
On the Solution of Interval Linear Systems∗

S. M. Rump, Hamburg

Abstract

In the literature efficient algorithms have been described for calculating guaranteed
inclusions for the solution of a number of standard numerical problems [3], [4], [8], [11],
[12], [13]. The inclusions are given by means of a set containing the solution. In [12],
[13] this set is calculated using an affine iteration which is stopped when a nonempty
and compact set is mapped into itself. For exactly given input data (point data) it has
been shown that this iteration stops if and only if the iteration matrix is convergent
(cf. [13]).

In this paper we give a necessary and sufficient stopping criterion for the above
mentioned iteration for interval input data and interval operations. Stopping is equiv-
alent to the fact that the algorithm presented in [12] for solving interval linear systems
computes an inclusion of the solution. An algorithm given by Neumaier is discussed
and an algorithm is proposed combining the advantages of our algorithm and a modi-
fication of Neumaier’s. The combined algorithm yields tight bounds for input intervals
of small and large diameter.

Using a paper by Jansson [6], [7] we give a quite different geometrical interpretation
of inclusion methods. It can be shown that our inclusion methods are optimal in a
specified geometrical sense. For another class of sets, for standard simplices, we give
some interesting examples.

0 Introduction

Let T denote one of the sets IR, C, IRn (real vectors with n components), Cn (complex vectors

with n components), IRn×n (real square matrices with n rows and columns) or Cn×n (complex

square matrices with n rows and columns). Throughout this paper the letter “n” is reserved

in the prescribed way; only square matrices (which are n × n) will occur. IPT denotes the

power set over T .

∗published in Computing 47:337–353, 1992

1

In the following ∗ ∈ {+,−, ·, /} denotes the binary real resp. complex operations. These

operations extend in the usual way to power set operations. If x ∗ y ∈ T3 is defined for

x ∈ X ∈ IPT1, y ∈ Y ∈ IPT2 then

X ∗ Y := { x ∗ y | x ∈ X, y ∈ Y } ∈ IPT3.

The set of all n-dimensional resp. n2-dimensional hyperrectangles parallel to the axis over

real resp. complex numbers is denoted by IIIRn, IICn, IIIRn×n, IICn×n, resp. This is one

way to represent interval vectors or interval matrices. Intervals are always supposed to be

nonempty.

The rounding of an arbitrary set X into the smalles hyperrectangle containing X is denoted

by 3 : IPT → IIT

X ∈ IPT ⇒ 3(X) :=
⋂ {Y ∈ IIT | X ⊆ Y } ∈ IIT.

The set 3(X) is well-defined and unique. We define operations 3+ , 3− , 3· , 3/ over IIT by

[X], [Y] ∈ IIT ⇒ [X] 3∗ [Y] := 3([X] ∗ [Y]) for ∗ ∈ {+,−, ·, /}.
This is the smallest hyperrectangle containing the result of the power set operation. It is

uniquely defined and effectively computable (cf. [2], [9], [10], [11]).

With the componentwise order relation ≤ for all sets in T (with partial ordering for complex

numbers) hyperrectangles are usually described by their bounds. Obviously

[X] ∈ IIT ↔ [X] = {x ∈ T | inf([X]) ≤ x ≤ sup([X]) } .

Therefore we adopt the notation [X,X] with X = inf([X]), X = sup([X]) for hyperrectangles

and especially

[X] = mid([X])± rad([X]) =
[
mid([X])− rad([X]), mid([X]) + rad([X])

]
(1)

where mid([X]) = 0.5 ·
(
inf([X]) + sup([X])

)
denotes the midpoint of X, rad([X]) = 0.5 ·(

sup([X]) − inf([X])
)

the radius of [X]. If [X] is a vector or a matrix, then mid([X]) and

rad([X]) is a real or complex vector or matrix, respectively. Note that rad([X]) ≥ 0. For

any a, b ∈ T with T ∈ {IR, C, IRn, Cn, IRn×n, Cn×n} we define similar to (0.1)

a± b := { x ∈ T | a− b ≤ x ≤ a + b } ∈ IIT for b ≥ 0.

If bν = 0 for some component of b the hyperrectangle a ± b is degenerated, the interior is

empty.

For a set X,Y ⊆ T , int(X) denotes the interior of X, X
◦⊆ Y means X ⊆ int(Y), Re(X)

denotes the real part, Im(X) the imaginary part of X. For a real matrix A we define

|A| to be the matrix of absolute values of the components of A, for a complex matrix is

2

|Re(A)| + |Im(A)| (cf. [2]). For an interval [X] ∈ IIS we define |[X]| = max { |x| | x ∈ [X] }
extending componentwise to interval vectors and matrices. For two hyperrectangles [X],

[Y] ∈ IIS, S ∈ {IR, C} the distance q is defined as usual by

q([X], [Y]) = max
(
|inf([X])− inf([Y])|, |sup([X])− sup([Y])|

)
.

For vectors and matrices the distance is defined componentwise. For A ∈ Sn×n, S ∈
{IR, C} the spectral radius of A is denoted by ρ(A), for [A] ∈ IISn×n we define ρ([A]) :=

max {ρ(A)|A ∈ [A]}. Ai denotes the ith row of A.

1 Criterions for convergence of a matrix

In [12] the following theorem has been proved:

Theorem 1. Let S ∈ {IR, C}, C ∈ Sn×n, b, x̃ ∈ Sn, R ∈ Sn×n and ∅ 6= X ⊆ Sn be compact.

If

R · (b− Cx̃) + {I −RC} ·X ⊆ int(X) (2)

then C and R are non-singular and the unique solution x̂ of Cx = b satisfies x̂ ∈ x̃ + X.

I denotes the identity matrix, all operations in (1.1) are power set operations. In a practical

application of theorem 1 one may start an iteration

xk+1 := R · (b− Cx̃) + {I −RC} ·Xk

for given X0 ⊆ Sn. Clearly

Xk+1 ⊆ int(Xk) (3)

implies all assertions of theorem 1. In the following conditions will be investigated under

which (1.2) is satisfied.

(1.2) can be reduced to an affine iteration

Xk+1 := z + A ·Xk for z ∈ Sn, A ∈ Sn×n. (4)

In [13] the following theorem has been proved:

Theorem 2. For S ∈ {IR, C} let A ∈ Sn×n be an arbitrary matrix, z ∈ Sn and ∅ 6= X ∈ IPSn

be compact. Then

z + A ·X ⊆ int(X) implies ρ(A) < 1.

3

Therefore a contracting A is necessary for an affine iteration (1.3) to stop with (1.2). But,

in general, it cannot be true that (1.2) is satisfied for some k ∈ IN for every starting set

X0 because of two reasons: First, the interior of X0 must be nonempty because int(X0) = ∅
implies int(Xk) = ∅ for every k ∈ IN. Second, (1.2) implies x̂ ∈ X0.

In other words only those sets X0 already containing x̂ are suitable to achieve (1.2). For

practical applications this is hardly acceptable.

To overcome those difficulties the so-called ε-inflation has been introduced in [12]. One

possible definition for general sets is the following.

Definition 3. For a set X ⊆ Sn, S ∈ {IR, C} the ε-inflation X ◦ ε is defined by

X ◦ ε := X + Uε(0) for 0 < ε ∈ IR,

where Uε(0) is some closed and bounded set containing the origin as an interior point.

Obviously X ⊆ int(X ◦ ε). An example for Uε(0) is the closed ball of radius ε around the

origin. Using the ε-inflation we can define an iteration scheme allowing a complete analysis.

Theorem 4. Let A ∈ Sn×n be an arbitrary matrix, ∅ 6= Z ⊆ Sn be a compact set of vectors,

S ∈ {IR, C}. For some compact ∅ 6= X0 ⊆ Sn let

Xk+1 := (Z + A ·Xk) ◦ εk for 0 ≤ k ∈ IN, (5)

where Uεk+1
⊆ Uεk

for every k ∈ IN and some compact ∅ 6= U ⊆ Sn with 0 ∈ int(U). Then

the following two conditions are equivalent:

a) ∀ ∅ 6= X0 ∈ Sn compact ∃ k ∈ IN : Z + A ·Xk ⊆ int(Xk)

b) ρ(A) < 1.

Proof. See [13].

Theorem 4 is of theoretical interest. In practical implementations general sets can hardly be

handled. Therefore we are aiming on obtaining results similar to theorem 4 starting with an

interval X0 and using interval operations ins (1.4).

2 Interval iterations

If the input data are not exactly representable on the computer they may be replaced by

the smallest enclosing intervals. Input intervals occur as well if the input data are afflicted

with tolerances. In both cases an inclusion of the set of all solutions is to be calculated.

4

In case of hyperrectangles an ε-inflation should consist of an absolute and a relative part in

order to maintain (1.4) for a small value of k. A possible definition which turned out to be

very suitable in practical applications is

[X] ∈ IIS : [X] ◦ ε := [J] 3· [X] 3+ [E]

with a diagonal matrix [J] ∈ IISn×n, [Ek] ∈ IISn, for 0 ≤ k ∈ IN. Let [Ek] → [E] ∈ IISn,

0 ∈ int([E]), 1 ∈ [Jii] for 1 ≤ i ≤ n and ρ(|[J]| · |[A]|) < 1. Then the following two conditions

are equivalent:

a) ∀ ∅ 6= [X0] ∈ IISn ∃ k ∈ IN : f([Xk]) ⊆ int([Xk])

b) ρ(|[A]|) < 1.

Proof. “⇒” For S = IR this is proved in [13], theorem 6. For S = C let [Y] := [X]− [X] =

[X] 3− [X] = {x1 − x2 | x1, x2 ∈ [X] } ∈ IIC. Then for A ∈ [A], z ∈ [Z]

A · [Y] = {A · (x1 − x2) | x1, x2 ∈ [X] } = { (z + Ax1)− (z + Ax2) | x1, x2 ∈ [X] }
= (z + A · [X])− (z + A · [X]) ⊆ int([X])− int([X]) = int([Y]).

Since this holds for ervery A ∈ [A] we get [A] · [Y] ⊆ int([Y]) and hence [A] 3· [Y] ⊆ int[[Y]).

Using [Y] = ±rad([Y]) we get after short computation

{ |Re([A])|+ |Im([A])| } ·
{
Re

(
rad([Y])

)
+ Im

(
rad([Y])

) }
=

Re
(
rad([A] 3· [Y])

)
+ Im

(
rad([A] 3· [Y])

)
<

Re
(
rad([A])

)
+ Im

(
rad([Y])

)
.

By a) the real vector Re
(
rad([Y])

)
is positive. Therefore Perron-Frobenius Theory finishes

this part of the proof.

“⇐” Let g : IISn → IISn be defined by

g([X]) := [J] 3· ([Z] 3+ [A] 3· [X]) 3+ [E]

for [X] ∈ IISn. Then for [X], [Y] ∈ IISn the rules of interval analysis (cf. [2], [10]) imply

q
(
g([X]), g([Y])

)
≤ |[J]| · q([Z] 3+ [A] 3· [X], [Z] 3+ [A] 3· [Y])

≤ |[J]| · |[A]| · q([X], [Y]).
(6)

By assumption σ := ρ(|[J]|·|[A]|) < 1 and hence there is some [X∗] ∈ IISn with g([X∗]) = [X∗]

(cf. Theorem 1, chapter 12 in [2]). Now q(g([X0]), [X1]) = q([E], [E0]) and by induction

follows

q(gk([X0]), [Xk+1]) ≤ k∑
i=0

σi · q([E], [Ek−i])

because with (2.2) we have

5

q(gk+1([X0]), [Xk+2]) ≤ q
(
g
(
gk([X0]

)
, g([Xk+1])

)
+ q

(
g([Xk+1]), [Xk+2]

)

≤ σ · q
(
gk([X0]), [Xk+1

)
+ q([E], [Ek+1]) =

k+1∑
i=0

σi · q([E], [Ek+1−i]).

By assumption q([E], [Ek]) → 0 for k → ∞ and therefore [Xk] and gk([X0]) have the same

limit [X∗] for k →∞.

Let 0 < ε∗ < q([E], 0) = min
(
|inf([E])|, sup([E])

)
, ε∗ ∈ IRn. Then 0 ∈ [E] and ±ε∗ ⊆ [E]

implies diam([X∗]) ≤ diam([E]) > ε∗. Let some ε ∈ IRn with 0 < ε ≤ ε∗ be given. Then

there is a k ∈ IN with

q(|[Xk], [X∗]) < 0.5 · ε and

q([Z] 3+ [A] 3· [X∗], [Z] 3+ [A] 3· [Xk]) < 0.5 · ε. (7)

Then the first part of (2.3) implies

[[X] := [inf([X∗]) + 0.5 · ε, sup([X])− = .5 · ε] ⊆ int([Xk]). (8)

Now

[Z] 3+ [A] 3· [Xk] ⊆ [Z] 3+ [A] 3· [X∗] ± 0.5 · ε ⊆ [J] 3· ([Z] 3+ [A] 3· [X∗]) ± 0.5 · ε
⊆ [X] ⊆ int([Xk])

finishes the proof.

In a typical application J is a diagonal matrix with identical entries 1 ± ε in the diagonal.

For general sets of matrices {A} ∈ IPIRn×n the generalization of theorem 5 replacing part b)

by

ρ(A) < 1 for all A ∈ {A}

is not true. Part a) implies ρ
(

m∏
ν=1

Aν

)
< 1 for all Aν ∈ {A}, ν = 1 . . . m and in [13] an

example of a set of matrices {C + σ(D − C) | 0 ≤ σ ≤ 1 } for two matrices C,D ∈ IRn×n is

given with ρ(C) < 1, ρ(D) < 1 but ρ(C ·D) > 1.

The assumption ρ(|[J]| · |[A]|) < 1 in Theorem 5 is necessary. Consider

[A] :=


 0 2

1/8 0


 , Z := 0, [X0] =


 [−1, 1]

[−1, 1]


 ,

[J] :=


 [−4, 4] 0

0 [−4, 4]


 and

[Ek] = [E] :=


 [−1/4, 1/4]

[−1/4, 1/4]


 for k ∈ IN.

6

Then all succeeding [Xk] are symmetric w.r.t. the origin, i.e. 3− [Xk] = [Xk]. Therefore

f([Xk]) ⊆ int([Xk]) is equivalent to

A ·Xk < Xk (9)

for

A :=


 0 2

1/8 0


 , X0 :=


 1

1


 and Xk+1 := J · A ·Xk + E

with J :=


 4 0

0 4


 , E :=


 1/4

1/4


 .

Then short computation yields for 0 ≤ k ∈ IN

X2k =


 7 · 22k−2 − 3/4

9 · 22k−3 − 1/8


 and X2k+1 =


 9 · 22k − 3/4

7 · 22k−3 − 1/8




and

(X2k − A ·X2k)1 = −22k−1 − 1/2, (X2k+1 − A ·X2k)2 = −22k−2 − 1/32.

This shows that (2.5) is not satisfied for any k ∈ IN. It is ρ(|[J]| · |[A]|) = 2 ≥ 1. In the

example it is crucial that A is not primitive.

Using hyperrectangles, i.e. rectangular intervals, is very convenient on digital computers.

The operations are simple and fast and can be executed on any computer with a precisely

defined computer arithmetic and directed roundings available, e.g. as defined in the IEEE 754

floating-point arithmetic standard (cf. [2], [5], [9], [10], [11]). Using the arithmetic defined

by Kulisch with a precise scalar product gives additional advantages, especially in the case

of point data or intervals with small diameters.

Working with general sets instead is hardly possible on computers. One way of representing

sets being more general than hyperrectangles are simplices. Simplices are representable on

digital computers by means of their vertices and are closed under affine mappings. However,

operations are fairly expensive: a matrix-vector multiplication costs O(n3) compared to

O(n2) when using hyperrectangles. Another possibility are standard simplices which will be

discussed in chapter 4.

7

3 An inclusion method without interval iteration

In his book [11], page 150 Neumaier proposes the following algorithm for computing an

inclusion of the solution set [A]H [b] = { x ∈ IRn | Ax = b for A ∈ [A], b ∈ [b] } of an interval

linear system with matrix [A] ∈ IIIRn×n and right hand side [b] ∈ IIIRn:

Define

〈[X]〉 := min
x∈X

|x| for [X] ∈ IIIR

and the comparison matrix

〈[A]〉ij :=




〈[A]ij〉 for i = j

−|[A]ij| otherwise.

Algorithm (Neumaier).

1) Find an approximate invers R ≈ mid([A])−1 and compute [A′] = R 3· [A], [b′] = R 3· [b].

2) Find an approximate solution ũ > 0 of 〈[A′]〉 · ũ = [b′] and a number α > 0 such that

〈[A′]〉 · ũ ≥ α · |[b′]|. (If this is not possible we conclude that either [A] was not strongly

regular or the precision of the calculation was not high enough).

3) Perform a few (one or two) steps of preconditioned Gauss-Seidel iteration, starting with

Z0 := α−1 · ũ · [−1, 1]. Each iterate in step 3 is an enclosure of [A]H [b].

In order to compare this algorithm with an inclusion algorithm with interval iteration based

on theorem 1 (cf. [12], [13], [1], [14]) some modifications are necessary. Neumaier’s original

algorithm assumes A to be strongly regular. We want to avoid any preassumption on A, R

or b. Therefore, the algorithm will be modified in a way that no such a priori assumption is

necessary. This will also prove the non-singularity of every A ∈ [A]. It can be achieved by

assuming 〈[A′]〉 · ũ > α · |[b′]| in step 2:

Theorem 6. Let A ∈ IIIRn×n, [b] ∈ IIIRn, R ∈ IRn×n be given such that some 0 < u ∈ IRn,

0 < α ∈ IR exist with

〈R 3· [A]〉 · u > α · |R 3· [b]|. (10)

Then R can be scaled by the diagonal matrix D with Dii = β · (mid(R 3· [A]))ii ≤ 1 for

1 ≤ i ≤ n, and for [X] := α−1 · u · [−1, 1] holds

R̃ 3· [b] 3+ {I 3− R̃ 3· [A]}3· [X] ⊆ int([X]). (11)

8

Proof. The definition of the comparison matrix 〈R 3· [A]〉 and (3.1) imply 0 /∈ (〈R 3· [A]〉)ii

for 1 ≤ i ≤ n. Hence R̃ is well-defined and satisfies
(
mid(R̃ 3· [A])

)
ii
≤ 1 and 〈R̃3· [A]〉 ·u >

α · |R̃ 3· [b]|. Therefore,

R̃i 3· [b] ⊆ ±|R̃i 3· [b]| ◦⊆ ±α−1 · (〈R̃ 3· [A]〉)i · u = α−1 · [+d− e,−d + e] (12)

with

d := +
n∑

j=1
j 6=i

|R̃ 3· [A]|ij · uj and e := (〈R̃ 3· [A]〉)ii · ui. (13)

Moreover,

(I 3− R̃ 3· [A])i 3· [X] ⊆ α−1 · [−d, +d]± α−1 · |1− (R̃ 3· [A])ii| · ui. (14)

Adding (3.3) and (3.5) and observing (3.4) yields

l.h.s. (3.2)
◦⊆ ±α−1 ·

{
(〈R̃ 3· [A]〉)ii + |1− (R̃ 3· [A])ii|

}
· ui.

By the definition of [A] we are finished if we show

(〈R̃ 3· [A]〉)ii + |1− (R̃ 3· [A])ii| ≤ 1 (15)

for 1 ≤ i ≤ n. With the abbreviation Y := (R̃ 3· [A])ii for some 1 ≤ i ≤ n it is Y > 0 and

mid(Y) ≤ 1. Therefore 0 < inf(Y) ≤ 1 ≤ sup(Y) and

|1− Y | = max (1− inf(Y), sup(Y)− 1).

Using 〈Y 〉 = inf(Y) and inf(Y) + sup(Y) = 2 · mid(Y) ≤ 2 demonstrates (3.6) for every

1 ≤ i ≤ n and therefore finishes the proof.

Together with Theorem 5 this implies ρ(|I 3− R̃ 3· [A]|) < 1. Therefore an iteration similar

to (2.1) will stop. If, on the other hand, ρ(|I 3− R̃ 3· [A]|) < 1, then R̃ 3· [A] is an H-matrix

and there are u and α satisfying (3.1) (cf. Proposition 3.7.2. in [11]).

Usually an inclusion algorithm first performs a residual iteration to obtain a reasonably good

approximate solution x̃. Then the inclusion algorithm is applied to Ay = b−Ax̃ yielding an

inclusion for Σ([A], [b]) − x̃. To give a fair comparison we modify Neumaiers’s algorithm in

this way. Furthermore, step 2 is changed according to theorem 6 to prove the non-singularity

of every A ∈ [A]. This leads to the following modification of Neumaier’s algorithm.

Algorithm A

9

1) Find an approximate inverse R ≈ mid([A])−1, compute x0 ≈ R ·mid([b]) and

perform a residual iteration yielding x̃. [A′] := R3· [A], [b′] := R3· ([b]3− [A]3· x̃.

2) Find an approximate solution ũ > 0 of 〈[A′]〉 · ũ > α · |[b′]|. (If this is not

possible we conclude that either [A] was not strongly regular or the precision

of the calculation was not high enough).

3) Perform a few (one or two) steps of preconditioned Gauss-Seidel iteration,

starting with Z0 := α−1 · ũ · [−1, 1]. It has been verified that every A ∈ [A] is

regular and each iterate Z in step 3 satisfies

Σ([A].[b]) ⊆ x̃ 3+ Z.

Algorithm A will be compared with the following algorithm B given in [12], [13] with the

modification that R ≈ mid([A]1−1 is replaced by R̃ := D ·R with Dii :=
(
mid(R3· [A])ii

)−1
.

According to theorem 6 this is the best choice. Smaller components Dii still work but increase

the spectral radius of I 3− R̃ 3· [A].

Algorithm B

1) Find an approximate inverse R ≈ mid([A])−1, compute x0 := R ·mid([b]) and

perform a residual iteration yielding x̃, [Z] := R3· ([b]3− [A]3· x̃), [C] := I 3− R3· [A].

(If mid(I 3− C)ii = 0 for some 1 ≤ i ≤ n then goto 99). Compute Dii := (mid(I 3−

C)ii)
−1 and Zi := Dii 3· Zi, Cij := Dii 3· Cij for 1 ≤ i, j ≤ n.

2) Define [X] := [Z], k := 0 and

repeat k := k + 1; [Y] := [X]± ε, inclusion := true;

for i := 1 to n do

{[X]i := [Z]i 3+ [C]i 3· ([X]1, . . . , [X]i−1, [Y]i, . . . , [Y]n)t;

inclusion := inclusion and [X]i ⊆ int([Y]i)};
until inclusion or k > 15;

3) Perform a few (one or two) iterations of the form [X] := [Z] 3+ [C] 3· [X] using

Einzelschrittverfahren.

If inclusion then

{every A ∈ [A] is regular and Σ([A], [b]) ⊆ x̃ 3+ [X]};
stop;

99) Either |C| is not contracting or the precision of the calculation was not high enough.

Note that in step 2) an Einzelschrittverfahren is used. The discussions above show that

either both algorithms A and B compute an inclusion of Σ([A], [b]) or not, except when the

number of necessary iterations in step 2) in algorithm B would be greater than 15. In many

practical experiments this case did not occur. The price algorithm A has to pay is the extra

solution of a linear system adding some 1/3 · n3 operations.

10

In the following tables we compare algorithm A with algorithm B and display the ratio of

the diameters of the inclusion of the solution achieved by algorithm A vs. algorithm B.

Second we display the ratio of computing times. Therefore a number less than one indicates

advantages for algorithm A. The numbers are rounded to three decimal places.

Our first examples are Hilbert-matrices scaled by lcm(1, 2, . . . , 2n − 1) s.t. all entries are

integers, Pascal-matrices P with entries Pij :=
(

i+j
j

)
and Boothroyd-matrices B defined

by Bij := n · (i + j − 1)−1 ·
(

n+i−1
i−1

)
·

(
n−1
n−j

)
. The system matrix A is transformed to an

interval matrix [A] := A · (1 ± ε). Results for different values of ε are displayed. It is

[b] := [A] · (+1,−1, +1, . . .)T and we used an IBM 4361 with 14 hexadecimal digits in the

mantissa corresponding to about 17 decimal places.

Let [XA], [XB] be the inclusions and tA, tB be the computing times for algorithm A, algorithm

B, respectively. Then

d1 := min
i

d([XA]i)

d([XB]i)
, d2 := max

i

d([XA]i)

d([XB]i)
and tA/tB (16)

is displayed. It is n = 10.

Hilbert Pascal Boothroyd

ε d1 d2 tA/tB d1 d2 tA/tB d1 d2 tA/tB

ε = 0 1.006 1.008 1.058 1.000 1.000 1.159 1.000 1.013 1.058

ε = 10−16 1.027 1.029 1.058 1.003 1.003 1.159 1.004 1.005 1.058

ε = 10−14 1.000 1.000 1.014 1.000 1.000 1.159 0.996 1.000 1.058

ε = 10−13 0.951 0.983 1.014 1.000 1.000 1.159 0.983 0.995 0.973

ε = 10−12 1.000 1.000 1.159

ε = 10−10 0.996 1.000 1.159

ε = 10−9 0.993 0.993 1.058

Table 1. Comparison algorithms A, B, n = 10

Both linear systems with Hilbert and Boothroyd matrices fail for ε = 10−12. Systems with

Pascal matrix fail for ε = 10−8. The different ratios in computing time come from the

different number of iterations in step 2) of algorithm B.

The table shows that as long as ε is not too large algorithm B is a little bit faster than

algorithm A producing similar or even better inclusions. This changes for larger ε. The

quality of the inclusions of algorithm B can be improved to the same quality of those of

algorithm A but with the cost of some extra iterations in step 3).

The next table zooms the behaviour of both algorithms for very large ε. We used Hilbert

matrices, n = 10.

11

ε d1 d2 tA/tB

1.0 · 10−13 0.951 0.983 1.014

1.5 · 10−13 0.977 0.982 0.973

2.0 · 10−13 0.938 0.946 0.936

2.5 · 10−13 0.885 0.892 0.901

3.0 · 10−13 0.759 0.770 0.785

Table 2. Hilbert-matrices for large ε, n = 10

Both algorithms fail for ε = 3.5 · 10−13. So for large diameters in the matrix elements

algorithm A performs better than algorithm B. For the largest value of ε in table 2 algorithm

A is about 20 % faster producing bounds with a 20 to 25 % smaller diameter. It should be

mentioned that the bounds itself are already of very large diameter. In this example, for

ε = 2.5 · 10−13, the inclusion of the 7th component is [-112.5, +114.5]. There are examples as

well where the behaviour of the algorithms is the other way around. Consider linear systems

with Pascal-matrices for n = 15.

ε d1 d2 tA/tB

0 3.669 484.056 1.059

10−16 1.004 2.299 1.000

10−15 1.000 1.255 1.059

10−14 1.000 1.025 1.000

Table 3. Pascal matrices for n = 15

Here the bounds produced by algorithm B are always better, sometimes much better than

those of algorithm A requiring the same or less computing time.

For higher dimensions the extra computing time for algorithm A vs. algorithm B increases

due to the extra 1/3 ·n3 operations. We display linear systems with matrix [A] := A3· (1±ε)

where A has random entries uniformly distributes in [-1,1], [b] := [A]3· (+1,−1, +1,−1, . . .)T .

ε = 10−5 ε = 10−4 ε = 10−3

n d1 d2 tA/tB d1 d2 tA/tB d1 d2 tA/tB

20 1.000 1.000 1.163 1.000 1.000 1.135 1.000 1.000 1.135

50 0.999 1.000 1.165 1.000 1.000 1.154 0.988 0.988 1.100

100 0.999 1.000 1.166 1.000 1.000 1.160 0.990 0.990 1.116

Table 4. Random matrices

Obviously algorithm B is superior for small ε whereas algorithm A shows its advantages

for larger diameters of [A]. The diameter of [b] plays no role at all. We therefore propose

12

to combine both algorithms: If algorithm B fails to obtain an inclusion after two or three

iterations while the diameters of the potential inclusions increase slowly then switch to

algorithm A by computing ũ. This approach combines the advantages of both algorithms

because for small diamters it saves computing time whereas the additional n3/3 operations

for algorithm A are only invested if necessary. This approach computes very sharp bounds for

the solution. The quality can be measured by the techniques of computing inner inclusions

described in [16].

4 Standard simplices

The special structure of hyperrectangles requires |A| or |Re(A)|+ |Im(A)| to be convergent

in order to allow f(Xk) ⊆ int(Xk) for some k ∈ IN (see theorem 5). This is a necessary and

sufficient condition. For general sets or general simplices, f(Xk) ⊆ int(Xk) is equivalent to

ρ(A) < 1, A ∈ Sn×n, S ∈ {IR, C}. One might try to use other representations of sets to omit

the assumption ρ(|A|) < 1 resp. ρ(|Re(A)| + |Im(A)|) < 1. The representation should be

simple enough to allow fast computation of f(Xk) but “general” enough to cover as many

matrices as possible.

One such representation are standard simplices:

s = {s0, σ1, . . . σn} =

= { x ∈ IRn | x = s0 +
n∑

ν=1
λνσνeν , 0 ≤ λν ∈ IR,

n∑
ν=1

λν ≤ 1 }.

In [6] [7] Jansson gave an interesting geometrical approach for the construction of guaranteed

error bounds for the solution of a system of linear equations Ax = b. For a given standard

simplex S he gives a sufficient criterion for b ∈ A · S in the following way. The matrix A

maps S into a general simplex, where the normal vectors of the supporting hyperplanes are

the rows of A−1. Using an approximate invers R of A he gives the following theorem, which,

in some way, estimates the error of R w.r.t. A−1 and gives an inner estimation of A · S. He

shows that this estimation is bf optimal w.r.t. the information given by the approximations

R and x̃. This optimality property holds for the general case of convex polyhedrons. This

covers also the case of interval vectors.

Theorem 8 (Jansson). Let A,R ∈ IRn×n, C := R ·A and b, x, ε ∈ IRn with ε > 0. If both

R · b > C · x + max {(C − diag(C)) · diag(ε)} and (17)

(ε−1)T ·Rb < (ε−1)T · Cx + min(ε−1)T · C · diag(ε) (18)

13

are satisfied then R and A are nonsingular and the unique solution x̂ of Ax = b is contained

in the standard simplex S := {x, ε1, . . . , εn}.
Note. diag(C) ∈ IRn×n is the diagonal matrix consisting of the diagonal entries of C;

diag(ε) ∈ IRn×n is the diagonal matrix with ε ∈ IRn in the diagonal; for M ∈ IRn×n,

max(M) ∈ IRn is the column vector consisting of the maximum of the rows of M , and

ε−1 ∈ IRn is the vector (ε−1
i).

The approach by Jansson and the proof are based on geometrical considerations. It can

be shown that with a technical assumption similar to the one used in the previous section

this geometrical approach implies the fact that condition (1.1) in theorem 1 is satisfied for

X = S.

Theorem 9. The assumptions (4.1) and (4.2) of theorem 7 with R scaled s.t. diag(R·A) = I

are equivalent to

R · b + (I −RA) · S ⊆ int(S). (19)

Remark. The operations in (4.3) are the power set operations.

Proof. “⇒” By definition S = ch(x, x + ε1e1, . . . , x + εnen) and therefore

x ∈ int(S) ⇒ a)x > x and

b)(ε−1)T · x < 1 + (ε−1)T · x (20)

(cf. e.g. [6], [7]). We have proved (4.3) if we show conditions a) and b) of (4.4) to be valid

for all vertices of Rb + (I − RA) · S. By assumption C∗ := C − diag(C) = RA − I and

diag(RA− I) = 0.

By definition

max {C∗ · diag(ε)} ≥ {C∗ · diag(ε)}i = C∗εiei (21)

for 1 ≤ i ≤ n and thus (4.1) implies

Rb + (I −RA)x > x + C∗εiei (22)

showing condition a) of (4.4) for the vertices x + εiei. (4.6) holds true for every 1 ≤ i ≤ n

and with (C∗εiei)i = 0 follows

Rb + (I −RA)x > x

showing condition a) of (4.4) for the vertex x. Furthermore

(ε−1)T · (RB + (I −RA)(x + εiei)) < 1 + (ε−1)T · x (23)

14

⇔ (ε−1)T · (RB − C · (x + εiei)) < 1− (ε−1)T · εiei. (24)

The r.h.s. of (4.8) equals 0 implying

(4.7) ⇔ (ε−1)T ·R · (b− Ax) < (ε−1)T · C · εiei. (25)

The r.h.s. of (4.9) follows by (4.2) implying the validity of condition b) of (4.4) for the vertices

x + εiei. By assumption max
{
(ε−1)T · C · εiei

}
≥ 1 for 1 ≤ i ≤ n, hence

max
{
(ε−1)T · (I −RA)εiei

}
≤ 0 and (4.7) implies

(ε−1)T · (Rb + (I −RA)x) < 1 + (ε−1)T · x
which finishes the first part of the proof.

“⇒” (4.3) together with (4.4), a) implies RB + (I −RA)(x + εiei) ≥ x for all 1 ≤ i ≤ n and

therefore (4.1) follows by using (4.5). (4.3) together with (4.4), b) imply (4.7) and therefore

following the first part of the proof, (4.9) holds for all 1 ≤ i ≤ n. Hence (4.2) is true finishing

the proof.

It is well known that (4.3) has the quadratic approximation property (see e.g. [11]). By

the previous Theorem 9 and the results of Jansson it follows that (4.3) is optimal in the

described geometrical sense.

The following examples will show that w.r.t. the inclusion methods described in [12], [13]

standard simplices play a special role.

There are real matrices A which are convergent with ρ(|A|) ≤ 1 and mapping some standard

simplex into itself. On the other hand, there are matrices A the absolute value of which is

convergent but A maps no standard simplex at all into itself. Consider the case n = 2 and

a standard simplex s = {(a, b)T , c, d}. Then according to (4.4) A · S ⊆ S is equivalent to

(a, b)T ≤ A · vν and
x− a

c
+

y − b

d
≤ 1 for (x, y)T = A · vν , ν = 1, 2, 3

and

v1 = (a, b)T , v2 = (a + c, b)T , v3 = (a, b + d).

(26)

As a first example consider

A =


 0.9 −0.05

−0.9 −0.8


 .

The eigenvalues of A are 0.05±√0.7675, those of |A| are 0.85±√0.0475 implying

ρ(A) < 1 < ρ(|A|). However, short computation yields that the standard simplex

S = {(−2.7, −1.15), 4.9, 5} produces

15

A · v1 =


 −2.3725

3.35


 , A · v2 =


 2.0375

−1.06


 , A · v3 =


 −2.6225

−0.65




and satisfies condition (4.10), i.e. A · S ⊆ S, in fact A · S ⊆ int(S).

As a second example consider

A =


 0.5 −0.5

0.25 0.5


 .

The eigenvalues of |A| are 0.5±√0.125 implying ρ(A) ≤ ρ(|A|) < 1.

Let a standard simplex s = {(a, b)T , c, d}, c 6= 0, d 6= 0 be given. Then

A · v1 =


 0.5 · (a− b)

0.25a + 0.5b


 ; A · v2 =


 0.5(a + c− b)

0.25(a + c) + 0.5b


 ;

A · v3


 0.5 · (a− b− d)

0.25a + 0.5(b + d)


 .

Assuming (4.10) implies

(a, b)T ≤ A · v3 ⇒ a ≤ −b− d and (27)

(a, b)T ≤ A · v1 ⇒ b ≤ 0.5a. (28)

The condition

x− a

c
+

y − b

d
≤ 1 for (x, y)T = A · vν , ν = 1, 2, 3

implies for (x, y)T = A · v2:

1 ≥ −a + c− b

2c
+

a + c− 2b

4d

(4.11)

≥ c + d

2c
+

a + c− 2b

4d

(4.12)

≥ c + d

2c
+

c

4d
. (29)

Consider the function f(c, d) =
c + d

2c
+

c

4d
. The partial derivatives are

∂f

∂c
= −∂f

∂d
=

c2 − 2d2

4c2d
.

For c 6= 0 6= d an extremum of f implies c =
√

2 · d with

f(
√

2d, d) =
(
√

2 + 1)d

2
√

2d
+

√
2d

4d
=

1

2
+

1√
2

> 1.

16

Since this extreme value is obviously a minimum there is a contradiction to (4.13). A short

computation implies immediately that c = 0 or d = 0 forces a = b = c = d = 0, the trivial

case.

In other words A · S ⊆ S is, except the trivial case, not possible although ρ(|A|) < 1. That

means an iteration (1.4) using hyperrectangles will stop for it any starting set X0 whereas

no standard simplex is mapped into itself by the matrix A. This behaviour becomes clear

when looking at the eigenvectors which are (1,−√2/2)t and (1,
√

2/2)t.

There might be other representations of sets being suitable for numerical computations and

allowing to verify convergence of A even if ρ(|A|) ≥ 1. At least the standard simplices do

not seem to be suitable for general matrices.

5 Conclusion

A constructive method has been given for proving convergence of an interval matrix resp. its

absolute value by means of an iteration. It has been shown that the iteration stops if and only

if the absolute value of the matrix resp. the sum of absolute values of real and imaginary

part is convergent. The criterion is applicable on digital computers with the cost of n2

operations per iteration step.

The criterion is especially useful in combination with so-called verification algorithms (see

[13]) for linear and nonlinear systems of equations and other standard problems in numerical

analysis.

For the application to inclusion methods (see [12], [13]) being described for the case of linear

systems in theorem 1 this means the following.

The iteration scheme (1.2) is exactly of the form used in theorems 8 and 9. Therefore an

inclusion of the solution of the linear system with matrix [A] and right hand side [b] will be

computed

for general sets X ∈ IPSn if and only if ρ(C) < 1 and

for hyperrectangles [X] ∈ IIIRn if and only if ρ(|[C]|) < 1,

for hyperrectangles [X] ∈ IICn if and only if ρ(|Re([C])|+ |Im([C])|) < 1

where [C] := I 3− R 3· [A]. In the first case power set operations, in the latter two cases

interval operations 3∗ for ∗ ∈ {+,−, ·, /} are used.

An algorithm based on such an iteration scheme for validated calculation of an inclusion of

Σ([A], [b]) becomes slow when the diameters of [A] are very large. Therefore a combination

17

with a modification of an algorithm proposed by Neumaier has been suggested working very

good for small and for large diameters of [A].

References

[1] ACRITH High-Accuracy Arithmetic Subroutine Library; General Information Manual,

IBM Publications, GC33-6163 (1985)

[2] Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press

(1983)

[3] Hansen, E.: Interval Arithmetic in Matrix Computations, Part 1, SIAM J. Numer.

Anal. 2, pp. 308–320 (1965)

[4] Hansen, E.: Interval Arithmetic in Matrix Computations, Part II, SIAM J. Numer.

Anal. 4, pp. 1–9 (1967)

[5] IEEE 754 Standard for Floating-Point Arithmetic (1986)

[6] Jansson, C.: A Geometric Approach for Computing A Posteriori Error Bounds for the

Solution of a Linear System, Computing 46 (1991)

[7] Jansson, C.: Guaranteed Error Bounds for the Solution of Linear Systems, Contri-

butions to Computer Arithmetic and Self-Validating Numerical Methods (C. Ullrich

editor), J.C. Baltzer AG, Scientific Publishing Co. IMACS, pp. 103–110 (1990)

[8] Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-

schranken, Computing 4, pp. 187–220 (1969)

[9] Kulisch, U., Miranker, W.L.: Computer Arithmetic in Theory and Practice, Academic

Press, New York (1981)

[10] Moore, R.E.: “Interval Analysis”, Prentice Hall, Englewood Cliffs, New Jersey (1966)

[11] Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press

(1990)

[12] Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen, Dissertation, Universität

Karlsruhe (1980)

[13] Rump, S.M.: New Results on Verified Inclusions, in: Miranker, W.L. and R. Toupin

(eds.): Accurate Scientific Computations, Springer Lecture Notes in Computer Science

235, 39 Seiten, (1986)

18

[14] Siemens AG: Arithmos (BS2000). Benutzerhandbuch (1986)

[15] Varga, R.S.: Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, New Jersey

(1962)

[16] Rump, S.M.: Rigorous Sensitivity Analysis for Systems of Linear and Nonlinear Equa-

tions, MATH. of Comp., Vol. 54, No. 190, pp. 721–736 (1990)

19

