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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Since one third of rivet holes during aircraft assembly are produced with semi-automatic drilling units, in this work reliable and efficient meth-
ods for process state prediction using Machine Learning (ML) classification methods were developed for this application. Process states were
holistically varied in the experiments, gathering motor current and machine vibration data. These data were used as input to identify the optimal
combination of five data feature preparation and nine ML methods for process state prediction. K-nearest-neighbour, decision tree and artificial
neural network models provided reliable predictions of the process states: workpiece material, rotational speed, feed, peck-feed amplitude and
lubrication state. Data preprocessing through sequential feature selection and principal components analysis proved to be favourably for these
applications. The prediction of the workpiece clamping distance revealed frequent misclassifications and thus, was not reliable.
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1. Introduction

Since the structure of aircrafts is mainly joined by rivets,
there is a high demand for boreholes, e.g. 250,000 per medium-
sized aircraft [1]. One third of the boreholes is produced with
semi-automatic drilling units (ADUs). The ongoing conversion
from pneumatic to electric and sensor-integrated ADUs provide
the opportunity of automatic process monitoring by recording
process data, which leads to reduction of manual control and
rework [2]. For the sensor-based, indirect control of the pro-
cess state, tool and workpiece condition various approaches
have been applied so far. Expert Systems use the physical and
experience-based knowledge of the technicians to set up rou-
tines for individual plants, which evaluate the process by means
of tolerance bands, trend analysis, fixed thresholds etc. [3, 4].

Machine Learning (ML) methods evaluate Big Data sys-
tems and predict response variables for highly complex cut-
ting processes learning from gathered data without the need of
being explicitly designed for an individual application [5, 6].
Hence, ML-based research in the production technology started
decades ago, e.g. predicting tool wear during turning using ar-

tificial neural networks (ANN) [7]. Current research focuses
on process state monitoring, for example in [8] material iden-
tification during turning was implemented, setting up various
ML models, which show varying classification results. Cutting
forces during machining were predicted in [9] also applying
ANNs. External and internal sensors were used for the evalua-
tion of workpiece quality in drilling processes of CFRP and Ti6-
Al-4V in [10, 11, 12]. ML-based tool wear monitoring was in-
troduced in [13, 14], processing dimensionally reduced sensor
data. Thrust force and cutting torque in semi-automatic drilling
were calculated in [15]. Also in other fields, as drilling in the
oil industry, ML methods are applied in order to monitor and
optimise drilling operations [16].

Most actual research focuses on certain data preparation and
ML methods, often using external sensor data and focusing on
few response variables. The aim of this paper’s research was to
develop and compare reliable and efficient methods for the pro-
cess state prediction during semi-automatic drilling by using
only internal machine sensor data. These data were processed
in combinations of five feature preparation and nine ML classi-
fication methods to identify the optimum method for predicting
each of the seven process states. The term ”process state” covers
the cutting parameters (revolution, feed, peck-feed amplitude)
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and the external conditions (workpiece material, lubrication,
workpiece/machine contact, workpiece clamping distance).

Nomenclature

CC concentric collet
aX/Y/Z machine acceleration in X/Y/Z-direction [g]
APF peck-feed amplitude [µm]
dc clamping distance [mm]
f tool feed [mm]
fs,ADU sampling freq. SmartADU’s intern. sensors [Hz]
IFM/S M feed/spindle motor current [mA]
L lubrication state [%]
n rotational speed [rpm]

2. Experimental setup and approach

2.1. Test Rig for the advanced drilling unit (ADU)

The experiments were carried out with the SmartADU, an
electrically-driven semi-automatic drilling unit developed by
Luebbering, shown in figure 1. The machine offers position-
and process data-monitoring. Spindle (IS M) and feed motor
(IFM) currents as well as machine vibration (aX , aY , aZ) with
sampling frequency fs,ADU of 100 Hz are internally recorded. Its
cutting and lubrication parameteres are adaptive. Chip extrac-
tion and built-in vibration assisted drilling technology (=”peck-
feed”) with an adjustable tool amplitude APF and fixed fre-
quency ratio of 1.5 relative to the spindle speed are integrated
[2].

The ADU was utilised in a test rig designed to be similar to
the real production environment, shown in figure 1 and 2. The
machine is fixed in a drilling template through a locking sys-
tem, the concentric collet (CC), which is spread and contracted
pneumatically. Thus, different vertical positions with or without
workpiece contact of the ADU are possible. The clamping dis-
tance dc of the workpieces is variable to account for different lo-
cal stiffness situations in practise. The SmartADU-internal data
is stored in the ADU-control box as a .xlsx-file. The further pro-
cessing was carried out on a PC (CPU: AMD Ryzen 5(2 GHz);
RAM: 8 GB; onboard GPU) using the Software MATLAB.

2.2. Workpiece materials and tool

The tests were carried out on four different aerospace-
relevant materials, whose specifications are shown in table 1
and figure 3.

Each drill hole was produced with the same carbide tool type
KS-HB-04937-01 of CERATIZIT Balzheim, shown in figure 3.
Every material type was drilled with an individual tool speci-
men as written in table 1.

SmartADU

chip collector

clamped CC

workpiece

X

Y
Z

Fig. 1. SmartADU on the test rig

dc = 57.5 / 81.5 / 105.5 mm

SmartADU - control
box 

PC-browser based user
interface / sensor data

as .xlsx -files 

process
settings

IFM,ISM,
aX, aY, aZ

control signals,
air pressure, 
lubrication,
power supply,

clamping/
cutting zone

CC workpiece

drill
template

f, n

tool

Fig. 2. Workpiece clamping and sensor data transmission

Table 1. Tested materials

Material (identifier) Tool-ID

aluminium 2024 (Al) I
titanium Ti-6Al-4V (Ti) II & III
CFRP - epoxy matrix (CFP - E) IV
CFRP - thermoplastic matrix (CFP - T) V

2.3. Experimental design

Drilling experiments were carried out with a holistic vari-
ation of the following process parameters, also shown in ta-
ble 2: workpiece material, rotational speed n, feed rate f ,
peck-feed amplitude APF , minimum quantity lubrication state L
(100/1/0), concentric collet/tool contact (”yes/no”) and clamp-
ing distance dc. These process-describing values correspond in
the ML classification terminology to the response variables or
the classes. The values of L are defined as follows: 100 =̂ ”lu-
brication and air pressure”; 1 =̂ ”only air pressure”; 0 =̂ ”no
lubrication / no air pressure”. 20 drill holes per parameter set

2
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type = KS-HB-04937-01
producer
material 
diameter
coating
point angle

= CERATIZIT 
= HF-N10 (DIN ISO 0513) 
= 6.36 mm
= uncoated
= 135°

clearance angle = 16°
rake angle = 15°length = 300 mm

width = 30 mm

Al (thickness = 6 mm)

Ti (thickness = 4 mm)

CFP - T (thickness = 2.7 mm)

CFP - E (thickness = 4.1 mm)

Fig. 3. Workpiece materials and tool

were conducted. The created data contains all relevant process
conditions and is numerically sufficient. However, the effect of
unbalanced data distribution is challenging.

Table 2. Experimental design (bold: varied parameteres within a group)

Group Mat. n f APF L CC dc
(Tool) [rpm] [mm] [µm] [%] [mm]

1(IV) CFP-E 1000 0.05 125 1 no 57,5
1(V) CFP-T 1000 0.05 125 1 no 57,5
1(II) Ti 1000 0.05 125 1 no 57,5
1(III) Ti 750 0.05 125 100 no 57,5
2(I) Al 1000 0.05 125 1 no 57,5
2(I) Al 2000 0.05 125 1 no 57,5
2(I) Al 3000 0.05 125 1 no 57,5
3(I) Al 2000 0.03 125 1 no 57,5
3(I) Al 2000 0.08 125 1 no 57,5
4(I) Al 2000 0.05 62.5 1 no 57,5
4(I) Al 2000 0.05 0 1 no 57,5
5(I) Al 2000 0.05 125 0 no 57,5
5(I) Al 2000 0.05 125 100 no 57,5
6(I) Al 1000 0.05 125 1 yes 57,5
6(I) Al 2000 0.05 125 1 yes 57,5
6(I) Al 3000 0.05 125 1 yes 57,5
7(I) Al 2000 0.05 125 1 no 81.5
7(I) Al 2000 0.05 125 1 no 105.5
8(I) Al 1000 0.08 125 1 yes 81.5

3. Data processing and ML-based process monitoring

The total workflow is shown in figure 4 and described below.
Data pre-processing and feature extraction: The sensor

data pre-processing was followed by feature extraction in time
and frequency domain separately from unfiltered and smoothed
data, which resulted in 203 features per drill hole, respectively.
For smoothing, the moving average filter [17] with a window
size of 5 % of the data points was used. Examples for features
and sensor data are displayed in table 3 and in figures 5 and 6.

The features were standardised [18] and summarised to the
feature-label matrix where each drill hole corresponds to a row
and the metadata (e.g. tool number), features and labels to

Data acquisition

Data processing

Model training/optimisation

Model evaluation and recommendation of usage

IFM, ISM, aX, aY, aZ material, n, f, APF, L, CC, dc

cropping – offset elimination – smoothing

Feature extraction (from unfiltered and smoothed data)

FS – SFS – PCA – CMS – NMF → 80 % kfold(=cross validation) set + 20 % test set

KNN model on all response variables / all models on material prediction

ANN – BT – DA – KNN – LR – NB – RF – SVM – DT 

training time prediction time model size accuracy kfold set
accuracy test set precision test set recall test set f1-score test set

Internal sensors (fs,ADU = 100 Hz)

Classification of all response variables (= process parameters)

Investigation of feature preparation methods

Feature prep. (Standardisation / Dimension. reduct. / Set-distribution)

Data pre-processing

Process parameters variation

Fig. 4. ML-based workflow

Table 3. Feature examples (in total 203 features)

Name Domain Sensor

max time IFM , IS M , aX/Y/Z
mean time IFM , IS M , aX/Y/Z
skewness time IFM , IS M , aX/Y/Z
slopein/out time IFM , IS M
peakfreq1 ... freq5 frequency IFM , IS M , aX/Y/Z
range frequency IFM , IS M , aX/Y/Z
... ... ...

unfiltered data
smoothed data
changepoints

time [s]

I F
M

 [
m

A
]

feature: slope rise IFM feature: slope decline IFM

feature: mean IFM
during full cut 

 ΔIFM  ΔIFM

Δt Δt

material = Al
n = 1000 rpm
f  = 0.05 mm
APF = 125 μm
L = 1
CC = yes
dC= 57.5 mm

200

0
6 7 8 9 10 11 12

1200

1400

400

600

800

1000

Feed motor current

Fig. 5. Feature examples of IFM

the columns. The labels contain the seven response variables.
Hence, the feature-label matrix of the experiments has the size
of 371 × 218 (9 data sets were invalid).

Feature preparation: Feature scaling (FS) was conducted
by data standardisation. Four dimensionality reduction meth-
ods, summarised with their abbreviations in table 4, were ap-
plied on the standardised features. The output of the SFS
method is a significance score of present features in respect of
the labels, which is a response-oriented approach [19]. By ap-
plying CMS on a m-dimensional feature space the output is a
lower-dimensional representation preserving the characteristic
dissimilarities of the data. NMF transforms the feature matrix
in a lower dimensional space by its decompostion in a prod-
uct of lower rank-matrices [22]. To use SFS, CMS and NMF,
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were conducted. The created data contains all relevant process
conditions and is numerically sufficient. However, the effect of
unbalanced data distribution is challenging.

Table 2. Experimental design (bold: varied parameteres within a group)

Group Mat. n f APF L CC dc
(Tool) [rpm] [mm] [µm] [%] [mm]

1(IV) CFP-E 1000 0.05 125 1 no 57,5
1(V) CFP-T 1000 0.05 125 1 no 57,5
1(II) Ti 1000 0.05 125 1 no 57,5
1(III) Ti 750 0.05 125 100 no 57,5
2(I) Al 1000 0.05 125 1 no 57,5
2(I) Al 2000 0.05 125 1 no 57,5
2(I) Al 3000 0.05 125 1 no 57,5
3(I) Al 2000 0.03 125 1 no 57,5
3(I) Al 2000 0.08 125 1 no 57,5
4(I) Al 2000 0.05 62.5 1 no 57,5
4(I) Al 2000 0.05 0 1 no 57,5
5(I) Al 2000 0.05 125 0 no 57,5
5(I) Al 2000 0.05 125 100 no 57,5
6(I) Al 1000 0.05 125 1 yes 57,5
6(I) Al 2000 0.05 125 1 yes 57,5
6(I) Al 3000 0.05 125 1 yes 57,5
7(I) Al 2000 0.05 125 1 no 81.5
7(I) Al 2000 0.05 125 1 no 105.5
8(I) Al 1000 0.08 125 1 yes 81.5

3. Data processing and ML-based process monitoring

The total workflow is shown in figure 4 and described below.
Data pre-processing and feature extraction: The sensor

data pre-processing was followed by feature extraction in time
and frequency domain separately from unfiltered and smoothed
data, which resulted in 203 features per drill hole, respectively.
For smoothing, the moving average filter [17] with a window
size of 5 % of the data points was used. Examples for features
and sensor data are displayed in table 3 and in figures 5 and 6.

The features were standardised [18] and summarised to the
feature-label matrix where each drill hole corresponds to a row
and the metadata (e.g. tool number), features and labels to

Data acquisition

Data processing

Model training/optimisation

Model evaluation and recommendation of usage

IFM, ISM, aX, aY, aZ material, n, f, APF, L, CC, dc

cropping – offset elimination – smoothing

Feature extraction (from unfiltered and smoothed data)

FS – SFS – PCA – CMS – NMF → 80 % kfold(=cross validation) set + 20 % test set

KNN model on all response variables / all models on material prediction

ANN – BT – DA – KNN – LR – NB – RF – SVM – DT 

training time prediction time model size accuracy kfold set
accuracy test set precision test set recall test set f1-score test set

Internal sensors (fs,ADU = 100 Hz)

Classification of all response variables (= process parameters)

Investigation of feature preparation methods

Feature prep. (Standardisation / Dimension. reduct. / Set-distribution)

Data pre-processing

Process parameters variation

Fig. 4. ML-based workflow

Table 3. Feature examples (in total 203 features)

Name Domain Sensor

max time IFM , IS M , aX/Y/Z
mean time IFM , IS M , aX/Y/Z
skewness time IFM , IS M , aX/Y/Z
slopein/out time IFM , IS M
peakfreq1 ... freq5 frequency IFM , IS M , aX/Y/Z
range frequency IFM , IS M , aX/Y/Z
... ... ...

unfiltered data
smoothed data
changepoints

time [s]

I F
M

 [
m

A
]

feature: slope rise IFM feature: slope decline IFM

feature: mean IFM
during full cut 

 ΔIFM  ΔIFM

Δt Δt

material = Al
n = 1000 rpm
f  = 0.05 mm
APF = 125 μm
L = 1
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dC= 57.5 mm

200

0
6 7 8 9 10 11 12
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Fig. 5. Feature examples of IFM

the columns. The labels contain the seven response variables.
Hence, the feature-label matrix of the experiments has the size
of 371 × 218 (9 data sets were invalid).

Feature preparation: Feature scaling (FS) was conducted
by data standardisation. Four dimensionality reduction meth-
ods, summarised with their abbreviations in table 4, were ap-
plied on the standardised features. The output of the SFS
method is a significance score of present features in respect of
the labels, which is a response-oriented approach [19]. By ap-
plying CMS on a m-dimensional feature space the output is a
lower-dimensional representation preserving the characteristic
dissimilarities of the data. NMF transforms the feature matrix
in a lower dimensional space by its decompostion in a prod-
uct of lower rank-matrices [22]. To use SFS, CMS and NMF,
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Fig. 6. Time Series of machine acceleration

the target dimension of the feature space must be provided
[20]. The conducted PCA projects the feature space on a lower
dimension covering 95% of the variance and is not response
variable-oriented [21]. Further, FS, SFS, PCA, CMS and NMF
are named as ”feature preparation methods”. Applying them re-
veals whether data dimensioanality reduction benefits the re-
sults.

Table 4. Applied dimensionality reduction methods [19, 20, 21, 22]

Method MATLAB function

sequential feature selection (SFS) fscmrmr
principal components analysis (PCA) pca
classical multidimensional scaling (CMS) pdist, cmdscale
nonnegative matrix factorization (NMF) nnmf

For the model validation, a combination of train/test split
and 5-fold-cross-validation was realised [18]. 20 % of the data
set were reserved as test set, whereas 80 % of the data were
used as training set and cross-validated in five folds during the
automated hyperparameter optimisation in MATLAB. Here, the
bayesian optimisation with a maximum number of 30 iterations
was applied. The procedure combines random hyperparameter
search and exploration of hyperparameter sets with improving
model performance. Thus, comparable tuning level for the mod-
els is assumed. The favoured model was determined through the
highest k - fold accuracy [21] and also evaluated on the test set.

Most common ML classification methods were investigated,
summarised and characterised in table 5. Hence, a link be-
tween a model group and classification results can be identified.
Due to space restriction, we refer to the provided literature for
deeper model description. Each model was individually tuned,
except the ANN, which was trained with one hyperparameter
set, shown in figure 8 for prediction of APF .

The models were evaluated by the following indicators,
which are needed for a holistic review: model size, training and
prediction time were analysed to judge the computational effort.
The prediction quality was rated by the accuracy of the predic-
tions using training and test data as well as by recall, precision
and F1-Score of the predictions using test data. By this, the gen-
eralisation capability of the models can be evaluated [18]. The
indicators were handled in following general assessment. First,
the methods were ranked for each performance indicator. For
each indicator the best approach got 5 points, the second best 4

Table 5. Applied ML methods [18, 21]

Method Group/Interpretability MATLAB func.

k-nearest neighbours (KNN) clustering/complex fitcknn
logistic regression (LR) regression/simple fitcecoc
discriminant analysis (DA) kernel/medium fitcdiscr
naı̈ve bayes classifier (NB) bayesian/simple fitcnb
support vector machine (SVM) kernel/medium fitcecoc
artificial neural network (ANN) neural networks/complex fitcnet
decision tree (DT) tree/simple fitctree
boosted tree (BT) tree/complex fitcensemble
random forest (RF) tree/complex fitcensemble

points,..., the fifth best 1 point. The total score for a model was
calculated through the addition of the points, whereby points
of the prediction quality indicators were multiplied by two due
to their higher relevance. Based on the total points number, a
ranking was built for a chosen response variable.

Investigation of feature preparation methods: The KNN
model was trained on each response variable using the data of
all feature preparation methods, resulting in 35 models (= 5 fea-
ture prep. methods × 7 response variables). To check whether
the results of the KNN model can be transferred to further mod-
els, all ML models were trained using all feature preparation
methods on material prediction, which yielded in further 45
models (= 5 feature prep. methods × 9 ML models). Thus, the
performance of feature preparation methods was identified.

Classification of all response variables: For the determi-
nation of the approach with the best performance regarding
each process state (=response variable) all ML models were
trained having the input of the first, second best and poorest fea-
ture preparation method determined from the above described
analysis. Thus, the training of all investigated ML models (9),
shown in table 5, for each response variable (7) using all fea-
ture preparation methods (5) (= 315 models) was reasonably
shortened. The combinations of the feature preparation and ML
methods were ranked using the above described assesment.

For the described analysis, unfiltered sensor data was used.
A following study was also made using the identified best com-
binations of feature preparation and ML models in order to
show the influence of data smoothing and data set size:

- training with smoothed IFM/IS M and unflitered aX/Y/Z

data as input
- training with a dataset reduced by 50 % in its size
- training with an doubled data set by adding synthetic data

created through scaling the time series and adding noise

4. Results and evaluation of the ML-based monitoring

First, the KNN method was trained and optimised using all
feature preparation techniques on each response variable. The
result for the material classification is shown in figure 7, reflect-
ing the average behaviour for all response variables. The appli-
cation of dimensionality reduction (PCA, SFS, NMF) shows
advantages in terms of prediction and training time and mod-
els size compared to just data standardisation (FS), while the
prediction quality applying PCA, SFS and FS is similar.

4
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Next, all ML methods were applied to the material prediction
to verify the described dependence on the feature preparation
methods with results shown in table 6. The outcome confirms
the previous diagnosis (note in table 6: the approaches are com-
pared isolated for each ML model type and hence the ranking
points are assigned separately within a column). The averaged
ranking of feature preparation methods reveals following order,
beginning with the best approach: SFS, PCA, FS, CMS, NMF.
Hence, the best performing feature preparation methods (SFS,
PCA) were used with the aim of developing a holistic process
monitoring. It was also tested whether NMF performs poorly
on all response variables with all ML models.

Table 6. Ranking results for workpiece material prediction using all feature
preparation and ML methods (bold: highest scores for each ML method)

Feature Scores ML methods
prep. KNN LR DA NB SVM ANN DT BT RF

FS 45 38 46 46 46 48 50 46 51
SFS 50 51 50 53 50 42 52 54 56
CMS 30 32 29 30 32 30 34 27 27
PCA 42 46 52 48 48 43 42 48 42
NMF 20 20 17 16 19 22 17 20 19

Figure 8 summarises the performance of seven best combi-
nations of a feature preparation and ML method for each pro-
cess parameter. The evaluation indicators with their position
and unit in the spider plots are described in figure 7, whereas in
figures 8 and 9 due to visibility reasons these are just labelled
with their values. The specification of the approaches with best
overall performance and their confusion matrix of the test set
data are also presented.

Despite the unbalanced classes, the predictions are accurate
for material, n, f , APF , L and acceptable for the CC contact.
The results for dC are imprecise. Process states with an impact
on the process forces and hence on the sensor signals are well-
captured by simpler models such as KNN. The ANN model is
favourable for the highly complex process states APF and dC .
In general, the prediction durations are short and the models’
memory usages low.
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Next, all ML methods were applied to the material prediction
to verify the described dependence on the feature preparation
methods with results shown in table 6. The outcome confirms
the previous diagnosis (note in table 6: the approaches are com-
pared isolated for each ML model type and hence the ranking
points are assigned separately within a column). The averaged
ranking of feature preparation methods reveals following order,
beginning with the best approach: SFS, PCA, FS, CMS, NMF.
Hence, the best performing feature preparation methods (SFS,
PCA) were used with the aim of developing a holistic process
monitoring. It was also tested whether NMF performs poorly
on all response variables with all ML models.

Table 6. Ranking results for workpiece material prediction using all feature
preparation and ML methods (bold: highest scores for each ML method)

Feature Scores ML methods
prep. KNN LR DA NB SVM ANN DT BT RF

FS 45 38 46 46 46 48 50 46 51
SFS 50 51 50 53 50 42 52 54 56
CMS 30 32 29 30 32 30 34 27 27
PCA 42 46 52 48 48 43 42 48 42
NMF 20 20 17 16 19 22 17 20 19

Figure 8 summarises the performance of seven best combi-
nations of a feature preparation and ML method for each pro-
cess parameter. The evaluation indicators with their position
and unit in the spider plots are described in figure 7, whereas in
figures 8 and 9 due to visibility reasons these are just labelled
with their values. The specification of the approaches with best
overall performance and their confusion matrix of the test set
data are also presented.

Despite the unbalanced classes, the predictions are accurate
for material, n, f , APF , L and acceptable for the CC contact.
The results for dC are imprecise. Process states with an impact
on the process forces and hence on the sensor signals are well-
captured by simpler models such as KNN. The ANN model is
favourable for the highly complex process states APF and dC .
In general, the prediction durations are short and the models’
memory usages low.
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Fig. 9. Evaluation of the influence of data set size and smoothing

Figure 9a reveals the exemplary impact of data set size on
the model performance (the indicators and units are analog to
figure 7, except the training time is presented in ms for a better
camparability). Here, the most challenging prediction of dC is
shown. Adding of further synthetic data improves the prediction
quality. Smoothing of IS M and IFM before feature extraction
decreases the model performance, which is exemplary shown
in figure 9b (the indicators and units are analog to figure 7) on
the material prediction. This can be explained by the induced
data loss.

5. Conclusion and outlook

A holistic development and evaluation of optimal ap-
proaches, consisting of feature preparation and ML classifi-
cation methods, for the process state monitoring during semi-
automatic drilling was carried out. Only internal machine sen-
sor data of spindle and feed motor current and machine ac-
celeration was used for the analysis. For the process state pre-
diction of workpiece material, drill revolution, feed rate, peck-
feed tool magnitude, lubrication state and workpiece-CC (=ma-
chine) contact, reliable methods were presented. For the clamp-
ing distance prediction, further improvements must be worked
out, which is possibly done by including further sensors or de-
veloping other features from the currently used data. The pre-
diction quality improves by enlarging the data set with synthet-
ically created training data and deteriorates through the motor’s
current data smoothing. The following production errors can be
detected through the presented monitoring of the process states:

- material: borehole position, material stack setup
- drill revolution/feed rate/peck-feed tool magnitude:
process parameter setting

- lubrication state: process parameter setting/lube fill level
- workpiece-CC-contact: machine position/

air pressure supply of CC
- clamping distance: material defects/borehole position
In future, the implementation of the investigated methods on

an edge or cloud computing device and testing of the real-time
prediction capability is necessary. The prediction time of the
developed ML models is low, which means the bottleneck in
the computing chain could be the data pre-processing. Further-
more, possible advantages of the use of additional sensors (e.g.
acoustics and workpiece vibration) must be evaluated.
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[10] Neto, F. C. , Gerônimo, T. M. , Cruz, C.E.D. , Aguiar, P. R. , Bianchi,
E.E.C., 2020. Neural Models for Predicting Hole Diameters in Drilling
Processes, in: Procedia CIRP 12, p. 49–54

[11] Shaban, Y., Yacout, S., Balazinski, M., Meshreki, M., Attia, H., 2015. Di-
agnosis of machining outcomes based on machine learning with Logical
Analysis of Data, in: International Conference on Industrial Engineering
and Operations Management (IEOM), p. 1–8

[12] Schorr, S., Moeller, M., Heib, J., Baehre, D., 2020. In-process Quality Con-
trol of Drilled and Reamed Bores Using NC-Internal Signals and Machine
Learning Method, in: Procedia CIRP 93, p. 1328-1333

[13] Caggiano, A., Rimpault, X., Teti, R., Balazinski, M., Chatelain, J.-F., Nele,
L., 2018. Machine learning approach based on fractal analysis for optimal
tool life exploitation in CFRP composite drilling for aeronautical assembly,
in: CIRP Annals 67, p. 483–486

[14] Caggiano, A., Angelone, R., Napolitano, F., Nele, L., Teti, R., 2018. Di-
mensionality Reduction of Sensorial Features by Principal Component
Analysis for ANN Machine Learning in Tool Condition Monitoring of
CFRP Drilling, in: Procedia CIRP 78, p. 307–312

[15] Koettner, L., Mehnen, J., Romanenko, D., Bender, S., Hintze, W., 2019.
Process Monitoring Using Machine Learning for Semi-Automatic Drilling
of Rivet Holes in the Aerospace Industry, in: Production at the leading
edge of technology, p. 497-507

[16] Christine, I. N., Schubert, J. J., 2018. The Role of Machine Learning in
Drilling Operations, in: SPE Eastern Regional Meeting

[17] Hedderich, J., 2018. Angewandte Statistik, Springer, Berlin, p. 151
[18] Rebala, G., Ravi, A., Churiwala, A., 2019. An Introduction to Machine

Learning, Springer, Cham
[19] Guyon, I., Elisseeff, A., Kaelbling, L. P., 2003. An Introduction to Variable

and Feature Selection, in: Journal of Machine Learning Research 3, p.
1157-1182

[20] Borg, I., Groenen, P., 2006. Modern Multidimensional Scaling, Springer,
New York

[21] De Mello, G. F., Ponti, M. A., 2018. Machine Learning - A Practical Ap-
proach on the Statistical Learning Theory, Springer, Cham

[22] Berry, M. W., Murray B., Amy N. L., Paul Pauca, V, Robert J. P., 2007.
Algorithms and Applications for Approximate Nonnegative Matrix Factor-
ization, in: Computational Statistics & Data Analysis 52

6


