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The problem of interest is the numerical modelling of Case II diffusion in polymeric glasses. Case II
diffusion is characterised by a strong coupling between diffusion and deformation and is highly tem-
perature dependent. In this work, a general continuum mechanical framework describing a three-way
coupling of thermomechanics and diffusion is adapted to the description of Case II diffusion.
Numerical studies are carried out to examine the capability of the model and the nature of the
coupling. It is shown that the model is well suited for the description of solvent induced swelling as it
predicts all characteristic properties of Case II diffusion.
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1. Introduction

Understanding the mechanisms involved in diffusion of fluids in
polymers is a field of great research interest, as the absorbed
molecules may significantly alter the properties of the polymer
matrix. The probably most common effect observed during fluid
diffusion in polymers is swelling of the polymer. This swelling goes
along with a change in the component's geometry and mechanical
properties and might even lead to crazing or delamination in
composites.

Classically, diffusion processes are described by Fick's laws.
These, however, only describe the kinetics of an unhindered mass
transport due to a concentration gradient. For the past centuries, it
has become common knowledge that the diffusion behaviour in
glassy polymers might strongly deviate from that predicted by
Fick's laws. For most polymer-solvent systems, a variety of behav-
iours can be observed, depending on the solvent concentration or
the temperature (Hopfenberg and Frisch, 1969).

These differences in behaviour are the result of molecular in-
teractions between the polymer and the solvent which might cause
a delay in the diffusion kinetics or plasticisation of the polymer.
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The range of possible anomalous diffusion behaviours is limited
on one side by Fickian (Case I) diffusion and on the other side by
Case Il diffusion as defined by Alfrey et al. (1966). Case Il behaviour
is characterized by the occurrence of several phenomena:

1. A sharp front forms between the plasticised and the dry region
of the polymer.

2. Behind the front, a constant concentration as well as an equi-
librium state of swelling are achieved. The swelling remains
even after desorption.

3. The front moves with constant velocity, independent of time
and concentration. In combination with 2., this translates to
mass uptake kinetics that are linear in time.

4. Ahead of the front, a Fickian precursor of varying size occurs.
This is due to the small amount of solvent that diffuses within
the free volume of the polymeric glass.

5. The desorption process follows Fickian diffusion kinetics.

None of these characteristics alone are conclusive for the iden-
tification of Case Il behaviour, as they might occur during other
types of anomalous diffusion as well.

These characteristics are not described by the classical Fickian
relations, and, consequently, there are a number of modelling ap-
proaches aiming to describe different aspects of non-Fickian
diffusion. As the mechanism of Case II diffusion is not fully un-
derstood, different models apply different fundamental principles
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and assumptions. The earliest models focus on the influence of the
deformation on the flux relationship, e.g., Durning and Tabor
(1986). More recently, models for the diffusion flux that consider
the reproduction of the characteristic kinetics have been proposed,
e.g., in Gallyamov (2013), where a dual-mode sorption approach is
used to account for front formation without plasticisation, or the
quasi-hyperbolic diffusion law for Case Il in Wilmers and Bargmann
(2014). For a more detailed overview of models describing anom-
alous and Case II diffusion kinetics, we refer to De Kee et al. (2005),
Bargmann et al. (2011) and references therein.

A thorough model of Case II diffusion, however, has to account
for the characteristic transport kinetics as well as the strong
coupling of concentration and deformation that is responsible for
the swelling. Furthermore, it is well known that the diffusion
behaviour in polymers strongly depends on temperature (Duda
et al., 1982) as do the plasticisation and the mechanical proper-
ties of the polymer.

For polymeric solids, a coupling of diffusion and deformation is
often encountered in practical applications, not only in the limit of
Case II diffusion. There exists a number of models describing the
relationship between solvent concentration and deformation in
hydrogels, investigating both, the influence of stresses on the
diffusion behaviour (Derrien and Gilormini, 2006) and the
diffusion-induced swelling (Baek and Srinivasa, 2004; Hong et al.,
2008; Bouklas and Huang, 2012; Wang and Hong, 2012). These
coupled models are derived from thermodynamic considerations
and can be applied to the description of typical phenomena known
from hydrogel processing, e.g., buckling of thin films (Liu et al.,
2012).

However, classical Fickian diffusion occurs in hydrogels and not
all of the choices in the description of the mechanical behaviour in
hydrogel models are also valid for the polymeric glasses which
exhibit Case II diffusion.

In Govindjee and Simo (1993), a continuum mechanical
framework is proposed explicitly for Case II diffusion, coupling
concentration and displacement. This framework has been imple-
mented for numerical studies in Vijalapura and Govindjee (2003,
2005) with great rigour but with restriction to the quasi-static case.

All of these models consider only the coupling between diffu-
sion and deformation and neglect the strong temperature depen-
dence. In McBride et al. (2011a, 2011b), Steinmann et al. (2012), the
framework proposed in Govindjee and Simo (1993) is coupled to
thermomechanics without specification of the constitutive re-
lations or the form of the free energies. Based on the general set of
equations presented in McBride et al. (2011a), the current work
proposes a numerical model for Case II diffusion. Formulations for
the diffusion flux law and the free energy of mixing are presented
that capture the distinct diffusion kinetics and swelling behaviour
of Case II. This specialised model is implemented into a finite
element code to examine the capabilities of the chosen
formulation.

2. Theory

The modelling approach follows the continuum mechanical
framework for Case II diffusion which was proposed in Govindjee
and Simo (1993) and has been extended to the thermomechani-
cally coupled case in McBride et al. (2011a). This approach does not
differentiate between the solvent and the polymer but describes
the mixture as a continuum.

In the first part of this Section, the derivation of the governing
equations is outlined. For further details regarding this derivation,
the reader is referred to Govindjee and Simo (1993), McBride et al.
(2011a, 2011b). In Section 2.2, the constitutive equations that
describe the distinct Case Il behaviour are established.

2.1. Governing equations

As is customary in non-linear continuum mechanics, it is
differentiated between the reference and the current configuration,
cf. Fig. 1. The motion ¢ maps the reference configuration . to the
current configuration according to .z = ¢(.%y (X, t)). With that the
deformation gradient F is defined by

F(X,t) := Vo(X,t), (1)

where V denotes the gradient in space with respect to the reference
configuration. Within this setup, the governing equations
describing Case II diffusion are derived from fundamental balance
equations.

2.1.1. Conservation of mass

In the reference setting .%, a continuum body has the mass
density po, while in the current configuration ,# the density is p.
Here and in the following, mass density refers to mass per volume
of the whole mixture, i.e., a value that can be obtained from
straightforward experiments.

The conservation of the solid mass m, i.e., the mass of the
polymer, is

d d
a(/dm:a/pdvzo 2)

7;)
which, following standard arguments, gives
po =Jp with J = detF. (3)

Here, det denotes the determinant operator.

For the diffusing species, the balance of mass is formulated by
consideration of the concentration ¢, which is defined as the mass
of solvent per volume of the mixture.

%/cdv:— /j~nda+ /de, 4)
0.7 B

where j denotes the diffusion flux over the boundary 9% and w the
internal sources of solvent molecules. The negative sign appears
because the surface normal vector n is positive in the outward
direction.

This expression is pulled back to the reference configuration as

i/idvz / 1iFT) Nda+ / w0

Bo 0.%0o Zo

Co J w

The fact that . is constant allows to interchange the succes-
sion of time derivation and integration. Application of the diver-
gence theorem and localisation then gives

N

reference configuration current configuration

Fig. 1. Schematic representation of the relationship between reference and current
configuration. A continuum body occupying the reference configuration % is mapped
to the current configuration . by the motion ¢.
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Co = —-DivJ + W, (6)
where the superscript dot denotes the time derivative and Div is
the divergence operator with respect to the reference

configuration.

2.1.2. Balance of linear and angular momentum
Following standard arguments, cf,, e.g., Holzapfel (2000), the
local form of the balance of linear momentum is formulated as

poX = DivP + pob, (7)

where P denotes the first Piola-Kirchhoff stress tensor relating
momentary forces to the reference area. The vector b is the body
force density.

Evaluation of the balance of angular momentum shows that the
second Piola-Kirchhoff stress tensor S defined by S=F '-P is
symmetric. Therefore, P-F' = F-P".

2.1.3. Balance of internal energy

The first law of thermodynamics postulates the conservation of
energy. For the description of a diffusion process, one has to take
into account that the diffusing solvent contributes to the internal
energy ¢ of the mixture.

To this end, an equation of state for the chemical potential of the
mixture is assumed:

us = @5 — On. (8)

Here, 6 is the absolute temperature and ¢s and 7s denote the
specific enthalpy and specific entropy contributed to the system by
mixing. Only the enthalpic part of the chemical potential contrib-
utes to the change in the total internal energy, while the entropic
part appears in the balance of entropy. As they are introduced to the
system via solvent uptake, these contributions are directly related
to the solvent flux over the boundary.

With that, the local balance of internal energy is given by

poi =P :F—Div| Q+ o4 | + por + osW . (9)
N—— N —
Qe Qefr

In the following, the contributions of the heat flux Q and the
diffusion flux J are condensed to the coupled effective value Q.
Analogously, the change in internal energy caused by the sources of
heat and diffusing species within the body, por and oW, are
condensed to Qefr.

2.14. Balance of entropy
The balance of entropy with respect to the reference configu-
ration reads

Q

. r 1
poﬁ:—DlV(ngnsl) +p%+nsW+5Fo7 (10)

where ['p>0 is the dissipation density.

Applying standard arguments and assuming a specific Helm-
holtz free energy of the form y=¢—60n gives the balance of entropy
in its Clausius—Duhem form. With the equation of state for the
chemical potential Eq. (8) and introducing the coupled effective
term Hegr := 5 Q + ngJ this formulation reduces to

P :F — poy — pond — Hegr- V0 — J - Vg + pusCo > 0. (11)

The Helmholtz energy is chosen to be of the general form
v = y(C,cg, 0, E; X). Here, E denotes the set of internal variables.

To obtain the constitutive relations, the balance of entropy (11)
is examined using the standard Coleman—Noll procedure, yielding

Y L N | R | 4
P_poF aca /J'S_poaco7 77_ 607 (12)
and the reduced dissipation inequality
o .
—J Vs — Hegp V0 — pg b5 0, (13)

F=8
which is to be satisfied by the constitutive equations.

2.1.5. Temperature evolution

The evolution equation for the temperature is derived from the
energy balance in its localised form Eq. (9), and the constitutive
relations for the entropy density given in Eq. (12). Combining these
equations gives the following relation for the temperature evolution

%y . oY
*Po‘gilz//f) =—J-Vus — D1V<0Heff) + 0Hegr — 004'5
a0 98 (14)

0 : . oy -
-‘rﬁ@ |:P.F+MSC0+,O()£ —1

with Hegr == 25" + 5;W. The specific heat capacity of the material is

defined by Cp := 70‘;27!’.

In Eq. (14), the coupled nature of the proposed framework is
particularly distinct: The coupling between temperature evolution
and deformation which gives rise to the effect of structural heating
is incorporated through the thermal derivative of the stress power
P : F, while the effective entropy fluxes and sources, Hefr and Hefr,
include both thermal and diffusional contributions.

2.2. Material model

The framework presented in Section 2.1 describes a general system
in which diffusion, heat conduction and deformation are coupled. In
the following, the Helmholtz energy and the laws of diffusion and heat
conduction necessary to apply the general framework to Case II
diffusion are formulated. Special attention is paid to deriving the free
energy of mixing which is responsible for the coupling between
diffusion and deformation. Furthermore, a new diffusion law ac-
counting for Case II kinetics is introduced to the model.

2.2.1. Helmholtz energy
Following Govindjee and Simo (1993), the Helmholtz free en-
ergy is assumed to be additively decomposed into

¥ = y*9(C,0) + y"9(C, 0, E) + ¥™X(C, co, ), (15)

where ¥4 is the free energy of an elastic material, "9 accounts for
non-equilibrium contributions and ™ is the free energy of
mixing.

To describe the equilibrium thermomechanical material behav-
iour of the polymer, a Neo-Hookean material model is chosen:

A
poy®d :%[cfn :I+§ln2]—ylnj

+ p()Cp |:19 —0g — 011’1%] (16)
2 1
—3a|:ﬁ+§,ui| [9— 00]%’,
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with the Lamé constants u and A, the thermal expansion coefficient
a and the reference temperature 6.

In accordance with Govindjee and Simo (1993), the non-
equilibrium contribution of the material behaviour is described by

t
aynea f—s d faye
oC 77/ ﬁeXD(—m> g[Y(S)}dS (17)

Here, ¢ is a dimensionless parameter describing the ratio of
Young's moduli in the glassy and the rubbery state and 7 eax iS the
visco-elastic relaxation time of the polymer.

To determine the functional relation of the mixing contribution
Y™ the Flory—Huggins theory of polymer mixtures, cf, e.g., Flory
(1970), Fried (2003), is applied. The Flory—Huggins model describes
the mixing of a low-molecular-weight solvent and polymer on the
basis of a theoretical lattice, as shown schematically in Fig. 2. One
lattice site in this model can only be occupied by a single molecule.
To account for the large difference in size and molecular weights
between the solvent and the polymer, the polymer is represented
by a chain of molecular segments, each occupying one lattice site.
These segments are chosen so that the volume occupied by a chain
segment is approximately equal to that occupied by a solvent
molecule.

In this framework, the entropy of mixing is obtained via sta-
tistical considerations following the Boltzmann relation, which
relates the change in entropy to the number of possible arrange-
ments of N, polymer molecules and N solvent molecules in the
lattice. From that, the specific entropy of mixing is given by (see
(Flory, 1942))

+ Npln—"Ne__ (18)

kg b
Ns+1Np|’

Asmix _
rNpmp

Nl

n
Ns +71Np

Here, N, and N denote the number of polymer and solvent
molecules, respectively. Furthermore, r is the number of chain
segments per polymer molecule (i.e., for most systems approxi-
mately the degree of polymerisation), and m,, is the mass of a chain
segment, with kg the Boltzmann constant.

As my, gives the mass of a polymer chain segment, m; is the mass
of a single solvent molecule. With that, the concentration and the
density can be written as

N rNym
CO:STmS and pOZ%.

Using these relations, Eq. (18) is rearranged to

O

O

® 0009 O

O
O
d
O
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O
O
O|@|D
oe0 — J
®/0|O
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Fig. 2. Two-dimensional depiction of Flory—Huggins model lattice. Every lattice side is
occupied by either a solvent molecule (open circle) or a segment of the polymer chain
(filled circle).

Po

i kg | co Co PO
AS]T]IX = — |— ll‘l —+ —ln T
Com, + PoO

po |Ms | Co+ ﬂog%; rmp

(19)

The enthalpy of mixing is given in the framework of the Flor-
y—Huggins model by consideration of the interaction between
neighbouring molecules. The change in energy if a solvent-polymer
contact is formed is given by

A(J)ps = Wps — 0.5 I:CL)SS + (Upp}7 (20)

where wj; is the energy of a contact i—j. The number of contacts of
polymer and solvent is approximately equal to the number of
possible contacts of a solvent molecule (i.e., the coordination
number z of the lattice), times the probability that the site in
question is occupied by a polymer chain segment. This probability
is equal to the volume fraction of polymer in the current volume.
Therefore, the specific mixing enthalpy is given by

; 1 Npv
AHMIX _ _° SN p
pOVZ s v

Awps. (21)

Here, v denotes the volume of a lattice site. As the reference
volume V is the volume of the unswollen polymer, the relation
V=rNpv holds. With this relation and the identity v=JV, the

Nyv _
v

probability term is } Furthermore, the dimensionless Flor-

_ ZAwps

y—Huggins interaction parameter y := T

(21) becomes

is introduced. Thus, Eq.

' 1 Co 1
AH™X = — kpfy — —. (22)
Po B ms J

The Gibbs potential of the
AGmiX:AHmixf 0Asmix.

From the equation of state, Eq. (8), it is evident that the chemical
potential is a Gibbs potential. As it accounts for the change in Gibbs
free enthalpy if an infinitesimal amount of the solvent is added to
the system, us is determined from the above relations by

mixing is given by

aAGmix aAHmix GASmiX
= = - 0 .

Hs = 5N, aN; aN; (23)

The specific enthalpy and entropy of the solvent as introduced in
Eq. (8) can thus be determined by ¢ =™ and ny =243,
respectively, cf. Appendix A.1.

Evaluating the balance of entropy by the Coleman—Noll proce-

dure yields

B al_ al//mix
Ms = POaCO = PO aco

(24)

The mixing contribution to the Helmholtz potential can there-
fore be derived by integration of the chemical potential which
yields

i kBH 1
YyMX—_2_ | cgy=+coln
p2v | T

m,
Co+Pom,

m.
POm,

Co mg
m; | +Po

_— In
Co +p0m7p rmp

+/Y‘,

(25)

As the chemical potential is a Gibbs potential, the concentration-
independent value v accounts for the difference between the Gibbs
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and the Helmholtz free energy per amount of solvent. This relates
to a change in pressure and temperature upon mixing. At constant
pressure, this change is negligible (Mark and Erman, 2007), thus, in
the following we assume y=0.

2.2.2. Diffusion and heat conduction

Case II diffusion kinetics cannot be described by Fick's law. The
behaviour is characterised by a wave-like solvent propagation with
a constant diffusion front. To account for this non-classical behav-
iour, a new diffusion law has been introduced in Wilmers and
Bargmann (2014). The derivation is based on a dual-phase-lag
extension of Fick's first law

_’(X,t+7'j) = —D(cp, 8,])-Vco (X, t + 7¢), (26)

where 7; and 7. denote retardation times, representing the delay in
formation of the concentration gradient and the flux due to mo-
lecular interactions. This expression for the diffusion flux, however,
does not necessarily guarantee that the dissipation inequality is
fulfilled. To ascertain that the model produces thermodynamically
sound results, the fulfilment of the dissipation inequality is checked
for every quadrature point during calculation, cf. A.2.

The coupling of the diffusion behaviour to temperature and
deformation is accounted for by the diffusion coefficient as a
function of concentration, temperature and the determinant of the
deformation gradient given by

D(co.6.]) = Do[1 — 651 - 2X¢s}exp< SR {C‘—‘; - 0.5}),
(27)

where the volume fraction of the solvent is given by ¢; =% = ﬁ%.

Equation (27) is a combination of different well known de-
pendencies. The temperature dependence of the solvent's self
diffusion coefficient is known to follow an Arrhenius relation with
the activation energy Ej, cf. e.g. Duda et al. (1982). Furthermore, the
exponential dependence on the concentration with a constant
factor ¢ is valid for a number of Case II systems (Wu and Peppas,
1993) and is responsible for the formation of the sharp front in
the model, see Wilmers and Bargmann (2014) for further details.
The multiplicator involving the solvent volume fraction ¢s gener-
alizes this relation to the mutual diffusion coefficient (Duda et al.,
1982). These dependences of the diffusion coefficient will be
maintained in the following. For better readability, however, they
are not stated explicitly anymore.

Combining the first order Taylor expansion with respect to time
of Eq. (26) with the mass balance of the diffusing species, Eq. (6),
under the assumption that no solvent molecules are created or
destroyed within the polymer gives the following quasi-hyperbolic
diffusion law

(:"0 -+ Tjéo = DiV(D'VCo) -+ TCDiV(D'VC.b)‘ (28)

This diffusion law allows to describe the characteristic wave-like
propagation and exhibits a constant front velocity, as shown in
Wilmers and Bargmann (2014).

The heat conduction in amorphous polymers follows Fourier's
law

Q=_K-vo, (29)

with K denoting the material's heat conductivity.

3. Numerical examples

The equations established in the previous section are solved
using a finite element discretisation in space. In time, an implicit
Euler scheme is applied. This system is implemented in a C++ code
utilising the program library deal.Il (Bangerth et al., 2007).

The primary fields, i.e., the concentration, the displacement and
the temperature, are approximated using linear functions. To
interpolate the spatial gradient of the chemical potential us occur-
ring in the temperature evolution equation (14) and the dissipation
inequality (13), a fourth equation is introduced to be fulfilled on
element nodes, relating the specific enthalpy of mixing ¢s to the
primary fields according to

kBﬁ X
(Ps POV _] ) (30)
see Appendix A.1.

In the numerical examples, the diffusion of toluene in poly-
styrene is examined, which has been shown to exhibit Case II ki-
netics for small toluene concentrations (Gall and Kramer, 1991).
Furthermore, this system is a common example in experimental
studies and, thus, material constants and characteristic values are
readily available. The material parameters used in this contribution
are given in Table 1.

The two-way coupling between diffusion and deformation in
Case Il diffusion arises from the plasticisation of the material by the
absorbed solvent. Ahead of the diffusion front, where almost no
solvent exists, the polymer remains in its rigid, glassy state. The
mixture behind the front, however, is plasticised and, thus, has a
different mechanical behaviour — including different Lamé
parameters.

In Table 1 the Lamé constants for the glassy and the plasticised
state are given. For concentrations greater than 0.5 ceq, i.€., ahead of
the front, the values for the plasticised state are used. This relates to
a decrease in Young's modulus to approximately 1/20-th of the
glassy value. The Poisson's ratio remains constant. A further tem-
perature dependence of the mechanical properties is neglected as
the plasticisation is in the focus of the examination.

Besides this change in the mechanical behaviour of the material,
the coupling is introduced to the system via the dependence of the
diffusion coefficient on the volume fraction of the solvent according
to Eq. (27) and the Helmholtz free energy of mixing, cf. Eq. (25).

For the numerical examples, a cuboidal geometry as shown in
Fig. 3 is examined. The geometry is discretised using linear hex-
ahedral elements. To accurately capture the sharp diffusion front,
the mesh is finer in x-direction, resulting in a discretisation with
2214 degrees of freedom. As the propagation velocity increases
with temperature, the timestep size is reduced for higher applied
temperatures, thus, ranging from 0.2 min to 12.5 min.

The displacement of the cuboid is constrained on three adjacent
faces, for each in the plane's normal direction. Additionally,
Dirichlet boundary conditions for the concentration and tempera-
ture are applied on only the small one of these three faces. The
boundary conditions for concentration and temperature are chosen
to be the equilibrium concentration ceq and a constant temperature
above the reference temperature = 293.15 K, respectively. For all
surfaces, the concentration and temperature fluxes are assumed to
vanish.

3.1. Case II diffusion

This setup and an imposed heating to 333.15 K (89.3% of the
polymer's glass transition temperature) on the small face are used
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Table 1
Material parameters for polystyrene and toluene.

Symbol Value Source
Equilibrium concentration Ceq 0.13 g/cm? Gall and Kramer (1991)
Maximum diffusion coefficient Do 4.50714-10% cm?/min Gall and Kramer (1991)
Activation energy Ep 1.13 eV Gall and Kramer (1991)
Variation parameter of concentration dependence d 5 Wilmers and Bargmann (2014)
Flory interaction parameter 0.133 Schuld and Wolf (1999)
Retardation time (flux) T 6732.45 min 4
Retardation time (gradient) Te 50 min
Mass density of the polymer Po 1.04 g/cm? Delassus and Whiteman (1999)
Mass density of the solvent Ps 0.8669 g/cm®
Number of polymer segments r 3500 Gall and Kramer (1991)
Mass polymer chain segment my 1.73-10 ¥ kg
Mass solvent molecule ms 1.53-107% kg
Lamé constants (glassy) A 2.8 GPa

n 1.2 GPa
Lamé constants (plasticised) A 0.14 GPa

n 0.06 GPa
Viscoelastic relaxation time Trelax 5-10° min Govindjee and Simo (1993)
Specific heat capacity G 1250 J/(kg K)
Thermal expansion coefficient a 9.0-107° 1/K Delassus and Whiteman (1999)
Heat conductivity K 0.17 W/(m K)

@ Estimated from velocity values given in Gall and Kramer (1991) using the Deborah number theory (Vrentas et al., 1975).

to investigate the model's capability to describe Case II behaviour.
The results are presented in Figs. 4—7.

Fig. 4 displays the deformation and solvent transport over time.
The sharp Case Il front is upheld over the whole diffusion time.
Behind the front, concentration and swelling are in equilibrium.

Fig. 5 shows the concentration, temperature and stress fields in
the swollen geometry after an exposure of 200 min. Behind the
solvent front, the polymer swells considerably while almost no
deformation besides thermal expansion occurs in the low-
concentration region. In the temperature field, a heating of a few
millikelvin is visible. This is the effect of the heat of mixing as
introduced via the chemical potential into the temperature evolu-
tion equation (14), cf. also Fig. 7.

The distinct deformation behaviour results in the occurrence of
stresses in the sample. Directly ahead of the front where the
polymer is still glassy and unable to deform, tensile stresses arise. In
the layer behind the front, the material is subjected to compressive
strains because the swelling is restricted by the adjacent glassy
region.

This behaviour is further illustrated in Fig. 6 depicting the
Cauchy stress distribution and the step-like concentration profiles

Fig. 3. Geometry of the sample. On the coloured surfaces, Dirichlet boundary condi-
tions are applied. The other surfaces are traction free and diffusion or heat fluxes
vanish.

in the unconstrained edge of the cuboid for different time steps.
The stresses visible at a position of x=0 um arise from the
displacement constraints on the yz-plane.

In Fig. 7, the temperature profile over the undeformed specimen
at different temperatures is depicted. For Case II diffusion, heat
conduction is orders of magnitude faster than the solvent transport.
For this reason, the heating of one face leads to a homogeneous
temperature of #=333.15 K in the whole specimen almost imme-
diately. Further changes in the temperature are caused by two
opposing effects, namely the thermoelastic behaviour of the ma-
terial and the induced heat of mixing. In the beginning, the swelling
of the polymer causes structural cooling, which is captured by the
term describing the change of the stress power with temperature in
Eq. (14). Over time, as the solvent concentration increases, the in-
fluence of the heat of mixing on the temperature evolution exceeds
that of the stress power, causing a heating of the material. Fig. 7
shows that the maximum of the temperature profile occurs just
at the diffusion front.

3.2. Investigation of the coupling

As the previous section has demonstrated the capability of the
proposed model to fully predict the characteristic properties of
Case II diffusion, a further investigation of the effects of coupling
diffusion, deformation and temperature is carried out.

To investigate the influence the temperature has on the diffu-
sion kinetics and the swelling, further simulations have been car-
ried out using the same setup as introduced in Fig. 3 with different
applied temperatures.

In Fig. 8, concentration profiles for different applied tempera-
tures are depicted. As the temperature in the material increases, the
front velocity increases as well, following an Arrhenius relation as is
typical for Case II diffusion as a thermally activated process (Lasky
et al.,, 1988; Gall and Kramer, 1991).

Furthermore, for higher temperatures, the solvent front widens
because the diffusivity in the glassy region increases according to
the temperature dependence of the diffusion coefficient visible in
Eq. (27). With this rise in the diffusivity, the Fickian precursor be-
comes less pronounced. For the low temperature profiles, the
Fickian precursor as the small region ahead of the front with a low
solvent concentration is clearly visible. A higher diffusivity in the
glassy region means that more solvent diffuses further into the
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g

t = 100 min

t = 200 min

t = 300 min

Fig. 4. Temporal evolution of Case II diffusion. A sharp concentration front moves with constant velocity through the specimen. Behind the front, a constant concentration and an
equilibrium state of swelling are established. The severe swelling due to solvent uptake is clearly visible.
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Fig. 5. Distribution of concentration c, temperature § and the Cauchy stress compo-
nent g, in the swollen sample after an exposure time of 200 min.

glassy region, thus, the Fickian precursor widens as well. The
broadening of the Fickian precursor and the front indicates how the
diffusion behaviour transitions from Case II to Fickian at tempera-
tures above the glass transition.
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Fig. 6. Cauchy stress and concentration profiles in x-direction of the undeformed
sample at different exposure times. At the concentration front, a jump in the stresses
occurs because only the plasticised, high-concentration region swells.
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Fig. 7. Temperature and displacement profiles in x-direction of the undeformed
sample at different exposure times. The expanded material cools due to the thermo-
elastic effect.

In Fig. 9, the equilibrium degree of swelling as a function of
temperature is depicted. The volume of the swollen sample in-
creases linearly with the increasing temperature. Thermal expan-
sion only accounts for a minimal percentage of the volume increase.
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Fig. 8. Concentration profiles for different applied temperatures at an exposure time of
t =300 min. With increasing temperature, the diffusion becomes faster and the front
broadens.
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A pre-deformation of the specimen has only a very small in-
fluence on the modelled diffusion behaviour. However, from ex-
periments, e.g., Harmon et al. (1987), it is known that a
considerable pre-deformation causes a transition of the diffusion
mechanism from Case II to Fickian behaviour. In its current form,
the proposed model only considers the coupling between the
deformation state and the diffusion coefficient. To account for the
mechanism transition caused by pre-deformation, the model
could be extended by a formulation for the generation of free
volume during deformation and its influence on the diffusion
kinetics.

4. Summary

A general framework for coupling diffusion and thermo-
mechanics as proposed in Govindjee and Simo (1993), McBride
et al. (2011a) has been adapted for the description of Case II
diffusion. To this end, a formulation for the Helmholtz free energy
of mixing has been derived from the Flory—Huggins theory of
mixing. Furthermore, a quasi-hyperbolic diffusion law has been
introduced to account for the characteristic kinetics of Case II
diffusion. Here, a formulation for the diffusion coefficient has been
applied that depends not only on concentration but also on the
deformation state and the temperature.

During formulation of the governing equations and the simu-
lations, special attention has been paid to the thermodynamical
consistency of the model.

To examine the capacity of this model, it has been implemented
in an in-house finite element code and used in numerical simula-
tions of the diffusion of toluene in polystyrene. These numerical
examples show that the model accurately describes the charac-
teristic solvent uptake behaviour of Case II diffusion, namely the
formation of a sharp diffusion front that moves with constant ve-
locity as well as plasticisation and considerable swelling behind
this front. The concentration and swelling reach their equilibrium
values behind the front quickly, thus, displaying the characteristic
step-like profiles.

Furthermore, the coupling to temperature allows to describe
thermoelastic behaviour of the polymer as well as a change in the
diffusion kinetics as the temperature approaches the glass transi-
tion temperature. Extension of this diffusion-temperature coupling
is a promising approach for the description of non-Case Il anoma-
lous diffusion and the transition from Case II to Fickian behaviour.
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Fig. 9. Temperature dependence of the volume expansion. The equilibrium degree of
swelling increases distinctly more with temperature than the thermal expansion does.

Appendix A. Further comments on thermodynamic relations
A.1. Chemical potential

As outlined in Section 2.2, the equation of state for the chemical

potential is pe=ps—0ns. Furthermore, u; = 28G™ — 94K _ p2agm:
holds. Therefore, the specific enthalpy ¢s and the specific entropy 7
contributions can be obtained from Eq. (21) and Eq. (18), respec-

tively, according to

. dAHMIx . kgt x

_ BBY X A1l
aASmiX
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[
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A.2. Evaluation of the reduced dissipation inequality

A thermodynamically consistent formulation needs to fulfil the
reduced dissipation inequality which in its most general formula-
tion is given in Eq. (13). For the considered constitutive relations
without history variables E and including the equation of state for
the chemical potential, Eq. (13) reduces to

Vo, — 09n] ~ 5Q-¥0 > 0. (A3)
As Q= —K- V6 with K being non-negative, the second term in Eq.
(A.3) is always positive.

To account for the characteristic Case II kinetics, the diffusive
flux is given by J(X,t+7) = —D(co)- Vco(X,t+7¢), cf. Section 2.2. With
this relation, it is not obvious whether the term including the
diffusion flux is greater or equal to zero. This is tested during
simulations by calculating the dissipation density given by Eq. (A.3)
in every quadrature point.
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integrated dissipation density [J/s]
|
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Fig. A.10. Dissipation of the whole system for the completely coupled case. As the
dissipation density is positive in every time step, the dissipation inequality is fulfilled.

The jumps in the curve are a product of the jump in the elasticity constants upon
plasticisation.
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The results for the completely coupled case with a boundary
temperature of 333.15 K are given in Fig. A.10, which shows that the
integrated dissipation density for the whole system is positive in
every time step. This requirement is not only fulfilled for the whole
system but in fact in every quadrature point.
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