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Abstract
Broken cells in the finite cell method—especially those with a small volume fraction—lead to a high condition number of the
global system of equations. To overcome this problem, in this paper, we apply and adapt an eigenvalue stabilization technique
to improve the ill-conditioned matrices of the finite cells and to enhance the robustness for large deformation analysis. In this
approach, the modes causing high condition numbers are identified for each cell, based on the eigenvalues of the cell stiffness
matrix. Then, those modes are supported directly by adding extra stiffness to the cell stiffness matrix in order to improve
the condition number. Furthermore, the same extra stiffness is considered on the right-hand side of the system—which leads
to a stabilization scheme that does not modify the solution. The performance of the eigenvalue stabilization technique is
demonstrated using different numerical examples.

Keywords Finite cell method · Condition number · Eigenvalues · Stabilization · Large deformations

1 Introduction

In fictitious domain or immersed boundary methods, such
as the finite cell method (FCM) [13,32], CutFEM [6–8],
or CutIGA [15], the cells/elements generally do not con-
form to the boundary of the geometry of interest. As a
result, the geometry can be easily discretized using, for
instance, Cartesian grids. Nevertheless, this simplification
in the mesh generation leads to broken cells/elements that
are cut by the boundary of the domain. This can result in
an ill-conditioned global system matrix, especially if badly
broken cells/elements are filled only with a small fraction
of material. In the extended finite element method (XFEM),
conditioning problems can also arise. An overview of dif-
ferent approaches to overcome the conditioning problem is
given in [29]. In nonlinear finite strain analysis, badly broken

B Wadhah Garhuom
wadhah.garhuom@tuhh.de

Khuldoon Usman
khuldoon.usman@tuhh.de

Alexander Düster
alexander.duester@tuhh.de

1 Numerical Structural Analysis with Application in Ship
Technology (M-10), Hamburg University of Technology, Am
Schwarzenberg-Campus 4 (C), Hamburg 21073, Germany

cells/elements tend to deform significantly compared to non-
broken cells which leads to convergence problems during the
iterative/incremental procedure.

To this end, different stabilization techniques have been
developed for fictitious domain methods to overcome the
problem of ill-conditioning. In the context of the CutFEM,
Burman et al. [6–8] proposed a stabilization approach called
the ghost penaltymethod, to obtain a better condition number
for elements that are cut by the boundary. To this end, an extra
term is added to the weak form so as to penalize jumps of the
normal derivatives of the shape functions of the neighboring
cut and non-cut elements. Consequently, the cut elements are
supported by the interior non-cut elements. Here, the penalty
term is referred to as ghost since it is related to the fictitious
domain.

In the context of the FCM, the fictitious material or α-
method is suggested in [13,32], where a very soft material is
introduced in the fictitious domain of every broken cell. This
is done by scaling the material parameters with the indica-
tor function α, which has a value of one for points inside
the physical domain and a value of α = 10−q for points
outside the physical domain. For practical problems, we set
q = 5, . . . , 9 to achieve reasonable results. To improve the
condition number without changing the problem under con-
sideration substantially, it is important not to add too much
stiffness in the fictitious domain [10]. This approach also
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helps to control the solution within the fictitious domain
while at the same time improving the condition number.
This is especially necessary when simulating nonlinear finite
strain problems to prevent convergence issues. Generally, the
approach based on the fictitious material works well for lin-
ear andnonlinear problemsunder small strains [10,13,22,40].
One drawback of this approach is that the same artificial stiff-
ness is added to all points in the fictitious domain, which can
result in a significant modification of the solution.

Additionally, for the analysis using high-order shape func-
tions, degrees of freedom that have a small support in the
physical domain tend to increase the condition number and
decrease the robustness of the FCM. To this end, [15,17,42]
proposed a basis function removal (BFR) strategy to improve
the condition number by removing shape functions that do
not contribute much to the global stiffness matrix. Thereby,
a global criterion was developed based on the energy con-
tribution of each degree of freedom – allowing to determine
which shape function needs to be removed. In doing so, the
high-order modes of the broken cells that cause the prob-
lems are removed and consequently the condition number is
improved significantly.

Moreover, the severe distortion of the mesh in nonlin-
ear finite strain problems can cause the analysis to terminate
before reaching the desired deformation state. To this end,
a remeshing strategy proposed in [17,18] can improve the
robustness of the FCM by creating a new mesh whenever the
old mesh cannot take any more deformations. Starting with
an initial mesh, the structure is deformed until the remesh-
ing criteria indicate that a remeshing step is required because
the mesh is strongly distorted. Then, a new mesh is created
that covers the deformed geometry. Thanks to the fictitious
domain approach, creating the mesh is straightforward. Sub-
sequently, important quantities between the old and new
mesh are interpolated. Finally, the analysis is continued until
the desired load step is reached. It was shown in [17] that
a combination of the remeshing strategy, the basis function
removal, and the α-method can improve the robustness even
for very large deformations.

In [34], a preconditioning technique was developed to
prevent poor conditioning of the FCM caused by broken
cells. This approach is referred to as the Symmetric Incom-
plete Permuted Inverse Cholesky preconditioner. To this end,
the preconditioning involves a diagonal scaling of the shape
functions as well as an orthonormalization process utilizing
the Gram–Schmidt procedure.

In this paper, we present an eigenvalue stabilization tech-
nique, based on the approach of Loehnert [29], to improve the
robustness of the FCM for nonlinear problems by reducing
the condition number of broken cells without affecting the
solution significantly. To this end, an eigenvalue decomposi-
tion of the cell stiffness matrix is computed for every broken
cell. Afterwards, the modes that have small eigenvalues or

even zero eigenvalues can be grouped together. Those modes
cause the FCM to be less robust in nonlinear computations.
They appear especially when badly broken cells are present
together with high-order shape functions. The modes with
zero eigenvalues that belong to rigid body motions are not
considered for stabilization—in order to avoid non-physical
behavior. Finally, the bad modes are supported by adding
extra stiffness to the cell stiffness matrix of the correspond-
ing mode and to the load vector, to ensure that the solution
is not modified significantly. Furthermore, we introduce a
criterion that allows to adaptively add stiffness to the modes
depending on their corresponding eigenvalue.

This paper is organized as follows: Sect. 2 gives a brief
summary of the basic formulation of the FCM. In Sect. 3, the
stabilization of the FCMbased on the α-method is explained.
In Sect. 4, an eigenvalue stabilization technique for the FCM
is discussed in detail. In Sect. 5, we study the accuracy of
the proposed method on a linear benchmark example and on
more complex nonlinear finite strain problems. Finally, the
paper is summarized in Sect. 6.

2 The finite cell method

This section offers a brief overview of the basics of the finite
cell method (FCM)—for more details see [13,14,32,36]. The
FCM is a combination of high-order finite elements with
a fictitious domain approach. To this end, hierarchic shape
functions based on integrated Legendre polynomials are uti-
lized [38,39]. The FCMwas successfully applied to a variety
of problems in solidmechanics such as thermoelasticity [44],
geometrical nonlinearities [18,37], explicit and implicit elas-
todynamics [16,24], biomechanics [35,42], elastoplasticity
[3,26,40], andmicrostructuredmaterials [20,21,27]. Figure 1
illustrates the basic concept of the method using a two-
dimensional geometry of solidmechanics. Here, the physical
domain � is embedded into a fictitious domain �e\� which
results in an extended domain �e of a simple shape. The
extended domain �e can then be easily discretized using,
for example, Cartesian grids. Dirichlet boundary conditions
d̄ as well as Neumann boundary conditions t̄ are applied
on the boundary of the physical domain �. For the sake
of simplicity, we neglect body forces in this context. As a
result of the fictitious domain approach, the approximation
of the displacements is decoupled from the approximation
of the geometry—in contrast to the standard finite element
method (FEM). Therefore, the term cells is used to differ-
entiate them from the geometry conforming finite elements.
Next, to account for the boundary of the geometry, the indi-
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Fig. 1 Basic concept of the FCM

cator function

α =
{
1, for x in �

0, otherwise
(1)

is introduced, which has a value of one inside the physical
domain and a value of zero elsewhere. The nonlinear weak
form Gα

e reads [43]

Gα
e =

∫
�e

α P · Grad η dV −
∫

�N
0

t̄ · η dA = 0 (2)

where P denotes the first Piola–Kirchhoff stress tensor and η

corresponds to the test function. Since our focus later on will
be on large deformation analysis, Eq. (2) is highly nonlinear.
Therefore, we utilize the Newton-Raphson method, which is
based on the linearization of the weak form. Assuming that
the external loads are independent of the deformation, the
directional derivative of Gα

e reads

DGα
e · �d =

∫
�e

α AGrad�d · Grad η dV , (3)

where

A = ∂ P
∂F

(4)

and�d represents the displacement increment. Accordingly,
the linearized weak form results in∫
�e

α AGrad�d · Grad η dV =
∫

�N
0

t̄ · η dA

−
∫
�e

α P · Grad η dV . (5)

Next, the extended domain is discretized using finite cells
based on hierarchic shape functions in order to compute an

approximate solution of the problem at hand, as illustrated
in Fig. 1. Inserting the discretization of the displacement and
the test function into the weak form results in the following
linear equation system

K i
T (di ) �di+1 = −Gi (di ) (6)

which needs to be solvedwithin eachNewton-Raphson itera-
tion for the unknown displacement increment. Here, K i

T (di )
refers to the global tangent stiffness matrix. Furthermore,
Gi (di ) defines the global out of balance vector. During the
assembly process of the local stiffness matrices and vectors
of each finite cell, the global quantities are acquired as fol-
lows

K i
T =

nc

A
c=1

kc,i , Gi =
nc

A
c=1

gc,i . (7)

The simplification in the mesh generation using the FCM
leads to broken cells which are intersected by the boundary
of the domain. This results in discontinuous integrands, see
Eq. (5). Consequently, standard Gauss quadratures do not
perform well for those cells. Therefore, special integration
schemes need to be used—such as, for instance, the adaptive
integration scheme based on spacetree decomposition [2,13,
28,33], the moment fitting quadrature [11,12,19,25], or the
approach based on equivalent polynomials [1,41].

Furthermore, fictitious domain methods such as the FCM
often suffer from ill-conditioning of the resulting system
matrices caused by the broken cells. Figure 2 shows the con-
dition number

κ = λmax

λmin
, with λmin �= 0 (8)

for a plate with a hole, discretized using four finite cells
applying different values of the radius r for the circle. The
condition number is plotted against the polynomial degree p
of the hierarchic shape functions applied in the finite cells. It
can be seen that the condition number increases drastically
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Fig. 2 Condition number of the plate with a hole, discretized with four
cells and using different radii r for the geometry

as the radius increases since the volume fraction of the cell at
the bottom right decreases gradually. This causes difficulties
when solving the linear system of equations.

3 Material stabilization (˛-method)

The commonly used method to improve the condition num-
ber of the FCM is the so-called material stabilization
technique or the α-method [10,13]. The main idea is to intro-
duce a soft material into the fictitious domain. To this end,
the indicator function α is set to a small positive value for
integration points that are located in the fictitious domain

α =
{
1, for x in �

10−q , otherwise
. (9)

In doing so, the condition number can be improved by intro-
ducing an artificial stiffness, as will be shown in Sect. 5.
By setting the indicator function α to zero in the fictitious
domain, the geometry is exactly preserved. To achieve rea-
sonable results without losing too much accuracy, the q
values should be chosen in a range of q = 5, . . . , 9. One
advantage of this approach is the simple implementation,
since a new set of Gaussian points can be introduced in the
fictitious domain to reduce the ill-conditioning of the system.

Figure 3 shows the number of integration points needed
utilizing a shape function order of p = 4. Here, the red dots
refer to the points required to integrate the physical domain
and the blue dots represent the stabilization points. In Fig. 3a,
the moment fitting scheme is applied with (2p+1) points in
each direction to integrate the physical domain. Additionally,
a set of (p + 1) points in each direction is added to stabilize
the fictitious domain, excluding the points that are located in

(a)

(b)

(c)

Fig. 3 The integration points used for stabilization (blue dots) and the
points used for integrating the physical domain (red dots) applied on
one broken cell with an ansatz order of p = 4. a Moment fitting with
(2p+1)2 physical points plus (p+1)2 stabilization points. bQuadtree
with tree depth k = 2 and (p + 1)2 physical points in each sub-cell
plus (p + 1)2 stabilization points. c Quadtree with tree depth k = 2
and (p+1)2 physical points in each sub-cell plus (p−1)2 stabilization
points. (Color figure online)

the physical domain. This schemewill be used in Sect. 5.1 for
the linear computations. In the nonlinear analysis (Sect. 5.2
and 5.3), the adaptive octree is applied to integrate the phys-
ical domain with (p + 1) points in each direction of every
sub-cell, excluding the points located in the fictitious domain.
Additionally, a number of (p+1) points in each direction are
applied to stabilize the fictitious domain, excluding the points
located in the physical domain, as can be seen in Fig. 3b for
a tree depth of k = 2.

One drawback of thematerial stabilization approach is the
loss of accuracy especially, if large α values are to be used.
In the nonlinear analysis, the α-method will be combined
with an eigenvalue stabilization technique (see Sect. 4) to
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increase the robustness of the FCM when undergoing large
deformations. To this end, a set of (p − 1) points will be
added in each direction of the fictitious domain, excluding
the points located in the physical domain and setting a small
value of α = 1e−7 for those points, as can be seen in Fig. 3c.

4 Eigenvalue stabilization technique

In this section, following Loehnert [29], an eigenvalue stabi-
lization techniquewill be applied to improve the conditioning
and robustness of the FCM. This approach is based on the
eigenvalues of the cell’s stiffness matrix. Usually, cells that
have a small volume fraction and are intersected by the geom-
etry will exhibit eigenvalues that are very close to zero—in
addition to the zero eigenvalues that correspond to rigid body
modes (RBM). This means that some of the modes will tend
to have linear dependencies which result in an increasing
condition number. To overcome this problem, following the
ideas of Loehnert [29,30] and Loehnert and Beese [31], we
can compute the eigenvalues and eigenmodes of each bro-
ken cell by factorizing the cell stiffness matrix kc using the
eigenvalue decomposition

kc = V � V T = (
V̄ V0

) (
�̄ 0
0 0

) (
V̄ T

V T
0

)
. (10)

Here, kc is a symmetric positive semi-definite matrix which
can be factorized into the diagonal matrix � that contains
the eigenvalues with the corresponding eigenmodes V . The
eigenvalues � consist of non-zero eigenvalues �̄, with the
corresponding eigenvectors V̄ , and of eigenvalues that are
equal to zero with the related eigenvectors V0. Next, the
eigenmodes that correspond to a zero eigenvalue or to a
small eigenvalue are grouped into the eigenspace Ṽ with their
corresponding eigenvalues 	̃. The modes that are related to
rigid body translations and rotations are removed from the
eigenspace Ṽ . To this end, all modes remaining within the
eigenspace Ṽ need to be supported. To do so, we construct
the stiffness matrix

kε =
n∑
j=1

ε j ṽ
j ⊗ ṽ j . (11)

Here, ε j defines afixed stabilization factor for all eigenvalues,
set to a small positive value, while n refers to the total num-
ber of modes that need to be supported. The ṽ j corresponds
to the j th eigenmode that belongs to Ṽ . Alternatively, one
can define a nonlinear stabilization factor γ j that depends on
ε j as well as the corresponding eigenvalue 	̃ j . To this end,
the additional stiffness γ j can be adaptively defined depend-
ing on the size of the eigenvalue, see Fig. 4. Thus, Eq. (11)

0 0.002 0.004 0.006 0.008 0.01
10 -5

10 -4

Fig. 4 Anonlinear stabilization factor γ with respect to the eigenvalues
	 by setting, for example, ε = 3e−4

becomes

kε =
n∑
j=1

γ j ṽ
j ⊗ ṽ j , (12)

with

γ j = ε j

80 	̃0.2
j

. (13)

The condition of the system is improved by adding kε

to the cell stiffness matrix kc, which results in a modified
stiffness matrix

k̃c = kc + kε, (14)

as well as to the out of balance vector gc (right-hand
side—RHS) of the nonlinear computation—for the sake of
consistency—as follows

g̃c = gc + kε dc. (15)

Finally, the Newton-Raphson method is applied to solve the
modified system

K̃ i
T (di ) �di+1 = −G̃i (di ) (16)

where K̃ i
T (di ) denotes the modified global tangent stiffness

matrix and G̃i denotes the modified global residual vector,
which are the result of the assembly process (7). Having
solved the linear system (16), the solution is updated:

di+1 = di + �di+1. (17)

The procedure for the eigenvalue stabilization is summarized
in Algorithm 1. In Sect. 5, we will investigate the influence
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of the proposed method on the robustness and the accuracy
of the FCM.

Algorithm 1 Eigenvalue stabilization strategy
1: for k = 1 to k = kend do � Load increment loop
2: for i = 1 to i = imax do � Newton iteration
3: Compute kc,i , and gc,i for each cell c
4: if cell c is cut then
5: if i = 1 then
6: Factorize kc,i = V � VT (10)
7: Identify the modes to be supported Ṽ
8: Remove the modes related to RBMs
9: Build the stabilization matrix kε (12)
10: end if
11: Modify the stiffness k̃c,i = kc,i + kε (14)
12: Correct the RHS g̃c,i = gc,i + kε dc,i (15)
13: end if
14: Assemble K̃ i

T , G̃i (7)
15: Solve the system K̃ i

T �di+1 = −G̃i (16)
16: Update the solution di+1 = di + �di+1 (17)
17: Check convergence of Newton iteration
18: if converged then
19: break � Proceed with next load step
20: end if
21: end for
22: end for

4.1 Detection of the rigid bodymodes

The eigenvectors with zero eigenvalues that are related to the
rigid body modes need to be extracted from the set of modes
to be stabilized Ṽ . Otherwise, stabilizing those modes would
lead to a non-physical behavior of the system.To this end, one
way to detect the rigid body modes of a cell is to first com-
pute the RBMs analytically. Afterwards, the RBMs can be
easily identified and removed from the space Ṽ by means of
a Gram–Schmidt orthogonalization procedure, as proposed
by Loehnert [29]. The RBMs can be computed cheaply based
on the nodal coordinates of the cells. Generally, for instance,
a hexahedral element in a three-dimensional space has six
RBMs: three translation modes—which can be calculated
by applying a small displacement at every node in the corre-
sponding direction of the mode—and three rotational modes
that can be computed using a spherical coordinate system, as
suggested by [4,5,23]. The high-order modes of the hierar-
chic basis can be ignored, since the rigid body motions are
represented with the nodal modes.

5 Numerical investigations

Before applying the proposed eigenvalue stabilization tech-
nique for nonlinear applications, we first investigate it for a

linear problem. Thus, in the first example (Sect. 5.1), a linear
elastic isotropic material model is applied with a Young’s
modulus of E = 50 MPa and a Poisson’s ratio of ν = 0.3
assuming small strains. In the second and third application,
(Sects. 5.2 and 5.3), a hyperelastic material model is utilized
in a finite strain analysis. The strain energy density function
[9] is defined as follows

W = μ

2
(tr (C) − 3) + λ

4

(
J 2 − 1

)
−

(
λ

2
+ μ

)
ln (J ) ,

(18)

where C = FT F refers to the right Cauchy–Green tensor
and J = det (F). The material parameters read

λ = Eν

(1 + ν)(1 − 2ν)
= 28.846 MPa, (19)

and μ = E

2(1 + ν)
= 19.231 MPa, (20)

where λ and μ denote the Lamé first parameter and the shear
modulus, respectively. The first Piola–Kirchhoff stress tensor
is computed as

P = 2 F
∂W

∂C
= λ

2

(
J 2 − 1

)
F−T + μ

(
F − F−T

)
(21)

and the elasticity tensor reads

A = ∂ P
∂F

= μ (I − M)

+ λ

2

((
J 2 − 1

)
M + 2 J 2

(
F−T ⊗ F−T

))
, (22)

where I refers to the fourth order identity tensor (Ii jkl =
δik δ jl ), and M is computed in index notation as Mi jkl =
−Fjk Fli . For all numerical examples, Eq. (12) is used to
compute the additional stiffness matrix of the eigenvalue sta-
bilization.

5.1 Plate with a cylindrical hole

In the first example, we consider a plate with a cylindrical
hole. The goal is to compare the performance of the eigen-
value stabilization technique with the α-method in terms of
accuracy and improvement of the condition number. The
results will be compared to a reference solution generated
from the standard p-FEM. The geometry of the plate has
a side length of a = 100mm and a radius of r = 60mm.
Symmetry boundary conditions are applied together with a
prescribed pressure on the top surface of t̄y = 0.1MPa, as
can be seen in Fig. 5. The reference solution is obtained
with 3200 curved p-version hexahedral elements utilizing a
polynomial degree of p = 5. The FCM computations are
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Fig. 5 Plate with a cylindrical hole: geometry and boundary conditions

performed using 192 hexahedral cells with a subdivision of
(16 × 16 × 1) and by increasing the polynomial degree of
the hierarchic shape functions, p = 1, 2, 3, . . . , see Fig. 6.
Themoment fitting quadrature is used to integrate the broken
cells of the FCM with (2p + 1)3 integration points and an
octree depth of k = 8 is applied to compute the moments.
In order to stabilize the cells (partially) located in fictitious
domain using the α-method, the standard Gauss-quadrature
is utilized with (p + 1)3 integration points, and the points
located in the physical domain are removed, as illustrated in
Fig. 3a. Applying the eigenvalue stabilization, no points are
added in the fictitious domain.

5.1.1 Eigenvalue stabilization without correcting the RHS

First, we investigate the eigenvalue stabilization technique
without modifying the load vector as is the case in Eq. (15).
This is because, in a linear analysis, it is not possible to com-
pute the correction term (kε dc) directly without knowing
the solution vector dc. We study the condition number of the
global stiffness matrix, plotted against the number of degrees
of freedom, see Fig. 7. Here, different factors are used for ε

(top of Fig. 7) and for α (bottom of Fig. 7). It can be seen

Fig. 6 Plate with a cylindrical hole. (Top) FCM mesh. (Bottom) FEM
mesh

that both methods yield a drastic improvement of the con-
dition number as the stabilization factors increase. Here, we
tried to choose the ε and α values such that a comparable
improvement in the condition number from both methods is
obtained.

Furthermore, we examine the accuracy of the von Mises
stress σvM at point A (x = 34.0mm, y = 4.0mm, z =
1.0mm). In Fig. 8, the relative error of the von Mises stress
is plotted versus the number of degrees of freedom for an
increase of the polynomial degree of the shape functions.
The results for the eigenvalue stabilization are depicted at
the top, the results for the α-method at the bottom. Using the
α-method, we do not observe any change in the accuracy for
α = 0 to α = 1e−7. However, by increasing the values from
α = 1e−5 to α = 1e−3, we start to loose accuracy quite
significantly as compared to the results of the eigenvalue
stabilization. There, we still have a good accuracy until ε =
1e−2 before we start losing accuracy using ε = 9e−2.

For better visualization, in Fig. 9, the relative error of
the von Mises stress is plotted versus the condition number
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Fig. 7 Condition number. (top) The eigenvalue stabilization. (bottom)
The α-method

for an increase of the polynomial degree of the shape func-
tions. It can be seen that the condition number is reduced
significantly when using the eigenvalue stabilization (top),
without affecting the solution to a great extent as compared
to the α-method (bottom). This is because, in the eigenvalue
stabilization, only modes that have a small support (small
eigenvalue) are stabilized—whereas a larger loss of accu-
racy is observed for the α-method, where all points in the
fictitious domain are stabilized with the same amount.

Furthermore, we also investigate the accuracy of the strain
energy. In Fig. 10, the relative error in energy norm is plotted
versus the number of degrees of freedom for an increase of
the polynomial degree of the shape functions. To this end,
using the α-method (bottom of Fig. 10), we do not see any
change in the accuracy for α = 0 to α = 1e−7. However,
increasing the values from α = 1e−5 to α = 1e−3, we
start to loose accuracy quite significantly as compared to the
results of the eigenvalue stabilization at the top of Fig. 10.

For a better visualization, in Fig. 11, the relative error in
energy norm is plotted versus the condition number. It can be
seen that the condition number is reduced significantly when

10 2 10 3 10 4 10 5
10 -8

10 -6

10 -4

10 -2

10 0

 = 0e+00
 = 4e-08
 = 4e-06
 = 9e-04
 = 1e-02
 = 9e-02

10 2 10 3 10 4 10 5
10 -8

10 -6

10 -4

10 -2

10 0

 = 0e+00
 = 1e-09
 = 1e-07
 = 1e-05
 = 1e-04
 = 1e-03

Fig. 8 Relative error in vonMises stress at pointA. (top)The eigenvalue
stabilization. (bottom) The α-method

using the eigenvalue stabilization (top), without affecting the
solution too much as compared to the α-method (bottom).

5.1.2 Eigenvalue stabilization with correcting the RHS

In this section, we apply the eigenvalue stabilization by also
modifying the load vector on the RHS. This is done in two
steps. First, we compute the solution d1 by modifying only
the stiffness matrix

K̃ = K + K ε (23)

and solving the system

K̃ d1 = Fext, (24)

where Fext defines the global external load vector. In the next
step, we solve the system again by correcting the load vector
iteratively as follows

K̃ di+1 = Fext + K ε di . (25)
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Fig. 9 Relative error in vonMises stress at point A versus the condition
number. (top) The eigenvalue stabilization. (bottom) The α-method

In the first iteration (i = 1), we apply the solution d1, which
is obtained fromEq. (24). Please note that an exact correction
of the RHS would call for a repeated solution of the linear
system (25) until the displacement does not change anymore.
However, we found that three correction steps are already
able to provide a good accuracy. By using direct solvers, it is
furthermore possible to store the factorization of the global
stiffness matrix K̃ and re-use it to solve the system for mul-
tiple RHSs. In Fig. 12, the relative error of the von Mises
stress (top) as well as the relative error in energy norm (bot-
tom) are plotted against the condition number, applying three
correction steps. It can be seen that the condition number is
improved significantly without affecting the solution at all,
provided that the load vector is corrected accordingly. In the
nonlinear computations (Sects. 5.2 and 5.3), we correct the
RHSduring the iterative/incremental procedure using the last
computed solution, as illustrated in Algorithm 1.
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Fig. 10 Relative error in energy norm. (top) The eigenvalue stabiliza-
tion. (bottom) The α-method

5.1.3 Cost of the stabilization

In this section, we investigate the cost of the stabilization
utilizing theα-method aswell as the eigenvalue approach.We
define the cost of the stabilizationbymeasuring thedifference
between the computation time of the whole simulation with
stabilization (Ts) and without stabilization (T ) as follows

x = Ts − T

T
× 100. (26)

The same problem setup as described in (Sect. 5.1) is used
here with α = 1e−5 and ε = 9e−4. Here, a computer with
2 CPUs each of with 10 cores (40 threads) and 2.4 GHz is
used for the simulations. In Fig. 13, the stabilization cost is
plotted versus the number of degrees of freedom. It can be
seen that the cost of the eigenvalue stabilization is compara-
ble to the α-method. This shows that the cost of computing
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Fig. 11 Relative error in energy norm versus condition number. (top)
The eigenvalue stabilization. (bottom) The α-method

the eigenvalues of the cell stiffness matrices is negligible in
comparison to the whole computation since the stabilization
is applied on the cell level where every cell runs in parallel.

5.2 Single cube connector

In the following application, we consider a single cube con-
nector [17]. The motivation is to investigate the robustness of
the eigenvalue stabilization technique for nonlinear compu-
tations undergoing large deformations—and to compare it to
the α-method. The geometry of the cube connector is defined
using the following level set function

φ(x) = [(x − xc)
2 + (y − yc)

2 − R2]2
+ [(y − yc)

2 + (z − zc)
2 − R2]2 + [(z − zc)

2 − r2]2
+ [(x − xc)

2 + (z − zc)
2 − R2]2

+ [(x − xc)
2 − r2]2 + [(y − yc)

2 − r2]2 − d4 ≥ 0, (27)

with an inner radius of r = 11.25mm, an outer radius of
R = 15mm, and a design parameterd = 4.6×104 mm4.The
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Fig. 12 The eigenvalue stabilizationwith correction of theRHS in three
steps. (top) Relative error in von Mises stress versus condition number.
(bottom) Relative error in energy norm versus condition number
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Fig. 13 The computation cost of the stabilization based on the eigenval-
ues and the α-method compared to the simulation without stabilization
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Fig. 14 Single Cube Connector. Geometry, boundary conditions, and
mesh

coordinates of the center are set to xc = yc = zc = 0.0mm.
The indicator function α can now be defined based on φ(x)
as

α =
{
1, if φ(x) ≥ 0

10−q , otherwise
. (28)

Here, every point xwithin the reference domain (x ∈ �) cor-
responds to a value of the level set function that is greater
or equal to zero (φ(x) ≥ 0). The strain energy function
of the hyperelastic material model is given in Eq. (18)
and the corresponding material parameters are presented
in Eqs. (19) and (20). Symmetry boundary conditions are
applied together with a prescribed displacement at the top
surface (compression). The geometry is discretized with 129
cells (6 × 6 × 6 subdivisions), as illustrated in Fig. 14. For
integrating the broken cells, the adaptive octree with a tree
depth of k = 3 is utilized and (p + 1)3 integration points
are distributed in each sub-cell. For stabilizing the fictitious
domain using the α-method, the standard Gauss-quadrature
is utilized with (p + 1)3 integration points, as can be seen
in Fig. 3b. Applying the eigenvalue stabilization, a set of
(p − 1)3 integration points is added in the fictitious domain
with α = 1e−7, as can be seen in Fig. 3c. We apply dis-
placement increments of 0.05mm in each load step, trying
to compress the single cube connector as much as possible.

To this end, we start by setting the ansatz order to p = 2
and apply different stabilization factors for the α-method,
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Fig. 15 Energy-displacement curves for the single cube connector
using ansatz order p = 2. (top) The eigenvalue stabilization. (bottom)
The α-method

where α = 10−q with q = {0, 1, 3, 4, 5}, as well as for the
eigenvalue stabilization, where ε = 10−q with q = {4, 5, 6}.
It can be observed that using the α-method, the structure can
be deformed up to a displacement of ūz = 4.0mm utilizing
q = 0, as can be seen in Fig. 15 (bottom). However, it is
clear that the structure becomes too stiff because of the large
stiffness added to the system. For q values between 3 and 5,
the α-method produces reasonable results with a maximum
deformation of ūz = 2.85mm. On the other hand, utilizing
the eigenvalue stabilization, we can reach the final defor-
mation state with a displacement of ūz = 7.00mm using
q = 4, which is about 2.5 times more as compared to the
α-method. Additionally, it can be seen that the solution is
not modified when using higher ε values. Furthermore, the
Green–Lagrange strain component Ezz is plotted for point
A (x = 0.73mm, y = 0.73mm, z = 0.9mm) of a bro-
ken cell at every load step. It can be observed that using the
α-method with q = 0 and q = 1 the solution is affected
largely for such a local quantity, see Fig. 16 (bottom). On
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Fig. 16 The Green–Lagrange strain component Ezz evaluated at point
A versus the applied displacement for the single cube connector using
ansatz order p = 2. (top) The eigenvalue stabilization. (bottom) The
α-method

the other hand, utilizing the eigenvalue stabilization we can
reach a much further deformation state without affecting the
solution largely, as can be seen in Fig. 16 (top).

Next, we also investigate the strain energy using an ansatz
order of p = 3, as illustrated inFig. 17. It can be observed that
using the α-method with q = 0 and q = 1 results in a high
loss of accuracy. Also, the structure becomes too stiff. How-
ever, for q values between 3 and 5, the α-method produces
reasonable results with a maximum deformation of ūz =
1.95mm using q = 3, as can be seen in Fig. 17 (bottom).
Utilizing the eigenvalue stabilization, we can reach a further
deformation state with a displacement of ūz = 5.75mmwith
q = 4, which is about 2.95 times more as compared to the
α-method, as can be seen in Fig. 17 (top).

These results show that the strategy of stabilizing the
FCM for hyperelastic problems using the technique based
on eigenvalues is more robust and accurate as compared to
the α-method. In Fig. 18, the von Mises stress of the single
cube connector is plotted at different load steps using the
ansatz order of p = 3 and ε = 1e−4.
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Fig. 17 Energy-displacement curves for the single cube connector
using ansatz order p = 3. (top) The eigenvalue stabilization. (bottom)
The α-method

5.3 Single pore of a foam

In the last application, we analyze the performance of the
proposed eigenvalue stabilization for a more complex struc-
ture such as a pore of a foam [21]. The geometry of the foam
is obtained from a CT-scan and then converted into a triangu-
lated surface, as depicted in Fig. 19. For the computation, the
bottom surface is fixed in all directions, while the top surface
is fixed in x and z-directions with a prescribed displacement
in the y-direction to compress the foam. The geometry is
discretized with 1815 cells (20× 20× 20 subdivisions). The
numerical integration is done the same way as in the previ-
ous example (Sect. 5.2). We apply displacement increments
of 0.02 mm at each load step and try to compress the geom-
etry as much as possible. To this end, we set the ansatz order
to p = 2 and apply different stabilization factors for the α-
method with q = {0, 1, 2, 4, 5}, as well as for the eigenvalue
stabilization with q = {4, 6, 8}.

To this end, the strain energy function is plotted for the
α-method at different load steps, as shown in Fig. 20 (bot-
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Fig. 18 vonMises stress σvM (MPa) for the single cube connector with
p = 3 and ε = 1e−4 at different load steps

tom). It can be observed that using q = 0 and q = 1 results
in a drastic change in the solution. For q = 4 and q = 5,
the accuracy obtained is reasonable. However, the structure
could only be deformed up to a displacement of ū y = 1.2mm
usingq = 4.On the other hand, utilizing the eigenvalue stabi-
lization, we can reach a much more pronounced deformation
state with a displacement of ū y = 3.82 mm with q = 4,
which is about 3.2 times more as compared to the α-method.
Furthermore, we observe no high loss of accuracy when the
ε values increased from q = 8 to q = 4, as can be seen in
Fig. 20 (top).

Furthermore, the Green–Lagrange strain component Eyy

is plotted for point A (x = 1.9mm, y = 3.45mm, z =
4.9mm) of a broken cell at every load step. It can be observed
that using the α-method with q = 4 and q = 5 does not
affect the solution largely. However the simulations failed to
converge much earlier as compared to the eigenvalue stabi-
lization, as can be seen in Fig. 21. Finally, the von Mises
stress for the single pore of a foam is plotted in Fig. 22 at
different load steps for ε = 1e−4.

Fig. 19 Single pore of a foam. Geometry, boundary conditions, and
mesh

6 Conclusions

In this paper, we proposed an eigenvalue stabilization tech-
nique for the finite cell method in order to improve its robust-
ness for nonlinear analysis at finite strains. The approach,
originally proposed by Loehnert [29], is based on the eigen-
value decomposition of the stiffness matrix for cells that are
cut by the boundary of the geometry. To this end, eigenval-
ues that have a smaller value than a certain tolerance are
grouped together. Due to the linear dependencies between
the modes, the eigenvalues of some of the modes can even
be close to zero—which is why they need additional support.
The zero modes that are related to rigid body translations and
rotations are not considered for stabilization. Afterwards, the
bad modes are supported by adding extra stiffness to the cor-
responding cell stiffness matrix. Additionally, a correction
term is added to the load vector so as to avoid a large modifi-
cation of the system. Furthermore, we proposed an adaptive
stabilization criterion so that the modes with the worst eigen-
values receive more support than modes with better support.
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Fig. 20 Energy-displacement curves for the single pore of a foam using
ansatz order p = 2. (top) The eigenvalue stabilization. (bottom) The
α-method
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Fig. 21 The Green-Lagrange strain component Eyy evaluated at point
A versus the applied displacement for the single pore of a foam using
ansatz order p = 2. (top) The eigenvalue stabilization. (bottom) The
α-method
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Fig. 22 von Mises stress σvM (MPa) for the single pore of a foam with p = 2 and ε = 1e−4 at different load steps
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We investigated the approach using different numerical
examples, comparing the results to the commonly used α-
method. To this end, we showed for the linear analysis that
the condition number can be improved significantly without
affecting the solution at all, provided that the load vector is
corrected accordingly.Moreover, we showed that themethod
is suitable to improve the robustness of the FCMsignificantly
for nonlinear analysis.

There are several aspects which are of interest for future
work. One important point is to extend the proposed sta-
bilization scheme to distinguish between numerical and
geometrical or physical instabilities. The stabilization should
be applied only to instabilities arising from badly broken
cells. Geometrical instabilities related to local buckling or
physical instabilities caused by the material behavior should
not be affected by the proposed scheme. Furthermore, the sta-
bilization scheme could be combined with iterative solvers
acting as a kind of preconditioner for nonlinear problems to
be solved with the FCM.
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