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Promotionszeit als Erstgutachter unterstützte. Insbesondere dafür, dass er stets

großes Interesse an meinem Thema zeigte, wertvolle Impulse zur Berarbeitung

des Projekts gab und sich immer Zeit nahm. Vielen Dank für die hervorragende

Zusammenarbeit.

• Herrn Dr. Christan Scholz, der die Anregung zur Bearbeitung dieses interessanten

und vielseitigen Themas gab. Zudem mit seinem Erfahrungsschatz und wertvollen
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kompetente Diskussion in der Promotionsprüfung.
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meinem Promotionsprojekt unterstützten. Insbesondere gilt mein Dank Andreas

Hock, Lutz Mager und Simon Speidel.

• Meine Kolleginnen und Kollegen am Institut für Mechanik und Meerestechnik für

den wissenschaftlichen Austausch und ihre große Gastfreundschaft. Die Besuche am

Institut waren für mich immer eine sehr schöne Zeit.
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Symbols

The following is a list of important symbols that appear in this thesis. Multidimensional

vector quantities and matrices are marked by bold font. Scalar and one dimensional vector

quantities are displayed in normal font. Some symbols have multiple meanings, however,

the correct assignment will appear from the context in the dissertation.

Acronyms

A/D analog to digital

BEV battery electric vehicle

D/A digital to analog

DIFF differential

ds drive shaft

EM electric machine

FB feedback

FF feedforward

HEV hybrid electric vehicle

ICE internal combustion engine

IS input shaft (gear)

PE power electronics

PHEV plug-in hybrid electric vehicle

REF reference

rpm revolutions per minute

SISO single-input/single-output

SP Smith Predictor

TD torsional damper

TM transmission

VEH vehicle

ZOH zero order hold

Latin Minuscules

a longitudinal acceleration

c spring stiffness

d viscous damping coefficient

e error

f frequency

k sampling step

kp proportional control gain

k control gain vector

m mass of a body

n system order

p minimal coordinates

q modal coordinates

r radius

s displacement

u system input

v velocity

x state vector

y system output

z flat output or discrete eigenvalue
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Latin Capitals

A system matrix

B input matrix or observability
matrix

C output matrix

D damping matrix or feedthrough
matrix

F force

G transfer function

I identity matrix

J moment of inertia

K stiffness matrix or controller

M mass matrix

N degree of freedom

P controllability matrix

R gear ratio

T torque, period

X̂ modal matrix

Greek Letters

α half backlash gap

δ disturbance torque

∆ difference

∆ϕ torsion rotation angle

∆ω torsion angular velocity

Θ summarized moments of inertia

λ eigenvalue

ξ damping ratio

σ fade-out function

τ time delay

φ transformation matrix

ϕ rotation angle

ω angular velocity in rad/s or rpm

ωb bandwidth in rad/s

ω0 sampling frequency in rad/s
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Abstract

A major current focus in vehicle development is to accomplish multiple objectives simulta-

neously: more comfort, more agile dynamic behavior and components protection. These

goals are often in conflict with each other, since high performance driving maneuvers often

cause powertrain oscillations. These oscillations are uncomfortable for the passengers and

stressing for powertrain components. Therefore, methods are required to reduce driveline

oscillations, but preserve high performance. The increase of electronics in cars enables to

reduce undesired driveline oscillations by using intelligent functions. Electronic functions

have the main advantage that no physical changes of vehicle components are necessary

and therefore no weight is added. Furthermore, control functions are flexible and can be

easier adapted to different powertrain types than mechanical approaches.

This dissertation focuses on the design of powertrain control functions for conventional,

hybrid electric, and battery electric vehicles to reduce driveline oscillations. The goal

of the control design is to accomplish all three goals in the best possible way by using

knowledge of the oscillation behavior of the powertrain system. Thereby, lower frequency

oscillations up to eight hertz are focused in this work. Detailed simulation models and

reduced control models of conventional, hybrid electric, and battery electric powertrains

are derived and analyzed. Based on the derived linear control models, a flatness-based

feedforward controller is designed with arbitrary chosen transition time to prevent driveline

oscillations. Furthermore, the flatness-based approach generates desired trajectories for

feedback control. Then, extensions of backlash and time delay dynamics are given. First,

backlash control is investigated. Backlash is necessary in mechanical systems due to

tolerances and easy mounting and can therefore not be avoided. In particular, the effect

of backlash is significant during load changes from pull to thrust condition and vice versa.

Therefore, the linear flatness-based approach is extended by a smooth nonlinear backlash

model and feedforward and feedback controller are designed based on this extension.

Second, the destabilizing effect of time delay is focused and compensation methods are

derived. Time delay can occur in control systems due to electric and mechanical reasons.

The powertrain control system is considered as a digital system in order to take sampling

time into account. Then, the closed loop stability of time delayed systems is investigated

using stability diagrams. Compensation methods, namely, Smith predictor, observer based

design, and state prediction are derived to enable well damped controlled systems with

time delay. Finally, the two control approaches are combined for control of powertrain

systems with backlash and time delay in an ad-hoc approach.

All control approaches are evaluated in time simulation and partly in test drives. Simulation

studies and experimental results show improved performance, drive comfort and stability

by applying the developed approaches, such that the addressed goal conflict can be solved.
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Chapter 1

Introduction

1.1 Motivation

Electronic systems in passenger cars play a major part regarding the current in-depth

changes in the automotive development. The automotive industry has to face the chal-

lenges of electrification, autonomous driving, and connected vehicles as new chances, see

[Sommer17]. Furthermore, [Barra16] announces that the automotive industry is in the

midst of seeing more changes in the next five years than it has seen in the last fifty

years. In order to enable all these changes, intelligent functions are necessary. These

functions undertake tasks of the driver and perform them often even better. For instance,

an automatic dual-clutch transmission can provide full shift comfort, and significantly im-

proved fuel efficiency and performance towards manual actions of a driver, as addressed in

[Matthes05]. The remarkable increase of electronics in vehicles in recent years, as described

in [MencherEtAl14] or [BayindirGözüküçükTeke11], allows to develop these functions in a

wide range. Thereby, the cost of electronics in cars is expected to reach more than 30% of

the overall costs by 2017, as presented in [PwC13]. Further increase is expected and the

automobile evolves into a part of the networked world with high performance processors,

see [TraubMaierBarbehön17]. Automotive control is a substantial part of the electronic

systems and covers engine control, powertrain control, and vehicle control, as discussed in

[KienckeNielsen05].

The focus of this dissertation is on powertrain control. The increase of electronics in

cars enables to reduce undesired powertrain torsional oscillations by using intelligent

control functions. These oscillations can be induced by changes of the desired steady-state

driving torque and by disturbances, such as rolling resistance, since components of the

powertrain are flexible, see [ErikssonNielsen14]. The vibrations are undesired due to the

following three aspects. Firstly, performance of the vehicle is reduced, because energy

is dissipated in the oscillations and the desired longitudinal acceleration of the car is
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Reduced
Driveline Oscillations

Comfort
Component
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reduction of
jerking
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amplitudes and cycles

Figure 1.1: Multiple challenges of driveline oscillations

not reached. Secondly, driveline components are more stressed based on high oscillation

amplitudes and cycles. And thirdly, driveline oscillations are uncomfortable for vehicle

occupants. Hence, the overall objective is to achieve more performance, more comfort,

and more component protection. This is challenging, since the objectives, as illustrated in

Fig. 1.1, are already conflicted, see [PhamEtAl17]. For example, more comfort and more

component protection can be easily achieved by reduction of performance. However, to

keep or increase performance at the same time is much more challenging. Especially for

sport cars, the high performance property is of crucial importance.

Model-based powertrain control undertakes tasks of the driver and attempts to accomplish

all three goals in the best possible way by using a powertrain model. Thereby, the control

units regulate actuators of the powertrain in such a way that driveline oscillations are

compensated or even prevented. Typical actuators of the controller are the drive unit, as

combustion engine or electric machine, and the gear clutch.

Powertrain control has the advantage that no physical changes of components are necessary.

For example a typical mechanical approach is to increase the radius of a shaft in order to

increase damping. However, such a change is often unrealizable due to cost and package

space, as discussed in [EmadiLeeRajashekara08]. Moreover, powertrain control has the

advantage that no weight is added. This advantage is crucial in the current discussion of

consumption and emission reduction.

An further aspect is that the variety of vehicle types and variants explodes, see [CAR12].

Powertrain control, as a software solution, is much better suitable to overcome the

rising complexity and variety of vehicles than mechanical solutions. Control is an easily

adaptable method and can be applied to a wide range of powertrain types with minor or
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no adjustments.

The design of powertrain control is challenging, when the effect of nonlinear dynamics are

dominant in the powertrain. Nonlinear dynamics has to be considered in the design to

avoid instability and performance degradation. Much research in recent years has focused

on powertrain control with backlash, see for example [LagerbergEgardt05]. Backlash

mostly occurs as the gap between two gear teeth and is necessary due to mounting reasons.

The system dynamics is nonlinear when the backlash is traversed, since no torque is

transmitted within the backlash gap, but torque is abruptly induced, when contact is

achieved again. Due to this hard nonlinearity, driveline oscillations can be introduced and

degrade the comfort of the system.

Another important role plays time delay in powertrain systems, as for instance investigated

in [BaumannEtAl06]. A powertrain controller, which does not consider time delay, can

destabilize the powertrain system, when the amount of time delay in the powertrain is

significant. Time delay can origin from the physical behavior of the actuators in the

powertrain or from electric delays due to signal processing and time sampling.

The described two dynamics of backlash and time delay in the powertrain system cannot

be avoided, but influence the system behavior significantly and hence, lead to challenges

in powertrain control design. These are in the focus of this work.

1.2 Literature Survey of Related Work

Powertrain control is an important field of research and there exists several works on this

topic. This section gives an overview over recent works on powertrain control and includes

related work to powertrain modeling, linear powertrain control, powertrain control with

backlash, and powertrain control with focus on time delay. The survey of related work in

this section lay the foundations for the next section, where the research gaps are discussed

and the main contributions of this dissertation are stated.

The names powertrain and driveline are sometimes used as synonyms in literature. In

order to prevent misunderstanding, a definition of powertrain and driveline, as used in

[PhamEtAl17] and [KienckeNielsen05], is given here for the following. It is distinguished

that powertrain includes the component drive unit (engine), while driveline does not

include the drive unit. Therefore, for control the name powertrain is preferred in this work,

since the drive units are used as actuators in the control systems. On the other hand,

driveline oscillations is used here to describe the torsional oscillation of the whole system.
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Powertrain Modeling

General studies on modeling of conventional powertrains, i.e. with combustion engine, can

be found in [KienckeNielsen05], [DolciniWitBéchart10], and [ErikssonNielsen14]. These

works investigate the dynamics of the powertrain as a multibody system and correspond

equations of motion are given. In addition, a deep analysis of tire modeling is presented in

[Pacejka12], which has to be included in the model, since the wheel-road contact is the

last element of the powertrain. Further studies on the powertrain dynamics as a chain

of oscillators are given in [SchrammHillerBardini10], [DresigRockhausenHolzweißig13],

[DresigFidlin14], and [FischerEtAl16]. Eigenfrequencies and eigenforms are calculated and

discussed in these works.

Discussion on the configuration of hybrid electric and battery electric powertrains

are given for instance in [SciarrettaGuzzella07], [WallentowitzFreialdenhoven11], and

[KhajepourFallahGoodarzi14]. More detailed hybrid electric powertrain models are

presented in [AwadallahEtAl17], and [JauchEtAl18]. The electric machine is included in

these models. Furthermore, a separation clutch is added, as shown in [JauchEtAl18]. This

clutch allows to separate the internal combustion engine from the remaining powertrain.

Linear Powertrain Control

Simplified control models are used for control design. Control models with two lumped mass-

es are described e.g. in [ErikssonNielsen14], [BaumannEtAl06], [BruceEgardtPettersson05]

and [TemplinEgardt09]. Reduced control models with three lumped masses can be found

in [VadamaluBeidl16], and [JauchEtAl18]. A comprehensive overview in feedback control

of the powertrain is given in [ErikssonNielsen14]. Especially, feedback control of the

steady-state is discussed in this book. Further studies can be found on powertrain control

of load changes, gear shifting, and engine irregularity.

Control for load changes is for example investigated in [BaumannEtAl06]. A proportional-

derivative controller is designed and parametrized by the root-locus method in order to

reduce driveline oscillations. Furthermore, linear-quadratic regulators are for instance

designed in [BruceEgardtPettersson05] and [TemplinEgardt09]. An approximate inverse

plant model in combination with a filter is additionally designed in order to get reference

trajectories for the linear-quadratic regulator in [BruceEgardtPettersson05]. The regulator

in [TemplinEgardt09] is based on a reformulated system model, which allows control of

zero steady-states.

Moreover, control for shifting is investigated, among others, in [PetterssonNielsen00],

[RainerFrankDirk10], [JoachimReussHorwath09], and [GolkaniEtAl17]. In the research pa-

pers of [PetterssonNielsen00] and [JoachimReussHorwath09] the driveshaft torque and driv-

eline oscillations are controlled to zero for gear shifting. Thereby, a proportional-integral-
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derivative controller is applied in combination with an observer. In [RainerFrankDirk10] a

feedforward controller is designed for shifting using the electric machine and clutch of a

hybrid electric vehicle. In the work of [GolkaniEtAl17], a linear optimization problem is

formulated to minimize additionally the energy losses in the clutches.

Studies on control of engine irregularity in a hybrid electric vehicle are for instance

presented in [NjehCauetCoirault11], and [VadamaluBeidl16]. Both studies use the electric

machine for control to compensate oscillations induced by the irregularity of a combustion

engine. In [NjehCauetCoirault11] a linear parameter varying control strategy is designed,

since the oscillation frequency varies with the rotation speed of the combustion engine.

The control approach of [VadamaluBeidl16] involves a model predictive controller.

Powertrain Control with Backlash

An overview on powertrain control, which considers the dynamics of backlash explicitly,

can be found in [Lagerberg01]. In this work over forty papers are reviewed and categorized

by linear, passive and active nonlinear backlash control. Furthermore, the main backlash

models are described and the various control methods are evaluated. Active controller

tries to achieve fast contact mode, when the system is in backlash. These controllers are

rated by the survey to have the most potential for achieving good system performance.

In [Brogliato18] the control of backlash is analyzed in a tutorial from a mechanical point

of view. There, dynamical equations of multibody systems with backlash are given as a

Lagrangian system and various modeling examples are presented. Two control methods are

reviewed, namely control with persistent contact and control with impacting trajectories.

Investigations on modeling of backlash can be found in various works, as for instance in

[NordinGalic’Gutman97], [Lagerberg01], or [NordinGutman02]. In these works physical

representations of backlash are derived, as well as simplified models for control. Moreover,

observers are designed in [LagerbergEgardt07] and [Haschka MarkusVolker07] based on

backlash models. [LagerbergEgardt07] applies a switching Kalman filter to estimate the

offset parameters introduced by backlash. Thus, during backlash traversing a wait-mode

is introduced. On the other hand, a nonlinear observer without switching is presented in

[Haschka MarkusVolker07]. Thereby, backlash is separated in the observer model and this

nonlinearity is handled as a nonlinear disturbance.

Advanced feedback controllers can be designed based on the knowledge of predicted

system state. For instance, a switching controller is presented in [LagerbergEgardt05]. A

state feedback controller is used in contact mode, but when the backlash gap has to be

traversed, the control system switches to a model predictive controller, such that a fast

backlash traversing is realized. A further optimization based controller is presented in

[TemplinEgardt09]. There the backlash handling strategy introduces a torque hold level,

such that the requested engine torque is limited, while the backlash is traversed. Moreover,
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in [AngeringerHornReichhartinger12] and [Speidel17] sliding mode controllers are designed

to control the nonlinear powertrain system with backlash. In [BoveeRizzoni16], a numerical

model-based approach is presented. The driver’s torque request is shaped by experiments

such that the undesired effects of the nonlinear backlash dynamics are prevented.

Powertrain Control with Time Delay

There are numerous research interests in control of systems with time delay. A survey is

given for instance in [Richard03]. In this work an overview of existing control approaches

is provided and open problems regarding input delays, discrete implementation, and using

knowledge about the delay in control design, are discussed. A further overview with

focus on application is presented in [SipahiEtAl11]. Examples of systems with delays are

given in the field of engineering, biology, physics, operations research, and economics.

The limitations and potential advantages of delays are discussed and the limitations are

illustrated using stability charts.

Deeper analysis on stability charts can be found for example in [Stépán89],

[InspergerStépán11], and [HajduInsperger16]. These research investigate the construction

of stability charts. In [Stépán89] stability analysis of delay-differential equations are

focused and therefore, infinite-dimensional systems are considered. Semi-discretization,

as a simplified alternative method for calculation of stability charts, is presented in

[InspergerStépán11]. It uses numerical methods and derives finite-dimensional matrices

for stability calculation. Furthermore, based on the derived methods in [Stépán89], the

studies in [HajduInsperger16] analyze the robustness to model uncertainties of time

delayed system controlled by a Smith predictor. Further studies on design of Smith

predictors are given, besides [Smith57], for instance in [Palmor80] and [Normey-Rico07].

There exists few works on control of powertrains with time delay. Time delay can originate

in the powertrain from combustion process of the engine and data acquisition from sensors,

as described in [BaumannEtAl06]. In this work a Smith predictor is added to compensate

the time delay. In [VadamaluBeidl16] dead time and time lag behavior of the actuator are

considered. Dead time is compensated by a recursive prediction law and the lag behavior

is modeled and included in a model predictive control scheme.

1.3 Contributions and Outline

In summary, there exist several different approaches to powertrain modeling and control.

However, there are still many open questions, which are mostly relevant in high performance

vehicles. In the following, these open areas are listed.

There exists a wide range of powertrain types due to electrification. However, so far most
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work has concentrated on conventional powertrains. Also few researchers have investigated

and compared the dynamics and control design of the main different powertrain types,

conventional, hybrid electric, and battery electric, at once.

Furthermore, little work has been done on feedforward control design of load changes. A

feedforward controller is favored since it complements a feedback controller to improve

the tracking performance. In addition, it cannot destabilize the controlled system, as

a feedback controller could do due to uncertainties. Especially, there exists a gap in

feedforward control design which take the dynamics of backlash into account. Hence,

an efficient feedforward control method is necessary that can be easily implemented in

electronic control units.

Another aspect is that few work has focused on desired trajectory generation for load

changes of powertrains with and without backlash. Desired trajectories are necessary to

control the transient behavior of the system during load changes.

Moreover, the growing number of electronic control units makes it necessary to investigate

the sources of time delay in powertrains and the destabilizing effect of it. The interaction

between discrete implemented controllers and the continuous powertrain system has to be

analyzed. If the system is destabilized by high time delays, compensation methods are

needed. The combining of backlash and time delay in powertrain systems is a further area

that has been hardly explored.

The main contributions of this thesis are the following:

• Detailed simulation models and control models of the powertrain are derived and

analyzed for conventional, hybrid electric, and battery electric powertrains. Thereby,

two-mass control models are given for conventional and battery electric powertrains,

and a three-mass control model is given for hybrid electric powertrains. It is shown

that the eigenvectors of the lowest dominant frequency of these powertrain types are

similar. Results of these investigations are partly published in [PhamEtAl17].

• Flatness-based feedforward controllers are designed for two and three-mass control

models in order to enable load changes with reduced driveline oscillations. This

method is validated in experimental cars. Furthermore, the method is extended to

powertrains with backlash by using a smooth backlash model. Desired trajectories

are generated by the feedforward approaches and are applied for feedback control of

the transient dynamics. Partial results are already published in [PhamBushnell15]

and [PhamEtAl16]. Furthermore, parts of the approach are protected in patent

[PhamScholzRoulet16].

• The powertrain with feedback and feedforward controller is considered as a digital

control system. Stability regarding sampling time, actuator and measurement dead

time is investigated. The compensation methods Smith predictor, observer based
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method, and state prediction are designed and compared using stability diagrams.

Partial results to this are published in [PhamScholzSeifried17].

• Finally, a fist ad hoc approach is derived, which combines the separately deduced

control methods of backlash and time delay, such that control of these two effects at

the same time is possible. The approach is evaluated in simulation.

The thesis is organized as follows. In Chapter 2, the torsion oscillation dynamics of

conventional, hybrid electric, and battery electric powertrains is investigated, since this

dynamics is relevant for powertrain control. First, detailed simulation models are derived

as multibody systems for each powertrain type, then reduced control models are given

and its eigenfrequencies and mode shapes are analyzed. The specifications of powertrain

control in this work are defined in Chapter 3. Linear control methods, including flatness-

based feedforward control and feedback control, are designed. Further, simulations and

experimental results are provided. In Chapter 4, the linear control problem is extended

by the nonlinear effects of backlash traversing and suitable control methods are derived.

Chapter 5 focuses on the effect of time delay to powertrain control. The sources of time

delay are discussed and different time delay compensation methods are presented. The

methods are evaluated and compared using stability charts. In Chapter 6, the two effects

of backlash and time delay are considered together. First results of an ad hoc approach

are presented. Conclusions and an outlook for future work are given in Chapter 7.
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Chapter 2

Driveline Oscillation Dynamics

In order to design control methods, which reduce driveline oscillations, knowledge of the

longitudinal dynamics of powertrains is necessary. Therefore, modeling of powertrains

is developed in this chapter. All three powertrain types namely conventional, hybrid

electric, and battery electric are modeled here using multibody systems. First, a detailed

multibody system model is used to demonstrate natural frequencies and mode shapes of

the powertrain. Then, appropriate control models are derived from the detailed model by

using knowledge of the mode shape. It is shown that two-mass and three-mass control

models can represent the dominant torsion oscillation dynamics of all three powertrain

types. In addition, the following chapters applies the detailed model to simulation studies

in order to validate the developed designed control methods.

2.1 Modeling of Powertrains

There exists different types of powertrains depending on the applied drive unit or units.

The most common type is the conventional powertrain, whereby an internal combustion

engine powers the vehicle. Usually, a torsional damper, starting element and gearbox with

several gears are also included. The torsional damper has the purpose to reduce rotational

irregularity of the crankshaft and the clutch is used as a starting element, as well as to

enable gear changes, see [DresigFidlin14].

For reasons related with the reduction of CO2- and NOx-emission, electrified vehicles

are continuing to grow in importance. The first step of electrification are hybrid elec-

trified vehicles with internal combustion engine and electric machine. The final stage

of electrification are battery electrified vehicles. They are powered by one or several

electric machines and use batteries to store energy. Particular benefits of electric vehicles

are potentially zero CO2- and NOx-emission and the high energy efficiency of electric

machines, as discussed in [KhajepourFallahGoodarzi14], and [ChanBouscayrolChen10].
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drive unit transmission

wheel

differential

drive shaft

Figure 2.1: Generic powertrain of a conventional, hybrid electric or battery electric vehicle.

Furthermore, electric vehicles do not require a torsional damper, a starting element or

many gears.

Besides the different drive technologies, general parts of all three powertrain types

are drive unit, transmission with one or several gears, differential, drive shafts, and

wheels. Another common aspect is that all three powertrain types can be modeled as

a multibody system to analyze the rotational dynamic behavior of interconnected pow-

ertrain components, as described for instance in [FischerEtAl16], [ErikssonNielsen14],

[DresigRockhausenHolzweißig13], [DolciniWitBéchart10], and [SchrammHillerBardini10].

In Fig. 2.1 a generic powertrain model is illustrated as a multibody system. The powertrain

is divided into rigid bodies interconnected by spring-damper elements. Components such

as drive unit, transmission, wheels, and vehicle body are represented by moments of inertia

and mass, respectively. Flexible shafts and tires are represented by spring-damper elements.

This structure allows rotational motion and in particular the representation of driveline

oscillations. The rotational motion is caused by external torques of the drive unit, possible

clutch, or brakes, as well as disturbances. Investigations on modeling disturbances, as

wind and rolling resistance, can be found e.g. in [Gillespie92].

Spring-damper elements can be modeled linearly using Hooke’s law or by nonlinear

characteristics. Nonlinear characteristics are especially striking in the dynamics of torsional

dampers and tires. A typical spring characteristic of a dual mass flywheel, as discussed in

[FidlinSeebacher06], is illustrated in Fig. 2.2. The individual sections of the characteristic

are linear.

The longitudinal tire force is a nonlinear function of wheel slip and normal load acting on

the tire, see [Pacejka12]. In Fig. 2.2 the tire force characteristics is shown. The dynamics

of the tire has a damping effect on the powertrain and the contact between tire and street

converts the rotational motion of the wheels to a longitudinal of the vehicle. The dynamic

behavior of the tire is nearly linear and stable for small tire slip.

The detailed simulation models apply the nonlinear characteristics of torsional damper

and tires, whereby the control models apply the linear representations. In the following

sections, detailed models of conventional, hybrid electric and battery electric powertrains
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Figure 2.2: Nonlinear torque characteristics of a dual mass flywheel (left) and nonlinear

tire force characteristics for various normal load (right).

are presented and the analysis of each specific vibration behavior is discussed.

2.2 Conventional Powertrains

In a conventional powertrain an internal combustion engine (ICE), such as a gasoline or

diesel engine, drives the vehicle. Figure 2.3 shows schematically the torque characteristic

of a gasoline engine. The pull characteristic illustrates that the idle speed of the engine

is unequal to zero. For this reason a clutch or torque converter is necessary to separate

the engine from the remaining powertrain, such that the vehicle can stand still, although

the engine speed is unequal zero. In the further course of the work a clutch is considered.

Furthermore, in order to take more advantages of the performance characteristic of the

engine, different gears are required to shift the engine rotation speed in an area with

maximal torque, see for instance [NaunheimerBertscheLechner07]. Therefore, in addition

to the internal combustion engine, the clutch is another actuator in the powertrain. It

controls the transmission of the torque which is built by the drive unit.

0

0

engine rotation speed

IC
E

to
rq

u
e

pull characteristic
thrust characteristic

Figure 2.3: Characteristic curve of an internal combustion engine for pull and thrust.
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2.2.1 Detailed Simulation Model

In this work the detailed rear-wheel drive powertrain model as configured in Fig. 2.4 is used

to exemplary simulate oscillations caused by load changes or launching. The model consists

of moments of inertia of internal combustion engine (ICE) J1, torsional damper (TD)

J2, clutch J3, transmission (TM) J4, differential (DIFF) J5, wheels J6,7 and the vehicle

mass mV EH . Furthermore, the moments of inertia and vehicle mass are coupled by linear

and nonlinear spring-damper elements c1, c2, . . . , c6,long and d1, d2, . . . , d6,long. Nonlinear

spring-damper elements are applied to the torsional damper and tires with characteristics

as illustrated in Fig. 2.2. For reasons of clarity, damping parameters are not depicted

in Fig. 2.4. The gear ratios Rgear and RDIFF transform the rotation speeds to smaller

velocities and the tire radius rtire transform the rotary motions to a longitudinal. It is

assumed that the internal combustion engine and the clutch can be directly actuated by

the engine torque TICE and clutch torque Tclutch. The braking torques Tbrake are set to

zero and the disturbance force Fdisturbance is modeled as described in [Gillespie92].

The parameters of moments of inertia, mass, spring stiffness, gear ratios, and radius are

listed in Tab. 2.1. Linearized stiffness parameters of the torsional damper and tires are

also given. A damping coefficients di, with i ∈ {1, 2, . . . , N} where N is the degree of

freedom of the system, depends on the stiffness ci of the respective axis as discussed in

[Schlecht09]. The damping coefficients for the detailed simulation model are approximated

by di ≈ γ
√
ci with γ ∈ [0.0001, 0.001].

ICE

TICE

TD clutch TM

Rgear

DIFF

RDIFF

drive shaft

wheels

Tbrake

Tbrake
tire

rtire

mV EH

Fdisturbance

Tclutch

J1
J2

J3,2

J5J4

J6,2

vehiclec1 c2 c3 c4
c5,1

c6,long

J3,1

c5,2

J6,1ϕ1 ϕ2 ϕ3,1, ϕ3,2
ϕ4 ϕ5

ϕ6,1

ϕ6,2

sV EH

Figure 2.4: Detailed multibody model of a conventional powertrain.

2.2.2 Oscillation Analysis and Control Models

The dynamic behavior of a conventional powertrain during load change and launching is

nearly linear, if the wheels are not slipping and the torsional damper is acting within the

linear area of the spring characteristic. Therefore, the torsional vibration behavior can be

investigated using modal analysis. The equations of motion have to be derived. States of
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component physical size variable value unit

ICE moment of inertia J1 0.3 kgm2

TD moment of inertia J2 0.05 kgm2

clutch primary moment of inertia J3,1 0.09 kgm2

clutch secondary moment of inertia J3,2 0.01 kgm2

TM moment of inertia J4 0.03 kgm2

DIFF moment of inertia J5 0.05 kgm2

wheel left and right moment of inertia J6,1, J6,2 4 kgm2

vehicle mass mV EH 2000 kg

shaft ICE - TD linearized stiffness c1 2e3 Nm/rad

shaft TD - clutch primary stiffness c2 5e4 Nm/rad

shaft clutch secondary - TM stiffness c3 1e6 Nm/rad

shaft TM - DIFF stiffness c4 1e6 Nm/rad

drive shaft left and right stiffness c5,1, c5,2 3.44e4 Nm/rad

tire linearized stiffness c6,long 9.8e5 N/m

gear ratio 1st gear Rgear 6 1

DIFF ratio RDIFF 3 1

tire radius rtire 0.35 m

Table 2.1: Parameters of the detailed simulation model of a conventional powertrain.

the system are rotation angles ϕi, angular velocities ωi and displacement sV EH , velocity

vV EH of each moment of inertia Ji, with i ∈ {1, 2, . . . , N − 1} and vehicle mass mV EH ,

respectively. Before the system equations are derived, simplifications are made.

First, gear ratios are incorporated. Figure 2.5 illustrates the transformation. A gear ratio

R between two inertias Jk and Jl can be incorporated into

Jl = Jl,RR
2, Tl = Tl,RR, c = cRR

2, d = dRR
2 (2.1)

and

ϕl =
ϕl,R
R

, ϕ̇l =
ϕ̇l,R
R

. (2.2)

with new moment of inertia Jl,R, load torque Tl,R, damping dR, and stiffness cR and

new states ϕl,R, and ϕ̇l,R as described in [KienckeNielsen05], [DolciniWitBéchart10], and

[PhamEtAl17].

Second, the total moment of inertia of the clutch is sum up with

J3 = J3,1 + J3,2. (2.3)

Furthermore, left and right drive shafts and wheels are grouped together into

c5 = c5,1 + c5,2,

d5 = d5,1 + d5,2,

J6 = J6,1 + J6,2.

(2.4)
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Tk
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R
ϕl, ωl

Tl

Tk c, d
cR, dR

Jl,RJl
Jk

ϕk, ωk ϕk, ωk ϕl,R, ωl,R

Tl,R

Figure 2.5: Incorporating gear ratio R into moment of inertia Jl,R, load torque Tl,R,

damping dR and spring stiffness cR.

Third, the longitudinal motion of the vehicle mass mV EH is transformed to a rotational

equivalent. The tire radius rtire is treated as a torque reducing gear ratio. Hence, the

moment of inertia of the vehicle reads

J7 = mV EHr
2
tire, (2.5)

stiffness and damping coefficients read

c6 = c6,longr
2
tire, d6 = d6,longr

2
tire, (2.6)

and the new rotational states are

ϕ7 =
sveh
rtire

, ω7 =
vveh
rtire

. (2.7)

Applying these transformations, the conventional powertrain can be transformed to a

chain of moments of inertia without explicit modeling gear ratios but by using transformed

and summarized parameters as depicted in Fig. 2.6. Between moments of inertia four and

five, as well es five and six, gear ratios are placed. Moreover, between moments of inertia

six and seven the tire radius is located. The new state vector with rotation angle ϕi and

angular velocity ωi is

xconv = [ϕ1, ϕ2, ϕ3, ϕ4, ϕ5,R, ϕ6,R, ϕ7,R, ω1, ω2, ω3, ω4, ω5,R, ω6,R, ω7,R]T . (2.8)

J1

TICE

J2 J3 J4 J5,R J7,R
Tclutch

c1, d1 c2, d2 c3, d3 c4,R, d4,R c5,R, d5,R

J6,R

c6,R, d6,R

Tdisturbance,R

ϕ1, ω1 ϕ2, ω2 ϕ3, ω3 ϕ4, ω4 ϕ5,R, ω5,R ϕ6,R, ω6,R ϕ7,R, ω7,R

ICE TD clutch TM DIFF wheels vehicle

Figure 2.6: Conventional powertrain as a chain of inertias and spring-damper elements

modeled with incorporated gear ratios.
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The dynamic equation of the system in state space formulation is given by

ẋconv= =

(
0 IN

M−1
convKconv M−1

convDconv

)
︸ ︷︷ ︸

=Aconv

xconv, (2.9)

The identity matrix IN has size N which is the degree of freedom of the system. The

stiffness matrix Kconv is tridiagonal and defined with transformed parameters as

Kconv =



−c1 c1 0 0 0 0 0

c1 − (c1 + c2) c2 0 0 0 0

0 c2 − (c2 + c3) c3 0 0 0

0 0 c3 − (c3 + c4,R) c4,R 0 0

0 0 0 c4,R − (c4,R + c5,R) c5,R 0

0 0 0 0 c5,R − (c5,R + c6,R) c6,R
0 0 0 0 0 c6,R −c6,R


.

(2.10)

The damping matrix Dconv has the same structure as Kconv, but using damping constants

di instead of stiffness constants ci. The mass matrix Mconv is given by the diagonal matrix

Mconv =



J1 0 0 0 0 0 0

0 J2 0 0 0 0 0

0 0 J3 0 0 0 0

0 0 0 J4 0 0 0

0 0 0 0 J5,R 0 0

0 0 0 0 0 J6,R 0

0 0 0 0 0 0 J7,R


(2.11)

with moments of inertia Ji and Ji,R, respectively, with i ∈ {1, 2, . . . , 7} as diagonal elements.

Hence, the natural frequency and eigenmode of the conventional powertrain can be

calculated with system matrix Aconv defined in (2.9). For the sake of simplicity, the

damping matrix Dconv is set to zero, since powertrains are underdamped systems and the

impact of damping to natural frequency and eigenmode is very small and for instance

describe in [MagnusPoppSextro13].

Remark

Equation (2.1) clearly shows that a gear ratio R reduces the stiffness and damping of the

system by the factor of 1
R2 as discussed in [FischerEtAl16]. Additional gear ratios in the

system increase this effect and further reduce stiffness and damping. The consequences

are high amplitude and long decay time, when the system is stimulated by impulsive load

changes or periodical suggestion as discussed in [PhamEtAl17].
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2.2.2.1 Closed Clutch

Usually during driving, the clutch is closed and the whole powertrain is connected. For

this condition, the vibrational behavior of the whole conventional powertrain model is

investigated. The natural frequency and eigenmode of the vibrations are calculated by

analyzing system matrix Aconv given in (2.9). The system is parameterized by the values

given in Tab. 2.1 and zero damping coefficients. The system state xconv is defined in (2.8).

The resulting natural frequencies are

f0 = 0 Hz, f1 = 2.6 Hz, f2 = 21.1 Hz, f3 = 31.5 Hz,

f4 = 188.7 Hz, f5 = 706.6 Hz, f6 = 1064.6 Hz
(2.12)

with f0 as the frequency of the rigid body mode. The dominant frequency can be

investigated by simulation of a load change. Figure 2.7 shows the system, which is excited

by the torque ramp TICE. The vibrational behavior of engine angular velocity ωICE, wheel

angular velocity multiplied by the total gear ratio ωwheelRtotal, and longitudinal vehicle

acceleration aV EH is depicted. The total gear ratio of gearbox and differential is given as

Rtotal = RgearRDIFF . The low frequency f1 with 2.6 Hz appears clearly, especially in the

longitudinal acceleration of the vehicle. The other frequencies are hardly noticeable.

Furthermore, the eigenvector of the dominant frequency f1 is calculated to analyze the

deflection shape. According to Fig. 2.8 on the left, the corresponding eigenvector shows that

moments of inertia of internal combustion engine, torsional damper, clutch, transmission,

and differential vibrate synchronous. However, wheels and vehicle vibrate out of phase

to the other inertias. This out-of-phase oscillation can also be seen in Fig. 2.7 between

angular velocity of internal combustion engine ωICE and wheels multiplied by the total

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

0
100
200
300

T
IC

E
[N

m
]

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
2 000

4 000

6 000

ω
[r

p
m

] ωICE

ωwheelRtotal

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0
2
4
6

time [s]

a
V
E
H

[m
/s

2
]

Figure 2.7: Simulation a load change with the detailed conventional powertrain model

with closed clutch. The system is excited by the torque ramp TICE.
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vehicle

J̄1

Rtotal

Tdisturbance

TICE c̄, d̄

ϕ̄ICE , ω̄ICE

J̄2
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Figure 2.8: Eigenvector of the dominant frequency f1 (left) and two-mass control model

(right) of a conventional powertrain with closed clutch.

gear ratio ωwheelRtotal.

Using this knowledge of the dominant eigenmode, a control model with two inertias

and one spring-damper element as shown in Fig. 2.8 (right) is deduced to represent this

vibration behavior. Similar control models of conventional powertrains can be found in

[GrotjahnQuernheimZemke06] and [ErikssonNielsen14]. The equations of motion of the

two-mass control model are

˙̄ϕICE = ω̄ICE,

˙̄ϕwheel = ω̄wheel,

J̄1 ˙̄ωICE = − 1

Rtotal

c̄

(
1

Rtotal

ϕ̄ICE − ϕ̄wheel
)
− 1

Rtotal

d̄

(
1

Rtotal

ω̄ICE − ω̄wheel
)

+ TICE,

J̄2 ˙̄ωwheel = c̄

(
1

Rtotal

ϕ̄ICE − ϕ̄wheel
)

+ d̄

(
1

Rtotal

ω̄ICE − ω̄wheel
)
− Tdisturbance.

(2.13)

In the following, states and parameters of control models are denoted with a bar. The

states are rotation angle and angular velocity of the internal combustion engine ϕ̄ICE, ω̄ICE,

and rotation angle and angular velocity of the wheel ϕ̄wheel, ω̄wheel. The parameters of this

model can be approximated by the parameters of the detailed model from Tab. 2.1 by

J̄1 = J1 + J2 + J3 + J4 +
1

R2
gear

J5,

J̄2 = J6 +mV EHr
2
tire,

c̄ = c5,

R̄total = RgearRDIFF ,

(2.14)

with stiffness c5 from (2.4).

The largest displacement is the difference between the rotation angles of differential and

wheels, see Fig. 2.8, which corresponds to the drive shafts. Therefore the stiffness parameter

of the control model is estimated by these drive shaft stiffnesses. The damping factor
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d̄ of the control system has to represent damping of the drive shaft as well as damping

resulting from the tires. Hence, it is d̄� ddriveshaft. The value of d̄ is approximated such

that the amplitudes of the control model corresponds to the amplitudes of the general

model. The parameters of the control model are summarized in Tab. 2.2. Besides this

J̄1 0.481 kgm2

J̄2 249 kgm2

c̄ 3.44e4 Nm/rad

d̄ 350 Nms/rad

Rtotal 18 1

Table 2.2: Parameters of the control model of a conventional powertrain with closed clutch.

simple estimation, optimization techniques can be applied to get even better agreement

between control model and detailed simulation model if necessary.

Finally, a load change is simulated by the detailed model as well as the derived control

model. The simulation results are shown in Fig. 2.9. The system is excited in the first row

by the torque ramp TICE. System responses are shown below. Good agreement between

state ωICE, ωwheel and vehicle acceleration aV EH of detailed simulation model and control

model can be observed. Thereby, the vehicle acceleration āV EH of the control model is

defined as

āV EH = ˙̄ωwheelrtire. (2.15)

Further adjustments of the control parameters are not necessary.

2.2.2.2 Open Clutch - Launching

In a conventional powertrain the clutch is open at the beginning of launching or gear

shifting. In this case internal combustion engine, torsional damper and primary clutch

are not coupled with the remaining powertrain. Therefore, the vibration behavior of a

conventional powertrain with open clutch has to be analyzed additionally.

Figure 2.10 shows the reduced powertrain, when the first two moments of inertia and the

primary clutch are not coupled. Thus, only the elements clutch secondary, transmission

TM , differential DIFF , wheels, and vehicle are included. System state xconv,red, stiffness

matrix Kconv,red, and mass matrix Mconv,red are reduced to

xconv,red = [ϕ3, ϕ4, ϕ5,R, ϕ6,R, ϕ7,R, ω1, ω2, ω3, ω4, ω5,R, ω6,R, ω7,R]T , (2.16)

Kconv,red =


−c3 c3 0 0 0

c3 − (c3 + c4,R) c4,R 0 0

0 c4,R − (c4,R + c5,R) c5,R 0

0 0 c5,R − (c5,R + c6,R) c6,R

0 0 0 c6,R −c6,R

 , (2.17)
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Figure 2.9: Simulation of a load change with closed clutch by general and control model.

States of the control model are marked with a bar.

Mconv,red =


J3,2 0 0 0 0

0 J4 0 0 0

0 0 J5,R 0 0

0 0 0 J6,R 0

0 0 0 0 J7,R

 . (2.18)

The damping matrix Dconv,red has again the same structure as Kconv,red, where damping

constants instead of stiffness constants are used, see (2.9). In order to investigate the

vibration behavior with open clutch, natural frequencies and eigenvectors of the reduced

J3,2 J4 J5,R J7,R

Tclutch

c3, d3 c4,R, d4,R c5,R, d5,R

J6,R

c6,R, d6,R

Tdisturbance,R

ϕ3, ω3 ϕ4, ω4 ϕ5,R, ω5,R ϕ6,R, ω6,R ϕ7,R, ω7,R

clutch secondary TM DIFF wheels vehicle

Figure 2.10: Conventional powertrain with open clutch to analyze vibration behavior of

launching.
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system matrix Aconv,red are evaluated, with

Aconv,red =

(
0 IN−2

M−1
conv,redKconv,red M−1

conv,redDconv,red

)
. (2.19)

The identity matrix IN−2 has the reduced size N − 2, since two degrees of freedom are

omitted due to the open clutch.

Applying the parameters summarized in Tab. 2.1, the resulting frequencies with zero

damping matrix are

f0 = 0 Hz, f1 = 7.3 Hz, f2 = 31.6Hz,

f3 = 724.6 Hz, f4 = 1839.6 Hz.
(2.20)

Figure 2.11 shows a simulated race start, which is an agile launching. At the beginning the

clutch is open and the engine is driven to a large initial speed value ωICE,0 = 5000 rpm

by the engine torque TICE. As the clutch is open, the angular velocity of input shaft ωIS
and wheel ωwheel are zero. At time t = 1.5 s the clutch is closed by a torque ramp Tclutch.

The reference clutch torque Tclutch,REF is shown in the figure. Simultaneously, the torque

of the internal combustion TICE is increased to the desired maximum torque 350 Nm.

When the clutch is completely closed, when the angular velocity of the input shaft ωIS is

synchronized with the angular velocity of the internal combustion engine ωICE at t = 2.65 .

Furthermore, the dominant natural frequency f1 is during launching at 7.3 Hz and can be

seen in the vehicle acceleration aV EH between 1.5 s to 2.65 s. After the clutch is closed,

the frequency of the vehicle acceleration aV EH is smaller and corresponds to the dominant

natural frequency for closed clutch with 2.6 Hz.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

100
200
300
400

T
[N

m
]

TICE

Tclutch,REF

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

2 000

4 000

6 000

closed clutchω
[r

p
m

]

ωICE
ωIS

ωwheelRtotal

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

5

10

time [s]

a V
E
H

[m
/s

2
]

Figure 2.11: Simulation of launching of a conventional powertrain. The general model is

parameterized by values in Tab. 2.1.
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As in the case with closed clutch, only the low frequency f1 is dominant. Therefore, the

corresponding eigenmode of f1 is calculated and is depicted in Fig. 2.12. The deflection

shape shows the largest displacement between differential and wheels, similar to the

case with closed clutch, see Fig. 2.8. After the clutch is closed, the eigenmode shown in

Fig. 2.8 appears. A similar control model as for closed clutch can be applied for launching.

The control model with two-degrees of freedom is shown in Fig. 2.12 on the right. The

corresponding equations of motion for open clutch read

˙̄ϕIS = ω̄IS,

˙̄ϕwheel = ω̄wheel,

J̄1 ˙̄ωIS = − 1

Rtotal

c̄

(
1

Rtotal

ϕ̄IS − ϕ̄wheel
)
− 1

Rtotal

d̄

(
1

Rtotal

ω̄IS − ω̄wheel
)

+ Tclutch,

J̄2 ˙̄ωwheel = c̄

(
1

Rtotal

ϕ̄IS − ϕ̄wheel
)

+ d̄

(
1

Rtotal

ω̄IS − ω̄wheel
)
− Tdisturbance.

(2.21)

As in (2.13) states and parameters of the control model are denoted with a bar. The

states of the open clutch system are rotation angle and angular velocity of the input

shaft ϕ̄IS, ω̄IS, and rotation angle and angular velocity of the wheel ϕ̄wheel, ω̄wheel. The

parameters can be approximated by

J̄1 = J3,2 + J4 +
1

R2
gear

J5,

J̄2 = J6 +mvehr
2
tire,

c̄ = c5,

R̄total = RgearRDIFF ,

(2.22)

with values from Tab. 2.1 and stiffness c5 from (2.4). Table 2.3 presents the resulting

parameters.

Launching is simulated by the detailed simulation model and derived control model in

rotation angle

clutch
TM DIFF

wheels
vehicle

J̄1

Rtotal

Tdisturbance

Tclutch c̄, d̄

ϕ̄IS , ω̄IS

J̄2

ϕ̄wheel, ω̄wheel

Figure 2.12: Eigenvector of the dominant frequency 7.3 Hz (left) and two-mass control

model (right) of a conventional powertrain with open clutch.
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Fig. 2.13. As the clutch is open, general and control model show good agreement. The

dominant frequency 7.3 Hz can be simulated by the control model during open clutch.

When the clutch is closed, the first eigenfrequency of the detailed simulation model is

reduced and switching to the control model for closed clutch would be appropriate.

J̄1 0.0414 kgm2

J̄2 249 kgm2

c̄ 3.44e4 Nm/rad

d̄ 50 Nms/rad

R̄total 18 1

Table 2.3: Parameters of the control model of a conventional powertrain with open clutch.
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Figure 2.13: Simulation of launching with open clutch by general and control model. States

of the control model are marked with a bar.

2.3 Hybrid Electric Vehicles

The main difference between conventional and hybrid electric powertrains is that the latter

one has an electric machine (EM) as an additional drive unit. The electric machine is

powered by a battery, which can be charged by the combustion engine or by recuperation

during braking. In the particular case of a plug-in hybrid electric vehicle (PHEV), the

battery can additionally be charged from an external electrical power source.
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Combustion engine and electric machine can be arranged in four different main hybrid

architectures, namely parallel hybrid, series hybrid, split axle hybrid, and power split

hybrid as illustrated in Fig. 2.14 and described in [Kirchner07], [SciarrettaGuzzella07],

and [ErikssonNielsen14]. The power of internal combustion engine and electric machine

can be added in parallel hybrid electric vehicles, as the internal combustion engine is

mechanically coupled with the electric machine. In series hybrid electric vehicles the

internal combustion engine is not mechanically coupled with the remaining powertrain.

The internal combustion engine drives a generator, which supply energy for the battery

and the electric machine. Further, power split hybrid electric vehicles are similar to series

hybrid electric vehicles, but the internal combustion engine can also drive the powertrain

directly. In a split axle hybrid electric vehicle, each drive unit, internal combustion engine

and electric machine, drives each axis separately.

Usually, parallel systems are more efficient than other configurations as described in

[Pistoia10] and thus are common. The parallel architecture allows the vehicle to drive

in pure combustion engine mode, pure electric machine mode or in a combined mode of

combustion engine and electric machine, see [KumPengBucknor11]. A separation clutch

or a freewheel enables switching between these modes. In the following parallel hybrid

electric vehicles are investigated.

battery

parallel hybrid

EM

ICE

PE

split axle hybrid

EMICE

PEbattery

series hybrid

EM

ICE gen.

PEbattery

power split hybrid

EM

ICE

gen.

split

PE

battery

Figure 2.14: Main architectures of hybrid electric vehicles with power electronics (PE) as

described in [ErikssonNielsen14].
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2.3.1 Detailed Simulation Model

The torsional oscillation behavior of a rear-wheel drive parallel hybrid electric vehicle

as shown in Fig. 2.15 is analyzed. Compared to the conventional powertrain, shown

in Fig. 2.4, an electric machine (EM), separation clutch, battery, and power electronics

(PE) are added. The drive torque of the combustion engine TICE and of the electric

machine TEM can act on the system. Battery management and operating strategy are not

investigated, since driveline oscillations are focused.

Furthermore, unlike with conventional powertrains, parallel hybrid electric powertrains

can consist of two clutches, namely a separation and a gear clutch. The task of a gear

clutch with torque Tgear,clutch in hybrid electric vehicles is similar to those in conventional.

However, a separation clutch has the task to couple or decouple the internal combustion

engine from the remaining powertrain with clutch torque Tsep,clutch. When the separation

clutch is open, the electric machine is solely responsible for the drive. This powertrain

configuration is similar to a conventional powertrain, since there is only one drive unit

available and the remaining powertrain is equal. In the case of closed clutch there are

two larger moments of inertia in the front part of the powertrain and two drive units

can act on the system simultaneously. Thus, the system dynamics is new and this case

with closed separation and gear clutch has to be studied, therefore the clutch torques

Tsep,clutch, Tgear,clutch, as external actuators, are not further considered.
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Figure 2.15: Detailed multibody model of a parallel hybrid electric powertrain.

2.3.2 Oscillation Analysis and Control Model

The parallel hybrid electric powertrain shown in Fig. 2.15 is parameterized with values

summarized in Tab. 2.4.



2.3 Hybrid Electric Vehicles 25

component physical size variable value unit

ICE moment of inertia J1 0.3 kgm2

separation clutch moment of inertia J2 0.02 kgm2

EM moment of inertia J3 0.1 kgm2

gear clutch moment of inertia J4 0.1 kgm2

TM moment of inertia J5 0.03 kgm2

DIFF moment of inertia J6 0.05 kgm2

wheel left and right moment of inertia J7,1, J7,2 4 kgm2

vehicle mass mV EH 2000 kg

shaft ICE - separation clutch stiffness c1 4.5e3 Nm/rad

shaft separation clutch - EM stiffness c2 1e6 Nm/rad

shaft EM - gear clutch stiffness c3 1e6 Nm/rad

shaft gear clutch - TM stiffness c4 1e6 Nm/rad

shaft TM - DIFF stiffness c5 1e6 Nm/rad

drive shaft left and right stiffness c6,1, c6,2 3.44e4 Nm/rad

tire linearized stiffness c7,long 9.8e5 Nm/rad

gear ratio 2nd gear Rgear 2.5 1

DIFF ratio RDIFF 4 1

tire radius rtire 0.35 m

Table 2.4: Parameters of the general model of a hybrid electric powertrain.

As shown for conventional powertrains in (2.1)-(2.7) reformulations are done. Gear ratios

are incorporated in system parameters c5,R, d5,R, J6,R, ϕ6,R, ω6,R, . . . , J8,R. Furthermore,

moment of inertias of the wheels, and stiffness and damping of the drive shafts are sum

up. The longitudinal motion sV EH , vV EH of the vehicle is converted to a rotational motion

ϕ8,R, ω8,R.

According to conventional powertrains the natural frequencies and eigenvectors are cal-

culated. Two new states ϕ3, ω3 have to be added to the system state vector due to the

electric machine and thus the system order of a parallel hybrid electric powertrain is

greater than of a conventional powertrain. The new state vector reads

xPHEV = [ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6,R, ϕ7,R, ϕ8,R, ω1, ω2, ω3, ω4, ω5, ω6,R, ω7,R, ω8,R]T . (2.23)

with states shown in Fig. 2.16.

The resulting 8 natural frequencies are

f0 = 0 Hz, f1 = 3.8 Hz, f2 = 28.7 Hz, f3 = 31.9Hz,

f4 = 602.6 Hz, f5 = 1076.7 Hz, f6 = 1261.5 Hz, f7 = 2876.4 Hz.
(2.24)

A load change simulation by the detailed hybrid model is given in Fig. 2.17. Hereby, both

engine torque TICE and electric machine torque TEM are changed from 0 to 250 Nm. The
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angular velocities ωICE, ωEM , ωwheel and the vehicle longitudinal acceleration aV EH show

the dominant low frequency f1 from Eq. (2.24).

In order to synthesize a control model, the first two essential eigenmodes of the system

are calculated. Figure 2.18 shows the dominant eigenvectors of f1 and f2. The lowest

eigenmode of the hybrid powertrain is comparable to the lowest mode of the conventional

powertrain, see Fig. 2.8. For the parallel hybrid electric vehicle, a two-mass control model

is not sufficient as there exist two inputs TICE, TEM , which have to be considered in control

model design. Therefore, the knowledge about the second eigenmode is used to deduce a

three-mass control model as shown in Fig. 2.19. The first mass of inertia J̄1 represents the

combustion engine, the second mass of inertia J̄2 represents electric machine to differential

and the third mass of inertia J̄3 represents the vehicle mass.
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J2 J4 J5 J6,R J8,RTEM
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ICE sep. clutch gear clutch TM DIFF wheels vehicle
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ϕ4, ω4
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Figure 2.16: Parallel hybrid electric powertrain as a chain of inertias and spring-damper

elements modeled with incorporated gear ratios.
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Figure 2.17: Simulation of a load change of internal combustion engine TICE and electric

machine TEM with detailed powertrain model as shown in Fig. 2.15.
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Figure 2.18: First eigenvector of the frequency f1 (left) and second eigenvector of the

frequency f2 (right) of a parallel hybrid electric powertrain with closed separation and

gear clutch.
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Figure 2.19: Three-mass control model of a hybrid electric powertrain with input TICE
and TEM .

The dynamic equations of the control model with three-degrees of freedom read

˙̄ϕICE = ω̄ICE

˙̄ϕEM = ω̄EM

˙̄ϕwheel = ω̄wheel

J̄1 ˙̄ωICE = −c̄1 (ϕ̄ICE − ϕ̄EM)− d̄1 (ω̄ICE − ω̄EM) + TICE

J̄2 ˙̄ωEM = c̄1 (ϕ̄ICE − ϕ̄EM) + d̄1 (ω̄ICE − ω̄EM)

− 1

Rtotal

c̄2

(
1

Rtotal

ϕ̄EM − ϕ̄wheel
)
− 1

Rtotal

d̄2

(
1

Rtotal

ω̄EM − ω̄wheel
)

+ TEM

J̄3 ˙̄ωwheel = c̄2

(
1

Rtotal

ϕ̄EM − ϕ̄wheel
)

+ d̄2

(
1

Rtotal

ω̄EM − ω̄wheel
)
− Tdisturbance

(2.25)
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and the parameters can be approximated by

J̄1 = J1 + J2,

J̄2 = J3 + J4 + J5 +
1

R2
gear

J6,

J̄3 = J7 +mvehr
2
tire,

c̄1 = c1,

c̄2 = c6,

d̄1 = d1,

(2.26)

whereby JK0 is the mass of inertia of the separation clutch and JK1 mass of inertia of the

gear clutch. The damping factor d̄2 can be approximated by simulation study as in the

case of conventional powertrain.

Table 2.5 provides the applied control model parameters. Simulation of a load change by

J̄1 0.32 kgm2

J̄2 0.238 kgm2

J̄3 249 kgm2

c̄1 4.5e3 Nm/rad

c̄2 3.44e4 Nm/rad

d̄1 0.1 Nms/rad

d̄2 350 Nms/rad

R̄total 10 1

Table 2.5: Parameters of the control model of a hybrid electric powertrain.

the control model as well as by the detailed model is shown in Fig. 2.20. The simulation

shows the same scenario as in Fig. 2.17. Torque of the internal combustion engine TICE
and the electric machine TEM are ramped to 250 Nm. Good agreement between detailed

and control model is indicated by the simulation.

2.4 Battery Electric Vehicles

Battery electric vehicles (BEV) have no internal combustion engine and are gaining in

importance. The number of electric vehicles sold has increased in the last years and

politics supports this development strongly. Reasons for this development are, besides

the low CO2- and NOx-emission of electric cars, the increasing electric drive range, and

the very high level of efficiency. Electric motors can transform electric power to mechanic

driving power with less than 10 % loss, as discussed in [Karle16]. Furthermore, the motor

characteristics shown in Fig. 2.21 demonstrate the benefits of an electric motor compared

to a combustion engine:
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Figure 2.20: Simulation of a load change by detailed and control parallel hybrid electric

models. States of the control model are denoted with a bar.
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Figure 2.21: Motor characteristic curves of an electric engine for pull and thrust in

comparison to the curves of an internal combustion engine.

• An electric motor enables high torque against a large speed range. Therefore, various

gears are not necessary to drive in high speed or to take advantage of a high torque
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range.

• High torques can be provided even in zero or low speeds. Therefore, no starting

element, such as a clutch, is necessary as in the case of combustion engines.

• The available high torque in low speeds of electric motors enable launching with a

very high acceleration.

• The thrust characteristic of a electric motor is almost similar to the mirrored pull

characteristic. Therefore, the torque range of electric motors is much greater than

that of combustion engines and thus high negative torques can be applied. This

property is particularly useful for driveline control.

These efficient electric motors can be arranged in a powertrain in various ways. Similar to

hybrid electric vehicles, there exist different powertrain architectures for battery electric

vehicles. Figure 2.22 shows two common architectures, an electrified front axis and a

powertrain with electric wheel hubs, as shown in [WallentowitzFreialdenhoven11] and

[KhajepourFallahGoodarzi14]. The electrified front axis is similar to conventional and

hybrid electric powertrains. However, the clutch can be omitted here and the transmission

has less gears, typically one to two gears. Moreover, in a four wheel drive vehicle with

electric axis, there is no mechanical linkage between front and rear axis. Vehicles with

electric wheel hubs have the highest degree of freedoms. There is no linkage between front

and rear axis as well as left and right wheels. Electric machines can be applied to each

wheel and thus it is possible to drive each wheel separately.

In the following, the currently more common vehicles with electric axis are focused.

Precisely, an electric front axis with one electric motor is investigated with regard to

driveline oscillations.

battery

electric (front) axis drive

EM

electric wheel hubs drive

EM EM

EM

battery

EM

differential

transmission

Figure 2.22: Two common architectures of battery electric vehicles.
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2.4.1 Detailed Simulation Model

A detailed multibody model of a powertrain with electric axis is shown in Fig. 2.23. The

powertrain is driven by the torque TEM of the electric machine and has one fixed gear ratio

Rtotal. In contrast to the conventional and hybrid electric powertrain models in Fig. 2.4

and Fig. 2.15 , the drive shafts are modeled here as an own moment of inertia, since the

other moments of inertia in the battery electric powertrain are relatively small.

Gear shifting occurs less or not at all in electric vehicles. Therefore, driveline oscillations

caused by shifting are reduced. However, other abrupt driving maneuver such as load

changes can cause driveline oscillations further on. In particular, the high electric machine

dynamics can introduce a large excitation. The detailed multibody model is used to

simulate a load change as in the case of conventional and hybrid electric powertrains.

Exemplary parameters of the powertrain model are given in Tab. 2.6. Damping coefficients

are approximated.
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Figure 2.23: Detailed multibody model of a battery electric powertrain.

2.4.2 Oscillation Analysis and Control Model

The parameters of electric powertrains differ from those of conventional powertrains.

Moments of inertia of the electric machine and the transmission are much smaller than of

conventional. Furthermore, the drive shaft stiffness in this example is smaller than in the

examples of conventional and hybrid electric vehicles. This is mostly due to the fact that

a front-wheel drive vehicle is analyzed here.

Similar to conventional and hybrid electric powertrains, the gear ratios are incorporated

and moments of inertia are sum up as in Eq. (2.1)-(2.7) for conventional powertrains.

Hence, the state vector in (2.27) results.

xBEV = [ϕ1, ϕ2, ϕ3,R, ϕ4,R, ϕ5,R, ϕ6,R, ω1, ω2, ω3,R, ω4,R, ω5,R, ω6,R]T . (2.27)
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component physical size variable value unit

electric machine moment of inertia J1 0.1 kgm2

transmission moment of inertia J2 0.002 kgm2

differential moment of inertia J3 0.05 kgm2

drive shaft left and right moment of inertia J4 3e− 4 kgm2

wheel left and right moment of inertia J5 4 kgm2

vehicle mass mV EH 2500 kg

shaft EM-TM stiffness c1 5e5 Nm/rad

TM - DIFF stiffness c2 1e6 Nm/rad

DIFF - drive shafts stiffness c3 1e6 Nm/rad

drive shaft left and right stiffness c4,1, c4,2 1.146e4 Nm/rad

tire linearized stiffness c5long
9.8e5 Nm/rad

gear total ratio Rtotal 8 1

tire radius rtire 0.35 m

Table 2.6: Parameters of the general model of a battery electric vehicle.

The resulting natural frequencies of the system are

f0 = 0 Hz, f1 = 6.4 Hz, f2 = 29.1 Hz,

f3 = 2115.8 Hz, f4 = 6831.7 Hz, f5 = 9290.1 Hz.
(2.28)

The dominant first frequency with f1 = 6.4 Hz is much higher than the dominant

frequencies of conventional and hybrid electric vehicles in first and second gear, which are

2.6 Hz and 3.8 Hz, respectively . The reasons for this are smaller moment of inertia of

the drive unit and a smaller total gear ratio.

The load change simulation with torque ramp TEM presented in Fig. 2.24 shows clearly

the first frequency f1 in the angular velocities ωEM , ωweel of electric machine and wheels,

and in the vehicle acceleration signal aV EH .

Despite the different parameters, the dominant eigenvector of f1, depicted in Fig. 2.25, is

similar to the first mode of conventional and hybrid electric powertrains, see Fig. 2.8 and

Fig. 2.18, respectively. Since only one actuator is present a control model with two-degree

of freedom is sufficient. A two-mass model as illustrated in Fig. 2.25 (right) can be

synthesized to represent the first eigenmode. The parameters of the control model are

denoted with a bar.
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Figure 2.24: Simulation of a load change of a battery electrified powertrain.

The equations of motion of the battery electric vehicle control model reads

˙̄ϕEM = ω̄EM

˙̄ϕwheel = ω̄wheel

J̄1 ˙̄ωEM = − 1

Rtotal

c̄

(
1

Rtotal

ϕ̄EM − ϕ̄wheel
)
− 1

Rtotal

d̄

(
1

Rtotal

ω̄EM − ω̄wheel
)

+ TEM

J̄2 ˙̄ωwheel = c̄

(
1

Rtotal

ϕ̄EM − ϕ̄wheel
)

+ d̄

(
1

Rtotal

ω̄EM − ω̄wheel
)
− Tdisturbance.

(2.29)

rotation angle
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ϕ̄EM , ω̄EM

J̄2

ϕ̄wheel, ω̄wheel

Figure 2.25: Normal mode of the dominant frequency 6.4 Hz (left) and two-mass control

model (right) of a battery electric powertrain.
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Control model parameters can be found by

J̄1 = J1 + J2 +
1

R2
gear

(J3 + J4) ,

J̄2 = J5 +mV EHr
2
tire,

c̄ = c4.

(2.30)

Parameters of the control model are summarized in Tab. 2.7. Damping parameter d̄ is

J̄1 0.103 kgm2

J̄2 310.25 kgm2

c̄ 1.146e4 Nm/rad

d̄ 30 Nms/rad

Rtotal 8 1

Table 2.7: Parameters of the control model of a conventional powertrain with closed clutch.

approximated by comparison of the control model with the detailed simulation model.

Figure 2.26 shows a load change by the engine torque TEM . It can be seen that the control

model matches the detailed model very precisely.
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Figure 2.26: Simulation of load change by detailed and control battery electric models.

States of the control model are marked with a bar.
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2.5 Discussion of the Control Models

In this chapter general powertrain models of conventional, hybrid electric and battery

electric vehicles were presented and the linear oscillation behavior of all three powertrain

types were investigated. Despite the different powertrain architectures, all eigenvectors

of the lowest dominant frequency are similar, as it is shown in Fig. 2.27, even though in

electrical powertrain the corresponding frequency is significantly higher. These dominant

eigenmodes are particularly visible after suggestions through load changes by the drive

unit torque. Especially load changes by electric machines can cause undesired driveline

oscillations with high amplitudes due to the high agility of the machines.

The typical dominant low eigenfrequencies of powertrains are between 2 to 8 Hz, which

coincide with the eigenfrequency of the human stomach. Hence, these oscillations are

particularly uncomfortable for humans as discussed in [KnotheStichel16]. Therefore,

control methods are needed to reduce these oscillations. In order to archive this, linear

control models were deduced for all three powertrain types in this chapter. In the

next Chapter 3 the derived control models are used to design feedforward and feedback

controllers. Chapter 4 and 5 extend these control models by dominant dynamics resulting

from backlash and time delay.

conventional hybrid electric battery electric
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wheels

vehicle
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TM
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gear
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vehicle

clutch clutch
ICE TD

clutch
TM
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wheels
vehicle

rotation
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rotation
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rotation
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Figure 2.27: Dominant first eigenvectors of a conventional, hybrid electric, and battery

electric vehicle.
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Chapter 3

Linear Powertrain Control

The previous chapter discusses undesired torsional dynamics of the powertrain, which

are induced by load changes or launching. This chapter derives control methods based

on linear control models to prevent and reduce these oscillations. The methods include

flatness-based feedforward controllers and feedback controllers with desired trajectories for

conventional, parallel hybrid electric, and battery electric powertrains. First, a coordinate

transformation is applied for a two-mass and three-mass model to separate the rigid body

mode from the other modes. Then, the damping behavior of the uncontrolled system is

investigated and a desired dynamic behavior is defined. Accordingly, appropriate control

approaches are derived. Finally, simulations and experimental results demonstrate that the

proposed approaches ensure good damping behavior, greater freedom of choice concerning

the transition time and good controlled transient behavior.

3.1 Coordinate Transformation

The system dynamics representation in (2.13), (2.21), (2.29), and (2.25) are not appropriate

for torsional vibration damping control design. The reason is that the rigid body mode,

indicated by an eigenvalue with ω0 = 0 1
s

exists in these system equations. However,

the focus is to control the torsion mode and not the rigid mode. Furthermore, the rigid

body mode is not asymptotically stable and makes control design more difficult. The

following example shows that the rotation angles of a system with rigid body mode

can tend to infinity. A two-mass powertrain model is deflected by the initial condition

xext,0 = [0, 0, ωic,1, ωic,2]T with ωic,1, ωic,2 ∈ R, then the moments of inertia of the system

J1, J2 will rotate with a constant velocity and the rotation angles go towards to infinity,

although the input and disturbance are zero. Figure 3.1 illustrates the rigid body mode,

when the two-mass system with parameters from Tab. 2.2 is deflected by initial condition

xext(0) = [0, 0, R, 1]T and input and disturbance are set to zero.
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Figure 3.1: Simulation of the rigid body mode. The rotation angles ϕ1, ϕ2 tend to infinity

and the angular velocities ω1, ω2 are constant.

This behavior is physically desired and it is not the objective of a control method to stabilize

rotation angle and angular velocity to zero, but to control the torsional oscillations to zero.

Therefore, the rigid body mode is separated from the dynamics equations of the two-mass

and three-mass models by applying a transformation to Byrnes-Isidori normal form. The

Byrnes-Isidori normal form is introduced in [ByrnesIsidori88] and [ByrnesIsidori91]. A

general introduction into the normal form for linear systems is for instance given in

[Ferdinand06].

Two-Mass Model

The equations of motion of a two-mass model, as shown in Fig. 3.2, are revisited. This

model is used for conventional powertrains in (2.13) and (2.21), and for battery electric

powertrains in (2.29). The system states are given as xext = [ϕ1, ϕ2, ω1, ω2]T and the

correspond equations are

ϕ̇1 = ω1

ϕ̇2 = ω2

ω̇1 = − 1

RJ1

c

(
1

R
ϕ1 − ϕ2

)
− 1

RJ1

d

(
1

R
ω1 − ω2

)
+

1

J1

u

ω̇2 =
1

J2

c

(
1

R
ϕ1 − ϕ2

)
+

1

J2

d

(
1

R
ω1 − ω2

)
− 1

J2

δ.

(3.1)

For system parameters c, d, J1, J2, R from Tab. 2.2, Tab. 2.3 or Tab. 2.7, the system has

double zero eigenvalues λ1,2 = 0 and complex conjugated eigenvalues λ3,4 = a± bi with

a < 0, b 6= 0 and a, b ∈ R. The algebraic multiplicity of the eigenvalue λ1,2 = 0 is not equal
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Figure 3.2: Two-mass control model.

to its geometric multiplicity. The algebraic multiplicity is two and the geometric is one.

Hence, the system is unstable due to the rigid body mode.

In order to separate the rigid body mode with double eigenvalue λ1,2 = 0 from the

remaining system, the system is transformed. The torsion rotation angle is defined as the

system output

y =
1

R
ϕ1 − ϕ2 (3.2)

to represent the torsional behavior. Using this output the Byrnes-Isidori normal form of

the two-mass model is derived. New states z = [z1, z2, z3, z4]T are introduced with

z1 = y = ∆ϕ =
1

R
ϕ1 − ϕ2

z2 = ẏ = ∆ω =
1

R
ω1 − ω2.

(3.3)

The remaining two states z3, z4 can be chosen such that the transformation matrix φ with

z = φ−1xext (3.4)

is regular. The following states are selected

z3 = ϕ2

z4 = ω2.
(3.5)

Hence, the inverse transformation matrix is given as

φ−1 =


1
R
−1 0 0

0 0 1
R
−1

0 1 0 0

0 0 0 1

 . (3.6)

The matrix φ is a global diffeomorphism as the transformation is linear.

Applying the new states the dynamics in Byrnes-Isidori normal form reads

input-output behavior


ż1 = ẏ = ∆ϕ̇ = z2

ż2 = ÿ = ∆ω̇ = −Θcz1 −Θdz2 +
1

J1R
u+

1

J2

δ

internal dynamics


ż3 = ϕ̇2 = ω2

ż4 = ω̇2 =
1

J2

cz1 +
1

J2

dz2 −
1

J2

δ

(3.7)
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with summarized moments of inertia Θ = J1R2+J2
J1J2R2 . The following state distinction is made

in order to separate the internal dynamics of the system from the remaining:

ν = [z1, z2]T , η = [z3, z4]T . (3.8)

The internal dynamics is often difficult to analyze, therefore the concept of zero dynamics

is used. The definition of zero-dynamics is given as:

Definition 1 ([Isidori95]). The zero-dynamics is defined as the internal dynamics of a

system, such that the output y is zero for a particular initial condition x(0) and input u.

Applying

ν(0) = 0, η(0) = η0 ∈ R2, u = J1R

[
Θcν1 + Θdν2 −

1

J2

δ

]
(3.9)

for system (3.7), then it holds

y(t) = 0, ∀t (3.10)

and the zero-dynamics is given as
η̇1 = η2

η̇2 = 0,
(3.11)

with η(0) = η0.

The zero-dynamics (3.11) represents the rigid body mode and is not further considered in

control design. Therefore, further investigations on the torsional dynamics and control

design are based on the reduced state x = ν = [∆ϕ,∆ω]T and the reduced dynamics

∆ϕ̇ = ∆ω

∆ω̇ = −Θc∆ϕ−Θd∆ω +
1

J1R
u+

1

J2

δ
(3.12)

with x(0) = x0 and Θ = J1R2+J2
J1J2R2 . The reduced dynamics is used for control design of a

two-mass system.

Remark

The transformation matrix φ from Eq. (3.6) is not a modal transformation matrix. The

following simple example illustrates that the transformation to torsion rotation angle and

angular velocity is a usual coordinate transformation. Let us define J1 = J2 = R = 1, zero

damping d = 0, and zero input and disturbance u = δ = 0. The spring stiffness is defined

as c. Then the equations of motion of the two-mass model with minimal coordinates

p = [ϕ1, ϕ2]T reads [
1 0

0 1

]
︸ ︷︷ ︸

=:M

p̈+

[
c −c
−c c

]
︸ ︷︷ ︸

=:K

p = 0. (3.13)
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Eigenvalues, eigenvectors and the modal transformation matrix are calculated for this

system. The eigenvalue problem can be set up with the Ansatz

p = p̂ sin(ωt) (3.14)

as for instance shown in [SchiehlenEberhard14], and [MagnusPoppSextro13]. This gives(
K − ω2M

)
p̂ = 0. (3.15)

There exists non-trivial solutions, if the characteristic matrix (K − ω2M) is singular.

Hence, it must hold

det
(
K − ω2M

)
= 0 (3.16)

and thus the eigenfrequencies of the system are

ω1 = 0, ω2 =
√

2c. (3.17)

The eigenvector of ω1 reads

p̂1 =

[
1

1

]
(3.18)

and of ω2

p̂2 =

[
1

−1

]
. (3.19)

Finally, the modal matrix is given as

X̂ =
[
p̂1 p̂2

]
=

[
1 1

1 −1

]
(3.20)

and defines the transformation of states p and modal coordinates q with

p = X̂q. (3.21)

Furthermore, the following orthogonality relations hold for the eigenvectors

i 6= k : p̂Ti Mp̂k = 0,

i 6= k : p̂Ti Kp̂k = 0,

i = k : p̂Ti Mp̂k = 1,

i = k : p̂Ti Kp̂k = ω2
i .

(3.22)

Derivation for these relations are given for instance in [DresigRockhausenHolzweißig13].

Now, the Byrnes-Isidori transformation can be compared with the modal transformation

matrix X̂ from Eq. (3.20). For system (3.13) with state p = [ϕ1, ϕ2]T the Byrnes-Isidori

transformation matrix to the new state z̄ = [∆ϕ, ϕ2]T is given as

φ̄ =

[
1 −1

0 1

]
, (3.23)
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Figure 3.3: Three-mass control model.

with transformation

p = φ̄z̄. (3.24)

It follows that the transformation matrix φ̄ in (3.23) does not correspond to the modal

transformation matrix X̂ from Eq. (3.20). Additionally the transformation matrix φ̄ in

(3.23) does not fulfill the relations in (3.22) and is therefore not a modal matrix.

Three-Mass Model

The same separation approach applies to the three-mass model. The general equations of

motion of a three-mass model, as illustrated in Fig. 3.3, are

ϕ̇1 = ω1

ϕ̇2 = ω2

ϕ̇3 = ω3

J1ω̇1 = −c1 (ϕ1 − ϕ2)− d1 (ω1 − ω2) + u1

J2ω̇2 = c1 (ϕ1 − ϕ2) + d1 (ω1 − ω2)

− 1

R
c2

(
1

R
ϕ2 − ϕ3

)
− 1

R
d2

(
1

R
ω2 − ω3

)
+ u2

J3ω̇3 = c2

(
1

R
ϕ2 − ϕ3

)
+ d2

(
1

R
ω2 − ω3

)
− δ,

(3.25)

see also (2.25). The system state vector xext = [ϕ1, ϕ2, ϕ3, ω1, ω2, ω3]T is reduced to the

new state vector x = [∆ϕ1,∆ϕ2,∆ω1,∆ω2]T with

∆ϕ1 = ϕ1 − ϕ2, ∆ϕ2 =
1

R
ϕ2 − ϕ3, ∆ω1 = ω1 − ω2, ∆ω2 =

1

R
ω2 − ω3, (3.26)
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which represent torsion rotation angles and torsion angular velocities. The reduced

dynamics equations read

∆ϕ̇1 = ∆ω1

∆ϕ̇2 = ∆ω2

∆ω̇1 = −Θ1c1∆ϕ1 −Θ1d1∆ω1 +
1

J2R
c2∆ϕ2 +

1

J2R
d2∆ω2 +

1

J1

u1 −
1

J2

u2

∆ω̇2 =
1

J2R
c1∆ϕ1 +

1

J2R
d1∆ω1 −Θ2c2∆ϕ2 −Θ2d2∆ω2 +

1

J2R
u2 +

1

J3

δ

(3.27)

with x(0) = x0 and Θ1 = J1+J2
J1J2

and Θ2 = J2R2+J3
J2J3R2 . The internal dynamics, which describes

the rigid body mode, is neglected for vibration damping control as in the case of the

two-mass model. The reduced model is used for control design of a three-mass system.

3.2 Uncontrolled Damping Behavior

The present damping behavior of the derived control systems (2.13), (2.21), (2.25), (2.29) of

conventional, hybrid electric and battery electric powertrains are investigated. The systems

describe stable damped harmonic oscillators, since the damping coefficients are all greater

than zero. However, a further distinction can be made. Damped harmonic oscillators

with n states can be distinguished between undamped, underdamped, critically damped

and overdamped systems, see [WilliamsLawrence07]. In order to make the distinction, the

eigenvalues λi with i ∈ {1, 2, . . . , n} of the systems have to be calculated.

The conditions for undamped, underdamped and overdamped depending on the eigenvalues

λi are summarized in Tab. 3.1. The specific case of critically damped systems is defined

real part imaginary part

undamped ∀iRe(λi) = 0 ∃ (Im(λi), Im(λj)) complex conjugated

underdamped ∀iRe(λi) ≤ 0,∃iRe(λi) < 0 ∃ (Im(λi), Im(λj)) complex conjugated

overdamped ∀iRe(λi) ≤ 0,∃iRe(λi) < 0 ∀i Im(λi) = 0

Table 3.1: Distinction of oscillation behavior by eigenvalues.

as the condition between underdamped and overdamped. The imaginary parts of the

eigenvalues become zero in this case.

In the following, eigenvalues for two-mass and three-mass models are calculated and the

related damping behavior for the derived conventional, hybrid electric and battery electric

powertrains are given.
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Two-Mass Model

The unforced dynamics of the two-mass model in (3.12) can be described with a second

order dynamic equation

q̈ + Θdq̇ + Θcq = 0 (3.28)

with minimal coordinate q = ∆ϕ and u = δ = 0. Defining the natural frequency of the

undamped system as

ωn =
√

Θc, (3.29)

and the damping ratio as

ξ =
Θd

2
√
cΘ

, (3.30)

then dynamics equation (3.28) can be rewritten to

ẍ+ 2ξωnẋ+ ω2
nx = 0. (3.31)

Hence, the eigenvalues of system (3.31) are given as

λ1,2 = −ωn
(
ξ ±

√
ξ2 − 1

)
. (3.32)

Using Tab. 3.1 it can be distinguished between:

• ξ < 0: the system is unstable

• ξ = 0: the system is undamped

• 0 < ξ < 1: the system is underdamped

• ξ = 1: the system is critically damped

• ξ > 1: the system is overdamped

For underdamped systems the eigenfrequency f reads

f = ωn
√

1− ξ2. (3.33)

Damping ratios, frequencies, and periods of the powertrain two-mass control models from

Chapter 2 with parameters from Tab. 2.2, Tab. 2.3, Tab. 2.7, respectively, are summarized

in Tab. 3.2. From Tab. 3.2 it can be seen that the eigenfrequencies of the control

models correspond to the dominant eigenfrequencies of the detailed simulation models

in Chapter 2. Furthermore, the damping ratios show that the systems are underdamped

and close to undamped. Usually, powertrains are designed as underdamped systems in

order to reduce energy loss due to damping. These systems oscillates with an amplitude

gradually decreasing to zero.
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ξ f T

conv. powertrain closed clutch 0.096 3.0 Hz 0.333 s

conv. powertrain open clutch 0.038 8.3 Hz 0.121 s

battery electric powertrain 0.055 6.7 Hz 0.150 s

Table 3.2: Damping ratio, frequency, and period of two-mass control models.

Three-Mass Model

The unforced reduced three-mass model (3.27) in state-space representation reads

ẋ =


0 0 1 0

0 0 0 1

−c1Θ1
c2
J2R

−d1Θ1
d2
J2R

c1
J2R

−c2Θ2
d1
J2R

−d2Θ2


︸ ︷︷ ︸

=:A3

x. (3.34)

The eigenvalues λ of the system can be found by solving the fourth order characteristic

polynomial

det (A3 − λI) = 0, (3.35)

with fourth order identity matrix I.

Unlike in the case of the two-mass model, the analytical calculation of the eigenvalues of

the three-mass model is much more difficult. Therefore, eigenfrequency and damping ratio

are derived on the basis of numerically calculated eigenvalues.

The eigenfrequency of the system is given as

fi,j =
| Im (λi,j) |

2π
,with Im (λi) 6= Im (λi) (3.36)

The natural frequency ωn,i,j of the undamped system can be found by

ωn,i,j = |λi,j|. (3.37)

Then the damping ratio ξi,j is defined with ωn,i,j as

ξi,j = −Re (λi,j)

ωn,i,j
. (3.38)

The damping ratios, frequencies and periods of the considered three-mass model (3.34)

with parameters from Tab. 2.5 are summarized in Tab. 3.3.

The characteristic values show that the system is underdamped and the eigenfrequencies

match the frequencies of the general hybrid electric powertrain model as in cases of the

two-mass control models.

The investigated powertrain systems are all only lightly damped.
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ξ f T

mode 1 0.135 4.282 Hz 0.234 s

mode 2 0.026 29.23 Hz 0.034 s

Table 3.3: Damping ratio, frequency, and period of the three-mass control model.

3.3 Desired Dynamical Behavior

In this section specifications for feedforward and feedback control are presented. The

desired damping behavior is defined, independent transition time for feedforward control

is requested and the need of desired trajectories for feedback control is stated.

3.3.1 Critical Damping

The damping ratios of the investigated powertrains are all significantly smaller than one

and thus the uncontrolled powertrains are underdamped. The undesired vibration behavior

of underdamped systems can be observed in Fig. 3.4. The figure shows the step responses

for an underdamped ξ1 = 0.1, corresponds almost to Tab. 3.2, critically damped ξ2 = 1

and overdamped ξ3 = 2 two-mass control system. The system is parameterized by values

of the conventional powertrain with closed clutch from Tab. 2.2. The damping parameter

di is calculated by the chosen damping ratio ξi:

di =
ξi2
√
cθ

θ
, i ∈ {1, 2, 3}. (3.39)

It can be identified from the figure that the underdamped system shows an undesired

behavior due to many oscillations with high amplitudes. The overdamped system is

vibration-free, but the step-response is very slow. However, the critically damped system

has the desired step response, since it shows the best trade-off between fast convergent

and vibration damping. A feedback controller can be used to reach the desired critically

damped behavior.

3.3.2 Independent Transition Time

The vibration amplitudes of undamped or underdamped systems after load changes depend

on how the torque of the excitation is built up. Thereby, the shape of the torque build-up is

significant. If a ramp is chosen for the torque built up, then only the transition time can be

varied. In [DresigFidlin14] the influence of the transition time of a ramp is investigated for

an undamped two-mass model. It is shown that if the transition time is set to a multiple

of the period T of the system, then no oscillations appear. The time simulation on the left

in Fig. 3.5 shows this effect with parameters from Tab. 2.2 and damping parameter d = 0.
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Figure 3.4: Step responses of an underdamped, critically damped and overdamped two-mass

model.

The output of the system, which is excited by the ramp with the shortest transition time

T1 = 0.5 T have the highest amplitude.
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Figure 3.5: Load changes with ramps with varied transition time T1, T2, T3, T4 of an

undamped (left) and underdamped (right) two-mass model.

Smaller amplitudes appear with transition time T3 = 1.5 T and T4 = 3.5 T . However,

the greater transition times T3, T4 have greater amplitudes as T2 = T . The underdamped

case with damping parameter d = 350 Nms
rad

and damping ratio ξ = 0.0096 is shown on

the right in Fig. 3.5. The effects are comparable with the effect of the undamped system.

Nevertheless, there are small vibration amplitudes for transition time equal to the period

as T2 = T .
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It follows from these investigations that if a ramp is applied for load changes, the transition

time should be close to the multiple of the period of the uncontrolled system. However,

this demand is very restrictive. Usually, the driver determines the transition time by

depressing the accelerator pedal faster or slower. The vehicle has to accelerate vibration-

free according to the time requirements of the driver. Therefore, load changes via ramps

are not satisfactory and more advanced feedforward control methods with appropriate

torque shapes offer more advantages.

3.3.3 Controlled Transient Behavior

Feedforward control strategies, as ramps with appropriate transition time or feedforward

control methods, can enable vibration-free transient processes, when the system dynamics

is fully known and there are no disturbances. However, these conditions can never be

guaranteed. Therefore, an additional feedback controller is necessary to overcome the

uncertainties and to get a better command response. However, steady-state feedback

controllers are not suitable, since the feedback controller has to deal with transient processes.

Thus, trajectory tracking is desired and reference trajectories are required for feedback

control.

3.4 Model-Based Linear Transient Control

In this section a two-degree of freedom control scheme, as illustrated in Fig. 3.6, is derived

to meet the demands presented in the previous section. The driver request is interpreted

by the pedal moving and a desired input torque udes is generated. A linear flatness-based

feedforward controller is designed to prevent driveline oscillations due to load changes and

launching. The transition time can be variably chosen. Furthermore, the flatness-based

control approach provides desired trajectories. Thus, a proportional feedback controller

can apply these references and therefore feedback control during the transient is possible.

The control gain of the proportional feedback controller can then be chosen such that the

closed loop system is critically damped. This approach of generally combining feedforward

and feedback control to control the drive unit is protected in patent [PhamScholzRoulet16].

3.4.1 Differentially Flat Feedforward Control

The concept of differentially flatness was introduced in [FliessEtAl92] and [FliessEtAl95].

Applying this concept, system state x, input u, and output y can be defined as functions

of the so-called flat output z and its derivatives. The flat output z itself is a function of
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Figure 3.6: Control structure with driver, trajectory generation, feedforward and feedback

controller.

the system state x. In the following the ith derivative of a function z is denoted as z(i).

Flatness for a general nonlinear system is defined as follows:

Definition 2 ([FliessEtAl95]). The nonlinear single-input/single-output (SISO) system

ẋ =f (x, u) , x(0) = x0

y =h(x)
(3.40)

with f(x) being a smooth vector field, x ∈ Rn and u, y ∈ R is said to be differentially flat,

if and only if there exists a flat output z ∈ R, such that

• the flat output z is a function of the state variables x: z = a(x),

• the system state, input and output can be parametrized with z and a final number of

its derivatives:

x =Φx

(
z, ż, . . . , z(n−1)

)
, u = Φu

(
z, ż, . . . , z(n)

)
,

y =Φy

(
z, ż, . . . , z(n−r)) ,

where r is the relative degree of the nonlinear SISO system (3.40).

The whole system dynamics are given by the flat output and its derivatives. Thus, it

follows that the system is inverted as the input u can be defined as a function of the flat

output and its derivatives. Using differentially flatness theory and desired trajectories of

the flat output and its derivatives zdes, żdes, . . . , z
(n)
des set-point transitions can be designed

with arbitrary transition time. The only restriction is the dynamics of the actuator.

As a load change is a set-point transition, a flatness based feedforward controller is derived

for the linear two-mass control model in (3.12) and the three-mass control model in (3.27).

For linear systems it is valid

Definition 3. A linear system is a flat system if and only if the system is controllable.

As shown for example in [Sira-Ramı́rezAgrawal04] and [Zeitz10]. Therefore, in the following

first controllability is demonstrated for the the two-mass and three-mass control models.

Then, flat output, feedforward control law, and trajectory planning are derived.



50 Chapter 3: Linear Powertrain Control

3.4.1.1 Controllability

For a linear SISO time-invariant system defined by the state-space representation:

ẋ = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), x(t) ∈ Rn (3.41)

the controllability matrix P is given as

P =
[
B AB A2B . . . An−1B

]
, (3.42)

see for instance [Levine10] or [FranklinPowellEmami-Naeini15]. The linear system in (3.41)

is controllable if and only if

rank P = n. (3.43)

Two-Mass Model

For the two-mass control model in (3.12), the system matrix A2 and input matrix B2 read

A2 =

[
0 1

−θc −θd

]
, B2 =

[
0
1
J1R

]
. (3.44)

Therefore, the controllability matrix is given as

P2 =

[
0 1

J1R
1
J1R

− θd
J1R

]
, (3.45)

for J1, R 6= 0. The two-mass control system is controllable if and only if

|P2| 6= 0, (3.46)

which results in

− 1

J2
1R

2
6= 0. (3.47)

Therefore, for J1, R 6= 0, which is always guaranteed, the controllability matrix P2 of the

two-mass control system (3.12) is defined and the system is controllable.

Three-Mass Model

Next, the controllability of the three-mass system from Eq. 3.27 is verified. The system

matrix A3 is given in Eq. (3.34). The control model of a hybrid electric powertrain has

two control inputs, namely u1 of the internal combustion engine and u2 of the electric

machine. The corresponding input matrices are

B3,u1 =


0

0
1
J1

0

 , (3.48)
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and

B3,u2 =


0

0

− 1
J2

1
J2R

 . (3.49)

The controllability matrices P3,u1 and P3,u2 of the three-mass model read

P3,u1 =
[
B3,u1 A3B3,u1 A2

3B3,u1 A3B3,u1

]
, (3.50)

and

P3,u2 =
[
B3,u2 A3B3,u2 A2

3B3,u2 A3B3,u2

]
. (3.51)

The full rank of the controllability matrix can be shown by the determinant of the matrix.

If the determinant is unequal to zero, then the matrix has full rank. For input u1 the

determinant of controllability matrix P3,u1 is given as

|P3,u1| = −
c2θ2d

2
1 − c1d2θ2d1 + c2

1

J4
1R

2J2
2

. (3.52)

Hence, for

c2θ2d
2
1 − c1d2θ2d1 + c2

1 6= 0 (3.53)

the three-mass control model is controllable with input u1. For input u2 the determinant

of P3,u2 is calculated numerically. Applying the parameters from Tab. 2.5 in controllability

matrix (3.51), it follows |P3,u2| = −6.043e8, which is unequal to zero. Thus, the investigated

system is also controllable for input u2 and therefore both inputs u1 and u2 can be used

for control. However, for feedforward control design a SISO system is focused and the

inputs are applied separately.

It follows that the linear two-mass and three-mass control models are controllable, therefore

flat outputs for these systems exist and flatness-based feedforward control laws can be

derived.

3.4.1.2 Flat Outputs and Feedforward Control Laws

The main challenge in flatness-based feedforward control design is to find a flat output z.

When the flat output is found, the feedforward control law can be easily derived, as the

flat output and its derivatives define system state, output and input completely.

In particular the concept of differentially flatness in the context of SISO linear time invariant

systems is investigated for instance in [Sira-Ramı́rezAgrawal04], [HagenmeyerZeitz09], and

[Zeitz10].

For a linear SISO system as described in Eq. (3.41) the flat output z is given as a linear

function of the system state

z = aTx, a ∈ Rn. (3.54)
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Further, the linear system (3.41) with flat output z necessarily needs to have relative

degree r = n, which is equal to the system order. Therefore, the following equations must

hold
z = aTx

ż = aTAx+ aTB︸ ︷︷ ︸
=0

u

z̈ = aTA2x+ aTAB︸ ︷︷ ︸
=0

u

z(3) = aTA3x+ aTA2B︸ ︷︷ ︸
=0

u

...

z(n−1) = aTAn−1x+ aTAn−2B︸ ︷︷ ︸
=0

u

z(n) = aTAnx+ aTAn−1B︸ ︷︷ ︸
=κ6=0

u.

(3.55)

It results in the condition

aT
[
B AB A2B . . . An−2B An−1B

]
︸ ︷︷ ︸

=P

=
[

0 0 0 . . . 0 κ 6= 0
]

︸ ︷︷ ︸
=eT

(3.56)

with κ ∈ R and unequal to zero.

Hence, the flat output can be constructed by the inverse controllability matrix P as

aT = eTP−1. (3.57)

As a consequence the controllability matrix P must have full rank, which is equivalent to

controllability.

The new coordinates x∗ with the flat output and its derivatives are given by the transfor-

mation matrix φ as 
z

ż

z̈
...

z(n−1)


︸ ︷︷ ︸

=x∗

=


aT

aTA

aTA2

...

aTAn−1


︸ ︷︷ ︸

=φ

x. (3.58)

From the last equation in (3.55) the feedforward control law is given as a function of the

new coordinate x∗:

uFF =
1

κ

(
z(n) − aTAnφ−1x∗

)
. (3.59)

Using these general derivations, flat output and feedforward control law are calculated

for the two-mass control model in (3.12) and three-mass control model in (3.27). In the

following, it is assumed that the disturbance δ in these models is zero, for instance due to

a disturbance compensation controller, which is further discussed in Sec. 3.4.3.
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Two-Mass Model

For the two-mass control model in (3.12) the inverse controllability matrix reads

P−1
2 =

[
θJ1dR J1R

J1R 0

]
. (3.60)

Choosing κ2 = 1
J1R

the flat output for the two-mass control model is given as

z2 = x1 = ∆ϕ, (3.61)

describing the torsion rotation angle between both inertias. The flat coordinates of the

two-mass control model are

x∗2 =

[
z2

ż2

]
=

[
∆ϕ

∆ω

]
. (3.62)

Hence, the coordinate transformation in section 3.1 already yields a flat system.

A feedforward control law of the two-mass control model in (3.12) reads

uFF,2(t) = J1R (z̈2,des + θcz2,des(t) + θdż2,des(t)) , (3.63)

with desired trajectories z2,des(t), ż2,des(t), z̈2,des.

Three-Mass Model

The same approach to find the flat output and derive a feedforward control law can

be applied to the three-mass control model in (3.27). Only the last row of the inverse

controllability matrix is relevant in order to construct the flat output. For input u1, which

is the torque of the internal combustion engine, the last row of the inverse controllability

matrix of P3,u1 reads

P−1
3,u1

(4, :) =
1

c2d2
1θ2 − c1d1d2θ2 + c2

1

[
J1d

2
1, J1J2R (c1 − d1d2θ2) , 0, −J1J2d1R

]
.

(3.64)

The last row (4th-row) is denoted as (4, :).

Choosing

κ3,u1 = c2d
2
1θ2 − c1d1d2θ2 + c2

1, (3.65)

the flat output for input u1 is given as

z3,u1 = aT3,u1x = aT3,u1

[
∆ϕ1, ∆ϕ2, ∆ω1, ∆ω2

]T
(3.66)

with

aT3,u1 =
[
J1d

2
1, J1J2R (c1 − d1d2θ2) , 0, −J1J2d1R

]
, (3.67)
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as also derived in [PhamScholzSeifried17]. Therefore, the flat output is a linear combination

of the torsion rotation angles and the torsion angular velocity of the two last moments of

inertia.

The flat coordinates are

x∗3,u1 =


z3,u1

ż3,u1

z̈3,u1
...
z 3,u1

 (3.68)

The transformation matrix φ3,u1 can be calculated as given in Eq. (3.58). Hence, the

feedforward control law of the three-mass control model with input u1 is:

A feedforward control law for input u1 of the three-mass control model in (3.27) reads

uFF,3,u1(t) =
1

κ3,u1

(
z

(4)
3,u1,des(t)− aT3,u1A

4
3φ
−1
3,u1x

∗
3,u1,des(t)

)
(3.69)

with desired trajectories z
(4)
3,u1,des(t) and x∗3,u1,des(t).

The second input of the three-mass system is the torque of the electric machine. For this

input a flat output and a feedforward control law can be also calculated. Compared to

the first input vector B3,u1, the second input vector B3,u2 as given in Eq. (3.49) has one

more element unequal to zero. Therefore, the analytical solution of the controllability

matrix P3,u2 is much more complex and the analytical derivation of the flat output and

the feedforward control law is difficult. Thus, a numerical approach is more reasonable.

Applying the parameters of the three-mass control model in Tab. 2.5, the flat output can

be found using the law in (3.57). The resulting flat output is a linear combination of

all four states ∆ϕ1,∆ϕ2,∆ω1,∆ω2. Then, the feedforward control law can be calculated

using the general feedforward control law in (3.59).

Remark

If the damping coefficients are neglected for feedforward control design d1 = d2 = 0, then

the flat output can be constructed much easier. In general for a system with n mass-spring

elements, input u1 at the first mass and without damping the torsion rotation angle of

the last two inertias ∆ϕn−1 is always a flat output as shown in [PhamBushnell15]. Hence,

for the three-mass control system with input u1 it is valid that the torsion rotation angle

of the last two inertias z3 = ∆ϕ2 is a flat output. A further positive effect is that the

transformation matrix of the undamped system can be much easier calculated. However,

model uncertainty is introduced due to the simplification, but the error is relatively small

as the original system is underdamped and the influence of damping is small, see the

discussion in Sec. 3.2.
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Figure 3.7: Trajectory planning of desired flat trajectories zdes(t), żdes(t), . . . , z
(n)
des(t) gener-

ated by desired driver torque udes(t).

3.4.1.3 Trajectory Planning

The driver requests by the pedal position a desired drive torque udes as illustrated in

Fig. 3.6. When the desired torque udes is applied directly to the powertrain, then driveline

oscillations can occur, since the powertrain is underdamped. Hence, the desired torque

is adapted by the flatness-based approach. The feedforward control laws derived in the

previous section requires desired trajectories in coordinates of the flat output

x∗des(t) =
[
zdes(t) żdes(t) . . . z

(n−1)
des (t)

]T
, (3.70)

and z
(n)
des(t), see Eq. (3.58). Requirements on the desired trajectory zdes(t) generation are

• real-time capability,

• n-times differentiable, as the feedforward control law, see Eq. (3.59) applies the nth

derivative of the flat output,

• start point t0 and end point tT of the desired trajectory must correspond to the

desired steady-states of the system and all n derivatives have to be zero at the start

and end point to get a smooth transition: z
(i)
des(t)|t={t0,tT } = 0, for i = 1, 2, . . . , n.

Figure 3.7 shows a trajectory planning approach with steady-state mapping and several

low-pass derivative filters to obtain appropriate derivatives of the desired flat output

trajectory. The unfiltered desired torque udes(t) of the driver is mapped on-line to the

corresponding steady-state flat output zdes,unfiltered(t) = zss. This mapping ensures that

start and end point are correct. The mapping depends on the system dynamic equations.
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The steady-state mapping can be generally found using Eq. (3.59). In steady-state the

flat coordinates are defined as

x∗ss =


zss
0
...

0

 (3.71)

with z
(n)
ss = 0. Therefore, it follows from Eq. (3.59)

udes = −1

κ
aTAnφ−1x∗ss. (3.72)

As only the first entry of x∗ss is interested, the first column of φ−1 is relevant, which is

denoted as φ−1(:, 1). Hence, it is

udes = −1

κ
aTAnφ−1(:, 1)︸ ︷︷ ︸

=:γ

zss (3.73)

and thus the steady-state desired trajectory can be generally calculated by

zdes,unfiltered(t) = zss = −κ
γ
udes. (3.74)

For the two-mass control model from Eq. (3.63) the steady state mapping from desired

driver torque udes to steady-state flat output zss = zdes,unfiltered(t) is given trivially as

zdes,unfiltered,2(t) = ∆ϕss =
1

J1Rθc
udes, with ∆ϕ̇ss = ∆ϕ̈ss = 0. (3.75)

For the three-mass control model from Eq. (3.27) there is a steady state mapping for the

engine torque input u1 as well as for the electric machine torque input u2, which can be

calculated in each case by applying Eq. (3.74).

After the steady-state mapping there are several low-pass filters. The low-pass filters

(2n+ 1)-th order realize the numerical calculation of the derivatives of the desired trajectory

and a smooth transition. There exist various types of low-pass filters. For instance a first-

order low-pass filter can be connected in series, a Bessel filter with constant group delay

or other filter types as Butterworth or Chebyshev filters can be applied. The appropriate

filter type depends on the specification how the desired flat output trajectory zdes(t) should

be filtered. An alternative to the derivative filters are planned trajectories as for example

discussed in [PiazziVisioli01] or [GraichenHagenmeyerZeitz05]. The trajectories can be

designed, for instance by polynomials, such that the conditions n-times differentiable and

feasible start and end points are fulfilled. In this thesis low-pass filters connected in a

series are applied, due to the simple realization of the filters and the low requirements on

the trajectory shape.
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3.4.2 Feedback Control

The flatness-based feedforward controllers require accurate model parameters and no

disturbances. The more inexact the parameters are and larger the disturbances, the worse

the damping behavior is. Therefore, a feedback controller is necessary to deal with these

uncertainties. The overall control loop shown in Fig. 3.8 illustrates the additional feedback

controller uFB. The goal of a feedback controller is to ensure a behavior closely to critically

damped and to control both transient and steady-state behavior, as discussed in Sec. 3.3.

A significant advantage of the flatness-based control approach is that reference trajectories

for all states are generated by the feedforward controller and can be used in feedback

control.

3.4.2.1 Pole-Placement

A pole-placement or an optimal control approach can be applied to regulate the whole

error state vector

e = x∗ − x∗des, (3.76)

as discussed for instance in [Sira-Ramı́rezAgrawal04]. The pole-placement approach allows

to choose the closed loop poles of the error dynamics directly such that the damping

behavior is critically damped. In the following the error dynamics is derived. For the

undisturbed linear system from Eq. (3.41) it is valid

ẋ∗des = Ax∗des +BuFF , (3.77)

as the system is fully inverted by the flatness-based approach. Secondly, the closed loop

system dynamics is given as

ẋ = Ax+B (uFF + uFB) . (3.78)

udes(t) zdes(t)
zdes,filt(t)

u→ zdes,ss

trajectory planning

low-pass filters
1st derivative

żdes,filt(t)

low-pass filters

low-pass filters
n-th derivative

z
(n)
des,filt(t)

feedforward
controller

powertrain
uFF ++

uFB

utotal

feedback
controller

x
x→ x∗

x∗des

x∗

Figure 3.8: Overall control loop with trajectory planning, feedforward controller, and state

feedback controller.
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Furthermore, the state feedback controller of the error state is defined as

uFB = −kT (x∗ − x∗des) (3.79)

with control gain kT . The flat state vector x∗ can be obtained by the transformation in

(3.58). Applying (3.79) in (3.78), it follows

ẋ = Ax+B
(
uFF − kT (x∗ − x∗des)

)
. (3.80)

Finally, the error dynamics is obtained by subtracting Eq. (3.77) from Eq. (3.80):

ẋ− ẋ∗des =
(
A−BkT

)
(x∗ − x∗des) , (3.81)

which yields

ė =
(
A−BkT

)
e. (3.82)

Hence, the control gain kT has to be chosen for the closed loop matrix
(
A−BkT

)
to

guarantee that the state trajectories x∗ exponentially converges towards the reference

trajectories x∗des. There are several methods to calculate the control gain kT . Pole-

placement and optimal control methods are for instance presented in [WilliamsLawrence07],

and [Kirk12].

3.4.2.2 Output Controller

On the other hand an output controller as a proportional–integral–derivative controller can

be applied to control just the output y. Applying a proportional controller, the damping

behavior can be directly influenced with proportional gain kp. The proportional control

law reads

uFB = −kp (y − ydes) . (3.83)

The desired output ydes is given by the transformation matrix in (3.58). In general it is

xdes = φ−1x∗des. (3.84)

Hence, for the desired output it is valid

ydes = cTφ−1x∗des. (3.85)

It is reasonable to choose the torsion angular velocity as system output as it is desired to

influence the damping behavior of the system. Additionally, the rotation speeds of the

powertrain are often available in measurements.
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Two-Mass Model

For the two-mass control model in (3.12) the output

y = ∆ω =
1

R
ω1 − ω2 (3.86)

is chosen. The closed loop dynamics of the two-mass control model (3.12) with feedback

controller (3.83) and output (3.86) is given as

∆ω̇ + Θc∆ϕ+ Θd∆ω +
1

J1R
kp (y − ydes)−

1

J2

δ = 0. (3.87)

As the disturbance δ is assumed as nearly constant and not as a function of the system

states and the reference trajectory ydes is also not a function of the system states the

closed loop dynamics is described by

∆ω̇ + Θc∆ϕ+

(
Θd+

1

J1R
kp

)
︸ ︷︷ ︸

=dtotal

∆ω = 0. (3.88)

Therefore, the total damping parameter dtotal of the two-mass control model can be

increased by a proportional gain kp > 0. Furthermore, if the desired damping ratio is set

to critically damped, the resulting control gain kp,crit can be derived. The damping ratio

of the controlled system ξp is defined by

ξp =
Θd+ 1

J1R
kp

2
√
cΘ

(3.89)

and for ξ = 1 the required proportional gain reads

kp,crit = J1R
(

2
√
cΘ−Θd

)
. (3.90)

Three-Mass Model

For the three-mass control model in (3.27) the output

y = ∆ω2 =
1

R
ω2 − ω3 (3.91)

is selected. Thus, the output is motivated by the maximal displacement of the first

eigenvector with the lowest eigenfrequency of the detailed hybrid electric powertrain model

as illustrated in Fig. 2.18.

The three-mass system has two inputs u1 and u2. In order to show which input is more

suitable for feedback control, the closed loop system of each input is calculated. The

feedback controller uFB in (3.83) with output ∆ω2 from (3.91) is applied to the system
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Figure 3.9: Pole locations and damping behavior of closed loop matrix A3,cl,u1 with input

u1 and varying proportional gain kp from 0 to 300.

and the input vectors B3,u1 and B3,u2 from (3.48) and (3.49) are used. For the first input

u1 the closed loop system matrix A3,cl,u1 reads

A3,cl,u1 =


0 0 1 0

0 0 0 1

−c1Θ1
c2
J2R

−d1Θ1
d2
J2R
− kp

J1
c1
J2R

−c2Θ2
d1
J2R

−d2Θ2

 . (3.92)

Further, the closed loop system matrix A3,cl,u2 of input u2 is given as

A3,cl,u2 =


0 0 1 0

0 0 0 1

−c1Θ1
c2
J2R

−d1Θ1
d2
J2R

+ kp
J2

c1
J2R

−c2Θ2
d1
J2R

−d2Θ2 − kp
J2R

 . (3.93)

The impact of each feedback controller can be clarified by varying the proportional gain

kp. Here, the proportional gain is varied from 0 to 300 for each input u1, u2. The resulting

locations of the closed loop poles and the damping characteristics are calculated. The

three-mass system is simulated with parameters from Tab. 2.5. Figure 3.9 shows the

locations of the poles of closed loop matrix A3,cl,u1 . The same applies to Fig. 3.10 with

input u2 and closed loop matrix A3,cl,u2 .

The locations of the eigenvalues with proportional gain kp = 0 are marked with a circle

and the eigenvalues with proportional gain kp = 300 are marked with a filled diamond. On

the left the imaginary parts of the eigenvalues are factorized by 1
2π

in order to visualize the

frequencies of the eigenvalues. On the x-axis the real parts of the eigenvalues are displayed

to show the stability of the eigenvalues. On the right side the damping ratios as defined in

(3.38) are illustrated against the real parts of the eigenvalues.
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Figure 3.10: Pole locations and damping behavior of closed loop matrix A3,cl,u2 with input

u2 and varying proportional gain kp from 0 to 300.

As shown in Fig. 3.9 the poles of the frequency f2 can become unstable for large proportional

gains kp. For this system proportional gains kp ≥ 53.6 makes the system unstable. On the

other hand the damping ratio of the lowest frequency f1 increases for larger proportional

gains. Therefore, the damping behavior of the poles with f1 cannot be independently

increased with respect to a stable system using input u1 and output ∆ω2.

Contrary, when input u2 is used. Figure 3.10 shows that the eigenvalues do not become

unstable for large proportional gain kp to 300. Therefore, increasing the proportional

gain the damping ratio of the eigenvalues with f1 becomes 1 for kp = 260 and the system

damping is critically damped. For greater kp the system is overdamped. In the following,

input u2 is used for feedback control of a three-mass system.

In general, using an output controller as a proportional controller can be restrictive and it

is possible that the desired damping behavior cannot be fulfilled. However, the method is

simple to apply and only measurable states are used. On the other hand more advanced

methods as pole-placement or optimal control approaches allows to better meet the desired

damping behavior. The disadvantage here is that the whole system state has to be available,

for example by state estimation. Furthermore, the control design is not as intuitive as it is

for output controller. Therefore, an output controller is applied hereafter.

3.4.3 Disturbance Rejection

The two-mass control model in (3.12) and three-mass control model in (3.27) include a

disturbance term with disturbance δ. The feedforward and feedback control design in

the previous sections assume this disturbance to be zero or compensated to zero. In the

following the estimation and compensation of the disturbance is discussed.
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3.4.3.1 Disturbance Estimation

The disturbance, which act on the powertrain, consists usually of rolling resistance, road

inclination and air resistance. Usually, the main part of the disturbance is the road

inclination especially for low vehicle velocity, since rolling and wind disturbance are a

function of the velocity. Therefore, for disturbance estimation the assumption is made

that the disturbance is constant. The constant disturbance dynamics is described by

δ̇ = 0, δ(0) = δ0. (3.94)

The disturbance dynamics equations can be added to the dynamics equations of the

two-mass control model in (3.12) and the three-mass control model in (3.27). The system

states are augmented to x2,augm = [∆ϕ,∆ω, δ]T , and x3,augm = [∆ϕ1,∆ϕ2,∆ω1,∆ω2, δ]
T ,

respectively. The augmented system matrices read

A2,augm =

 0 1 0

−cΘ −dΘ 1
J2

0 0 0

 , (3.95)

and

A3,augm =


0 0 1 0 0

0 0 0 1 0

−c1Θ1
c2
J2R

−d1Θ1
d2
J2R

0
c1
J2R

−c2Θ2
d1
J2R

−d2Θ2
1
J3

0 0 0 0 0

 . (3.96)

However, when the torsion angular velocity ∆ω of the two-mass model and the velocities

∆ω1,∆ω2 of the three-mass model are measured, the output matrices read

C2,augm =
[

0 1 0
]
, (3.97)

and

C3,augm =

[
0 0 1 0 0

0 0 0 1 0

]
. (3.98)

It follows that the systems are not observable, when the pairs (A2,augm,C2,augm) and

(A3,augm,C3,augm) are investigated. Hence, another system representation is needed.

In [JoachimHorwathReuss08] a modified two-mass powertrain model without elasticity is

divided into a primary and secondary part as depicted in Fig. 3.11. In a first step the

drive shaft torque Tds,R with ratio is estimated. The drive shaft torque is assumed to be

nearly constant. The dynamics equations of the first primary part read[
ω̇1

Ṫds,R

]
=

[
0 − 1

J1

0 0

]
︸ ︷︷ ︸

=:A2,prim

[
ω1

Tds,R

]
+

[
1
J1

0

]
u (3.99)
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Figure 3.11: Divided two-mass control model into primary and secondary part with drive

shaft torque Tds.

with system state xprim =
[
ω1, Tds,R

]T
. The corresponding output matrix is given as

C2,prim =
[

1, 0
]T

. The pair (A2,prim,C2,prim) is observable. Therefore, for example a

Luenberger observer, as used here, can be designed to estimate the drive shaft state Tds,R.

Then, the corresponding drive shaft torque with considered gear ratio is given as

Tds = RTds,R. (3.100)

Now, the secondary part is used to estimate the disturbance δ. The dynamics is given as[
ω̇2

δ̇

]
=

[
0 − 1

J2

0 0

]
︸ ︷︷ ︸

=:A2,sec

[
ω2

δ

]
+

[
1
J2

0

]
Tds. (3.101)

The system state is defined as xsec =
[
ω2, δ

]T
and the output matrix is similar to the

primary part C2,sec = C2,prim. Similar to the primary part, an observer can be designed

for the secondary part to predict the disturbance δ.

The prediction method of [JoachimHorwathReuss08] can also be transferred to a three-

mass control model. For this, the three-mass control model is simplified to a static

two-mass control model as illustrated in Fig. 3.12. The first and second moment of inertia

are summarized to J1 + J2 and the input torque to u1 +u2. It is assumed that the rotation

angles ϕ1, ϕ2, and angular velocities ω1, ω2 are equal. Then, the same Eq. (3.99) and

(3.101) can be stated for the three-mass static control model in order to estimate the

disturbance δ.

3.4.3.2 Disturbance Compensation

A compensation torque input uc can be designed, when the disturbance δ is known. The

objective is to ensure that the acceleration of the vehicle is not affected by disturbances, for

example road inclination, using a compensation torque. Therefore, the detailed two-mass
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Figure 3.12: Separated three-mass control model in primary and secondary part with drive

shaft torque Tds.
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Figure 3.13: Feedforward disturbance compensation.

and three-mass control models representations defined in (3.1) and (2.25) are suitable for

disturbance compensation as they represent velocities explicitly in the system states. In

Remark 1 it is shown why the reduced models are not appropriate.

A feedforward disturbance compensation controller as discussed for instance in [Lunze12]

is designed to compensate disturbance δ such that wheel velocity ω2 of the two-mass

control model (3.1) and wheel velocity ω3 of three-mass control model (2.25), respectively,

are not affected by the disturbance. Figure 3.13 illustrates the feedforward compensation

approach with additive disturbance correction input uc.

Following for instance [Lunze12], the calculation of the compensation controller Kδ is

derived for the two-mass and three-mass control models. The system output is defined as

the wheel velocity, since the goal of the disturbance compensator is to ensure that this

velocity is not affected. For the two-mass model the system output is given as

y = ω2, (3.102)

and for the three-mass model it is

y = ω3. (3.103)

Furthermore, the required transfer functions from input u to output y Gδ→y and from
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disturbance δ to output y Gu→y are calculated using the linear system equations (3.1),

and (3.25), respectively.

It is valid

y = Gu→y (uFW,FB + uc) +Gδδ, (3.104)

which is

y = Gu→yuFW,FB +Gu→yKδδ +Gδδ. (3.105)

Hence, for

Kδ = −G−1
u→yGδ (3.106)

the disturbance δ is canceled.

The difficulty is that Kδ is usually not causal. Therefore a low-pass filter with appropriate

system order can be added in series to make Kδ realizable or the steady-state gain

Kδ,ss = −G−1
u→y(0)Gδ(0) (3.107)

is applied.

Remark 1

In the following it is shown, why the reduced control models (3.12) and (3.27) are not

appropriate for disturbance rejection.

First, the compensation control inputs uc for the two-mass and three-mass control model

are derived. The dynamics equations of the two-mass control model read

∆ϕ̇ = ∆ω

∆ω̇ = −Θc∆ϕ−Θd∆ω +
1

J1R
uc +

1

J2

δ
(3.108)

with Θ = J1R2+J2
J1J2R2 . Applying the compensation input

uc = −J1R

J2

δ (3.109)

the disturbance δ would be canceled.

The three-mass control model has two inputs u1 and u2. Both inputs are used for

compensation. Hence, the dynamics equations of the three-mass control model with

compensation inputs uc,1 and uc,2 read

∆ϕ̇1 = ∆ω1

∆ϕ̇2 = ∆ω2

∆ω̇1 = −Θ1c1∆ϕ1 −Θ1d1∆ω1 +
1

J2R
c2∆ϕ2 +

1

J2R
d2∆ω2 +

1

J1

uc,1 −
1

J2

uc,2

∆ω̇2 =
1

J2R
c1∆ϕ1 +

1

J2R
d1∆ω1 −Θ2c2∆ϕ2 −Θ2d2∆ω2 +

1

J2R
uc,2 +

1

J3

δ

(3.110)
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with Θ1 = J1+J2
J1J2

and Θ2 = J2R2+J3
J2J3R2 . The compensation inputs

uc,1 = −J1R

J3

δ, uc,2 = −J2R

J3

δ (3.111)

would compensate disturbance δ.

Now, it can be shown that the compensation inputs reduce the vehicle acceleration for

δ > 0. When the compensation laws Eq. (3.109) and (3.111) are examined in detail, it

follows that for positive disturbance δ > 0, the necessary compensation torque uc and

uc,1, uc,2, respectively, are negative. Hence, the total input torque is reduced, and therefore

also the acceleration of the vehicle. This follows from the effect that the compensation

laws Eq. (3.109) and (3.111) of the reduced models ensure that the torsion rotation angles

and angular velocities are not affected by the disturbance. Thus, this behavior is not

suitable.

Remark 2

There are situations in which disturbance cannot be compensated. For instance, when the

drive unit is driving at the full-load curve and no compensation torque is available. Then

the steady-state calculation of the flatness-based feedforward controller (3.74) is not right

anymore and the approach has to consider the disturbance. However, in this work it is

assumed that the disturbance can be compensated.

3.5 Applications

In this section simulation and experimental results are shown. The simulations are run

with the control and detailed powertrain models of conventional, hybrid electric, and

battery electric powertrains, presented in Chapter 2. The experimental results are done

with a conventional test vehicle and with a battery electric test vehicle with electric front

and rear axle. The applications demonstrate the uncontrolled oscillation behavior by

measurements and that by the developed control strategy all desired specifications

• critically damped,

• independent transition time,

• and controlled transient behavior

can be reached.
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Measurement: Uncontrolled Behavior

Figure 3.14 shows measurement data of an uncontrolled race-start, which is an extreme

launching, of a conventional powertrain. In the beginning the engine torque TICE increases

and decreases in order to hold a desired high engine rotation speed to enable a race-start.

At time t0 the clutch is closed by increasing the torque clutch Tclutch. On the right in

Fig. 3.15, measurement data of an uncontrolled load change of a battery electric test

vehicle is depicted. The torque of the electric machine TEM increases to a desired torque.

Based on the fact that no controller is applied, in both figures high driveline oscillation

amplitudes and a long decay time in the vehicle acceleration signal aV EH are present.

Furthermore, in Fig. 3.15 the wheels start to spin due to the excitation of the high electric

machine torque, as it can be identified by an amplifying vehicle acceleration signal. These

measurements show clearly the need for driveline control.
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Figure 3.14: Measurement of an uncon-

trolled launching.
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Figure 3.15: Measurement of an uncon-

trolled load change via an electric rear

axle.

Simulation Using Control Models: Flatness-Based Feedforward

Controller

The feedforward control approach as presented in Sec. 3.4.1 enables a set-point transition,

as launching and load change, without oscillations, if the system dynamics is fully known.

Therefore set-point transitions with various transition times ∆t = {0.05 s, 0.1 s, 0.2 s} are

simulated using the battery electric powertrain two-mass control model as described in

(2.29) with parameters from Tab. 2.7 to validate the approach. For trajectory generation

five low-pass filters in a row, each with a time constant of T = 0.002, are applied.

Figure 3.16 shows when the feedforward controller is applied, absolutely no driveline
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oscillations occur regardless of the transition time. Hence, a significant better command

response is given compared to the uncontrolled simulation or the ramps with varied

transition time shown in Fig. 3.5. The feedforward control input requires larger absolute

torques and high gradients, when the transition time is smaller. Therefore, the minimum

feasible transition time depends on the available maximum absolute torque and the possible

torque rate.
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Figure 3.16: Simulation of load changes of the battery electric powertrain two-mass control

model using flatness-based feedforward controllers with various transition times.

Simulation Using Detailed Model: Feedforward and Feedback

Controller

The described detailed simulation models in Chapter 2 differ from the control models

as they consider more degrees of freedom, nonlinear characteristics, and disturbances.

A flatness-based feedforward controller designed by a control model cannot guarantee

vibration free set-point transitions using the detailed simulation model. A feedback

controller has to be applied to compensate these model uncertainties and disturbances.

The detailed hybrid electric powertrain model from Sec. 2.3.1 is applied to simulate a set-

point transition via the first input u1, the internal combustion engine, with flatness-based

feedforward control based on the three-mass control model in Eq. (3.27). The second input

u2, the electric machine, is used for proportional feedback control. A road inclination of

5 % is additionally added to rolling and air resistance. The following control methods are

simulated to illustrate the effects of the different feedback control methods:

• a) flatness-based feedforward controller as described in Sec. 3.4.1 without feedback

control
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• b) flatness-based feedforward controller as described in Sec. 3.4.1 and proportional

output feedback controller with steady-state reference ydes = 0 as described in

Sec. 3.4.2

• c) flatness-based feedforward controller as described in Sec. 3.4.1 and proportional

output feedback controller with desired trajectory ydes(t) as described in Sec. 3.4.2

The results are depicted in Fig. 3.17.

The simulated set-point transition using method a) shows some small remaining driveline

oscillations in the vehicle acceleration signal aV EH due to unmodeled dynamics and

uncertainties. On the other hand, method b) has no driveline oscillations, but the

dynamics is significantly reduced because of the steady-state feedback controller. Method

c) shows no driveline oscillations and at the same time no performance reduction. The

proportional feedback control gain is calculated such that the system is critically damped.

Furthermore, the advantage of method c) using feedback control with a desired trajectory

appears clearly in Fig. 3.18 showing actual and desired torsion angular velocity ∆ω2 and

∆ω2,des. The desired trajectory ∆ω2,des during the transition time (1 s ≤ t ≤ 1.15 s) is

not zero, as it can be seen in the signal of method c). It is calculated in the flatness-

based approach using the desired flat output from Eq. (3.74), its derivatives and the

transformation matrix (3.58). Then, the feedback control method of c) is given as

uFB = −kp (∆ω2 −∆ω2,des) (3.112)
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Figure 3.17: Simulation of load changes of the detailed hybrid electric powertrain model

using flatness-based feedforward controllers and various feedback controller.
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and therefore considers the transient behavior with ∆ω2,des in contrast to the steady-state

controller method b. with

uFB,ss = −kp (∆ω2 − 0) . (3.113)
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Figure 3.18: Simulation of desired and actual values of the torsion angular velocity between

electric machine and wheels.

Measurement: Feedforward and Feedback Controller

Two control methods are implemented to a battery electric test vehicle with electric front

and rear axles. The first method is the previously presented method c) and the second

method is a proportional steady-state feedback controller without feedforward controller,

which is defined as method d). Method d) is a simple controller and common in driveline

control. The feedforward controller and the proportional feedback controller with desired

trajectory of method c) are implemented to each axle of the electric vehicle. Figure 3.19

shows the better performance and higher comfort in the vehicle acceleration signal using

method c) in contrast to using method d) by less vehicle vibration and faster transition.

Furthermore, the experiment demonstrate that method c) is also suitable for an electric

four-wheel drive vehicle.

Simulation Using Detailed Model: Disturbance Rejection

The simulations in Sec. 3.5 using the detailed hybrid electric powertrain model include

disturbances. The sum of these disturbances, rolling resistance, air resistance and road

inclination, reduces the vehicle acceleration in these simulations. Therefore, the com-

pensation approach from Sec. 3.4.3 with two-step estimation method and compensation

input is applied. Thereby, the first input u1, internal combustion engine, is used here for

flatness-based feedforward control as well as for disturbance compensation uc. Moreover,

the second input u2, electric machine, is further used for feedback control.
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Figure 3.19: Measurements of load changes of a battery electric test vehicle with control

method c) and d) for front and rear axle.
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Figure 3.20: Estimation of wheel angular velocity and disturbance.

Figure 3.20 shows that the estimation method can estimate the measured wheel angular

velocity ω3 very accurate. Furthermore, the disturbance δ can be predicted fairly accurately

in steady-state. During the transition time (1 s ≤ t ≤ 1.4 s) the estimation has to settle.

The strong overshoot is due to the zeros on the left half plane of the estimation system, which

result from the inverse of the control system transfer function, see therefore Eq. (3.106).

In Fig. 3.21 the control method without disturbance compensation c) from the previous

section is compared with the control method with disturbance compensation e). In

steady-state the compensation torque uc of method e) is greater than zero and therefore

compensate the estimated disturbance such that the vehicle acceleration aV EH of method

e) is not affected by the disturbance is therefore higher than of method c).
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Figure 3.21: Simulation of method c) without disturbance compensation and method e)

with disturbance compensation.
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Chapter 4

Powertrain Control with Backlash

This chapter focuses on control of load changes from pull to thrust condition and vice

versa. The main challenge in this maneuver is that backlash is traversed. Figure. 4.1

illustrates backlash between a driving and a driven gear tooth. Thereby, the gap between

the teeth is defined as the backlash gap 2α. Backlash is necessary in mechanical systems

due to elongation properties of components and to ensure mounting, but represents a

hard nonlinearity. When backlash is traversed no torque is transmitted by the shafts,

however when the first contact is achieved, torque is abruptly induced to the system. As

a result linear control methods from Chapter 3 may not be sufficient, since they do not

consider backlash. Therefore, nonlinear control methods are necessary for this specific

drive scenario. First, the effect of backlash on the system dynamics is investigated. Then

the dynamics of backlash is modeled as a dead-zone. This dead-zone model is used for the

detailed simulation models. Then, for control design a smooth backlash model is derived

and the control approaches from the previous chapter are adapted using the new nonlinear

control model such that a smooth backlash traversing is enabled. Finally, the proposed

approach is validated in simulation study.

backlash gap 2α

driven gear

driving gear

Figure 4.1: Illustration of the backlash gap 2α as depicted in [Speidel17].



74 Chapter 4: Powertrain Control with Backlash

4.1 Effects of Backlash

In literature the undesired effects of backlash are well described. When backlash is traversed

and the opposite tooth flank is not hit appropriately, then an uncomfortable ”shunt and

shuffle phenomena” may appear, as described for instance in [LagerbergEgardt05] and

[TemplinEgardt11]. The reason is a high derivative of the vehicle longitudinal acceleration

(jerk), when the tooth flank is hit. Furthermore, acoustically an undesired ”clonk” can

appear, see [TemplinEgardt09]. This problem affects especially battery electric vehicles,

since electric motors have a very low noise level compared to an internal combustion

engine, as described in [Karle16]. Hence, the noise of hitting tooth flanks becomes even

more apparent and the driver can recognize this as a substandard noise. Finally, driving

and driven parts of the vehicle are separated within backlash. Therefore, the torque from

the driving part does not affect the driven part and no drive of the remaining powertrain

is possible in backlash. The driver can feel the resulting loss of the vehicle acceleration.

Overall, the effects of shunt, shuffle, clonk, and no torque transmission are particularly

striking in the case of low load changes with driving torques about zero, since in this

scenario backlash can be traversed several times. In Figure 4.2 a measurement of a tip-in

and tip-out maneuver of a battery electric vehicle is shown. At time t0 the torque of the

electric machine TEM changes its sign from negative to positive and at time tT the reverse

maneuver from positive to negative torque is driven. Backlash is traversed once at the

tip-in maneuver, however backlash is traversed several time after the tip-out maneuver.

The reasons are the small value of the negative drive torque TEM after tip-out. Then,

due to driveline oscillations backlash can be re-entered several times. According to the

0
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250

ω
E
M

[r
ad

/s
]

t0 tT
time

0a
V
E
H

no transmission

tip-in tip-out

shuffle
shunt

clonk
no transmission

Figure 4.2: Measurement of an uncontrolled load change with backlash traversing.
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nearly zero vehicle acceleration aV EH after tT , the angular velocity of the electric machine

ωEM behaves like a sawtooth pattern. This phenomenon occurs because the driven part

of the vehicle is not connected with the driving part, which is here an electric machine.

Therefore, a constant negative driving torque TEM leads to a straight angular velocity of

the electric machine with negative gradient.

The goal of a control approach is to enable a smooth transition, where backlash is traversed

with a soft landing, such that the listed undesired effects do not occur.

4.2 Dead-Zone Backlash Models

The typical physical representation of a shaft with backlash gap as presented in

[NordinGalic’Gutman97], [Lagerberg01], or [NordinGutman02], is illustrated in Fig. 4.3.

Hereby, driving shaft torque Tds, shaft stiffness c, shaft damping d, backlash gap 2α are

shown. Furthermore, the rotation angles ϕ1, ϕ2, ϕ3 and angular velocities ω1, ω2, ω3 are

defined as the angles and velocities of the primary side, the location before the backlash

gap, and the secondary side.

c, d

Tds

2α

ϕ1, ω1 ϕ2, ω2 ϕ3, ω3

input

driving gear

output

driven gear

Figure 4.3: Physical representation of a shaft with backlash gap 2α.

Additionally, the following differences are introduced. The total displacements and angular

velocities between driving gear and driven gear is

ϕd = ϕ1 − ϕ3, ωd = ω1 − ω3.

The shaft twists and its velocities are

ϕs = ϕ1 − ϕ2, ωs = ω1 − ω2,

and backlash angle and velocity are

ϕb = ϕ2 − ϕ3, ωb = ω2 − ω3.

The backlash angle ϕb is a state, which can change over time, however the backlash gap

2α is a constant parameter.

In [NordinGalic’Gutman97], a dead-zone model for the drive shaft torque Tds with physical

backlash representation is derived. It is

Tds = c (ϕd − ϕb) + d (ωd − ωb) , (4.1)
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whereby the backlash velocity is described as

ωb =


max

(
0, ωd + c

d
(ϕd − ϕb)

)
, ϕb = −α (left contact, Tds ≤ 0)

ωd + c
d

(ϕd − ϕb) , |ϕb| < α (backlash mode)

min
(
0, ωd + c

d
(ϕd − ϕb)

)
, ϕb = α (right contact, Tds ≥ 0) .

(4.2)

[NordinGutman02] describe these equations as a limited integrator with time derivative

ωd + c
d

(ϕd − ϕb) and limit α. In backlash mode |ϕb| = α the drive shaft torque Tds results

to zero. On the other hand, in contact mode different cases can be distinguished. The

maximum and minimum functions guarantee that if the backlash angle is in contact mode,

for instance ϕb = α, then the backlash angle is saturated by the half of the backlash gap

±α. Thus, the backlash angle can only change in the reverse direction, here ωb ∈ [−∞, 0].

Moreover, when the system starts to change in the reverse direction, for instance into the

backlash gap, then the drive shaft torque Tds goes to zero again.

A difficulty of backlash model (4.1) with Eq. (4.2) is that usually the backlash angle ϕb is

unknown and only the total displacement ϕd and velocity ωd are available. Therefore, for

applications a simplified distinction of Eq. (4.2) is made. The backlash angle ϕb is replaced

by the half of the backlash gap ±α, as used for instance in [Haschka MarkusVolker07] and

[AngeringerHornReichhartinger12]. Then, the simplified dead-zone backlash model reads

Tds,simple =


c(ϕd + α) + dωd, ϕd ≤ −α
0, |ϕd| < α

c(ϕd − α) + dωd, ϕd ≥ α.

(4.3)

In [Karlsson01] a further distinction is made for dead-zone model (4.3). The physically

impossible effect of non-matching direction of the calculated drive shaft torque Tds,simple
and the total displacement angle ϕd is prevented, by setting the drive shaft torque Tds to

zero in this case, yielding

Tds =

0, sgn (Tds,simple) 6= sgn (ϕd)

Tds,simple, else
(4.4)

with signum function sgn.

This backlash model (4.4) is used to augment the detailed simulation models from chap-

ter 2 to represent the backlash effect. Each spring/damper connection is changed to a

spring/damper connection with backlash, since backlash can occur between all components

in the powertrain. For the purpose of generalization and illustration, the backlash gaps

are parameterized uniformly with

2α = 1◦ =
2π

360
rad. (4.5)
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4.3 Control Using a Smooth Backlash Model

This section presents a nonlinear flatness-based control approach for powertrains with

backlash. The approach is based on the model-based linear transient control structure

shown in Fig. 3.6. Flatness-based control design requires smooth system dynamics equa-

tions. Therefore, the non-smooth dead-zone model (4.3) is approximated by a smooth

backlash model. Then, feedforward and feedback controller are designed using this model.

Disturbance rejection is not discussed explicitly for control with backlash. It is referred to

the linear approach in Sec. 3.4.3, since the influence of backlash on disturbance is small.

4.3.1 Smooth Control Model with Backlash

The dead-zone model from Eq. (4.3) is not suitable for backlash representation in the

system equations, since the function is not differentiable for ∆ϕd = ±α. However, the

concept of differentially flatness requires a system with smooth vector fields, as defined

in (3.40). Therefore, a smooth approximation of the dead-zone model is derived for the

two-mass and three-mass control models. Backlash with backlash gap 2α is included in

the two-mass and three-mass control model at one position as illustrated in Fig. 4.4 and

Fig. 4.5. Furthermore, the smooth drive shaft torque Tds,smooth is introduced.

J1

R

δ

u c, d

ϕ1, ω1

J2

ϕ2, ω2

2α

Tds,smooth

Figure 4.4: Two-mass control

model with backlash.

J1

R

δ
u1 c2, d2

ϕ1, ω1

J3

ϕ3, ω3

J2

ϕ2, ω2

c1, d1

u2
2α

Tds,smooth

Figure 4.5: Three-mass control model with back-

lash.

Hence, the system equations (3.12), and (3.27) are adapted by the smooth function and

are summarized in the following.

Two-Mass Backlash Model

∆ϕ̇ = ∆ω

∆ω̇ = −ΘTds,smooth +
1

J1R
u+

1

J2

δ
(4.6)

with state x = [∆ϕ,∆ω]T , ∆ϕ = ϕ1

R
− ϕ2, and ∆ω = ω1

R
− ω2.
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Three-Mass Backlash Model

∆ϕ̇1 = ∆ω1

∆ϕ̇2 = ∆ω2

∆ω̇1 = −Θ1c1∆ϕ1 −Θ1d1∆ω1 +
1

J2R
Tds,smooth +

1

J1

u1 −
1

J2

u2

∆ω̇2 =
1

J2R
c1∆ϕ1 +

1

J2R
d1∆ω1 −Θ2Tds,smooth +

1

J2R
u2 +

1

J3

δ

(4.7)

with state x = [∆ϕ1,∆ϕ2,∆ω1,∆ω2]T , ∆ϕ1 = ϕ1 − ϕ2, ∆ϕ2 = ϕ2

R
− ϕ3, ∆ω1 = ω1 − ω2,

and ∆ω2 = ω2

R
− ω3. In the following, the modeling of the smooth drive shaft torque

Tds,smooth is discussed.

In [PhamEtAl16] an approach to approximate the dead-zone model by a smooth hyperbolic

tangent is presented. This approach uses the hyperbolic tangent function tanh in a fade-out

function σ(∆ϕ). When the torsion rotation angle is in the backlash gap, the fade-out

function σ is practically zero to enable zero torque. When the torsion rotation angle is

outside of the backlash gap, then the fade-out function is almost 1 and the usual drive

shaft torque is applied.

There are several possibilities to design the fade-out function σ(∆ϕ) using the hyperbolic

tangent function. Therefore, appropriate functions are presented and analyzed in the

following.

In [PhamEtAl16] the fade-out function

σ1(∆ϕ) = tanh(a1|∆ϕ|) (4.8)

is applied. The tuning parameter a1 ∈ R can be used to fit the curve to the dead-zone

model. Further suitable functions are

σ2(∆ϕ) = tanh((a2∆ϕ)k), (4.9)

and

σ3(∆ϕ) = tanhk(a3∆ϕ), (4.10)

with tuning parameters a2, a3 ∈ R and even k ∈ N. All three tuning parameters can be

approximated by

a1,2,3 ≈
1

α
, with α > 0. (4.11)

Figure 4.6 and Fig. 4.7 shows these fade-out functions σ1, σ2, σ3 for half backlash gap

α = 0.5◦ and α = 1◦}, respectively.. The order of the fade-out functions σ2 and σ3 are

varied with k = {2, 4}.
It can be seen that the fade-out function σ2 shows the best results for both backlash

angles. The reason is that the torsion angle is normalized by the backlash gap and due
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∆ϕ[◦]
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Figure 4.6: Fade-out functions for gap

α = 0.5◦.
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Figure 4.7: Fade-out functions for gap

α = 1◦.

to the exponentiation of the normalized torsion angle, the values in the backlash gap

are penalized more and zero torque can be better realized using σ2. Therefore, fade-out

function σ2 is used in this work to approximate the dead-zone model.

Furthermore, the order of the fade-out function has an important influence on the fade-out

shape. The influence of the order on the fade-out function σ2 is shown in Fig. 4.8. The

higher the order of the hyperbolic tangent function is, the more accurate the fade-out

function is. However, the computational effort increases with higher order. For control

design based on model (4.9), the following fade-out function is chosen

σ(∆ϕ) = tanh

((
1

α
∆ϕ

)8
)
, with α > 0. (4.12)

−1 0 1
0

1

∆ϕ[◦]

σ

σ2, k=2
σ2, k=4
σ2, k=6
σ2, k=8

Figure 4.8: Fade-out functions σ2 with different orders.
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Besides, the fade-out function σ(∆ϕ), the right sign of the axis intercept ±cα of the drive

shaft torque, see Eq. (4.3), has to be ensured. Therefore, the hyperbolic tangent function

is again applied to calculate the sign of the axis intercept with tanh
(

1
α

∆ϕ
)
.

Overall, the smooth drive shaft torque using fade-out function σ and the hyperbolic tangent

function for sign definition is given as

Tds,smooth = σ(∆ϕ)

[
c

(
∆ϕ− α tanh

(
1

α
∆ϕ

))
+ d∆ω

]
, (4.13)

with torsion rotation angle ∆ϕ, torsion angular velocity ∆ω, stiffness c, damping d, and

half backlash gap α > 0.

The comparison of the drive shaft torque using the dead-zone model from Eq. (4.3) and

the smooth function Tds,smooth from Eq. (4.13) with Eq. (4.12) is shown in Fig. 4.9. The

simulation is with stiffness parameter c = 1.146e4 Nm
rad

, see Tab. 2.7, damping d = 0, and

half backlash gap α = 0.5◦. There is hardly any difference between these two models,

however the transition at ∆ϕ = ±0.5 is smooth, when using the hyperbolic tangent

function.

The smooth function from Eq. (4.13) with (4.12) is applied to the two-mass and three-mass

control model. In the detailed simulation model there are several backlashes, however

the control models represent only one backlash. Hence, the backlash gaps in the control

models have to be parameterized such that the effect of several backlashes in the detailed

simulation model is represented.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−300

−200

−100
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d
s
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Figure 4.9: Comparison drive shaft torque with dead-zone model vs. smooth function.

4.3.2 Differentially Flat Feedforward Control

First, flat outputs of the nonlinear two-mass and three-mass control model with smooth

backlash functions from Eq. (4.13) are given and the differential parameterization of
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the control models using the flat output and its derivatives are presented. Then, the

corresponding feedforward control law is derived and trajectory planning with nonlinear

steady-state calculation is discussed.

4.3.2.1 Flat Outputs and Feedforward Control Laws

In the following, flat output and feedforward control law are calculated in each case for

the nonlinear two-mass and three-mass backlash control model.

Two-Mass Backlash Model

The two-mass control model with smooth backlash function reads

ẋ1 = ∆ϕ̇ = ∆ω

ẋ2 = ∆ω̇ = −Θ tanh

((
1

α
∆ϕ

)8
)[

c

(
∆ϕ− α tanh

(
1

α
∆ϕ

))
+ d∆ω

]
︸ ︷︷ ︸

=Tds,smooth

+
1

J1R
u+

1

J2

δ

(4.14)

with state x = [∆ϕ,∆ω]T and half backlash gap α > 0. It is assumed that the disturbance

δ can be compensated by the disturbance rejection approach from Sec. 3.4.3 and is neglected

in the following. Hence, it can be shown that

z2 = x1 = ∆ϕ, (4.15)

is a flat output of the nonlinear system Eq. (4.14), as it is also in the linear case, see

Eq. (3.61). Then, the differential parameterization is given as

x∗2 =

[
z2

ż2

]
=

[
x1

x2

]
, (4.16)

with flatness coordinates x∗2. This transformation is also the inverse transformation from

flatness coordinates x∗2 to state vector x.

The input parameterization is given by the second derivative of the flat output and

therefore the feedforward control law reads

uFF,2,bklsh(t) = J1Rz̈2,des(t)

+ J1RΘ tanh

((
1

α
z2,des(t)

)8
)[

c

(
z2,des(t)− α tanh

(
1

α
z2,des(t)

))
+ dż2,des(t)

]
,

(4.17)

with desired trajectories z2,des(t), ż2,des(t), and z̈2,des(t).
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Three-Mass Backlash Model

The three-mass control model with smooth backlash function reads

∆ϕ̇1 = ∆ω1

∆ϕ̇2 = ∆ω2

∆ω̇1 = −Θ1c1∆ϕ1 −Θ1d1∆ω1

+
1

J2R
tanh

((
1

α
∆ϕ2

)8
)[

c2

(
∆ϕ2 − α tanh

(
1

α
∆ϕ2

))
+ d2∆ω2

]
︸ ︷︷ ︸

=Tds,smooth

+
1

J1

u1 −
1

J2

u2

∆ω̇2 =
1

J2R
c1∆ϕ1 +

1

J2R
d1∆ω1

−Θ2 tanh

((
1

α
∆ϕ2

)8
)[

c2

(
∆ϕ2 − α tanh

(
1

α
∆ϕ2

))
+ d2∆ω2

]
︸ ︷︷ ︸

=Tds,smooth

+
1

J2R
u2

(4.18)

with x = [∆ϕ1,∆ϕ2,∆ω1,∆ω2]T , first input u1, second input u2 and half backlash gap

α > 0. As in the case of the two-mass model, the disturbance δ is neglected.

Furthermore, damping is neglected in order to make it easier to find a flat output. This

procedure is discussed in the remark of Sec. 3.4.1.2. Then, the undamped model equations

read

∆ϕ̇1 = ∆ω1

∆ϕ̇2 = ∆ω2

∆ω̇1 = −Θ1c1∆ϕ1

+
1

J2R
tanh

((
1

α
∆ϕ2

)8
)[

c2

(
∆ϕ2 − α tanh

(
1

α
∆ϕ2

))]
︸ ︷︷ ︸

=Tds,smooth,red

+
1

J1

u1 −
1

J2

u2

∆ω̇2 =
1

J2R
c1∆ϕ1 −Θ2 tanh

((
1

α
∆ϕ2

)8
)[

c2

(
∆ϕ2 − α tanh

(
1

α
∆ϕ2

))]
︸ ︷︷ ︸

=Tds,smooth,red

+
1

J2R
u2

.

(4.19)

with state x = [∆ϕ1,∆ϕ2,∆ω1,∆ω2]T . It can be shown that

z3 = x2 = ∆ϕ2 (4.20)

is a flat output for the first input u1 of the simplified undamped nonlinear system (4.19),

as also discussed in the remark of Sec. 3.4.1.2 for the linear case.

The differential parameterization for the first input u1 and without considering second



4.3 Control Using a Smooth Backlash Model 83

input u2 is given as

x∗3 =


z3

ż3

z̈3
...
z 3

 =


x2

x4

1
J2R

c1x1 −Θ2Tds,smooth,red(x2)
1
J2R

c1x3 −Θ2
d
dt
Tds,smooth,red(x2)

 . (4.21)

Hereby, x∗3 are flat coordinates and the inverse transformation from flat coordinates x∗3 to

state vector x reads

x =


x1

x2

x3

x4

 =


J2R
c1

(z̈3 + Θ2Tds,smooth,red(z3))

z3

J2R
c1

(...
z 3 + Θ2

d
dt
Tds,smooth,red(z3)

)
ż3

 , (4.22)

with the smooth drive shaft torque given as

Tds,smooth,red(χ) = tanh

((
1

α
χ

)8
)

︸ ︷︷ ︸
=ν

c2χ− tanh

((
1

α
χ

)8
)

︸ ︷︷ ︸
=ν

c2α tanh

(
1

α
χ

)
. (4.23)

Thus, the abbreviations ν and χ are introduced as

ν = tanh

((
1

α
χ

)8
)
, (4.24)

and

χ = ∆ϕ2 = x2 = z3, and χ̇ = ∆ω2 = x4 = ż3. (4.25)

Then, the time derivative of the smooth drive shaft torque is

d

dt
Tds,smooth,red(χ, χ̇) = ν̇c2χ+ νc2χ̇− ν̇c2α tanh

(
1

α
χ

)
− νc2α

(
1− tanh2

(
1

α
χ

))
1

α
χ̇

(4.26)

with

ν̇ = −8

(
1

α
χ

)7
1

α
χ̇

(
tanh2

((
1

α
χ

)8
)
− 1

)
. (4.27)

The input parameterization and therefore the feedforward control law can be derived by

the fourth derivative of the flat output z3. It is valid

z
(4)
3 =

1

J2R
c1ẋ3 −Θ2

d2

dt
Tds,smooth,red(x2), (4.28)

whereby ẋ3 is a function of the first input. Hence, it is

z
(4)
3 =

1

J2R
c1

(
−Θ1c1x1 +

1

J2R
Tds,smooth,red(x2) +

1

J1

u1

)
−Θ2

d2

dt
Tds,smooth,red(x2)

= −Θ1c
2
1

J2R
x1 +

c1

J2
2R

2
Tds,smooth,red(x2) +

c1

J1J2R
u1 −Θ2

d2

dt
Tds,smooth,red(x2)

(4.29)
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Thus, the feedforward control law for the three-mass model using input u1 and considering

backlash reads

uFF,3,u1,bklsh(t) = u1 = J1
J2R

c1

(
z

(4)
3,u1,des(t) + Θ2

d2

dt
Tds,smooth,red(z3,u1,des(t))

)
+ J1J2Θ1R (z̈3,u1,des(t) + Θ2Tds,smooth,red (z3,u1,des (t)))

− J1

J2R
Tds,smooth,red (z3,u1,des (t)) ,

(4.30)

with the second derivative of the smooth drive shaft torque given as

d2

dt
Tds,smooth,red(χ, χ̇, χ̈) =

d2

dt
Tds,smooth,red(χ)ν̈c2χ+ 2ν̇c2χ̇+ νc2χ̈

− ν̈c2α tanh

(
1

α
χ

)
− ν̇c2α

(
1− tanh2

(
1

α
χ

))
1

α
χ̇

− (ν̇c2χ̇+ νc2χ̈)

(
1− tanh2

(
1

α
χ

))
− (νc2χ̇)

(
2 tanh

(
1

α
χ

))(
1− tanh2

(
1

α
χ

))
1

α
χ̇

(4.31)

and

ν̈ =

(
−56

(
1

α
χ

)6
2

α
χ̈− 8

(
1

α
χ

)7
1

α
χ̈

)(
tanh2

((
1

α
χ

)8
)
− 1

)

+

(
−8

(
1

α
χ

)7
1

α
χ̇

)(
2 tanh

((
1

α
χ

)8
)
ν̇

)
.

(4.32)

As it can be seen for the derivation of the first input uFF,3,u1,bklsh(t), the calculation of

the nonlinear feedforward control law is much more complex than in the linear case, see

(3.69). Furthermore, the derivation of a feedforward control law for the second input u2

is even more difficult in comparison to first input u1. The reason is that the flat output

of the second input has to be a function of the whole system state in order to enable a

relative degree of four and is not only a function of one system state as in the case of the

first input. Therefore, an analytical derivation of the flatness-based feedforward control

law of the second input u2 is not given here.

4.3.2.2 Trajectory Planning

The feedforward control laws (4.17) and (4.30) requires desired trajectories z2,des(t) and

z3,u1,des(t), as discussed in the linear case in Sec. 3.4.1.3. The same approach as described

in Sec. 3.4.1.3 and illustrated in Fig. 3.7 for the linear case, is applied here for the nonlinear

backlash systems with two main differences.

First, torque hold levels are introduced to the desired drive torque udes(t) to enable soft

backlash gap landings. After a zero-crossing of the desired drive torque udes(t), the desired
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drive torque is hold for a predefined small time interval at a small positive (negative)

torque value for a positive (negative) torque step. Then, a soft backlash gap landing is

enabled, since the torque is constant at the hold level and this leads to a steady-state with

a vanishing torsion angular velocity. Therefore, an undesired ”clonk” noise is prevented.

Figure 4.10 illustrates the modified desired drive torque udes(t) with torque hold level.

Second, the calculation of the steady-state of the flat output differs, since the calculation

depends on the system dynamics equations. In steady-state the derivatives of the flat output

are zero as described in Eq. (3.71). Using this information and the feedforward control

laws (4.17) and (4.30), respectively, the steady-states of the two-mass and three-mass

backlash models, respectively, are derived.

Two-Mass Backlash Model

In steady-state it is ż2 = z̈2 = 0 and the desired input udes is applied in (4.17). Hence, the

steady-state of the flat output z2,ss can be found by solving the nonlinear equation

udes = J1RΘ tanh

((
1

α
z2,ss

)8
)
c

(
z2,ss − α tanh

(
1

α
z2,ss

))
. (4.33)

Three-Mass Backlash Model

Furthermore, for the three-mass model it is ż3,u1 = z̈3 =
...
z 3,u1 = z

(4)
3,u1 = 0 and the desired

input udes is applied in (4.30). Hence, the steady-state of the flat output z3,u1,ss can be

found by solving the nonlinear equation

udes = J1J2Θ1Θ2RTds,smooth,red(z3,u1,ss)−
J1

J2R
Tds,smooth,red(z3,u1,ss). (4.34)

Remark

Solving the nonlinear equations (4.33) and (4.34) can be expensive in the control unit.

Therefore, it is beneficial to pre-calculate the equations for different drive torques udes and

u
d
r
iv
e
r

time

torque hold level

Figure 4.10: Desired drive torque with torque hold level.



86 Chapter 4: Powertrain Control with Backlash

save the results in a look-up table. Hence, during drive mode the necessary steady-states

are approximated.

4.3.3 Output Feedback Control

The overall control loop shown in Fig. 3.8 is applied to the backlash systems. However, no

linear state feedback controller is implemented, since pole placement cannot be designed for

the nonlinear backlash systems in comparison to the linear case in Sec. 3.4.2.1. Therefore,

output controllers using the desired trajectories of the flat outputs are derived. The

desired trajectories consider backlash as they are calculated using the nonlinear backlash

steady-state model.

The torsion angular velocities of the systems are controlled in order to affect the damping

behavior of the systems, as discussed in Sec. 3.4.2.2. Usefully, the flat outputs of the

two-mass and three-mass backlash control models are the torsion rotation angle. Hence,

the first derivative of the flat outputs ż are used for output control. The control law for a

proportional controller reads

uFB = −kp (ż − żdes) . (4.35)

For the two-mass backlash control model the feedback control law is given as

uFB,2,bklsh = −kp (∆ω −∆ωdes) , (4.36)

and for the three-mass backlash control model the feedback control law

uFB,3,bklsh = −kp (∆ω2 −∆ω2,des) (4.37)

can be applied using the first input u1 or second input u2. However, the second input u2 is

preferred as discussed in the linear case in Sec. 3.4.2.2. Furthermore, this aforementioned

section gives approximations for the proportional gain kp.

4.4 Simulation Applications

This section presents simulation results of the nonlinear control approach using a smooth

backlash model. For simulation the powertrain models of hybrid electric and battery

electric vehicles from Chapter 2 are used to validate and analyze the proposed method.

Goal of the simulation study is

• to show that the nonlinear control models with one backlash can represent the main

effects of detailed simulation models with several backlashes sufficiently,

• to validate the nonlinear flatness-based feedforward control approach with backlash

and to show the improvement compared to the linear approach without considering

backlash explicitly,
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• to analyze the desired trajectories, generated by the nonlinear flatness-based ap-

proach,

• to show the performance of the overall nonlinear control approach compared to the

linear approach.

Comparison of Detailed Simulation Model and Control Model

with Backlash

The detailed battery electric powertrain model, described in Sec. 2.4.1, is augmented by

backlash. Backlash is implemented at each spring/damping element with 2α = 1◦ =
2π
360

rad. Furthermore, the two-mass control model of the battery electric powertrain is also

augmented by one backlash. The parameters of the control model with smooth backlash

using Eq. (4.13) and Eq. (4.12) are summarized in Tab. 4.1. The stiffness parameter c

is reduced by 5% in comparison to Tab. 2.7 and damping is reduced to 10 Nms/rad to

better fit the detailed simulation model. The backlash gap is parameterized with 2α = 1.8◦.

The backlash gap of the control model is greater than the backlash gaps in the detailed

simulation model, since one backlash gap of the control model has to represent several

backlashes in the detailed simulation model.

Figure 4.11 shows a load change by the engine torque TEM with backlash traversing during

a tip-in and tip-out maneuver. The effects of backlash as schematically shown in Fig. 4.2,

namely, clonk, shunt, shuffle, and no transmission, can be represented in both models.

Moreover, the control model matches the detailed model very precisely.

J1 0.103 kgm2

J2 310.25 kgm2

c 1.089e4 Nm/rad

d 10 Nms/rad

R 8 1

2α 1.8 ◦

Table 4.1: Parameters of the control model of a battery electric powertrain with backlash.

Validation of Feedforward Controller

First, the nonlinear flatness-based feedforward controller, described in Eq. (4.30), is

validated by applying this controller to the nonlinear undamped three-mass backlash

control model (4.19), which is also used for control design. The first input of the model u1

is applied and the second input u2 is zero during the simulation. The parameters of the



88 Chapter 4: Powertrain Control with Backlash

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

0

50

100

T
E
M

[N
m

]

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

2 000
2 200
2 400
2 600

ω
[r

p
m

] ωEM
ω̄EM

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
240

260

280

300

ω
[r

p
m

] ωwheel
ω̄wheel

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
−0.5

0
0.5

1
1.5

time [s]

a
[m

/
s2

] aV EH
āV EH

Figure 4.11: Simulation of load changes with backlash traversing by detailed and control

battery electric models. States of the control model are marked with a bar.

nonlinear three-mass backlash control model are similar to Tab. 2.5, but the backlash gap

2α = 1.5◦ is added using the smooth drive shaft torque function.

The simulation results of Fig. 4.12 evidents that the nonlinear feedforward controller

enables a vibration-free set-point transition of the undamped control model even in the

presence of backlash, since no vibrations can be observed in the vehicle acceleration. On

the other hand, the uncontrolled method by a ramp shows vibrations with high amplitude.

Second, linear and nonlinear flatness-based feedforward controller uFF,3,u1 and uFF,3,u1,bklsh

are applied to the detailed hybrid electric powertrain model described in Sec. 2.3.1.

Backlashes are implemented at each spring/damping element of the detailed model with

backlash gap 2α = 1◦ = 2π
360

rad. Figure 4.13 shows the results. The nonlinear feedforward

controller uFF,3,u1,bklsh causes significantly less driveline oscillations compared to the linear

feedforward controller uFF,3,u1, which does not consider backlash. Especially the tip-in

maneuver is much more comfortable using the nonlinear control approach. However, there

are small remaining driveline oscillations for both methods due to unmodeled dynamics.
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Figure 4.12: Simulation of load changes with the undamped nonlinear three-mass backlash

control model using a ramp and the nonlinear flatness-based feedforward controller.
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Figure 4.13: Simulation of load changes with the detailed hybrid electric powertrain model

using the linear and the nonlinear feedforward controller.

Desired Trajectories

The desired trajectories of the linear and nonlinear flatness-based control approaches

differ, since the nonlinear approach introduces torque hold levels and the system dynamics

equations consider backlash explicitly. The advantages of the nonlinear approach are shown

in Fig. 4.14. The desired trajectories for the torsion rotation angle ∆ϕ2,des(t) and torsion

angular velocity ∆ω2,des(t) are depicted. Furthermore, start and end of the backlash gap

α = ±0.5◦ = ±0.9e− 2 rad are illustrated as dashed lines in the upper figure. When the

backlash gap is traversed, the desired trajectory ∆ϕ2,des introduces a hold level and hence,

the desired torsion angular velocity ∆ω2,des is zero at this point. Therefore, undesired
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noises can be prevented. These desired trajectories are used in feedback control design.
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Figure 4.14: Simulation of desired trajectories for torsion rotation angle ∆ϕ2,des(t) and

torsion angular velocity ∆ω2,des(t) using the nonlinear backlash control approach.

Comparison of Linear and Nonlinear Overall Control Approach

A feedforward controller cannot guarantee vibration free set-point transitions in real

systems, since disturbances and model uncertainties are always present. Hence, a feedback

controller is added, as discussed in the linear chapter in Sec. 3.4.2 or in the nonlinear

backlash chapter in Sec. 4.3.3. The overall approach, containing feedforward and feedback

controller, is applied to the detailed hybrid electric powertrain model and to the battery

electric powertrain model, both with backlash gaps.

The results of the linear and nonlinear control approaches using the detailed hybrid electric

powertrain model are presented in Fig. 4.15. The feedforward controller is applied to

the first input u1 and the feedback controller is applied to the second input u2. Both

strategies can enable vibration free set-point transitions using the detailed simulation

model. However, the nonlinear backlash control approach allows faster backlash traversing

compared to the linear approach during tip-out maneuver, which can be seen in the vehicle

acceleration aV EH between 2.1 s and 3.1 s.

Furthermore, the overall approaches are compared using the battery electric detailed pow-

ertrain model with backlash gaps. Figure 4.16 shows the results. The sum of feedforward

and feedback controller are applied to input u, which is supplied by the electric machine.

The nonlinear approach has much higher torque interventions, as the desired angular

velocity trajectories ∆ωdes has also much higher gradients. Both methods can control the

actual torsion angular velocity and moreover, the vehicle acceleration has no driveline
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Figure 4.15: Simulation of load changes with the detailed hybrid electric powertrain model

using the linear and nonlinear overall control approach.

oscillations. Similar to the simulation using the detailed hybrid electric powertrain model,

the nonlinear backlash control approach allows faster backlash traversing compared to the

linear approach, especially during tip-out maneuver, shown between 2.1 s to 2.4 s.

Overall, the simulations show that the nonlinear flatness-based feedforward controller with

backlash outperforms the linear feedforward controller. However, the linear and nonlinear

feedback controllers have an important influence to vibration reduction due to model

uncertainties caused by several backlashes and the not exactly known backlash gap size in

the detailed simulation model.
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Figure 4.16: Simulation of load changes with the detailed battery electric powertrain

model using the linear and nonlinear overall control approach.
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Chapter 5

Powertrain Control with Time Delay

Besides backlash, another dominant effect in powertrain systems is time delay. The effect

of time delay may not only degrade the tracking performance, as in the case of backlash,

but it can also destabilize the closed loop system. This chapter investigates the sources

of time delay in powertrain systems and analyzes the effect of time delay to the closed

loop stability. Then, different time delay compensation methods, namely Smith predictor,

observer based method, and state prediction are applied. Furthermore, a method to

visualize stability regions of systems with time delay is derived and is used to compare

the derived compensation methods. Simulation results demonstrate the stabilizing and

damping effect of the proposed methods.

5.1 Problem Setup

This section discusses the main reasons for time delay in powertrain systems, namely

physical delays due to actuator dynamics and electrical delays due to sampling rate or

communication between control units. Sampling rates of the control units are considered in

this chapter. This necessitates the introduction of digital control systems, since continuous

and discrete elements are part of the system.

5.1.1 Reasons for Time Delay in Powertrain Systems

Time delay may occur in the control system due to mechanical or electric reasons. For

instance the torque build-up dynamics of an actuator can imply delay, as discussed in

[VadamaluBeidl16], and [BaumannEtAl06]. In powertrain systems the dynamics of the

actuators, namely combustion engine, electric machine, and clutch, include time delay.

Figure 5.1 shows exemplary the torque build-up dynamics of an unit step. The actuator

dead time τact = tτ − t0 is part of the actuator dynamics.
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Figure 5.1: Physical delay of an actuator.

Furthermore, electric control units (ECU) are working with a sampling rate and com-

munication between control units or signal filtering contributes further time delays. It

follows that measurements can be delayed, if the control algorithm is not placed at the

same place as the sensor. The increasing number of electric control units in vehicles, see

[BayindirGözüküçükTeke11], amplifies this effect. Measurement and control input signals

are delayed as a consequence.

For instance hybrid electric vehicles have several electric control units due to two drive

units. The interplay between ICE, EM and driving dynamics control unit is illustrated in

Fig. 5.2. Time delays τ1, τ2, and τ3 exist between ICE, EM, and driving dynamics control

unit and have to be considered in control design. Overall, for further investigations an

actuator dead time τact and measurement dead time τms are considered in powertrain

control.
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Figure 5.2: ECUs in a rear driven hybrid electric vehicle with time delays τ1, τ2, and τ3

between the control units.



5.1 Problem Setup 95

5.1.2 Digital Control System

Control algorithms are implemented in control units. The sampling time of the control

unit is defined as T0. In order to investigate the interaction between the discrete controller

and a continuous powertrain system a digital control system is modeled.

Introductions to digital control systems are given for example in [FranklinPowellWorkman98],

and [Levine10]. The principal structure of a digital control system is shown in Fig. 5.3.

The continuous powertrain system is depicted as Gp(s) and the discrete controller is given

as Gc(z). Discrete signals depend on the sampling step k and continuous signals on time t.

The calculated control input uc(k) is a discrete signal based on a discrete reference r(k),

discrete measurement y(k) and therefore on a discrete control error e(k).

Additional systems are necessary to interconnect continuous and discrete systems. A zero

order hold system GZOH(s), denoted as D/A (digital to analog), and a sampler, denoted

as A/D (analog to digital), are required parts of the overall system.

Furthermore, the digital control structure can be rearranged to a control loop with

discretized plant Gp(z), as shown in Fig. 5.4, see [Levine10]. Thereby, the D/A and A/D

blocks are moved from control to plant. This rearranged control loop is easier to analyzed

and is used in the following. Transfer functions of the zero order hold system, sampler,

and the overall system are derived in the subsequent sections.

Gc(z)
r(k)

A/D

+ D/A Gp(s)
y(t)e(k) uc(k)

y(k)

uc(t)

digital controller

Figure 5.3: General digital control loop.

Gc(z)
r(k)

A/D+ D/A Gp(s)
y(t)e(k) uc(k) y(k)uc(t)

Gp(z)

Figure 5.4: Rearranged digital control loop with discretized plant Gp(z).

5.1.2.1 Zero Order Hold

The D/A converter zero order hold reconstructs a continuous signal from a sequence of

discrete signals. The incoming discrete signal is hold constant until the next sample is
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available. This is realized by the following transfer function in time domain

gZOH(t) = σ(t)− σ(t− T0), (5.1)

with Heaviside step function σ and sampling time T0.

Its Laplace transformation is given as

GZOH(s) =
1− e−sT0

s
, (5.2)

with s = jω.

In order to to show the time delay characteristic of GZOH(s), the transfer function is

reformulated to

GZOH(s) = e−jω
T0
2

(
ejω

T0
2 − e−jω T0

2

2j

)
2j

jω
= e−jω

T0
2 sin

(
ω
T0

2

)
2j

jω

= T0e
−jω T0

2
sin
(
ω T0

2

)
ω T0

2

= T0e
−jω T0

2 sinc

(
ω
T0

2

)
.

(5.3)

It can be seen that the zero-order hold transfer function introduces a phase shift of

arg (GZOH(s)) = −ωT0

2
, (5.4)

and a gain of

|GZOH(s)| = T0

∣∣∣∣sinc(ωT0

2

)∣∣∣∣ . (5.5)

5.1.2.2 Sampler

The A/D sampler transforms a continuous signal to a discretized signal. The continuous

signal y(t) can be represented as a string of impulses

y∗(t) =
∞∑

k=−∞

y(t)δ (t− kT0) , (5.6)

with Dirac delta function δ(t). The asterisk * denotes a sampled signal. Due to the

sampler, only the measurements at specific sampling instants are available for feedback

control. However, the measurements between sampling instants can be important for the

closed loop dynamics. For instance, the maximum overshoot may not occur at a sampling

point, but at some intermediate point. These responses between sampling points are called

as ”ripple”. The effect of ripple can be examined by simulation and the sampling time T0

has to be chosen small enough to keep the effect of ripple within limits.
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5.1.2.3 Block Diagram Analysis of the Digital Control Loop

The transfer function of the digital control loop with zero order hold and sampler is

formulated. Using the zero order hold transfer function GZOH(s), the discretized plant is

given as

Gp(z) = Z

1− e−sT0
s︸ ︷︷ ︸

GZOH(s)

Gp(s)

 , (5.7)

where Z denotes the z-transformation with A/D sampler. It can be rewritten to

Gp(z) =
(
1− z−1

)
Z

[
Gp(s)

s

]
. (5.8)

Then, the overall digital control loop with feedback controller Gc(z), as shown in Figure 5.4,

reads

y(k) =
Gp(z)Gc(z)

1 +Gp(z)Gc(z)
r(k). (5.9)

The zero order hold block introduces a delay of −ω T0
2

to the closed loop system, as shown

in Eq. (5.3).

5.1.2.4 Appropriate Choice of Sampling Time

An appropriate sampling time T0 for the control scheme, shown in Figure 5.4, have to be

chosen to avoid aliasing. The lower bound for the sampling rate f0 = 1
T0

is given by the

sampling theorem, as for instance discussed in [FranklinPowellEmami-Naeini15]. It is

f0 > 2fmax, (5.10)

where f0 is the sampling rate and fmax is the maximal frequency of the system. If a lower

sampling rate is chosen, the signals would be aliased and the system response could be

unstable.

The lower bound may be in practice too slow for an acceptable time response. Therefore,

for a reasonably smooth time response

10ωb < ω0 < 40ωb, (5.11)

with ω0 = 2πf0 and closed-loop bandwidth ωb is suggested in [Levine10]. The closed loop

bandwidth ωb describes the frequency at which the closed-loop magnitude drops 3 dB, see

for instance [Levine10].
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5.2 Powertrain System with Time Delay

The continuous two-mass model from Eq. (3.12) with matrices (3.44) and three-mass

model from Eq. (3.27) with matrices (3.48) and (3.49) are discretized such that the closed

loop dynamics of a digital control system can be analyzed. Subsequently, the discretized

systems are augmented by input and output dead times.

5.2.1 Discretized Control Models

The general transformation of continuous-time systems to discrete-time models, as for

instance given in [FranklinPowellWorkman98] or [Levine10], is derived. Consider an

nth-order discrete system described by the equations

xk+1 = Adxk +Bduk, yk = Cdxk +Dkuk, xk ∈ Rn, (5.12)

whereby, discrete matrices and states are denoted by the index d.

The discrete system matrix Ad can be calculated by

Ad = eAT0 , (5.13)

where A is the continuous system matrix and T0 the sampling time. Further, due to the

zero-order hold, it is assumed that the control input is piecewise constant over the sample

time. Furthermore, the discrete input matrix is given as

Bd =

∫ T0

0

eAqAdq = A−1 (Ad − I)B, (5.14)

for A nonsingular and with identity matrix I. Moreover, it is

Cd = C, Dd = D. (5.15)

Equations (5.13) and (5.14) are now applied to the two-mass system (3.12) and three-mass

control system (3.27).

5.2.1.1 Discrete Two-Mass Control Model

The discrete two-mass control model with discrete states xk = [∆ϕk,∆ωk]
T can be derived

analytically by applying Cayley–Hamilton theorem. The transition matrix can be rewritten

as a power series

eAT0 = µ0I + µ1A+ µ2A
2 + . . .+ µn−1A

n−1. (5.16)

The coefficients µ0, µ1, . . . , µn−1 can be calculated using the Cayley–Hamilton theorem.

The theorem stated that the following n equations

eλit = µ0 + µ1λi + µ2λ
2
i + . . .+ µn−1λ

n−1
i , (5.17)
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with λi as the eigenvalue of A for i = 1, 2 . . . , n are valid, see for instance [Unbehauen07].

For the two-mass system (3.12) we have a pair of complex conjugate eigenvalues

λ1 = −a0 + ω0i, λ2 = −a0 − ωoi. (5.18)

Thus, the following linear system of equations has to be solved[
1 λ1

1 λ2

][
µ0

µ1

]
=

[
eλ1T0

eλ2T0

]
. (5.19)

Then, it is

µ0 = eλ1T0 − λ1µ1, (5.20)

and

µ1 =
1

λ1 − λ2

(
eλ1T0 − eλ2T0

)
. (5.21)

The equations can be reformulated to

µ1 =
1

ω0

e−a0T0 sin(ω0T0), (5.22)

and

µ0 = e−a0T0
(

cos(ω0T0) + a0
sin(ω0T0)

ω0

)
. (5.23)

Using (5.16), then the discrete system matrix is analytically given as

A2,d = µ0I + µ1A2 =

[
µ0 µ1

−µ1Θc µ0 − µ1θd

]
, (5.24)

and the discrete input matrix reads

B2,d = A−1
2 (A2,d − I)B2 =

[
1
J1R

(
− µ0

Θc
+ 1

Θc

)
1

ΘR
µ1

]
. (5.25)

Once the discrete system is derived, the corresponding sampling times can be calculated

using Eq. (5.11) for the two-mass control models of conventional powertrain, and battery

electric powertrain, respectively. The closed-loop bandwidth ωb is calculated with output

controller from Eq. (3.83) and critical proportional gain from Eq. (3.90). The critical

gain kp is chosen in order to calculate the closed loop with the fastest system response.

Closed-loop bandwidth ωb of the system, appropriate sampling frequency ω0 = 10ωb and

appropriate sampling time T0 are summarized in Tab. 5.1. For further investigations the

sampling time T0 = 5 ms is chosen, which is appropriate for all three two-mass control

models.
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kp ωb ω0 T0

conv. powertrain closed clutch 296.4 39.6 rad/s 396 rad/s 15.9 ms

conv. powertrain open clutch 74.5 112 rad/s 1120 rad/s 5.6 ms

battery electric powertrain 65.6 91 rad/s 910 rad/s 6.9 ms

Table 5.1: Calculated parameters for two-mass models.

5.2.1.2 Discrete Three-Mass Control Model

The analytical derivation of the discrete three-mass control model with discrete states

xk = [∆ϕ1,k,∆ϕ2,k,∆ω1,k,∆ω2,k]
T is more difficult, since the system order is higher than

of the two-mass model. However, the discrete system matrix A3,d and input matrices

B3,u1,d,B3,u2,d can be calculated numerically using Eq. (5.13) and Eq. (5.14). Thereby,

the continuous matrices from Eq. (3.34), Eq. (3.48), and Eq. (3.49) are applied with

an appropriate sampling time T0. The appropriate sampling time for the three-mass

model is calculate analogous to the two-mass control models. For feedback control the

critical control gain kp = 260 is applied to the output feedback controller from Eq. (3.91)

using the second input u2. The bandwidth of this closed loop system is calculated and is

used to derive an appropriate sampling time. Table 5.2 shows the values with minimum

appropriate sampling time T0 = 13.1 ms. As in the case of the two-mass control models a

sampling time of T0 = 5 ms is chosen.

kp ωb ω0 T0

hybrid electric powertrain 260 48 rad/s 480 rad/s 13.1 ms

Table 5.2: Calculated parameters for the hybrid electric three-mass model.

5.2.2 Augmentation of Time Delay

Actuator dead time τact and measurement dead time τms are part of the control loop. In

the following, it is assumed that actuator dead time τact and measurement dead time τms
are a multiple of the sampling time T0. Then, it is valid

nact =
τact
T0

, nms =
τms
T0

, with nact, nms ∈ N, T0 6= 0 (5.26)

and the discrete signals are delayed by nact and nms steps, respectively. Figure 5.5 shows

the digital control loop with continuous and discrete delayed signals.

The discrete system plant from Eq. (5.12) has to be augmented by the delayed states in

order to analyze the closed loop stability and design compensation methods. The amount

of delayed steps ntotal depends on the total dead time. It is

ntotal = nact + nms. (5.27)



5.2 Powertrain System with Time Delay 101

Gc(z) A/D+ D/A Gp(s)
y(t)

y(k)

Gp,τact
(z)

τms

r(k − nms) e(k − nms)

y(k − nms)

uc(k − nms) uc(t− τms)
τact

uc(t− τms − τact)

Figure 5.5: Digital control loop with discretized plant Gp,τact(z), actuator dead time τact
and measurement dead time τms.

Then, the augmented system of the nth-order discrete system from Eq. (5.12) has

na = n+ next (5.28)

states with the number of extended states

next = n · ntotal. (5.29)

The augmented state vector reads

xa,k = [xk, xk−1, . . . , xk−ntotal
]T ∈ Rna , (5.30)

where xk−i denote delayed states at time step (k − i) with i = 1, 2, . . . ntotal.

The general augmented discrete system matrix is given as

Ad,a =

[
Ad 0n,next

Inext,next 0next,n

]
∈ Rna×na , (5.31)

where 0n,next denotes the n× next zero matrix and 0next,n denotes the next× n zero matrix,

respectively. Moreover, Inext,next denotes the next × next identity matrix.

The augmented discrete input matrix reads

Bd,a =

[
Bd

0next,1

]
∈ Rna×na . (5.32)

Two-Mass System

Applying the augmentation to the discrete two-mass control system, the augmented state

vector

x2,a,k = [∆ϕk,∆ωk,∆ϕk−1,∆ωk−1, . . . ,∆ϕk−ntotal
,∆ωk−ntotal

]T (5.33)

results.
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The augmented discrete system matrix is given as

A2,d,a =



A2,d(1, 1) A2,d(1, 2) 0 . . . 0 0 0

A2,d(2, 1) A2,d(2, 2) 0 . . . 0 0 0

1 0 . . .
...

0 1 . . .
...

0 0
. . .

...

0 0
. . . 1 0 0 0

0 0
. . . 0 1 0 0


∈ Rna×na , (5.34)

and the augmented discrete input matrix reads

B2,d,a =


B2,d(1)

B2,d(2)

0
...

0

 ∈ Rna . (5.35)

Three-Mass System

The discrete three-mass control system can also be augmented by delayed states and the

augmented state vector is given as

x3,a,k = [∆ϕ1,k,∆ϕ2,k,∆ω1,k,∆ω2,k,∆ϕ1,k−1, . . . ,∆ω2,k−ntotal
]T . (5.36)

The augmented discrete system matrix reads

A3,d,a =



A3,d 0 . . . . . . . . . . . . . . . . . . . . . 0

I 0 . . . . . . . . . . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . . . . . . . . . . 0
... 0 1 0 . . . . . . . . . . . . . . . 0
...

...
. . . . . . . . . . . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . . . . . . .

...

0 0 . . . . . . 0 1 0 0 0 0


∈ Rna×na , (5.37)

with 4× 4 identity matrix I and the augmented discrete input matrix is given as

B2,d,a =



B2,d(1)

B2,d(2)

B2,d(3)

B2,d(4)

0
...

0


∈ Rna . (5.38)
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5.3 Numerical Stability Analysis

An illustration of stability regions of control systems with dead times is presented in this

section. First, a numerical discrete method to construct stability diagrams is derived

for digital control systems. The derivation is shown using a mass-spring system as an

academic example. The numerical method has the advantage over an analytical approach

that the degree of stability and damping ratio of the system can be easily calculated

additionally. Therefore, the numerical method is extended to illustrate the degree of

stability by the maximum absolute eigenvalue and the damping ratio. Secondly, the

numerical method is applied to the discrete two-mass powertrain control system from

Eq. (2.29) with state-feedback and dead time. The stability diagrams are calculated for

varying control gain and varying dead time.

5.3.1 Numerical Calculation of Stability Diagrams

In [HajduInsperger16] stability diagrams are analytically constructed for continuous sys-

tems with delayed state feedback and dead time compensation using a Smith Predictor.

The analytical constructions are based on the D-subdivision method and Stepan’s formulas,

as presented in [Stépán89]. The D-subdivision method allows to calculate the stability

boundaries by separating real and imaginary part of the characteristic equation. Moreover,

Stepan’s formula determines the number of unstable characteristic exponents in each

domain of the stability chart, see [Stépán89].

In the following, this method of illustrating stability regions is transferred to the analysis

of digital control systems. Therefore, the analytical construction of the stability charts

are replaced by a numerically calculation of eigenvalues of the discrete system augmented

by delayed states as derived in Eq. (5.34) and Eq. (5.37). Similar numerical methods, as

semi-discretization, are presented in [InspergerStépán02] and [InspergerStépán11]. The

analytical and numerical stability charts are calculated and compared in the following for

a mass-spring system.

Example: Mass-Spring System With Delayed Feedback

The objective is to calculate numerically a stability chart as considered in

[HajduInsperger16], where the chart is derived analytically. The system matrix of

the mass-spring system is given as

A =

[
0 1

−a 0

]
, (5.39)
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with a = 0.5 and hence, the system matrix is stable. The input matrix is given as

B =

[
0

−1

]
. (5.40)

A state feedback is used and defined as

u = kTx (t− τ) , (5.41)

with delayed state x (t− τ), time delay τ and control gain k = [p, d]T ∈ R2. Hence, the

closed loop system dynamics reads

ẋ = Ax(t) +BkTx (t− τ) . (5.42)

The analytically calculated stability chart from [HajduInsperger16] for the continuous

system (5.42) is shown on the left in Fig. 5.6 for time delay τ = 1 and varying control

gain p ∈ [−1, 1] and d ∈ [−1, 2]. The stable regions are shaded in gray and the system is

only stable for proportional gain p ≥ −a. In the following, the steps for the numerical

calculation of the stability charts are given.

1. Discretization

The continuous system is discretized using Eq. (5.13) and Eq. (5.14). The sampling time

T0 = 0.05 s is chosen. Then, the discrete system matrix and input vector read

Ad =

[
0.99 0.05

−0.025 0.99

]
, Bd =

[
−0.001

−0.05

]
. (5.43)

-1 -a 0 1
-1

0

1

2

p

d

ω

ω = 0

-1 -a 0 1
−1

0

1

2

p

d

Figure 5.6: Comparison of analytical stability chart according to [HajduInsperger16] (left)

and numerically calculated chart (right).
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2. Augmentation Time Delay

The discrete system is augmented by delayed states. The number of delayed steps is

given as ntotal = τtotal
T0

= 20, see Eq. (5.26). Hence, the augmented system order yields

na = 2 + 2 · 20 = 42, as given in (5.28). The augmented state vector at time point k reads

xa,k = [x1,k, x2,k, x1,k−1, x2,k−1, . . . , x1,k−20, x2,k−20]T ∈ R42. (5.44)

The augmented discrete matrices are

Ad,a =

[
Ad 02,40

I40,40 040,2

]
, Bd,a =

[
Bd

040,1

]
, (5.45)

as derived in (5.31) and (5.32).

3. Delayed Augmented Feedback

The state feedback controller is stated with delayed discrete states. Using the augmented

delayed state, the delayed discrete state feedback controller reads

uk = kTxk−20. (5.46)

Then, the control gain vector kT is augmented to

kTa = [01,next , p, d] , (5.47)

with zero matrix 01,next and dimension 1× next. It follows that the augmented feedback

controller can be rewritten to a function of the augmented state vector from Eq. (5.44)

with

uk = kTaxa,k. (5.48)

Finally, the delayed discrete closed loop system reads

xa,k+1 = Ad,axa,k +Bd,ak
T
axa,k =

(
Ad,a +Bd,ak

T
a

)︸ ︷︷ ︸
=Ad,a,cl

xa,k, (5.49)

with discrete augmented closed loop system matrix Ad,a,cl.

4. Evaluation Eigenvalues

Now, the eigenvalues of the closed loop system matrix Ad,a,cl can be evaluated over a grid

of values of control gains p, d. The closed loop system is unstable, if there exists a discrete

eigenvalue zk,l of Ad,a,cl for a parameter constellation pk, dl, with

|zk,l| > 1. (5.50)
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Otherwise the closed loop system is stable and the point pk, dl is shaded grey in the

stability chart to mark a stable region.

The stability chart on the right in Fig. 5.6 shows the numerical evaluation over a grid of

pk ∈ [−1, 1] with step size 0.01 and dl ∈ [−1, 2] with step size 0.025. Hence, the discrete

augmented closed loop system matrix Ad,a,cl is evaluated 24321 times.

The figure demonstrates that analytical (left) and numerical (right) stability charts are

similar and therefore the numerical approach can generate stability diagrams with sufficient

accuracy. However, the numerical approach cannot provide exact D-curves, which represent

stability boundaries in the analytical chart. But on the other hand, the numerical method

has other advantages. The stability charts can be easy calculated using numerically

methods and further investigations on the eigenvalues are possible. In the following

investigations regarding the maximum magnitude and damping ratio, are derived.

The maximum magnitude |zmax| of the discrete eigenvalues zi with i ∈ {1, 2, . . . , na}
represents how far away the eigenvalues of the stable systems are from stability boundary.

It is calculated by

|zmax| = max{|z1|, |z2|, . . . , |zna|}. (5.51)

Furthermore, the dominant damping ratio ξdom of the most dominant eigenvalue of the

stable system is calculated, since it determines in large part the damping behavior. The

most dominant eigenvalue is given as the continuous eigenvalue with the greatest stable real

part. Therefore, the transformation from discrete to continuous eigenvalues is necessary.

The transformation is given as

λi =
ln(zi)

T0

, (5.52)

as for instance discussed in [Lunze16].

Then, the dominant damping ratio ξdom can be calculated using Eq. (3.38).

Figure 5.7 shows the stability charts of the closed loop delayed system with maximum

absolute eigenvalue on the left side and dominant damping ratio on the right side. The red

regions are favored since they mark low maximum magnitudes of the discrete eigenvalues

or high damping, respectively. Both favored properties can be considered separately. The

regions with the largest intersection between stability and damping is desired. For instance

a control gain with p = −0.25, d = 0.4 is a good choice for stability and damping.

Furthermore, time simulations using the continuous time system with delayed feedback

from Eq. (5.42) are performed with various control gains in order to verify the calculated

stability charts. The system is deflected by the initial condition x0 = [1, 0]T . Figure 5.8

illustrates time simulations with the following control gains, chosen from the stability

charts:
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Figure 5.7: Numerically calculated stability charts with color coded maximum absolute

eigenvalue of the discrete eigenvalues (left) and color coded damping ratio of the dominant

eigenvalue (right).

• a) p = −0.25, d = 0.4, small maximum magnitude and high damping

• b) p = −0.15, d = 0.4, small maximum magnitude, average damping

• c) p = 0.25, d = 0.4, maximum magnitude 1, no damping, marginally stable

As the stability charts show, the simulation with control gain a) has the best damping

behavior such that the steady-state x1,ss = 0 can be reached fast. The simulation using

control gain b) has average damping behavior and the simulation using gain c) has no

damping and the system is stable but not asymptotically stable, as calculated in the

stability chart.
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a) p=-0.25, d=0.4

b) p=-0.15, d=0.4

c) p=0.25, d=0.4

Figure 5.8: Time simulation of the first state x1 of the continuous delayed closed loop

mass-spring system with various control gains to check the stability charts.
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5.3.2 Stability Diagrams of Two-Mass Control Systems

In the following, the numerical approach of constructing stability charts, as described in

the previous Sec. 5.3.1, is applied to a powertrain control model. The stability charts are

calculated for the linear two-mass control system (3.12) of a battery-electric powertrain

with parameters from Tab. 2.7. A state feedback controller as described in Eq. (5.41)

is applied. The time delays τact and τms, as shown in Fig. 5.5, are summed up to one

total time delay τtotal = τact + τms. First, the stability charts with varied control gains

are calculated, as investigated in the previous section and in the examples presented

in [HajduInsperger16]. Furthermore, the numerical method also allows to vary other

parameters beside the control gain. In this work the influence of variation of the time

delay itself is calculated.

5.3.2.1 Varying Control Gain

The series of stability diagrams for the battery-electric two-mass control model with

color coded maximum absolute eigenvalue and damping ratio are shown in Fig. 5.9 and

Fig. 5.10. They are calculated following the steps 1-4 as described in the previous Sec. 5.3.1.

The two-mass control model (3.12) is discretized with an appropriate sampling time of

T0 = 5 ms, as derived in Tab. 5.1. The charts are calculated for various fixed dead times

τ1 = 0 ms, τ2 = 10 ms, τ3 = 20 ms, and τ4 = 30 ms, respectively.

For better assessing of the control parameters, the proportional gain k = [p, d]T is

reformulated to krpm = [prpm, drpm]T . It is common in automotive systems that angular

velocities are calculated in rpm instead of rad/s. Moreover divisions are often avoided

and therefore the total gear ratio R is not divided from the first mass of inertia ϕ1, ω1, but

multiplied to the second mass of inertia ϕ2, ω2. Hence, the new control gains prpm, drpm
are calculated as

prpm = p
π

30R
, drpm = d

π

30R
, (5.53)

since it is

u = − p π

30R︸ ︷︷ ︸
=prpm

(ϕ1 −Rϕ2)− d π

30R︸ ︷︷ ︸
=drpm

(ω1 −Rω2) , (5.54)

with ϕ1, ϕ2 in rounds and ω1, ω2 in rpm.

The nominal case, where no time delay is added, is illustrated on the far left of Fig. 5.9 and

Fig. 5.10. The stability charts confirm the analysis from Chapter 3 that the system is more

damped with higher proportional gain drpm applied to the torsion angular velocity ∆ω.

Though, proportional control gains drpm > 4.25 destabilize the system, since the system

plant is discretized with sampling time T0 = 5 ms and therefore, time delay T0
2

is introduced

inherently, see Eq. (5.4). The more time delay is added to the system, the smaller the stable

regions are. In particular the regions with high damping are becoming increasingly more
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compact, such that a pure controller on the angular velocity ∆ω, with prpm = 0, drpm 6= 0,

cannot enable a closed loop system with appropriate damping for time delay τ > 10 ms.

Hence, the state-feedback controller (5.41) reaches its limits, when larger time delays are

present. This shows that time delay compensation methods are necessary.
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Figure 5.9: Numerically calculated stability charts for the battery-electric powertrain

control model with color coded maximum absolute value for various time delay.
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Figure 5.10: Numerically calculated stability charts for the battery-electric powertrain

control model with color coded dominant damping ratio for various time delay.

5.3.2.2 Varying Time Delay

The magnitude of time delay has an important impact to the system stability. Therefore,

stability charts with varying time delay are investigated in the following. Besides the

control gain d, the time delay is varied on the y-axis. The output controller u = −d∆ω,

as described in Eq. (3.83), is applied to the two-mass control model from Eq. (2.29).

Figure 5.11 shows the stability regions with color coded maximum absolute eigenvalue

|zmax| and color coded dominant damping ratio ξdom. The stability charts illustrate the

delay margins of the closed loop system for fixed control gain prpm = 0 and various

control gains drpm. The boundary of the stability region in the stability chart is the delay

margin of a specific gain drpm. For instance a control gain of drpm = 2 has a delay margin

τmargin ≈ 8 ms.

The delay-margin is a significant size of time delayed systems and it is formally defined as
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Definition 4 ([Normey-Rico07]). The delay margin is characterized by the minimum time

delay τmargin > 0 such that the closed-loop system becomes unstable.

Additionally, it can be calculated by the phase margin φr and the crossover frequency ω0

of the open loop system with

τmargin =
φr
ω0

. (5.55)

However, the stability charts enable a good overview of delay margins for several control

gains drpm. Figure 5.11 shows that the larger the control gain drpm > 0 becomes, the

smaller the delay margin τmargin is. In addition, the delay margin decreases significantly for

control gains drpm > 0.5. These stability charts enable the important finding, that regions

with good stability and high damping behavior are only for control gains drpm ≈ 0.8 and

time delays up to 10 ms possible.

−1 0 1 2 3 4 5
0

10

20

30

40

50

drpm

τ
[m

s]

0.980

0.985

0.990

0.995

1.000

|zmax|

−1 0 1 2 3 4 5
0

10

20

30

40

50

drpm

τ
[m

s]

0

0.2

0.4

0.6

0.8

1

ξdom

Figure 5.11: Numerically calculated stability charts with color coded maximum absolute

value of the discrete eigenvalues (left) and color coded damping ratio of the dominant

eigenvalue (right) for various control gain drpm and time delay τ .

5.4 Compensation Methods

The stability diagrams, presented in the last section, indicate that time delay in a feedback

control system greatly restrict the stability and the damping behavior of the system. Hence,

time delay compensation methods are derived in this section to enable a well damped

stable system. In Fig. 5.12 a digital control loop with system Σ, time delays τact, τms,

feedforward and feedback controller uff , uFB and dead time compensation is shown. The

two-mass control system of the battery electric powertrain from Eq. (2.29) is considered

here as the system Σ, which was also considered in the previous Sec. 5.3.

The flatness-based approach, as shown in Fig. 3.6, planes desired trajectories xdes,k
depending on the driver’s request by the throttle pedal at discrete time step k and

calculates the feedforward controller uFF,k. A feedforward controller cannot destabilize a
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digital control loop system with dead times, since no delayed signals are used in a feedback

manner. However, the feedforward controller uFF (t) will be delayed by the actuator dead

time τact, see [Rudolph05]. This time shift cannot be prevented, since the trajectories

would have to be planned ahead for dead time compensation, before the driver changes the

pedal position. As the intention of the driver cannot always be predicted, a compensation

of this time shift is not possible. Thus, the feedforward control approach, as presented in

Chapter 3, with feedforward control law (3.63) is used for the time delayed system.

The second controller in the system is a state feedback controller, as presented in Sec. 3.4.2.

It is assumed that the undelayed state x̃k is available due to a dead time compensator.

The state feedback control law reads uFB = −kT (x̃k − xdes) with control gain kT , see

Eq. (3.79).

The focus of this section is to investigate different dead time compensation methods, namely

Smith predictor, observer based design, and state prediction, in order to compensate the

total dead time τtotal = τact + τms of the delayed state xk−nact−nms . The corresponding

stability charts of the compensation methods are calculated and used to compare the

methods. Furthermore, time simulations are analyzed.

Σ
utotal(t) x(t− τact)

xk−nact−nms
xk−nactdead time

compensation
A/D

utotal,k utotal(t− τact)

uFB,k

uFF,k

+

+-
xdes,k ek

flatness-based

x̃k

D/A τact

τms

kT

approach

Figure 5.12: Overall control loop with time delays and dead time compensation.

5.4.1 Smith Predictor

A well-known method to compensate dead time is the Smith predictor, see for instance

[Smith57], and [Levine10]. The Smith predictor uses an internal model Σ̃ to predict system

states to overcome dead time. If the internal model of the Smith predictor represents

exactly the real system and the dead time is known, then the dead time is compensated

completely. However, there are always model uncertainties and disturbances, therefore the

performance of the Smith predictor is restricted by its model accuracy.

The objective is to investigate the sensitivity of the Smith predictor to model uncertainties.

In [HajduInsperger16] the Smith predictor is investigated using analytically calculated

stability charts. In contrast, in this work the stability charts are calculated numerically and
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additionally with information of the maximum absolute discrete eigenvalue and dominant

damping ratio, as discussed in Sec. 5.3. In the following the closed loop equation of

the overall system with Smith predictor is derived. All states and parameters of the

compensation method are denoted with a tilde to distinguish them from states and

parameters of the real system Σ.

The total time delay τtotal and discrete delayed steps ntotal of the real system are given as

τtotal = τact + τms, ntotal =
τtotal
T0

, (5.56)

with sampling time T0, as shown in Eq. (5.26). The assumed time delay and delayed steps

of the compensation method are defined as

τ̃total = τ̃act + τ̃ms, ñtotal =
τ̃total
T0

. (5.57)

Figure 5.13 shows how the Smith predictor works. The calculated undelayed state x̃k is

predicted by the internal model of the Smith predictor Σ̃. The real system model is given

as

Σ : xk+1 = Adxk +Bdutotal,k. (5.58)

On the other hand the internal model of the Smith predictor reads

Σ̃ : x̃k+1 = Ãdx̃k + B̃dutotal,k. (5.59)

In order to consider time delay, real system and Smith predictor model are augmented by

delayed states as discussed in Sec. 5.2.2. Then, the augmented real system is defined as

xa,k+1 = Ad,axa,k +Bd,autotal,k, (5.60)

with augmented system matrix Ad,a calculated as given in Eq. (5.34), augmented state

xa,k, as given in Eq. (5.33), and augmented input matrix Bd,a as given in Eq. (5.35). The

xk−ntotal

utotal,k

x̃k

Σ̃

+

+

x̃k−ñtotal

x̃SP,k

e

τ̃total

Figure 5.13: Compensation method Smith predictor.
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real number of extended states reads

next = n · ntotal = 2ntotal, (5.61)

as defined in Eq. (5.29).

Furthermore, the augmented internal model of the Smith predictor is defined as

x̃a,k+1 = Ãd,ax̃a,k + B̃d,autotal,k (5.62)

with augmented matrices and states as in the case of the real augmented system (5.60).

The number of extended states of the prediction system is given as

ñext = 2ñtotal. (5.63)

However, the number of extended state ñext of the Smith predictor may differ from the

number of extended state next of the real system, in the case that the real time delay is

not known exactly.

The prediction x̃k from Eq. (5.59) is corrected by the error between predicted delayed

state x̃k−ñtotal
from (5.62) and real delayed state xk−ntotal

from (5.60). Then, the final

state prediction of the Smith predictor reads

x̃SP,k = x̃k + xk−ntotal
− x̃k−ñtotal

. (5.64)

The next step is important to consider the overall system dynamics of the real system and

the prediction system. The augmented state vector of the real system and the augmented

state vector of the prediction system are put together to an overall state vector in order to

calculate the overall closed loop system matrix. Thus, it yields

xall,k =
[
xTa,k, x̃

T
a,k

]T
= [∆ϕk,∆ωk, . . . ,∆ϕk−ntotal

,∆ωk−ntotal
,∆ϕ̃k∆ω̃k, . . . ,∆ϕ̃k−ñtotal

,∆ω̃k−ñtotal
]T .
(5.65)

Then, the overall system dynamics is given as

xall,k+1 =

[
Ad,a 0

0 Ãd,a

]
xall,k +

[
Bd,a

B̃d,a

]
utotal,k. (5.66)

For the sake of simplicity the reference xdes,k and the feedforward controller uFF,k is set to

zero for stability analysis. Using Eq. (5.64), the feedback controller reads

utotal,k = uFB,SP = −kT x̃SP,k = −kT (x̃k + xk−ntotal
− x̃k−ñtotal

) , (5.67)

with control gain k = [p, d]T , see Eq. (5.41).

The Smith predictor controller uFB,SP can be rewritten to

uFB,SP = −kTall,SPxall,k, (5.68)
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as a function of the overall state vector xall. Hence, the overall control gain vector reads

kall,SP =

0, 0, . . . , p, d︸︷︷︸
xk−ntotal

, p, d︸︷︷︸
x̃k

, 0, . . . , 0,−p,−d︸ ︷︷ ︸
x̃k−ñtotal


T

. (5.69)

Applying the controller uFB,SP from Eq. (5.68) to the augmented overall system (5.66)

yields

xall,k+1 =

([
Ad,a 0

0 Ãd,a

]
−
[
Bd,a

B̃d,a

]
kTall,SP

)
︸ ︷︷ ︸

Ãcl,SP

xall,k. (5.70)

Stability charts of the Smith predictor can be calculated now using closed loop system

matrix Ãcl,SP .

5.4.2 Observer Based Method

The design of an observer is presented to predict undelayed states of the two-mass control

system, described in (2.29). Similar to the Smith predictor, the observer compensation

method uses measured delayed states xk−ntotal
and the system input utotal,k to predict unde-

layed states x̃obsv,k. Figure 5.14 illustrates the prediction scheme. Several observer methods

can be applied for prediction. In this work a Luenberger observer, see [Luenberger64], is

chosen due to its simplicity.

In order to predict the undelayed state x̃obsv,k, the observer is designed based on an

augmented prediction system. The augmented prediction system from (5.62) is applied

with augmented observer state vector x̃obsv,a,k by ñtotal delayed steps, see Eq. (5.57).

Furthermore, the real system is also augmented by delayed steps, see Eq. (5.60) with

augmented real state vector xa,k.

Using the augmented matrices and states, the Luenberger observer reads

x̃obsv,a,k+1 = Ãd,ax̃obsv,a,k + B̃d,autotal,k +L (xk−ntotal
− x̃obsv,k−ñtotal

) , (5.71)

with observer gain L. The observer gain has the size (2 + 2ñtotal)× 2. The number of rows

is the system order of the augmented prediction system, see Eq. (5.28). Furthermore, the

xk−ntotal
utotal,k

Observer

x̃obsv,k

Figure 5.14: Observer to predict undelayed states.
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first part is a model based prediction and the last term is the correction of the error between

model based delayed prediction x̃obsv,k−ñtotal
and real delayed state xk−ntotal

weighted by

the observer gain L.

The observer from (5.71) can be rewritten to

x̃obsv,a,k+1 =
(
Ãd,a −LC̃d,a

)
︸ ︷︷ ︸

=Ãobsv,cl

x̃obsv,a,k + B̃d,autotal,k +LCd,axa,k, (5.72)

with output matrices

Cd,a =

[
0 0 . . . 0 1 0

0 0 . . . 0 0 1

]
∈ R2×(2+2ntotal) (5.73)

and

C̃d,a =

[
0 0 . . . 0 1 0

0 0 . . . 0 0 1

]
∈ R2×(2+2ñtotal). (5.74)

The number of columns of the output vectors are the system orders of the respective

augmented systems. The observer gain can be found for instance by pole placing of the

closed loop observer matrix Ãobsv,cl. For the investigated application here, the observer

poles λobsv,i are chosen approximately as a third of the discrete system poles λsys,i

λobsv,i ≈
1

3
λsys,i.

Thus, the state feedback controller using the undelayed predicted state reads

uFB,obsv = −kT x̃obsv,k, (5.75)

with control gain k = [p, d]T , see Eq. (5.41).

This feedback controller is rewritten in order to consider the whole system dynamics of

the real system and the observer prediction system. The overall state vector xall,k is the

same as the overall state vector of the Smith predictor in Eq. (5.65). Then, the observer

controller is rewritten to

uFB,obsv = −kTall,obsvxall,k, (5.76)

with overall control gain

kall,obsv =

0, 0, . . . , 0, 0︸︷︷︸
xk−ntotal

, p, d︸︷︷︸
x̃k

, 0, . . . , 0, 0, 0︸︷︷︸
x̃k−ñtotal


T

. (5.77)

Applying the feedback controller, the closed loop system yields

xall,k+1 =

([
Ad,a, 0

LCd,a, Ãd,a −LC̃d,a

]
−
[
Bd,a

B̃d,a

]
kTall,obsv

)
︸ ︷︷ ︸

Ãcl,obsv

xall,k. (5.78)

Stability charts of the closed loop system can be calculated using matrix Ãcl,obsv.
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5.4.3 State Prediction

The state predictor calculates ñtotal steps into the future in order to compensate the

assumed total dead time τ̃total, as for instance applied in [VadamaluBeidl16]. The approach

is recursive and model-based, however the actual delayed measurement xk−ntotal
is used as

initial condition in each prediction.

Using the prediction model Σ̃ from (5.59) the undelayed state can be calculated by the

recursive law

x̃pred,k = Ãñtotal
d xk−ntotal

+

ñtotal−1∑
i=0

Ãi
dB̃dutotal,k−1−i. (5.79)

For instance to compensate the assumed dead time τ̃total = 20 ms with sampling time

T0 = 5 ms, the prediction law reads

x̃pred,k = Ã4
dxk−4 +Ã3

dB̃dutotal,k−4 +Ã2
dB̃dutotal,k−3 +ÃdB̃dutotal,k−2 +B̃dutotal,k−1. (5.80)

Figure 5.15 illustrates inputs and output of the recursive state prediction. The input

utotal,k is delayed by one, two, . . . , ñtotal time steps illustrated by z−1, z−2, . . . , z−ñtotal .

The delayed inputs utotal,k−1, utotal,k−2, . . . , utotal,k−ñtotal
are necessary for prediction. Its

dynamics can be described as a chain of integrator and read

x̃u,k+1 =


0 0 . . . 0 0

1 0 . . . 0 0
...

. . .
...

0 0 . . . 1 0


︸ ︷︷ ︸

Ãu

x̃u,k +


1

0
...

0


︸︷︷︸
B̃u

utotal,k. (5.81)

with input state x̃u,k = [utotal,k−1, utotal,k−2, . . . , utotal,k−ñtotal
]T .

A state feedback controller uses the undelayed predicted state from Eq. (5.79) and is given

as

uFB,pred = −kT x̃pred,k, (5.82)

xk−ntotal

utotal,k

state
prediction

x̃pred,k

utotal,k−1

utotal,k−2

utotal,k−ñtotal

z−1

z−2

z−ñtotal

Figure 5.15: Compensation using a recursive state prediction method.
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with control gain

k = [p, d]T ∈ R2. (5.83)

In order to calculate the closed loop stability, an overall state vector is constructed with

real system states and input states. It is

xall,u,k =
[
xTa,k, x̃

T
u,k

]T
=
[
xTk ,x

T
k−1, . . . ,x

T
k−ntotal

, utotal,k−1, utotal,k−2, . . . , utotal,k−ñtotal

]T
.

(5.84)

Using the overall state vector and the prediction law (5.79), the prediction controller from

Eq. (5.82) can be rewritten to

uFB,pred =− kT Ãñtotal
d xk−ntotal

− kT B̃dutotal,k−1 − kT ÃdB̃dutotal,k−2−
. . .− kT Ãñtotal−1

d B̃dutotal,k−ñtotal
.

(5.85)

The equation can be further reformulated to

uFB,pred = −kTall,predxall,u,k, (5.86)

with

kall,pred =
([

0, 0, . . . , 0,kT Ãñtotal
d ,kT B̃d,k

T ÃdB̃d, . . . ,k
T Ãñtotal−1

d B̃d

])T
(5.87)

and control gain kT from (5.83).

Hence, the closed loop system is given as

xall,u,k+1 =

([
Ad,a 0

0 Ãu

]
−
[
Bd,a

B̃u

]
kTall,pred

)
︸ ︷︷ ︸

Ãcl,pred

xall,u,k. (5.88)

Stability properties can be analyzed using overall closed loop prediction matrix Ãcl,pred.

5.5 Simulation Applications - Comparison of the

Compensation Methods

Following from the stability charts from Fig. 5.9 and Fig. 5.10 dead time compensation

methods are necessary to enable effective powertrain control in the presence of time delay.

Therefore, in the previous section compensation methods were presented and the respective

closed loop system matrices were derived. In this section, these compensation methods are

compared using the derived closed loop system matrices by constructing stability charts.

The assumed stiffness parameter and dead time of the prediction models are varied in order

to evaluate robustness to model uncertainty. Furthermore, the compensation methods

are compared in time simulation, using the detailed battery electric powertrain model,

described in Sec. 2.4.1.
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5.5.1 Stability Diagrams

In the ideal case, the prediction model Ãd, B̃d corresponds to the real system Ad,Bd and

the assumed total dead time τ̃total is equal to the real dead time τtotal. Hence, all three

compensation methods Smith predictor, observer based method, and state prediction can

fully compensate the dead time and the closed loop system behaves like there is no dead

time. Consequently, the stability diagrams of the compensation methods for various time

delay are equal to the diagrams on the left in Fig. 5.9 and Fig. 5.10 for τ = 0 ms.

However, the ideal case is not a realistic scenario, therefore it is necessary to investigate

robustness of the compensation methods to model uncertainties. Exemplary, the total

time delay of τtotal = 20 ms is chosen. Stiffness c̃ and dead time τ̃ of the prediction system

are varied separately. The stiffness of the prediction system is varied by ±20% and the

assumed dead time is set to τ̃ = 15 ms and to τ̃ = 25 ms in each case.

5.5.1.1 Variation of Stiffness

A variation of the stiffness parameter has a major influence on the frequency of the system.

For instance a variation of c̃ = γc with γ ∈ R affects the natural frequency of the system

by the factor
√
γ, as given in Eq. (3.29). Thus, a reduction of 20% of the system stiffness

results in a reduction of 11% of the assumed natural frequency. On the other hand, an

increase of 20% of the system stiffness results in an increase of 9.5% of the assumed natural

frequency.

Figure 5.16 and Fig. 5.17 shows the stability plots using the compensation methods Smith

predictor, observer based method, and state prediction with underestimated stiffness

parameter. The stability regions are comparably large to the real system without dead

time. The stability regions of the observer based method and state prediction are even

larger than of the Smith Predictor and very similar to each other. By contrast the damping

behavior of the underestimated Smith predictor is low.

The stability charts of overestimated stiffness parameter can be seen in Fig. 5.18 and

Fig. 5.19. The stability regions are significantly smaller than in the underestimation

case. Especially, the stability region of the Smith predictor is strongly reduced. The

stability charts of the observer based method and state prediction are again very similar.

Hence, the destabilizing effect of parameter mismatch can be clearly seen for stiffness

overestimation. Furthermore, an overestimation of the stiffness parameter is much worse

than an underestimation, since overestimation deteriorates the stability much more.
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Figure 5.16: Numerically calculated stability charts with color coded maximum absolute

value and underestimated stiffness c̃ = 0.8c for various compensation methods.
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Figure 5.17: Numerically calculated stability charts with color coded damping ratio and

underestimated stiffness c̃ = 0.8c for various compensation methods.
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Figure 5.18: Numerically calculated stability charts with color coded maximum absolute

value and overestimated stiffness c̃ = 1.2c for various compensation methods.
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Figure 5.19: Numerically calculated stability charts with color coded damping ratio and

overestimated stiffness c̃ = 1.2c for various compensation methods.
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5.5.1.2 Variation of Dead Time

A variation of the prediction dead time τ̃total changes the amount of delayed steps ñtotal,

see Eq. (5.57) and therefore, the system order of the augmented prediction system and

the amount of prediction steps change, respectively. Stability charts are calculated for

τ̃total = 15 ms and τ̃total = 25 ms, but the real dead time is defined as τtotal = 20 ms.

Figure 5.20 and Fig. 5.21 shows the stability plots using the compensation methods with

underestimated dead time. The underestimation reduces the stability regions. The stability

region of the Smith predictor is reduced most. Compensation using the observer based

method have the largest stability region.

The stability charts of overestimated dead time are illustrated in Fig. 5.22 and Fig. 5.23.

The size of the stability regions are comparable the case of underestimated dead time.

The stability region of the observer based method is again the largest and the region of

the Smith predictor is very small. In contrast to the variation of the stiffness parameter,

the underestimation or overestimation of the dead time leads to similar reduction of the

stability region. However, an overestimation is preferred due to the slightly greater stability

regions.
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Figure 5.20: Numerically calculated stability charts with color coded maximum absolute

value and underestimated dead time τ̃ = 15 ms for various compensation methods.
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Figure 5.21: Numerically calculated stability charts with color coded damping ratio and

underestimated dead time τ̃ = 15 ms for various compensation methods.
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Figure 5.22: Numerically calculated stability charts with color coded maximum absolute

value and overestimated dead time τ̃ = 25 ms for various compensation methods.
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Figure 5.23: Numerically calculated stability charts with color coded damping ratio and

overestimated dead time τ̃ = 25 ms for various compensation methods.

5.5.2 Time Simulation

All three compensation methods Smith predictor, observer based method, and state

prediction method are used in simulation of the detailed battery electric powertrain model,

described in Sec. 2.4.1. An overall dead time τ = 20 ms is implemented in the simulation

model. Moreover, a state feedback controller with control gains prpm = 0 and drpm = 1 is

chosen.

Time simulation shows that the powertrain system becomes unstable in the presence

of time delay τ , when no compensation methods are applied. On the other hand, as

shown in the previous section the control system is stable using one of the presented

compensation methods even for varied stiffness and dead time parameters. Evidence for

this applied to the detailed model is depicted in Fig. 5.24. The vehicle acceleration aV EH
is stable for various compensation methods. As indicated by the stability plots, shown in

the previous section, the observer based method and state prediction method have the

best damping behavior. Furthermore, the Smith predictor with overestimated stiffness

parameter c̃ = 1.2 c tends to be unstable. However, the steady-state behavior of the

observer and state prediction method implies an offset error due to model uncertainties

originating from the detailed model.

The steady-state error can be corrected by introducing the error integral yint =∫
(x1,des − x1) dt as a new state. The new state is added to the control loop and is

controlled to zero. Figure 5.25 shows the simulation results with error integral. The
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steady-state error is eliminated, however an strong overshoot is still present for c̃ = 1.2c

and ˜τ = 25 ms.
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Figure 5.24: Simulation of load changes with dead time in the system and using different

compensation methods. The stiffness and dead time parameter of the compensation

methods are varied to investigate robustness.

5.5.3 Summary

All dead time compensation methods can control the system in the presence of dead time

τ = 20 ms. Investigations of robustness to model uncertainties show that if the stiffness

parameter is not known exactly, it should be underestimated rather than overestimated.

Furthermore, the sensitivity to dead time is not as critical as to the stiffness. However,

an overestimation of the dead time lead to slightly greater stability regions than for

underestimation, as shown in Fig.5.20, Fig. 5.21, Fig. 5.22, and Fig. 5.23. The Smith

predictor is most sensitive to model uncertainties and the observer based method and state

prediction method show the best robustness in the stability charts. However, observer

based method and state prediction method lead to a steady-state error due to model

uncertainties, as visible in time simulation. When the error integral is introduced as a

new state and is controlled to zero, the error can be eliminated. The evaluation of the

methods are summarized in Tab. 5.3.
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Figure 5.25: Simulation of load changes with dead time in the system and using different

compensation methods with additional error integrator.

Smith predictor observer based method state prediction

c̃ underestimation ++ ++ ++

c̃ overestimation − − + +

τ̃ underestimation - + +

τ̃ overestimation - ++ ++

Table 5.3: Evaluation of compensation methods.
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Chapter 6

An Ad Hoc Control Approach for

Powertrains with Backlash and Time

Delay

The previous two chapters investigated independently in detail backlash and time delay in

powertrain control. Suitable control methods were developed for each. Now, this chapter

presents first results of an ad hoc approach, which connects both methods. The previously

derived control concepts are combined by a switching controller to enable smooth backlash

control with dead time compensation. Even if the subsystems are all asymptotically

stable, switching between these systems can enable instability, see [LiberzonMorse99] or

[Liberzon03]. Therefore, the system dynamics of the switched systems is investigated in

simulation. Here, the battery electric powertrain is considered as application. The switched

system is designed based on the corresponding two-mass control model from Eq. (2.29)

and simulations are based on the detailed simulation model from Sec. 2.4. Backlash and

time delay are considered as discussed in Sec. 4.4 and Sec. 5.5, respectively.

6.1 Smoothed Backlash Control with Dead Time

Compensation

Backlash is traversed during load changes from pull to thrust condition and vice versa.

The hard nonlinearity of backlash dynamics leads to enhanced powertrain oscillations of

the uncontrolled system. Therefore, a control method using a smooth backlash model was

derived in Chapter 4. The control method includes a nonlinear flatness-based feedforward

controller and an output feedback controller using smooth desired trajectories. However,

this method can lead to an unstable control loop, when time delay is present. The

destabilizing effect of time delay in general was analyzed in Chapter 5. Compensation
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Figure 6.1: Overall control loop with backlash and dead time control.

methods were presented, but for linear systems. Hence, an adaption of the backlash

method as well as of the dead time compensation method is necessary.

The adapted overall control loop structure for control of backlash and time delay is

shown in Fig. 6.1. Following Sec. 4.3, the flatness-based feedforward controller uFF,bklsh(t)

using a smooth backlash model is applied as derived in Eq. (4.17) for a two-mass control

model. The desired trajectory ydes(t) is the first derivative of the desired flat output zdes(t)

as discussed in Sec. 4.3.3. Both, feedforward controller and the corresponding desired

trajectory have to be discretized in the digital control loop.

Furthermore, the backlash output feedback controller with control gain kp is complemented

by a time delay compensation method using a backlash model. For dead time compensation,

the state prediction method from Sec. 5.4.3 is chosen, since the previous chapter shows

that this method is robust to uncertainties and a simple recursive law, see Eq. (5.79), is

applied. In contrast to the observer based method, no Riccati equation has to be solved in

advance using this approach. In the following, the state predictor using a linear piece-wise

defined backlash model is derived.

Switching Feedback Control

The recursive prediction law, Eq. (5.79), applies the discrete prediction system matrix Ãd

and prediction input matrix B̃d. These matrices have to represent the backlash dynamics.

A well suited backlash model for state prediction is the dead zone model, as presented in

Sec. 4.2, since it is piece-wise linear and the matrices can be constructed.

The dead-zone model is formulated with three separate linear functions and therefore

a switching system is given. The condition for switching depends on the state torsion

rotation angle ∆ϕ. Figure 6.2 illustrates the state machine of this switched system.



6.1 Smoothed Backlash Control with Dead Time Compensation 127

system 2
∆ϕ ≤ |α|

system 3
∆ϕ ≥ α

system 1
∆ϕ ≤ −α

init ∆ϕ0

∆ϕ > α

∆ϕ < α

elseelse

∆ϕ < −α

∆ϕ > −α

else

Figure 6.2: State machine for choosing the prediction system.

For initial state ∆ϕ0 = 0 the system starts at system 2, which is the backlash gap mode.

When the torsion rotation angles becomes greater than half backlash gap α, then right

system 3 is active, which is the positive contact mode. On the other hand, when the

torsion rotation angle ∆ϕ becomes smaller than half negative backlash gap −α, then left

system 1 is active, which is the negative contact mode.

The two-mass control model with dead-zone for backlash gap 2α is rewritten as a switching

system. An additional constant state Λ is introduced for the backlash gap offset. The

constant reads

Λ = Λ0 = Θcα, (6.1)

with summarized moments of inertia Θ, spring stiffness c, and half backlash gap α.

Bringing the two-mass control model from Eq. (3.12) together with dead-zone model from

Eq. (4.3), yields the following three systems:

System 1 negative contact mode:

∆ϕ̇ = ∆ω,

∆ω̇ = −Θc∆ϕ−Θd∆ω − Λ +
1

J1R
u,

Λ̇ = 0.

(6.2)

System 2 backlash gap mode:
∆ϕ̇ = ∆ω,

∆ω̇ =
1

J1R
u,

Λ̇ = 0.

(6.3)

System 3 positive contact mode:

∆ϕ̇ = ∆ω,

∆ω̇ = −Θc∆ϕ+ δ −Θd∆ω + Λ +
1

J1R
u,

Λ̇ = 0.

(6.4)

The initial conditions of all three systems are given as

∆ϕ(0) = ∆ϕ0, ∆ω(0) = ∆ω0, δ(0) = Θcα. (6.5)
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The only difference between system 1 and system 3 is the sign of the constant Λ. The three

systems are discretized in each case for state prediction. The resulting discrete system

matrices are Ãd,1, Ãd,2, Ãd,3 and the input matrices read B̃d,1, B̃d,2, B̃d,3. The appropriate

system and input matrices are then chosen depending on the actual torsion rotation angle

∆ϕ and are then applied to the state prediction law from Eq. (5.79). Hence, dead time

compensation using a backlash powertrain control model is realized.

6.2 Application

The overall control strategy of smoothed backlash control with dead time compensation is

validated by simulation. The simulation model is the detailed battery electric vehicle and

includes several backlashes as described in Sec. 4.4. Furthermore, the model is transformed

to a digital control systems with control sampling time T0 = 5 ms and the total dead time

τtotal = 20 ms is added to the system. Figure 6.3 shows the simulation results including

electric machine torque u and vehicle acceleration aV EH .

The backlash control strategy from Chapter 4 with no compensation method is compared

to the overall control strategy with compensation method from this chapter. The con-

trolled system without dead time compensation becomes unstable. However, the system

with smoothed backlash control and dead time compensation realizes stable, fast, and

comfortable backlash traversing.

This example illustrates the potential of the method. The investigations in this chapter

are however only a first outlook. Further studies are necessary with regard to stability

and sensitivity to model uncertainties.
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Figure 6.3: Simulation of load changes with the detailed battery electric powertrain model

using the backlash control approach with and without dead time compensation.
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Chapter 7

Conclusions

In this dissertation the problem of reducing driveline oscillations by using control methods

was studied. Contributions to modeling and control of conventional, hybrid electric,

and battery electric powertrains were given. The derived methods in this thesis provide

improved control performance to the still very challenging problem of powertrain control

with backlash and time delay. In the following, key contributions are summarized and

discussed. An outlook concludes the dissertation.

7.1 Summary and Discussion

The ongoing in-depth changes in automotive development require to use all available

leverage to increase performance, comfort, and component protection. Besides mechanical

solutions, electronic control functions make a significant contribution to fulfill the mentioned

requirements. Much research in recent years has focused on the design of control functions.

Thereby, driveline oscillations play an important role, since the negative impact of these

vibrations are in particular loss of drive performance, reduced comfort and high component

load. Driveline oscillations can be induced to the powertrain by changes of the steady-

state or by disturbances. Especially, low frequencies are dominant during launching or

load changes and are very uncomfortable, since the oscillation frequency coincide with

the eigenfrequency of the human stomach. There exists several studies on control to

reduce driveline oscillations. However, few studies have investigated the dynamics and

control design of conventional, hybrid electric, and battery electric powertrains at once.

Furthermore, there is a lack of research on feedforward control design for powertrains

and there remains a need for more investigations on control design of powertrains with

dominant effects of backlash and time delay. These effects of backlash and time delay

are still challenging and often lead to unsatisfactory control performance, as for example

deteriorated tracking performance or even destabilized closed loop system.
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Chapter 2: Driveline Oscillation Dynamics

In Chapter 2 this thesis contributes detailed multibody simulation models and reduced

control models for conventional, hybrid electric, and battery electric powertrains. It is

shown that the deflection shapes of all three powertrain types are similar for the lowest

dominant frequency, see Fig. 2.27, and could be represented by two-mass control models.

For conventional and battery electric powertrains, two-mass control models are applied.

However, for hybrid electric powertrains an additional mass is necessary due to the two

drive units, combustion engine and electric machine. Hence, a three-mass control model

is derived for hybrid electric powertrains. Simulation results show oscillations with high

amplitudes and slow decay for load changes and launching using the detailed powertrain

models. The dominant frequencies are between 2 to 8 Hz. Load changes by electric

machines cause particularly bad vibration behavior due to the high agility of the actuator.

Furthermore, simulations show that the control models can represent the investigated

undesired driveline oscillations and sufficiently correspondent with the detailed simulation

models. The control models are the basis for the subsequent control designs and the

detailed models are applied for simulative evaluation of the control functions besides test

drives.

Chapter 3: Linear Powertrain Control

In Chapter 3 the findings from the analysis of the driveline oscillation dynamics are used

for the design of linear powertrain control. First, the two-mass and three-mass control

models are reformulated to separate the rigid body mode from the investigated oscillation

mode. Then, the uncontrolled damping behavior is analyzed using the control models. On

that basis, the desired dynamical behavior is defined, including critically damped step

response, independent transition time, and controlled transient behavior. The demand

of freely selectable transition time in this work, provide more agile driving and therefore,

requires more advanced control methods than for instance torque built-up by ramps with

predefined transition time.

One of the main contributions in this work is the presented model-based linear transient

control approach in Sec. 3.4. The linear control approach enables to fulfill the stated desired

dynamical behavior. At the beginning, the pedal position of the driver is interpreted,

afterwards desired trajectories are planned, then feedforward-, feedback controller are

calculated and finally, the total desired torque at the actuators of the powertrain is given,

see Fig. 3.6. There exists several methods to design a feedforward controller. Flatness-

based feedforward control is chosen in this thesis due to several aspects. First, differentially

flatness theory provides exact system inversion for arbitrary transition time and no delay

is added. Second, desired trajectories of the system states are generated in this approach,

which are necessary for feedback control of transient dynamics. And finally, the method
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can be used in particular for nonlinear system. This is advantageous, since the linear

powertrain is later extended by dynamics from backlash and time delay. The benefits

of this method become apparent if it is compared to input shaping, which is an another

comment feedforward control method. Input shaping introduces delay, does not provide

desired trajectories of the system states and cannot be applied to nonlinear systems.

The flatness-based feedforward control approach is derived for two-mass and three-mass

control model, since these two models cover the three powertrain types. Then, pole-

placement and proportional output are discussed for feedback control with the aim to

provide critical damping behavior.

Then, based on the derived linear control models, a flatness-based feedforward controller is

designed with freely chosen transition time to prevent driveline oscillations. Furthermore,

the flatness-based approach generates desired trajectories for feedback control. These

trajectories are used by a feedback controller to ensure well-damped oscillation behavior,

even in the transient section of load changes. Additionally to feedback control, an approach

for disturbance rejection is given, since the previous derived feedforward and feedback

methods assumed that the disturbance is zero or compensated to zero.

The derived linear powertrain control approach is validated in simulation studies and

experimentally with test vehicles. Both, simulation and experimental results, are encour-

aging and show the high potential of the presented method, since the desired specifications

critically damped, independent transition time, and controlled transient behavior are

reached.

Chapter 4: Powertrain Control with Backlash

The linear controller from Chapter 3 does not consider the dynamics of backlash. During

load changes from pull to thrust condition and vice versa, backlash gap is traversed. The

dynamics of backlash is highly nonlinear, since no torque is transmitted in the backlash

phase, but when the first contact is achieved, torque is abruptly introduced. Therefore,

Chapter 4 investigates the effects of backlash on the system dynamics and backlash models

are presented. A dead-zone model, which represents the dynamics of backlash sufficiently

accurate, are used for simulation. For control, a smooth backlash model is derived, since

this model is integrated into the flatness-based control approach from Chapter 3 and

differentiable functions are required for the approach. The main contributions in Chapter 4

are the derivation of a smooth model for backlash and the design of nonlinear differentially

flat feedforward controllers for two-mass and three-mass control models. The feedforward

controllers are based on the derived smooth backlash models and enables load changes

from pull to thrust condition and vice versa with reduced driveline oscillations. An output

feedback controller is added to better follow the desired trajectories, generated by the

flatness-based approach. Simulation studies show the successful validation of the backlash
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models and nonlinear feedforward control laws. Furthermore, simulation of the detailed

hybrid electric powertrain with backlash presents improved oscillation damping using

the nonlinear feedforward control approach compared to the linear approach. Finally,

the overall nonlinear approach with feedforward and feedback controller is compared in

simulations with the linear overall approach from Chapter 3. Both approaches provide

vibration free backlash traversing. However, the nonlinear approach enables additionally

much faster traversing. More detailed analysis show that the feedback controller of the

nonlinear approach has high torque interventions. This indicates that the feedforward

controller alone cannot enable vibration free and fast backlash traversing, due to model

uncertainties, and an additional feedback controller is necessary.

Chapter 5: Powertrain Control with Time Delay

This chapter contributes analysis and control design of powertrains with time delay.

Investigations on time delay are important, since the dynamics of time delay may not only

degrade the tracking performance of controlled systems, but it can also destabilize the

closed loop system. Powertrain control systems contain usually time delay due to electric

and mechanical reasons. For instance signal processing, time sampling, and physical

delayed behavior of actuators can lead to delay.

First, reasons for time delay in powertrain systems are discussed and the control system is

converted to a digital control system in order to take sampling time into account. Second,

two-mass and three-mass control models are discretized and time delay were added to the

discretized system representation. The third section provide a straightforward numerical

approach to calculate stability diagrams for discrete systems with time delay. Furthermore,

the approach offers visualization of the degree of stability and damping ratio of the time

delayed system. Stability diagrams are calculated to show the effect of time delay to

a system with state feedback and to visualize the delay margin of these systems. It is

shown for the controlled discrete two-mass powertrain system with state feedback that the

damping behavior is greatly restricted by time delay greater than 20 ms.

Therefore, time delay compensation methods are presented and compared in the forth and

fifth section. The methods Smith predictor, observer based compensator, and state predic-

tion are designed for the two-mass control model of a battery electric powertrain and the

belonging closed loop system matrices were derived. Using the derived closed loop system

matrices, stability charts are calculated, besides time simulation, to evaluate sensitivities

of these methods to parameter uncertainties. Simulation results show compensated dead

time. Best results can be achieved using the observer based method and state prediction.

If there are disturbances or greater model uncertainties in the time simulations, then it is

suggested to introduce the error integral as a new state and control it to zero. Then, the

steady-state error can be eliminated, but on the other hand overshoot appear. Therefore,
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further investigations on eliminating steady-state error without overshooting could be

promising to improve the compensation methods.

Chapter 6: Ad Hoc Approach Powertrain Control with Backlash

and Time Delay

The last chapter presents first results of merging the control methods for backlash and

time delay in order to enable controlled backlash traversing with time delay. A switching

controller is used to combine the control concepts. First simulation results show stable,

fast, and comfortable backlash traversing. Analysis regarding parameter uncertainties and

disturbances are left for future work and the presented approach is rather a first outlook

in this direction.

7.2 Outlook

The presented control approaches to reduce driveline oscillations can be applied to a wide

range of powertrain types. Further work is planned to validate the presented backlash

and time delay approaches by more vehicle experiments with various powertrain types.

Particularly, the presented smooth feedforward controller for backlash traversing and state

prediction method to compensate time delay are promising for application, since they are

easy to implements.

Another important question for future studies is to evaluate the derived control methods

for vibrations with higher frequencies such as in the case of powertrains with internal

combustion engine, where the powertrain can be excited by the rotational irregularity

of the crankshaft. These frequencies, originating by combustion engine, are generally

higher than 20 Hz and enhance the problems of time delay in controlled systems due to

a reduced time delay margin. It remains to be identified how robust the presented time

delay compensation methods are regarding higher frequencies. Furthermore, the impact of

backlash to these systems should be further explored. For instance undesired rattling may

occur in idle speed, which can be caused by the irregularity of the crankshaft.

An important question for future studies is also to determine and enhance the robustness

of the presented dead time compensation methods with respect to model uncertainties and

disturbances. Possible direction can be adaptive methods, since the presented controllers

depends on accurate control models. Finally, the ad hoc approach for powertrains with

backlash and time delay remains to be further investigated. Stability of the switching

system should be explored in future work.
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[FliessEtAl92] Fliess, M.; Lévine, J.; Martin, P.; Rouchon, P.: On differentially flat

nonlinear systems. Nonlinear Control Systems Design, pp. 408–412, 1992.
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[LiberzonMorse99] Liberzon, D.; Morse, A.S.: Basic problems in stability and design of

switched systems. IEEE Control Systems, Vol. 19, No. 5, pp. 59–70, 1999.



Bibliography 139

[Luenberger64] Luenberger, D.G.: Observing the State of a Linear System. IEEE Trans-

actions on Military Electronics, Vol. 8, No. 2, pp. 74–80, 1964.

[Lunze12] Lunze, J.: Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und

Entwurf einschleifiger Regelungen. Berlin: Springer, 2012.

[Lunze16] Lunze, J.: Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung. Springer,
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