CSMA/CA failures; Fig. 8.23b). Note that while the execution of the different
modes and their repeated runs were interleaved to counter temporarily varying links,
the experiments sets for xEPN = 1 and xEPN = 0 had a gap of about two weeks
between them. Therefore, an explanation in the observed behavior is, that the link
between nodes 101 and 105 was temporarily not available during the experiment with
xEPN = 0.

This explanation is further supported by the scatter plot of the PRR averaged over
all nodes (Fig. 8.24). There is a strikingly large number of measurements around a
PRR of about 0.62 for all forwarding modes. With node 101 being the forwarding
router for a part of the network containing 5 out of 13 nodes (8/13 ≈ 0.615), it is indeed
plausible that during the runs achieving a PRR of about 0.62 the link was completely
broken. This assumption is further supported by the fact that the recordings of the
radio sniffer located at the gateway node show no meaningful correlation with the
observed PRR values.

Apart from that, the scatter plots shows that there is a comparatively large variance
between individual runs in general for the experiment set with xEPN = 0. This shows
that in this case, the measures taken to prevent the static routing topology from
working did not prevent all problems and that the temporal variation of link quality
has a large if not dominant influence on the results. Therefore, the obtained results
are of limited usefulness.

However, the scatter plot also shows that the Direct-ARR-LOOF forwarding mode
still exhibits a number of runs with a PRR near 1, which no other mode achieves.
This indicates that the Direct-ARR-LOOF mode can outperform the other forwarding
modes in the given configuration if all links are present and healthy.

To compensate for the “broken link” effect, the measured data from the testbed
was adjusted by removing all runs that exhibited 100 or more fragments at any single
node that underwent the maximum number of 7 IEEE 802.15.4 MAC retransmissions.

In consequence, the PRR of all forwarding modes is improved for both settings
of xEPN. While with xEPN = 0 the PRR on average is still lower compared to
xEPN = 1, the relative performance among the forwarding modes is, with the exception
of Direct-LOOF and Assembly, much more similar after the removal of the bad runs.

Comparison to Simluation

The comparison of simulation and adjusted testbed data (Fig. 8.25a) leads to results
similar to those obtained for the testbed in the IoTLab. The PRR obtained in simula-
tion better by 0.03 (Direct-ARR, Direct-ARR-LOOF) to 0.17 (Direct-LOOF). Again,

124

8.4 Evaluation: 6LoOF vs Plain Forwarding

TB-D

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

A
ss

D
ir-A

R
R

D
ir-A

R
R
-L
O
O
F

10
5

10
1

10
6

10
7

10
2

10
3

10
4

10
8

10
9

10
A

10
B

10
C

10
0

av
g

Node Id and avg

#
da

ta
gr
am

s
(n
or
m
)

dropReason
MacFail

BufferFull

(a) Drop causes

0

1

2

3

0

1

2

3

0
1

Ass Dir Dir-ARR Dir-LOOFDir-ARR-LOOF

Mode

#
fr

am
es

(n
or

m
) retries

#retries6

#retries7

#CCA_fail

#fail

(b) IEEE 802.15.4 MAC drop causes

Figure 8.23: Drop causes for fragments of TB-D testbed and derived simulation sce-
nario. Rows represent forwarding mode (8.23a) and xEPN (8.23b)

125

8 6LoWPAN Ordered Forwarding - 6LoOF

Ass Dir Dir-ARR Dir-LOOF Dir-ARR-LOOF

0.6

0.7

0.8

0.9

1.0

T
B

-D

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

run number

P
R

R

Figure 8.24: Scatter plot of the PRR averaged over all nodes for individual runs for
different forwarding modes (columns); xEPN=0

the non-delayed forwarding modes Direct and Direct-LOOF achieve a better PRR in
the simulation environment than in the testbed. For the TB-D, however, the main
reason for the simulation environment to exhibit a better PRR is the larger number of
frames dropped due to consecutively failed retransmissions in the testbed even after
the adjustment and not a larger number of CCA failures as can be seen in Fig. 8.25b.

8.4.4 Simulation

The simulation runs iterate over λB, Q and LUDP. Some of the networks introduced
in Sect. 8.3.3 differ with respect to the total number of hops that have to be traversed
for the traffic of all nodes to reach its destination. Therefore, the total traffic rate
λB,total would vary significantly if λB was equal for all networks. To enable a rough
comparison between the different topologies, λB is set to reflect four categories of
traffic load T: Tlow, Tmid, Thigh and Tmax.

Table 8.11 shows the setting for each network and the corresponding resulting
λB,total and traffic category. 6LoWPAN buffer space is classified into three cate-
gories QS, QM and QL, corresponding to Q ∈ {2560, 3840, 5120}B for non-6LoOF
and to Q ∈ {2304, 3584, 4846}B for 6LoOF forwarding modes. Furthermore, all sim-
ulation runs were carried out for different values of the UDP packet size LUDP ∈
{400, 800, 1200}B.

126

8.4 Evaluation: 6LoOF vs Plain Forwarding

RS-D1 TB-D TB-Df

0.75

0.80

0.85

0.90

0.95

1.00

1 1 1

xEPN

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

(a) PRR

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

R
S-D

1
T

B
-D

T
B

-D
f

Ass Dir Dir-ARR Dir-LOOFDir-ARR-LOOF

Mode

#
fr

am
es

(n
or

m
) retries

#retries6

#retries7

#CCA_fail

#fail

(b) IEEE 802.15.4 MAC drop causes

Figure 8.25: PRR and MAC drop causes for TB-D, adjusted TB-Df and derived sim-
ulation network

127

8 6LoWPAN Ordered Forwarding - 6LoOF

Networks htotal Tlow Tmid Thigh Tmax

RS-C1 57 75.0|4275.0|16 112.5|6412.5|11 150.0|8550.0|8.0 234.4|13360|5.1
RS-D1, RS-D2 39 112.5|4385.5|11 150.0|5850.0|8 187.5|7312.5|6.4 337.5|13163|3.6

RS-IoT 176 28.1|4950.0|43 37.5|6600.0|32 56.3|9900.0|21 75.0|13200|16

Chain-16 120 37.5|4500.0|32 56.3|6750.0|21 75.0|9000.0|16 112.5|13500|11
Y3-6 117 37.5|4387.5|32 56.3|6581.3|21 75.0|8775.0|16 112.5|13163|11
Y6-4 116 37.5|4350.0|32 56.3|6525.0|21 75.0|8700.0|16 112.5|13050|11
Y10-3 111 37.5|4162.5|32 56.3|6243.8|21 75.0|8325.0|16 112.5|12488|11
X3-8 108 37.5|4050.0|32 56.3|6075.0|21 75.0|8100.0|16 112.5|12150|11

Table 8.11: 6LoOF simulation runs; λB[B s−1]|λB,total[B s−1]|i[s] for different traffic
load categories

Overview of PRR Performance

First, mind that the scale of the y-axis does not begin at zero to better visualize
smaller differences. To get an accurate impression, the PRR bar plots have to be
regarded as a zoomed-in and cut-off top section of the PRR. Note also that for the
T = Tmax of the testbed-derived networks only the RS-IoT network maintains a PRR
above 0.6. The other two networks enter a congested state for that transmission rate

QS QM QL

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

R
S-C

1
R

S-IoT
R

S-D
2

Tlow TmidThighTmax Tlow TmidThighTmax Tlow TmidThighTmax

T

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

Figure 8.26: PRR against traffic load T for testbed-derived networks (rows), different
buffer sizes (columns) and forwarding modes (bar color). The payload
was set to LUDP = 1200 B

128

8.4 Evaluation: 6LoOF vs Plain Forwarding

QS QM QL

0.5
0.6
0.7
0.8
0.9
1.0

0.5
0.6
0.7
0.8
0.9
1.0

0.5
0.6
0.7
0.8
0.9
1.0

0.5
0.6
0.7
0.8
0.9
1.0

0.5
0.6
0.7
0.8
0.9
1.0

C
hain-16

X
3-8

Y
3-6

Y
10-3

Y
6-4

Tlow TmidThighTmax Tlow TmidThighTmax Tlow TmidThighTmax

T

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

Figure 8.27: PRR against traffic load T for idealized networks (rows), different buffer
sizes (cols) and forwarding modes (bar color). The UDP packet payload
was set to LUDP = 1200 B

and the PRR drops as low as 0.4 for those networks and is deliberately cut off in
Fig. 8.26 to retain visibility of differences for the other rates.

Figure 8.26 shows the average PRR for all testbed-derived networks and a UDP
payload LUDP = 1200 B. For the smallest of the evaluated 6LoWPAN buffer sizes,
the 6LoOF mechanism significantly improves the PRR for all networks and all rates in
comparison to the Direct-ARR mode, which consistently achieves the best performance
of non-6LoOF forwarding modes. With increasing Q, the PRR of the Assembly mode
significantly increases, causing it to obtain the best result of the non-6LoOF modes.
However, the performance of Direct-ARR-LOOF is still better for all evaluated traffic
loads in networks RS-IoT and RS-D1. An exception can be identified with the RS-
C1 network, in which the Assembly mode achieves the highest PRR for T = Thigh

and 6LoWPAN buffer size QL. Another observation is, that in this network, the
Direct-LOOF mode achieves a higher PRR than Direct-ARR-LOOF for T = Thigh.

It can also be observed that the PRR of the 6LoOF modes is not significantly
increased by switching from a QM to a QL buffer. This is similar to the Direct modes.
However, even for the QS buffer, 6LoOF outperforms the plain Direct forwarding
modes by 0.03 to 0.07. The gap to the Assembly mode is significantly larger for a
QS buffer, especially for T = Thigh, e.g., 0.1 in network RS-IoT and 0.15 in network
RS-D2. This indicates that the goal for 6LoOF to work with restricted buffer space
is fulfilled.

129

8 6LoWPAN Ordered Forwarding - 6LoOF

The observations for the idealized networks are mainly consistent with those for
the testbed-derived ones (Fig. 8.27). Interestingly, while the λB,total is similar to the
testbed-derived networks and among the idealized ones, there are significant differ-
ences with regard to the PRR-performance. In Chain-16, Y3-6 and X3-8 networks,
the PRR achieved by 6LoOF up to T = Thigh is near 1. This can be attributed to the
sharply cut interference range that reaches only the direct neighbor of each node in the
idealized topologies. Thereby, contention on the wireless channel is greatly reduced
compared to the testbed-derived networks. 6LoOF can be identified as the forwarding
mode achieving the best results. Especially in the Y10-3 and Y6-4 networks, 6LoOF
exhibits a better PRR for T = Thigh, with the non-rate-restricted Direct-LOOF mode
performing better that the rate-restricted Direct-ARR-LOOF. The latter fact is plau-
sible considering the topology of Y10-3 and the limited potential for pipelining frag-
ments in that network.

It has to be noted that approaching congestion in networks Y10-3 and Y6-4 with
T = Tmax, the performance of both 6LoOF modes and that of the Direct-ARR mode
decrease in comparison to the other forwarding modes. This behavior indicates that
6LoOF is not as well suited in an already congested network. Section 8.1.3 shortly
discussed a possible explanation for this behavior: If a successor node has to drop
a datagram, a predecessor node will always transmit with snooping rate towards it
because it will never get a confirmation for its fragments.

The results of the comparison between the real testbed and derived simulation envi-
ronments in Sect. 8.4.2 and Sect. 8.4.3 show a significantly higher PRR in simulation
especially for the non-rate-restricted Direct modes. This has to be kept in mind when
assessing the simulation results.

Drop Causes

Exemplarily, the causes for dropped fragments are investigated for a 6LoWPAN buffer
of size Q ∈ {QS,QL}, T = Thigh and UDP packet size LUDP = 1200 B in RS-IoT and
Y10-3 networks.

Examining the general causes for dropping fragments (Fig 8.28a) in the RS-IoT
network, it becomes evident that a lack of buffer space and failures at the link-layer are
the only causes for failures. For the larger 6LoWPAN buffer size, the number of drops
due to link-layer transmission failures is increased. This can be explained by a stronger
contention for the wireless channel due to less fragments being rejected because of
missing buffer space. For the Assembly mode, which has the largest reduction of
buffer drops with the larger buffer size, the number of link-layer failures increases
more significantly.

Furthermore, it can be observed that the 6LoOF mechanism effectively reduces
both buffer drops and transmission failures. While Direct-LOOF exhibits less buffer
drops than Direct-ARR-LOOF, this is more than compensated for by the significantly
reduced number of transmission failures.

In RS-IoT, the dominant specific reason for transmission failures can again be iden-
tified as CSMA/CA failures (Fig. 8.28b). 6LoOF is not only able to reduce the number
of failures caused by consecutively failed retransmissions to near zero, but also exhibits
a much smaller number of CSMA/CA failures, i.e., consecutively failed CCAs.

The results are quite different for the idealized Y10-3 network, which contains
shorter paths and a single bottleneck at node 2 (Fig. 8.12d). Here, even for the large

130

8.4 Evaluation: 6LoOF vs Plain Forwarding

QS QL

0.0

0.1

0.2

0.0

0.1

0.2

R
S-IoT

Y
10-3

A
ss

D
ir

D
ir
-A

R
R

D
ir
-L
O
O
F

D
ir
-A

R
R
-L
O
O
F

A
ss

D
ir

D
ir
-A

R
R

D
ir
-L
O
O
F

D
ir
-A

R
R
-L
O
O
F

Mode

#
da

ta
gr
am

s
(n
or
m
)

dropReason
QueueFull

MacFail

BufferFull

OutOfHandlers

AssemblyFull

TinyFull

OutOfMessages

(a) General drop causes

QS QL

0.00

0.05

0.10

0.00

0.05

0.10

R
S-IoT

Y
10-3

A
ss

D
ir

D
ir

-A
R

R

D
ir

-L
O

O
F

D
ir

-A
R

R
-L

O
O

F

A
ss

D
ir

D
ir

-A
R

R

D
ir

-L
O

O
F

D
ir

-A
R

R
-L

O
O

F

Mode

#
fr

am
es

(n
or

m
) retries

#retries6

#retries7

#CCA_fail

#fail

(b) IEEE 802.15.4 MAC drop causes

Figure 8.28: Causes for dropping of fragments in general and at the IEEE 802.15.4
link-layer in detail in RS-IoT and Y10-3 networks for LUDP = 1200 B

131

8 6LoWPAN Ordered Forwarding - 6LoOF

0

500000

1000000

1500000

0

500000

1000000

1500000

D
ir-L

O
O

F
D

ir-A
R

R
-L

O
O

F

1 2
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

2
20

2
30

2
40

2
50

2
60

2
70

2
80

2
90

2

Node Id

ti
m

e
in

st
at

e
[m

s] state
timeStopped

timeProbing

timeSending

timeIdle

Figure 8.29: Time spent in 6LoOF states against node id for T = Thigh, QL buffer
and LUDP = 1200 B as a stacked bar plot. Nodes with an id X00 are
those just before the bottleneck node on the path.

buffer size, buffer drops represent a large part of the total losses for rate-restricted
Direct modes and the Assembly mode. With multiple transmissions being active si-
multaneously, the rate-restriction mechanism does not work effectively – note that
it was mainly constructed to prevent self-interference along a single path. The re-
sults even indicate that the additional delay slows down the transmission so that the
backlog eventually causes nodes to run out of buffer space.

The cause of link-layer drops also show that the idealized Y10-3 network indeed suf-
fers much less from CSMA/CA failures due to the sharply cut-off interference range
of all nodes as assumed in Sect. 8.4.4. In this network, consecutively failed retrans-
missions are the dominant causes for transmission failures.

6LoOF states

To investigate the inner workings of 6LoOF, the total time spent in each of the states
was recorded for each node. As expected, the nodes just before the bottleneck node
spent a large part of their non-idle time in state Stopped, whereas nodes situated
behind them nearly never stopped but entered probing state comparatively often
(Fig. 8.29). This shows that the 6LoOF protocol works as expected: Node 2 has
to forward fragments belonging to many different datagrams, causing all its predeces-
sors to suspend their own transmission when they snoop a fragment not belonging to
their active datagram.

132

8.4 Evaluation: 6LoOF vs Plain Forwarding

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

A
ss

D
ir-A

R
R

D
ir-A

R
R

-L
O

O
F

95
79

A
48

3
28

61
A

47
8

A
67

7
B

26
8

11
62

91
83

95
67

99
82

A
28

3
A

77
9

B
87

7
88

71
91

77
97

69
98

83
A

07
9

A
18

3
A

38
3

90
72

90
82

98
79

A
56

9
B

07
8

90
71

91
68

A
17

2
B

17
7

B
27

9
B

48
2

91
67

92
67

A
47

6
94

72
B

78
0

C
26

8
av

g
Node Id and avg

P
R

R metric
PRR

Figure 8.30: Comparison of PRR of individual nodes in RS-IoT network for Assembly,
Direct-ARR and Direct-ARR-LOOF modes for Q = QL, T = Thigh and
LUDP = 1200 B. Nodes are ordered in ascending order by their distance
(number of hops) to the sink. There is no indication that 6LoOF favors
certain nodes.

Compared to the rate-restricted Direct-ARR-LOOF, in Direct-LOOF mode nodes
are in state Stopped for significantly less time and also spent less time in state Sending.
Both observations indicate that with rate-restriction, nodes complete the transmission
of their active datagram less swiftly and eventually have to drop fragments as their
buffer runs full. This is confirmed by the drop causes per node that show a much
larger number of buffer drops for the rate-restricted modes. Note that state Sending
does not only denote the raw time the 6LoWPAN layer request a frame transmission
from the link-layer but also incorporates any delays due to rate-restriction.

It can also be seen that the node at the last wireless hop is in state sending for more
than 83 % (88 % for Direct-ARR-LOOF) of the duration of the complete experiment.
Similar observations can be made for the other evaluated networks with the exception
of networks Y3-6 and Chain-16, which exhibit a less busy last-hop node. The node in
front of the sink does not employ rate-restriction or 6LoOF suspension for datagrams
destined to the sink. Hence, a traffic load of T = Thigh can be equated to a network
under heavy load. It has to be noted, however, that a 6LoOF node remains in state
Sending while waiting for additional fragments from predecessors.

133

8 6LoWPAN Ordered Forwarding - 6LoOF

Fairness

Figure 8.30 shows the PRR for all nodes in the RS-IoT testbed for the forwarding
modes Assembly, Direct-ARR and Direct-ARR-LOOF and T = Thigh and LUDP =
1200 B. Nodes are ordered in ascending order by their distance (number of hops) to
the sink. This figure is qualitatively representative for the other evaluated networks. It
shows that there is no significant preference to certain nodes by the 6LoOF protocol.
While some differences in PRR between individual nodes exist, the pattern is very
similar for all the shown forwarding modes and can not be attributed to the 6LoOF
protocol. That on average the PRR is slightly decreasing with the distance from the
sink is to be expected, considering the increased potential for failures along longer
path (cf. Fig. 3.3) and can also not be attributed to the protocol itself. Compared
to the plain Direct-ARR forwarding, the absolute differences between nodes are even
less pronounced with 6LoOF.

UDPPacket size LUDP

For the QL 6LoWPAN buffer and T = Thigh the performance of the forwarding
modes for different UDP packet sizes is evaluated, while keeping the total data rate
constant. This is realized by adapting the average interval between packets according
to λ = λB/LUDP. Note that the PRR is not directly comparable for the different
combinations of λB and LUDP, because only individual packets are accounted for. On
the one hand, the overhead caused by the UDP and IPv6 headers is larger for smaller
packets. On the other hand, losing one fragment per 1200 B payload for LUDP = 400 B
translates into the loss of one out of three datagrams, whereas for LUDP = 1200 B it
translates into losing 1 out of 1 datagram.

Figure 8.31 shows the PRR for LUDP ∈ {400, 800, 1200}B for the testbed-derived
network topologies, T = Thigh and a Q = QM. For LUDP = 400 B in RS-IoT and
RS-D2, the PRR for all modes is better for smaller UDP packets. For the smallest
shown size of 400 B, the different modes achieve comparable performance in RS-IoT
and in RS-D2 and with 6LoOF the decrease is less pronounced for larger UDP packets.

An interesting observation are the distinguished results for the network RS-C1 and
Y10-3 for 400 B packets. The nearly exclusive reason for this behavior are drops due to
lack of buffer space at node 106. No single dominant reason for the bad performance
of the Direct-ARR and both 6LoOF forwarding modes could be identified, but several
factors are assumed to contribute to the observed behavior.

First, as described in Chapter 5, the adaptive rate restriction of Direct-ARR and
Direct-ARR-LOOF uses an exponentially weighted average over the measured dura-
tion for frame transmissions (including backoffs and retransmissions). The median of
the frame duration for this scenario is below 10 ms for all nodes. However, Fig. 8.32
shows the measurements classified as outliers (1.5 times the inter-quartile range).
Some extremely large values for the duration of a frame transmission can be observed.
Even though such values are smoothed by the averaging, they temporarily signifi-
cantly increase the delay for the next transmissions. With node 106 not being directly
connected to the root of the tree, the rate restriction is applied at this single bottle
neck to nearly all fragments created in the network.

Secondly, the timeout obtained from the parameter study in Sect. 8.4.1 is not op-
timal for the smaller packet size. Reducing Tto from 5 s to 2 s slightly improves the

134

8.4 Evaluation: 6LoOF vs Plain Forwarding

RS-C1 RS-IoT RS-D2 Y10-3

0.6

0.8

1.0

400 800 1200 400 800 1200 400 800 1200 400 800 1200

LUDP [B]

P
R

R

Mode
Ass

Dir

Dir-ARR

Dir-LOOF

Dir-ARR-LOOF

Figure 8.31: PRR against LUDP for testbed-derived networks for T = Thigh and
Q = QM. For smaller datagrams, the performance advantage of 6LoOF
diminishes or is even inverted.

0

250

500

750

1000

D
ir-A

R
R

1 2 3 4 5 6 7 8 9 10 11 12 13

NodeId

fr
am

e
du

ra
ti

on
[m

s]

Figure 8.32: Scatter plot of measured duration for frame transmissions larger than
25 ms in ms with Direct-ARR for all nodes in RS-C1. Individual mea-
surements can reach extremely high values.

135

8 6LoWPAN Ordered Forwarding - 6LoOF

PRR in this scenario by about 0.02. In the light of this observation, choosing the time-
out value for forwarding or reassembly based on the size of the incoming datagram
presents an opportunity to improve overall 6LoWPAN performance.

Finally, Fig. 8.31 shows that Direct-LOOF, though being not a rate-restricted for-
warding technique, also suffers from a comparatively bad performance for 400 B pack-
ets. A possible explanation can be found in the ordering of datagrams. For 400 B
packets, the transmission rate at the traffic generator is thrice the rate used for 1200 B
packets, resulting in a larger number of independent packets in the network. Therefore,
more fragments are transmitted during the initial probing phase of 6LoOF, increasing
the overall probability of fragments that do not belong to the active datagram to ar-
rive at a node. Fragments that do belong to the active datagram, on the other hand,
can be delayed by those transmissions. If no fragments of the active datagram are
available for transmission in such a case, the node remains idle although fragments
are ready for transmission until the next fitting fragment arrives or the “push back”
mechanism described in Sect. 8.1.3 becomes active.

Polling

The results from randomized periodic collection are compared to a straightforward
polling approach, i.e., the sink asks one node after the other to transmit a UDP
packet. Thereby, contention on the network is reduced to self-interference between
fragments of the same UDP packet. For these simulation runs, the plain forwarding
modes were used. In all networks, the polling strategy achieves a PRR near one with
forwarding modes Assembly and Direct-ARR (not shown). The PRR of the Direct
mode is lower by a few percent but also above 0.95 in all networks. For each requested
UDP packet, a timeout of 3 s was used. While this may seem a rather large value, the
latency for an individual UDP packet could be observed to occasionally exceed 2 s.

Figure 8.33 shows the average per-node throughput of collecting a single UDP traffic
packet from all nodes in the network. As reference, the average throughput achieved by
periodic push-based collection of data using Direct-ARR-LOOF forwarding is shown.
Comparing the average throughput achieved with polling and and push-based collec-
tion for the different networks, we see that for the RS-IoT and X3-8 networks, the
throughput is better by about 57 % and 40 %, respectively. In the other networks,
polling is outperformed less distinctly (Chain-16, Y3-6, RS-C1) or achieves an even
better throughput, albeit with different forwarding modes (Assembly: RS-D1, RS-D2;
Direct: Y10-3; Direct-ARR: Y6-4). Achieving a PRR near 1 for T = Tmax, the net-
works X3-8, Chain-16 and RS-IoT may support higher traffic rates, while the other
networks already suffer from congestion for this traffic rate and no further increase
can be expected.

The major difference between the RS-IoT and X3-8 networks, which exhibit the
best performance compared to polling, and all others is, that apart from the last
hop(s), the network can be divided into two spatially divided sub-networks that do
not share a common interference range (excluding the last hop towards the gateway
node). Thereby, transmissions can truly take place in parallel. This is true especially
for RS-IoT because even though the potential for pipelining along the same path is
existent, it is limited. This fact can be derived from the only slightly larger throughput
achieved by the Direct forwarding modes for polling collection. In this regard, the two

136

8.4 Evaluation: 6LoOF vs Plain Forwarding

1200

0

1000

2000
R

S-
C

1

R
S-

D
1

R
S-

D
2

R
S-

Io
T

C
ha

in
-1

6

Y
3-

6

Y
6-

4

Y
10

-3

X
3-

8

Network

b
[B

s−
1
]

Mode
Ass

Dir

Dir-ARR

Periodic-LOOF-ARR

Figure 8.33: Average per-node throughput of data collection for a single round using
polling with plain forwarding modes. 1200 B data were requested from
each node. For comparison, the highest average per-node throughput
achieved by periodic collection is shown for LUDP = 1200 B, Q = QM; If
a PRR of at least 0.9 was achieved the throughput shown is for T = Tmax,
otherwise for T = Thigh.

idealized networks with similar long paths (Chain-16 and Y3-6) can achieve a much
higher throughput with the Direct modes compared to the Assembly mode.

8.4.5 Summary

A validation of the simulation model using two distinct testbed networks shows that
while not perfect, the simulation model largely exhibits the same tendencies as can be
observed in the testbeds. Especially the non-rate-restricted Direct forwarding modes
consistently achieve higher PRR results in simulation. A major reason for the dif-
ference is the larger part of link-layer transmissions that failed due to consecutive
failures in the testbeds in contrast to failures due to failed CSMA/CA mechanisms in
the simulation environment.

The evaluation presented in this chapter shows that 6LoOF forwarding does improve
the performance of traffic collection in terms of PRR in most of the evaluated collection
traffic scenarios. Although 6LoOF’s book keeping needs some additional memory, it
performs especially well in configurations with small to medium-sized buffers (2560 B,
3840 B). The main reason for the improved PRR is the fact that 6LoOF is able to sig-
nificantly reduce the number of link-layer failures by putting nodes into state Stopped

137

8 6LoWPAN Ordered Forwarding - 6LoOF

and thereby reducing the overall contention on the wireless channel. Exemplarily ex-
amining the time spent in each state, it could be seen that nodes effectively suspend
their transmissions in favor of other ongoing transmission. These result clearly indi-
cate that the core idea behind the 6LoOF mechanism works well for large datagrams.
Furthermore, the results indicate that 6LoOF is at least as fair as the plain Direct
forwarding modes.

However, there are some drawbacks. Maintaining the same average traffic rate but
reducing the payload of individual UDP packets, the advantage that 6LoOF achieves
for very large datagrams diminishes. In some topologies, an significant decrease of the
PRR compared to the other forwarding strategies could be observed for a packet size
of 400 B in combination with a traffic rate near the congestion state of the network.
Also, 6LoOF performs slightly worse than the other forwarding modes if the network
is in a congested state.

One of the unsolved problems of 6LoOF is the issue of “snoop-starving” described
in Sect. 8.1.3. Apart from explicitly notifying the predecessors, which necessitates
changes to the 6LoWPAN mechanism, no potential solution to this issue can be pre-
sented.

The evaluation also shows that polling is a viable alternative to periodic randomized
push-based data collection for large datagrams. Especially in networks with no or
limited potential for parallel data transmissions, a simple polling scheme achieves the
same or even slightly better performance than periodically triggered data collection.
If, however, potential for parallelization is existent, be it via pipelining on the same
path or segregation of the network into multiple near-independent parts, push-based
data collection outperforms polling in terms of achievable throughput, which can be
also translated into a larger number of supportable nodes in the network.

138

9 Conclusion and Outlook

The ever increasing demand for ubiquitous autonomously networked sensing and con-
trol systems, also known as the “Internet of Things” or “Cyber-Physical Systems”
constitutes a number of new challenges. One of those is the question of how to inte-
grate large wireless networks of cheap and resource-constrained devices into existing
network infrastructures. A proposed solution is to take the proven and time-tested
family of internet protocols and make them usable on even the tiniest nodes. Several
protocols that are built upon the internet protocol version 6 have been standardized
by the IETF. Among them, the 6LoWPAN protocol addresses issues of IPv6 header
compression and fragmentation for link-layers that are not capable of providing the
full minimum MTU of 1280 B.

This dissertation addresses the issues that are caused by fragmentation of large
datagrams and their transmission via multi-hop routes using the IEEE 802.15.4 link
and physical layer. It concentrates on data collection traffic scenarios, i.e., multiple
nodes, which periodically transmit data to a sink, that utilize the unslotted CSMA/CA
mode of the IEEE 802.15.4 MAC protocol. While some research on this topic in form
of analytical models and simulative and experimental evaluation exists, the available
work either makes strong simplifications or evaluates the different forwarding strategies
using unrealistically small networks. Furthermore, the influence of the configuration
of underlying link-layer is usually regarded not further. Another proposed approach to
improving 6LoWPAN reliability was based on end-to-end negative acknowledgments
and can be seen as orthogonal to the research presented here. Taking the efforts
further, this dissertation makes the following contributions to the problem.

An analytical model based on bit-error probabilities was extended to better reflect
practical approaches to handle the forwarding of fragmented datagrams. By means of
the extended model, the number of “useless” bits, i.e., data belonging to datagrams
that have already been lost, can be quantified when using a non-reassembling approach
to fragment forwarding. The output of the model suggests that for a reasonably high
overall end-to-end datagram success rate, the impact of these already-lost fragments
is limited. While neglecting important aspects of wireless communication, the model
was also used to show the strong negative influence the combination of fragmentation
and multi-hop transmissions have on the end-to-end datagram success rate.

A suitable simulation model for investigating the performance of 6LoWPAN frag-
mentation was discussed. Additionally, a method to derive a network topology includ-
ing the link-layer properties from an existing testbed was developed and implemented
for the CometOS framework, which can be used as a basic operating system for wireless
sensor nodes and within the OMNeT++ simulator, using MiXiM to provide the ca-
pability of sophisticated modeling of wireless physical channels. By comparing results
from the original testbed and a corresponding testbed-derived simulation environment,
a validation of the simulation model could be achieved and thereby the confidence in
the results from the more large-scale simulations could be improved.

139

9 Conclusion and Outlook

With initial experiments and simulations, the two most basic route-over forwarding
modes Assembly and Direct were evaluated together with a forwarding mode which
adaptively restricts the rate of transmissions to prevent self-interference. The re-
sults showed a dramatically low PRR especially for the examined Direct forwarding
strategies, whereas the Assembly mode produced results consistent with expectations.
Comparing these results to the ones obtained with another model for the bit-error
probability of the IEEE 802.15.4 layer clearly indicated, that either the simulation
did not generate realistic results or some flaw in the testbed existed. A property of
the transceiver’s “extended operating mode”, which provides support for automatic
CSMA/CA and retransmissions, is that the transceiver becomes incapable of receiving
any incoming IEEE 802.15.4 frame as soon as an automatic transmission is initiated.
This “no-RX-while-TX” property was finally suspected to be a potential cause for the
non-consistent results.

In consequence, an experiment setup was devised and implemented to quantify the
actual influence of the “no-RX-while-TX” property of the transceiver. For this, the
detailed sequence of states of the used radio stack for each of the four participating
nodes was recorded during the transmission of a large datagram along a path of three
hops. As a reference, the same experiments were repeated with the radio driver layer of
TinyOS (ported to CometOS) which implements CSMA/CA backoffs and retransmis-
sions in software and does allow for the reception of frames during the backoff phase of
a transmission. The obtained results clearly show that the “no-RX-while-TX” prop-
erty indeed was solely responsible for the observed results. It has to be noted that
this finding can be important for all other testbed deployments which use the same
transceiver or a transceiver with a similar mechanism and IEEE 802.15.4’s unslotted
CSMA/CA mode. Even though the impact is especially strong in multi-hop scenarios
with fragmentation, it has potential to bias all results taken from deployments using
this combination. An example for this are M3 OpenNodes running RIOT OS, which
is a probable setup to be encountered in the large and widely-used testbed facility
IoTLab.

After throwing out the transceiver’s extended operating mode, a new parame-
ter study was set up with the aim to assess the influence and a suitable set of
IEEE 802.15.4 parameters for 6LoWPAN fragmentation of large datagrams. Further-
more, the performance of the different forwarding modes was evaluated for varying
parameter sets, varying backoff exponents, the maximum number of retransmissions,
the 6LoWPAN buffer size and the mode of clear channel assessments IEEE 802.15.4
uses. The findings of the parameter study include that a larger number of maximum
link-layer retransmissions for all evaluated scenarios improve the overall reliability.
Additionally, the IEEE 802.15.4 minimum backoff exponent has a significant influ-
ence on the end-to-end datagram success rate. The mode of IEEE 802.15.4 channel
assessment does have controversial influence, as the more aggressive variant (mode 3)
improved the PRR in a network with artificially increased transmission power but sig-
nificantly decreased it for the same routing topology with non-increased transmission
power. Discussion of the results led to a selection of parameters to be used for the
evaluation of the 6LoOF protocol.

Another finding of the evaluation was that a simple polling scheme for certain
topologies proved to be a viable and easy alternative to periodic collection of large data
items triggered by the nodes independently. In some networks, the polling approach

140

achieves comparable throughput and in nearly all cases a better PRR. The evaluation
indicates that polling is viable for large data packets, if the potential for pipelining is
limited and no parallel sub-networks exist in the network.

Finally, this dissertation proposes 6LoOF, an implementation of 6LoWPAN that
uses snooping of network traffic to order the transmission of datagrams with the aim
to reduces the overall contention for the wireless channel and thereby improve the
overall reliability of the transmission of large, 6LoWPAN-fragmented datagrams. The
basic idea is that if a node overhears the transmission of a datagram that is not the
datagram currently transmitted by the node itself, the node will suspend its own
transmission to enable fast completion of the overheard datagram. This also implies
an “ordering” of fragments according to their belonging to a certain datagram, which
is reflected in the name of the mechanism. Mechanisms to prevent node starving
and suspension deadlocks were discussed and some additional tweaks to the protocol
presented to improve its performance. 6LoOF was implemented in for CometOS and
evaluated in two different testbeds, at the IoTLab and at Hamburg University of
Technology. Furthermore, a simulation study was carried out, comparing 6LoOF to
other forwarding modes in testbed-derived and idealized networks.

The evaluation showed that 6LoOF outperforms the other forwarding modes in
nearly all of the evaluated scenarios. It consistently was able to reduce the number
of failures at the link-layer that otherwise led to the loss of a whole datagram. Es-
pecially with regard to the usage of buffer space, 6LoOF shows that it utilizes the
available space better than the Assembly mode and works well with small to medium
buffer sizes. Disabling the optional use of an explicit probing flag by means of a mod-
ified header dispatch value, 6LoOF can be implemented completely compliant to the
6LoWPAN standard, sacrificing only a tiny part of the reliability improvement.

There are, however, some limitations of the 6LoOF protocol. First, it does not offer
a significant improvement when smaller datagrams are forwarded. In some cases,
especially those of a high traffic load near or in a congested network state, it even
performs worse for smaller datagrams than the other forwarding modes. Adapting
the forwarding/reassembly timeout for smaller fragments may mitigate this problem,
but not completely. Secondly, one inherent problem of the protocol is its inability for
a node to communicate to a predecessor that the datagram belonging to an incoming
fragment has been discarded due to a link-layer failure or the lack of buffer space.
In consequence, predecessor nodes have to transmit the remaining fragments in a
probing state, wasting much time with an already lost cause. A possible remedy to this
situation is the transmission of explicit notifications every time an invalid fragment is
detected. This approach, however, could not be evaluated in this dissertation, because
the issue and a possible solution were discovered too late in the process of completion.
Finally, it was found that 6LoOF does not perform as well in scenarios with a very
high traffic load. The aforementioned issue is likely to be one of the reasons for this.

Applied together with one of the end-to-end congestion control mechanism that are
proposed for CoAP to alleviate its shortcomings, the 6LoOF mechanism can be used
to improve the overall reliability in application scenarios that demand for the periodic
collection of large data items using a completely standardized protocol stack.

141

Bibliography

[06] IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (WPANs). Sept. 2006.

[10] IEC 62591:2010 - Industrial communication networks - Wireless com-
munication network and communication profiles - WirelessHARTTM.
IEC, 2010.

[11a] IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). Sept. 2011.

[11b] User Manual Radio Modules; deRFmega128-22A00, deRFmega128-
22A02, deRFmega128-22C00, deRFmega128-22C02. Document Version
V1.4. dresden electronic. Dresden, Germany, Aug. 2011.

[12a] IEEE 802.15.4eTM-2012 -IEEE Standard for Local and metropolitan
area networks–Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANs) Amendment 1: MAC sublayer. IEEE, 2012.

[12b] ZigBee Specification. 2400 Camino Ramon, Suite 375, San Ramon, CA
94583: ZigBee Alliance, Sept. 2012.

[14] 8-bit AVR Microcontroller with Low Power 2.4GHz Transceiver for Zig-
Bee and IEEE 802.15.4: ATmega256RFR2. Rev. C. Atmel Corporation.
San José, Sept. 2014.

[15] Low-Power, 2.4 GHz ISM-Band IEEE 802.15.4 RF Transceiver with Ex-
tended Proprietary Features: MRF24XA. Rev. C. Microchip Technology
Inc. Chandler, Arizona, Apr. 2015.

[16] IEEE 802.15.4TM-2015 - IEEE Standard for Local and metropolitan
area networks–Part 15.4: Low-Rate Wireless Personal Area Networks
(WPANs). IEEE, 2016.

[Adj+15] Cedric Adjih et al. “FIT IoT-LAB: A large scale open experimental IoT
testbed”. In: Internet of Things (WF-IoT), 2015 IEEE 2nd World Fo-
rum on. Dec. 2015, pp. 459–464.

[Ali+06] Muneeb Ali, Umar Saif, Adam Dunkels, Thiemo Voigt, Kay Römer, Koen
Langendoen, Joseph Polastre, and Zartash Afzal Uzmi. “Medium Access
Control Issues in Sensor Networks”. In: SIGCOMM Comput. Commun.
Rev. 36.2 (Apr. 2006), pp. 33–36.

[AMR11] Ahmed Ayadi, Patrick Maille, and David Ros. “TCP over Low-Power
and Lossy Networks: Tuning the Segment Size to Minimize Energy Con-
sumption”. In: New Technologies, Mobility and Security (NTMS), 2011
4th IFIP International Conference on. Feb. 2011, pp. 1–5.

143

Bibliography

[Aya+11] Ahmed Ayadi, Patrick Maille, David Ros, Laurent Toutain, and Pas-
cal Thubert. “Energy-efficient fragment recovery techniques for Low-
Power and Lossy Networks”. In: Wireless Communications and Mobile
Computing Conference (IWCMC), 2011 7th International. July 2011,
pp. 601–606.

[Bac+12] Nouha Baccour, Anis Koubâa, Luca Mottola, Marco Antonio Zúñiga,
Habib Youssef, Carlo Alberto Boano, and Mário Alves. “Radio Link
Quality Estimation in Wireless Sensor Networks: A Survey”. In: ACM
Trans. Sen. Netw. 8.4 (Sept. 2012), 34:1–34:33.

[Bac+13] Emmanuel Baccelli, Oliver Hahm, Mesut Günes, Matthias Wählisch, and
Thorsten C. Schmidt. “RIOT OS: Towards an OS for the Internet of
Things”. In: Computer Communications Workshops (INFOCOM WK-
SHPS), 2013 IEEE Conference on. Apr. 2013, pp. 79–80.

[Bea96] David M. Beazley. “SWIG: An Easy to Use Tool for Integrating Scripting
Languages with C and C++”. In: Proceedings of the 4th Conference on
USENIX Tcl/Tk Workshop, 1996 - Volume 4. TCLTK’96. Monterey,
California: USENIX Association, 1996, pp. 15–15.

[Bet+15] August Betzler, Carles Gomez, Ilker Demirkol, and Josep Paradells. “Co-
CoA+: An advanced congestion control mechanism for CoAP”. In: Ad
Hoc Networks 33 (2015), pp. 126–139.

[BGD15] August Betzler, Carles Gomez, and Ilker Demirkol. “Evaluation of Ad-
vanced Congestion Control Mechanisms for Unreliable CoAP Communi-
cations”. In: Proceedings of the 12th ACM Symposium on Performance
Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks.
PE-WASUN ’15. Cancun, Mexico: ACM, 2015, pp. 63–70.

[Bia06] Giuseppe Bianchi. “Performance Analysis of the IEEE 802.11 Dis-
tributed Coordination Function”. In: IEEE J.Sel. A. Commun. 18.3
(Sept. 2006), pp. 535–547.

[Boc+11] Maurizio Bocca, Janne Toivola, Lasse M. Eriksson, Jakko Hollmén, and
Heiko Koivo. “Structural Health Monitoring in Wireless Sensor Net-
works by the Embedded Goertzel Algorithm”. In: Cyber-Physical Sys-
tems (ICCPS), 2011 IEEE/ACM International Conference on. Apr.
2011, pp. 206–214.

[BS16] Carsten Bormann and Zach Shelby. Block-wise transfers in CoAP (draft-
ietf-core-block-20). https://tools.ietf.org/html/draft-ietf-core-
block-20. accessed: 2016-05-11. Apr. 2016.

[Bue+06] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. “X-
MAC: A Short Preamble MAC Protocol for Duty-cycled Wireless Sensor
Networks”. In: Proceedings of the 4th International Conference on Em-
bedded Networked Sensor Systems. SenSys ’06. Boulder, Colorado, USA:
ACM, 2006, pp. 307–320.

144

https://tools.ietf.org/html/draft-ietf-core-block-20
https://tools.ietf.org/html/draft-ietf-core-block-20

Bibliography

[Cho+09] Aminul Haque Chowdhury, Muhammad Ikram, Hyon-Soo Cha, Has-
sen Redwan, S. M. Saif Shams, Ki-Hyung Kim, and Seung-Wha Yoo.
“Route-over vs mesh-under routing in 6LoWPAN”. In: Proceedings of
the 2009 International Conference on Wireless Communications and
Mobile Computing Connecting the World Wirelessly (IWCMC). 2009,
pp. 1208–1212.

[CMN14] Cosmin Cobârzan, Julien Montavont, and Thomas Noël. “Analysis and
performance evaluation of RPL under mobility”. In: 2014 IEEE Sym-
posium on Computers and Communications (ISCC). June 2014, pp. 1–
6.

[DC12] Stephen Dawson-Haggerty and David E. Culler. BLIP Tutorial. http:
//tinyos.stanford.edu/tinyos- wiki/index.php/BLIP_Tutorial.
accessed: 2016-05-24. 2012.

[De +03] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Mor-
ris. “A High-throughput Path Metric for Multi-hop Wireless Routing”.
In: Proceedings of the 9th Annual International Conference on Mobile
Computing and Networking. MobiCom ’03. San Diego, CA, USA: ACM,
2003, pp. 134–146.

[DGV04] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. “Contiki - a
lightweight and flexible operating system for tiny networked sensors”.
In: Local Computer Networks, 2004. 29th Annual IEEE International
Conference on. Nov. 2004, pp. 455–462.

[Di +12] Piergiuseppe Di Marco, Pangun Park, Carlo Fischione, and Karl Hen-
rik Johansson. “Analytical Modeling of Multi-hop IEEE 802.15.4 Net-
works”. In: Vehicular Technology, IEEE Transactions on 61.7 (Sept.
2012), pp. 3191–3208.

[Dij] Edsger W. Dijkstra. “A note on two problems in connexion with graphs”.
In: Numerische Mathematik 1.1 (), pp. 269–271.

[Duq+15] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas
Watteyne. “Orchestra: Robust Mesh Networks Through Autonomously
Scheduled TSCH”. In: Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems. SenSys ’15. Seoul, South Korea:
ACM, 2015, pp. 337–350.

[Fam+14] Olivier Fambon, Eric Fleury, Gaëtan Harter, Roger Pissard-Gibollet,
and Frédéric Saint-Marcel. “”FIT IoT-LAB Tutorial: Hands-on Practice
With a Very Large Scale Testbed Tool for the Internet of Things””. In:
10èmes journées francophones Mobilité et Ubiquité, UbiMob (2014).

[Gna+09] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss,
and Philip Levis. “Collection tree protocol”. In: Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems (SenSys ’09).
Berkeley, California: ACM, 2009, pp. 1–14.

[GS84] Clark R. Givens and Rae Michael Shortt. “A class of Wasserstein met-
rics for probability distributions.” In: Michigan Math. J. 31.2 (1984),
pp. 231–240.

145

http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP_Tutorial
http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP_Tutorial

Bibliography

[Hau09] Jan-Hinrich Hauer. TKN15.4: An IEEE 802.15.4 MAC Implementation
for TinyOS 2. TKN Technical Report Series TKN-08-003. Telecommu-
nication Networks Group, Technical University Berlin, Mar. 2009.

[HC08] Jonathan W. Hui and David E. Culler. “Extending IP to Low-Power,
Wireless Personal Area Networks”. In: IEEE Internet Computing 12.4
(July 2008), pp. 37–45.

[HC11] Ulrich Herberg and Thomas Clausen. “A Comparative Performance
Study of the Routing Protocols LOAD and RPL with Bi-directional Traf-
fic in Low-power and Lossy Networks (LLN)”. In: Proceedings of the 8th
ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sen-
sor, and Ubiquitous Networks. PE-WASUN ’11. Miami, Florida, USA:
ACM, 2011, pp. 73–80.

[HT11] Jonathan Hui and Pascal Thubert. Compression Format for IPv6 Data-
grams over IEEE 802.15.4-Based Networks. RFC 6282. Sept. 2011.

[Ise+15] Javier Isern, August Betzler, Carles Gomez, Ilker Demirkol, and Josep
Paradells. “Large-Scale Performance Evaluation of the IETF Internet of
Things Protocol Suite for Smart City Solutions”. In: Proceedings of the
12th ACM Symposium on Performance Evaluation of Wireless Ad Hoc,
Sensor, & Ubiquitous Networks. PE-WASUN ’15. Cancun, Mexico:
ACM, 2015, pp. 77–84.

[JDK15] Ilpo Järvinen, Laila Daniel, and Markku Kojo. “Experimental evaluation
of alternative congestion control algorithms for Constrained Application
Protocol (CoAP)”. In: Internet of Things (WF-IoT), 2015 IEEE 2nd
World Forum on. Dec. 2015, pp. 453–458.

[Joh94] Glenn E. Johnson. “Constructions of particular random processes”. In:
Proceedings of the IEEE 82.2 (Feb. 1994), pp. 270–285.

[KG14] Hamidreza Kermajani and Carles Gomez. “On the Network Conver-
gence Process in RPL over IEEE 802.15.4 Multihop Networks: Improve-
ment and Trade-Offs”. In: Sensors (Basel, Switzerland) 14.7 (July 2014),
pp. 11993–12022.

[Kim+07a] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David
Culler, Philip Levis, Scott Shenker, and Ion Stoica. “Flush: A Reliable
Bulk Transport Protocol for Multihop Wireless Networks”. In: Proceed-
ings of the 5th international conference on Embedded networked sensor
systems. SenSys’07. New York, NY, and USA: ACM, 2007, pp. 351–365.

[Kim+07b] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory
Fenves, Steven Glaser, and Martin Turon. “Health Monitoring of Civil
Infrastructures Using Wireless Sensor Networks”. In: 2007 6th Interna-
tional Symposium on Information Processing in Sensor Networks. Apr.
2007, pp. 254–263.

[Ko+10] Teresa Ko, Shaun Ahmadian, John Hicks, Mohammad Rahimi, Deborah
Estrin, Stefano Soatto, Sharon Coe, and Michael P. Hamilton. “Heart-
beat of a Nest: Using Imagers As Biological Sensors”. In: ACM Trans.
Sen. Netw. 6.3 (June 2010), 19:1–19:31.

146

Bibliography

[Köp+08] Andreas Köpke et al. “Simulating Wireless and Mobile Networks in OM-
NeT++ the MiXiM Vision”. In: Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops. Simutools ’08. Marseille, France:
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2008, 71:1–71:8.

[Kur+12] Takuto Kuroiwa, Makoto Suzuki, Yasutaka Yamashita, Shunsuke Saru-
watari, Tomonori Nagayama, and Hiroyuki Morikawa. “A multi-channel
bulk data collection for structural health monitoring using wireless sensor
networks”. In: 2012 18th Asia-Pacific Conference on Communications
(APCC). Oct. 2012, pp. 295–299.

[LCC11] Alessandro Ludovici, Anna Calveras, and Jordi Casademont. “Forward-
ing Techniques for IP Fragmented Packets in a Real 6LoWPAN Net-
work”. In: Sensors 11.1 (2011), pp. 992–1008.

[LCL07] HyungJune Lee, A. Cerpa, and P. Levis. “Improving Wireless Simulation
Through Noise Modeling”. In: Information Processing in Sensor Net-
works, 2007. IPSN 2007. 6th International Symposium on. 2007, pp. 21–
30.

[Lev+05] Philip Levis et al. “Ambient Intelligence”. In: ed. by Werner Weber, Jan
M. Rabaey, and Emile Aarts. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005. Chap. TinyOS: An Operating System for Sensor Networks,
pp. 115–148.

[Lev+11] Philip Levis, Thomas Clausen, Jonathan Hui, Omprakash Gnawali, and
JeongGil Ko. The Trickle Algorithm. RFC 6206. Mar. 2011.

[Lud+14] Alessandro Ludovici, Piergiuseppe Di Marco, Anna Calveras, and Karl
H. Johansson. “Analytical Model of Large Data Transactions in CoAP
Networks”. In: Sensors 14.8 (2014), pp. 15610–15638.

[MLT08] Razvan Musaloiu-E., Chieh-Jan Mike Liang, and Andreas Terzis. “Koala:
Ultra-Low Power Data Retrieval in Wireless Sensor Networks”. In: Pro-
ceedings of the 7th International Conference on Information Processing
in Sensor Networks. IPSN ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 421–432.

[Mon+07] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and Da-
vid Culler. Transmission of IPv6 Packets over IEEE 802.15.4 Networks.
RFC 4944. Sept. 2007.

[MT15] Florian Meier and Volker Turau. “An analytical model for fast and verifi-
able assessment of large scale wireless mesh networks”. In: Design of Re-
liable Communication Networks (DRCN), 2015 11th International Con-
ference on the. Mar. 2015, pp. 185–190.

[Nar+07] Thomas Narten, Erik Nordmark, W. Simpson, and Hesham Soliman.
Neighbor Discovery for IP version 6 (IPv6). RFC 4944. Sept. 2007.

147

Bibliography

[NH93] Homayoun Nikookar and Homayoun Hashemi. “Statistical modeling
of signal amplitude fading of indoor radio propagation channels”. In:
Universal Personal Communications, 1993. Personal Communications:
Gateway to the 21st Century. Conference Record., 2nd International
Conference on. Vol. 1. Oct. 1993, 84–88 vol.1.

[Pae+05] Jeongyeup Paek, Krishna Chintalapudi, John Caffrey, Ramesh Govin-
dan, and Sami Masri. “A Wireless Sensor Network for Structural Health
Monitoring: Performance and Experience”. In: (2005).

[PG10] Jeongyeup Paek and Ramesh Govindan. “RCRT: Rate-Controlled Reli-
able Transport Protocol for Wireless Sensor Networks”. In: ACM Trans-
actions on Sensor Networks (TOSN) 7.3 (2010).

[Pos80] John Postel. User Datagram Protocol. RFC 768. Aug. 1980.

[PTB10] Dimosthenis Pediaditakis, Yuri Tselishchev, and Athanassios Boulis.
“Performance and Scalability Evaluation of the Castalia Wireless Sen-
sor Network Simulator”. In: Proceedings of the 3rd International ICST
Conference on Simulation Tools and Techniques. SIMUTools ’10. Torre-
molinos, Malaga, Spain: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, 53:1–53:6.

[Puc+10] Daniele Puccinelli, Omprakash Gnawali, SunHee Yoon, Silvia Giordano,
and Leonidas Guibas. “END: A Topology-aware Collection Metric for
Sensor Networks”. In: Proceedings of the 8th ACM Conference on Em-
bedded Networked Sensor Systems. SenSys ’10. Zürich, Switzer-
land: ACM, 2010, pp. 419–420.

[Rap02] Theodore S. Rappaport. Wireless communications : principles and prac-
tice. 2. ed. Prentice Hall communications engineering and emerging tech-
nologies series. Upper Saddle River, NJ: Prentice Hall PTR, 2002.

[Ren13] Bernd-Christian Renner. “Sustained Operation of Sensor Nodes with En-
ergy Harvesters and Supercapacitors”. PhD thesis. Hamburg, Germany:
Hamburg University of Technology, 2013.

[RH10] George F. Riley and Thomas R. Henderson. “The ns-3 Network Simu-
lator”. In: Modeling and Tools for Network Simulation. Ed. by Klaus
Wehrle, Mesut Güneş, and James Gross. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 15–34.

[RL08] Tal Rusak and Philip A. Levis. “Investigating a Physically-based Signal
Power Model for Robust Low Power Wireless Link Simulation”. In: Pro-
ceedings of the 11th International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM ’08). Vancouver,
British Columbia, Canada: ACM, 2008, pp. 37–46.

[Sey05] John S. 1958- Seybold. Introduction to RF propagation. Wiley-
Interscience, 2005.

[SHB14] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Ap-
plication Protocol (CoAP). RFC 7252. June 2014.

148

Bibliography

[SK11] Sujesha Sudevalayam and Purushottam Kulkarni. “Energy Harvesting
Sensor Nodes: Survey and Implications”. In: IEEE Communications Sur-
veys Tutorials 13.3 (Third 2011), pp. 443–461.

[SKH06] Dongjin Son, Bhaskar Krishnamachari, and John Heidemann. “Experi-
mental Study of Concurrent Transmission in Wireless Sensor Networks”.
In: Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems. SenSys ’06. Boulder, Colorado, USA: ACM,
2006, pp. 237–250.

[Sri+10] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis.
“An Empirical Study of Low-power Wireless”. In: ACM Trans. Sen.
Netw. 6.2 (Mar. 2010), 16:1–16:49.

[Suz+07] Makoto Suzuki, Shunsuke Saruwatari, Narito Kurata, and Hiroyuki
Morikawa. “A High-density Earthquake Monitoring System Using Wire-
less Sensor Networks”. In: Proceedings of the 5th International Con-
ference on Embedded Networked Sensor Systems. SenSys ’07. Sydney,
Australia: ACM, 2007, pp. 373–374.

[TB12] Emanuele Toscano and Lucia Lo Bello. “Comparative assessments of
IEEE 802.15.4/ZigBee and 6LoWPAN for low-power industrial WSNs in
realistic scenarios”. In: Factory Communication Systems (WFCS), 2012
9th IEEE International Workshop on. May 2012, pp. 115–124.

[TH14] Pascal Thubert and Jonathan Hui. LLN Fragment Forwarding and Re-
covery (draft). https://tools.ietf.org/html/draft-thubert-6lo-

forwarding-fragments-01. accessed: 2014-09-10. Feb. 2014.

[Thu15] Pascal Thubert. An Architecture for IPv6 over the TSCH mode of
IEEE 802.15.4. http://tools.ietf.org/pdf/draft- ietf- 6tisch-

architecture-09.pdf. accessed: 2016-05-19. Nov. 2015.

[TOV10] Joydeep Tripathi, Jaudelice C. de Oliveira, and Jean-Philippe Vasseur.
“A performance evaluation study of RPL: Routing Protocol for Low
power and Lossy Networks”. In: Information Sciences and Systems
(CISS), 2010 44th Annual Conference on. Mar. 2010, pp. 1–6.

[Unt14] Stefan Unterschütz. “Methodologies and Protocols for Wireless Commu-
nication in Large-Scale, Dense Mesh Networks”. PhD thesis. Hamburg,
Germany: Hamburg University of Technology, 2014.

[UWT12] Stefan Unterschütz, Andreas Weigel, and Volker Turau. “Cross-Platform
Protocol Development Based on OMNeT++”. In: Proceedings of the 5th
International Workshop on OMNeT++ (OMNeT++’12). Desenzano,
Italy, Mar. 2012.

[Var+01] András Varga et al. “The OMNeT++ discrete event simulation system”.
In: Proceedings of the European simulation multiconference (ESM’2001).
Vol. 9. S 185. sn. 2001, p. 65.

[Var99] Andras Varga. “Using the OMNeT++ discrete event simulation system
in education”. In: IEEE Transactions on Education 42.4 (Nov. 1999),
p. 372.

149

https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments-01
https://tools.ietf.org/html/draft-thubert-6lo-forwarding-fragments-01
http://tools.ietf.org/pdf/draft-ietf-6tisch-architecture-09.pdf
http://tools.ietf.org/pdf/draft-ietf-6tisch-architecture-09.pdf

Bibliography

[VH08] András Varga and Rudolf Hornig. “An Overview of the OMNeT++ Sim-
ulation Environment”. In: Proceedings of the 1st International Confer-
ence on Simulation Tools and Techniques for Communications, Net-
works and Systems & Workshops. Simutools ’08. Marseille, France: ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2008, 60:1–60:10.

[Wat+16] Thomas Watteyne, Vlado Handziski, Xavier Vilajosana, Simon Duquen-
noy, Oliver Hahm, Emmanuel Baccelli, and Adam Wolisz. “Industrial
Wireless IP-Based Cyber-Physical Systems”. In: Proceedings of the IEEE
104.5 (May 2016), pp. 1025–1038.

[Wei+14a] Andreas Weigel, Christian Renner, Volker Turau, and Holger Ernst.
“Wireless Sensor Networks for Smart Metering”. In: Energy Conference
and Exhibition (ENERGYCON), 2014 IEEE International. Dubrovnik,
Croatia, May 2014, pp. 722–729.

[Wei+14b] Andreas Weigel, Martin Ringwelski, Volker Turau, and Andreas Timm-
Giel. “Route-over forwarding techniques in a 6LoWPAN”. In: EAI En-
dorsed Transactions on Mobile Communications and Applications 14.5
(Dec. 2014).

[Wei10] Andreas Weigel. “Adaptive Channel Selection in Multi-Gateway Wireless
Sensor Networks”. MA thesis. Am Schwarzenberg-Campus 3, D-21073
Hamburg: Hamburg University of Technology, Aug. 2010.

[Wer+06] Geoffrey Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees,
and Matt Welsh. “Fidelity and Yield in a Volcano Monitoring Sensor
Network”. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. OSDI ’06. Seattle, Washington: USENIX
Association, 2006, pp. 381–396.

[Wes+09] Karl Wessel, Michael Swigulski, Andreas Köpke, and Daniel Willkomm.
“MiXiM - The Physical Layer: An Architecture Overview”. In: Proceed-
ing of the 2. International Workshop on OMNeT++. Rome, Italy, Mar.
2009.

[WGG10] Klaus Wehrle, Mesut Günes, and James Gross, eds. Modeling and Tools
for Network Simulation. Springer, 2010.

[Win+12] Tim Winter et al. RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. RFC 6550. Mar. 2012.

[WPG15] Thomas Watteyne, Maria Rita Palattella, and Luigi Alfredo Grieco. Us-
ing IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the In-
ternet of Things (IoT): Problem Statement. RFC 7554. May 2015.

[WT14] Andreas Weigel and Volker Turau. “An Analytical Model of 6LoW-
PAN Route-Over Forwarding Practices”. In: Conference proceedings of
the International Conference on Ad-hoc, Mobile and Wireless Networks,
ADHOC-NOW 2014. Benidorm, Spain, June 2014, pp. 279–289.

150

Bibliography

[WT15] Andreas Weigel and Volker Turau. “Hardware-Assisted IEEE 802.15.4
Transmissions and Why to Avoid Them”. In: Conference proceedings of
the 8th International Conference on Internet and Distributed Computer
Systems, IDCS 2015. Windsor, UK, Sept. 2015, pp. 223–234.

[WV16] Qin Wang and Xavier Vilajosana. 6top Protocol (6P). http://tools.
ietf.org/pdf/draft-ietf-6tisch-6top-protocol-00.pdf. accessed:
2016-05-19. Apr. 2016.

[YCI13] Jiazi Yi, Thomas Clausen, and Yuichi Igarashi. “Evaluation of rout-
ing protocol for low power and Lossy Networks: LOADng and RPL”.
In: Wireless Sensor (ICWISE), 2013 IEEE Conference on. Dec. 2013,
pp. 19–24.

[Zhu+13] Yi-Hua Zhu, Gan Chen, Kaikai Chi, and Yanjun Li. “The Chained
Mesh-Under Routing (C-MUR) for Improving IPv6 Packet Arrival Rate
over Wireless Sensor Networks”. In: Advances in Wireless Sensor Net-
works. Vol. 334. Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2013, pp. 734–743.

[ZK04] Marco Zuniga and Bhaskar Krishnamachari. “Analyzing the transitional
region in low power wireless links”. In: Sensor and Ad Hoc Communi-
cations and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on. Oct. 2004, pp. 517–526.

151

http://tools.ietf.org/pdf/draft-ietf-6tisch-6top-protocol-00.pdf
http://tools.ietf.org/pdf/draft-ietf-6tisch-6top-protocol-00.pdf

Glossary

ARQ automatic repeat request

AWGN additive white Gaussian noise

BEP bit error probability

BFSK binary frequency shift keying

CCA clear channel assessment

CoAP Constrained Application Protocol

CSMA/CA carrier sense multiple access with collision avoidance

DCF decider correction factor

DSME distributed synchronous multi-channel extension to IEEE 802.15.4

DSSS direct sequence spread-spectrum

EWMA exponentially weighted moving average

FCF frame control field of the IEEE 802.15.4 MAC header

IEEE 802.15.4 IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IPHC 6LoWPAN IPHC header compression

IPv6 Internet Protocol version 6

LFFR LLN fragment forwarding and recovery

LLN low power, lossy network

153

Glossary

6LoOF 6LoWPAN ordered forwarding

6LoWPAN abbreviation for the protocol defined by RFC4944 “Transmission of IPv6
Packets over IEEE 802.15.4 Networks”

macCcaMode IEEE 802.15.4 CCA mode (four different variants are specified)

macMinBe IEEE 802.15.4 minimum backoff exponent (unslotted CSMA)

MTU maximum transmission unit

NHC 6LoWPAN next header compression

FEP frame error probability

PRC progress-based retry control

PRR packet success rate

PSDU PHY service data unit

FSP frame success probability

RPL Routing Protocol for Low Power and Lossy Networks

RSSI received signal strength indicator

SFD start of frame delimiter

SINR signal to noise and interference ratio

SNR signal to noise ratio

TCP Transmission Control Protocol

6tisch IPv6 over the TSCH mode of IEEE 802.15.4e

UDP User Datagram Protocol

WSN wireless sensor network

154

List of Symbols

α smoothing factor of EWMA to estimate T tx

BE6LoOF,max maximum backoff exponent of 6LoOF probing mechanism

BE6LoOF,min minimum backoff exponent of 6LoOF probing mechanism

BEmax maximum backoff exponent of unslotted IEEE 802.15.4 CSMA/CA

BEmin minimum backoff exponent of unslotted IEEE 802.15.4 CSMA/CA

c number of correctable bit errors when using forward error correction

EA expectation value of number of bits sent (Assembly)

ED expectation value of number of bits sent (Direct)

EA
f expectation value of number of bits sent in case of failure (Assembly)

EA
s expectation value of number of bits sent in case of success (Assembly)

Hf,k expectation value of number of bits sent in case of failure on link k

Hp,k expectation value of number of bits sent in case of partial failure on link k

Hs,k expectation value of number of bits sent in case of success on link k

Hsp,k expectation value of number of bits sent in case of success or partial failure on
link k

h index of last hop of a route

h0 index of first hop of a route

htotal accumulated number of hops of all routes in the network participating in the
given collection traffic pattern

I random part of interval between UDP packet transmissions in traffic generator

i interval between UDP packet transmissions in traffic generator

imax maximum interval between UDP packet transmissions in traffic generator

155

List of Symbols

λ average rate of generation of UDP packets in traffic generator

λB per-node payload data rate in traffic generator

λB,total total raw offered data rate, obtained by the sum of the length of all traffic
paths in the network

LA link layer acknowledgment frame size (bits)

LF link layer frame size (bits), including 802.15.4 headers

l A single path (route) participating in the collection traffic pattern

L Set of all paths used for collection traffic

LUDP payload size of UDP packets in traffic generator

m total number of fragments to transmit

N0 thermal noise power

nf,80 number of sniffer samples with energy above−80 dBm and a foreign IEEE 802.15.4
signal being decoded

nf,90 number of sniffer samples with energy between −90 dBm and −80 dBm and a
foreign IEEE 802.15.4 signal being decoded

nf,idle number of sniffer samples with energy below−90 dBm and a foreign IEEE 802.15.4
signal being decoded

n80 number of sniffer samples with energy above −80 dBm and no IEEE 802.15.4
signal

n90 number of sniffer samples with energy between −90 dBm and −80 dBm and no
IEEE 802.15.4 signal

nidle number of sniffer samples with energy below −90 dBm

nNSWC,max value of nswc that triggers a node to enter state ProbingBo

no,80 number of sniffer samples with energy above−80 dBm and an internal IEEE 802.15.4
signal being decoded

no,90 number of sniffer samples with energy between −90 dBm and −80 dBm and an
internal IEEE 802.15.4 signal being decoded

no,idle number of sniffer samples with energy below−90 dBm and an internal IEEE 802.15.4
signal being decoded

156

List of Symbols

nqsa “queue switch after” – number of empty queue object events 6LoOF after which
6LoOF switches to the next object in the 6LoWPAN transmission queue

pe bit error probability

pe,frame packet error probability

pe,k bit error probability on link k

Pf,k probability of failure after r attempts on link k

pf,k probability of failure for a single transmission on link k

Ptx transmission power of transceiver

Pp,k probability of partial failure after r attempts on link k

pp,k probability of partial failure for a single transmission on link k

Ps end-to-end probability of success for a whole datagram

Ps,k probability of success after r attempts on link k

ps,k probability of success for a single transmission on link k

QL “large” 6LoWPAN buffer; Q=5120 B or Q=4864 B, depending on forwarding
mode

QM “midsize” 6LoWPAN buffer; Q=3840 B or Q=3584 B, depending on forwarding
mode

QS “small” 6LoWPAN buffer; Q=2560 B or Q=2304 B, depending on forwarding
mode

Q size of the 6LoWPAN buffer

r maximum number of IEEE 802.15.4 retransmissions

Nto timeout counter of aging timeout mechanism

Ito timeout interval of aging timeout mechanism

Tto timeout value of aging timeout mechanism

T categorized traffic load to make different λB comparable for different networks

Tlow traffic category low

Tmid traffic category mid

157

List of Symbols

Thigh traffic category high

Tmax traffic category highest

Ttx average duration of link layer transmissions, including CSMA/CA

Td delay between link layer transmissions

xEPN flag indicating if the explicit probing notification flag, along with a special
6LoWPAN header type is used in 6LoOF

158

	Introduction
	Problem Statement
	IEEE 802.15.4
	6LoWPAN
	Compression and Fragmentation
	6LoWPAN Routing Schemes
	Basic Route-Over Forwarding Techniques
	Adjacent Protocols
	LFFR
	6TiSCH

	Applications
	Energy Availability
	Goals of Evaluation

	Analytic Model for 6LoWPAN-Fragmented Forwarding
	Motivation and State of The Art
	Motivation
	State of the Art

	Model
	Link-Layer Model
	Multi-Hop Model

	Evaluation
	Persistent vs. Non-Persistent
	Multi-Hop Transmissions
	Additional Bits in Direct Mode

	Conclusions

	Simulation Model and Environment
	Frameworks and Tools
	OMNeT++
	MiXiM
	CometOS

	Physical Layer Model
	Available Models for Wireless Sensor Networks
	Choosing an Appropriate Model
	A Measurement-Based Physical Layer

	Automated Model Creation
	Topology Monitor
	Post-Processing

	Confidence Intervals

	Basic Forwarding Techniques for 6LoWPAN-Fragmented Datagrams
	Related Work
	Modes
	Enhanced Direct Modes
	Retry Control

	6LoWPAN Implementation
	Experiment Setup
	Testbed
	Simulation
	Network Topologies
	Traffic
	Link Layer Configuration

	Evaluation
	First Set of Experiments
	Second Set of Experiments
	Explanation of Results

	Hardware-Assisted IEEE 802.15.4 Transmissions
	Hypothesis
	Capturing Node State in Real-Time
	Experiment Setup
	Evaluation
	Direct Mode
	Direct-ARR Mode

	Conclusions

	Basis Forwarding Techniques Revisited – a Parameter Study
	Experiment and Simulation Setup
	Testbed
	Simulation

	Validation of RS-C
	PRR
	Drop Causes – 6LoWPAN Layer
	Drop Causes – Link Layer

	6LoWPAN Forwarding Modes and IEEE 802.15.4 Parameters
	macMaxFrameRetries
	macMinBe
	macCcaMode
	macMaxBe
	UDP packet size payloadsize
	Latency
	Pull-Based Collection

	Summary

	6LoWPAN Ordered Forwarding - 6LoOF
	The 6LoOF Mechanism
	Snooping
	Probing
	6LoOF Definition

	Implementation
	Experiment setup
	Testbeds
	Memory Usage
	Simulation Environment

	Evaluation: 6LoOF vs Plain Forwarding
	6LoOF Parameters
	TB-IoT Experiments
	TB-D Experiments
	Simulation
	Summary

	Conclusion and Outlook
	Bibliography

