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Abstract

The subject of the paper is the derivation and analysis of evolution Galerkin schemes for
the two dimensional Maxwell and linearized Euler equations. The aim is to construct
a method which takes into account better the infinitely many directions of propagation
of waves. To do this the initial function is evolved using the characteristic cone and
then projected onto a finite element space. We derive the divergence-free property and
estimate the dispersion relation as well. We present some numerical experiments for both
the Maxwell and the linearized Euler equations.
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1 Introduction

Evolution Galerkin methods, EG methods, were proposed to approximate the solution of
evolutionary problems of first order hyperbolic systems. In [9] Ostkamp as well as Lukáčová,
Morton and Warnecke in [4, 5] derived such schemes for the approximation of the solution of
the wave equation system and the Euler equations of gas dynamics in two dimensions. In [11]
the approximate evolution operator for the wave equation system in three space dimensions
as well as other 2D EG schemes were derived.

It is well-known, see [4, 5, 8, 9], that a basic tool to derive the EG schemes is the general
theory of bicharacteristics of linear hyperbolic systems. This theory is used to derive the
system of integral equations which is equivalent to the concerned first order system such as
the Maxwell equations or the linearized Euler equations. Using quadratures, these integral
equations lead to the approximate evolution operator that build up the evolution Galerkin
scheme.

Considering the Maxwell equations in free space, it is a straightforward to see that the di-
vergence of the electric field as well as the magnetic field is zero. Numerically, in order to
have an efficient Maxwell solver, this property must be preserved. Further, the dispersion
relation associated with the Maxwell equations has a key role regarding to the accuracy of
the numerical scheme used.

The content of this paper is as follows: in the next section we briefly derive the exact integral
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sitätsplatz 2, 39 106 Magdeburg, Germany, emails: Gerald.Warnecke@mathematik.uni-magdeburg.de,
Yousef.Zahaykah@mathematik.uni-magdeburg.de



.........
............

..................
...............................

........................................................................................................................................................................................................................................................................................................................................................................
.......................

...............
..........
................

..............................
...

................................
................

.....................
................

...................................................................................................................................................................................................................

..........................................................................................................................................................................

......................
......................

......................
............

x
y

t

P = (x, t + 4t)

P ′

Qi(n)
θ

Figure 1: Bicharacteristics along the Mach cone through P and Qi(n)

equations and construct evolution Galerkin schemes. In Section 3 we write down the approxi-
mate evolution operators for the Maxwell equations. Moreover, we show that these operators
preserve the divergence-free property. Further we estimate the dispersion relation for the
Maxwell EG solvers that we used. In Section 4 we derive the approximate evolution operator
for the linearized Euler equations. These results presented here are a basic ingredient in our
extension of the method to the case of the nonlinear Euler equations, see [6]. Finally, in
Section 5 we present some numerical tests for the Maxwell equations as well as the linearized
Euler equations.

2 Exact Integral Equations and Approximate Evolution Op-
erators

In this section we derive exact integral equations for a general hyperbolic system in d−dimensi-
ons. Typical physical examples of hyperbolic conservation laws are, e.g., the Maxwell equa-
tions and the Euler equations of gas dynamics. Using the theory of bicharacteristics one
can derive the equivalent integral equations for these systems, which give a basis for the EG
schemes.
Let the general form of a linear hyperbolic system be given as

Ut +
d∑

j=1

AjUxj = 0, x = (x1, . . . , xd)T ∈ Rd (2.1)

where the coefficient matrices Aj , j = 1, ..., d are elements of Rp×p and the dependent variables
are U = (u1, ..., up)T ∈ Rp. Let A(n) =

∑d
j=1 njAj be the pencil matrix with n =

(n1, ..., nd)T being a directional vector in Rd. Then using the eigenvectors of A(n) the system
(2.1) can be written in a characteristic form via the substitution W = R−1U, where the
columns of the matrix R are the linearly independent right eigenvectors of A(n). Since
the coefficients of the original system are constants the bicharacteristics of the resulting
characteristic system are straight lines PQi and PP ′, see Figure 1. Diagonalizing this system
and integrating along the bicharacteristics lead to the following system of integral equations

U(P ) =
1
|O|

∫
O

R(n)W(Q(n),n)dO +
1
|O|

∫
O

∫ ∆t

0
R(n)S(t + τ,n)dτdO. (2.2)
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Where O is the unit sphere in Rd, |O| its surface measure and S is a nontrivial term which
we call the source term, for more details see [8].

Evolution Galerkin schemes:

For simplicity let us consider d = 2. Consider h > 0 to be the mesh size parameter. We
construct a mesh for R2, which consists of the square mesh cells

Ωkl =
[
(k − 1

2
)h, (k +

1
2
)h

]
×

[
(l − 1

2
)h, (l +

1
2
)h

]
=

[
xk − h

2
, xk +

h

2

]
×

[
yl − h

2
, yl +

h

2

]
,

where k, l ∈ Z. Let us denote by Hκ(R2) the Sobolev space of distributions with derivatives
up to order κ in L2 space, where κ ∈ N. Consider the general hyperbolic system given by
the equation (2.1). Let us denote by E(s) : (Hκ(R2))p → (Hκ(R2))p the exact evolution
operator for the system (2.1), i.e.

U(., t + s) = E(s)U(., t). (2.3)

We suppose that Sm
h is a finite element space consisting of piecewise polynomials of order

m ≥ 0 with respect to the square mesh. Assume constant time step, i.e. tn = n∆t. Let
Un be an approximation in the space Sm

h to the exact solution U(., tn) at time tn ≥ 0. We
consider Eτ : L1

loc(R2) → (Hκ(R2))p to be a suitable approximate evolution operator for E(τ).
In practice we will use restrictions of Eτ to the subspace Sm

h for m ≥ 0. Then we can define
the general class of evolution Galerkin methods.

Definition 2.4 Starting from some initial data U0 ∈ Sm
h at time t = 0, an evolution Galerkin

method (EG-method) is recursively defined by means of

Un+1 = PhEτUn, (2.5)

where Ph is the L2−projection given by the integral averages in the following way

PhUn|Ωkl
=

1
|Ωkl|

∫
Ωkl

U(x, y, tn)dxdy.

We denote by Rh : Sm
h → Sr

h a recovery operator, r ≥ m ≥ 0 and consider our approximate
evolution operator Eτ on Sr

h. We will limit our further considerations to the case where m = 0
and r = 2. Taking piecewise constants the resulting schemes will only be of first order, even
when Eτ is approximated to a higher order. Higher order accuracy can be obtained either by
taking m > 0, or by inserting a recovery stage Rh before the evolution step in equation (2.5)
to give

Un+1 = PhEτRhUn. (2.6)

This approach involves the computation of multiple integrals and becomes quite complex
for higher order recoveries. To avoid this we will consider higher order evolution Galerkin
schemes based on the finite volume formulation instead.

Definition 2.7 Starting from some initial data U0 ∈ Sm
h , the finite volume evolution Galerkin

method (FVEG) is recursively defined by means of

Un+1 = Un − 1
h

∫ ∆t

0

2∑
j=1

δxj fj(Ũ
n+ τ

∆t )dτ, (2.8)
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where δxj fj(Ũ
n+ τ

∆t ) represents an approximation to the edge flux difference and δx is defined
by δx = v(x+ h

2 )−v(x− h
2 ). The cell boundary value Ũn+ τ

∆t is evolved using the approximate
evolution operator Eτ to tn + τ and averaged along the cell boundary, i.e.

Ũn+ τ
∆t =

∑
k,l∈Z

(
1

|∂Ωkl|
∫

∂Ωkl

EτRhUndS

)
χkl, (2.9)

where χkl is the characteristic function of ∂Ωkl.

In this formulation a first order approximation Eτ to the exact operator E(τ) yields an overall
higher order update from Un to Un+1. To obtain this approximation in the discrete scheme it
is only necessary to carry out a recovery stage at each level to generate a piecewise polynomial
approximation Ũn = RhUn ∈ Sr

h from the piecewise constant Un ∈ S0
h, to feed into the

calculation of the fluxes. To construct the second order FVEG schemes, for example, we take
the first order accurate approximate evolution operator and define a bilinear reconstruction
Rh. Among many possible recovery schemes, which can be used, we will choose a discontinuous
bilinear recovery using four point averages at each vertex. It is given as

RhU |Ωkl
= Ukl +

(x − xk)
4h

(∆0xUkl+1 + 2∆0xUkl + ∆0xUkl−1)

+
(y − yl)

4h
(∆0yUk+1l + 2∆0yUkl + ∆0yUk−1l)

+
(x − xk)(y − yl)

h2
∆0y∆0xUkl,

where ∆0zv(z) = 1
2 (v (z + h) − v (z − h)) . Note that in the updating step (2.8) some nu-

merical quadratures are used instead of the exact time integration. Similarly, to evaluate
the intermediate value Ũn+ τ

∆t in (2.9) either the two dimensional integrals along the cell-
interface and around the Mach cone are evaluated exactly or by means of suitable numerical
quadratures.
To close this section note that in this paper we set T to be the absolute end time of a
computation, i.e. T = n∆t. Further the Courant, Friedrichs and Lewy stability number is
denoted by ν and we take it to be ν = c∆t

h for the Maxwell equations. For the linearized
Euler equation we set ν = min(|u′| + c′, |v′| + c′)∆t/h, where u′, v′ are the mean flows in the
x and y directions respectively and c′ is the local sound speed.

3 Maxwell Equations

For the fundamentals of electromagnetic theory and the Maxwell equations see Jackson [3],
Balanis [1], Cheng [2]. Throughout this section we will consider the transverse magnetic (TM)
modes of the electromagnetic fields only. So let us take E = Ezẑ, H = Hxx̂ + Hyŷ, where
x̂, ŷ, ẑ are unit vectors in the direction of x, y, andz, respectively. In free space the Maxwell
equations

∂B
∂t

+ ∇× E = 0,

−∂D
∂t

+ ∇× H = 0,
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are reduced to

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y

)
, (3.1)

∂Hy

∂t
=

1
µ

∂Ez

∂x
, (3.2)

∂Hx

∂t
= − 1

µ

∂Ez

∂y
. (3.3)

Here B denotes the electric field, B is the magnetic field, D, H denote the electric field
density and magnetic field intensity, respectively. Further, it holds D = εE, B = µH, where
ε is the permittivity and µ the permeability of the free space. Using the transformations
φ = Ez√

µ , u = −Hy√
ε

, v = Hx√
ε

and taking c = 1√
εµ equations (3.1)-(3.3) are reduced to the two

dimensional wave equation system

φt + c(ux + vy) = 0,
ut + cφx = 0,
vt + cφy = 0.

(3.4)

Lukáčová et.al. [5] analysed the evolution Galerkin schemes for the system (3.4). Namely they
derived the schemes EG1, EG2 and EG3. Moreover in [11] author derived the EG4 scheme.
Note that the system (3.4) has the following property of irrotationality. We have

d
dt

(uy − vx) = uty − vtx = −c(φxy − φyx) = 0,

i.e. a solution with uy − vx = 0 for time t = 0 satisfies this equation of irrotationality for later
times also. From above we see that

0 = uy − vx =
−1√

ε
[(Hy)y + (Hx)x] =

−1√
ε
∇ · H.

So the vorticity uy − vx for the wave equation system corresponds to the divergence of the
magnetic field. Using the above transformations we end with the following approximate
evolution operators for the Maxwell equations.

Based on the EG4 scheme:

Ez(P ) =
1
2π

∫ 2π

0

[Ez(Q) + Z(2 cos θHy(Q) − 2 sin θHx(Q))]dθ + O(∆t2), (3.5)

Hy(P ) =
1
2π

∫ 2π

0

[
2 cos θEz(Q)

Z
+ 2 cos2 θHy(Q) − 2 sin θ cos θHx(Q)

]
dθ + O(∆t2), (3.6)

Hx(P ) =
1
2π

∫ 2π

0

[−2 sin θEz(Q)
Z

− 2 sin θ cos θHy(Q) + 2 sin2 θHx(Q)
]

dθ + O(∆t2). (3.7)

Based on the EG3 scheme:

Ez(P ) =
1
2π

∫ 2π

0

[Ez(Q) + Z(2 cos θHy(Q) − 2 sin θHx(Q))]dθ + O(∆t2), (3.8)

Hy(P ) =
1
2
Hy(P ′) +

1
2π

∫ 2π

0

[
2 cos θEz(Q)

Z
+ (3 cos2 θ − 1)Hy(Q)

−3 sin θ cos θHx(Q)
]
dθ + O(∆t2), (3.9)

5



Hx(P ) =
1
2
Hx(P ′) +

1
2π

∫ 2π

0

[−2 sin θEz(Q)
Z

− 3 sin θ cos θHy(Q)

+(3 sin2 θ − 1)Hx(Q)
]
dθ + O(∆t2), (3.10)

where Z =
√

µ
ε is the so-called impedance of free space. Taking the projection onto piece-

wise constant functions we obtain the evolution Galerkin schemes for the Maxwell equations.
Numerical schemes based on equations (3.5)−(3.7) and (3.8)−(3.10) are called the EG4 and
the EG3 methods, respectively. Note that these schemes are first order schemes. In order to
have second order methods for the Maxwell equations we use the finite volume formulation
as given in Definition 2.7. Assuming the periodicity of the fields in space we get the following
two lemmas.

Lemma 3.11 The approximate evolution operators for the Maxwell equations EG3 and EG4
are divergence-free.

Proof: We prove only the case of the EG4 scheme, the EG3 scheme can be treated analo-
gously. To this end ∇·E = 0 follows immediately from the assumption that E = Ez(x, y, t)ẑ.
Now taking the derivatives with respect to y and x of the equations (3.6) and (3.7), respec-
tively we get

∂Hy

∂y
(P ) =

1
2π

∫ 2π

0

(
2 cos θ

Z

∂Ez

∂y
(Q) + 2 cos2 θ

∂Hy

∂y
(Q) − 2 sin θ cos θ

∂Hx

∂y
(Q)

)
dθ

(3.12)
∂Hx

∂x
(P ) =

1
2π

∫ 2π

0

(−2 sin θ

Z

∂Ez

∂x
(Q) − 2 sin θ cos θ

∂Hy

∂x
(Q) + 2 sin2 θ

∂Hx

∂x
(Q)

)
dθ.

(3.13)

Adding equation (3.12) to the equation (3.13) we obtain

∂Hx

∂x
(P ) +

∂Hy

∂y
(P ) =

1
2π

∫ 2π

0

[
2
Z

(
cos θ

∂Ez

∂y
(Q) − sin θ

∂Ez

∂x
(Q)

)

+2
(

cos2 θ
∂Hy

∂y
(Q) − sin θ cos θ

∂Hy

∂x
(Q)

)

+2
(

sin2 θ
∂Hx

∂x
(Q) − sin θ cos θ

∂Hx

∂y
(Q)

)]
dθ. (3.14)

Now the integral of the first term of equation (3.14) is zero because

∫ 2π

0

2
Z

(
cos θ

∂Ez

∂y
(Q) − sin θ

∂Ez

∂x
(Q)

)
dθ =

∫ 2π

0

2
Z

(− sin θ, cos θ)T · ∇Ezdθ =
∫ 2π

0

2
Z

dEz

and E is a periodic field. We use the periodicity of the magnetic field H and the fact that
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the initial data are divergence-free. Then integration by parts gives
∫ 2π

0

(
cos2 θ

∂Hy

∂y
(Q) − sin θ cos θ

∂Hy

∂x
(Q)

)
dθ

=
∫ 2π

0
cos θ

(
∂Hy

∂y
(Q) − sin θ

∂Hy

∂x
(Q)

)
dθ

=
∫ 2π

0
cos θ (− sin θ, cos θ)T · ∇Hy(Q)dθ

=
∫ 2π

0
cos θ

dHy

dθ
(Q)dθ

=
∫ 2π

0
sin θHy(Q)dθ. (3.15)

Analogously we have
∫ 2π

0

(
sin2 θ

∂Hx

∂x
(Q) − sin θ cos θ

∂Hx

∂y
(Q)

)
dθ =

∫ 2π

0
cos θHx(Q)dθ. (3.16)

Adding equations (3.15) and (3.16) we get
∫ 2π

0

(
sin2 θ

∂Hx

∂x
(Q) − sin θ cos θ

∂Hy

∂x
(Q) + cos2 θ

∂Hy

∂y
(Q) − sin θ cos θ

∂Hx

∂y
(Q)

)
dθ

=
∫ 2π

0
(cos θHx(Q) + sin θHy(Q)) dθ

=
∫ 2π

0
H(Q) · ndθ

=
∮

∇ · H(Q)dS

= 0.

Therefore ∇ · H = 0. This concludes the proof of the lemma. ¤

Remark 3.17 Similar results hold also for other EG operators, i.e. EG1, EG2, the operator
of Ostkamp, cf. [5] for the precise formulation.

Our next aim is to approximate the dispersion relation. To this end note that a frequently
used technique to characterize the error of numerical schemes of the Maxwell equations is the
Fourier analysis. Neglecting the boundary conditions, we make the following ansatz for the
three unknown components:

ψn
IJ = ψ0 exp i(ξ̃Ih + η̃Jh − ωn∆t), (3.18)

where i =
√−1, h is the space increment and ξ̃ and η̃ are the x and y components of the

numerical wave vector, respectively. In the case of the exact solution this gives

ψ(x, y, t) = ψ0 exp i(ξx + ηy − ωt). (3.19)

The numerical wave vector k̃ = (ξ̃, η̃)T will in general differ from the physical wave vector
k = (ξ, η)T satisfying |k| =

√
ξ2 + η2 = ω

c . This is called the dispersion relation. Here ω is
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the angular frequency and c is the speed of light. The difference between k and k̃ gives rise
to numerical phase and group velocities that depart from the analytical values. This causes
numerical errors that accumulate in time. Hence the dispersion analysis is important to assess
the accuracy of a numerical solution. In the next lemma we study the approximation of the
dispersion relation for the EG4 method in the case of Maxwell equations.

Lemma 3.20 For the EG4 method (3.5)-(3.7) the following dispersion relation holds

(ω

c

)2
=

(
ξ̃2 + η̃2

)
+ O(h). (3.20)

Proof: First we write out the finite difference formulation of the EG4 scheme

Ezn+1
= (1 + a11(s2

x + s2
y) + b11s

2
xs2

y)Ezn

+ Z(ν(1 + a12s
2
y)∆0xHyn − ν(1 + a13s

2
x)∆0yHxn

),
(3.21)

Hyn+1
= (1 + (a22s

2
x + a′

22s
2
y) + b22s

2
xs2

y)Hyn

+
ν

Z
(1 + a21s

2
y)∆0xEzn − ν2a23∆0x∆0yHxn

,

(3.22)

Hxn+1
= (1 + (a33s

2
x + a′

33s
2
y) + b33s

2
xs2

y)Hxn − ν

Z
(1 + a31s

2
x)∆0yEzn − ν2a32∆0x∆0yHyn

,

(3.23)

where ν = c∆t
h , ∆0z = f(z+h)−f(z−h)

2 , s2
z = f(z + h) − 2f(z) + f(z − h) and

a11 = ν
π
, b11 = ν2

4π
, a12 = 2ν

3π
, a13 = 2ν

3π
,

a21 = 2ν
3π

, a22 = 4ν
3π

, a′
22 = 2ν

3π
, b22 = ν2

4π
, a23 = 1

4
,

a31 = 2ν
3π

, a32 = 1
4
, a33 = 2ν

3π
, a′

33 = 4ν
3π

, b33 = ν2

4π
.

Substituting from equation (3.18) into equations (3.21)−(3.23) we get

−iω∆t = 2a11(cos(hξ̃) − 1) + 2a11(cos(hη̃) − 1) + 4b11(cos(hξ̃) − 1)(cos(hη̃) − 1)

+iZν
Hy

0

Ez
0

sin(hξ̃) [1 + 2a12(cos(hη̃) − 1)]

−iZν
Hx

0

Ez
0

sin(hη̃)
[
1 + 2a13(cos(hξ̃) − 1)

]
, (3.24)

−iω∆t = 2a22(cos(hξ̃) − 1) + 2a′22(cos(hη̃) − 1) + 4b22(cos(hξ̃) − 1)(cos(hη̃) − 1)

+i
ν

Z

Ez
0

Hy
0

sin(hξ̃) [1 + 2a21(cos(hη̃) − 1)] + ν2a23
Hx

0

Hy
0

sin(hη̃) sin(hξ̃),

(3.25)

−iω∆t = 2a33(cos(hξ̃) − 1) + 2a′33(cos(hη̃) − 1) + 4b33(cos(hξ̃) − 1)(cos(hη̃) − 1)

−i
ν

Z

Ez
0

Hx
0

sin(hη̃)
[
1 + 2a31(cos(hξ̃) − 1)

]
+ ν2a32

Hy
0

Hx
0

sin(hη̃) sin(hξ̃).

(3.26)
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Now equations (3.25) and (3.26) imply, respectively, that

Hy
0

Ez
0

=
ν
Z sin(hξ̃)[1 + 2a21(cos(hη̃) − 1)]

−ω∆t + i[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]
, (3.27)

Hx
0

Ez
0

=
ν
Z sin(hη̃)[1 + 2a31(cos(hξ̃) − 1)]

ω∆t − i[β + ν2a32
Hy

0
Hx

0
sin(hξ̃) sin(hη̃)]

, (3.28)

where

α := 2a22(cos(hξ̃) − 1) + 2a′22(cos(hη̃) − 1) + 4b22(cos(hξ̃) − 1)(cos(hη̃) − 1),
β := 2a33(cos(hξ̃) − 1) + 2a′33(cos(hη̃) − 1) + 4b33(cos(hξ̃) − 1)(cos(hη̃) − 1).

Substituting equations (3.27) and (3.28) into equation (3.24) leads to

ω∆t = i γ − ν2 sin2(hξ̃)(1 + 2a12(cos(hη̃) − 1))2

−ω∆t + i(α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃))

− ν2 sin2(hη̃)(1 + 2a13(cos(hξ̃) − 1))2

−ω∆t + i(β + ν2a32
Hy

0
Hx

0
sin(hξ̃) sin(hη̃))

, (3.29)

where

γ := 2a11(cos(hξ̃) − 1) + 2a11(cos(hη̃) − 1) + 4b11(cos(hξ̃) − 1)(cos(hη̃) − 1).

Equation (3.29) can be written on the form

(ω∆t − i γ)(−ω∆t + i[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)])(−ω∆t + i[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)])

= −ν2 sin2(hξ̃)[1 + 2a12(cos(hη̃) − 1)]2(−ω∆t + i[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)])

−ν2 sin2(hη̃)[1 + 2a13(cos(hξ̃) − 1)]2(−ω∆t + i[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]).

(3.30)

Using Taylor expression we can show that γ, α and β are of order ν2O(h2) and sin(hx) =
hx + O(h3). The left and the right hand sides of equation (3.30) can be written as

LHS = (−ω2∆t2 + iω γ ∆t + iω∆t[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]

+γ[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)](−ω∆t

+i[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)])
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= ω3∆t3 − iω2∆t2[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)] − iω2∆t2 γ

−γ ω∆t[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)]

−iω2∆t2[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]

−ω∆t[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)][β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)]

−ω∆t γ[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]

+i γ[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)][β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)]

= ω3∆t3 + ν2ω∆tO(h3),

RHS = ν2ω∆t sin2(hξ̃) − ν2 sin2(hξ̃)i[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)]

+ν2ω∆t sin2(hξ̃)4a12(cos(hη̃) − 1)

−iν2 sin2(hξ̃)4a12(cos(hη̃) − 1)[β + ν2a32
Hy

0

Hx
0

sin(hξ̃) sin(hη̃)]

+ν2ω∆t sin2(hξ̃)4a2
12(cos(hη̃) − 1)2

−iν2ω∆t sin2(hξ̃)4a2
12(cos(hη̃) − 1)2[β + ν2a32

Hy
0

Hx
0

sin(hξ̃) sin(hη̃)]

+ν2ω∆t sin2(hη̃) − ν2 sin2(hη̃)i[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]

+ν2ω∆t sin2(hη̃)4a13(cos(hξ̃) − 1)

−iν2 sin2(hη̃)4a13(cos(hξ̃) − 1)[α + ν2a23
Hx

0

Hy
0

sin(hξ̃) sin(hη̃)]

+ν2ω∆t sin2(hη̃)4a2
13(cos(hξ̃) − 1)2

−iν2ω∆t sin2(hη̃)4a2
13(cos(hξ̃) − 1)2[α + ν2a23

Hx
0

Hy
0

sin(hξ̃) sin(hη̃)]

= ν2ω∆t[sin2(hξ̃) + sin2(hη̃)] + ν2ω∆tO(h3).

Therefore we have
ω3∆t3 = ν2ω∆t[sin2(hξ̃) + sin2(hη̃)] + O(h3). (3.31)

Finally equation (3.31) leads to (3.20), which concludes the proof. ¤
In an analogous way the same result can be shown for the EG3 scheme.

Corollary 3.32 For the EG3 method (3.8)-(3.10) the following dispersion relation holds

(ω

c

)2
=

(
ξ̃2 + η̃2

)
+ O(h).
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4 Approximate Evolution Operators for Linearized Euler Equa-
tions in 2D

In this section we derive an evolution Galerkin scheme for the linearized Euler equations of
gas dynamics written in primitive variables. This will be used in [6] for the full nonlinear case.
This scheme is similar to the EG4 scheme for the two-dimensional wave equation system. To
define it we consider the linearized Euler equations with frozen coefficients

Ut + A1(U′)Ux + A2(U′)Uy = 0, x = (x, y)T ∈ R2, (4.1)

where

U :=




ρ
u
v
p


 , U′ :=




ρ′

u′

v′

p′


 , A1 :=




u′ ρ′ 0 0
0 u′ 0 1

ρ′

0 0 u′ 0
0 ρ′(c′)2 0 u′


 ,

A2 :=




v′ 0 ρ′ 0
0 v′ 0 0
0 0 v′ 1

ρ′

0 0 ρ′(c′)2 v′


 .

Here ρ denotes the density, u and v denote the two components of the velocity vector and p
denotes the pressure. Symbols ρ′, u′, v′ and p′ stay for the local variables at a point (x′, y′),
c′ =

√
γp′
ρ′ is the local speed of the sound there and γ is isotropic exponent (γ = 1.4 for a dry

air ). We use the theory given in Section 2 to derive the integral equations that correspond
to the system (4.1), see also [4], [6] for a derivation of other approximate evolution operators
for the Euler equations. Thus we take the direction n(θ) := (cos θ, sin θ)T in R2 and define
the pencil matrix to be A(n) := A1 cos θ + A2 sin θ. The eigenvectors of A(n) are

λ1 = u′ cos θ + v′ sin θ − c′,
λ2 = λ3 = u′ cos θ + v′ sin θ,

λ4 = u′ cos θ + v′ sin θ + c′,

and the corresponding right eigenvectors are

r1 =




−ρ′
c′

cos θ
sin θ
−ρ′c′


 , r2 =




1
0
0
0


 , r3 =




0
sin θ

− cos θ
0


 , r4 =




ρ′
c′

cos θ
sin θ
ρ′c′


 .

Take the matrix R to be the matrix of the right eigenvectors. Then multiplying system (4.1)
from the left by the inverse matrix

R−1 =




0 cos θ sin θ −1
2ρ′c′

1 0 0 −1
c′2

0 sin θ − cos θ 0
0 cos θ sin θ 1

2ρ′c′




11



we get the characteristic system

Wt + B1Wx + B2Wy = 0, (4.2)

where

W =




w1

w2

w3

w4


 = R−1U =




1
2

(
− p

ρ′c′ + u cos θ + v sin θ
)

ρ − p
c′2

u cos θ − v sin θ
1
2

(
p

ρ′c′ + u cos θ + v sin θ
)




is the vector of the characteristic variables and

B1 = R−1A1 R =




u′ − c′ cos θ 0 −1
2c′ sin θ 0

0 u′ 0 0
−c′ sin θ 0 u′ c′ sin θ

0 0 1
2c′ sin θ u′ + c′ cos θ


 ,

B2 = R−1A2 R =




v′ − c′ sin θ 0 1
2c′ cos θ 0

0 v′ 0 0
c′ cos θ 0 v′ −c′ cos θ

0 0 −1
2c′ cos θ v′ + c′ sin θ


 .

Diagonalizing system (4.2) we end up with

Wt + Λ1Wx + Λ2Wy = S, (4.3)

where

S =




S1

S2

S3

S4


 =




1
2c′

(
sin θ ∂w3

∂x − cos θ ∂w3
∂y

)
0

c′ sin θ
(

∂w1
∂x − ∂w4

∂x

)
− c′ cos θ

(
∂w1
∂y − ∂w4

∂y

)
1
2c′

(
− sin θ ∂w3

∂x + cos θ ∂w3
∂y

)




and

Λ1 =




u′ − c′ cos θ 0 0 0
0 u′ 0 0
0 0 u′ 0
0 0 0 u′ + c′ cos θ


 ,

Λ2 =




v′ − c′ sin θ 0 0 0
0 v′ 0 0
0 0 v′ 0
0 0 0 v′ + c′ sin θ


 .

Let us define the bicharacteristics x1, x2, x3, x4 corresponding to each equation of system
(4.3) as

dx1

dt̃
:= (u′ − c′ cos θ, v′ − c′ sin θ)T ,

dx2

dt̃
:= (u′, v′)T ,
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dx3

dt̃
:= (u′, v′)T ,

dx4

dt̃
:= (u′ + c′ cos θ, v′ + c′ sin θ)T .

Note that as θ varies from 0 to 2π the resulting geometry is a Mach cone shown in Figure 2
for the supersonic case c′2 > u′2 + v′2. Moreover we use the initial data xi(n, t + ∆t) = x to

P = (x, y, t + ∆t)

P ′
Qi(θ)

x
y

t
θ

Figure 2: Bicharacteristic along the Mach cone through P and Qi(θ), supersonic case.

solve the above ordinary differential equations backwards and get the footpoints Qi(θ) of the
bicharacteristics. The final result reads

Q1 = (x − (u′ − c′ cos θ)∆t, y − (v′ − c′ sin θ)∆t, t),
Q2 = Q3 = P ′ = (x − u′∆t, y − v′∆t, t),
Q4 = (x − (u′ + c′ cos θ)∆t, y − (v′ + c′ sin θ)∆t, t).

Now we integrate each equation of the characteristic system (4.3) along the corresponding
bicharacteristic from the point P = (x, y, t + ∆t) down to the point Q where it hits the base
of the Mach cone, see Figure 2. Further, multiplying the resulting system by the matrix R
from the left we obtain the following integral equations:

UP =
1
2π

∫ 2π

0




−ρ′
c′ w1 + w2 + ρ′

c′ w4

w1 cos θ + w3 sin θ + w4 cos θ
w1 cos θ − w3 sin θ + w4 cos θ

−ρ′c′w1 + ρ′c′w4


 dθ

+
1
2π

∫ 2π

0




−ρ′
c′ S

′
1 + S′

2 + ρ′
c′ S

′
4

S′
1 cos θ + S′

4 sin θ + S′
4 cos θ

S′
1 sin θ − S′

3 cos θ + S′
4 sin θ

−ρ′c′S′
1 + ρ′c′S′

4


dθ, (4.4)

where S′
i =

∫ t+∆t
t Si(xi(t̃, θ), t̃, θ)dt̃. We use the symmetry between the points Q1 and Q3

and the fact that the functions wi as well as the points Qi are 2π-periodic. Then with the
notation

S(x, t, θ) := c′[sin θ2ux(x, t, θ) − sin θ cos θ(uy(x, t, θ) + vx(x, t, θ)) + cos θ2vy(x, t, θ)]
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and Q := Q1 we can rewrite system (4.4) in the following way

ρ(x, t + ∆t) = ρ(P ′) − p(P ′)
c′2

+
1
2π

∫ 2π

0

(
p(Q)
c′2

− ρ′

c′
u(Q) cos θ − ρ′

c′
v(Q) sin θ

)
dθ

−ρ′

c′
1
2π

∫ 2π

0

∫ ∆t

0
S(x − (u′ − c′n(θ))τ, t + ∆t − τ, θ) dτdθ,

(4.5)

u(x, t + ∆t) =
1
2
u(P ′) − 1

2ρ′

∫ ∆t

0
px(P ′) dτ

+
1
2π

∫ 2π

0

(
−p(Q)

ρ′c′
cos θ + u(Q) cos2 θ + v(Q) sin θ cos θ

)
dθ

+
1
2π

∫ 2π

0

∫ ∆t

0
cos θS(x − (u′ − c′n(θ))τ, t + ∆t − τ, θ) dτdθ,

(4.6)

v(x, t + ∆t) =
1
2
v(P ′) − 1

2ρ′

∫ ∆t

0
py(P ′) dτ

+
1
2π

∫ 2π

0

(
−p(Q)

ρ′c′
sin θ + u(Q) sin θ cos θ + v(Q) sin2 θ

)
dθ

+
1
2π

∫ 2π

0

∫ ∆t

0
sin θS(x − (u′ − c′n(θ))τ, t + ∆t − τ, θ) dτdθ,

(4.7)

p(x, t + ∆t) =
1
2π

∫ 2π

0

(
p(Q) − ρ′c′u(Q) cos θ − ρ′c′v(Q) sin θ

)
dθ

−ρ′c′
1
2π

∫ 2π

0

∫ ∆t

0
S(x − (u′ − c′n(θ))τ, t + ∆t − τ, θ) dτdθ.

(4.8)

Now from the second and the third equation of system (4.1) we get

px = −ρ′(ut + u′ux + v′uy),
py = −ρ′(vt + u′vx + v′vy).

Hence the second term of equation (4.6) can be written as

− 1
2ρ′

∫ ∆t

0
px(P ′) dτ =

1
2

∫ ∆t

0
(uτ + u′ux + v′uy) dτ

=
∫ ∆t

0
∇τ,x,yu · (1, u′, v′)T dτ. (4.9)

Since the vector (1, u′, v′)T represents the direction of the bicharacteristics joining the two
points P ′ and P , see Figure 2, equation (4.9) implies that

− 1
2ρ′

∫ ∆t

0
px(P ′) dτ =

u(P ) − u(P ′)
2

.
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Therefore equation (4.6) takes the form

u(x, t + ∆t) =
1
2π

∫ 2π

0

(
−2

p(Q)
ρ′c′

cos θ + 2u(Q) cos2 θ + 2v(Q) sin θ cos θ

)
dθ

+
1
2π

∫ 2π

0

∫ ∆t

0
2 cos θS(x − (u′ − c′n(θ))τ, t + ∆t − τ, θ) dτdθ.

(4.10)

Analogously we can show that

− 1
2ρ′

∫ ∆t

0
py(P ′) dτ =

v(P ) − v(P ′)
2

,

and

v(x, t + ∆t) =
1
2π

∫ 2π

0

(
−2

p(Q)
ρ′c′

sin θ + 2u(Q) sin θ cos θ + 2v(Q) sin2 θ

)
dθ

+
1
2π

∫ 2π

0

∫ ∆t

0
2 sin θS(x − (u′ − c′n(θ))τ, t + ∆t − τ, θ) dτdθ.

(4.11)

Using [5, Lemma 2.1] and the fact that S cos θ and S sin θ can be neglected, because they
are second order terms in time evolution, i.e. O(∆t2), cf. [9], we can derive the following
approximate evolution operator to the linearized Euler equations (4.1):

ρ(x, t + ∆t) = ρ(P ′) − p(P ′)
c′2

+
1
2π

∫ 2π

0

(
p(Q)
c′2

− 2
ρ′

c′
u(Q) cos θ − 2

ρ′

c′
v(Q) sin θ

)
dθ

+O(∆t2), (4.12)

u(x, t + ∆t) =
1
2π

∫ 2π

0

(
−2

p(Q)
ρ′c′

cos θ + 2u(Q) cos2 θ + 2v(Q) sin θ cos θ

)
dθ

+O(∆t2), (4.13)

v(x, t + ∆t) =
1
2π

∫ 2π

0

(
−2

p(Q)
ρ′c′

sin θ + 2u(Q) sin θ cos θ + 2v(Q) sin2 θ

)
dθ

+O(∆t2), (4.14)

p(x, t + ∆t) =
1
2π

∫ 2π

0

(
p(Q) − 2ρ′c′u(Q) cos θ − 2ρ′c′v(Q) sin θ

)
dθ

+O(∆t2). (4.15)

As we mentioned before this scheme is analogous to the EG4 scheme of the wave equation
system. We call it the EG4-Euler scheme.
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5 Numerical Examples

Example 5.1 Rectangular waveguide

We consider a rectangular waveguide in rectangular cross section of sizes a and b. The
dielectric parameters are ε and µ. For transverse magnetic waves, i.e. TM modes, Hz = 0
and Ez satisfy the differential equation

∆E − 1
c2

∂2E
∂t2

= 0, (5.2)

where c = 1√
εµ is the speed of wave propagation. Note that the fields E and H have in the

Cartesian coordinates the following form

E = Exx̂ + Eyŷ + Ezẑ,

H = Hxx̂ + Hyŷ + Hzẑ.

If the time convention eiωt is used then equation (5.2) will change to

∆E +
ω2

c2
E = 0. (5.3)

Further, if we assume Ez(x, y, z) = Ez
0(x, y)e−γz then (5.3) implies that

[
∂2

∂x2
+

∂2

∂y2
+ (γ2 +

ω2

c2
)
]

Ez
0 = 0.

Using the boundary conditions
Ez

0(0, y) = 0
Ez

0(a, y) = 0
Ez

0(x, 0) = 0
Ez

0(x, b) = 0,

where 0 ≤ x ≤ a and 0 ≤ y ≤ b, we obtain Ez
0 from the above differential equation and thus

determine the electric field components Ex, Ey, Ez and the magnetic field components Hx

and Hy. For example

Ez(x, y, z, t) = E0 sin
(π

a
x
)

sin
(π

b
y
)

cos(ωt − βz),

where γ = iβ = i
√

ω2µε − (
mπ
a

)2 − (
nπ
b

)2, for more details see [1] or [2]. If we take

ω = cπ
√(

m
a

)2 +
(

n
b

)2, i.e. the cutoff frequency, then for the case a = b = 1 and m = n = 1
the exact solution Ez(x, y, z, t) has the form

Ez(x, y, t) = sin(πx) sin(πy) cos(
√

2πct),

where we set E0 = 1. To use the EG4 scheme denote Ez(x, y, t) by ψ(x, y, t) and solve the
wave equation

ψtt = c2(ψxx + ψyy),
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together with the initial conditions

ψ(x, y, 0) = sin(πx) sin(πy), ψt(x, y, 0) = 0,

and the boundary conditions

ψ(0, y, t) = 0, t ≥ 0, 0 ≤ y ≤ 1
ψ(1, y, t) = 0, t ≥ 0, 0 ≤ y ≤ 1
ψ(x, 0, t) = 0, t ≥ 0, 0 ≤ x ≤ 1
ψ(x, 1, t) = 0, t ≥ 0, 0 ≤ x ≤ 1.

Defining φ, u, and v such that φ = ψt, u = cψx, v = cψy we obtain the following system

φt − c(ux + vy) = 0
ut − cφx = 0
vt − cφy = 0 on ]0, 1[2×[0,∞[

φ(x, y, 0) = 0
u(x, y, 0) = cπ cos(πx) sin(πy)
v(x, y, 0) = cπ sin(πx) cos(πy) on [0, 1]2.

The exact solution is

φ = −
√

2πc sin(πx) sin(πy) sin(
√

2πct),
u = cπ cos(πx) sin(πy) cos(

√
2πct),

v = cπ sin(πx) cos(πy) cos(
√

2πct),

We take φ = 0 on the boundary of Ω and extrapolate u and v there. We apply the transfor-
mations t → t

t0
, φ → φt0, u → ut0 and v → vt0 where t0 =

√
2πc. The following two tables

show the L2-error and the experimental order of convergence (EOC), which is defined in the
following way using the solutions computed on two meshes of sizes N1, N2

EOC = log
‖UN1(T ) − Un

N1
‖

‖UN2(T ) − Un
N2

‖/ log
(

N1

N2

)
.

Scheme N L2-error-far L2-error-near L2-error
EG4 40 0.000219 0.000872 0.000899

80 0.000091 0.000438 0.000447
100 0.000067 0.000362 0.000368
120 0.000054 0.000312 0.000317
140 0.000047 0.000276 0.000280
160 0.000039 0.000247 0.000250

Table 1: T=0.2, CFL=0.55, L2-error between the discrete and the exact solutions.

In Table 1 the L2-error-far represents the error in the region far from the boundary while
the L2-error-near stands for the error near the boundary. In Table 2 we measure the speed
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N ‖φ(T ) − φn‖ ‖u(T ) − un‖ ‖U(T ) − Un‖ EOC
40 0.000219 0.000368 0.000564
80 0.000091 0.000178 0.000267 1.078855
160 0.000039 0.000084 0.000125 1.094912
320 0.000019 0.000042 0.000062 1.011588
640 0.000009 0.000021 0.000031 1.000000

Table 2: EG4 scheme, T=0.2, CFL=0.55.

of the convergence of the EG4 scheme. We see that it is approximately equal to 1, which
is correct since the approximate evolution operator EG4 is of first order in time and the
shape functions are piecewise constants in space. From the tables we see that the overall
L2−error decreases as the mesh is refined. This shows that the method converges. Note
that the error is dominated by an error produced due to the numerical boundary conditions,
namely the extrapolation for u and v. In [7] we were able to improve this situation by using
more sophisticated numerical boundary conditions. Observe again that the error in u due to
the numerical boundary condition is much higher than the error in φ. For φ we can use the
Dirichlet condition directly.

Example 5.4 Divergence test

Let Ω = [−1, 1]× [−1, 1]. Consider the Maxwell equations (3.1)-(3.3). Let the initial data be

Ez(x, y, 0) = sin
(π

2
x
)

sin
(π

2
y
)

,

Hx(x, y, 0) = Hy(x, y, 0) = 0 in Ω

and suppose that the boundary of Ω is a perfect conductor. Then using the transformations
t → t

c , Ez → φ, Hy → u
Z0

and Hx → − v
Z0

, these equations read

∂φ

∂t
=

∂u

∂x
+

∂v

∂y
,

∂u

∂t
=

∂φ

∂x
,

∂v

∂t
=

∂φ

∂y
.

To test that the magnetic field is divergence-free remember that by the definition ∂Ez

∂z = 0.
Further,

∂Hx

∂x
+

∂Hy

∂y
=

1
Z0

(
∂u

∂y
− ∂v

∂x

)
.

Then ∇ ·H = 0 can be written as ∂u
∂y − ∂v

∂x = 0, i.e. the divergence-free property is equivalent
to the vanishing vorticity in the case of TM modes. In Table 3 we present the vorticity
preservation for the EG4 scheme. We compute the discrete vorticity DV given by the formula

DVα′β′ = µxδyuα′,β′ − µyδxvα′,β′ , for each α′, β′ ∈ Z,

where we have denoted by uα′,β′ values at vertices of square mesh cells, δx is used as de-
fined before, and µxu = 1

2

[
u

(
x + h

2

)
+ u

(
x − h

2

)]
. In Table 3 we show reference values for

DVα′β′ , namely, the average value (vor-aver), the minimum (vor-min) and the maximum (vor-
max). The values of vor-aver demonstrate that the EG4 scheme preserves the divergence-free
property in a good manner.
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100 × 100 200 × 200 400 × 400
vor-aver 0.00092521478 0.00029260981 0.00010088980
vor-min -0.01221328952 -0.00948232290 -0.01140008104
vor-max 0.01221328952 0.00948232290 0.01140008104

Table 3: Preservation of zero divergence, CFL=0.55, 100 time steps.

Example 5.5 Linearized Euler Equations Problem

In this experiment we consider the linearized Euler equations

Ut + A1(U′)Ux + A2(U′)Uy = 0, x = (x, y)T ∈] − 1, 1[×] − 1, 1[, (5.6)

where

U :=




ρ
u
v
p


 , U′ :=




1
u′

v′
1
γ


 , A1 :=




u′ 1 0 0
0 u′ 0 1
0 0 u′ 0
0 1 0 u′


 , A2 :=




v′ 0 1 0
0 v′ 0 0
0 0 v′ 1
0 0 1 v′


 .

Note that this system is a special case of system (4.1) with ρ′ = c′ = 1. Here u′ and v′

are given constants representing the mean flow in the direction of x and y, respectively. We
consider system (5.6) together with initial data containing acoustic, entropy and vorticity
pulses as follows

ρ(x, y, 0) = 2.5 exp(−40((x − xa)2 + (y − ya)2)) + 0.5 exp(−40((x − xb)2 + (y − yb)2)),
u(x, y, 0) = 0.05 exp(−40((x − xb)2 + (y − yb)2)),
v(x, y, 0) = −0.05 exp(−40((x − xb)2 + (y − yb)2)),
p(x, y, 0) = 2.5 exp(−40((x − xa)2 + (y − ya)2)).

We suppose that the main flow is in the direction making a 45o angle with the x−axis and
that u′ = v′ = 0.5 sin(π

4 ). Moreover, we assume that the initial location of the acoustic pulse
is at (xa, ya) = (−0.31,−0.31), whereas the entropy and vorticity is at (xb, yb) = (0.39, 0.39).
We set the CFL number ν to be 0.45 and take a mesh consisting of 100 × 100 cells. In
Figure 3, top-left, we compare the exact solution, the numerical solution using the first order
FVEG4-Euler scheme and the Lax-Friedrichs (tensor product) scheme, which is defined by

Un+1 =
Lx

h · Ly
h + Ly

h · Lx
h

2
Un, (5.7)

where the operator Lx
h for the linear one dimensional system with constant coefficients

Ut + A1Ux = 0

is given as:

Lx
h =

τ i
h + τ i

−h

2
− ∆t

2h
A1

(
τ i
h − τ i

−h

)
, where τ i

±hU
n
ij = Un

i±1j .

The solutions are plotted along the line y = x at time T = 0.166. In the top-right picture we
show the same comparison between the second order FVEG4-Euler scheme, the Lax-Wendroff
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(tensor product) scheme and the exact solution. Note that the Lax-Wendroff (tensor product)
scheme is defined by equation (5.7) with Lh given as:

Lx
h = I −

(
∆t

h

)
A1∆0x +

1
2

(
∆t

h

)2

A2
1δ

2
x,

where ∆0xv(x) = 1
2 [v(x + h) − v(x − h)] , δ2

xv(x) = v(x+h)−2v(x)+v(x−h). This is the sym-
metrical product also known as Strang splitting, see Strang [10]. In the bottom-left picture
we give the comparison between the second order FVEG4-Euler scheme, the Lax-Wendroff
(tensor product) scheme and the exact solution at time T = 0.332. In the bottom-right
picture we compare the second order FVEG4-Euler scheme and the Lax-Wendroff (tensor
product) scheme at time T = 0.665. We conclude that the acoustic part of the solution is
moving faster than the entropy part and that the result using the FVEG4 first order is more
accurate than that of the Lax-Friedrichs scheme. Moreover, both the FVEG4 second order
and the Lax-Wendroff (tensor product) schemes give a comparable approximation of the ex-
act solution. The difference between the schemes FVEG4 second order and the Lax-Wendroff
(tensor product) as the time developed (see Figure 3 bottom-right) is quite small for smooth
solution.

Conclusions: In this paper we have derived and analyzed two approximate evolution oper-
ators (EG3, EG4) for the Maxwell equation of the electromagnetics. Both operators are of
first order in time and are based on a general theory for multidimensional linear hyperbolic
systems of first order. As a result the numerical schemes take into account all of the infinitely
many direction of wave propagations along the so-called bicharacteristic cone. Further, for
the Maxwell equations the approximation of the dispersion relation was studied. It is shown
that this relation is approximated with the first order error, which is correct for the piecewise
constant shape functions. Moreover it is shown that an important divergence-free property of
the solution to the Maxwell equations is satisfied exactly by the approximate EG operators,
i.e. EG1, EG2, EG3, EG4. In the second part of this paper we have applied the general tech-
nique of the EG-operators to the linearized Euler equations and derive a new EG4 operator
for the Euler equation system. Some numerical experiments for the Maxwell equations and
for the Euler equations were presented in the last section. These experiments demonstrate
good higher order as well as multi-dimensional behaviour of the FVEG schemes for linear hy-
perbolic systems. Generalization of the results presented in this paper to nonlinear problems
can be found e.g. in [4, 6].
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Figure 3: Density along the line y = x, u′ = v′ = 0.5 sin(π
4 ), CFL= 0.45, mesh: 100×100.

Top-left: T = 0.166, comparison between the first order FVEG4-Euler scheme, Lax-Friedrichs
(tensor product) scheme and the exact solution, top-right: T = 0.166, comparison between
the second order FVEG4-Euler scheme, the Lax-Wendroff (tensor product) scheme and the
exact solution, bottom-left: T = 0.332, bottom-right: T = 0.665, comparison between the
second order FVEG4-Euler and the Lax-Wendroff (tensor product) scheme.
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