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Summary

A graph G is said to be q-Ramsey for a graph H if for every q-colouring of the edges of
H there exists a monochromatic copy of H. Moreover, G is said to be minimal q-Ramsey
for H if no proper subgraph of G is q-Ramsey for H. In this thesis we study various
properties of the set of minimal Ramsey graphs for many classes of graphs.

In 1976, Burr, Erd®s, and Lovász initiated a systematic study of the set of minimal
Ramsey graphs. In their work they introduced the parameter sq(H) which is de�ned
as the smallest minimum degree among all minimal q-Ramsey graphs for H. Note that
q(δ(H)− 1) + 1 is a simple lower bound for sq(H). For a given q, a graph H is said to be
q-Ramsey simple if sq(H) = q(δ(H)− 1) + 1.

In the �rst part of the thesis we study the Ramsey simplicity of random graphs for
several ranges of p and q. We show when the graph Gn,p is sparse enough it is q-Ramsey
simple for all values of q ≥ 2 whereas it is not Ramsey simple for any value of q whenever
it is su�ciently large. We notice that the property of Ramsey simplicity is monotone in q.
As a result we can meaningfully de�ne the threshold value for q, below which a graph is
Ramsey simple but ceases to be beyond it. We will establish some upper and lower bounds
for this threshold in the number of colours for several ranges of p.

In the second part of the thesis we move on to the quantitative behaviour of the vertices
of minimum degree in minimal Ramsey graphs. We ask the question, how many vertices
of degree sq(H) can a minimal Ramsey graph have? In the same work of Burr, Erd®s,
and Lovász, the authors noted that for a given integer ` ≥ 1, there exists a minimal 2-
Ramsey graph for a clique Kt which contains ` vertices of degree s2(Kt). We extend this
observation further to show that this phenomena indeed holds for all values of q for Kt

and we call this property sq-abundance. We show that not just cliques, but also all cycles
are sq-abundant for all values of q. We will provide a general result for all 3-connected
graphs which we will employ to show s2-abundance for wheels and sq-abundance for Gn,p
for some values of q and p in the range where Gn,p is 3-connected.

Next, in the third part of this thesis we will consider the question of Ramsey equivalence
for asymmetric pair of graphs. We say that two graphs are Ramsey equivalent if their set
of minimal Ramsey graphs are the same. Recently, Fox, Grinshpun, Liebenau, Person, and
Szabó asked if there exists a pair of non-isomorphic graphs that are Ramsey equivalent? In
this part we analyse pairs of graphs that can and cannot be equivalent to the pair (T,Kt)
where T is a tree.

In the fourth and �nal part of this thesis we move our attention toward families of
sets. For r, t, n ∈ N we say that families F1, . . . ,Fr ⊆ P([n]) are r-cross t-intersecting if
for all F1 ∈ F1, . . . , Fr ∈ Fr we have |

⋂
i∈[r] Fi| ≥ t. We determine the maximum sum of

measures of such families whenever the sets in the families are either of uniform size or are
non-uniform.
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1
Introduction

1.1 Overview of the thesis

Extremal problems form an integral part of research in combinatorics. They aim to �nd
some substructures in large, seemingly disordered, structures. Trying to �nd structure in
chaos is not unique to combinatorics but rather is an inherent trait of us humans. We are
always on a quest for �nding patterns to our dreams or the meaning of our lives. These may
be very hard things to analyse, so here let us try our hand at something more veri�able
instead.

In this work we will concern ourselves with �nite graphs and sets. In 1930, in a work
on formal logic, Ramsey proved a theorem that spurred a whole �eld of study, which later
came to be known as Ramsey theory. He showed that in a su�ciently large graph, no
matter however disordered it seems, there exists some given smaller structures of high
degree of order. In particular [74], in every large enough graph there exists either a clique
or set of independent vertices of a certain size. Even though �nding the smallest graph that
always contains a clique or an independent set of size three is a toy problem, this innocuous
looking problem gets very hard very quickly. Then minimum size of the smallest graph
that always contains either a clique or an independent set of size �ve is already an open
problem.

Let us reformulate the above notion in a colourful setting. We say that a graph G is
Ramsey for a graph H, if for every two colouring of the edges of the graph G, we will
certainly �nd a copy of H in this such that all the edges of this copy have the same colour.
Characterizing the set of Ramsey graphs has received considerable attention in the last
few decades. As mentioned, determining the minimum number of vertices, which would be
a prerequisite to belong to this set, is a very hard problem. One can assign various other
parameters to a graph or a set through which we can continue to study the set of Ramsey
graphs for a particular graph. After a moment's thought, one realizes that in some cases,
it might be better to consider graphs that are in some sense minimal, i.e., no subgraph of
this graph is Ramsey for the graph in question. After all, these graphs would function as
building blocks for all other Ramsey graphs.

In 1976, Burr, Erd®s, and Lovász [23] formalized this and studied certain other at-
tributes of the set of minimal Ramsey graphs. For a graph H, let us denote the set of all
minimal Ramsey graphs of H byM(H). Among many other parameters, they considered

1



1.1. Overview of the thesis 2

the minimum degree. Let us denote the minimum of the minimum degrees of all minimal
Ramsey graphs of H by s(H). The authors [23] were able to precisely determine this value
for all cliques, which also happens to be many orders lower than the number of vertices.
Moreover, they also notice that this vertex of minimum degree need not be unique in a
graph. Rather one may �nd a minimal Ramsey graph with arbitrarily many vertices of
this small degree. At this point, one may ask a question: is this phenomena observed for
more graphs or is there something unique about the cliques? We will address this question
in detail in Chapter 4.

A natural generalisation of this is to consider more than two colours. There have been
many attempts to fully characterise the s(Kt) for more colours when the graph in question
is a clique. Another natural extension is to consider the asymmetric tuple of graphs.
Bringing these two phenomena together, let us say that a graph G is Ramsey for a tuple
(H1, H2, . . . ,Hq) if for every q-colouring of the edges of G, there exists an i ∈ [q] such
that there is a monochromatic copy of Hi in colour i. The parameter s(H) is analogously
de�ned as sq(H1, H2, . . . ,Hq). Bishnoi, Boyadzhiyska, Clemens, Gupta, Lesgourgues, and
Liebenau [11] considered these two generalisations together to determine the parameter sq
for the tuple consisting of cliques and cycles. There have been several other results which
consider either of the two generalisations.

After the seminal work of Burr, Erd®s, and Lovász [23], the parameter s(H) has received
much attention. Fox and Lin [45] noted that s(H) is lower bounded by 2δ(H) − 1. This
led to a notion of Ramsey simple graphs. These are the graphs whose parameter s attains
this lower bound. A particular result in this direction is that of Szabó, Zumstein, and
Zürcher [83] which showed that all, modulo a certain technical condition, bipartite graphs
are Ramsey simple. They even conjecture that this technical condition should not be
necessary and indeed all bipartite graphs must be Ramsey simple. The results on Ramsey
simplicity were furthered by Grinshpun [54] in which he showed that, for the range of p in
which the random graph G(n, p) is asymptotically almost surely 3-connected and satis�es
an extra condition, is Ramsey simple.

The properties of random graphs have been subjected to intense research. It is very
natural to make them a subject for determining the parameter sq. In Chapter 3 we will
explore the Ramsey simplicity of random graphs for di�erent ranges of p and varying values
of q.

Another way to study the set of minimal Ramsey graphs is to study the set itself and
not dive into characterizing the graphs within. This is to say, we would like to know if
there exist two non-isomorphic graphs which have the same set of minimal Ramsey graphs.
This phenomenon has been named Ramsey equivalence, and two graphs which have the
same set of minimal Ramsey graphs are said to be Ramsey equivalent. There exist many
instances of disconnected graphs which have the same set of minimal Ramsey graphs. A
more interesting question is to determine a pair of connected graphs that are Ramsey
equivalent. Fox, Grinshpun, Liebenau, Person, and Szabó [43] showed something very
surprising, that no connected graph is Ramsey equivalent to a clique. In Chapter 5 we will
consider the question in an asymmetric setting.

Graphs are not the only discrete structure that we study in this thesis. Consider a
family of subsets of [n] with the property that any two subsets in this family have a non
empty intersection. It takes not long before one �nds a very simple example of such a
family, that is the collection of sets each with a prede�ned common element. Such a family
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is of size 2n−1. Erd®s, Ko, and Rado [37] showed that this is the largest possible family
size . Their work was in a more general setting of k-uniform families. Such attribute of a
family can be generalised to several families and also to minimum intersection size of more
than one. A collection of r families of subsets of [n] is said to be r-cross t-intersecting if
for any selection of a set per family together intersect in at least t elements. In Chapter 6
we will determine the maximum sum of sizes of such a collection of families.

1.2 Historical background

In this section we will provide a historical perspective to questions that are addressed in
the subsequent chapter of this thesis. We will begin by providing a broad perspective to
Ramsey theory in Subsection 1.2.1. Thereafter we will de�ne and see the state of the art for
parameter sq of graphs in Subsection 1.2.2. We will follow this up by a survey on Ramsey
equivalence in Subsection 1.2.4 and the Ramsey simplicity of Random graphs in 1.2.3. In
the last Subsection, Subsection 1.2.5 we will give an overview for the r-cross t-intersecting
families.

1.2.1 Ramsey theory

A classical result of Ramsey theory states that, for every graph H, there exists an integer
n such that the following property holds: For every red/blue colouring of the edges of
the complete graph Kn, there exists a monochromatic copy of H, that is, a subgraph
of Kn isomorphic to H in which all edges have the same colour. In fact, the same is
true if, instead of two, we use any arbitrary number of colours. The �rst version of the
existence of such integers was show by Ramsey [74]. Formally speaking, for any q ∈ N
and a graph H, we say that a graph G is q-Ramsey for a graph H, and write G →q H,
if, for any q-colouring of the edges of G, there exists a monochromatic copy of H. Then
the fundamental theorem of Ramsey asserts that at least one such graph G exists for any
choice of H and q. We denote the set of all such graphs for H by Rq(H). Through the
last decades, this result has become the starting point of a �eld of intense studies, giving
rise to a branch of combinatorics known as Ramsey theory. For an excellent survey on the
more recent developments in the �eld, see [30].

One line of research is concerned with studying properties of the set of Ramsey graphs,
which is the main focus of the chapters that follow. In this language, the well-known q-
colour Ramsey number of a graph H, denoted by rq(H), can be de�ned as the minimum
possible number of vertices in a graph that is q-Ramsey for H, i.e., rq(H) = min{v(G) :
G ∈ Rq(H)}. Over the years, researchers have worked hard to understand the behaviour
of Ramsey numbers for various classes of graphs, which in some cases has turned out to be
notoriously di�cult. Perhaps the most natural example here is the clique Kt. For general
t, Erd®s and Szekeres [38] and Erd®s [34] showed that 2t/2 ≤ r2(Kt) ≤ 22t, establishing
that the 2-colour Ramsey number of Kt is exponential in t but leaving a large gap between
the two bounds in the base of the exponent. Now, more than 70 years later, those remain
essentially the best known bounds, with improvements only in the lower order terms. The
current best known lower bound is due to Spencer [82]; a new upper bound was shown very
recently by Sah [79], improving on the previous best known bound due to Conlon [28].

More generally, it is of interest to understand what makes a graph q-Ramsey for some
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chosen graph H, that is, to understand the structural properties of graphs that are q-
Ramsey for H and, whenever possible, to characterize all such graphs. After considering
the number of vertices, it is natural to ask about the behaviour of other graph parameters.
For example, much work has been done in studying the minimum possible number of
edges in a graph that is q-Ramsey for H, known as the q-colour size-Ramsey number
of H. Formally it is written and de�ned as r̂q(H) = min{e(G) : G ∈ Rq(H)}. The
parameter was introduced by Erd®s, Faudree, Rousseau, Cecil, and Schelp, [39], where
they noted the trivial upper bound, r̂q(H) ≤

(
rq(H)

2

)
and showed that this is indeed tight

for complete graphs and two colours. It is interesting to note that this value is precisely
known, of course modulo the value of Ramsey number itself. Due to [39] and Conlon,
Fox, and Wigderson [32], it is known that r̂2(Ks,t)=Θ(s2t2s) and Beck [8] had shown,
r̂2(Pn) = Θ(n).

1.2.2 The parameter sq

In the previous subsection, we considered two very natural graph parameters, namely the
number of vertices and edges in the graph. Let us consider yet another parameter, the
minimum degree of graphs that are q-Ramsey for a graph H. To begin with, note that
asking about the smallest possible minimum degree of a graph that is q-Ramsey for H is
not very interesting, as we can immediately see that the answer is zero. This is because
any graph containing a q-Ramsey graph for H as a subgraph is itself q-Ramsey for H, and
we can of course add an isolated vertex to obtain a graph with minimum degree zero. To
avoid such trivialities, we restrict our attention to those graphs that are, in some sense,
critically q-Ramsey for H. This leads to the following natural de�nition: We say G is
minimal q-Ramsey for H if G →q H and, for any proper subgraph G′ ( G, we have
G′ 6→q H, that is, G loses its Ramsey property whenever we delete any vertex or edge of
G. We denote the set of all minimal q-Ramsey graphs for H byMq(H).

1970s saw the beginning of two prominent directions of research concerning Mq(H).
One of the questions, �rst posed in [68] by Ne²et°il and Rödl, was whether for a given graph
H the set Mq(H) is �nite or in�nite. We call a graph H q-Ramsey �nite (respectively
in�nite) if the setMq(H) is �nite (respectively in�nite).

In 1978, Ne²et°il and Rödl [70] showed that H is 2-Ramsey in�nite in the following
three cases: if H is not bipartite, if H is 2.5-connected (that is, H is 2-connected and
the removal of any pair of adjacent vertices does not disconnect it), and if H is a forest
containing a path of length three. In [22] the authors showed that any matching is 2-
Ramsey �nite. Subsequently. Burr, Erd®s, Faudree, Rousseau, and Schelp [20] showed
that if H is a disjoint union of non-trivial stars (i.e., all stars have at least two edges), then
H is 2-Ramsey �nite if and only if H is an odd star; they also showed that the disjoint
union of an odd star with any number of isolated edges is 2-Ramsey-�nite. Finally, the
results of Rödl and Ruci«ski [77] imply that every graph containing a cycle is 2-Ramsey
in�nite. As a result, we have the following theorem.

Theorem 1.1 ([20, 22, 70, 77]). A graph H is 2-Ramsey-�nite if and only if it is the
disjoint union of an odd star and any number of isolated edges.

Around the same time, Burr, Erd®s, and Lovász [23] initiated the general study of graph
parameters for graphs in Mq(H). In their seminal paper, they considered the chromatic
number, the (vertex) connectivity, and the minimum and the maximum degree of minimal
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2-Ramsey graphs for the clique Kt when t ≥ 3. In particular, they were interested in how
small these parameters can be.

Surprisingly, while the 2-Ramsey number of Kt is still not known, the authors [23]
could determine the mentioned values precisely. Among other results the authors showed
that the minimum chromatic number amongst all Ramsey graphs for Kt is r2(Kt) and
they observed that an easy corollary of this is that the minimum of the maximum degree
is r2(Kt)− 1. They also considered the vertex connectivity of Ramsey minimal graphs of
Kt and showed that the minimum vertex connectivity is three.

Following [44], we set sq(H) = min{δ(G) : G ∈ Mq(H)}, where δ(G) denotes the
minimum degree of G. When studying this parameter, there are a couple of easy general
bounds one can give. For an upper bound, observe that since, by de�nition, Krq(H) →q H,
any minimal q-Ramsey subgraph of this complete graph bears witness to the fact that
sq(H) ≤ rq(H) − 1. From below, as observed by Fox and Lin [45], a simple argument
using the pigeonhole principle shows sq(H) ≥ q(δ(H)− 1) + 1. Note that these bounds are
typically very far apart: when H = Kt, for instance, the lower bound is linear in t while
the upper bound is exponential.

One of the results that appeared in [23] establishes that s2(Kt) = (t − 1)2, which
is perhaps surprising, given that each graph in Mq(Kt) has at least exponentially many
vertices. For more colours, Fox, Grinshpun, Liebenau, Person, and Szabó [44] established
that sq(Kt) ≤ 8(t − 1)6q3, showing that sq(Kt) is polynomial in both t and q. Recently,
this upper bound was improved by Bamberg, Bishnoi, and Lesgourgues [7] to C(t−1)5q5/2.
In [44] also investigated the growth of sq(Kt) as a function of q (with t being treated as
a constant) and proved that sq(Kt) = q2polylog(q). However, a logarithmic gap remained
between the lower and the upper bound. For the case of the triangle, Guo and Warnke [56]
closed this gap, showing that sq(K3) = Θ(q2 log q). On the other hand, Hàn, Rödl, and
Szabó [58] studied the dependence of sq(Kt) on the size of the clique with the number of
colours kept constant; they showed that sq(Kt) = t2polylog(t).

The parameter sq(H) has also been investigated for other choices of the target graph H
when q = 2. For instance, Szabó, Zumstein, and Zürcher [83] determined s2(H) for many
interesting classes of bipartite graphs, including trees, even cycles, and biregular bipartite
graphs. Later Grinshpun [54] determined s2(H) for any 3-connected bipartite graph H. A
rather surprising result in this direction appeared in a paper of Fox, Grinshpun, Liebenau,
Person, and Szabó [43], who studied s2(Kt ·K2), where Kt ·K2 is the graph obtained from
a clique of size t by adding a new vertex and connecting it to exactly one vertex of the
clique. We will call such a graph a clique with a pendant edge. The authors proved that
s2(Kt ·K2) = t− 1, showing that even a single edge can signi�cantly change the value of
the parameter s2.

The parameter sq(H) has also received, very recently, some renewed interest in the
asymmetric setting. A graph G is said to be q-Ramsey for a q-tuple of graphs (H1, . . . ,Hq),
denoted by G →q (H1, . . . ,Hq), if every q-edge-colouring of G contains a monochromatic
copy of Hi in colour i, for some i ∈ [q]. All parameters are analogously de�ned. In
their introductory paper, Burr, Erd®s, and Lovász [23] had in fact considered the cliques
in an asymmetric setting. They had shown that s2(Kt,K`) = (t − 1)(` − 1). Bishnoi,
Boyadzhiyska, Clemens, Gupta, Lesgourgues, and Liebenau [11] revived this area and
showed, in particular, that s2(Kt, C`) = 2(t − 1) for all t ≥ 3 and ` ≥ 4, where C`
represents the cycle of length `. It is a rather surprising result because the values is
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independent of the length of the cycle, whereas we know r2(Kt, C`) = (t − 1)(` − 1) + 1
for ` = Ω(log t/ log log t) due to Keevash, Long, and Skokan [62]. The authors [11] also
considered the case for more colours.

Theorem 1.2. For all ` ≥ 4, t ≥ 3, and all q, q1, q2 ≥ 1 such that q1 + q2 = q, we have

sq2(Kt) + q1 ≤ sq((C`, . . . , C`︸ ︷︷ ︸
q1 times

,Kt, . . . ,Kt︸ ︷︷ ︸
q2 times

)) ≤ sq(Kt). (1.1)

1.2.3 Random graphs and Ramsey simplicity

Notice that for all the cases that have been studied the value of sq(H) is far away from
the trivial upper bound. On the other hand, the lower bound of Fox and Lin [45] has
been shown to be tight for many graphs. Following Grinshpun [54], we call such a graph
q-Ramsey simple.

De�nition 1.3. A graph H without isolated vertices is said to be q-Ramsey simple if

sq(H) = q(δ(H)− 1) + 1.

If H has isolated vertices, then we say that H is q-Ramsey simple if the graph obtained
from H by removing all isolated vertices is q-Ramsey simple.

Observe that adding isolated vertices to a graph does not a�ect the structure of the
corresponding Ramsey graphs signi�cantly. Indeed, ifH is a graph without isolated vertices
and H + tK1 is the graph obtained from H by adding t ≥ 0 isolated vertices, it is not
di�cult to check that G ∈ Mq(H) if and only if G + sK1 ∈ Mq(H + tK1), where s =
max{0, t− (v(G)− v(H))}.

Previous work by Fox and Lin [45], Szabó, Zumstein, and Zürcher [83], and Grinsh-
pun [54] has established the 2-Ramsey simplicity of a wide range of bipartite graphs. Fur-
ther results were proven in [18], including the q-Ramsey simplicity of all cycles of length
at least four, for any number of colours q ≥ 2. Based on these results, it is believed that
simplicity is a more widespread phenomenon.

Conjecture 1.4 (Szabó, Zumstein, and Zürcher [83]). Every bipartite graph is 2-Ramsey
simple.

The conjecture suggests that Ramsey simplicity is quite common, but it is natural
to wonder whether this extends beyond the bipartite setting, given that we know cliques
are not simple. Are cliques an exceptional case, or is q-Ramsey simplicity atypical for
non-bipartite graphs? In somewhat more precise terms, when can we expect the n-vertex
binomial random graph G(n, p), where every edge appears independently with probability
p, to be q-Ramsey simple?

Random graphs have long played an important role in Ramsey Theory: Erd®s' famous
exponential lower bound on the Ramsey numbers of complete graphs in [34] came from
analysing the clique and independence numbers of random graphs, while a key ingredient
in the modern upper bounds is showing that large Ramsey graphs must be random-like.
In another setting, the work of Rödl and Ruci«ski [76, 77] establishes, for a given graph
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H and number of colours q, the range of values of p for which we have G(n, p)→q H with
high probability.

In these seminal papers, which have inspired a great deal of subsequent research, the
random graph plays the role of the host graph G, while the target graph H is �xed in
advance. Surprisingly, there has been considerably less work in the setting where the
target graph H is itself random. When H ∼ G(n, p), Fox and Sudakov [46] and Conlon [29]
provide some lower and upper bounds on r2(H) for di�erent ranges of p, while Conlon,
Fox, and Sudakov [31] show that log r2(H) is well-concentrated.

In Chapter 3 we shall focus on the minimum degree of Ramsey graphs for the random
graph G(n, p), for various ranges of p, with the goal of determining when it is q-Ramsey
simple. This line of research was initiated by Grinshpun [54], who proved that sparse
random graphs are 2-Ramsey simple with high probability.

Theorem 1.5 (Corollary 2.1.4 in [54]). Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). If
logn
n � p� n−2/3, then a.a.s. H is 2-Ramsey simple.

In this range of edge probabilities the random graph is almost surely not bipartite (in
fact, its chromatic number is unbounded), showing that the solution to Conjecture 1.4
would not tell the full story. Moreover, the argument in [54] can easily be extended to
provide, for any �xed q ∈ N, q-Ramsey simplicity for G(n, p) in the above range of p. This
begs two natural questions: what happens when the number of colours q grows with n,
and what happens in other ranges of the edge probability p?

1.2.4 Ramsey equivalence

Recall that s2(Kt) = (t − 1)2 and s2(Kt · K2) = (t − 1). These results imply that there
exists a 2-Ramsey graph for Kt ·K2 that is not 2-Ramsey for Kt due to its low minimum
degree.

A natural question to ask is: how does the value of s2 change when we modify the
target graphH slightly? More generally, how does the collection of Ramsey graphs change?
This question motivated Szabó, Zumstein, and Zürcher [83] to de�ne the notion of Ramsey
equivalence. Two graphsH andH ′ are Ramsey equivalent, denoted byH ∼ H ′, ifR2(H) =
R2(H ′).

It is not di�cult to show that Ramsey equivalent pairs of graphs exist: for instance,
the graph obtained by adding an isolated vertex to the clique Kt for t ≥ 3 is Ramsey
equivalent to Kt. Szabó, Zumstein, and Zürcher [83] further found that for t ≥ 4, the
graph Kt along with a disjoint edge is Ramsey equivalent to Kt. A few years later, Bloom
and Liebenau [12] in fact showed that for t ≥ 4, the disjoint union of Kt and Kt−1 is
Ramsey equivalent to Kt, which was later generalised by Reding [75] to show that this is
indeed true for all t ≥ 3 whenever q ≥ 3. See [43] for further results in this direction.

As of now we have only seen examples of disconnected graphs being Ramsey equivalent
to a clique. Szabó, Zumstein, and Zürcher [83] had indeed asked whether there exists any
connected such graphs. Perhaps surprisingly, several years later Fox, Grinshpun, Liebenau,
Person, and Szabó [43] settled this question in the negative: they showed that no connected
graph is Ramsey equivalent to Kt. In light of this result, they raised the following question:

Question 1.6 ([43]). Is there a pair of non-isomorphic connected graphs that are Ramsey
equivalent?
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The above question is wide open. Not much is known even in the special case where
the two graphs di�er only by a pendent edge. It was shown by Clemens, Liebenau, and
Reding [27] that no pair of 3-connected graphs can be Ramsey equivalent. A result from
Grinshpun [54, Lemma 2.6.3.] allows us to show non-equivalence for further pairs consisting
of a graph H and the graph H with a pendent edge. Further evidence that the answer
to Question 1.6 might be negative is provided for example in [5, 80]. Axenovich, Rollin,
and Ueckerdt [5] investigated the question with respect to the chromatic numbers of the
two graphs in question, and eventually, Savery [80] showed that two graphs with di�erent
chromatic numbers cannot be Ramsey equivalent.

1.2.5 r-cross t-intersecting families of sets

We now move on to extremal set theory. One of the main themes here are the intersecting
families. Given some n ∈ N, a family F ⊆P[n] is said to be intersecting if for all F, F ′ ∈ F
we have F ∩ F ′ 6= ∅. Moreover, we may require that the family is k-uniform, that is all
sets are of size k. We denote this by

([n]
k

)
or equivalently [n]k. The following well-known

theorem by Erd®s, Ko, and Rado (see e.g. [37]) is one of the earliest results in extremal set
theory.

Theorem 1.7. Let k, n ∈ N with 2k ≤ n and let F ⊆ [n](k) be an intersecting family.
Then |F| ≤

(
n−1
k−1

)
.

Observe that this maximum is attained by a family which contains all the sets of size k
that contain one �xed element, for instance F = {F ∈ [n](k) : 1 ∈ F}.

There are several variations and generalisations of this result. One generalisation is to
require that the intersections need to be of size at least t ≥ 1. A family F ⊆ P([n]) is
said to be t-intersecting if for all F, F ′ ∈ F we have |F ∩ F ′| ≥ t and again one can ask
for the maximal size of a t-intersecting family. Similarly a family F ⊆ P([n]) is said to
be t-intersecting k-uniform if we require that |F | = k for every F ∈ F . Theorem 1.7 can be
generalised to this setting to show that, for k ≥ t and n large enough, |F| ≤

(
n−t
k−t
)
, and this

bound is attained by a family which contains all sets of size k that contain t �xed elements,
for instance F = {F ∈ [n](k) : [t] ⊆ F}. After some progress by several researchers, see, for
instance, [35, 37, 47, 48, 86], Ahlswede and Khachatrian [2, 4] determined the maximum
size of t-intersecting k-uniform family for all values of n when n ≥ k ≥ t.

A further variation are cross intersecting families. For r, t, n ∈ N we say that fam-
ilies F1, . . . ,Fr ⊆ P([n]) are r-cross t-intersecting if for all F1 ∈ F1, . . . , Fr ∈ Fr we
have |

⋂
i∈[r] Fi| ≥ t. We only consider non-empty r-cross t-intersecting families. If r = 2

or t = 1, we may omit the respective parameter, e.g., 2-cross 1-intersecting families F1,F2

are simply called cross intersecting. In this regime there are several partial results concern-
ing the maximum sum of sizes of r-cross t-intersecting families for speci�c instances of r
and t, starting with theorems by Hilton [60] and by Hilton and Milner [61]. In [61], the
authors showed that of F1 and F2 are k-uniform intersecting families then |F1| + |F2| ≤(
n
k

)
−
(
n−1
k

)
+ 1 for k ≥ 2 and n ≥ 2k.

Another generalisation considers the use of measures (or weights) to calculate the size
of families, where we sum the weights of the sets in a family instead of simply counting
the number of sets in the family. Formally, consider a function µ : P([n]) → R≥0, which
assigns a weight to each set in P([n]), also called a measure function. We de�ne the
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measure of a family F ⊆ P([n]) as µ(F) =
∑

F∈F µ(F ). Even though we use the same
variable to denote the measure of a set and a family, the notation will be clear from context.

Two commonly considered measures are the product measure %p and the uniform mea-
sure νk which we de�ne following [51]. For a �xed p ∈ [0, 1], the product measure of set
a set F ∈ P[n] is %p(F ) = p|F |(1 − p)n−|F |. Note that this can be interpreted as the
probability that a speci�c set F is the result of a random experiment that includes each
element from [n] with probability p in F . The uniform measure νk, with k ∈ [n], is de�ned
as

νk(F ) =

0 if |F | 6= k
1

(nk)
if |F | = k

.

For these measures, analogues of the Erd®s-Ko-Rado theorem can be considered. In-
deed, we can reformulate Theorem 1.7 as follows: For k, n ∈ N with 2k ≤ n and an
intersecting family F ⊆ [n](k) it follows that νk(F) ≤ k

n . For the product measure the
following analogous result was �rst proved in [1] that for p ≤ 1/2 and an intersecting
family F ⊆ P([n]) we have %p(F) ≤ p. Despite the fact that the maximum is attained
by the same family as in Theorem 1.7 the proofs for both statements are di�erent and
independent. In [51], Frankl and Tokushige ask for a general theorem that includes both
theorems as special cases.

Several results for speci�c measures and t-intersecting families are known, in particular
a product measure version of the Ahlswede-Khachatrian theorem concerning t-intersecting
families, see [3, 10, 84, 33, 40, 41]. For a more thorough overview we recommend Chapter 12
in [51]. Another related result due to Borg [14] determines the maximum product of
measures of two cross t-intersecting families.

1.3 Main results of this thesis

In this section we give an overview of the main results that will be presented in the
subsequent chapters.

1.3.1 Ramsey simplicity of random graphs

In Chapter 3, we investigate the sq value for random graphs for a wide range of parameters.

Let us begin by considering the range of p for which G(n, p) is almost surely a forest.
Szabó, Zumstein, and Zürcher[83] had shown that a certain class of bipartite graphs, which
in particular include all trees are 2-Ramsey simple. Their result is easily generalisable to
more colours. As a consequence we have that for 0 < p� n−1, the graph G(n, p) is almost
surely q-Ramsey simple for all q ≥ 2.

On the other end of the spectrum we consider the range
(

logn
n

)1/2
� p < 1. In this

range, G(n, p) exhibits a very interesting property, namely that every edge is in a triangle
with high probability. See Section 2.3 for more details. This in fact helps us show that for

p�
√

logn
n , the graph H ∼ G(n, p) is never q-Ramsey simple for any value of q.

This leads to the question, does a random graph always exhibit either of the two
behaviours? In the following discussion we will observe that this is not the case. In fact
the observed behaviour is very interesting.
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We �rst remark that the parameter sq(H) and the notion of Ramsey simplicity are
not monotone in the graph H. As we shall observe in the chapter, a Ramsey simple
graph can have both subgraphs and supergraphs that are themselves not Ramsey simple,
while a graph that is not Ramsey simple can have simple subgraphs and supergraphs.
However, we do have monotonicity in the number of colours q, and we shall demonstrate
in Lemma 3.5 that (q + 1)-Ramsey simplicity implies q-Ramsey simplicity. Hence, we can
ask for a threshold value for q, i.e., the largest number q̃ of colours for which a given graph
is q̃-Ramsey simple.

De�nition 3.1. q̃(H) = sup{q : H is q-Ramsey simple}.

Note that every graph is, by de�nition, 1-Ramsey simple, since the only minimal 1-
Ramsey graph for H is H itself, and so s1(H) = δ(H). Thus, when a graph H is not
q-Ramsey simple for any number of colours q ≥ 2, we have q̃(H) = 1. At the other
extreme, if H is q-Ramsey simple for any number of colours q, we have q̃(H) =∞. Based
on our previous discussion, we can state the following theorem.

Theorem 3.2. Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). Then a.a.s. the following holds:

(a) q̃(H) =∞ if 0 < p� n−1.

(b) q̃(H) = 1 if
(

logn
n

)1/2
� p < 1.

Given the new notation, we can now state the behaviour of q-Ramsey simplicity in the
intermediate range, which collects various bounds we were able to prove for the threshold
q̃(H) when H ∼ G(n, p).

Theorem 3.6. Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). Let u ∈ V (H) be a vertex of mini-
mum degree δ(H) and let F = H[N(u)] be the subgraph of H induced by the neighbourhood
of u. Denote by λ(F ) the order of the largest connected component in F . Then a.a.s. the
following bounds hold:

(a) q̃(H) =∞ if logn
n � p� n−

2
3 .

(b) q̃(H) ≥ (1 + o(1)) max
{
δ(H)
λ(F )2

, δ(H)
80 logn

}
if n−

2
3 � p� n−

1
2 .

(c) q̃(H) ≤ (1 + o(1)) min
{
δ(H)
∆(F ) ,

δ(H)2

2e(F )

}
if n−

2
3 � p� 1.

As shown above, we extend Theorem 1.5 by showing that these sparse random graphs
are not just q-Ramsey simple for any �xed q, but even when the number of colours q is
allowed to grow with n. Most interestingly, though, the simplicity threshold for random
graphs of intermediate density depends on some parameters of the random graph itself �
these graphs are q-Ramsey simple for small values of q, but not when q grows too large.

Remark 1.8. As suggested by the above bounds, this dependence on q is governed by the
subgraph F , and it is the appearance of edges in F that gives rise to a �nite bound on
q̃(H). When p� n−

2
3 , then F almost surely has no edges, while if p� n−

2
3 , then F almost

surely does, explaining the distinction between cases (a) and (c). When p = Θ
(
n−

2
3

)
, then

F is empty (and q̃(H) thus in�nite) with probability bounded away from 0 and 1.
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(0, 1) 1
n

always

q-simple

q

logn
n n−2/3

always

q-simple

n−1/2

np

np
80 logn

q-simple

not q-simple

(
logn
n

)1/2

not q-simple

p

︸ ︷︷ ︸

n− k
2k−1 n− k+1

2k+1

np
k−1

np
k2

Figure 1.1: Bounds on the simplicity threshold q̃(G(n, p))

When n−
2
3 � p�

(
logn
n

) 1
2
, by analysing the structure of random graphs, we can give

quantitative estimates for the bounds on q̃(H) in this intermediate range.
In Subsection 3.3.3 we will collect the necessary random graph theoretic results to

obtain the following estimates as a consequence of Theorem 3.6.

Corollary 3.16. Let k ≥ 2 be a �xed integer and let f = f(n) satisfy 1 � f = no(1).

Let p = p(n) satisfy n−
2
3 � p �

(
logn
n

) 1
2
and let H ∼ G(n, p). Then a.a.s. the following

bounds hold:

(a) if n−
k

2k−1 � p� n−
k+1
2k+1 , then (1 + o(1))np

k2
≤ q̃(H) ≤ (1 + o(1)) np

k−1 .

(b) if p = Θ
(
n−

k+1
2k+1

)
, then (1 + o(1)) np

(k+1)2
≤ q̃(H) ≤ (1 + o(1)) np

k−1 .

(c) if p = n−
1
2 f−1, then

(1 + o(1)) np
logn max

{
16 log2 f

logn , 1
80

}
≤ q̃(H) ≤ (2 + o(1))np log(f2 logn)

logn .

(d) if n−
1
2 � p�

(
logn
n

) 1
2
, then 1 ≤ q̃(H) ≤ (8 + o(1))1

p .
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Corollary 3.16 shows that, for �xed ε > 0 and n−
2
3 � p � n−

1
2
−ε, we determine the

threshold up to a constant factor, while for n−
1
2
−o(1), we know it up to a polylogarithmic

factor. Most surprisingly, these bounds reveal that the threshold q̃(H) evolves in a compli-
cated fashion: while it drops from ∞ to 1 as p ranges from logn

n to 1, it does not do so in

a monotone fashion, as it must increase in the ranges p ∈
(
n−

k
2k−1 , n−

k+1
2k+1

)
for each �xed

k. These results are illustrated in Figure 1.1.

1.3.2 Abundance

In Subsection 1.2.2 we saw that a minimal q-Ramsey graph for a given H can contain a
vertex of small degree. A natural next question now is, how many vertices of this small
degree can a minimal q-Ramsey graph for H contain? More speci�cally, can a minimal
q-Ramsey graph have arbitrarily many vertices of the smallest possible minimum degree?
This question motivates the following de�nition.

De�nition 4.1. For a given integer q ≥ 2, a graph H is said to be sq-abundant if, for
every k ≥ 1, there exists a minimal q-Ramsey graph for H with at least k vertices of degree
sq(H).

As it turns out, it is not immediate whether sq-abundant graphs exist at all. As stated
earlier, in [23], Burr et al. noted that their construction can be generalised to show that
cliques are s2-abundant. In Chapter 4, we will give several examples showing that, for all
q ≥ 2, there are in�nitely many sq-abundant graphs.

It is not hard to see that, if a graph is q-Ramsey �nite, then it cannot be sq-abundant.
This immediately implies that odd stars are not s2-abundant. On the other hand, we
know that even stars are 2-Ramsey in�nite, but as we will see below they are also not
s2-abundant. This statement follows from the following result.

Theorem 1.9 ([23]). Let m ≥ 1 be an integer. Then a connected graph G is 2-Ramsey for
K1,m if and only if either ∆(G) ≥ 2m− 1 or m is even and G is a (2m− 2)-regular graph
on an odd number of vertices.

The theorem immediately implies thatM2(K1,m) = {K1,2m−1} whenever m is odd and
M2(K1,m) = {K1,2m−1}∪ {G : G is connected and (2m− 2)-regular and |V (G)| is odd} if
m is even. In particular, this implies that no star is s2-abundant.

More generally, it turns out that stars are not sq-abundant for any q ≥ 2: A simple
argument implies that, for any m ≥ 1 and q ≥ 2, a minimal q-Ramsey graph for K1,m has
either zero or q(m − 1) + 1 vertices of degree one. Indeed, if G is a minimal q-Ramsey
graph for K1,m that is not isomorphic to K1,q(m−1)+1, then the maximum degree of G is at
most q(m− 1). Thus, if G contains a vertex v of degree one, then the only neighbour u of
v has at most q(m− 1)− 1 other neighbours. By the minimality of G, the graph G− v has
a q-colouring c without a monochromatic copy of K1,m. Since u has at most q(m− 1)− 1
neighbours in G − v, there is a colour that appears at most m − 2 times on the edges
incident to u. Then this colour can be used on the edge uv to extend c to a q-colouring
of G without a monochromatic copy of K1,m, leading to a contradiction. Hence, G cannot
contain a vertex of degree one.

One of the goals of Chapter 4 is to systematically study sq-abundance. First, we show
that all cycles of length at least four are sq-abundant. As a by-product, we determine
sq(Ct) for all q ≥ 2 and t ≥ 4.
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Theorem 4.10. For any given integers q ≥ 2, t ≥ 4, and k ≥ 1, there exists a minimal q-
Ramsey graph for Ct that has at least k vertices of degree q+1. In particular, sq(Ct) = q+1
and Ct is sq-abundant.

We will then go on to show that a clique with a pendant edge is s2-abundant. We note
that, since s2(Kt) = (t − 1)2 and s2(Kt · K2) = t − 1 for all t ≥ 3, Theorem 4.11 also
yields that there are in�nitely many graphs that are minimal 2-Ramsey for Kt · K2 but
not minimal 2-Ramsey for Kt. One of the main building blocks used in our construction
is not known to exist for Kt ·K2 when q > 2, which is why we focus on the case q = 2.

Theorem 4.11. For a given integer t ≥ 3, the graph Kt ·K2 is s2-abundant.

Finally, we will also show that wheel graphs are s2-abundant. LetWn denote the wheel
graph on n+ 1 vertices. We will also determine the value of s2(Wn).

Theorem 4.15. For a given integer t ≥ 4, the graph Wt is s2-abundant and s2(Wt) = 7.

We will also consider the H ∼ G(n, p) for certain ranges of p when H is a.a.s is 3-
connected. We will show the following result.

Theorem 4.18. Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). Then a.a.s. H is sq-abundant

for all q ≥ 2 whenever logn
n � p� n−

2
3 and H is sq-abundant for all q ≤ q̃(H) whenever

n−
2
3 � p� n−

1
2 .

In order to prove the statements above, we will use gadget graphs that we call pat-
tern gadgets. These were proven to exist for cycles by Siggers [81] and they generalised
other well-known gadgets such as signal senders, originally developed by Burr, Erd®s, and
Lovász [23] to study s2(Kt). Pattern gadgets help us construct minimal Ramsey graphs
with many vertices of small degree.

In a nutshell, the main idea behind pattern gadgets is the following: Given some
graph G and some family G of colourings of E(G) with q colours that do not contain
monochromatic copies of H, we will �nd some larger graph P containing G such that the
colourings in G are exactly those colourings ofG that can be extended to P without creating
a monochromatic copy of H. Then, in order to prove each of the above theorems, we will
choose G and G in such a way that we can attach k small-degree vertices to G ⊆ P so that
no colouring in G can be extended to the new edges without creating a monochromatic
copy of H, but if we remove any of these new vertices, we can �nd a colouring in G that
can be extended in the desired way.

The precise de�nition of a pattern gadget will be given in Chapter 4. We will show
their existence for many target graphs H, including all 3-connected graphs in Chapter 4.

1.3.3 Ramsey equivalence for asymmetric pairs of graphs

In Chapter 5, we study Ramsey equivalence in the asymmetric setting and explore this
variant of Question 1.6.

Recall that we denote the collection of all Ramsey graphs for (G,H) by R(G,H).

De�nition 5.1. We call two pairs of graphs (G,H) and (G′, H ′) Ramsey equivalent, de-
noted (G,H) ∼ (G′, H ′), if R(G,H) = R(G′, H ′).
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Equivalently we can de�ne Ramsey equivalence also in terms of the corresponding
Ramsey-minimal graphs, requiring thatM(G,H) =M(G′, H ′). Our goal is to explore the
notion of Ramsey equivalence for asymmetric pairs of connected graphs and in particular
the asymmetric version of Question 1.6. Previously known results allow us to exclude
some potential candidates. Let ω(G) denote the clique number of a graph G, de�ned as
the largest integer n such that Kn is a subgraph of G. A famous result of Ne²et°il and
Rödl [69] establishes that, for every graph G, there is a Ramsey graph for G that has the
same clique number as G. Hence, the disjoint union of G and H has a Ramsey graph F
with clique number max{ω(G), ω(H)} and this graph F is also a Ramsey graph for (G,H).
This gives the following statement which we shall use several times in our proofs.

Theorem 1.10 ([69]). Each pair (G,H) of graphs has a Ramsey graph with clique number
equal to max{ω(G), ω(H)}.

This result implies that, whenever (G,H) ∼ (G′, H ′), it holds that max{ω(G), ω(H)} =
max{ω(G′), ω(H ′)}. As a second example, Savery [80, Section 3.1] proved that (G,H) 6∼
(G′, H ′) for all graphs G, H, G′, and H ′ with χ(G) + χ(H) 6= χ(G′) + χ(H ′), where χ(F )
denotes the chromatic number of a graph F .

It turns out, however, that the asymmetric version of Question 1.6 has an a�rmative
answer. Let K1,s denote a star with s edges. Through a simple application of Petersen's
Theorem [72], Burr, Erd®s, Faudree, Rousseau, and Schelp [20] showed that, for any odd
integers r, s ≥ 1, the only Ramsey-minimal graph for the pair of stars (K1,r,K1,s) is
the star K1,r+s−1. Thus, any odd integers r, s, r′, s′ ≥ 1 with r + s = r′ + s′ satisfy
(K1,r,K1,s) ∼ (K1,r′ ,K1,s′). This example is perhaps not very satisfying, as pairs of odd
stars have only a single Ramsey-minimal graph. It is then interesting to ask whether
there are any Ramsey equivalent pairs of connected graphs with a larger, maybe even an
in�nite number of Ramsey-minimal graphs. We will later show that the answer is yes,
exhibiting an in�nite family of Ramsey equivalent pairs of connected graphs of the form
(T,Kt) ∼ (T,Kt ·K2), where T is a certain kind of tree.

In light of the discussion in the previous paragraph, one might ask whether there exist
any other pairs of stars that are Ramsey equivalent. In the following result, we answer this
question negatively. Note thatM(K1,r,K1,s) is in�nite whenever rs is even [20].

Theorem 5.4. Let a, b, x, y be positive integers with {a, b} 6= {x, y}. Then (K1,a,K1,b) ∼
(K1,x,K1,y) if and only if a+ b = x+ y and a, b, x, and y are odd.

Note that each pair of stars has a Ramsey graph that is a star. Since stars cannot
be Ramsey graphs for other connected graphs than (smaller) stars, pairs of stars are not
Ramsey equivalent to pairs of connected graphs that are not star pairs.

We next study Ramsey equivalence for pairs of the form (T,Kt), where T is a tree
and t ≥ 3. Note that in the case where T is a single vertex or edge the collection of
Ramsey graphs is trivial, as M(K1,Kt) = {K1} and M(K2,Kt) = {Kt}. From now on,
unless otherwise speci�ed, we will assume that T has at least two edges. It was shown
by �uczak [64] that in this case M(T,Kt) is in�nite. Perhaps surprisingly, we �nd non-
trivial Ramsey equivalent pairs in this setting. To describe some of those pairs, we need
the following de�nitions. For integers a ≥ 1, b ≥ 2, and t ≥ 3 with a ≤ t, let Kt · aKb

denote the graph consisting of a copy of Kt and a pairwise vertex-disjoint copies of Kb,
each sharing exactly one vertex with the copy of Kt (see Figure 1.2 left for an example).
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Figure 1.2: The graph K6 · 2K3 (left) and the largest 3-suitable caterpillar (right).

We call a tree T an (s-)suitable caterpillar, if T consists of a path P on three vertices and
up to 3s− 1 further vertices of degree 1 such that the endpoints of P are of degree exactly
s+ 1 in T and the middle vertex of P is of degree at most s+ 1 in T (see Figure 1.2 right).

Theorem 5.5. (a) For all integers s ≥ 2 and t ≥ 3, we have (K1,s,Kt) ∼ (K1,s,Kt ·K2).

(b) Let a ≥ 1 and b ≥ 2 be integers, and let T be a star with at least two edges or a
suitable caterpillar. For any su�ciently large t, we have (T,Kt) ∼ (T,Kt · aKb).

Observe that the �rst part of the above theorem holds for each t ≥ 3, while we need
a su�ciently large t to prove the second part. Our proof shows that we can take t to
be quadratic in the parameters a, b and |V (T )|. Since we do not have a non-trivial lower
bound, we make no e�ort to optimize this value, choosing to present a simpler proof instead.

We complement the equivalence result above by proving Ramsey non-equivalence for
several other families of pairs of trees and cliques. Theorem 1.10 shows that we may restrict
our attention to pairs (G,H) with max{ω(G), ω(H)} = t, since otherwise (G,H) 6∼ (T,Kt).
Let T denote the class of all trees T of diameter at least three such that:

� if diam(T ) is even, the neighbours of the central vertex of T are of degree at most
two, and

� if diam(T ) = 4, the central vertex is of degree at least 3.

Note in particular that this class contains all trees of odd diameter.
Theorem 5.5 above shows that for some trees T certain modi�cations to the pair (T,Kt)

yield a Ramsey equivalent pair. Speci�cally, the Ramsey graphs do not change when we
attach certain disjoint pendent graphs to the second component of the pair, that is, at the
vertices of Kt. The �rst part of the following theorem states that this behaviour does not
generalise to trees from the family T de�ned above in a strong sense: for each tree T ∈ T
and each t ≥ 3, we have (T,Kt) 6∼ (T,Kt ·K2). The second part shows that in order to
obtain a Ramsey equivalent pair (like in Theorem 5.5(b)) it is necessary that the graphs
attached to di�erent vertices of Kt do not intersect. Finally, we consider modi�cations
to the �rst component of the pair, namely T . If T and T ′ are trees of di�erent sizes,
we have (T,Kt) 6∼ (T ′,Kt), since the Ramsey numbers of these pairs di�er, as shown by
Chvátal [26]. The third part of the theorem below shows that T cannot be replaced by
any other connected graph G if the second component of the pair stays unchanged.

Theorem 5.9. Let T be a tree, t ≥ 3 be an integer, and let G and H be graphs with
(G,H) 6= (T,Kt). Then (T,Kt) 6∼ (G,H) if one of the following conditions holds:

(a) G = T , T ∈ T , and H is connected,
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G
H

ω(H) 6= t H = Kt

H ) Kt and

H-E(Kt) has

t components

H ) Kt and

H-E(Kt) has

< t components

G = T 6∼ ([69]) ∼ (triv.)
∼ for some H if T star or suit. cat. (5.5)
6∼ if T ∈ T (5.9(a))
otherwise partial results

6∼ (5.9(b))

G 6= T 6∼ ([69]) 6∼ (5.9(c)) open 6∼ (5.9(b))

Table 1.1: Known results about Ramsey equivalence between (T,Kt) and (G,H) where
t ≥ 3, T is a tree, G and H are connected graphs, and ω(G) ≤ ω(H). Each entry states
whether the respective pairs (T,Kt) and (G,H) are Ramsey equivalent or not.

(b) H contains a copy K of Kt, and H contains a cycle with vertices from both V (K)
and V (H) \ V (K),

(c) G 6= T , G is connected, and H = Kt.

Note that the Ramsey number alone is not su�cient to distinguish certain pairs (T,Kt)

and (G,Kt): for example, Keevash, Long, and Skokan [62] showed that when ` = Ω
(

log t
log log t

)
the Ramsey numbers of (C`,Kt) and (T`,Kt) are the same, where C` and T` denote a cycle
and a tree on ` vertices, respectively.

As we will see in Chapter 5, our construction actually allows us to prove the statement
from the �rst part of the theorem above for a larger class of trees. Again, since our results
do not lead to a complete characterization of those trees T for which (T,Kt) ∼ (T,Kt ·K2),
we choose to state the simpler, albeit somewhat weaker, result here. As a speci�c example,
note that our results imply that for su�ciently large t and a path P we have (P,Kt) ∼
(P,Kt ·K2) if and only if P has two or four edges.

In this thesis, we study what pairs of connected graphs (G,H) can be Ramsey equivalent
to pairs of the form (T,Kt). A summary of our results is given in Table 1.1. We focus on
the two cases G = T and H = Kt.

1.3.4 Maximum sum of sizes of r-cross t-intersecting families of sets

The main result that we will show in Chapter 6 considers the three variations as has been
mentioned in Subsection 1.2.5. We determine the maximum sum of measures of r-cross t-
intersecting families. Given n, a, t ∈ N with n ≥ a ≥ t consider the families

A(n, a, t) = {F ∈P([n]) : |F ∩ [a]| ≥ t}
B(n, a) = {F ∈P([n]) : [a] ⊆ F}.

Our main result essentially states that the maximum is attained by families �derived�
from A(n, a, t) and B(n, a), even when we consider di�erent kinds of measures (including νk
and %p when p ≤ 1/2). However, some technicalities are required to formulate it precisely
in its entire generality. For this, let us de�ne the following notation. Given a set A we
write A(k) for the set of k-element subsets of A and similarly A(≤k) for the set containing
all subsets of A that are of size at most k. Further, for F ⊆ P([n]) and k ∈ N, we
set Fk = {F ∈ F : |F | = k} and F≤k = {F ∈ F : |F | ≤ k}.
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Theorem 6.7. Let r ≥ 2 and n, t ≥ 1 be integers. Further, for every i ∈ [r] let
µi : [n]0 → R≥0, let k̂i ∈ [n] and ki ∈ [k̂i]0 such that µi is non-increasing on [ki, k̂i]. If

F1 ⊆ [n](≤k̂1), . . . ,Fr ⊆ [n](≤k̂r) are non-empty r-cross t-intersecting families and
n > maxi∈[r](ki + minj∈[r]\i k̂j)− t, then∑
j∈[r]

µj(Fj) ≤ max
{
µ`(A(n, a, t)≤k̂`) +

∑
j∈[r]\`

µj(B(n, a)≤k̂j ) : ` ∈ [r], a ∈
[
t, min
i∈[r]\`

k̂i
]}
.

Note that A(n, i, t) together with r − 1 copies of B(n, i) are r-cross t-intersecting for
every i ≥ t. Thus, this result is sharp in the sense that there are r-cross t-intersecting
families which attain the bound.

Further, we remark that for several applications, for instance, if one is just interested
in the sizes of the families or their product measure, the parameters ki and/or k̂i become
trivial and so the maximum becomes signi�cantly simpler.

We point out some particularly important special cases in the following corollaries.
Firstly, if we apply Theorem 6.7 with the measure µi =

(
n
k

)
νk, and ki = k̂i = k for

every i ∈ [r], we obtain the following result.

Corollary 6.10. Let r ≥ 2, and n, t ≥ 1 be integers, k ∈ [n], and for i ∈ [r] let Fi ⊆ [n](k).
If F1, . . . ,Fr are non-empty r-cross t-intersecting families and n > 2k − t, then∑

j∈[r]

|Fj | ≤ max
i∈[t,k]

{ ∑
m∈[t,k]

(
i

m

)
·
(
n− i
k −m

)
+ (r − 1)

(
n− i
k − i

)}
and this bound is attained.

In fact, Theorem 6.7 also yields the more general version of this result for possibly
distinct uniformities k1, . . . , kr when setting µi =

(
n
ki

)
νki , and k̂i = ki for every i ∈ [r].

In the context of non-uniform families, one of the results of a very recent work by Frankl
and Wong H.W. [52] establishes the maximum possible size of cross t-intersecting families.
By taking µi ≡ 1, ki = 0, and k̂i = n for every i ∈ [r] in Theorem 6.7, we generalise that
result to r-cross t-intersecting families with r ≥ 2.

Corollary 6.11. Let r ≥ 2, n, t ≥ 1 be integers and let F1, . . . ,Fr ⊆ P([n]) be non-
empty r-cross t-intersecting families. Then,∑

j∈[r]

|Fj | ≤ max
i∈[t,n]

{
2n−i

∑
m∈[t,i]

(
i

m

)
+ (r − 1)2n−i

}
and this bound is attained.

As a further application, note that Theorem 6.7 applied with ki = 0 and k̂i = n also
provides the maximum for the product measure ρp, if p ≤ 1/2.

Observe that the problem, that considers only one t-intersecting family is not covered
by Theorem 6.7. The following theorem gives the maximal measure of an intersecting
family for several kinds of measures. As mentioned above, this solves a problem posed
by Frankl and Tokushige [51] by generalising the results for the uniform measure and the
product measure.
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Theorem 6.8. Let n be an integer, k̂ ∈ [n], and k ∈ [k̂]0, let F ⊆ [n](≤k̂) be an t-
intersecting family, and let µ : [n]0 → R≥0 such that µ is non-increasing on [k, k̂]. If n >

k + k̂ − t, then
µ(F) ≤ µ(B(n, t)) .

1.4 Organisation

Let us now present an overview of the organisation of this thesis.
To begin with, in Chapter 2 we will provide a comprehensive list of the notation used

throughout in this work. We will also introduce to some of the important tools and
techniques in the various chapters which includes, and are not limited to, signal senders,
concentration bounds for various probability distributions, and the shifting technique.

Subsequently, in Chapter 3 we will examine the phenomena of Ramsey simplicity for
random graphs. We will show that for a certain range of p the graph G(n, p) is Ramsey
equivalent for any number of colours, for a certain range the random graph is never Ramsey
simple, and what happens in between can be rather erratic. This is a joint work with
Simona Boyadzhiyska, Dennis Clemens, and Shagnik Das [17].

Further, in Chapter 4, we will provide a constructive proof for the existence of pattern
gadgets. We will use these pattern gadgets to show that various graphs, for example a
clique with a pendant edge, are Ramsey abundant. These results extend a joint work with
Simona Boyadzhiyska and Dennis Clemens [18].

In Chapter 5, we will show that there exist some non trivial pairs of pairs of graphs
which are Ramsey equivalent and some which are not equivalent. In particular we will
explore pairs of the form (T,Kt), where T is a tree. This is a joint work with Simona
Boyadzhiyska, Dennis Clemens, and Jonathan Rollin [19].

Finally, in Chapter 6, we will investigate the maximum sum of sizes of r-cross t-
intersecting families. In order to �nd the upper bound on the sum, we will introduce
and de�ne the notion of a necessary intersection point. We will prove our results in the
more general setting of measures. This is a joint work with Yannick Mogge, Simón Piga,
and Bjarne Schülke [57].



2
Notation and techniques

In this chapter we begin by de�ning the notation used throughout this thesis. In Section 2.2
we will then go on to de�ne and provide some results for some well known gadget graphs
like determiners, signal senders, and indicators. We will follow this up by stating some facts
and establishing various properties of random graphs in Section 2.3. In the last section,
Section 2.4, we will recall the shifting technique and prove a useful lemma about shifted
families.

2.1 Notation

Given an integer n ≥ 1, we de�ne [n] = {1, 2, . . . , n} Given another integer k ≥ 1, we

denote by
([n]
k

)
or [n]k the set of all subsets of [n] of size k.

For a graph G, we denote its vertex set by V (G) and its edge set by E(G), and we set
e(G) = |E(G)| and v(G) = |V (G)|. For any edge {v, w} ∈ E(G), we write vw for short.
For a graph G and vertex subsets A and B of G, we denote by EG(A,B) the edges in G
with one endpoint in A and another in B. Also, EG(A) denotes the edges in G with both
endpoints in A. We sometimes identify a graph G with its edge set.

For an integer n ≥ 0, a graph Kn denotes a complete graph on n vertices, that is
all pairs of vertices share an edge. Cn denotes a cycle of length n and Wn denotes a
wheel graph on n + 1 vertices, which is constructed by adding an extra vertex to Cn and
connecting this to all the vertices of the cycle. Kn · K2 denotes what is often called a
clique with a pendant edge. It is formed by adding an additional edge to some vertex of
Kn. Gn,p is a binomial random graph on n vertices, where every possible edge is added
independently at random with probability p.

We let NG(v) = {w ∈ V (G) : vw ∈ E(G)} denote the neighbourhood of v in G,
dG(v) = |NG(v)| denote the degree of v in G, δ(G) = min{dG(v) : v ∈ V (G)} and
∆(G) = max{dG(v) : v ∈ V (G)} denote the minimum degree and maximum degree of G
respectively. We write λ(G) for the order of the largest connected component in G.

We say that F is a subgraph of G, denoted by F ⊆ G, if there is an injective map
f : V (F ) → V (G) such that f(x)f(y) ∈ E(G) for all xy ∈ E(F ); further, F is a proper
subgraph of G if F ⊆ G and F 6= G. Given any subset A ⊆ V , the subgraph induced by
A, denoted by G[A], is the graph with vertex set A and edge set EG(A).

19
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For a set X ⊆ V (G) we write G − X for the graph obtained from G by removing
the vertices in X and all their incident edges; for a single vertex x ∈ V (G), we write
G − x = G − {x}; similarly for a subgraph F of G we let G − F = G − V (F ). For a set
Y ⊆ E(G), we write G − Y for the graph obtained from G by removing the edges in Y ;
for a single edge e ∈ E(G), we write G− e = G− {e}.

Let F and G be two graphs. We say that F and G are isomorphic, denoted by F ∼= G,
if there exists a bijection f : V (F )→ V (G) such that vw ∈ E(F ) if and only if f(v)f(w) ∈
E(G). In this case, we also say that F forms a copy of G. If F ∼= G[A] for some A ⊆ V (G),
then we say that F is an induced subgraph of G and write F ⊆ind G.

Given a graph G and any subsets A and B of the vertex set or the edge set of G, we
de�ne the distance between A and B, denoted by distG(A,B), to be the number of edges
in a shortest path with one endpoint in (the vertex set of) A and one endpoint in (the
vertex set of) B. The girth of G, denoted by girth(G), is the length of a shortest cycle
in G (if G is acyclic, then girth(G) is de�ned to be in�nity). A graph G is said to be
k-connected if it has more than k vertices and, for any set S of at most k− 1 vertices, the
graph G[V (G) \ S] is connected.

In this thesis, for a colouring of some graph G we always refer to a colouring of its edge
set. If G contains no monochromatic subgraph isomorphic to H under a given colouring,
the colouring is said to be H-free. If a colouring uses at most q colours, we call it a q-
colouring. Unless otherwise speci�ed, we will assume in this case that our colour palette
is the set [q]. If we are only concerned with the case q = 2, for the sake of convenience
we will sometimes call our colours red and blue instead of colour 1 and colour 2. If c
is a q-colouring of G and some subgraph F is monochromatic in some colour i, we will
sometimes write c(F ) = i. Similarly, when de�ning colourings, we will write for example
c(F ) = i to indicate that we give colour i to every edge of the subgraph F .

Throughout this thesis unless otherwise speci�ed a colouring is meant to be an edge-
colouring of the given graph G. As we always call the two colours red and blue, we use
red/blue-colouring and 2-colouring as synonyms of each other. Given any two graphs H1

and H2, we say that a 2-colouring is (H1, H2)-free, if there is no red copy of H1 and no
blue copy of H2.

We de�ne G(n, p) to be the probability space of all labelled graphs on the vertex set
[n] where every possible edge is selected independently at random with probability p. If a
graph H is sampled from G(n, p) we write H ∼ G(n, p). Give a property Q, we say that
asymptotically almost surely (a.a.s.) H ∼ G(n, p) has property Q if P(H has Q) → 1 as
n→∞.

2.2 Gadget graphs

In this section we will introduce three gadget graphs, namely the determiners, signal
senders, and indicators. These gadget graphs will prove themselves to be really useful
throughout this thesis.

2.2.1 Determiners

Determiners were introduced by Burr, Faudree, and Schelp [24] and are de�ned as follows.
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De�nition 2.1. Let i ∈ [2], and let G 6= H be graphs. A graph D = D(G,H, β) with a
distinguished edge β ∈ E(D) is called a determiner for (G,H) if it satis�es the following
two properties:

1. D 6→2 (G,H).

2. In any (G,H)-free colouring of D with colours from [2], the edge d has colour 1.

The edge β is called the signal edge of D. Moreover, such a determiner is called well
behaved, if it has a (G,H)-free colouring in which all edges incident to β are of colour not
equal to i.

Determiners are known to exist for some classes of graphs, for example whenever both
target graphs are cliques Ks 6= Kt [24] or more generally whenever both target graphs
H1 6= H2 are 3-connected [25].

Burr, Erd®s, Faudree, Rousseau, and Schelp [21] showed that well behaved determiners
exist for any pair (T,Kt) when both the tree T and the clique Kt have at least three
vertices. In fact, their construction satis�es some further properties which we will use in
the proof of Theorem 5.9(c). We summarize those in the following proposition.

Proposition 2.2 ([21, Proof of Theorem 8, Lemmas 9 & 10]). Let t ≥ 3 be an integer and
T be a tree with at least three vertices. There exists a well-behaved (T,Kt, β)-determiner D.
Moreover, the graph induced by the endpoints of β and the union of their neighbourhoods
is isomorphic to Kt.

2.2.2 Signal senders

Signal senders were introduced by Burr, Erd®s, and Lovász [23] for the construction of
BEL gadgets when H = Kt for t ≥ 3 and q = 2.

De�nition 2.3. Let q ≥ 2 and d ≥ 1 be given integers, and let H be a graph. A positive
signal sender S = S+(H, e, f, q, d) for H is a graph that contains two distinguished edges
e, f ∈ E(S), called the signal edges of S, such that the following properties hold:

(S 1) S 6→q H.

(S 2) In any H-free q-colouring of S, the edges e and f have the same colour.

(S 3) distS(e, f) ≥ d.

A negative signal sender S = S−(H, e, f, q, d) for H is de�ned similarly, except that the
words �the same colour� in (S 2) are replaced by �di�erent colours.�

An interior vertex of a signal sender is a vertex that is not incident to either of the
signal edges. The interior of a signal sender is the set of all interior vertices.

We will often use say that we join or connect two edges e1, e2 of a given graph by a
signal sender. What we mean by that is that we create a vertex-disjoint copy of a signal
sender S and identify its signal edges with e1 and e2, that is, the signal sender does not
share any vertices or edges with the original graph except for the (vertices of the) signal
edges.
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Signal senders are known to exist for some important classes of graphs, as given by
Theorem 2.4 below. Part (a) is due to Rödl and Siggers [78], generalising results of Burr
et al. [23] and Burr et al. [25], part (b) is due to Siggers [81], and part (c) follows from a
result in the PhD thesis of Grinshpun [54, Lemma 2.6.3] combined with the result of Fox
et al. [43] concerning s2(Kt ·K2).

Theorem 2.4.

(a) For all integers q ≥ 2 and d ≥ 1 and every graph H that is 3-connected or isomorphic
to K3, there exist positive and negative signal senders in which the distance between
the signal edges is at least d.

(b) For all integers q ≥ 2, d ≥ 1, and t ≥ 4, there exist positive and negative signal
senders for Ct with girth t and distance at least d between the signal edges.

(c) For q = 2 and for all integers t ≥ 3 and d ≥ 1, there exist positive and negative
signal senders for Kt ·K2 in which the distance between the signal edges is at least
d. Further, a signal sender S, positive or negative, with signal edges e and f can be
chosen so that S has a Kt ·K2-free 2-colouring in which all edges incident to e (resp.
f) have a di�erent colour from e (resp. f) and none of the vertices of e and f is
contained in a monochromatic copy of Kt.

Before we continue, we make a few remarks about Theorem 2.4. First, in [54], Grinsh-
pun does not explicitly prove that signal senders exist for K3 ·K2; however, his proof easily
extends to this case. Further, part (c) is actually a slight strengthening of Grinshpun's
result: His result is stated only in terms of negative signal senders and provides a special
colouring in which neither signal edge is incident to a monochromatic copy of Kt but only
one of the signal edges, say f , is required to have a colour di�erent from all edges incident
to it. We can derive the version stated above easily. Let S′ be the signal sender constructed
by Grinshpun. To construct a positive signal sender S+ as in part (c), take two copies of
S′ and identify the two copies of e; similarly, to construct a negative signal sender as in
part (c), take a copy of S+ and a copy of S′ and identify the edge e with one of the signal
edges of S+. As a �nal remark, in the original manuscripts where (b) and (c) appear,
it is not shown explicitly that the distance between the signal edges can be arbitrarily
large. However, it is easy to see that this is indeed the case. Both of the constructions do
guarantee that the signal edges are not incident to each other, which means that we can
increase the distance between the signal edges by stringing several signal senders together
(that is, taking signal senders S1, . . . , Sr and, for each i ∈ {2, . . . , r − 1}, identifying one
signal edge of Si with a signal edge of Si−1 and the other with a signal edge of Si+1; if we
take S1, . . . , Sr−1 to be positive signal senders, then the resulting signal sender is of the
same type (positive or negative) as Sr).

2.2.3 Indicators

Indicators were introduced by Burr et al. in [24] for two colours and generalised by Clemens
et al. in [27] to multiple colours. Together with signal senders, these graphs will serve as
basic building blocks for our construction of pattern gadgets. For this, we need to modify
slightly the de�nition appearing in [27], as given below. In addition, we will need both
positive and negative indicators.
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De�nition 2.5. Let q ≥ 2 and d ≥ 1, and let H and F be graphs such that H 6⊆ F . A
positive indicator I = I+(H,F, e, q, d) for H is a graph such that the following properties
hold:

(I 1) F ⊆ind I and e ∈ E(I) with distI(F, e) ≥ d.

(I 2) There exists an H-free q-colouring of I in which F is monochromatic.

(I 3) For everyH-free q-colouring c of I in which F is monochromatic, we have c(e) = c(F ).

(I 4) For any non-constant colouring ϕF : E(F ) → [q] and k ∈ [q], there exists an H-free
colouring c : E(I)→ [q] such that c|F = ϕF and c(e) = k.

If I is a positive indicator with parametersH,F, e, q, and d, we call I a positive (H,F, e, q, d)-
indicator. In this case, we call F the indicator subgraph and e the indicator edge of I.

A negative indicator I = I−(H,F, e, q, d) is the same except that in property (I 3) we
replace �c(e) = c(F )� with �c(e) 6= c(F ).�

An interior vertex of an indicator is a vertex that belongs to neither the indicator
subgraph nor the indicator edge. The interior of an indicator is the set of all interior
vertices.

Similar to signal senders, joining or connecting a subgraph F and an edge e by an
indicator will mean that we create a vertex-disjoint copy of the indicator and identify the
indicator subgraph with F and the indicator edge with e. In Chapter 4 we will introduce
generalised negative indicators and will also use the same terminology in this context.

Before we move on to the existence results for indicators, let us de�ne a very useful
property of a pair of graphs, called robustness.

De�nition 2.6. Let G be a graph and G0 be an induced subgraph of G. We say that
the pair (G,G0) is H-robust if, in any graph obtained from G by adding any set S of new
vertices and any collection of edges within S∪V (G0), every copy of H is entirely contained
either in G or in the subgraph induced by S ∪ V (G0).

The construction of indicators for the case when H is 3-connected or isomorphic to
K3 was given in [24] for two colours and in [27] for more than two colours, where (I 4) is
replaced with a similar yet slightly weaker property. Essentially the same constructions
work for 3-connected graphs as well as cycles and cliques with a pendant edge with this new
property (I 4). In our constructions, however, we need to ensure that when we put together
several gadgets and later on colour each of them avoiding a monochromatic copy of our
target graph H, there is still no monochromatic H in the resulting graph. We do not want
to accidentally create monochromatic copies that use vertices from several di�erent pieces
of our construction. While we can get this almost immediately for 3-connected graphs, in
the latter two cases we need to maintain some extra properties. Despite these additional
technicalities and the slight modi�cation in our de�nition of indicators, our proofs that the
constructions given in [24] and [27] indeed give the required positive indicators are very
similar to the proofs presented in the original papers.

Theorem 2.7. Let q ≥ 2 and d ≥ 1 be integers, H be a graph, and F be a graph with
e(F ) ≥ 2 such that H * F .
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(a) If H is 3-connected or H ∼= K3, then there exists both a positive indicator I =
I+(H,F, e, q, d) and a negative indicator I = I−(H,F, e, q, d).

(b) If H ∼= Ct for t ≥ 4 and girth(F ) > t, then there exist a positive indicator I =
I+(H,F, e, q, d) and a negative indicator I = I−(H,F, e, q, d), each with girth t.

(c) If H ∼= Kt · K2 for t ≥ 3 and q = 2, then there exist a positive indicator I =
I+(H,F, e, q, d) and a negative indicator I = I−(H,F, e, q, d), each satisfying the
following additional property: The H-free 2-colourings in (I 2) and (I 4) can be chosen
so that none of the vertices of F and e is a vertex of a monochromatic copy of Kt

and all edges incident to e have a di�erent colour from e.

Further, in parts (a) and (b) the indicators can be taken so that (I, F ) is H-robust and in
part (c) we can ensure that (I, F ) is Kt-robust.

Proof. Without loss of generality, we assume that d > v(H). The existence of a negative
indicator in each of the cases follows immediately from the existence of a corresponding
positive indicator. We will �rst show this claim and then proceed to show the existence of
a positive indicator in each case.

Assuming the existence of positive indicators, we can construct negative indicators
easily as follows:

(i) Let I ′ = I+(H,F, e′, q, d) be a positive indicator satisfying all required additional
properties.

(ii) Let e be an edge disjoint from I ′.

(iii) Connect e and e′ by a negative signal sender for H.

Now, properties (I 1)�(I 4) as well as the robustness property and the additional prop-
erties required in parts (b) and (c) are all easy to verify.

We now construct positive indicators. We proceed by induction on the number of edges
in F . The basic construction is the same in all three cases (a)�(c); we will see that the
special properties we require in the latter two cases follow almost immediately from the
properties of the respective signal senders given in Theorem 2.4.

We will in fact show something stronger: Our indicators will satisfy an additional
property, which, following Clemens et al. [27], we call property T . We say that an indicator
I = I+(H,F, e, d, q) satis�es property T if there is a collection of subgraphs {Tf ⊆ I : f ∈
E(F )} satisfying the following properties:

(T 1) V (Tf ) ∩ V (F ) = f for all f ∈ E(F ).

(T 2) V (I) =
⋃
f∈E(F ) V (Tf ) and E(I) =

⋃
f∈E(F )E(Tf ).

(T 3) for all distinct f1, f2 ∈ E(F ) and all v ∈ V (Tf1)∩V (Tf2), we have either v ∈ V (F )
or distI(v, F ) ≥ d.

Property T will be useful for showing the required robustness properties.

We begin with the base case e(F ) = 2. In this case, we will show that our indicators
possess one additional property, as given below.

If F = {f1, f2} is a matching, then distI(f1, f2) ≥ d. (*)
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We have two di�erent constructions, one for q = 2 and a di�erent one for q > 2. We
start with the former, which is a slightly modi�ed version of the construction given in [24].

For q = 2, begin with a copy H0 of H and let e1, e2 ∈ E(H0) be arbitrary except when
H ∼= Kt ·K2, in which case e1 should not be the pendant edge. Let e be an edge disjoint
from H0 and F . Say E(F ) = {f1, f2}. Let S− and S+ be a negative and a positive signal
sender for H in which the distance between each pair of signal edges is at least d and which
satisfy the properties guaranteed by Theorem 2.4. Let I be the graph constructed in the
following way:

(i) Connect f1 to every edge in E(H) \ {e1, e2} by a copy of S−.

(ii) Join f2 and e2 by a copy of S−.

(iii) Join e1 and e by a copy of S+.

We claim that the graph I constructed in this way is a positive indicator with indicator
edge e that also satis�es the required additional properties in each of the cases (a)�(c).

We �rst discuss where copies of H in the graph I can be located. Note that Observa-
tions 2.8 and 2.9 immediately imply the claimed robustness properties.

Observation 2.8. Let H be 3-connected or a cycle. Let I ′ be a graph obtained from I by
adding a new vertex set S and any collection of edges within S ∪ V (F ). Then every copy
of H in I ′ either lies entirely within one of the signal senders from (ii) or (iii), or is fully
contained in S ∪ V (F ), or is the starting copy H0.

Proof. It is not di�cult to see that the claim holds when H ∼= K3, so assume now that
v(H) > 3. For a contradiction, suppose there is a copy H ′ of H in I ′ forming a counterex-
ample. Assume �rst that H ′ contains an interior vertex v of one of the signal senders from
(ii) or (iii); call this signal sender S′. Since the distance between the signal edges of S′

is at least d > v(H ′), we know that H ′ can only contain vertices from one of the signal
edges; call this signal edge f . Now, H ′ is a counterexample, so it needs to contain a vertex
w not belonging to S′. If H is 3-connected, this is not possible, since removing the edge
f disconnects the graph H ′ (any path from v to w in I ′ must contain a vertex of one of
the signal edges of S′). If H is a cycle, then H ′ needs to contain both vertices of f , for
otherwise we can disconnect H ′ by removing a vertex of f , contradicting the fact that H ′

is 2-connected. But then the vertices in V (f)∪{v} participate in a cycle of length strictly
smaller than v(H) in S′, contradicting our assumption on the girth of the signal senders.

Hence, we may assume that H ′ is disjoint from the interior of any of the signal senders.
So H ′ is a subgraph of the graph induced by S ∪ V (F ) ∪ V (H0) ∪ V (e), in which the sets
S ∪V (F ), V (H0), and V (e) are all disconnected from each other. Hence no copy of H can
use vertices from more than one of these sets, implying the claim.

The proof of the girth property required in part (b) is very similar to the proof of
Observation 2.8.

Using a similar argument, we can show the analogous statement for H ∼= Kt ·K2, given
in the observation below.
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Observation 2.9. Let H ∼= Kt ·K2. Let I ′ be a graph obtained from I by adding a new
vertex set S and any collection of edges within S ∪ V (F ). Then every copy of Kt in I ′

either lies entirely within one of the signal senders from (ii) or (iii), or is fully contained
in S ∪ V (F ), or is in the starting copy H0.

We now turn our attention to property (*) and property T . If F is a matching, by the
choice of the signal senders used in the construction, we indeed have distI(f1, f2) ≥ d. To
verify the latter property, notice that the subgraphs Tf2 , consisting of the signal sender
connecting f2 and e2, and Tf1 , induced by all remaining vertices together with the vertices
of e2 and the vertices in f1 ∩ f2, satisfy (T 1)�(T 3).

It remains to show that I satis�es properties (I 1)�(I 4) as well as the additional prop-
erties required in part (c).

(I 1) The �rst part is clear, since in the construction we do not add any further edges
between the vertices of F . In each case, the second part of the property follows easily from
the fact that distI(F, e) must be at least the distance between the signal edges in the signal
senders we attach to f1, f2, and e.

(I 2) For this, consider the following colouring:

� Give colour 1 to the edges of F .

� Give colour 1 to e1 and colour 2 to all other edges of H0.

� Give colour 1 to e.

� Extend this colouring to each of the signal senders so that no signal sender contains a
monochromatic copy of H. In case (c) choose these colourings to be Kt ·K2-special.

Note that the extension in the last step of the colouring is possible since the colours
for the signal edges are chosen so that they �t property (S 2). Observe also that F is
monochromatic.

We claim that this colouring is H-free. Indeed, for parts (a) and (b), Observation 2.8
implies that every copy of H in I either lies entirely within some signal sender or is the
starting copy H0; by our choice of the colouring, none of these copies of H are monochro-
matic. For (c), again neither the starting copy H0 nor any copy of H that is fully contained
within a single signal sender is monochromatic. Any other copy of H must contain a copy
of Kt that touches a signal edge and hence cannot be monochromatic by the choice of the
Kt ·K2-special 2-colouring from Theorem 2.4.

Further, we use the Kt ·K2-special 2-colouring from Theorem 2.4 to colour each of the
signal senders, so this colouring of I is also a Kt ·K2-special 2-colouring.

(I 3) If F is monochromatic in, say, colour 1, then by property (S 2) of the signal
senders, in any H-free colouring, all edges in E(H0)\{e1} have colour 2 and e1 and e have
the same colour. For the colouring to be H-free, the edge e1, and hence also e, must have
colour 1.

(I 4) To justify this property, consider the following colouring:

� Give colour ϕF (fi) to fi for both i ∈ [2].

� Give colour k to e1, colour ϕF (f1) to e2, and colour ϕF (f2) to all other edges of H0.
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� Give colour k to e.

� Extend this colouring to each of the signal senders so that no signal sender contains a
monochromatic copy of H. In case (c), choose these colourings to be Kt ·K2-special.

Again, the extension in the last step of the colouring is possible since the colours for the
signal edges are chosen so that they �t property (S 2). The argument needed to check that
this colouring is H-free is similar to the one used to verify property (I 2) above. Also, it is
not hard to see that this also gives a Kt ·K2-special 2-colouring in case (c).

We now present the construction for q > 2 and e(F ) = 2, given in [27]. Say E(F ) =
{f1, f2}. Let {e1, . . . , eq−1} be a matching, disjoint from F . Let H1, . . . ,Hq−1 be copies
of H that are disjoint from F and e1, . . . , eq−1 and that all intersect in precisely one �xed
edge, which we call e. Let S+ and S− be a positive and a negative signal sender for H
respectively in which the distance between the signal edges is at least d and which satisfy
the additional properties guaranteed by Theorem 2.4. Let I be the graph constructed in
the following way:

(i) Connect f1 and ei by a copy of S− for all i ∈ [q − 2].

(ii) Connect f2 and eq−1 by a copy of S−.

(iii) Join each pair ei, ej for 1 ≤ i < j ≤ q − 1 by a copy of S−.

(iv) For all i ∈ [q − 1], connect ei to all edges of Hi except for e by a copy of S+.

The veri�cation that this indeed gives an indicator is similar to the one in the case
q = 2. As before, every copy of H in parts (a) and (b) either is one of the starting copies
H1, . . . ,Hq−1 or is fully contained within a single signal sender (similarly forKt in part (c)).
Notice also that the robustness property, the girth property required in (b), and properties
T and (*) are shown in a similar way as in the case q = 2.

Finally, we check properties (I 1)�(I 4). Property (I 1) is straightforward.
(I 2) To see this property, colour f1, f2, and e with colour 1 and, for all i ∈ [q− 1], give

ei and all edges in E(Hi) \ {e} colour i+ 1. Then extend this colouring to all of the signal
senders so that each signal sender is coloured without a monochromatic copy of H, which
is possible since the colours chosen above �t property (S 2). By the same argument as in
the case q = 2, there in no monochromatic H anywhere in the graph.

(I 3) For this, suppose f1 and f2 have the same colour, say colour 1. Then, in anyH-free
colouring, each of the colours in [q]\{1} must be used on the matching e1, . . . , eq−1 exactly
once because of the signal senders in (i)�(iii), and each Hi− e needs to be monochromatic
in the colour of ei because of the signal senders in (iv). Thus, to avoid a monochromatic
copy of H, the colour of e must be 1, i.e., the same as the colour of F .

(I 4) Suppose that f1 and f2 are coloured di�erently, say using colours 1 and 2 re-
spectively, and we are given any colour k. If k 6= 1, 2, we can colour e1, . . . , eq−2 with
colours 2, . . . , k − 1, k + 1, . . . , q respectively and eq−1 with colour 1; if k = 2, we can
colour e1, . . . , eq−2 with colours 3, . . . , q and eq−1 with colour 1; �nally, if k = 1, we colour
e1, . . . , eq−2 with colours 2, . . . , q−1 and eq−1 with colour q. In each case, colour k is avail-
able for e and we can still extend the colouring to all the signal senders without creating
a monochromatic copy of H.
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We now proceed with the induction step. Suppose there exist indicators as required in
the statement of the theorem that also satisfy properties T and (*) when e(F ) ≤ ` for some
` ≥ 2. Assume e(F ) = `+ 1. Let f be any edge of F and F ′ = F − f ; further, let e′ and e
be two edges that are disjoint from F and from each other. By the induction hypothesis,
there exists a positive (H,F ′, e′, q, d)-indicator I ′ satisfying all of the required properties.
There also exists a positive (H, {e′, f}, e, q, d)-indicator I ′′ in which the distance between e′

and f is at least d. Now, let I be the graph obtained by joining F ′ and e′ by I ′ and {f, e′}
and e by I ′′. We claim that I is a positive indicator satisfying all required properties.

First, as before, we discuss where copies of H can be located. For this, consider a graph
obtained from I by adding a new set of vertices S and any edges within S ∪ V (F ). We
claim that in parts (a) and (b) every copy of H is contained entirely within I ′, I ′′, or the
graph induced by S ∪ V (F ), and that in part (c) every copy of Kt is contained entirely
within I ′, I ′′, or the graph induced by S ∪ V (F ). Again, this immediately implies the
claimed robustness properties.

Assume �rst that H is either 3-connected or isomorphic to a cycle. Let H ′ be a copy of
H in the new graph. Suppose that H ′ contains an interior vertex of I ′′. By our assumption
on the distance between f and e′ in I ′′, the graph H ′ can only contain vertices from one
of these two edges. Again, by the condition that H is 3-connected or isomorphic to K3

in (a) and by our assumption on the girth of each indicator and of F in (b), we conclude
that H ′ ⊆ I ′′.

Suppose next that H ′ contains no such vertices but contains an interior vertex v of I ′.
If H ′ contains no vertices of F , then H ′ cannot contain any vertices from the set S either,
and thus H ′ is fully contained in I ′. Hence, we may assume that H ′ contains a vertex of F .
Let {Tf ′ : f ′ ∈ E(F ′)} be a collection of subgraphs of I ′ witnessing that I ′ has property
T . Then v is contained in some Tg for g ∈ E(F ′); further, this g is unique, since otherwise
distI(F, v) ≥ d > v(H) by (T 3), leading to a contradiction.

Since V (Tg) ∩ V (F ) = g, the only possible copy of K3 containing v and a vertex of F
consists of v and the endpoints of g and is thus fully contained in I ′. If (S∪V (F ))∩V (H ′) ⊆
V (g), then H ′ is fully contained in I ′. So H ′ contains a vertex from (S ∪ V (F )) \ V (g).
If H is 3-connected, this is not possible, since removing the vertices of g disconnects H ′.
Finally, suppose H is a cycle. In this case, by the fact that H ′ is 2-connected, both vertices
of g must be contained in H ′, but this means that v and the vertices of g are part of a
cycle of length strictly smaller than v(H ′), contradicting our assumption about the girth
of I ′.

The argument for part (c) is analogous to that for part (a). Also, a similar argument
shows that the girth condition required in part (b) holds.

Now, to verify property T , consider a collection {Tf ′ : f ′ ∈ E(F ′)} of subgraphs of
I ′ given by property T . Adding the graph I ′′, we obtain a collection of subgraphs of I
satisfying (T 1)�(T 3).

Finally, we check the indicator properties. Property (I 1) is clear, since we do not add
any new edges within F and distI(F, e) ≥ distI′′({f, e′}, e) ≥ d.

(I 2) The colouring c given by c(F ) = c(e′) = c(e) = 1 can be extended to I ′ and I ′′ so
that neither contains a monochromatic copy of H. Furthermore, in parts (a) and (b), every
copy of H lies entirely within one of I ′ and I ′′, so there is no monochromatic copy of H in
I. For part (c), the same follows from the fact that every copy of Kt is contained within I ′

or I ′′ and we can choose the extensions to I ′ and I ′′ in such a way that no vertex of F, e′,
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or e is in a monochromatic copy of Kt. The latter is possible as we can �nd Kt ·K2-special
2-colourings for I ′ and I ′′ by induction. Also, using these Kt ·K2-special 2-colourings we
obtain a colouring of the whole graph I such that all edges incident to e have a di�erent
colour from e and no vertex of F or e is part of a monochromatic Kt, as required. Thus,
we conclude that (I 2) holds and we immediately get the existence of a Kt · K2-special
2-colouring as required in part (c).

(I 3) For this, note that, if F is monochromatic in an H-free colouring, then I ′ forces
e′ to have the same colour as F , and I ′′ in turn makes it necessary for e to also have the
same colour as F .

(I 4) For the last property, let ϕF be any non-constant colouring of the edges of F and
k ∈ [q]. Let f ′, f ′′ ∈ E(F ) be two edges that have distinct colours, say ϕF (f ′) = i and
ϕF (f ′′) = j for some distinct i, j ∈ [q]. First assume that f ′ = f . In this case whether
F − f is monochromatic or not, there exists an extension of ϕF to an H-free colouring of
I ′ such that the colour of e′ is j, which in turn means that there is an extension of this
colouring also to an H-free colouring of I ′′ such that the colour of e is k. Otherwise, if
f ′ ∈ F − f , then F − f is not monochromatic and there is an extension of ϕF to an H-free
colouring of I ′ in which e′ has colour k. Then, whether {f, e′} is monochromatic or not,
there exists an extension of ϕF also to an H-free colouring of I ′′ such that e has colour k.
Again, it is not di�cult to check that this is an H-free colouring of I that in case (c) can
be made Kt ·K2-special.

2.3 Properties of G(n, p)

In this section we shall establish various properties of the random graph G(n, p) needed
for the proof of Theorem 3.6 and the deduction of Corollary 3.16.

2.3.1 Facts about G(n, p)

We start with some bounds on the degrees and edge distribution in the random graph, for
which we require the following well-known concentration bounds due to Cherno� (see [66,
Theorem 2.3] and [53, Theorem 22.6]).

Lemma 2.10. Let X ∼ Bin(n, p) and µ = E[X].

(a) If 0 < ε < 1, then P(X ≥ (1+ε)µ) ≤ exp (−µε
2

3 ) and P(X ≤ (1−ε)µ) ≤ exp (−µε
2

2 ).

(b) For all t ≥ 7µ we have P(X ≥ t) ≤ exp(−t).

With these concentration results, we can specify how many edges the random graph is
likely to have. This is done in the following lemmas, which collect some folklore bounds
on the degrees and number of edges in G(n, p). We start by controlling the degrees.

Lemma 2.11 (Degrees in G(n, p)). Let p = p(n) ∈ (0, 1), and let H ∼ G(n, p). Then
a.a.s. the following bounds on the maximum degree hold:

(a) for any �xed integer k ≥ 2, we have ∆(H) ≥ k − 1 when p� n−
k

k−1 , and
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(b) for any f = f(n) satisfying 1 � f = no(1), we have ∆(H) ≥ logn
log(f logn) when

p = 1
nf .

Moreover, if p� logn
n , then with probability at least 1− n−2 we have

(c) dH(v) = (1± o(1))np for every v ∈ V (H).

Proof. If p � n−
k

k−1 for any integer k ≥ 2, then it follows from a simple second moment
calculation that H a.a.s. contains a star with k − 1 edges, and hence ∆(H) ≥ k − 1; see
Theorem 5.3 in [53] for more details.

Part (b) can be obtained from a similar application of the second moment method. For
simplicity, we apply Theorem 3.1 (ii) from [13], stating that, if n−3/2 � p� 1−n−3/2 and
the expected number of vertices of degree d = d(n) in H ∼ G(n, p) tends to in�nity, then
with high probability H contains at least one vertex of degree d.

For p = 1
nf and d = logn

log(f logn) , we can lower bound the expected number of vertices of
degree d by

n

(
n− 1

d

)
pd(1− p)n−1−d ≥ n

(
(n− 1)p

d

)d
(1− np) ≥ 1

2n

(
1

2fd

)d
=

1

2
elogn−d log(2fd) =

1

2
e

logn
log(f logn)(log log

√
f logn)

which tends to in�nity. Thus we must have at least one vertex of degree d, and hence
∆(H) ≥ d.

Part (c) follows by applying Lemma 2.10(a) to the degree of each vertex, and then
taking a union bound over all n vertices.

We can also bound the number of edges, both globally and, provided the edge proba-
bility is not too low, in all large induced subgraphs.

Lemma 2.12 (Edge counts in G(n, p)). Let p = p(n) ∈ (0, 1) with p � n−2, and let
H ∼ G(n, p). Then a.a.s. the following statements hold:

(a) e(H) = (1± o(1))n
2p
2 , and

(b) if p � logn
n , then with probability at least 1 − n−2, every set S ⊆ V (H) of size

s ≥ 20 logn
p satis�es eH(S) ≥ 1

4s
2p.

Proof. Part (a) follows directly from Lemma 2.10(a). For part (b), we take a union bound
over all sets S of s vertices, again applying Lemma 2.10(a) to bound the probability that
such a set contains too few edges. This results in a bound of

n∑
s= 20 logn

p

(
n

s

)
e−

1
16

(1−o(1))s2p ≤
n∑

s= 20 logn
p

es logn− 1
16

(1−o(1))s2p ≤
n∑

s= 20 logn
p

e−0.2s logn < n−2,

proving the lemma.

Aside from knowing how many edges the random graph contains, we shall also need
some knowledge about how they are distributed. The following result describes the struc-
ture of sparse random graphs.
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Lemma 2.13. Let p = p(n) ∈ (0, 1) with p � n−1, and let H ∼ G(n, p). Then a.a.s. H
is a forest, and moreover the order λ(H) of its largest component satis�es the following
bounds:

(a) λ(H) ≤ log n,

(b) if p� n−
k+1
k for some constant k ∈ N, then λ(H) ≤ k, and

(c) if p = 1
nf for some f = f(n) satisfying 1� f = no(1), then λ(H) ≤ (1+o(1)) logn

log f .

Proof. That H contains no cycles, and hence is a forest, can be shown by taking a union
bound over all possible cycles; see Theorem 2.1 in [53] for the details. We now bound the
orders of the trees in this forest. For part (a), we refer to Lemma 2.12(ii) in [53], which
asserts that with high probability a random graph H ′ ∼ G(n, e−2n−1) contains no trees
of order larger than log n. By monotonicity the same bound holds when p � n−1. For
the bound in (b), notice that there are only a constant number of non-isomorphic trees
on k + 1 vertices, and by a simple �rst moment calculation (see Theorem 5.3 in [53]) each

of these trees appears in H with vanishing probability when p � n−
k+1
k . The bound in

part (c) can again be obtained by running a �rst moment calculation, the details of which
we now sketch. As there are kk−2 labelled trees on k vertices, the total possible number of
tree components of order k is

(
n
k

)
kk−2. For such a tree to appear as a subgraph, we need

its k− 1 edges to appear in G(n, p). Hence, the probability of seeing such a tree is at most(
n

k

)
kk−2pk−1 ≤

(ne
k

)k (kp)k

k2p
≤ p−1(nep)k.

For p = 1
nf and any ε > 0, the sum of this expression over all k ≥ (1 + ε) logn

log f is at most

p−1 (nep)
(1+ε) logn

log f

(
1

1− nep

)
≤ 2e

log(nf)−(1+ε) logn
log f

(log f−1) ≤ 2e−
ε
2

logn = o(1)

and hence a.a.s. the largest component has order at most (1 + o(1)) logn
log f .

Switching to a much denser range, we �nd that when the edge probability is su�ciently
large, not only does G(n, p) contain cycles, but every edge is contained in a triangle.

Lemma 2.14. Let p = p(n) ∈ (0, 1) be such that p�
√

logn
n , and let H ∼ G(n, p). Then

a.a.s. every edge of H is contained in a triangle.

Proof. An easy application of the union bound gives

Pr (∃e = uv ∈ E(H) : uv is not in a triangle)

≤ Pr

(
∃{u, v} ∈

(
V (H)

2

)
: uw /∈ E(H) or vw /∈ E(H) for all w ∈ V (H) \ {u, v}

)
≤
(
n

2

)
· (1− p2)n−2 < e2 logn−p2(n−2) = o(1) ,

which proves the lemma.
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Finally, in our construction of minimal Ramsey graphs with vertices of low degree, we
shall make use of some mild pseudorandom properties concerning the degrees, connectivity,
and expansion of the target graphH. The required properties are collected in the de�nition
below.

De�nition 2.15 (Well-behaved). We say an n-vertex graph H is well-behaved if it satis�es
the following properties:

(W 1) H has a unique vertex u of minimum degree δ(H),

(W 2) every pair of vertices in H has codegree at most 1
2δ(H),

(W 3) H is 3-connected, and

(W 4) removing δ(H) vertices from H cannot create a component of size k ∈
[

1
2δ(H), 1

2n
]
.

As might be expected, random graphs are highly likely to be well-behaved.

Lemma 2.16. If logn
n � p� 1 then a.a.s. H ∼ G(n, p) is well-behaved.

Proof. The property (W 1) is established in Theorem 3.9(i) of [13]. Moreover, due to
Lemma 2.11(c) we may condition on δ(H) = (1±o(1))np from now on. For property (W 2),
observe that the distribution of the codegree of a given pair of vertices is Bin(n−2, p2). We
consider two cases. If p2 ≥ 10 logn

n then by applying a Cherno� bound (Lemma 2.10(a)) we

obtain Pr(dH(u, v) ≥ 2np2) ≤ e−
1
3

(n−2)p2 < e−3 logn for large n. Taking a union bound over
all
(
n
2

)
pairs of vertices, this shows that with high probability the maximum codegree is at

most 2np2 < 1
2δ(H). Otherwise p2 ≤ 10 logn

n and then Lemma 2.10(b) yields Pr(dH(u, v) ≥
100 log n) ≤ e−100 logn. We can then again take a union bound over all pairs to show the
maximum codegree is at most 100 log n, which, as δ(H) = (1 ± o(1))np � log n, is again
less than half the minimum degree.

Property (W 3) is shown to hold with high probability in Theorem 4.3 in [53].
This leaves us with property (W 4). Let us �x k ∈

[
1
2δ(H), 1

2n
]
, and bound the prob-

ability that we can create a component K of size k by removing a set U of δ(H) vertices.
In order for this to happen, there cannot be any edges between K and V (H) \ (K ∪ U).
For given K and U , the probability of this is (1 − p)k(n−k−δ(H)). Taking a union bound
over all possible components K and cut-sets U , the probability that property (W 4) fails
for a given k is at most(

n

k

)(
n

δ(H)

)
(1− p)k(n−k−δ(H)) ≤ nknδ(H)e−pk(n−k−δ(H)) ≤ e(k+δ(H)) logn−1

4pkn,

where the last inequality uses the bounds k ≤ 1
2n and δ(H) = (1±o(1))np ≤ 1

4n. Now, since

p � logn
n , we have k log n � pkn, and, since k ≥ 1

2δ(H), we also have δ(H) log n � pkn.

Hence, we can bound this error probability by e−
1
8
pkn = o(n−1), using again the fact that

pkn � δ(H) log n. Therefore, even after taking a union bound over all possible values of
k, we see that property (W 4) holds with high probability.
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2.3.2 Transference lemma

As is evident in the statement of Theorem 3.6, our bounds on the simplicity of H ∼ G(n, p)
depend on the subgraph induced by the neighbourhood of the minimum degree vertex
(which, by virtue of Lemma 2.16 and property (W 1), we may assume to be unique). Our
next lemma allows us to transfer what we know about the random graph G(δ(H), p) to
this subgraph.

Lemma 2.17. Let p = p(n) ∈ (0, 1) be such that p� logn
n . For every s ∈ [0.5np, 2np], let

Ps be a graph property, and assume that a random graph Gs ∼ G(s, p) satis�es

Pr (Gs ∈ Ps) = 1− o(1).

Then H ∼ G(n, p) a.a.s. has a unique minimum degree vertex u and H[NH(u)] ∈ PdH(u).

Proof. Let us �x some βn = o(1) such that

Pr (Gs /∈ Ps) = o(βn) (2.1)

for every s ∈ [0.5np, 2np]. Moreover, letXδ denote the event thatH has a unique vertex
of minimum degree and 0.5np ≤ δ(H) ≤ 2np. By Lemma 2.16, speci�cally property (W 1),
and Lemma 2.11 we know that Xδ holds with high probability. In particular, we can �nd
δn = o(1) such that

Pr(0.5np ≤ δ(H) ≤ 2np) ≥ Pr(Xδ) = 1− δn.

In the following we will condition on the event Xδ, and whenever we do so, we will always
let u denote the unique minimum degree vertex in H. We will follow an approach similar
to that used in the proof of Corollary 2.1.4 in [54]. Before we proceed with the proof, we
introduce some notation and facts that we will need later on. We begin with the fact that
there exists γn = o(1) such that the following holds:

(1) For any d ≥ 0, we have Pr(δ(H) = d) ≤ γn.

(2) For any d ≥ 0, if H ′ ∼ G(n− 1, p), we have Pr(δ(H ′) ≥ d− 1) ≥ Pr(δ(H) ≥ d)− γn.

Part (1) follows from the proof of Theorem 3.9(i) in [13], while part (2) is shown in the
proof of Corollary 2.1.4 in [54].

Next, let εn = o(1) be chosen such that εn = ω(max{βn, γn, δn}). We further let tn be
the smallest integer such that Pr(δ(H) ≤ tn) ≥ 1− εn. Note that, by the minimality of tn,
we then have Pr(δ(H) ≤ tn − 1) < 1− εn. Using (1) for d = tn, we conclude

1− εn ≤ Pr(δ(H) ≤ tn) = Pr(δ(H) ≤ tn − 1) + Pr(δ(H) = tn) ≤ 1− εn + γn. (2.2)

Moreover, since εn > γn + δn, we obtain Pr(δ(H) ≤ tn) < 1 − δn < Pr(δ(H) ≤ 2np) and
thus tn ≤ 2np.

Since H ∼ G(n, p), the subgraph H − v, for any �xed vertex v, has the distribution
G(n−1, p). However, recall that we are conditioning on the eventXδ, and that in particular
there is a unique vertex u of minimum degree d = dH(u). We will be interested in the
subgraph H ′ = H − u, and �rst need to determine how conditioning on Xδ a�ects its
distribution.
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Suppose S ⊆ V (H ′) is the neighbourhood of u. As u is the only vertex of degree at
most d in H, we must have dH′(v) ≥ d + 1 for all v ∈ V (H ′) \ S, and dH′(v) ≥ d for all
v ∈ S; let CS be the event that these lower bounds on the degrees in H ′ hold. Aside from
CS , however, Xδ yields no further information about the graph H ′, as the edges in G(n, p)
are independent. Thus, we have

Pr
G(n,p)

(H[S] ∈ Pd|Xδ ∧ {NH(u) = S}) = Pr
G(n−1,p)

(H ′[S] ∈ Pd|CS). (2.3)

Now, by the Law of Total Probability,

Pr
G(n,p)

(H[NH(u)] ∈ PdH(u)|Xδ)

=
∑

0≤d≤n−1

∑
S∈(V (H′)

d )

Pr
G(n,p)

(H[S] ∈ Pd|Xδ ∧ {NH(u) = S}) · Pr
G(n,p)

(NH(u) = S|Xδ)

≥
∑

0.5np≤d≤tn

∑
S∈(V (H′)

d )

Pr
G(n−1,p)

(H ′[S] ∈ Pd|CS) · Pr
G(n,p)

(NH(u) = S|Xδ). (2.4)

To estimate the �rst factor, we observe that

Pr
G(n−1,p)

(CS) ≥ Pr(δ(H ′) ≥ d+ 1) ≥ Pr(δ(H) ≥ d+ 2)− γn

≥ Pr(δ(H) ≥ tn + 2)− γn ≥ Pr(δ(H) ≥ tn + 1)− 2γn ≥ εn/2, (2.5)

where the second inequality follows from (2), for the third inequality we use d ≤ tn, the
fourth inequality follows from (1), and the last inequality comes from (2.2) and since
εn = ω(γn). Hence we have

Pr
G(n−1,p)

(
H ′[S] ∈ Pd|CS

)
= 1− Pr

G(n−1,p)

(
H ′[S] /∈ Pd|CS

)
= 1−

PrG(n−1,p) ({H ′[S] /∈ Pd} ∧ CS)

PrG(n−1,p)(CS)

≥ 1−
PrG(n−1,p) (H ′[S] /∈ Pd)

PrG(n−1,p)(CS)

≥ 1−
PrG(d,p) (Gd /∈ Pd)

εn/2
= 1− o(1),

where for the second inequality we use (2.5) and thatH ′[S] ∼ G(d, p) and the �nal estimate
uses (2.1) and βn = o(εn). Putting this into (2.4), we conclude that

Pr
G(n,p)

(H[NH(u)] ∈ PdH(u)|Xδ) ≥
∑

0.5np≤d≤tn

∑
S∈(V (H′)

d )

(1− o(1)) Pr
G(n,p)

(NH(u) = S|Xδ)

= (1− o(1)) Pr
G(n,p)

(0.5np ≤ δ(H) ≤ tn|Xδ)

= (1− o(1))
PrG(n,p)({δ(H) ≤ tn} ∧Xδ)

Pr(Xδ)

≥ (1− o(1))
1− PrG(n,p)(δ(H) > tn)− PrG(n,p)(Xδ)

Pr(Xδ)
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≥ (1− o(1))
1− εn − δn

1− δn
= 1− o(1).

This proves the lemma.

2.4 Shifting technique

In this section we will introduce some well-known facts about shifting. For F ⊆ [n]
and i, j ∈ [n] we set

σij(F ) =

{
(F \ {j}) ∪ {i} if j ∈ F and i /∈ F
F otherwise

,

and note that |σij(F )| = |F |. Moreover, for a given F ⊆ P([n]) we de�ne the fam-
ily σij(F) = {σij(F ) : F ∈ F} ∪ {F ∈ F : σij(F ) ∈ F} and note that |σij(F)| = |F|.
Further, it can easily be checked that if F ⊆P([n]) is intersecting, then σij(F) is also inter-
secting. We say that F ⊆P([n]) is shifted if for all i, j ∈ [n] with i < j we have σij(F) = F ,
i.e., for all F ∈ F we have that σij(F ) ∈ F . By shifting an intersecting family F ⊆P([n])
repeatedly, that is, replacing F by σij(F) repeatedly for all i, j ∈ [n] with i < j, we obtain
an intersecting family G that is shifted and for which we have |G| = |F| and |Gk| = |Fk|.
Thus, to determine the maximum size of an intersecting family, one can restrict themselves
to shifted families.

Moreover, for the sake of completeness, we prove the following Lemma.

Lemma 2.18. Let a, b ∈ [n]. If F1, . . . ,Fr ⊆ P([n]) are r-cross t-intersecting, then the
families σab(F1), . . . , σab(Fr) are r-cross t-intersecting.

Proof. Assume the contrary and let F ′1 ∈ σab(F1), . . . , F ′r ∈ σab(Fr) for every i ∈ [r] such
that |

⋂
i∈[r] F

′
i | < t. For every i ∈ [r], let Fi = F ′i if F

′
i ∈ F . If F ′i /∈ F , we know that a ∈ F ′i

and b /∈ F ′i and we set Fi = σba(F
′
i ) ∈ Fi. Since F1, . . . ,Fr are r-cross t-intersecting, we

have |
⋂
i∈[r] Fi| ≥ t and so there is some j ∈ [r] such that Fj = σba(F

′
j) 6= F ′j . But then we

have a /∈ Fj and, thus, a /∈
⋂
i∈[r] Fi. This yields that

t− 1 ≤ |
⋂
i∈[r]

Fi \ {a, b}| = |
⋂
i∈[r]

F ′i \ {a, b}| . (2.6)

Note that the assumption |
⋂
i∈[r] F

′
i | < t tells us that in fact the left side inequality above

is an equality. This in turn implies that b ∈
⋂
i∈[r] Fi.

Our assumption together with (2.6) also give some ` ∈ [r] such that a /∈ F ′`. Then it
follows by de�nition that σab(F`) ∈ F` because b ∈

⋂
i∈[r] Fi. Hence, |σab(F`)∩

⋂
i∈[r]\` Fi| <

t contradicts F1, . . . ,Fr being r-cross t-intersecting.

This allows us to restrict ourselves to shifted families when looking for the maximum
sum of measures of r-cross t-intersecting families if the measure of a set F depends only
on the size of F .



3
Ramsey simplicity of random graphs

In this chapter we will study the behaviour of parameter sq for random graphs. For a
graph H, letMq(H) denote the set of all minimal Ramsey graphs for H. Then we de�ne
sq(H) = min{δ(G) : G ∈Mq(H)}. As has been observed before, q(δ(H)−1)+1 is a simple
lower bound for sq(H) and H is said to be q-Ramsey simple if this bound is attained.

In the �rst section of this chapter, Section 3.1, we will prove Theorem 3.2. Here we
will discuss the behaviour of random graphs in two extreme settings. We observe that
when the random graph is sparse enough, in particular when it is almost surely a forest,
it is q-Ramsey simple for all values of q whereas at the other extreme, when the graph is
su�ciently dense, G(n, p) is never q-Ramsey simple for any values of q.

Before we go on to analyse this behaviour further in the intermediate setting, we make
an important observation in Section 3.2. We show that q-Ramsey simplicity is a monotone
property and therefore one may de�ne a threshold value for q. We de�ne this as follows.

De�nition 3.1. q̃(H) = sup{q : H is q-Ramsey simple}.

As was also noted earlier, we will de�ne q̃(H) =∞ whenever H is q-Ramsey simple for
all integers q ≥ 1 and since every graph H is trivially 1-Ramsey simple, we de�ne q̃(H) = 1
whenever H is not q-Ramsey simple for any integer q ≥ 2.

Armed with this observation and de�nition, in Section 3.3, we will provide some lower
bound estimates on this new parameter for the intermediate ranges of p. Namely, we will
prove Theorem 3.6(a) and (b). Thereafter, in Section 3.4, we will provide some upper
bound estimate on q̃(H). In particular we will show Theorem 3.6(c). We will conclude
this chapter by stating some further question of interest in Section 3.5.

This chapter is based on joint work with Simona Boyadzhiyska, Dennis Clemens, and
Shagnik Das [17].

3.1 The two extremes

We will begin by observing the behaviour of random graphs when they are either too sparse
or too dense. Speci�cally, we will consider the ranges when the graph H ∼ Gn,p is either
almost surely a forest or is such that almost surely every edge is in a triangle. We will
prove the following theorem.

36
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Theorem 3.2. Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). Then a.a.s. the following holds:

(a) q̃(H) =∞ if 0 < p� n−1.

(b) q̃(H) = 1 if
(

logn
n

)1/2
� p < 1.

To begin, we observe that we have nothing new to prove in case (a). By Lemma 2.13 we
know H is a forest with high probability when p� n−1. Szabó, Zumstein, and Zürcher [83]
proved that all forests are 2-Ramsey simple, and their proof extends directly to show q-
Ramsey simplicity for all q ≥ 3 as well. For completeness, we provide the argument in the
next lemma.

Lemma 3.3. For every forest F without isolated vertices and every integer q ≥ 2, we have
sq(F ) = 1.

Proof. Given F , �x a bipartition V (F ) = A ∪ B, where |A| ≤ |B| and the size of A is
minimised. Set a = |A|, b = |B|, B1 = {v ∈ B : dF (v) = 1}, and B≥2 = B \ B1. We
start by showing that |B≥2| ≤ a − 1. Indeed, let T1, . . . , Tk be the components of F and,
for each i ∈ [k], let ri be an arbitrary vertex in A ∩ V (Ti). Viewing Ti as a tree rooted at
ri, we note that each element of B≥2 ∩ V (Ti) must have a child in A∩ V (Ti) and, since Ti
is a tree, all of these children must be di�erent. Thus, |A∩ V (Ti)| ≥ |B≥2 ∩ V (Ti)|+ 1 for
all i ∈ [k], and summing up over all components yields |A| ≥ |B≥2|+ 1.

Now, set r = q(a− 1), s = qr+1v(F ), and t = sbq, and let G be the graph constructed
as follows:

� let V (G) = X∪̇Y ∪̇Z, where |X| = r, |Y | = s, and |Z| = t,

� add a complete bipartite graph between X and Y , and

� partition Z into s subsets of size bq, indexed by the elements of Y . That is, let
Z =

⋃
y∈Y

Zy, where |Zy| = bq. For each y ∈ Y , connect y to all vertices of Zy.

Each vertex v ∈ Z then satis�es dG(v) = 1. We will now show that (i) G − Z 6→q F ,
and (ii) G →q F . From this it follows directly that G must contain a graph fromMq(F )
with minimum degree one, and hence that sq(F ) = 1.

To see property (i), colour E(G−Z) as follows: take any partition X = X1 ∪ . . . ∪Xq

with |Xi| = a− 1 for every i ∈ [q], and colour E(Xi, Y ) in colour i. Then each colour class
is a bipartite graph with a partite set of size smaller than a. By the de�nition of a, there
cannot be a monochromatic copy of F .

We prove (ii) next. Consider any q-colouring ϕ : E(G)→ [q]. Each vertex y ∈ Y has bq
neighbours in Zy, and hence there must be a subset Z ′y ⊆ Zy of size b such that the edges
from y to Z ′y are monochromatic. As we use only q colours, there must be a subset Y ′ ⊆ Y
of sq vertices y1, . . . , ys/q such that, without loss of generality, the edges between yi and Z

′
yi

are all colour 1 for each i ∈ [s/q]. Further, set Z ′ =
⋃

yi∈Y ′
Z ′yi . Next, let X = {x1, . . . , xr}.

For every yi ∈ Y ′, we consider the vector ci := (ϕ(x1yi), . . . , ϕ(xryi)) ∈ [q]r, the colour
pro�le of yi. As |Y ′| = s/q = qrv(F ), there must be at least v(F ) vertices in Y ′ with the
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same colour pro�le c. By symmetry, we may assume that c1 = c2 = . . . = cv(F ) = c. We
consider two cases.

Case 1: There is a colour i ∈ [q] that appears at least a times in c. This gives a copy
of Ka,v(F ) between X and {y1, . . . , yv(F )} that is monochromatic in colour i. As Ka,v(F )

contains a copy of F , we are done.

Case 2: Every colour is used exactly (a − 1) times in c. In particular, we �nd a
subset X ′ ⊆ X of size a − 1 such that the edges between X ′ and {y1, . . . , yv(F )} are
monochromatic in colour 1. Using the edges between yi and Z

′
yi , for i ∈ [v(F )], we �nd a

monochromatic copy of F : embed A into {y1, . . . , yv(F )} arbitrarily, embed B1 into Z ′ by
respecting adjacency relation, and embed B≥2 into X ′ arbitrarily.

On the other end of the spectrum, when H = G(n, p) is a dense graph, we observe that
H is never simple.

Theorem 3.4. Let p�
√

logn
n and H ∼ G(n, p). Then q̃(H) = 1.

Proof of Theorem 3.6(b). Let q ≥ 2 be some integer. For a contradiction suppose that H
is q-Ramsey simple. Let G be a minimal q-Ramsey graph for H such that G has a vertex w
with dG(w) = qδ(H)− (q− 1). By the minimality of G, we can �nd an H-free q-colouring
c of the graph G − w. Now �x an arbitrary vertex v ∈ NG(w) and observe that, by the
pigeonhole principle, there must be a set W ⊆ NG(w) \ {v} of size δ(H) − 1 such that
all edges between v and any of its neighbours in W have the same colour; without loss of
generality, let this be colour 1 and set U = W ∪ {v}. We can extend the colouring c by
giving each colour i ∈ [q − 1] to all exactly δ − 1 edges from w to NG(w) \ U and giving
colour q to all edges from w to vertices in U . With this colouring we cannot create a
monochromatic copy of H in any colour [q − 1], as w is only incident to δ(H)− 1 edges of
any colour in [q − 1]. On the other hand, w is incident to exactly δ(H) edges of colour q,
which all lie between w and U . Hence, if there were a monochromatic copy of H in colour
q, the edge wv would need to be part of it. However, since all edges in U involving v are
of colour 1, that means the edge wv is not contained in any triangle of colour q, which is a
contradiction to Lemma 2.14. Hence there cannot be in a monochromatic copy of H.

3.2 Monotonicity in q

In this section we will prove that the property of being q-Ramsey simple is monotone
decreasing in the number of colours; that is, we will show that if a graph is not q-Ramsey
simple for some q, then it cannot be q′-Ramsey simple for any q′ ≥ q.

Note that q-Ramsey simplicity does not observe any monotonicity with respect to
the graph H. Indeed, we know that any tree on t vertices is 2-Ramsey simple, whereas
the clique Kt is not. Similarly, there exist graphs that are q-Ramsey simple but contain
subgraphs that are not. For instance, Theorem 2.1.3 in [54] shows that any 3-connected
graph H containing a vertex v of minimum degree such that N(v) is contained in an
independent set of size 2δ(H) − 1 is 2-Ramsey simple. Hence, while Kδ for δ ≥ 3 is not
2-Ramsey simple, the following supergraph of it is: add 2δ − 1 new vertices to Kδ with
a complete bipartite graph connecting them to the clique, and then add another vertex v
connected to exactly δ of the 2δ − 1 new vertices.
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Lemma 3.5. If H is not q-Ramsey simple, then H is not (q + 1)-Ramsey simple.

Proof. Assume H is not q-Ramsey simple, that is, sq(H) > q(δ(H)− 1) + 1. Suppose for
a contradiction that there exists a graph G ∈ Mq+1(H) such that G contains a vertex v
of degree (q + 1)(δ(H)− 1) + 1. Let e be an arbitrary edge incident to v.

By the minimality of G, we know that the graph G−e has an H-free (q+1)-colouring c.
Now, if there are at most δ(H)−2 edges that are incident to v and have colour q+1 under
c, then we can give e colour q+ 1 to obtain an H-free (q+ 1)-colouring of G, contradicting
G ∈Mq+1(H). Hence we may assume that there are at least δ(H)− 1 edges incident to v
that have colour q+ 1. Let G0 be the subgraph of G containing all edges that have colours
in [q] under c together with the edge e, i.e., G0 = G − c−1(q + 1). We then know that
dG0(v) ≤ (q + 1)(δ(H) − 1) + 1 − (δ(H) − 1) = q(δ(H) − 1) + 1 < sq(H). If G0 is not
q-Ramsey for H, then G0 has an H-free q-colouring c′, and extending c′ to the graph G
by colouring the edges in E(G) \E(G0) with colour q+ 1 gives an H-free (q+ 1)-colouring
of G, a contradiction. Therefore, G0 →q H.

But dG0(v) < sq(H), so G0 cannot be minimal q-Ramsey for H, and in particular, the
vertex v cannot be part of a minimal q-Ramsey subgraph of G0. Thus G0 − v →q H.
But the restriction of c to G0 − v is H-free by our choice of c, which again leads to a
contradiction.

Hence, H cannot be (q + 1)-Ramsey simple.

3.3 Simplicity for G(n, p)

In this section we prove the lower bounds on q̃(G(n, p)) from Theorem 3.6. These are the
positive results, showing that with high probability H ∼ G(n, p) is q-Ramsey simple for
the appropriate values of q.

Theorem 3.6. Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). Let u ∈ V (H) be a vertex of mini-
mum degree δ(H) and let F = H[N(u)] be the subgraph of H induced by the neighbourhood
of u. Denote by λ(F ) the order of the largest connected component in F . Then a.a.s. the
following bounds hold:

(a) q̃(H) =∞ if logn
n � p� n−

2
3 .

(b) q̃(H) ≥ (1 + o(1)) max
{
δ(H)
λ(F )2

, δ(H)
80 logn

}
if n−

2
3 � p� n−

1
2 .

(c) q̃(H) ≤ (1 + o(1)) min
{
δ(H)
∆(F ) ,

δ(H)2

2e(F )

}
if n−

2
3 � p� 1.

For the remaining cases, we will show that H is typically such that one can construct
a minimal q-Ramsey graph G for H with δ(G) = q(δ(H) − 1) + 1, provided, in case (b),
that q is not too large. We �rst establish a general su�cient condition for the existence
of such a graph G in Section 3.3.1, and then show in Section 3.3.2 that it is satis�ed with
high probability by the random graph H. In Section 4.2.5 we shall extend these results
by showing H admits minimal Ramsey graphs with arbitrarily many vertices of degree
q(δ(H)− 1) + 1.

Before we start, we introduce a piece of notation we shall use throughout this section.
Given a graph Γ with a q-colouring f : E(Γ) → [q] and any colour i ∈ [q], the colour-i
subgraph Γi of Γ is the graph Γi = (V (Γ), f−1(i)) consisting of all edges of Γ with the
colour i.
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3.3.1 Reducing to the smallest neighbourhood

In this subsection we shall show that when establishing the q-Ramsey simplicity of a well-
behaved graph H (recall De�nition 2.15), we can focus our attention on the neighbourhood
of the minimum degree vertex.

Proposition 3.7. Let q ≥ 2, let H be a well-behaved graph, and let F = H[N(u)] be the
subgraph induced by the neighbourhood of the unique minimum degree vertex u. Suppose
there exists a q-edge-coloured graph Γ on q(δ(H)− 1) + 1 vertices such that:

(i) for every set U ⊆ V (Γ) of δ(H) vertices and for every colour i ∈ [q], there exists a
copy FU,i of F in Γ[U ] whose edges are all of colour i, and

(ii) for each i ∈ [q], the colour-i subgraph Γi of Γ has maximum degree at most δ(H)− 1.

Then H is q-Ramsey simple.

This proposition provides a su�cient condition: to establish the q-Ramsey simplicity
of a well-behaved graph, one need only construct the coloured graph Γ. Before proceeding
with its proof, we remark that the condition is very close to being necessary as well.

Remark 3.8. Let H be q-Ramsey simple with a unique vertex u of minimum degree, and
let G be a minimal q-Ramsey graph for H with a vertex w of degree q(δ(H)− 1) + 1. Let
Γ = G[N(w)] be the subgraph of G induced by the neighbourhood of w. By minimality,
there is a q-colouring c of G−w, and in particular of Γ, without any monochromatic copies
of H.

Since G itself is q-Ramsey for H, no matter how we extend the colouring c to the
edges incident to w, we must create a monochromatic copy of H. Given any subset U of
δ(H) vertices in Γ and any colour i ∈ [q], colour the edges from w to U with colour i, and
colour the remaining edges incident to w evenly with the other colours, so that each is used
δ(H)− 1 times. Any monochromatic copy of H must involve at least δ(H) edges incident
to w, and hence must be of colour i and contain all the vertices in U . As w has degree
δ(H) in this monochromatic subgraph, it must play the role of u in H, and therefore we
must �nd a colour-i copy of F in Γ[U ].

Thus, if H is q-Ramsey simple, there must exist a q-coloured graph Γ on q(δ(H)−1)+1
vertices satisfying property (i) of Proposition 3.7. While the well-behavedness of H and
property (ii) may not be necessary, they shall enable us to maintain control over potential
copies of H when constructing the minimal q-Ramsey graph G.

Given the graph Γ, when we build from it a q-Ramsey graph G we shall, as is common
practice in the �eld, make extensive use of signal senders, which are gadgets that allow us
to prescribe colour patterns on the edges of a graph. These have already been introduced
in Section 2.2.2, and see De�nition 2.3 therein.

Fortunately for us, signal senders exist for all 3-connected graphs, as shown by Rödl and
Siggers [78], building on earlier work of Burr, Erd®s, and Lovász [23] and Burr, Ne²et°il,
and Rödl [25]. In Theorem 2.4 we have listed several useful existence results for signal
senders. Nonetheless, we extract Theorem 2.4(a) here again for the sake of readability.

Theorem 3.9 ([78]). If H is 3-connected, then for any q ≥ 2 and d ≥ 1, there are positive
and negative signal senders S+(H, q, d, e, f) and S−(H, q, d, e, f).
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The utility of signal senders lies in the ability to force pairs of edges in an H-free
colouring of a graph G to have the same (or di�erent, in the negative case) colours. This
is achieved through the process of attachment ; given a graph G and a pair of distinct
edges h1, h2 ∈ E(G), we attach to G a signal sender S+(H, q, d, e, f) (or S−(H, q, d, e, f)),
de�ned on a disjoint set of vertices, between h1 and h2 by identifying the signal edges e and
f ∈ E(S) with the edges h1 and h2 ∈ E(G). In this next result, we show that attachment
cannot create unexpected copies of our target graph H, provided that the signal edges are
su�ciently far apart.

Lemma 3.10. Let q ≥ 2, let H be any 3-connected graph, and let d ≥ v(H). Let S =
S+(H, q, d, e, f) or S = S−(H, q, d, e, f) be a signal sender and let G be any graph on a
disjoint set of vertices. If the graph G′ is formed by attaching S to any two distinct edges
of G, then, for any copy H0 of H in G′, we have either V (H0) ⊆ V (G) or V (H0) ⊆ V (S).

Proof. Let H0 be a copy of H in G and suppose for the sake of contradiction that H0 is
fully contained neither in G nor in S. We can then �nd vertices x ∈ V (H0)∩(V (S) \ V (G))
and y ∈ V (H0) ∩ (V (G) \ V (S)). Now, by 3-connectivity, H0 contains three internally-
vertex-disjoint paths between x and y.

Since V (S)∩ V (G) = e∪ f , each of these paths must pass through a distinct endpoint
of one of the signal edges e and f . There must be one path meeting e and another meeting
f , and the portions of these paths that lie within the signal sender contain a path from e to
f within V (H0)∩V (S). However, this contradicts e and f being at distance d ≥ v(H).

Armed with these preliminaries, we can now prove Proposition 3.7.

Proof of Proposition 3.7. We shall take a slightly indirect route to certifying the q-Ramsey
simplicity ofH. Rather than constructing a minimal q-Ramsey graph with minimum degree
q(δ(H)− 1) + 1, we will instead build a graph G such that:

(a) G→q H,

(b) G has a vertex w of degree q(δ(H)− 1) + 1, and

(c) G− w 6→q H.

Since G is q-Ramsey for H, it must contain a minimal q-Ramsey subgraph G′ ⊆ G. By
virtue of (c), we have w ∈ V (G′), and hence δ(G′) ≤ dG′(w) ≤ dG(w) = q(δ(H)− 1) + 1.
In light of the general lower bound, we must in fact have equality, and hence G′ bears
witness to the q-Ramsey simplicity of H.

To construct this q-Ramsey graph G, we start with the graph Γ. Recall that, for each
set U of δ(H) vertices of Γ and for each colour i ∈ [q], there is a colour-i copy FU,i of
F in Γ[U ]. We will wish to complete these to potential monochromatic copies of H. To
this end, let R = H − ({u} ∪N(u)) be the remainder of H after we remove the minimum
degree vertex u and its neighbourhood. Then, for every U and i, we include a copy RU,i of
R on a disjoint set of vertices, adding the necessary edges so that RU,i ∪FU,i forms a copy
of H − u. We call the resulting graph Γ+.

Now recall that the graph Γ comes with an edge-colouring, which we extend by colouring
the edges in RU,i and between RU,i and FU,i with the colour i. Denote by c the resulting
colouring of Γ+. To force the correct colouring, we shall use signal senders. Note that, since
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H is well-behaved, property (W 3) ensures H is 3-connected, and hence by Theorem 3.9
positive and negative signal senders exist.

We introduce a matching e1, e2, . . . , eq of q edges, again on a set of new vertices. For
every pair i < j, we attach a negative signal sender Si,j = S−(H, q, v(H), ei, ej) between
ei and ej . As we shall see later, this will ensure that these edges all receive distinct colours
in an H-free colouring. Now, for every edge f in Γ+, we attach a positive signal sender
Sf = S+(H, q, v(H), ec(f), f) between ec(f) and f . Finally, we introduce a new vertex w
and make it adjacent to every vertex in Γ. This completes our construction of the graph
G, which is depicted in Figure 3.1.

RU,1 RU,q

RU,i RU,j

ej S+

S+

any δ(H)-set U

ei

Γ
∈ Γi

∈ Γj

S−

S+

S+
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Figure 3.1: Construction of G

Observe that dG(w) = v(Γ) = q(δ(H)−1)+1, and so condition (b) is already satis�ed.
We shall now verify conditions (a) and (c) in the following claims.

Claim 3.11. The graph G is q-Ramsey for H.

Proof. Suppose for a contradiction that we have an H-free q-colouring of G. First observe
that, by De�nition 2.3(S 2), if the signal sender Si,j is H-free, then the edges ei and ej must
receive di�erent colours. As this is true for each pair i < j, we may, relabelling colours if
necessary, assume that each edge ei receives colour i.

Next, for each edge f in Γ+, consider the signal sender Sf . If this does not contain a
monochromatic copy of H, then ec(f) and f must have the same colour, and thus f receives
the colour c(f). Hence we have forced the desired colouring on Γ+.

This brings us to the vertex w. Since it has degree q(δ(H) − 1) + 1, there must be
some colour i and a set U ⊆ V (Γ) of size δ(H) such that the edges between w and U are
all of colour i. However, appealing to condition (i) of Proposition 3.7, we �nd a colour-i
copy FU,i of F in Γ[U ], which we can complete to a copy of H by attaching w and RU,i,
contradicting our supposition.
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Claim 3.12. The graph G− w is not q-Ramsey for H.

Proof. We provide an H-free q-colouring of G − w. To start, we give Γ+ the colouring
c, and, for each i ∈ [q], colour the edge ei of the matching with the colour i. Observe
that, under this colouring, the signal edges of each positive signal sender Sf in G have
the same colour, while those of negative signal senders Si,j receive di�erent colours. By
De�nition 2.3 we can �nd an H-free colouring of each signal sender that agrees with the
colouring of the signal edges. We use these to extend our colouring to the signal senders
as well, thereby obtaining a q-colouring of G− w.

Now suppose for a contradiction that this colouring gives rise to a colour-i copy H0 of
H for some i ∈ [q]. First, observe that it follows from Lemma 3.10 that H0 either is fully
contained in a signal sender or is contained in Γ+ ∪ {ei : i ∈ [q]}. Since the signal senders
were coloured without monochromatic copies of H, and the edges {ei : i ∈ [q]} are isolated
in the latter graph, we need only show that we cannot have H0 ⊆ Γ+.

We next claim that H0 can only meet at most one subgraph RU,i. Indeed, suppose
instead that there are two sets U and U ′ such that V (H0)∩V (RU,i) and V (H0)∩V (RU ′,i)
are both non-empty. As the sets V (RU,i) and V (RU ′,i) are disjoint, we may assume without
loss of generality that |V (H0) ∩ V (RU,i)| ≤ 1

2n.
Since RU,i is only attached to Γ through the vertices in U , the set U must be a cut-set

for the subgraph H0. Let x ∈ V (H0) ∩ V (RU,i) be an arbitrary vertex, and let K be the
component of x in H0 − U . We clearly have |K| ≤ |V (H0) ∩ V (RU,i)| ≤ 1

2n.
On the other hand, observe that x is also in the copy HU,i of H supported on {w} ∪

V (FU,i) ∪ V (RU,i). In HU,i, the set U is the neighbourhood of w, and, since H is well-
behaved, condition (W 2) implies x has at most 1

2δ(H) neighbours in U . As dH0(x) ≥ δ(H),
this means x must have at least 1

2δ(H) neighbours in H0 − U . Hence, we also have
|K| ≥ 1

2δ(H). However, this contradicts condition (W 4), as the removal of the vertices in
U ∩ V (H0) cannot create a component in H0 of size between 1

2δ(H) and 1
2n.

Thus, H0 meets at most one subgraph RU,i. Now, by property (ii) of the colouring c
of Γ, we have that any vertex is incident to fewer than δ(H) edges of colour i in Γ. Thus,
in order to be part of H0, a vertex from Γ must have neighbours in RU,i as well. However,
the only such vertices are those in U , and since |U ∪ V (RU,i)| = n− 1, this does not leave
us with enough vertices for a copy of H.

Our colouring is therefore indeed H-free, thereby proving the claim.

This shows that the graph G satis�es conditions (a), (b), and (c), completing the
proof.

3.3.2 Constructing coloured neighbourhoods

The path to proving the lower bounds of Theorem 3.6 is now clearly signposted. By
Lemma 2.16, we know that when logn

n � p � 1, the random graph H ∼ G(n, p) is well-
behaved with high probability, and hence we are in position to apply Proposition 3.7.
We shall then use the results of Section 2.3 to describe the subgraph F induced by the
minimum degree vertex in H. This subgraph evolves as the edge probability p increases,
and in each range we will construct an appropriate coloured graph Γ that satis�es the
conditions of the proposition.

We start with the sparse range, where p� n−
2
3 .
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Proof of Theorem 3.6(a). Let q ≥ 2, let p satisfy logn
n � p � n−

2
3 , and let H ∼ G(n, p).

By Lemma 2.16 and Corollary 3.13, we have with high probability that H is well-behaved
and the subgraph F = H[N(u)] induced by the neighbourhood of the minimum degree
vertex u is empty. In this case, we can simply take Γ to be an empty graph on q(δ(H)−1)+1
vertices. Properties (i) and (ii) of Proposition 3.7 are then trivially satis�ed, and so it
follows that H is q-Ramsey simple.

When p� n−
2
3 , we will begin to see edges in the neighbourhood of the minimum degree

vertex. Provided p � n−
1
2 , though, the neighbourhood remains simple in structure, and

we can get reasonably sharp bounds on the number of colours for which the random graph
is Ramsey simple.

Proof of Theorem 3.6(b), �rst bound. Let n−2/3 � p � n−1/2 and H ∼ G(n, p). By
Lemma 2.16, we know that with high probability H is well-behaved. Let λ(F ) be the order
of the largest component of the subgraph F = H[NH(u)] induced by the neighbourhood of
the minimum degree vertex u. Given any ε > 0, we shall show that, as n tends to in�nity,
H is with high probability q-Ramsey simple for every q ≤ (1− 5ε) δ(H)

λ(F )2
.

By Corollaries 3.14 and 3.15 the graph F is with high probability a very sparse forest.
More precisely, if we denote by T1, T2, . . . , Tt the components of F that contain at least
one edge, then each Tj is a tree spanning at most λ(F ) vertices and

∑
j v(Tj) ≤ εδ(H).

To prove simplicity, we provide a geometric construction of an edge-coloured graph Γ on
q(δ(H)−1)+1 vertices. Let s be the largest prime number that is at most (1− ε) δ(H)

λ(F ) . By

the upper bound of Baker, Harman, and Pintz [6] on prime gaps, we have s ≥ (1− 2ε) δ(H)
λ(F ) .

Now consider the �nite a�ne plane F2
s, which has s2 points. Each line in the plane consists

of s points, and the set of lines can be partitioned into s+1 parallel classes C1, C2, . . . , Cs+1

of s lines each.
To form the graph Γ, we take as vertices an arbitrary set of q(δ(H)−1)+1 points from

F2
s. Note that our choices of q and s ensure that q(δ(H)− 1) + 1 ≤ s2 and q ≤ s ≤ δ(H).

Then, given x, y ∈ V (Γ), we add the edge {x, y} if and only if the line they span lies in
one of the �rst q parallel classes. We colour the edges by the parallel classes; that is, if the
corresponding line lies in Ci, for some i ∈ [q], we give the edge {x, y} the colour i.

We shall now show that Γ satis�es properties (i) and (ii) of Proposition 3.7, which will
show that H is q-Ramsey simple. We start with the latter property. The colour-i subgraph
Γi of Γ consists of pairs of points in lines in the parallel class Ci. Each such line gives rise
to a clique in Γ, and since the lines are parallel, these cliques are vertex-disjoint. Finally,
since each line has at most s points in Γ, it follows that ∆(Γi) ≤ s − 1 ≤ δ(H) − 1, and
hence property (ii) holds.

For property (i), we need to show that for any δ(H)-set U ⊆ V (Γ) and any colour
i ∈ [q], we can �nd a copy of F in Γi[U ]. We shall embed the trees Tj one at a time.
Suppose, for some j ≥ 1, we have already embedded T1, T2, . . . , Tj−1, and let U ′ ⊆ U be
the set of vertices we have not yet used. Since F has at most εδ(H) non-isolated vertices,
it follows that |U ′| ≥ (1− ε)δ(H).

As observed when showing property (ii), the colour-i subgraph Γi is a disjoint union of
at most s cliques. Hence, by the pigeonhole principle, U ′ meets one of these cliques in at

least |U
′|
s vertices. By our choice of s, this is at least λ(F ), and so Γi[U

′] contains a clique
on λ(F ) vertices, in which we can freely embed Tj .



3.3. Simplicity for G(n, p) 45

Repeating this process, we can embed all the trees, thereby obtaining a copy of F in
Γi[U ]. Hence property (i) is satis�ed as well, and thus H is indeed q-Ramsey simple.

The above construction allows us to obtain lower bounds on q̃(H) whenever n−2/3 �
p� n−1/2. However, when p = n−

1
2
−o(1) and λ(F ) gets larger, a probabilistic construction

yields a better bound.

Proof of Theorem 3.6(b), second bound. Let p � n−
1
2 , and let H ∼ G(n, p). Our goal is

to show that if q ≤ δ(H)
80 logn , then with high probability H is q-Ramsey simple. We again

start by collecting some information about the random graph H, before constructing an
appropriate graph Γ for Proposition 3.7.

By Lemma 2.11(c) and Lemma 2.16, we may assume that H is well-behaved with
δ(H) = (1 ± o(1))np. Furthermore, applying Corollaries 3.14 and 3.15, we know that
with high probability, the subgraph F = H[N(u)] induced by the neighbourhood of the
minimum degree vertex is a forest with o(δ(H)) edges containing no tree on more than
log n vertices. We label the components of F as T1, T2, . . . , Tt.

We now de�ne the q-coloured graph Γ on N = q(δ(H) − 1) + 1 vertices. We take
Γ ∼ G(N, 1

2) to be a random graph with edge probability 1
2 . Once we have sampled the

graph, we also equip it with a random colouring, colouring each edge independently and
uniformly at random from the q colours.

Observe that for each colour i ∈ [q], the colour-i subgraph Γi ⊆ Γ has the distribution
G(N, 1

2q ). Hence, it follows from Lemma 2.11(c), combined with a union bound over the

number of colours q, that with high probability ∆(Γi) ≤ (1 + o(1))N2q < δ(H) for every
i ∈ [q]. This establishes property (ii) of Proposition 3.7.

We now need to show that property (i) also holds with high probability. That is, we
need to ensure that, for every colour i ∈ [q] and every set U ⊆ V (Γ) of δ(H) vertices, we
can �nd a copy of F in Γi[U ]. We shall once again do this by proving the stronger fact
that, taking ε ≥ 0, for any set U ′ of (1 − ε)δ(H) ≥ 1

2np vertices, and any tree T on at
most log n vertices, we can embed a copy of T in Γi[U

′]. We can then greedily embed the
components of F one at a time; as F only has o(δ(H)) edges, we will always have at least
(1− ε)δ(H) vertices remaining when embedding one of its components.

Applying Lemma 2.12(b) combined with a union bound over the colours i ∈ [q], we
know that with high probability the monochromatic subgraphs Γi have the property that
the number of edges spanned by any set of 1

2np vertices is at least
1
4

(
1
2np

)2 1
2q > 2np log n.

Since the set U ′ spans at least 2np log n edges, the average degree in any such subgraph
is at least 2 log n. By repeatedly removing low-degree vertices, we obtain a subgraph with
minimum degree at least log n. It is then trivial to embed a tree on at most log n vertices
in this subgraph, as at each vertex, we will always have enough unused neighbours to
embed its children. Thus, we can �nd disjoint copies of the trees T1, T2, . . . , Tt, thereby
constructing a copy of F in Γi[U ]. This proves property (i), and so by Proposition 3.7 it
follows that H is q-Ramsey simple.

3.3.3 The smallest neighbourhood and quantitative simplicity

We can now combine the results from Section 2.3.1 with Lemma 2.17 to obtain a sequence
of corollaries describing the subgraph F induced by the neighbourhood of the minimum
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degree vertex, which we shall later apply when proving Theorem 3.6. We will also use
these to derive Corollary 3.16 from Theorem 3.6.

To start with, for the proof of the Ramsey simplicity of H in case (a) of Theorem 3.6, it
will be important that F is an empty graph. This is guaranteed by the following corollary.

Corollary 3.13. Let p = p(n) ∈ (0, 1) be such that logn
n � p� n−

2
3 , and let H ∼ G(n, p).

Then a.a.s. H has a unique minimum degree vertex u, and e(NH(u)) = 0.

Proof. By Lemma 2.17 it is enough to prove that, for every s ∈ [0.5np, 2np], with high
probability Gs ∼ G(s, p) has no edges. This holds, since by the assumptions on s and p
we obtain E[e(Gs)] < s2p ≤ 4n2p3 = o(1).

For larger values of p, we can control the number of edges appearing in F , which we
will require for the proofs of both simplicity and non-simplicity.

Corollary 3.14. Let p = p(n) ∈ (0, 1) be such that n−
2
3 � p � 1, and let H ∼ G(n, p).

Then a.a.s. H has a unique minimum degree vertex u, and the graph F = H[N(u)] satis�es
1
16n

2p3 ≤ e(F ) ≤ 4n2p3.

Proof. For every s ∈ [0.5np, 2np], Lemma 2.12(a) guarantees that Gs ∼ G(s, p) almost

surely has (1 + o(1)) s
2p
2 ∈ [ 1

16n
2p3, 4n2p3] edges. The above statement now follows by an

application of Lemma 2.17.

Finally, in the range n−
2
3 � p � n−

1
2 , when determining the q-Ramsey simplicity of

H, we will make use of the fact that F is typically a forest with small components, while
also appealing to the fact that its maximum degree cannot be too small.

Corollary 3.15. Let p = p(n) ∈ (0, 1) be such that n−
2
3 � p� n−

1
2 , and let H ∼ G(n, p).

Then a.a.s. H has a unique minimum degree vertex u, the graph F = H[N(u)] induces a
forest, and the order λ(F ) of the largest component in F satis�es the following bounds:

(a) λ(F ) ≤ 1
2 log n,

(b) if p� n−
k+1
2k+1 for some �xed integer k ≥ 2, then λ(F ) ≤ k, and

(c) if p = n−
1
2 f−1 for some f = f(n) satisfying 1 � f = no(1), then λ(F ) ≤(

1
4 + o(1)

) logn
log f .

Moreover, the maximum degree ∆(F ) of F a.a.s. satis�es the following:

(d) if p� n−
k

2k−1 for some �xed integer k ≥ 2, then ∆(F ) ≥ k − 1, and

(e) if p = n−1/2f−1 for some 1� f = f(n) = no(1), then
∆(F ) ≥

(
1
2 − o(1)

) logn
log(f2 logn)

.

Proof. By Lemma 2.17, it su�ces to verify that the corresponding bounds on λ(Gs)
and ∆(Gs) for Gs ∼ G(s, p) hold with high probability when s ∈ [0.5np, 2np]. These

bounds are obtained as follows: for property (a) observe that p � n−
1
2 implies p �

s−1 and s � n
1
2 , in which case Lemma 2.13(a) gives that λ(Gs) ≤ log s ≤ 1

2 log n

holds a.a.s.. For property (b) we use that p � n−
k+1
2k+1 implies p � s−

k+1
k , and hence



3.3. Simplicity for G(n, p) 47

λ(Gs) ≤ k holds a.a.s. by Lemma 2.13(b). For properties (c) and (e) observe that

p = n−
1
2 f−1 implies 0.5

sf2
≤ p ≤ 2

sf2
and s = n

1
2
−o(1), which a.a.s. leads to λ(Gs) ≤

(1+o(1)) log s
log f2

≤
(

1
4 + o(1)

) logn
log f by Lemma 2.13(c), and to ∆(Gs) ≥ (1−o(1)) log s

log(f2 log s)
≥(

1
2 − o(1)

) logn
log(f2 logn)

by Lemma 2.11(b). Finally, for property (d) we note that p� n−
k

2k−1

implies p� s−
k

k−1 , and hence Lemma 2.11(a) ensures that ∆(Gs) ≥ k − 1 a.a.s.

With these bounds on the parameters of the subgraph F induced by the neighbourhood
of the minimum degree vertex, we are now in position to deduce Corollary 3.16, giving
quantitative estimates on the value of q̃(H) in the intermediate range.

Corollary 3.16. Let k ≥ 2 be a �xed integer and let f = f(n) satisfy 1 � f = no(1).

Let p = p(n) satisfy n−
2
3 � p �

(
logn
n

) 1
2
and let H ∼ G(n, p). Then a.a.s. the following

bounds hold:

(a) if n−
k

2k−1 � p� n−
k+1
2k+1 , then (1 + o(1))np

k2
≤ q̃(H) ≤ (1 + o(1)) np

k−1 .

(b) if p = Θ
(
n−

k+1
2k+1

)
, then (1 + o(1)) np

(k+1)2
≤ q̃(H) ≤ (1 + o(1)) np

k−1 .

(c) if p = n−
1
2 f−1, then

(1 + o(1)) np
logn max

{
16 log2 f

logn , 1
80

}
≤ q̃(H) ≤ (2 + o(1))np log(f2 logn)

logn .

(d) if n−
1
2 � p�

(
logn
n

) 1
2
, then 1 ≤ q̃(H) ≤ (8 + o(1))1

p .

Proof. We start by appealing to Lemma 2.11(c) to observe that a.a.s. δ(H) = (1+o(1))np.
Let us begin by establishing the lower bounds on q̃(H). By Theorem 3.6 we have

q̃(H) ≥ (1 + o(1)) max
{
δ(H)
λ(F )2

, δ(H)
80 logn

}
, and we can bound λ(F ) using Corollary 3.15.

When p � n−
k+1
2k+1 for some �xed integer k ≥ 2, then, by Corollary 3.15(b), we

a.a.s. have λ(F ) ≤ k. Thus, in this range, we have q̃(H) ≥ (1 + o(1))np
k2

a.a.s., which yields

the lower bounds for parts (a) and (b) of Corollary 3.16 (note that when p = Θ
(
n−

k+1
2k+1

)
,

we have p � n
− (k+1)+1

2(k+1)+1 ). The lower bound in part (c) follows by substituting the bound
on λ(F ) from Corollary 3.15(c), while the lower bound in part (d) is trivial.

For the upper bounds, Theorem 3.6 gives q̃(H) ≤ min
{
δ(H)
∆(F ) ,

δ(H)2

2e(F )

}
. The upper bounds

in parts (a), (b), and (c) come from substituting the appropriate lower bounds on ∆(F )

given by Corollary 3.15. When p � n−
k

2k−1 for some �xed k, Corollary 3.15(d) yields
∆(F ) ≥ k − 1 a.a.s., which provides the upper bounds in parts (a) and (b) of Corol-
lary 3.16. The upper bound in part (c) follows similarly, using the lower bound on ∆(F )
from Corollary 3.15(e). Finally, for the upper bound in part (d) of Corollary 3.16, we

use Corollary 3.14, which asserts that a.a.s. e(F ) ≥ 1
16n

2p3. Thus δ(H)2

2e(F ) ≤
8+o(1)
p , as

required.
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3.4 Non-simplicity for G(n, p)

In this section we prove the upper bounds on q̃(H) from Theorem 3.6. These are the
negative results, showing that with high probability H ∼ G(n, p) is not q-Ramsey simple
for large values of q.

For the proofs, the centre of attention will again be the neighbourhood of the minimum
degree vertex of H. We will prove upper bounds for case (c) of our theorem. In the proof
below, we �rst establish that, if the neighbourhood of the minimum degree vertex exhibits
a high maximum degree, then H cannot be q-Ramsey simple for a large enough q. For
this, we will need the following result from [63].

Theorem 3.17 ([63]). Let G be an n-vertex graph of average degree d and let k ∈ N. Then
there is a set U of at least (k + 1)n/(d+ k + 1) vertices such that ∆(G[U ]) ≤ k.

Proof of Theorem 3.6(c). Let n−2/3 � p� 1 and H ∼ G(n, p). By Lemma 2.16, we know
that H has a unique vertex u of minimum degree. As before, we set F = H[NH(u)].

Suppose that H is q-Ramsey simple and G is a minimal q-Ramsey graph for H with
minimum degree N = q(δ(H) − 1) + 1. Let w be a vertex of minimum degree in G, and
Γ = G[NG(w)]. It follows from Remark 3.8 that there is an edge-colouring of Γ such that
the induced graph on every δ(H)-set of vertices contains, in each colour, a copy of F .

We are now ready to prove that q̃(H) ≤ (1 + o(1)) δ(H)
∆(F ) . The above observation implies

that the induced graph on each δ(H)-set has, in each colour, a vertex of degree at least

∆(F ). However, the average degree of the sparsest colour class in Γ is at most
2(N2 )
qN =

N−1
q = δ − 1. Thus, by Theorem 3.17, Γ has a set of ∆(F )N

δ(H)+∆(F )−1 vertices that induce a

graph with maximum degree less than ∆(F ) in this colour. Hence, we must have

∆(F )N

δ(H) + ∆(F )− 1
≤ δ(H)− 1,

which rearranges to give q ≤ δ(H)+∆(F )−1
∆(F ) − 1

δ(H)−1 , from which the conclusion follows.

We turn our attention to the second bound, namely q̃(H) ≤ (1 + o(1)) δ(H)2

2e(F ) . For any

subset U ⊆ V (Γ) of size δ(H), there must be a colour i ∈ [q] such that there are at most
1
q

(
δ(H)

2

)
edges of colour i inside U . Using once again our observation above, we know that

Γ[U ] contains a copy of F in colour i, and therefore we must have 1
q

(
δ(H)

2

)
≥ e(F ), which

yields the claimed bound.

We remark that the proofs of both upper bounds in Theorem 3.6(c) do not use the
fact that H is a random graph, and are valid for any graph that has a unique vertex of
minimum degree whose neighbourhood is not an independent set.

3.5 Concluding remarks

In this chapter we built upon the work of Grinshpun [54] and studied the q-Ramsey simplic-
ity of H ∼ G(n, p) for a wide range of values of p and q. We encountered three di�erent

types of behaviour: for very sparse ranges, i.e., when p � 1
n or logn

n � p � n−
2
3 , we
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showed that a.a.s. H is q-Ramsey simple for every possible number of colours q; for much

denser ranges, i.e., when p�
(

logn
n

) 1
2
, a.a.s. we do not have Ramsey simplicity even when

q = 2; in between these ranges, when n−
2
3 � p � n−

1
2 , there exists a �nite threshold

value q̃(H) ≥ 2 on the number of colours q such that H is q-Ramsey simple if and only

if q ≤ q̃(H). We determined this threshold up to a constant or, when p = n−
1
2
−o(1),

logarithmic factor. Several natural questions remain open.

First, our main result does not provide any information on the Ramsey simplicity of
G(n, p) when p is between 1

n and logn
n .

Question 3.18. What can be said about q̃(H) when H ∼ G(n, p) for p = Ω
(

1
n

)
and

p = O
(

logn
n

)
? In particular, is H a.a.s. 2-Ramsey simple in this case?

In the range p � logn
n our simplicity proofs rely heavily on the fact that a.a.s. H ∼

G(n, p) is 3-connected, implying the existence of signal senders for H, which in turn allow
us to deduce a fairly general recipe for constructing suitable Ramsey graphs. When p� 1

n ,
we know that H ∼ G(n, p) is a.a.s. a forest, and simplicity follows from the construction
of Szabó, Zumstein, and Zürcher [83], which works for certain bipartite graphs. When
1
n � p� logn

n , however, the random graph G(n, p) becomes more complex (in particular,
it is non-bipartite) but it is not yet connected. As a result, resolving the aforementioned
question will likely require new ideas.

Second, when p lies in the range p = Ω
(
n−

1
2

)
and p = O

((
logn
n

) 1
2

)
, we proved

that q̃(H) = O(p−1), which shows that the threshold value here is of smaller order than

when p = n−
1
2
−o(1), as demonstrated in Corollary 3.16. However, we did not provide any

non-trivial lower bounds, and we wonder if that might not be possible.

Question 3.19. Is it true that H is a.a.s. not 2-Ramsey simple when H ∼ G(n, p) with

p = Ω
(
n−

1
2

)
and p = O

((
logn
n

) 1
2

)
?

In this case, signal senders for H do exist, but the neighbourhood of the minimum
degree vertex becomes more complex than just a forest, making it di�cult to construct a
graph as described in Remark 3.8. On the other hand, the presence of isolated vertices
makes it likely that a more delicate argument than the one used in part (b) would be needed
to show non-simplicity for smaller q. Nevertheless, we tend to believe that a.a.s. q̃(H) = 1

for all p� n−
1
2 .

The bounds on q̃(H) presented in cases (a) and (c) are already quite close, but it would
be interesting to close the remaining gaps.

Question 3.20. Let H ∼ G(n, p) with n−2/3 � p � n−1/2. What are the asymptotics of
q̃(H)?

In this range, as we have seen in Section 3.3, the question about q-Ramsey simplicity
is tightly linked to the problem of �nding a q-coloured graph Γ on q(δ(H)− 1) + 1 vertices
such that the following holds: For every set U ⊆ V (Γ) of δ(H) vertices and for every
colour i ∈ [q], there exists a copy FU,i of F = H[N(u)] in Γ[U ] whose edges are all of
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colour i. The proofs of our lower bounds in Section 3.3 are obtained by �nding such
Γ (with additional properties as given in Proposition 3.7) through explicit constructions
or probabilistic arguments. In order to prove that a.a.s. H is not q-Ramsey simple, it
would su�ce to prove that such Γ does not exist, that is, every q-coloured graph Γ on
q(δ(H) − 1) + 1 contains at least one subset U ⊆ V (Γ) of size δ(H) such that Γ[U ] is
missing a copy of F in at least one colour. Note that in the proof of our second bound
in case (c) of Theorem 3.6 we obtain such a result by a simple counting argument which
guarantees that we cannot pack q copies of F into any graph on δ(H) vertices. Related
to this argument, it seems challenging to determine how many copies of a given random
graph can be packed into a complete graph, leading us to suggest the following question.

Question 3.21. Let H ∼ G(n, p) with 0 < p < 1. How many copies of H can be packed
into Kn?

In the densest range, that is, when p�
(

logn
n

) 1
2
, we know thatH ∼ G(n, p) is a.a.s. not

q-Ramsey simple for any q ≥ 2. We wonder, however, what the behaviour of sq(H) in this
case is; in particular, it would be interesting to determine whether sq(H) is still typically
close to the easy lower bound q(δ(H)−1)+1. Note that the answer is no if p = 1 and q ≥ 2,

since s2(Kn) = (n−1)2. However, when
(

logn
n

) 1
2 � p� 1, we do not know of any bounds

other than the general ones mentioned in the introduction. In particular, we propose the
following problem, similar to one posed by Grinshpun, Raina, and Sengupta [55].

Question 3.22. How large is s2(H) for H ∼ G(n, 1
2) a.a.s.?

Related to the above discussion, we also note that our methods can be applied to the
2-colour asymmetric Ramsey setting, in which a graph G is said to be 2-Ramsey for a pair
of graphs (H1, H2) if every red-/blue-colouring of its edges leads to a red copy of H1 or
a blue copy of H2. In this setting, we de�ne minimal Ramsey graphs and the smallest
minimum degree s2(H1, H2) in the obvious way; the general lower bound is replaced by
s2(H1, H2) ≥ δ(H1) + δ(H2)− 1 and again we call a pair (H1, H2) 2-Ramsey simple if this
lower bound is attained. Our constructions can be modi�ed to show that for H1 ∼ G(n, p1)
and H2 ∼ G(n, p2) the pair (H1, H2) is a.a.s. 2-Ramsey simple if logn

n � p1 ≤ p2 � n−1/2.
When p1, p2 � n−1, then again a modi�cation of the argument of Szabó, Zumstein, and
Zürcher [83] can be used to show that we a.a.s. have 2-Ramsey simplicity. Still, the
following questions remain.

Question 3.23. Let H1 ∼ G(n, p1) and H2 ∼ G(n, p2) with p1 � n−1 and logn
n � p2 �

n−1/2. Is the pair (H1, H2) a.a.s. 2-Ramsey simple? What happens if one of the graphs
comes from the dense range?

We also remark that our ideas from Section 4.2.5 can be used to resolve a special case
of a conjecture due to Grinshpun [54], stating that all triangle-free graphs are 2-Ramsey
simple. In [55], Grinshpun, Raina, and Sengupta use a construction similar to ours to
show that the conjecture is true for all regular 3-connected triangle-free graphs satisfying
one extra technical condition. Our approach allows us to prove that every well-behaved
triangle-free graph is q-Ramsey simple for any q ≥ 2.
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Finally, let us emphasise that there has been little study of (minimal) Ramsey graphs
for G(n, p). The only results we are aware of concern the Ramsey number of G(n, p), as
mentioned in Section 1.2.3. Hence, as a more general direction for future research, it would
be interesting to explore other aspects of the Ramsey behaviour of G(n, p) as the target
graph.



4
Abundance of graphs

In this chapter we will investigate the property of abundance for various graph classes. Let
us begin by recalling the de�nition of abundance for graphs.

De�nition 4.1. For a given integer q ≥ 2, a graph H is said to be sq-abundant if, for
every k ≥ 1, there exists a minimal q-Ramsey graph for H with at least k vertices of degree
sq(H).

In this formulation, Burr, Erd®s, and Lovász [23] had shown that for all t ≥ 3, the
graph Kt is s2 abundant. We will further this study and develop tools that will allow us to
show that Kt is in fact sq-abundant for all values of q ≥ 2. These tools, that we will call
pattern gadgets are a far reaching generalisation of the gadgets which were �rst developed
in [23].

In Section 4.1, we will �rst de�ne a pattern gadget. Before we provide an explicit
construction for these graphs, we will require a generalisation of indicators. We will de�ne
these intermediate gadgets and provide a construction for them, see Subsection 2.2.3 for an
overview on indicators. Hereafter, we will be ready to show the existence of patter gadgets
for many target graphs H, including all 3-connected graphs.

Thereafter, in Section 4.2, we will go on to use the gadgets to show that large classes
of graphs are sq-abundant. To begin with we will see that for t ≥ 4 all cycles Ct are
sq-abundant for q ≥ 2. We will then show that cliques with a pendant edge Kt ·K2, for
t ≥ 3, are s2-abundant.

In Subsection 4.2.3 we will go on to apply the pattern gadgets to prove a general result
on abundance for 3-connected graphs. We will use this result to show that the wheel graph
Wt is s2-abundant for t ≥ 4. We will then go on to show that for certain ranges of p and
q the graph G(n, p) is sq-abundant.

As has been mentioned earlier, this chapter is an extension of joint work with Simona
Boyadzhiyska, and Dennis Clemens [18] and Subsection 4.2.5 is based on a joint work with
Simona Boyadzhiyska, Dennis Clemens, and Shagnik Das [17].

4.1 Construction of pattern gadgets

As has been discussed, most of our constructions of minimal Ramsey graphs will rely on
the existence of certain gadget graphs; these graphs will have the property that, in every

52
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colouring not containing a monochromatic copy of our target graph H, some �xed colour
patterns need to appear on certain sets of edges. Such an approach has already been used
in the paper of Burr et al. [23] when proving that s2(Kt) = (t − 1)2. In their paper, the
authors introduced gadget graphs that are now known as BEL gadgets and are de�ned as
follows: LetH and G be �xed graphs such that G 6→q H, and let ϕ be anH-free q-colouring
of G; a BEL gadget for H with respect to the pair (G,ϕ) is a graph B containing G as
an induced subgraph such that B is not q-Ramsey for H but in every H-free q-colouring
of the edges of B, the subgraph G has the colouring given by ϕ (up to a permutation of
colours). Burr et al. showed the existence of BEL gadgets for all cliques on at least three
vertices when q = 2 (for any appropriate choice of G and ϕ). Later results imply that BEL
gadgets exist for more general graphs and for more colours; an overview of those results
can be found in Section 2.2.3.

Suppose we want to construct a minimal q-Ramsey graph for H that contains a vertex
of degree at most d. Provided that a BEL gadget with certain properties exists, it su�ces
to �nd a graph G that contains a vertex v of degree d and a q-colouring ϕ of G − v that
contains no monochromatic copy of H but cannot be extended to an H-free colouring of
G. Indeed, we can construct G̃ by taking a copy G′ of G− v and a BEL gadget for H with
respect to (G′, ϕ) and adding the vertex v along with d edges so that V (G′)∪ {v} induces
a copy of G. Now it is not di�cult to check that G̃ →q H, and if H satis�es certain

conditions, then we can also ensure that G̃ − v 6→q H. This means that any minimal

q-Ramsey subgraph of G̃ needs to contain v, that is, v is important for G̃ to be a q-Ramsey
graph, and sq(H) ≤ d

G̃
(v).

For our main theorems, we will aim to �nd graphs G̃ with many vertices of small
degree, each of which is important for G̃ to be a Ramsey graph for H. In order to do
so, we will use a gadget that allows for more �exibility than a BEL gadget. This gadget
again comes with a subgraph G on which �xed colour patterns are forced in any H-free
q-colouring. However, while for a BEL gadget we �x only a single permissible pattern
(up to a permutation of the colour classes), our gadget graph allows us to �x a family of
permissible colour patterns for G such that each of these patterns, and no other, can be
extended to an H-free colouring of the whole graph.

To make this more precise, let us �rst de�ne colour patterns and an isomorphism
relation between them.

De�nition 4.2. Let q ≥ 2 be a given integer and H and G be graphs. A q-colour
pattern for G is a partition g = {G1, G2, . . . , Gq} of the edges of G. If H 6⊆ Gi for every
i ∈ [q], we say that g is H-free. Given any subset A ⊆ V (G), we call the partition
g[A] = {G1[A], G2[A], . . . , Gq[A]} the induced q-colour pattern on A.

Let G′ be a copy of G, and let g′ = {G′1, . . . , G′q} be a q-colour pattern for G′. Then
we say that g and g′ are isomorphic, denoted by g ∼= g′, if there exists a permutation π of
[q] such that Gi ∼= G′π(i) for every i ∈ [q].

Using the above terminology, we can now give a precise de�nition of the gadget graphs
that we are interested in.

De�nition 4.3. Let q ≥ 2 be a given integer and H and G be graphs such that G 6→q H.
Also let G be a family of H-free q-colour patterns for G. Then we call a graph P =
P (H,G,G , q) a pattern gadget if the following properties hold:



4.1. Construction of pattern gadgets 54

(P 1) G ⊆ind P .

(P 2) If c : E(P )→ [q] is an H-free colouring of P , then {c−1
|G (1), . . . , c−1

|G (q)} ∈ G .

(P 3) For every pattern {G1, . . . , Gq} ∈ G , there exists an H-free colouring c : E(P )→ [q]
such that {c−1

|G (1), . . . , c−1
|G (q)} = {G1, . . . , Gq}.

A variant of these gadgets was de�ned by Siggers [81], who showed its existence for
cycles. The rest of this section is mainly devoted to our proof that pattern gadgets exist
for certain choices of the graph H. In the proof, we will combine various intermediate
gadgets and for that to work we will often require them to satisfy an additional property of
robustness which has already been de�ned in Section 2.2.3. We recall the de�nition here.

De�nition 2.6. Let G be a graph and G0 be an induced subgraph of G. We say that
the pair (G,G0) is H-robust if, in any graph obtained from G by adding any set S of new
vertices and any collection of edges within S∪V (G0), every copy of H is entirely contained
either in G or in the subgraph induced by S ∪ V (G0).

The main theorem of this section states that, if H is 3-connected or isomorphic to a
cycle or Kt ·K2, then pattern gadgets that satisfy certain robustness properties exist for
H.

Theorem 4.4. Let q ≥ 2 be a given integer, and let H and G be graphs with G 6→q H.
Further, let G be a family of H-free q-colour patterns for G.

(a) If H is 3-connected or a triangle, then a pattern gadget P = P (H,G,G , q) exists.

(b) If H is a cycle of length at least four, then a pattern gadget P = P (H,G,G , q) exists.

(c) If H ∼= Kt ·K2 and q = 2 and G does not contain a copy of H, then a pattern gadget
P = P (H,G,G , q) exists. Further, we can ensure that in the 2-colourings in (P 3)
every monochromatic copy of Kt using a vertex from G is fully contained in G.

Further, in parts (a) and (b), the pattern gadget can be taken so that (P,G) is H-robust,
and in part (c), it can be taken so that (P,G) is Kt-robust.

Before we give the proof of Theorem 4.4 in Section 4.1.2, we need to construct a
generalisation of the indicators, which were introduced in Section 2.2.3. We will call these
the generalised negative indicators and will de�ne and construct them shortly in the next
section, Section 4.1.1.

4.1.1 Generalised negative indicators

Before we can prove the existence of pattern gadgets as stated in Theorem 4.4, we will
�rst need to construct slightly weaker gadget graphs, which we call generalised negative
indicators.

Recall that a negative indicator I = I−(H,F, e, q, d) comes with an indicator subgraph
F and an indicator edge e and has the following property: In any H-free q-colouring of I
that colours F monochromatically, e needs to get a colour di�erent from that of F ; but
once F is not monochromatic, we can extend the q-colouring to an H-free q-colouring of I,
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independently of which colour is chosen for e. That is, in short, when F is monochromatic
we get some information on the colour given to e, while otherwise we do not.

The gadgets I∗ described in the following will generalise this concept by replacing e
with another graph G. Now, whenever the indicator subgraph F is monochromatic in an
H-free q-colouring of I∗, we again want to get some information on the colouring given
to G, namely that a certain colour pattern is forced on G. Otherwise, when F is not
monochromatic, we do not get any information on G in the sense that we can still colour
this subgraph by any H-free q-colouring and then �nd an H-free extension to I∗. We give
a precise de�nition below.

De�nition 4.5. Let q ≥ 2 and d ≥ 1 be integers, and let H,F, and G be graphs with
H 6⊆ F . Further, let G = G1 ∪ G2 ∪ . . . ∪ Gq−1 be a partition with H 6⊆ Gk for every
k ∈ [q−1]. We call a graph I∗ = I∗(H,F, {Gk}k∈[q−1], q, d) a generalised negative indicator
if the following properties hold:

(GI 1) F,G ⊆ind I∗ and distI∗(F,G) ≥ d.

(GI 2) There exists an H-free q-colouring of I∗ such that F is monochromatic.

(GI 3) In any H-free colouring c : E(I∗) → [q] in which F is monochromatic, each of the
graphs Gi needs to be monochromatic so that {c(F ), c(G1), . . . , c(Gq−1)} = [q].

(GI 4) Let ϕF : E(F )→ [q] be any non-constant colouring, and let ϕG : E(G)→ [q] be any
H-free colouring. Then there exists an H-free colouring c : E(I∗) → [q] such that
c|F = ϕF and c|G = ϕG.

If I∗ is a generalised negative indicator with parameters H,F, {Gk}k∈[q−1], q, and d, we call
I∗ a generalised negative (H,F, {Gk}k∈[q−1], q, d)-indicator. In this case, we call F and G
the indicator subgraphs of I∗.

An interior vertex of a generalised negative indicator is a vertex that belongs to neither
of the indicator subgraphs. The interior of a generalised negative indicator is the set of
all interior vertices.

The following lemma states that, if H is 3-connected or isomorphic to a cycle or Kt ·K2,
then generalised negative indicators that satisfy additional robustness properties exist for
H.

Lemma 4.6. Let q ≥ 2 and d ≥ 1 be integers, and H,F , and G be graphs with H 6⊆ F .
Further, let G = G1 ∪ . . . ∪Gq−1 be a partition such that H 6⊆ Gk for every k ∈ [q − 1].

(a) If H is 3-connected or H ∼= K3, then a generalised negative indicator
I∗ = I∗(H,F, {Gk}k∈[q−1], q, d) exists.

(b) If H ∼= Ct for t ≥ 4 and girth(F ) > t, then a generalised negative indicator I∗ =
I∗(H,F, {Gk}k∈[q−1], q, d) exists.

(c) If H ∼= Kt · K2 for t ≥ 3 and q = 2, then a generalised negative indicator I∗ =
I∗(H,F, {Gk}k∈[q−1], q, d) with the following additional property exists: The H-free
2-colourings in (GI 2) and (GI 4) can be chosen so that every monochromatic copy of
Kt using a vertex from F ∪G is contained fully in F ∪G.
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I−I− I−

I+ I+ I+
each pair

G1 G2 G3

I+I+ I+

S− S−
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each pair each pair

P1 P2 P3

Figure 4.1: Generalised negative indicator for q = 4.



4.1. Construction of pattern gadgets 57

Further, in parts (a) and (b), the generalised negative indicator can be taken so that (I∗, F )
and (I∗, G) are H-robust. In part (c), we can ensure that (I∗, F ) and (I∗, G) are Kt-robust.

Proof. Let q, d,H, F, and G be as given, and without loss of generality assume that d ≥
v(H) + 1. Let M1, . . . ,Mq−1 be matchings of size q, let P1, . . . , Pq−1 be matchings of size
two, and let ek be a �xed edge of Pk for each k ∈ [q − 1].

In order to construct I∗, we take the vertex-disjoint union of F , G and all of the above
matchings and we join them with signal senders and indicators in the following way:

(i) For every k ∈ [q − 1] and every edge m ∈ Mk, join F and m by a negative
(H,F,m, q, d)-indicator.

(ii) For every k ∈ [q− 1], every submatching S ⊆Mk of size two, and every edge p ∈ Pk,
join S and p by a positive (H,S, p, q, d)-indicator.

(iii) For every 1 ≤ k1 < k2 ≤ q − 1, join the distinguished edges ek1 ∈ Pk1 and ek2 ∈ Pk2
by a negative signal sender S− = S−(H, ek1 , ek2 , q, d).

(iv) For every k ∈ [q − 1] and every edge g ∈ E(Gk), join Pk and g by a positive
(H,Pk, g, q, d)-indicator.

Moreover, let all the indicators satisfy the robustness property promised by Theorem 2.7
respectively. When H is a cycle of length t ≥ 4, choose the gadgets in (i)�(iv) so that their
girth equals t. When H ∼= Kt ·K2 for some t ≥ 3 and q = 2, choose these gadgets so that
they have a Kt ·K2-special 2-colouring. Note that the existence of all these gadgets and
colourings is given by Theorem 2.4 and Theorem 2.7. An illustration of the construction
for the case q = 4 can be found in Figure 4.1.

Let Mk = {mk
1, . . . ,m

k
q} for every k ∈ [q − 1]. Before showing that I∗ satis�es (GI 1)�

(GI 4), we �rst discuss where copies of H can be located in the graph I∗. Note that from
the following two observations we immediately obtain the desired robustness properties as
stated in Lemma 4.6.

Observation 4.7. Let H be 3-connected or a cycle. Let I ′ be a graph obtained from I∗ by
adding two new vertex sets SF and SG and any collection of edges within SF ∪ V (F ) and
within SG ∪ V (G). Then every copy of H in I ′ is fully contained in one of the indicators
from (i), (ii), or (iv), in one of the signal senders from (iii), or in one of the subgraphs
induced by SF ∪ V (F ) or SG ∪ V (G).

Proof. For a contradiction, assume that some copy H ′ of H in I ′ forms a counterex-
ample. Consider �rst the case when H ′ uses a vertex v ∈ SG ∪ V (G). Since H ′ is a
counterexample, we have V (H ′) 6⊆ SG ∪ V (G). Hence, H ′ needs to use an interior vertex
of one of the indicators in (iv); without loss of generality, assume it is an indicator I+

P1

joining P1 with an edge of G1. We then have distI∗(P1, G) ≥ d > v(H ′) by property (I 1)
of the indicators in (iv), and thus, since H ′ is 3-connected or a triangle or a cycle with
v(H ′) = girth(I+

P1
), it follows that H ′ ⊆ I+

P1
, a contradiction. We may therefore assume

that H ′ is vertex-disjoint from SG ∪ V (G).
Consider next the case when H ′ uses a vertex v ∈ SF ∪ V (F ). As before, we have

V (H ′) 6⊆ SF ∪ V (F ). Hence, H ′ needs to use an interior vertex of an indicator in (i);
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without loss of generality, assume it is an indicator I1 between F and an edge m ∈ M1.
But then, since distI1(m,F ) ≥ d > v(H ′) by property (I 1) and since (I1, F ) is H-robust by
Theorem 2.7, we conclude that H ′ ⊆ I1 must hold, contradicting our assumption. Hence,
we may also assume that H ′ is vertex-disjoint from SF ∪ V (F ).

Now, if H ′ uses an interior vertex of one of the signal senders S− in (iii), say between
the edges ek1 and ek2 , then again, using that distS(ek1 , ek2) ≥ d by property (S 3) and that
H ′ is 3-connected or isomorphic to a triangle or H ′ is a cycle with v(H ′) = girth(S), we
deduce that H ′ must be fully contained in that signal sender.

Next, if H ′ uses an interior vertex of one of the indicators in (i), (ii) or (iv), using the
same argument and the robustness properties of our indicators, guaranteed by Theorem 2.7
for positive and negative indicators respectively, we again conclude that H ′ must be fully
contained in that indicator.

Hence, we are left with the case when H ′ uses neither vertices from SF ∪ V (F ), nor
vertices from SG∪V (G), nor interior vertices from one of the gadgets in (i)�(iv). But then
H ′ ⊆

⋃
k∈[q−1](Mk ∪ Pk), which contradicts the fact that H ′ contains at least one cycle.

X

Observation 4.8. Let H ∼= Kt ·K2. Let I
′ be a graph obtained from I∗ by adding two new

vertex sets SF and SG and any collection of edges within SF ∪V (F ) and within SG∪V (G).
Then every copy of Kt in I

′ is fully contained in one of the indicators from (i), (ii), or (iv),
in one of the signal senders from (iii), or in one of the subgraphs induced by SF ∪V (F ) or
SG ∪ V (G).

Proof. The proof is analogous to the previous proof, except that we use the robustness
properties of all gadget graphs with respect to Kt, guaranteed by Theorem 2.7 for the
indicators in (i), (ii), and (iv). X

It remains to show that I∗ satis�es (GI 1)�(GI 4) and to verify the additional prop-
erty required in case (c) regarding the existence of Kt ·K2-special 2-colourings for (GI 2)
and (GI 4).

(GI 1) The graph F is an induced subgraph of I∗, as it is an induced subgraph of each of
the negative indicators in (i) by property (I 1). Also G is an induced subgraph of I∗, since
in the construction of I∗ we attach gadget graphs to single edges of G without adding
any further edges inside V (G). Moreover, we have distI∗(F,Gk) ≥ d, since, for every
k ∈ [q − 1] and every m ∈ Mk, the joining (H,F,m, q, d)-indicator I−F from (i) satis�es
distI−F

(F,m) ≥ d by property (I 1).

(GI 2) We de�ne a colouring c : E(I∗)→ [q] as follows:

� Give colour 1 to the edges of F .

� For every k ∈ [q − 1], give colour k + 1 to the edges mk
1 and mk

2.

� For every k ∈ [q − 1], colour the edges of Mk \ {mk
1,m

k
2} such that each colour from

[q] \ {1, k + 1} is used exactly once.

� For every k ∈ [q − 1], give colour k + 1 to the edges of Pk and Gk.

� Finally, extend this colouring to each of the indicators and signal senders in (i)�(iv)
so that none of these contains a monochromatic copy of H. In case (c), choose these
colourings to be Kt ·K2-special.
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The extension in the last step of the colouring is possible for the following reason: For
the indicators in (i), we can �nd such an extension by properties (I 2) and (I 3) for negative
indicators and since c(F ) = 1 6= c(m) for every k ∈ [q−1] and m ∈Mk. For the indicators
in (ii), consider two cases. If S = {mk

1,m
k
2}, then we have c(S) = c(Pk) = k + 1, and

hence we can colour as desired by properties (I 2) and (I 3). Otherwise, if S ∈
(
Mk
2

)
is

di�erent from {mk
1,m

k
2}, the colouring on S is not constant and hence we can extend as

desired by property (I 4). For the signal senders in (iii), the described extension is possible
by properties (S 1) and (S 2) for negative signal senders and since c(ek1) 6= c(ek2) for every
distinct k1, k2 ∈ [q − 1]. For the indicators in (iv), we again use properties (I 2) and (I 3)
plus the fact that c(Pk) = c(Gk) for every k ∈ [q − 1].

It remains to check that the resulting colouring c on I∗ is H-free. Consider �rst the
case when H is a cycle or 3-connected. By Observation 4.7, we know that each copy of H
must be fully contained in one of the gadgets in (i)�(iv) or in the graph G. By the choice
of the colouring, we know that each of the gadgets is coloured without a monochromatic
copy of H. Moreover, the colouring c splits the graph G into colour classes given by the
subgraphs G1, . . . , Gq−1, none of which contains a copy of H by the assumption of the
lemma. Hence, c is H-free in this case.

Next, consider the case when H ∼= Kt · K2. Assume that there is a monochromatic
copy H ′ of H, and let K ′ denote the copy of Kt in H ′. According to Observation 4.8,
K ′ needs to be fully contained in one of the gadget graphs or in one of the subgraphs F
or G. If H ′ is fully contained in one of these parts, then H ′ cannot be monochromatic
by the same argument as above. Hence, we may assume that K ′ uses a vertex of one of
the signal edges, indicator edges, or indicator subgraphs. If K ′ is contained in one of the
gadget graphs, then by the choice of the Kt ·K2-special colouring for this gadget graph,
K ′ cannot be monochromatic, a contradiction.

So assume next that K ′ ⊆ G = G1. We need to check that no edge adjacent to K ′ can
be of the same colour. Indeed, since H 6⊆ G1 by the assumption of the lemma, every edge
incident to K ′ must belong to one of the indicators from (iv) and must be incident to the
corresponding indicator edge which is part of K ′. But the 2-colouring of each indicator
was chosen to be Kt ·K2-special, so any such edge has the opposite colour, and hence H ′

cannot be monochromatic, a contradiction. We are left with the case K ′ ⊆ F . As we
have H 6⊆ F by the assumption of the theorem, we know that any edge adjacent to K ′

must be part of one of the indicators from (i). But then H ′ is fully contained in such an
indicator and hence cannot be monochromatic, as the colouring on every gadget is H-free,
a contradiction.

Note that the last argument also shows half of the additional property in case (c), i.e.,
that the H-free 2-colourings in (GI 2) can be chosen so that every monochromatic copy of
Kt using a vertex from F ∪G is contained fully in F ∪G.

(GI 3) Let c be any H-free colouring of I∗ such that F is monochromatic, say c(F ) = 1.
By properties (I 2) and (I 3) for negative indicators, the indicators in (i) make sure that all
edges in the matchings Mk need to get a colour di�erent from 1. Then, by the pigeonhole
principle, in each matching Mk there needs to be at least one colour from [q] \ {1} that
appears at least twice. For each matching Mk, �x one such colour and denote it by
ck. By symmetry, we assume without loss of generality that c(mk

1) = c(mk
2) = ck. By

property (I 3) for the indicators in (ii), we conclude that c(Pk) = c(ek) = ck. Similarly,
using property (S 2) for the signal senders in (iii), we obtain that all edges in {e1, . . . , eq−1}
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need to have distinct colours. Since colour 1 is excluded, we may assume by symmetry that
ck = c(ek) = k + 1 and thus c(Pk) = k + 1. Then, applying property (I 3) for the positive
indicators in (iv) yields that c(Gk) = k + 1 and hence {c(F ), c(G1), . . . , c(Gk)} = [q].

(GI 4) Let ϕF and ϕG satisfy the assumption in property (GI 4). We de�ne a colouring
c : E(I∗)→ [q] as follows:

� colour F according to ϕF .

� colour G according to ϕG.

� For every k ∈ [q − 1] and ` ∈ [q], give colour ` to mk
` .

� For every k ∈ [q− 1], give colour k to ek and give colour k+ 1 to the edge in Pk− ek.

� Finally, extend this colouring to each of the indicators and signal senders in (i)�(iv)
so that none of these contains a monochromatic copy of H. In case (c), choose these
colourings to be Kt ·K2-special.

The extension in the last step of the colouring is possible for the following reason: For
the indicators in (i), we can �nd such an extension by property (I 4) for negative indicators
and since ϕF is not constant by assumption. For the indicators in (ii), such an extension
exists by property (I 4) and since no subgraph S ⊆ Mk of size two is coloured monochro-
matically. For the signal senders in (iii), this extension is possible by properties (S 1)
and (S 2) and since c(ek1) 6= c(ek2) for every distinct k1, k2 ∈ [q − 1]. For the indicators in
(iv), we again use property (I 4) plus the fact that Pk is not monochromatic.

Finally, as in the discussion of (GI 2), it follows that c must be H-free. Moreover, if
H ∼= Kt ·K2 and q = 2 then, taking a Kt ·K2-special 2-colouring for each of the gadget
graphs, we deduce that every monochromatic copy of Kt that uses a vertex from F ∪ G
is fully contained in F ∪G. That is, we obtain the second half of the additional property
required in case (c).

4.1.2 Existence of pattern gadgets

We are now ready to prove Theorem 4.4.
Set t = |G |. For every g = {G1, . . . , Gq} ∈ G , �x an ordered colour pattern ~g =

(G1, . . . , Gq) with an arbitrary ordering of the subgraphs Gi ∈ g, and denote the jth

component of ~g by ~gj . Further, let
#�

G = {~g : g ∈ G }. Choose r ∈ Z≥1 such that(
(r − 1)q + 1

r

)
≥ t .

Fix a matching M of size (r − 1)q + 1 and a surjection s :
(
M
r

)
→ #�

G , which exists by the
choice of r. We construct a pattern gadget P = P (H,G,G , q) as follows. Take G together
with the given family G of H-free q-colour patterns for G. Further, take the matching M
to be vertex-disjoint from G and join submatchings of M and edges of G by generalised
negative indicators and positive indicators as described below. For this, choose an integer
d such that d > v(H).

(i) For every A ∈
(
M
r

)
and every edge e ∈ E(s(A)q), join the submatching A and the

edge e by a positive (H,A, e, q, d)-indicator.
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(ii) For everyA ∈
(
M
r

)
, join the submatchingA and the graphG−(s(A))q by a generalised

negative (H,A, {s(A)k}k∈[q−1], q, d)-indicator.

The existence of the indicators needed in (i) and (ii) is given by Theorem 2.7 and
Lemma 4.6.

In the case when H ∼= Kt ·K2 and q = 2, we additionally choose all gadgets so that
they have Kt · K2-special 2-colourings as described in Theorem 2.7 and Lemma 4.6(c)
respectively. Moreover, we choose all the indicators so that they satisfy the robustness
properties described in Theorem 2.7 and Lemma 4.6. Then, analogously to Observation 4.7
and Observation 4.8, we can prove the following.

Observation 4.9. Let P ′ be a graph obtained from P by adding a vertex set S and any
collection of edges within S ∪ V (G). If H is 3-connected or a cycle, then every copy of H
in P ′ is fully contained in one of the indicators from (i) or (ii) or in the subgraph induced
by S ∪ V (G). If H ∼= Kt ·K2, then every copy of Kt in P

′ is fully contained in one of the
indicators from (i) or (ii) or in the subgraph induced by S ∪ V (G).

Given this observation, it follows immediately that (P,G) is H-robust if H is 3-
connected or a cycle and that (P,G) is Kt-robust if H ∼= Kt · K2. Hence, it remains
to verify that P satis�es (P 1)�(P 3), and that in the case when H ∼= Kt ·K2 and q = 2
we can �nd 2-colourings for (P 3) as described in part (c) of Theorem 4.4.

(P 1) Since P is constructed by attaching di�erent gadgets to G without adding edges
inside V (G), we have G ⊆ind P .

(P 2) Let c : E(P )→ [q] be any H-free colouring of P . By the pigeonhole principle, at
least one colour is used at least r times on the matching M . Without loss of generality,
say c(A) = q for some A ∈

(
M
r

)
. Consider the pattern g = {s(A)k}k∈[q]. By property (I 3)

of the indicators in (i), we deduce that every edge in E(s(A)q) also needs to have colour
q. Moreover, by property (GI 3) of the generalised negative indicators in (ii), each of the
subgraphs s(A)k with k 6= q is forced to be monochromatic, and all colours except for
c(A) = q get used among these subgraphs. Hence, {c−1

|G (1), . . . , c−1
|G (q)} = g ∈ G .

(P 3) Let g = {G1, . . . , Gq} ∈ G be given. Fix an arbitrary set A0 ∈
(
M
r

)
such that

s(A0) = ~g. Without loss of generality, assume that s(A0)k = Gk for every k ∈ [q]; otherwise
relabel the subgraphs in g. We de�ne a colouring c : E(P )→ [q] as follows:

� Give colour q to each edge in A0.

� colour M \A0 so that each colour from [q − 1] appears exactly r − 1 times.

� For every k ∈ [q], give colour k to the edges of Gk.

� Finally, extend this colouring to each of the gadgets in (i) and (ii) so that none of
these contains a monochromatic copy of H. In case (c), choose these colourings to
be Kt ·K2-special.

We claim that the extension in the last step of the colouring is indeed possible. Recall
that each gadget from (i) and (ii) is associated to a submatching A ∈

(
M
r

)
. Suppose �rst

that A = A0. Then we have c(A) = q = c(s(A)q), and by properties (I 2) and (I 3), we
�nd an extension as desired for the corresponding positive indicators in (i). Moreover, we
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have c(s(A)k) = k 6= q = c(A) for every colour k ∈ [q − 1]. Hence, by properties (GI 2)
and (GI 3), we �nd extensions as desired for the corresponding generalised negative indi-
cators in (ii). Consider next the case when A 6= A0. Then A is not monochromatic, since
A0 is the only monochromatic subset of M of size r. Now, let I be any positive indicator
between A and any edge e ∈ E(s(A)q) as described in (i). Then, by property (I 4), we �nd
an extension for I as desired. Finally, let I be the generalised negative indicator from (ii)
for the set A. Then, using property (GI 4), we conclude analogously that an extension for
I can be found.

Finally, we have {G1, . . . , Gq} = {c−1
|G (1), . . . , c−1

|G (q)}. Since g = {G1, . . . , Gq} is an
H-free q-colour pattern by the assumption of the theorem, we know that c|G is H-free.
Now, if H is 3-connected or a cycle, then every copy of H in P that is not contained in G
must be a subgraph of some indicator from (i) or (ii), according to Observation 4.9. But
we already know that the colouring c is H-free on every indicator, and hence it is H-free
on the whole graph P .

It remains to consider the case when H ∼= Kt · K2 and q = 2. Assume that there
is a monochromatic copy H ′ of H, and let K ′ denote its copy of Kt. As above, if H ′ is
fully contained in one of the indicators, then it cannot be monochromatic. Hence, we may
assume that K ′ intersects the vertex set of an indicator edge or an indicator subgraph.
Then, by the Kt ·K2-special 2-colourings for the indicators, we know that K ′ needs to be
a subgraph of G. Without loss of generality, let K ′ ⊆ G1. Since G does not contain a copy
of Kt ·K2 by assumption, we know that EG(V (K ′), V (G2)) = ∅. Hence, the pendant edge
f of H ′ needs to belong either to a positive indicator between some A ∈

(
M
r

)
and some

e ∈ E(K ′), or to a generalised negative indicator between some A ∈
(
M
r

)
and the graph

G1 ⊇ K ′. In the former case, the edge f needs to be incident to the indicator edge e and
hence c(e) 6= c(f) by the Kt ·K2-special 2-colouring of the corresponding positive indicator.
In the latter case, we have c(f) 6= c(K ′) as the colouring of the generalised negative
indicator was chosen to be H-free. Hence, in both cases H ′ cannot be monochromatic, a
contradiction. �

4.2 Applications of pattern gadgets

In this section, we present several applications of the pattern gadgets constructed in the
previous section. We �rst prove Theorem 4.10 and Theorem 4.11 directly. The proof of
Theorem 4.15 is given later in the section as a consequence of a more general result about
3-connected graphs (Theorem 4.12).

4.2.1 Cycles

Theorem 4.10. For any given integers q ≥ 2, t ≥ 4, and k ≥ 1, there exists a minimal q-
Ramsey graph for Ct that has at least k vertices of degree q+1. In particular, sq(Ct) = q+1
and Ct is sq-abundant.

Proof. Let H ∼= Ct and t ≥ 4 and q ≥ 2 be �xed. We �rst note that sq(H) ≥ q+1. Indeed,
suppose there is a minimal q-Ramsey graph G for Ct with a vertex v of degree at most
q; by the minimality of G, there exists a Ct-free q-colouring of G− v. Now, colouring the
edges incident to v so that no two of them share a colour gives a q-colouring of G with no
monochromatic Ct, a contradiction.
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G

P

v1 v2 v3

V1 V2 V3

W1 W2 W3

Figure 4.2: Graph G̃ for q = 2, t = 6 and k = 3.

We now turn our attention to showing that there can be arbitrarily many vertices of
degree q+ 1, also implying that sq(Ct) = q+ 1. Let k ≥ 1. We now construct a minimal q-
Ramsey graph for H with at least k vertices of degree q+1. Our graph will be constructed
in several steps. We refer the reader to Figure 4.2 for an illustration of our construction in
the case when q = 2, t = 6, and k = 3.

To begin with, let W be a set of q + 1 vertices. For every u,w ∈ W and u 6= w,
add q internally vertex-disjoint paths of length t − 2 with u and w as endpoints. Call
the resulting graph F . Let c1 : E(F ) → [q] be a colouring of the edges of F such that,
for every distinct u,w ∈ W , every path between u and w is monochromatic but no two
such paths are monochromatic in the same colour. Let c2 : E(F ) → [q] be another
colouring of the edges of F such that, for every distinct u,w ∈ W , no path between u
and w is monochromatic. We de�ne f1 and f2, two q-colour patterns for F , by setting
f1 = {c−1

1 (i)}i∈[q] and f2 = {c−1
2 (i)}i∈[q]. Note that f1 and f2 are H-free.

We now take k vertex-disjoint copies F1, . . . , Fk of F , where Fi = (Vi, Ei) for all 1 ≤
i ≤ k, and denote by Wi the subset of Vi corresponding to W in V (F ). Call this graph G,

and de�ne V =
k⋃
i=1

Vi. Note that G 6→q H, since F 6→q H. Let G be a family of q-colour

patterns for G such that g ∈ G if and only if there exists an i ∈ [k] such that g[Vi] ∼= f1

and g[Vj ] ∼= f2 for all j 6= i. Note that G is a family of H-free q-colour patterns for G.
By Theorem 4.4, we know that there exists a pattern gadget P = P (H,G,G , q). More-

over, we can choose the pattern gadget P in such a way that the pair (P,G) is H-robust.
We add k additional vertices v1, . . . , vk to P , and for all i ∈ [k], we add edges from vi to
all vertices in Wi. We call the resulting graph G̃.

We now show that G̃→q H and that each of the new vertices vi is important for G̃ to

have this property, that is, G̃− vi 6→q H for every i ∈ [k]. This then implies the existence
of a minimal q-Ramsey graph for H with the desired properties. Indeed, consider any
minimal q-Ramsey graph G̃′ ⊆ G̃. Since G̃− vi 6→q H, we know that vi ∈ V (G̃′) for every
i ∈ [k]. Also q+ 1 ≤ sq(Ct) ≤ dG̃′(vi) ≤ q+ 1, which means that d

G̃′(vi) = sq(Ct) = q+ 1.
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First, we show that G̃ →q H. Let c : E(G̃) → [q] be a q-colouring of the edges

of G̃, and assume that c is H-free. For each i ∈ [q], de�ne ci = c−1(i) to be the ith
colour class with respect to c. By property (P 2) of the pattern gadget P , we know that
g = {c1[V ], . . . , cq[V ]} ∈ G ; by the de�nition of G , there exists an i ∈ [k] such that
{c1[Vi], . . . , cq[Vi]} ∼= f1. Without loss of generality, we may assume that i = 1. Consider
the edges from v1 to the vertices of W1. There are q + 1 such edges and they are coloured
in q colours, so by the pigeonhole principle there are two vertices in W1, say u and w, such
that c(v1u) = c(v1w). Again without loss of generality, we may assume that c(v1u) = 1.
By our choice of f1, we know that there is a monochromatic path of length t− 2 in colour
1 between the vertices u and w. This monochromatic path along with the edges v1u and
v1w gives a monochromatic cycle of length t, contradicting our assumption.

Next, we show that G̃− vi 6→q H for every i ∈ [k]. By symmetry, it is enough to show
this for i = 1. Partition the vertices in V in the following way: For every ` ∈ [k], write
G[V`] = G`,1 ∪ · · · ∪G`,q so that {G1,j}j≤q ∼= f1 and {G`,j}j≤q ∼= f2 for ` 6= 1. We de�ne a
colouring c : E(G)→ [q] by setting c(G`,j) = j for every ` ∈ [k] and j ∈ [q]. The q-colour
pattern on V de�ned by c, namely {c−1

|G (1), . . . , c−1
|G (q)}, is in G , and by property (P 3), we

can extend c to an H-free colouring of P . We then colour the remaining edges in G̃ − v1

arbitrarily, and denote the resulting q-colouring of G̃ − v1 by c̃. Since c̃|P is H-free, any

monochromatic copy of H in G̃ − v1 needs to contain a vertex v` for some ` ≥ 2. Now,
due to the Ct-robustness of the pair (P,G), any possible monochromatic copy of H must
be contained in some V` ∪ {v`}. Such a copy then needs to contain two vertices of W`

and a path of length t− 2 between them. But we know that {c−1
|G[V`]

(j)}j∈[q]
∼= f2, and by

the de�nition of f2, no such path is monochromatic. Hence, no monochromatic copy of H
exists.

4.2.2 Cliques with a pendant edge

Theorem 4.11. For a given integer t ≥ 3, the graph Kt ·K2 is s2-abundant.

Proof. It was shown by Fox et al. [43] that s2(Kt ·K2) = t − 1 for every t ≥ 3. We now
show that a minimal 2-Ramsey graph for Kt ·K2 can contain arbitrarily many vertices of
this minimum degree.

Let H ∼= Kt ·K2 for some t ≥ 3, and let k ≥ 1 be �xed. Our construction of a minimal
2-Ramsey graph for H containing at least k vertices of degree t − 1 will combine ideas
similar to those in the proof of Theorem 4.10 with ideas from the construction given by
Fox et al. [43]. We again refer the reader to Figure 4.3 for an illustration of the case t = 4
and k = 3.

We begin by de�ning F to be the vertex disjoint union of t − 1 copies of Kt. For
every copy of Kt, we �x an arbitrary vertex and call the set of all these vertices W .
Let c1 : E(F ) → {red, blue} be a 2-colouring that colours every edge of F red. Let
c2 : E(F )→ {red, blue} be another 2-colouring of the edges of F such that no copy of Kt

is monochromatic (in either colour). We de�ne two colour patterns f1 and f2 for F by
setting f1 = {c−1

1 (red), c−1
1 (blue)} and f2 = {c−1

2 (red), c−1
2 (blue)}. Note that f1 and f2

are H-free.
Now take k vertex-disjoint copies F1, . . . , Fk of F , where Fi = (Vi, Ei) for 1 ≤ i ≤ k,

and let Wi be the subset of Vi corresponding to the set W in V (F ). Call this graph G,
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and de�ne V =
k⋃
i=1

Vi. Note that G does not contain any copies of H. Let G be a family

of 2-colour patterns for G such that g ∈ G if and only if there exists an i ∈ [k] such that
g[Vi] ∼= f1 and g[Vj ] ∼= f2 for all j 6= i. Note that G is a family of H-free 2-colour patterns
for G.

By Theorem 4.4, we deduce that there exists a pattern gadget P = P (H,G,G , 2).
Moreover, we can choose the pattern gadget P in such a way that the pair (P,G) is Kt-
robust and that for property (P 3) there is always an H-free 2-colouring such that, if a
monochromatic copy of Kt uses a vertex from G, then it lies entirely in G. We add k
additional vertices v1, . . . , vk to P with edges from vi to all vertices of Wi for all i ∈ [k];
also, for all i ∈ [k], we add an edge between each pair of distinct vertices in Wi. Lastly, we
choose an arbitrary vertex in Wi and add a pendant edge ei incident to that vertex. We
call the resulting graph G̃.

P

G

V1 V2 V3

v1 v2 v3

e1 e2 e3

Figure 4.3: Graph G̃ for t = 4 and k = 3.

We now show that G̃ →2 H and that G̃ − vi 6→2 H for every i ∈ [k]. This, as argued
in the proof of Theorem 4.10, implies the existence of a minimal 2-Ramsey graph with the
desired properties.

First we show that G̃→2 H. Let c : E(G̃)→ {red, blue} be a 2-colouring of the edges
of G̃; assume that c is H-free. De�ne cred = c−1(red) and cblue = c−1(blue) to be the two
colour classes with respect to c. By property (P 2) of the pattern gadget P , we know that
g = {cred[V ], cblue[V ]} ∈ G , and by the de�nition of G , there exists an i ∈ [k] such that
{cred[Vi], cblue[Vi]} ∼= f1. Without loss of generality, we may assume that i = 1 and every
edge inside Vi is red. Consider the edges with endpoints in the set W ′ = W1 ∪ {v1}. Since
c is an H-free colouring of G̃ and each such edge e has at least one endpoint in W1 (and is
hence incident to an all-red copy of Kt), we obtain that c(e) = blue. As a result, the graph
induced by W ′ is a monochromatic blue copy of Kt. Now, the pendant edge e1 is incident
to monochromatic copies of Kt in both colours and thus creates a monochromatic copy of
H irrespective of its colour. This contradicts our assumption.

Next, we show that, for every i ∈ [k], we have G̃− vi 6→2 H. By symmetry, it su�ces
to show this for i = 1. For every ` ∈ [k], take a partition G[V`] = G`,red ∪ G`,blue such
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that {G1,red, G1,blue} ∼= f1 and {G`,red, G`,blue} ∼= f2 for ` 6= 1. We de�ne a colouring

c : E(G̃) → {red, blue} by �rst setting c(G`,j) = j for every ` ∈ [k] and j ∈ {red, blue}.
The colour pattern de�ned on G by c is in G , and by property (P 3) of P , we can extend
this to all of P so that the colouring c|P is H-free and has the following additional property:

(P) If a monochromatic copy of Kt in the colouring c|P uses a vertex from G, then it lies
entirely in G.

Now, for every ` ≥ 2, colour one edge between v` andW` red and colour the remaining edges
in E

G̃
(W`∪{v`})∪{e`} blue. Further, colour all edges in EG̃(W1)∪{e1} with the colour not

used on G[V1] (recall that G[V1] was coloured monochromatically as {G1,red, G1,blue} ∼= f1).
We claim that this colouring is H-free. For a contradiction, assume that there is a

monochromatic copy H ′ of H produced by the colouring c. Since c|P is H-free, H ′ needs
to use at least one edge e0 from E

G̃
(W1) ∪ {e1} or from E

G̃
(W` ∪ {v`}) ∪ {e`} for some

` ≥ 2.
Consider �rst the case when e0 ∈ EG̃(W1)∪{e1}. We know thatG[V1] is monochromatic

and that e0 has the opposite colour, say G[V1] is red and e0 is blue. Then, by property (P)
and the fact that |W1| = t − 1, there can be no blue copy of Kt in the subgraph induced
by the set V1 ⊇ W1. But this means that e0 cannot be part of a blue copy of Kt ·K2, a
contradiction.

Consider now the case when e0 ∈ EG̃(W` ∪ {v`}) ∪ {e`} for some ` ≥ 2, and assume
without loss of generality that ` = 2. By the Kt-robustness of the pair (P,G), the copy H ′

of H must be contained within E
G̃

(V2 ∪ {v2}) ∪ {e2}. Since c|G[V2]
∼= f2, i.e., the copies of

Kt in F2 are not monochromatic, and c satis�es property (P), we obtain that G[V2] does
not contain a monochromatic copy of Kt. From this and the fact that e2 is a pendant edge
it follows that the vertices of the copy of Kt in H

′ must be contained entirely in W2∪{v2}.
But this set contains precisely t vertices that do not form a monochromatic copy of Kt,
again giving a contradiction.

4.2.3 3-connected graphs

Before turning to the proof of Theorem 4.15 and Theorem 4.18, we state and prove a
more general statement concerning 3-connected graphs. Roughly speaking, it reduces the
problem of showing sq-abundance to that of �nding a suitable minimal q-Ramsey graph
containing at least one vertex of the desired small degree. In fact, we can even relax
the condition that the q-Ramsey graph be minimal and that the desired small degree be
precisely sq(H) for the given graph H.

Theorem 4.12. Let H be 3-connected or a triangle and assume there exists a graph F
together with a vertex v ∈ V (F ) and an edge e ∈ E(F ) satisfying the following properties:

(F 1) F →q H.

(F 2) v and e do not share a copy of H in F .

(F 3) F − e 6→q H.

(F 4) F − g 6→q H for every g ∈ E(F ) which is incident to v.
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Then, for any k ∈ Z≥1, there exists a minimal q-Ramsey graph for H that has k vertices
of degree dF (v).

Proof. Given a graph F with the required properties, denote the edges incident to v in F
by g1, . . . , gdF (v). Let F

′ = F−v−e. In order to de�ne q-colour patterns for an application
of Theorem 4.4, we �rst observe the existence of two types of H-free q-colourings on F ′.

Claim 4.13. For every j ∈ [dF (v)], there exists an H-free q-colouring c1,j of F
′ such that

� c1,j can be extended to an H-free q-colouring of F − {e, gj}, and

� c1,j cannot be extended to an H-free q-colouring of F − e.

Proof. By property (F 4), there exists an H-free q-colouring ϕ of F − gj . We set
c1,j := ϕ|F ′ . One observes easily that this is an H-free q-colouring of F ′ and that ϕ|F−{e,gj}
is an extension to F − {e, gj} that is H-free. Hence, it remains to check that there is no
H-free extension to the graph F − e.

For a contradiction, assume that there exists some H-free colouring ψ : E(F − e)→ [q]
extending c1,j . The q-colouring ψ̃ : E(F )→ [q] de�ned by

ψ̃(f) =

{
ψ(f) if f 6= e

ϕ(e) if f = e

cannot be H-free by property (F 1). Thus, there must be a copy H ′ of H that is monochro-
matic under ψ̃; moreover, H ′ needs to use the edge e as ψ̃|F−e = ψ is H-free. By prop-
erty (F 2), we have v /∈ V (H ′), that is, H ′ lies entirely in the graph F − v. However,
ψ̃|F−v = ϕ|F−v, since ψ̃|F ′ = ψ|F ′ = c1,j = ϕ|F ′ and ψ̃(e) = ϕ(e). Hence, since ϕ is H-free,
H ′ cannot be monochromatic, a contradiction. X

Claim 4.14. There exists an H-free q-colouring c2 of F ′ that can be extended to an H-free
q-colouring of F − e.

Proof. By property (F 3) there exists anH-free q colouring ϕ of F−e. We set c2 := ϕ|F ′ .
X

Given the colourings of our previous claims, we next de�ne H-free q-colour patterns
f1,j , with j ∈ [dF (v)], and f2 for F ′ by partitioning F ′ into its colour classes with respect
to c1,j and c2, respectively. More precisely, we set

f1,j = {c−1
1,j (i)}i∈[q] and f2 = {c−1

2 (i)}i∈[q].

Now let k ≥ 1 be an integer. We proceed similarly as in the proof of Theorem 4.10 and
construct a graph G̃ that will be a q-Ramsey graph for H with the additional property
that there are at least k vertices of degree dF (v), each of which is important for G to be
q-Ramsey for H.

First, let F1, . . . , Fq be k vertex-disjoint copies of F −e. For each i ∈ [k], let vi ∈ V (Fi)
represent the vertex v ∈ V (F − e) and let gi1, . . . , g

i
dF (v) ∈ E(Fi) be the edges representing

g1, . . . , gdF (v). Moreover, for every i ∈ [k], let F ′i = Fi − vi and Wi := NFi(vi).
We �x G = (V,E) to be the vertex-disjoint union of the graphs F ′i = (V ′i , E

′
i), i.e., we

set V = ∪ki=1V
′
i and E = ∪ki=1E

′
i. Then we �x a family G of q-colour patterns for G such
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that g ∈ G if and only if there exist i ∈ [k] and j ∈ [dF (v)] such that g[V ′i ] ∼= f1,j and such
that g[V ′` ] ∼= f2 for all ` 6= i.

By the de�nition of the patterns f1,j and f2, and since the vertex sets V ′i for i ∈ [k]
are pairwise disjoint, we know that G is a family of H-free q-colour patterns for G. Hence,
applying Theorem 4.4, we can �nd a pattern gadget P = P (H,G,G , q) such that (P,G) is
H-robust. Finally, we obtain G̃ from P by adding the vertices v1, . . . , vk and by connecting
vi to all vertices in Wi via the edges gi1, . . . , g

i
dF (v) for all i ∈ [k].

Analogously to the proof of Theorem 4.10, we now show that G̃→q H and that each of

the edges gij , for i ∈ [k] and j ∈ [dF (v)], is important for G̃ to be Ramsey in the sense that

G̃ − gij 6→q H. This then implies the existence of a minimal q-Ramsey graph as claimed

by the theorem. Indeed, assuming these properties, let G̃′ ⊆ G̃ be minimal q-Ramsey for
H. Since G̃− gij 6→q H, we can conclude that gij ∈ E(G̃′) for every i ∈ [k] and j ∈ [dF (v)].

This then implies that d
G̃′(vi) = dF (v). Hence, G̃′ is a minimal q-Ramsey graph for H

with at least k vertices of degree dF (v).
Let us show �rst that G̃ →q H. For a contradiction, suppose we can �nd an H-

free q-colouring c : E(G̃) → [q]. For each i ∈ [q], de�ne ci = c−1(i) to be the ith
colour class with respect to c. By property (P 2) of the pattern gadget P , we know that
g := {c−1

|G (1), . . . , c−1
|G (q)} ∈ G . Hence, by the de�nition of G , there exist i ∈ [k] and

j ∈ [dF (v)] such that g[V ′i ] ∼= f1,j . But then, by the choice of f1,j and the properties of

c1,j , we deduce that c|G̃[V ′i ]
cannot be extended to anH-free q-colouring of G̃[V ′i ∪{vi}]. This

a contradiction, since c|G̃[V ′i ∪{vi}]
is already such an H-free extension by the assumption

on c.
Next, we show that G̃ − gij 6→q H for every i ∈ [k] and j ∈ [dF (v)]. By symmetry, we

may only consider the case when i = j = 1. We �rst partition G in the following way:
For every ` ∈ [k], we �x a partition G[V`] = G`,1 ∪ · · · ∪ G`,q such that {G1,r}r≤q ∼= f1,1

and {G`,r}r≤q ∼= f2 for ` 6= 1. By the choice of f1,1 and f2, we know that the colouring
c : E(G) → [q] de�ned by c(G`,r) = r, for every ` ∈ [k] and r ∈ [q], is H-free. Moreover,
{c−1(1), . . . , c−1(q)} ∈ G and therefore, by property (P 3), we can extend c to an H-free
q-colouring ϕP of P . By the de�nition of f1,1 and the properties of c1,1, we know that the

colouring c|G[V1] can be extended to an H-free q-colouring ϕ1 of G̃[V1 ∪ {v1}] − g1
1. By

the de�nition of f2 and the properties of c2 we know that, for each ` 6= 1, the colouring
c|G[V`] can be extended to an H-free q-colouring ϕ` of G̃[V` ∪ {v`}]. We now put all these

colourings together to form the colouring ϕ : E(G̃− g1
1)→ [q] given by

ϕ(f) :=

{
ϕP (f) if f ∈ E(P ),

ϕ`(f) if v` ∈ f for some ` ∈ [k].

We claim that this colouring is H-free.
Assume for a contradiction that there is a monochromatic copyH ′ ofH in the colouring

ϕ. Then, since (P,G) isH-robust, we know thatH ′ ⊆ P orH ′ ⊆ G̃[V ∪{v`}`∈[k]]−g1
1. Since

the colouring ϕP on P is H-free, we can assume that H ′ ⊆ G̃[V ∪{v`}`∈[k]]−g1
1. But then,

since H ′ is connected, we have H ′ ⊆ G̃[V`∪{v`}] for some ` 6= 1 or H ′ ⊆ G̃[V1∪{v1}]− g1
1.

In both cases we know that H ′ cannot be monochromatic, since the colourings ϕ1, . . . , ϕk
are H-free. This is a contradiction.
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4.2.4 Wheels

Finally, we illustrate how to apply Theorem 4.12 by deriving Theorem 4.15 as a consequence
of it. Note that for t ≥ 4, the wheel graph Wt is 3-connected.

Theorem 4.15. For a given integer t ≥ 4, the graph Wt is s2-abundant and s2(Wt) = 7.

Proof. Let H ∼= Wt and t ≥ 4 be �xed. We �rst note that s2(H) ≥ 7. Indeed, suppose
there is a minimal 2-Ramsey graph G for Wt with a vertex v of degree at most 7; by the
minimality of G, there exists a Wt-free 2-colouring of G − v, say c. Without any loss to
our argument, we may assume that neighbourhood of v induces a complete graph K6. It
is an easy exercise to see that K6 is Ramsey for C4. Let us assume that the copy of C4

in N(v) is blue. We now extend the colouring c to edges incident to v. We colour the
edges incident to v and the copy of C4 red and the remaining edges blue. Since the degree
of v in colour blue is two and δ(H) = 3 we know that we did not create a copy of Wt in
blue. Moreover, we did not create a red copy of Wt. Indeed, for the �rst case, say that
in the extended colouring there exists a red copy of H and the vertex v plays the role
of the central vertex. Observe that, in H, any two non adjacent vertices of the cycle are
connected by a path of length at least three, but in the neighbourhood of v there are at
most two red matching edges. In the second case assume that v plays the role of a cycle
vertex in the red copy of H. This means, that there must be a vertex in the neighbourhood
of v which is connected to v and at least two other neighbouring verteices in red, which
again does not exist. Therefore s2(Wt) ≥ 7.

We now turn our attention to showing that there can be arbitrarily many vertices of
degree 7, also implying that s2(Wt) = 7. Let k ≥ 1. We now construct a minimal 2-Ramsey
graph for H with at least k vertices of degree 7.

Let A and B be two disjoint set of vertices with sizes four and three respectively andW ′t
be the copy of the wheel on t+1 vertices with one cycle vertex removed along with the three
edges incident to it and the two edges induced by the vertices in its neighbourhood. Denote
the neighbourhood of the deleted vertex by x1, x2, and x3 with x2 being the central vertex
of the wheel. Let G1 be a graph constructed from a complete bipartite graph between A
and B as follows: for any three vertices, henceforth called a triple, in A ∪ B, such that
they are not all in the same part, attach to these vertices a copy of W ′t by identifying
x1, x2, and x3 with the triple, in such a way that the vertex which does not share its part
with the other two vertices of the triple is a copy of x2. Let G2 be the graph obtained by
adding a copy of C4 on the vertices of A, a copy of P3 on the vertices of B, and for any
triple of vertices entirely from A or from B we add a copy of W ′t by identifying x2 with
the middle vertex of the path induced on the vertices of the triplet. Notice that G1 and
G2 are Wt-free. We de�ne G = G1 ∪G2.

Fix a graph G as described above. We take the given graph G, an isolated vertex v,
and a matchingM = {e1, e2} that is vertex-disjoint from G and v; next, we take a negative
signal sender S− := S−(Wt, e, f, q, d) and a positive signal sender S+ := S+(Wt, e, f, q, d)
with d > 3, the existence of which is guaranteed by Theorem 2.4. We then obtain G̃ as
follows:

(i) Join e1 and e2 by a copy of S−.

(ii) For every i ∈ [2] and every f ∈ E(Gi), join ei and f by a copy of S+.
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(iii) Connect v to all vertices in A ∪B by an edge.

We will see in the following that G̃ →2 Wt, G̃ − v 6→2 Wt, and G̃ −M 6→2 Wt. From
this, we can then conclude the existence of a graph F ∈M2(Wt) satisfying the hypothesis
of Theorem 4.12. Indeed, consider any minimal 2-Ramsey graph F for Wt contained in
G̃. Since G̃− v 6→2 Wt, we conclude that F must contain the vertex v; moreover, we have
s2(Wt) ≤ dF (v) ≤ d

G̃
(v) = 7, so dF (v) = s2(Wt). Further, using that G̃ −M 6→2 Wt, we

also deduce that G̃ must contain at least one edge e ∈M . Since distF (v, e) ≥ dist
G̃

(v, e) ≥
4, v and e cannot share a copy ofWt, implying that property (F 2) holds. By the minimality
of F , properties (F 1), (F 3), and (F 4) are immediate. We split the remainder of the proof
into two claims.

Claim 4.16. We have G̃→2 Wt and G̃− v 6→2 Wt.

Proof. We begin by showing that G̃ →2 Wt. For a contradiction, assume that there
exists a Wt-free colouring c : E(G̃) → [2]. The signal senders in (i) then ensure that the
edges of M must receive distinct colours, say without loss of generality that c(ei) = i for
every i ∈ [2]. The signal senders in (ii) ensure that c(Gi) = c(ei) = i for every i ∈ [2]. Now,
consider the edges incident to v. A simple case disctinction shows that, irrespective of the
colouring of these edges, there exists three monochromatic edges at v such that the graph
induced by this neighbourhood of v is a path of the same colour. Hence, v along with the
aforementioned edges and the copy of W ′t on the desired neighbourhood of v forms a copy
of Wt. This is a contradiction.

Next, let us show that G̃ − v 6→2 Wt. In order to do so, we de�ne a 2-colouring c of
G̃− v. We �rst set c(Gi) = c(ei) = i for every i ∈ [2]; afterwards we extend the colouring
c to G̃ − v in such a way that c is Wt-free on each signal sender from (i) and (ii). Note
that the latter is possible by property (S 1) and (S 2). Analogously to previous proofs,
each copy of Wt is fully contained either in a signal sender or in the graph G. Since the
colouring restricted to any signal sender isWt-free and since {G1, G2} is aWt-free 2-colour
pattern, it follows that c is Wt-free. X

Claim 4.17. G̃−M 6→2 Wt.

Proof. In order to see this claim, we de�ne a 2-colouring c of G̃ −M as follows: We
�rst �x a Wt-free 2-colouring of the graph G as follows: For each edge e that is contained
entirely in A ∪ B we assign c(e) = i if e ∈ Gi, for each edge e in a copy of W ′t we assign
c(e) = i if e 6∈ Gi, and for every edge e incident to v we assign c(e) = 1. Indeed it is easy
to verify that this is a Wt-free 2-colouring of G. Afterwards, we extend the colouring to
every signal sender so that it is Kt-free. The latter is possible since every signal sender is
missing at least one signal edge in the graph G̃−M (and hence we can always pretend that
the missing signal edge has a colour that �ts property (S 2)). Now, each copy of Wt is fully
contained either in a signal sender or in the graph G, and hence, the resulting colouring of
G̃−M is Wt-free. X

Putting Claims 4.16 and 4.17 together, we obtain the theorem.
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4.2.5 Random graphs

In this section we will provide yet another application of Theorem 4.12. We will consider
certain rages of p for which G(n, p) is almost surely 3-connected.

In Chapter 3, via Proposition 3.7 we showed that, when establishing the q-Ramsey sim-
plicity of a graph H, it su�ces to consider the neighbourhood of a minimum degree vertex
w. In the construction of the Ramsey host graph G, the vertex w will have the desired
degree δ(G) = sq(H), but we can expect all other vertices to have much higher degree.
Indeed, they are all contained in signal senders, which tend to be large and complicated
structures. It is then natural to ask if this must be the case, or if we can apply the results
of this chapter to �nd minimal q-Ramsey graphs for H with arbitrarily many vertices of
the lowest possible degree. To that end we will show the following theorem.

Theorem 4.18. Let p = p(n) ∈ (0, 1) and H ∼ G(n, p). Then a.a.s. H is sq-abundant

for all q ≥ 2 whenever logn
n � p� n−

2
3 and H is sq-abundant for all q ≤ q̃(H) whenever

n−
2
3 � p� n−

1
2 .

Here q̃(H) is as de�ned in De�nition 3.1. We show that in the mentioned ranges of p
and q, the graph G(n, p) is almost surely not just q-Ramsey simple but also sq-abundant.

Proposition 4.19. Let q ≥ 2 and let H be a well-behaved n-vertex graph. If there is a q-
edge-coloured graph Γ on q(δ(H)−1)+1 vertices satisfying the conditions of Proposition 3.7,
and if either e(Γ) = 0 or n > q(δ(H)− 1) + 2, then not only is H q-Ramsey simple, but it
is also sq-abundant.

As we have shown in the previous chapter in Section 3.3.2, for the ranges of parameters
covered by Theorem 4.18, H is well-behaved and admits the construction of a suitable q-
coloured graph Γ. Moreover, when p� n−2/3, we have e(Γ) = 0, while when n−2/3 � p�
n−1/2, we have δ(H) = (1+o(1))np and q ≤ np, and so q(δ(H)−1)+2 ≤ (1+o(1))(np)2 �
n. Hence, once we prove Proposition 4.19, we will have shown that in these cases G(n, p)
is also sq-abundant. To do so, we shall apply Theorem 4.12.

To prove Proposition 4.19, we shall show that the q-Ramsey graph G we built in the
proof of Proposition 3.7 admits a subgraph G′ ⊆ G satisfying conditions of Theorem 4.12
when we take v0 to be the minimum degree vertex w ∈ V (G), implying that H is sq-
abundant.

Proof of Proposition 4.19. Consider the graph G constructed in the proof of Proposi-
tion 3.7, and recall that it in particular contained a vertex w of degree q(δ(H) − 1) + 1,
and a matching M = {e1, e2, . . . , eq} of edges that were attached to the rest of the graph
by signal senders.

By Claim 3.11, we know G →q H. Let G′ ⊆ G be a minimal subgraph that is still
q-Ramsey for H. Claim 3.12 shows that we must have w ∈ V (G′), and in our application
of Theorem 4.12, we shall take v0 = w. The following claim, which we shall prove later,
shows that G′ must contain at least one edge from the matching M .

Claim 4.20. The graph G−M is not q-Ramsey for H.

We thus have ei ∈ E(G′) for some i ∈ [q], and we take e = ei in Theorem 4.12. Given
this preparation, it is simple to verify the conditions of the theorem. Indeed, we took G′
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to be a minimal q-Ramsey graph which ensures that Properties (F 1), (F 3), and (F 4) are
trivially true. Moreover, recall that the neighbourhood of w in G is the vertex set of Γ.
As ei is only connected to Γ via signal senders, in which the distance between the signal
edges is at least v(H), it follows that there cannot be any copy of H containing both ei
and w, thereby satisfying Property (F 2). We can therefore apply Theorem 4.12 to deduce
the existence of minimal q-Ramsey graphs for H with arbitrarily many vertices of degree
dG′(w) ≤ dG(w) = sq(H), showing that H is sq-abundant.

All that remains, then, is to prove Claim 4.20, a task we now complete.

Proof of Claim 4.20. We need to exhibit anH-free colouring of G−M . This graph consists
of three types of edges:

1. those incident to w or in the graph Γ,

2. those in the subgraphs RU,i and between RU,i and Γ, for U ∈
(V (Γ)
δ(H)

)
and i ∈ [q], and

3. the edges within the signal senders.

We colour all edges of (1) with the colour 1, and all edges of (2) with the colour 2. We
�nish by extending this colouring to an H-free q-colouring of each of the signal senders;
note that this is possible, as each signal sender is missing at least one of its signal edges
from M .

From Lemma 3.10, we know that any copy of H is either within a signal sender or
outside it, and as we coloured the signal senders in an H-free fashion, it is only the colour-
1 edges of (1) or the colour-2 edges of (2) that could give rise to a monochromatic copy of
H.

We can rule out the former immediately. Either e(Γ) = 0, in which case the edges of
(1) are simply a star around the vertex w, which cannot contain a copy of the well-behaved
(and therefore 3-connected) graph H, or n > q(δ(H)− 1) + 2 = v(Γ) + 1, and so Γ + {w}
does not have enough vertices to support a copy of H.

To handle the latter case, observe that the argument in Claim 3.12 shows that no copy
of H can intersect two di�erent subgraphs RU,i and RU ′,i′ , for i, i

′ ∈ [q] and U,U ′ ∈
(V (Γ)
δ(H)

)
.

Hence, any copy of H among the edges of (1) and (2) must use vertices of RU,i and U

for some U ∈
(V (Γ)
δ(H)

)
along with some vertex in Γ − U or the vertex w. In either case

these involve edges from (1) and therefore have the colour 1, and hence we cannot have a
colour-2 copy of H.

This completes the proof of Claim 4.20 and, with it, the proof of Proposition 4.19.

4.3 Concluding remarks

In this chapter, we developed a new tool for studying (minimal) Ramsey graphs and showed
some applications to questions concerning minimum degrees. In particular, we used pattern
gadgets to �nd examples of graphs H such that a minimal q-Ramsey graph for H can
contain arbitrarily many vertices of degree sq(H), that is, sq-abundant graphs. In a joint
work with Boyadzhiyska and Clemens [18], we in fact further used Theorem 4.12 for the
case of general q to show the following result for cliques.
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Theorem 4.21. For any given integers q ≥ 2 and t ≥ 3, the clique Kt is sq-abundant.

Interestingly, Theorem 4.21 illustrates that we can sometimes show sq-abundance with-
out knowing the precise value of sq. Further, we also established a su�cient condition for
a given 3-connected graph to be sq-abundant in Theorem 4.12. Given the tools developed
in this paper, we believe that all 3-connected graphs should be sq-abundant and propose
Conjecture 4.22 below.

Conjecture 4.22. Every 3-connected graph H is sq-abundant for any integer q ≥ 2.

It is easy to show that the path P4 with three edges is s2-abundant. Indeed, let k ≥ 3
be an odd integer and G be the graph obtained from the cycle Ck by adding a distinct
pendant edge to each vertex of the cycle. Using the fact that in every 2-colouring of Ck
there must be two consecutive edges of the same colour, it is not di�cult to check that G
is a minimal 2-Ramsey graph for P4. Further, G has k vertices of degree one, establishing
the claim.

Thus, we have seen that stars are not s2-abundant but P4 is. For all other trees T ,
the question of whether T is s2-abundant (or, more generally, sq-abundant) remains open.
This leads us to propose the following problem.

Question 4.23. Let q ≥ 2 be an integer. Is every tree that is not a star sq-abundant?

As explained above, a positive answer to this question would be rather surprising.

More generally, we would like to understand better which graphsH are sq-abundant. In
particular, besides stars, we do not have any examples of graphs that are not sq-abundant;
we propose the following question.

Question 4.24. Let q ≥ 2 be an integer. Does there exist a graph H that is not sq-
abundant, but has in�nitely many Ramsey-minimal graphs of minimum degree sq(H)?



5
Ramsey equivalence for asymmetric pairs

In this chapter we study the question: When are two pair of graphs Ramsey equivalent?
In [43], the authors raised a question: Does there exist a pair a graphs such that they
are Ramsey equivalent? In this chapter we will study a variant of this problem in the
asymmetric setting. Let us �rst recall what it means for two graphs to be equivalent.

De�nition 5.1. We call two pairs of graphs (G,H) and (G′, H ′) Ramsey equivalent, de-
noted (G,H) ∼ (G′, H ′), if R(G,H) = R(G′, H ′).

We will begin this study with a consideration for two pair of graphs which only consists
of stars. In Section 5.1, we will provide a necessary and su�cient condition for a pair of
pair of star graphs to be equivalent, that is we will prove Theorem 5.4.

Section 5.2 contains the proof of our main equivalence result, namely Theorem 5.5. We
consider a pair of graphs which consist of a tree and a clique. We will show that such a
pair is equivalent to another pair which consist of the same tree and a clique with other
structures hanging o� of it.

In Section 5.3 we prove Theorem 5.9. Here we again consider a pair of graphs which
consists of a tree and a clique, but in this section we exhibit a collection which is non
equivalent to the pair in question.

To conclude, in Section 5.4 we state some open problems and provide some easy obser-
vations for the properties of the pair (G,H) such that (G,H) ∼ (Kt,Kt).

This chapter is based on a joint work with Simona Boyadzhiyska, Dennis Clemens, and
Jonathan Rollin [19].

5.1 Star pairs

In this section, we prove Theorem 5.4. We note that this theorem can be deduced from
Theorem 1 in [71]. However, the calculations are tedious and for completeness we present
explicit constructions here when we want to show that there exist graphs that are Ramsey
for certain pairs of stars and not Ramsey for other star pairs.

Observe that, given positive integers a and b, an (a+b−2)-regular graph F is a Ramsey
graph for a pair (K1,a,K1,b) if and only if E(F ) cannot be decomposed into an (a − 1)-
regular subgraph and a (b − 1)-regular subgraph. A k-regular spanning subgraph is also
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called a k-factor. Our results rely on the rich theory on factors. Speci�cally we need the
following fact.

Lemma 5.2. Let p, q and r be integers, with p and q being odd. Further, assume that
p < q ≤ r if r is odd, and that p < q ≤ r/2 if r is even. There is an r-regular graph that
has a q-factor and no p-factor.

In order to prove the above lemma, we apply a theorem due to Belck [9] (a special
case of the well-known f -factor theorem of Tutte [85]), which provides a necessary and
su�cient condition for the existence of k-factors in regular graphs. For a graph G and a
set D ⊆ V (G), we call a component C of G − D an odd component with respect to D
if |V (C)| is odd, and we let qG(D) denote the number of such components. We use the
following corollary of Theorem IV from [9].

Theorem 5.3 ([9]). Let G be a graph and let p > 0 be an odd integer. If there exists a set
D ⊆ V (G) such that p|D| < qG(D), then G has no p-factor.

Proof of Lemma 5.2. Given p, q and r as described in the statement, we aim to construct
an r-regular graph F that has a q-factor and no p-factor. The graph F will be constructed
in three steps.

In the �rst step, we �nd an r-regular graph G with an even number of vertices that has
a q-factor Gq and a matching MG with b(r− 1)/2c edges which contains exactly (q− 1)/2
edges of Gq. To this end, de�ne G to be the graph obtained by taking 2r(r− q+ 1) copies
Qi,j of Kq+1, with i ∈ [r − q + 1] and j ∈ [2r], and adding a perfect matching between
any two copies Qi1,j and Qi2,j with i1 6= i2 and j ∈ [2r]. Then G has an even number of
vertices and is r-regular. Moreover, the subgraph Gq that consists of all Qi,j is a q-factor.
The matching MG can be found by taking q−1

2 independent edges from Q1,1 and one edge

from every matching between Q1,j and Q2,j with 2 ≤ j ≤ b r−q+2
2 c. SetMq := MG∩E(Gq).

For the second step, let H and Hq denote the graphs obtained from G, respectively Gq,
by adding a new vertex u and replacing every edge vw ∈ MG, respectively vw ∈ Mq, by
the edges uv and uw. Then H has an odd number of vertices, u is of degree 2b(r − 1)/2c
in H, and all other vertices are of degree r. Moreover, Hq is a spanning subgraph of H in
which u is of degree q − 1 and all other vertices are of degree q.

For the third step, we consider two cases depending on the parity of r.
Case 1: r is odd. In this case u has degree r − 1 in the graph H. Let t = r − q + 1,

and let F = F (q, r) denote the graph obtained from a copy of Kt with vertex set D =
{dj : j ∈ [t]} and qt vertex disjoint copies H1, . . . ,Hqt of the graph H as follows: For each
i ∈ [qt], let ui denote the copy of u in H i. We partition the set {ui : i ∈ [qt]} into t sets
U1, U2, . . . , Ut each of size q and, for each j ∈ [t], add an edge between dj and each vertex
in Uj . An illustration of the construction is given in Figure 5.1 (left). Then F is r-regular.
Moreover, F has a q-factor, given by the subgraph consisting of all copies of Hq (coming
from the H i with i ∈ [qt]) and all edges between D and the copies of u.

It thus remains to show that F does not admit a p-factor. This follows from Theo-
rem 5.3. Indeed, the odd components of F −D are exactly the q(r − q + 1) copies of H,
and therefore

p|D| − qG(D) = p|D| − q(r − q + 1) = (p− q)(r − q + 1) < 0 ,
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Figure 5.1: A construction of an r-regular graph with a q-factor and no p-factor for odd r
(left) and even r (right).

since p < q ≤ r by assumption.

Case 2: r is even. In this case u has degree r − 2 in the graph H. Moreover, by
assumption we have q ≤ r/2. Let t = r − 2q + 1, and let F = F (q, r) denote the graph
obtained from a copy of Kt with vertex set D = {d1, d2, . . . , dt} and qt vertex disjoint
copies H1, . . . ,Hqt of the graph H as follows: For each i ∈ [qt], let ui denote the copy of
u in H i. We partition the set {ui : i ∈ [qt]} into t sets U1, U2, . . . , Ut each of size q and,
for each j ∈ [t], add an edge between dj and each vertex in Uj ∪ Uj+1, where Ut+1 := U1.
This is illustrated in Figure 5.1 (right).

Then the graph F is r-regular. Moreover, it contains a q-factor consisting of all copies
of Hq (coming from the H i with i ∈ [qt]) and all edges between dj and Uj for every j ∈ [t].
Furthermore, by Theorem 5.3, F does not have a p-factor. Indeed, the odd components of
F −D are exactly the qt copies of H, and therefore

p|D| − qG(D) = p|D| − qt = (p− q)t < 0 ,

since p < q and q ≤ r/2 and hence t ≥ 1 by assumption.

Theorem 5.4. Let a, b, x, y be positive integers with {a, b} 6= {x, y}. Then (K1,a,K1,b) ∼
(K1,x,K1,y) if and only if a+ b = x+ y and a, b, x, and y are odd.

Proof. First observe that K1,a+b−1 is a Ramsey graph for (K1,x,K1,y) if and only if x+y ≤
a+ b. This shows that (K1,a,K1,b) 6∼ (K1,x,K1,y) when a+ b 6= x+ y. For the remainder
of the proof assume that a+ b = x+ y.

As discussed in the introduction, if a and b are both odd, then K1,a+b−1 is the unique
minimal Ramsey graph for (K1,a,K1,b) [20]. So (K1,a,K1,b) ∼ (K1,x,K1,y) if a, b, x, y are
all odd. It remains to consider the case where at least one of a, b, x, and y is even and
�nd a distinguishing graph, that is, a graph that is Ramsey for one of the pairs of stars
and not Ramsey for the other pair. Without loss of generality, assume that a is the largest
even number in {a, b, x, y}. Let r = a+ b−2 = x+y−2. Recall that an r-regular graph is
a Ramsey for (K1,a,K1,b) if and only if it has no (a− 1)-factor. We consider several cases.

Case 1: xy is odd. Then each Ramsey graph for (K1,x,K1,y) contains K1,a+b−1, as
remarked above, and hence no graph of maximum degree at most r is a Ramsey graph for
(K1,x,K1,y). Consider an r-regular graph on an odd number of vertices, which exists since
r is even. Since (a− 1) is odd, this graph does not have an (a− 1)-factor and is therefore
Ramsey for (K1,a,K1,b) but not Ramsey for (K1,x,K1,y). Thus (K1,a,K1,b) 6∼ (K1,x,K1,y).
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Case 2: xy is even. We may assume that x is the larger even number in {x, y}.
Then a > x, since a is the largest even number in {a, b, x, y}, and since {a, b} 6= {x, y}.
We again distinguish two cases.

Case 2.1: b is odd. Then r is odd. Setting q = a− 1 and p = x− 1, we know that p
and q are odd, and p < q ≤ r. Hence, using Lemma 5.2, we �nd an r-regular graph F that
has an (a− 1)-factor and no (x− 1)-factor. Thus F 6→ (K1,a,K1,b) and F → (K1,x,K1,y).
Hence (K1,a,K1,b) 6∼ (K1,x,K1,y).

Case 2.1: b is even. Then r and y are even. As we have a > x ≥ y and a+ b− 2 =
r = x + y − 2, we obtain b < y ≤ r+2

2 . Setting q = y − 1 and p = b − 1, we know that p
and q are odd, and p < q ≤ r

2 . Hence, using Lemma 5.2, we �nd an r-regular graph F that
has a (y − 1)-factor and no (b − 1)-factor. Thus F 6→ (K1,x,K1,y) and F → (K1,a,K1,b).
Hence (K1,a,K1,b) 6∼ (K1,x,K1,y).

5.2 Equivalence results for trees and cliques

Let us now move onto a pair which is more interesting than the one that only contains
stars. In this section we will investigate the pair that consists of a tree and a clique and
exhibit some non trivial pairs of graphs which are equivalent to it.

Theorem 5.5.

(a) For all integers s ≥ 2 and t ≥ 3, we have (K1,s,Kt) ∼ (K1,s,Kt ·K2).

(b) Let a ≥ 1 and b ≥ 2 be integers, and let T be a star with at least two edges or a
suitable caterpillar. For any su�ciently large t, we have (T,Kt) ∼ (T,Kt · aKb).

Proof of Theorem 5.5(a). If F → (K1,s,Kt ·K2), then also F → (K1,s,Kt). It su�ces to
show that, if F 6→ (K1,s,Kt ·K2), then also F 6→ (K1,s,Kt).

Let F denote a graph that is not Ramsey for (K1,s,Kt ·K2) and let c be a (K1,s,Kt ·
K2)-free colouring of F that minimizes the number of blue copies of Kt among all such
colourings. We claim that c has no blue copies of Kt and hence F 6→ (K1,s,Kt).

For a contradiction, assume that there exists a blue copy of Kt under c. Note that the
blue copies of Kt must be pairwise disjoint and that there are no blue edges leaving any
of these copies, that is, the copies of Kt form isolated components in the blue subgraph
of F under c. A walk in F is a subgraph of F formed by a sequence u1, . . . , u` of (not
necessarily distinct) vertices of F with edges uiui+1 for all i ∈ [`− 1]. We call the vertices
u1 and u` the endpoints of W , also when u1 = u`. If W is a walk and K is a blue copy of
Kt in F under c, we say that K is visited (by W ) if W contains an edge of K; otherwise
K is unvisited (by W ). A walk W is feasible if it satis�es the following properties:

i) Each edge of F occurs at most once in W .

ii) W contains at least one blue edge.

iii) The edges ofW are alternately coloured red and blue, that is, c(uiui+1) 6= c(ui+1ui+2)
for i ∈ [`− 2].

iv) Each blue edge in W is contained in a blue copy of Kt, and each blue copy of Kt has
at most one edge in W .



5.2. Equivalence results for trees and cliques 78

Kt

Kt

Kt

Kt

Kt

Kt

Kt
u1
=
u`

u1 u1
u`

Kt Kt
u`=u3

Kt

Kt

u1

u`

Kt

Kt

Kt

u1

u`

Kt

Kt

Kt

Kt

u1
=
u`

Figure 5.2: Several examples of feasible walks (with solid lines representing red edges and
dotted lines representing blue edges).

v) No vertex of W is contained in an unvisited blue copy of Kt in F .

vi) An endpoint of W that is not incident to any red edge in W is not incident to any
red edge in F .

Refer to Figure 5.2 for an illustration.

We �rst observe that feasible walks exist and can be found with the following greedy
procedure: Start with an arbitrary edge e belonging to a blue copy of Kt. This satis�es
the �rst �ve properties above but not necessarily the last. For each endpoint of e that is
incident to some red edge in F , the walk then follows one such red edge. Now the �rst
four properties are still satis�ed, but property v) might become invalid (for the current
endpoints), while property vi) becomes valid. If (in either direction) the walk has reached
a so far unvisited blue copy of Kt, the walk follows an arbitrary blue edge in this copy. In
this way, the procedure continues in both directions, extending W so that the �rst four
properties are satis�ed in each step, until the latter two conditions are satis�ed as well.
Observe that the procedure is guaranteed to terminate, since each edge of F occurs at
most once in W .

We next make some observations about the structure of W . If W repeats a vertex,
this vertex must be u1 or u`. Indeed, if ui = uj for some 1 < i < j < `, then ui has
degree at least four in W by property i) and, since W is alternating by property iii), ui is
incident to at least two blue edges in W . But this is not possible since the blue copies of
Kt are disjoint and W traverses at most one edge from each such copy by iv). In other
words, W must be a red/blue-alternating path, except possibly the edges u1u2 and u`−1u`.
Therefore, each vertex of W that is not an endpoint is incident to exactly one red and one
blue edge; each of the endpoints may be incident to multiple red edges but again to at
most one blue edge.

We now choose a feasible walk W with the smallest number of red edges. We obtain a
new colouring c̃ by switching the colours of the edges in W . We claim that the colouring
c̃ contains

1. no red copy of K1,s,

2. fewer blue copies of Kt than c, and
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3. no blue copy of Kt ·K2.

By the de�nition of c, this leads to the desired contradiction.
To prove (1), �rst note that the switch does not change the number of red edges

incident to vertices not in W . Now consider a vertex u of W . By our earlier observation,
u is incident to at most one blue edge in W . If u is also incident to a red edge in W , then
the switch does not increase the total number of red edges incident to u. If there is no
red edge incident to u in W , then by property vi), we know that there are no red edges
incident to u in F under c; hence u is only incident to one red edge under c̃. Therefore,
there is no red copy of K1,s under c̃ since s ≥ 2.

We prove (2) now. By properties ii) and iv), W contains at least one edge belonging to
a copy of Kt which is blue under c. So after switching colours, this copy of Kt contains a
red edge. Therefore, the only way for (2) to fail is that we create a new blue copy of Kt by
switching the colours along W . So, consider any edge uv in W whose colour switched from
red to blue and such that uv is contained in a copy K of Kt. We aim to show that K is not
monochromatic blue under c̃. To do so, we choose an arbitrary vertex x ∈ V (K) \ {u, v},
which exists as t ≥ 3. What we will see is that either ux or vx is red under c̃, which will
prove the claim. Assume that the statement is false. We distinguish three cases depending
on the colours of ux and vx under c.
Case 1: Assume ux and vx are both red under c. Then, by assumption, both of these
edges and uv must have switched colours and hence belong toW . This however contradicts
the above observation that at most two vertices in W are incident to two red edges of W
under c.
Case 2: Assume ux and vx are both blue under c. Since W is alternating and contains
at least one blue edge, at least one of u and v, say u, must be contained in a blue copy K ′

of Kt under c. But then K ′ together with the edge ux (if x /∈ V (K ′)) or the edge vx (if
x ∈ V (K ′)) forms a blue copy of Kt ·K2 under c, a contradiction to the choice of c.
Case 3: Assume ux is red and vx is blue under c (the case where ux is blue and vx
is red is similar). Then vx did not switch colours, i.e., vx /∈ W , and both ux and uv
switched colours, i.e., ux, uv ∈ W . Therefore, u is incident to two red edges of W under
the colouring c, and hence must be an endpoint of W as observed above. So, one of v
and x, say x, is not an endpoint of W and is therefore contained in a blue copy K ′ of Kt

under c. Then v ∈ V (K ′), since vx is blue and c does not contain a blue copy of Kt ·K2.
Since W is alternating, since x is not an endpoint of W , and since the blue copies of Kt

are disjoint, the walk W contains an edge xy from K ′. Since vx 6∈ W , we have y 6= v. By
property iv) of W and again since blue copies of Kt under c are disjoint, it follows that
v is not incident to any blue edge in W and must therefore be an endpoint. Removing
v from W , and hence the red edge uv, yields a feasible walk W with fewer red edges, a
contradiction to the choice of W .

It remains to check property (3). Assume that there is a blue copy of Kt ·K2 under c̃,
with blue copy K of Kt and pendent blue edge f . As we have already seen, the switching
of colours does not create new blue copies of Kt. Hence, K is blue under c and all edges
intersecting K in exactly one vertex are red under c, since c does not contain a blue copy
of Kt ·K2. This means that f is red under c and hence f ∈ W . By property v) and K
is disjoint from all other blue copies of Kt under c, the walk W contains an edge from K.
The colour of this edge is then switched from blue to red, a contradiction. Altogether we
see that c̃ is (K1,s,Kt)-free and hence F 6→ (K1,s,Kt).
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Kt
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Kr+(a−1)(b−1)

B

< a vertices

Figure 5.3: Left: The set UK (grey background) in a copy K of Kt. Right: A set B of blue
copies of Kt under ϕ1 with pairwise intersection of size less than a. The intersections are
contained in the respective sets UK by Claim 5.7.

To prove Theorem 5.5(b) we make use of the following de�nition. We call a graph G
k-woven if, for each graph F that contains an edge uv which is contained in all copies of
G in F , there is a set Yuv ⊆ E(F ) \ {uv} such that the following holds: Yuv consists of at
most k edges incident to u and at most k edges incident to v, and each copy of G in F
contains an edge from Yuv. In other words, Yuv is a set of edges of size at most 2k whose
removal yields a graph with no copies of G that still contains the edge uv. As a simple
example, it is not di�cult to check that stars with at least two edges are 1-woven. Indeed,
if a graph F has an edge uv that is contained in each copy of some star K1,s in F , then
u and v are of degree at most s in F (and all other vertices are of degree at most s − 1).
So any set Yuv consisting of one edge incident to u and one edge incident to v in G − uv
satis�es the condition stated above, that is, each copy of K1,s in F contains an edge from
Yuv. We begin by demonstrating the utility of k-woven graphs in Proposition 5.6 below.
We will then prove Theorem 5.5(b) by showing that suitable caterpillars are k-woven for
appropriately chosen k. For any pair of graphs (G,H), we write r(G,H) for the Ramsey
number of (G,H), i.e., the smallest integer n such that Kn → (G,H).

Proposition 5.6. Let G be a k-woven graph, let a ≥ 1 and b ≥ 2 be integers, and let
r = r(G,Kb−1). If t ≥ 4k + 2(r + (a− 1)(b− 1)) + (a− 1), then (G,Kt) ∼ (G,Kt · aKb).

Proof. Clearly, each Ramsey graph for (G,Kt · aKb) is also a Ramsey graph for (G,Kt).
So consider a graph F with F 6→ (G,Kt · aKb). We shall show that F 6→ (G,Kt). Let
ϕ1 denote a (G,Kt · aKb)-free colouring of E(F ). For each blue copy K of Kt in F , let
UK ⊆ V (K) denote the set of vertices u in K such that there are at least r+ (a− 1)(b− 1)
blue edges between u and F −K whose endpoints induce a complete graph in F −K. See
Figure 5.3 (left).

Let B denote a maximal set of blue copies of Kt in F such that any two copies of Kt in
B intersect in fewer than a vertices. See Figure 5.3 (right). We �rst make several general
observations.

Claim 5.7. For any two copies K, K ′ ∈ B, we have V (K)∩V (K ′) ⊆ UK ∩UK′ and hence
(V (K) \ UK) ∩ (V (K ′) \ UK′) = ∅.

Proof. For each vertex u ∈ V (K)∩V (K ′) the number of blue edges between u and K−K ′,
as well as between u and K ′ −K, is at least t − (a − 1) ≥ 4k + 2(r + (a − 1)(b − 1)) ≥
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Figure 5.4: Left: A largest blue (dotted) matching M in ∪K∈B(V (K) \ UK) with some
pendent red (solid) edges under φ1. Right: The �nal colouring ϕ3 is obtained by switching
colours in M (from blue to red) and at most k further incident edges at each vertex in M
(from red to blue).

r + (a − 1)(b − 1). Since these blue neighbourhoods induce a complete graph, we have
u ∈ UK and u ∈ UK′ .

Claim 5.8. For every K ∈ B, we have |UK | ≤ a− 1 and hence |V (K) \ UK | ≥ 2.

Proof. We �rst argue that |UK | ≤ a−1. This holds since, under ϕ1, each vertex in UK has
a blue neighbourhood of size at least r + (a− 1)(b− 1) in F −K that induces a complete
graph. As there are no red copies of G under ϕ1, by the de�nition of Ramsey number, we
iteratively �nd |UK | vertex-disjoint blue copies of Kb−1 in the blue neighbourhood of UK ,
one for up to min{a, |UK |} vertices in UK . So |UK | ≤ a − 1, as there is no blue copy of
Kt · aKb under ϕ1. This shows that |V (K) \ UK | ≥ t− a+ 1 ≥ 2, as required.

We shall now recolour some edges contained in or incident to cliques in B to obtain
an (G,Kt)-free colouring of E(F ). Let M denote a largest matching in the graph induced
by ∪K∈B(V (K) \ UK). That is, M consists of a largest matching from each of the cliques
K − UK , which are vertex-disjoint by Claim 5.7 (see Figure 5.4). Let ϕ2 denote the
colouring obtained from ϕ1 by switching the colour of each edge in M from blue to red.
Each red copy of G under ϕ2 contains an edge from M . Let u1v1, . . . , u|M |v|M | denote the
edges of M in an arbitrary order. We shall use the fact that G is k-woven to �nd sets
Y1, . . . , Y|M | ⊆ E(F ) \M such that each set Yi consists of at most k red edges incident to
ui and at most k red edges incident to vi and such that each red copy of G in F under
ϕ2 contains an edge from Yi for some i ∈ [|M |]. To do so consider the subgraph F1 of F
formed by all red copies of G under ϕ2 containing u1v1 and not containing ujvj for j > 1.
Then F1 − u1v1 contains no copy of G, and hence, since G is k-woven, there is a desired
set Y1 ⊆ E(F1) \ {u1v1}. For i > 1 we proceed iteratively. Having chosen Y1, . . . , Yi−1, let
Fi denote the subgraph of F formed by all red copies of G under ϕ2 containing uivi, not
containing any edge from Yj for j < i, and not containing ujvj for j > i. Then Fi − uivi
contains no copy of G. Hence, since G is k-woven, there is a desired set Yi ⊆ E(Fi)\{uivi}.

Now let ϕ3 denote the colouring obtained from ϕ2 by switching the colour of each edge
in ∪1≤i≤|M |Yi from red to blue (see Figure 5.4). Then there are no red copies of G under
ϕ3. Indeed, each red copy G′ of G under ϕ2 contains an edge from Yi for some i. We shall
prove that there are no blue copies of Kt under ϕ3. Let K

′ denote a copy of Kt in F .
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First suppose that K ′ ∈ B. By Claim 5.8, we have |V (K ′) \ UK′ | ≥ 2, and hence K ′

contains a red edge under ϕ3 from E(K ′) ∩ E(M).
We may assume then that K ′ 6∈ B. If for each K ∈ B we have V (K) ∩ V (K ′) ⊆ UK ,

then |V (K) ∩ V (K ′)| < a by Claim 5.8. By the maximality of B, K ′ contains a red edge
under ϕ1. This edge is red under ϕ3, since only edges incident to M switched colours from
red to blue and the edges in K ′ are not incident to M (as V (K) ∩ V (K ′) ⊆ UK for each
K ∈ B here). So K ′ is not blue in this case.

If there is K ∈ B with |V (K) ∩ V (K ′)| > d t−|UK |
2 e + |UK |, then K ′ contains an edge

from M ∩K. This edge is red under ϕ3 and so K ′ is not blue.
If neither of the two previous cases holds, then let V = ∪K∈B(V (K ′) ∩ (V (K) \ UK)).

By assumption |V | ≥ 1 (since we are not in the �rst case). Each vertex v ∈ V is contained
in exactly one K ∈ B and, since we are not in the second case, the number of edges
between v and K ′−K is at least t−d t−|UK |

2 e− |UK | = b t−|UK |
2 c. Since v 6∈ UK , fewer than

r + (a − 1)(b − 1) of those edges are coloured blue under ϕ1 (as their endpoints induce a
complete subgraph of K ′). Together, this means that the number of red edges under ϕ1

incident to v in K ′ is at least b t−|UK |
2 c − r − (a − 1)(b − 1) + 1 ≥ 2k + 1, using the fact

that |UK | ≤ a− 1 by Claim 5.8. In total there are at least (2k+ 1)|V |/2 > k|V | red edges
in K ′ under ϕ1. To obtain ϕ3, for each v ∈ V , at most k incident edges were chosen to
switch colours from red to blue (in total more edges incident to v than those k might have
switched colours due to other vertices in V ). So at most k|V | edges in K ′ switched their
colour from red to blue. This shows that at least one edge in K ′ is red under ϕ3.

Altogether there are no red copies of G and no blue copies of Kt under ϕ3 and hence
F 6→ (G,Kt).

Proof of Theorem 5.5(b). By Proposition 5.6, it su�ces to show that stars and suitable
caterpillars are k-woven for some k. As mentioned above, it is not di�cult to check that
stars with at least two edges are 1-woven. We now focus on caterpillars, and claim that
every s-suitable caterpillar is 2(s+ 1)2-woven.

Let T be an s-suitable caterpillar, that is, T consists of a path abc and s leaves adjacent
to a, s leaves adjacent to c, and s′ < s leaves adjacent to b. We shall prove that T is k-
woven for k = 2(s+ 1)2. Let F be a graph with an edge uv that is contained in all copies
of T in F , and let F ′ = F −uv. We need to �nd a set Yuv ⊆ E(F ′) consisting of at most k
edges incident to u and at most k edges incident to v such that Yuv contains an edge from
each copy of T in F .

First suppose that there is a copy T0 of T in F in which u is a leaf. The neighbour of
u in T0 is v, since T0 contains uv by assumption. Then v is of degree at most |V (T )|− 2 =
1 + 2s+ s′ ≤ k in F ′, since otherwise uv can be replaced in T0 by some edge vw in F ′ to
form a copy of T entirely in F ′, which does not exist by assumption. Let Yv consist of all
edges in F ′ incident to v. If each copy of T in F contains an edge from Yv, then we can
choose Yuv = Yv as our desired edge set. Otherwise, there is a copy of T in F containing
no edges from Yv. In such a copy of T the vertex v is a leaf, since uv is the only edge
incident to v not in Yv. Similarly as above, u is of degree at most k in F ′, and hence we
can choose Yuv to consist of all edges incident to u and all edges incident to v in F ′.

It remains to consider the case where neither u nor v is a leaf in any copy of T in F . By
the symmetry of T , we may assume that in each copy of T in F the edge ab corresponds
to uv, where a corresponds to either u or v. Let Nu and Nv denote the set of neighbours
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Figure 5.5: Left: The vertex u and the set Nu of at least k+ 1 neighbours of u of degree at
least s+ 1 each. Middle: If two vertices in Nu have only u as a common neighbour, then
there is copy of T (green/thick grey). Right: Otherwise, there is a vertex x that is a leaf
in at least 2s + 1 copies of K1,s centred in Nu and there is a copy of T (here a 3-suitable
caterpillar) as well (green/thick grey).

of u and v in F ′, respectively, that are of degree at least s+ 1 in F ′ (see Figure 5.5 left).
In each copy of T in F the edge bc corresponds to an edge uw with w ∈ Nu or an edge
vw with w ∈ Nv. In particular choosing Yuv = {uw : w ∈ Nu} ∪ {vw : w ∈ Nv} yields the
desired edge set, provided that |Nu|, |Nv| ≤ k. In the following, we prove |Nu| ≤ k. By
symmetry the same bound holds for |Nv|.

For a contradiction, assume that |Nu| ≥ k + 1, which in particular implies that u is
of degree at least k + 1 in F ′. We shall prove that there is a copy of T in F ′ under this
assumption. For each w ∈ Nu, choose a star in F ′ with centre vertex w and exactly s
leaves not containing u, and let S denote the set of all chosen stars. For any two such stars
S, S′ ∈ S there are at least k+ 1−2(s+ 1) ≥ s > s′ neighbours of u in F ′ not contained in
V (S)∪ V (S′). Since F ′ does not contain a copy of T , the stars S and S′ must intersect in
some vertex, which could be the centre of one of the stars but not of both (see Figure 5.5
middle).

Now, consider some �xed star S ∈ S. By the pigeonhole principle, there is a vertex x in
V (S) that is contained in at least |S \{S}|/|V (S)| = (|Nu|−1)/(s+1) ≥ k

s+1 = 2(s+1) of
the stars in S. It may happen that x is the centre vertex of one such star, but in any case
there is a family of 2s+1 stars in S that have x as a leaf. Let X = {c1, c2, . . . , c2s+1} ⊆ Nu

denote the set of their centres. Then we �nd a copy of T in F ′ as follows: Let X1 denote a
set of s′ neighbours of c1 distinct from u and x in F ′, which exists since s′ < s and c1 ∈ X is
of degree s+1 in F ′. Let X2 denote a set of s neighbours of x in X disjoint from X1∪{c1},
which exists since |X| = 2s+ 1 ≥ s+ s′+ 2. Finally, let X3 denote a set of s neighbours of
u in F ′ disjoint from X1 ∪X2 ∪ {x, c1}, which exists since the degree of u in F ′ is at least
k + 1 = 2(s+ 1)2 + 1 ≥ 2s+ s′ + 2. Then the path uc1x together with the vertices in X1,
X2, and X3 induces a copy of T in F ′, a contradiction (see Figure 5.5 right). This shows
that |Nu| ≤ k and, by symmetry, |Nv| ≤ k. Hence, Yuv = {uw : w ∈ Nu} ∪ {vw : w ∈ Nv}
is the desired edge set.

5.3 Non-equivalence results for trees and cliques

In this section, we prove each part of Theorem 5.9 in turn. When constructing appropriate
distinguishing graphs in our proofs, we will often combine several smaller graphs, which
we call building blocks, by identifying some of their vertices or edges. We will assume
that, except for the speci�ed intersections, all of these building blocks are disjoint from
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one another. Before we begin, let us restate the theorem.

Theorem 5.9. Let T be a tree, t ≥ 3 be an integer, and let G and H be graphs with
(G,H) 6= (T,Kt). Then (T,Kt) 6∼ (G,H) if one of the following conditions holds:

(a) G = T , T ∈ T , and H is connected,

(b) H contains a copy K of Kt, and H contains a cycle with vertices from both V (K)
and V (H) \ V (K),

(c) G 6= T , G is connected, and H = Kt.

Proof of Theorem 5.9(a)

Recall that the diameter of a tree T , denoted diam(T ), is the length of its longest path.
Our construction gives (T,Kt) 6∼ (T,H) for each tree T from the following slightly larger
class T ′ consisting of all trees T that either have odd diameter, or have even diameter and
additionally satisfy the following:

� The central vertex of T has at most one neighbour of degree at least three that is
contained in a longest path in T .

� If T is of diameter four, the central vertex is of degree at least three.

See Figure 5.6 (left) for an illustration.
Theorem 5.9(a) is clearly a direct consequence of Theorem 5.10 below.

Theorem 5.10. Let t ≥ 3, let H be a connected graph, and let T ∈ T ′. Then (T,Kt) 6∼
(T,H).

Proof. Consider a tree T ∈ T ′. If ω(H) 6= t, then (T,Kt) 6∼ (T,H) by Theorem 1.10. So
we assume Kt ( H for the remainder of the proof. We will construct a Ramsey graph
for (T,Kt) that is not Ramsey for (T,Kt · K2) and hence not Ramsey for (T,H). The
construction di�ers slightly depending on the parity of the diameter of T . We begin by
introducing a useful gadget graph.

Throughout the proof, we let Uk,i denote the rooted tree in which every leaf is at
distance i from the root and every vertex that is not a leaf has exactly k children. Here,
the distance between two vertices x and y is the length of a shortest path that has x and y
as its endpoints. Note that Uk,i contains every tree of diameter at most 2i and maximum
degree at most k.

Let d denote the maximum degree of T . Let Γ be a Ramsey graph for (T,Kt−1) that
does not contain a copy of Kt, which exists by Theorem 1.10. Write k = d|V (Γ)|. For
a positive integer i, let Λi = Λi(T,Γ) denote the graph obtained from a copy of Uk,i by
adding edges so that, for each non-leaf vertex of Uk,i, its set of children induces d vertex-
disjoint copies of Γ. We refer to the root of Uk,i as the root of Λi. Let Φi = Φi(Λi) be
the red/blue-colouring that assigns red to all edges in Uk,i and blue to all the other edges,
see Figure 5.6 (middle) for an illustration. Observe that, if i < diam(T ), then Φi is a
(T,Kt)-free colouring of E(Λi). We have the following Ramsey property of Λi.

Claim 5.11. Every red/blue-colouring of E(Λi) yields a red copy of T , a blue copy of Kt,
or a red copy of Ud,i whose root is the root of Λi.



5.3. Non-equivalence results for trees and cliques 85

Kt

Γ Γ. . .

...
...

...
...

. . .
. . .

T

{

d
is

ta
n

ce
r

{

d
istan

ce
<
r{

a ≥ 1

{

1

{≥ 0

C C

a

Λr-2 Λr-2

Λr-1

Λi{ T

{distancei
Γ′

C

d
is

ta
n

ce
r

x

y

r r′

Figure 5.6: Left: An odd diameter tree and an even diameter tree from the class T ′.
Middle: Graphs Λi and C with the respective (T,Kt ·K2)-free colourings. Right: A graph
F with F → (T,Kt) and F 6→ (T,Kt ·K2) in case T is of even diameter.

Proof. To see why this is true, consider an arbitrary 2-colouring of E(Λi) with no red copy
of T . Then each copy of Γ contains a blue copy of Kt−1. If some non-leaf vertex in Uk,i has
only blue edges to one of the copies of Γ formed by its children, then there is a blue copy
of Kt. Otherwise, every such vertex has a red edge to each of the d copies of Γ formed by
its children, yielding a copy of Ud,i as required.

First consider the case where T is of diameter 2r+ 1 for some integer r. We construct
a graph F as follows: Start with a copy K of Kt. For each vertex u of K, add a copy of
Λr rooted at u so that the copies of Λr are pairwise disjoint. We claim that F → (T,Kt)
and F 6→ (T,Kt ·K2).

To prove the �rst claim, we consider an arbitrary 2-colouring of E(F ) with no red copy
of T . By Claim 5.11, some copy of Λr contains a blue copy of Kt or each vertex of K is
the root of a red copy of Ud,r. If we �nd a blue copy of Kt, we are done, and hence we may
assume that the latter happens for every vertex of K. If there is a red edge in K, then
this edge and the red copies of Ud,r rooted at its endpoints form a graph which contains
a red copy of T . Otherwise, all edges of K are coloured blue, yielding a blue copy of Kt.
This shows F → (T,Kt).

To see that F 6→ (T,Kt ·K2), colour all edges of K blue and give all copies of Λr the
colouring Φr. Then K is the only blue copy of Kt and it cannot be extended to a copy of
Kt ·K2, as all edges leaving K are coloured red and all the other blue edges form vertex-
disjoint copies of Γ, which was chosen such thatKt * Γ. The red edges form vertex-disjoint
trees of diameter 2r < diam(T ). Hence, there is no red copy of T and no blue copy of
Kt ·K2 and so F 6→ (T,Kt ·K2).

Now consider the case where T is of diameter 2r for some integer r. In this case the
assumptions on T ′ imply that at most one neighbour of the central vertex is of degree at
least three and is contained in a longest path. Further, if the diameter is exactly four, the
central vertex of T is of degree at least three. Let x denote the central vertex of T , let y
denote a neighbour of x in T that is of largest degree among all neighbours of x contained
in a longest path in T , and let a denote the number of all other neighbours of x contained
in a longest path in T (see Figure 5.6 (left) for an illustration). By the assumption on the
structure of T , all neighbours of x counted by a are of degree exactly two in T . As in the
previous case, we will use the graphs Λi as building blocks. We now de�ne the second type
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of building block that we will use in the construction.

Let J denote a graph containing no copy of Kt such that, for any 2-colouring of the
vertices of J , there is a vertex-monochromatic copy of Kt−1. Such a graph exists by [42].
Let Γ′ be a Ramsey graph for (T, J) not containing a copy of Kt, which exists by The-
orem 1.10, and let k′ = |V (Γ′)|. Let C denote the graph obtained from a copy of Γ′ by
adding two non-adjacent vertices r and r′ and a complete bipartite graph between these
two vertices and the vertices of the copy of Γ′. For convenience we call r the root of C.
See Figure 5.6 (middle) for an illustration.

Claim 5.12. In every red/blue-colouring of E(C), there exists a red copy of T , a blue copy
of Kt, or a red path rvr′ for some v ∈ V (Γ′).

Proof. To see why this is true, consider a red/blue-colouring of E(C) with no red copy
of T . Then the copy of Γ′ in C contains a blue copy J ′ of J . In particular, each copy
of Kt−1 in J ′ is blue. Moreover, either each copy of Kt−1 has a red edge going to each
of r and r′, or there is a blue copy of Kt. In the latter case, we are done, so assume the
former. Consider an auxiliary vertex colouring of J ′ obtained by colouring each vertex v
in J ′ with the colour of the edge rv. Since there cannot be a vertex-monochromatic blue
copy of Kt−1, there is a vertex-monochromatic red copy of Kt−1. We assume that there
is a red edge between this copy of Kt−1 and r′, and hence we �nd a red path rvr′, where
v ∈ V (J ′).

We now construct a graph F ′ as follows: Start with a copy K ′ of Kt. For each vertex
u of K ′, add a copies of C and a copy of Λr−1 all rooted at u. Further, for each copy of
C, add a copy of Λr−2 rooted at the copy of r′. See Figure 5.6 (right) for an illustration.
We claim that F ′ → (T,Kt) and F

′ 6→ (T,Kt ·K2).
To prove the �rst claim we consider an arbitrary 2-colouring of E(F ′) with no red copy

of T . By Claim 5.11, either there is a blue copy of Kt in some copy of Λr−1 or Λr−2 or the
root of each copy of Λr−1 or Λr−2 is the root of a red copy of Ud,r−1 or Ud,r−2, respectively.
Assume the latter is true, since otherwise we are done. By Claim 5.12, either there exists
a blue copy of Kt in some copy of C or each copy of C in F contains a red path of length
two connecting the copies of r and r′. Again, we may assume that we are in the latter
case. For each copy of C, the copy of r′ is the root of a copy of Λr−2. Now, every vertex
of K ′ is the root of a copies of C and a copy of Λr−1. If there is a red edge e in K, then
there is a red copy of T formed by e and subtrees of the red trees rooted at its endpoints,
with e playing the role of the edge xy in T . Otherwise all edges of K are coloured blue,
proving the claim.

To show that F ′ 6→ (T,Kt ·K2) we colour the edges of F ′ as follows: All edges of K ′

are coloured blue and all mentioned copies of Λi (i ∈ {r− 1, r− 2}) are coloured according
to the colouring Φi, as de�ned earlier. For each mentioned copy of C, all edges in the copy
of Γ′ are blue and all other edges red. Then K ′ is the only blue copy of Kt, as all other
blue edges form vertex-disjoint copies of Γ or Γ′ and these graphs do not contain copies
of Kt. Moreover, K ′ has only red incident edges. So there is no blue copy of Kt · K2.
Now consider the red subgraph of F ′, and recall that the central vertex of T has a + 1
neighbours contained in paths of length 2r. If r > 2, then each longest red path in F ′

has 2r edges and the middle vertex of each such path is in K ′. In particular, the central
vertex of each red tree of diameter 2r is in K ′. But for each vertex u ∈ V (K ′) there are at
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most a red paths of length 2r that meet at u and are otherwise pairwise vertex-disjoint,
so there is no red copy of T . If r = 2, then for the same reason there is no red copy of T
rooted in K ′. In this case there are also red paths of length 2r = 4 whose central vertex is
in the neighbourhood of K ′. However, these vertices are of degree at most two in the red
subgraph and, by assumption, the root of T is of degree at least three in this case. This
shows that F 6→ (T,Kt ·K2).

Proof of Theorem 5.9(b)

We �rst introduce some de�nitions. A cycle of length s in a hypergraph H is a sequence
e1, v1, e2, v2 . . . , es, vs of distinct hyperedges and vertices such that vi ∈ ei ∩ ei+1 for all
1 ≤ i ≤ s where es+1 = e1. The girth of a hypergraph H is the length of a shortest
cycle in H (if no cycle exists, then we say that the girth of H is in�nity). The chromatic
number of a hypergraph H is the minimum number r for which there exists an r-colouring
of the vertex set of H with no monochromatic edges. A hypergraph is d-degenerate if every
subhypergraph contains a vertex of degree at most d, and we de�ne its degeneracy to be
the smallest d for which this property holds.

Proof of Theorem 5.9(b). Suppose that H contains a copy K of Kt, and H contains a cycle
with vertices from both V (K) and V (H)\V (K). Let g ≥ 3 denote the length of a shortest
such cycle in H and let k = |E(T )|.

We shall use a hypergraph of high girth and high minimum degree. The existence of
such a hypergraph follows from a well-known result of Erd®s and Hajnal [36]; we sketch
the argument here for the sake of completeness. Erd®s and Hajnal [36] showed that there
exists a t-uniform hypergraph H′ with girth at least g + 1 and chromatic number at least
kt+1. It is not di�cult to show, using a greedy algorithm, that a d-degenerate hypergraph
has chromatic number at most d+ 1. Hence, the degeneracy of H′ must be at least kt, and
thus H′ must contain a t-uniform subhypergraph H with girth at least g+ 1 and minimum
degree at least kt.

We construct a graph F with vertex set V (H) by embedding a copy of Kt into each
edge of H. First observe that F does not contain a copy of H, since H has girth larger than
g and hence each cycle of length at most g is fully contained in one of the copies of Kt,
that is, in one of the hyperedges, and no two copies of Kt in F share an edge. In particular
F 6→ (T,H). Next we shall prove that F → (G,Kt). Consider a 2-colouring of E(F )
without blue copies of Kt. Then each copy of Kt in F (each hyperedge of H) contains a
red edge. Since H has minimum degree kt and is t-uniform, there are at least v(H)k red
edges, that is, the average red degree of F is at least 2k. It follows from a standard greedy
argument that the red subgraph of F contains a subgraph of minimum degree at least k.
By greedily embedding the vertices of T in this subgraph, we �nd a red copy of T . Hence
F → (T,Kt) and (T,Kt) 6∼ (G,H).

Proof of Theorem 5.9(c)

Proof of Theorem 5.9(c). We may assume that G 6⊆ T , since otherwise G is a tree and
we can switch the graphs G and T in the statement. Suppose that the pairs (T,Kt) and
(G,Kt) are Ramsey equivalent. In order to reach a contradiction, we will construct a
graph F which is Ramsey for (T,Kt) but not Ramsey for (G,Kt). To do so, �rst �x a
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(T,Kt, β)-determiner D, as given by Proposition 2.2. To create F , we start with a copy
T0 of T , and for each edge e of T0 we take a copy De of D on a new set of vertices and
identify e with the copy of β in De.

We �rst observe that F is a Ramsey graph for (T,Kt). Indeed, if we assume that F
has a (T,Kt)-free colouring, then this induces a (T,Kt)-free colouring on each copy of D,
so each copy of β needs to be red by the de�nition of a determiner. But then T0 becomes
a red copy of T , a contradiction.

It remains to prove that F is not Ramsey for (G,Kt), i.e., to �nd a (G,Kt)-free colouring
of E(F ). For this, �x any edge e0 ∈ E(T0). We �rst observe that the graph F − e0 is
not Ramsey for (T,Kt) by considering the following colouring: give each copy of D a
(T,Kt)-free colouring such that its copy of β is red (or not coloured if β = e0) and all
edges incident to β in D are blue. The existence of such a colouring is guaranteed by the
fact that F is well-behaved.

By our assumption that (T,Kt) and (G,Kt) are Ramsey equivalent, we conclude that
F − e0 is not a Ramsey graph for (G,Kt). Therefore, we can �nd a (G,Kt)-free colouring
c of F − e0. We now extend this colouring to F by assigning the colour blue to e0. If
this does not create a blue copy of Kt, we have already found the required colouring. So
we may assume that this extension leads to a blue copy K of Kt. Notice that every copy
of Kt in F is fully contained in a copy of the determiner D. Then by Proposition 2.2
this blue copy of Kt is the graph induced by the endpoints of e0 and the union of their
neighbourhood in De0 , i.e., it must be contained in the copy De0 of D and is unique. We
now use this information to recolour all other copies of D − β in F using the colouring of
E(De0 − e0); we further colour T0 fully red. In this new colouring of E(F ), there cannot
be a blue copy of Kt as there were none in De0 − e0. Moreover, there cannot be a red
copy of G, since every copy of D − β has a (G,Kt)-free colouring, every edge incident to
T0 is blue, and G 6⊆ T . This is a contradiction to the assumption F → (G,Kt) and hence
(T,Kt) 6∼ (G,Kt).

5.4 Concluding remarks

In this chapter we identify a non-trivial in�nite family of Ramsey equivalent pairs of con-
nected graphs of the form (T,Kt) ∼ (T,Kt · K2), where T is a non-trivial star or a so-
called suitable caterpillar. We also prove that (T,Kt) 6∼ (T,Kt · K2) for a large class of
other trees T including all trees of odd diameter. It remains open whether for the re-
maining trees the respective pairs are Ramsey equivalent or not. Our proof actually shows
(G,Kt) ∼ (G,Kt ·K2) for all so-called woven graphs G and su�ciently large t. This leads to
the following two questions: Are there any woven graphs other than the trees mentioned in
Theorem 5.5(b)? Are there non-woven graphs G and integers t with (G,Kt) ∼ (G,Kt ·K2)?

One of the questions that drove the study of Ramsey equivalence is: What graphs H
are Ramsey equivalent to the clique Kt? This question was addressed in [12, 43, 83]. In
particular, it follows from the results of Folkman [42] and Ne²et°il and Rödl [69] and Fox,
Grinshpun, Liebenau, Person, and Szabó [43] that there is no connected graph H 6= Kt

such that H ∼ Kt. It is then natural to ask: what about an asymmetric pair of connected
graphs?
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Question 5.13. Are there connected graphs G and H and an integer t such that, for
(G,H) 6= (Kt,Kt) it holds (G,H) ∼ (Kt,Kt)?

Some known results allow us to easily exclude many possible pairs (G,H). For example,
the results of Folkman [42] and Ne²et°il and Rödl [69], as stated in Theorem 1.10 above,
show that, if max{ω(G), ω(H)} 6= t, then (G,H) 6∼ (Kt,Kt), while the work of Fox,
Grinshpun, Liebenau, Person, and Szabó [43] shows that we cannot have ω(G) = ω(H) =
t. Thus, we can restrict our attention to pairs (G,H) with ω(G) < t and ω(H) = t.
Combining several results concerning Ramsey properties of the random graph G(n, p) [16,
59, 67, 76, 77], we can restrict (G,H) even further: namely, we can show that m2(G) =
m2(H) = m2(Kt). Using the ideas developed by Savery in [80], we can also prove that the
chromatic numbers of the graphsG andH must satisfy either χ(G) = t−1 and χ(H) = t+1,
or χ(G) = t and H = Kt. In addition, the theory of determiners developed in [25] for
3-connected graphs allows us to conclude that G and H cannot both be 3-connected. It
would be very interesting to provide a complete answer to Question 5.13.

Our study focuses on pairs of connected graphs. Disconnected graphs have also received
some attention in the symmetric setting; the central question here asks which graphs
are Ramsey equivalent to a complete graph [12, 43, 83]. Similar questions arise in the
asymmetric setting, for instance for which graphs G and integers t we have (G,Kt) ∼
(G,Kt +Kt−1), where Kt +Kt−1 is the disjoint union of Kt and Kt−1 (this holds in case
G = Kt by [12]).



6
On r-cross t-intersecting families

In this chapter we determine the maximum of sum of measures of r-cross t-intersecting
families. Before we go any further, let us recall that for r, t, n ∈ N we say that fam-
ilies F1, . . . ,Fr ⊆ P([n]) are r-cross t-intersecting if for all F1 ∈ F1, . . . , Fr ∈ Fr we
have |

⋂
i∈[r] Fi| ≥ t. We will prove Theorems 6.7 and 6.8.

Before we provide a formal proof, we will provide a short idea of our methods in
Section 6.1.

In Section 6.2 we will de�ne a necessary intersection point which is a central tool for
our work. We will then go on the provide a proof of the theorems which directly follow
from a more common result as stated in Proposition 6.9.

To conclude, in Section 6.3 we will discuss some related open problems.
This chapter is based on joint work with Yannick Mogge, Simón Piga, and Bjarne

Schülke [57].

6.1 Idea of the proof

Our proof is based on what we call necessary intersection points (see De�nition 6.1).
Roughly speaking we say that an element a ∈ [n] is a necessary intersection point for r-
cross t-intersecting families F1, . . . ,Fr if there are sets in the families which �depend�
on this element to ful�l their intersection property. For example, if we consider the 2-
cross 1-intersecting families A(n, 2, 1) and B(n, 2), the element 2 is a necessary intersection
point because there are pairs of sets that intersect only in 2. In this case, 1 and 2 are the
only necessary intersection points of these families. The idea is to �decrease� the maximal
necessary intersection point as long as possible, i.e., replace the presently considered r-
cross t-intersecting families by r-cross t-intersecting families whose sum of measures is not
smaller but which have a smaller maximal necessary intersection point.

Let F1, . . . ,Fr be some r-cross t-intersecting families and let a ∈ [n] be their maximal
necessary intersection point. To construct the new families we �rst remove all sets that
�depend� on a in one family, say Fr; we call the family of these sets Fr(a). Then a will no
longer be a necessary intersection point. Potentially, there are some subsets of [n] which
could not be in any of the other families because they would not intersect �correctly� with
some set in Fr(a). However, after removing Fr(a) from Fr and depending on how such a

90
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set relates with Fr \ Fr(a), it may be added to one of the other families without breaking
the intersection property.

There are some structural properties that follow from a being the maximal necessary
intersection point and the fact that the families are shifted. These will help us to analyse
which new sets can actually be added to the families F1, . . . ,Fr−1 and to prove that in fact
the measure of the newly added sets is at least as large as the measure of the removed sets.
Moreover, this analysis guarantees that the new maximal necessary intersection point is at
most a− 1.

We can iterate this construction and decrease the maximal necessary intersection
point in every step. This process has to stop at a certain point, and we show that then the
resulting families are contained in families with the desired structure (namely A(n, a, t)
and B(n, a)).

6.2 Proof of main results

In this section we will prove Theorems 6.7 and 6.8. We begin by introducing necessary
intersection points which are central to our proofs.

De�nition 6.1. Let F1 ⊆P([n]), . . . ,Fr ⊆P([n]) be r-cross t-intersecting families. We
say a ∈ [n] is a necessary intersection point of F1, . . . ,Fr if for all j ∈ [r] there is an Fj ∈ Fj
such that

|[a] ∩
⋂
j∈[r]

Fj | = t and a ∈
⋂
j∈[r]

Fj . (6.1)

The following easy lemma is one of the useful properties of necessary intersection points
used together with shifting.

Lemma 6.2. Let F1 ⊆ P([n]), . . . ,Fr ⊆ P([n]) be shifted r-cross t-intersecting families
and let a be their maximal necessary intersection point. If i ∈ [r], F ∈ Fi, and Fj ∈ Fj
for j ∈ [r] \ i are such that |[a− 1] ∩ F ∩

⋂
j∈[r]\i Fj | < t, then [a− 1] ⊆ F ∪

⋂
j∈[r]\i Fj.

Proof. We will assume that there is a b ∈ [a−1]\(F∪
⋂
j∈[r]\i Fj) and derive a contradiction.

Suppose a /∈ F . Then |[a] ∩ F ∩
⋂
j∈[r]\i Fj | < t. Thus, since F1, . . . ,Fr are r-cross t-

intersecting, there is a necessary intersection point larger than a. This contradicts the
assumption that a is the maximal necessary intersection point of F1, . . . ,Fr. We conclude
that a ∈ F .

Further, we know that σba(F ) ∈ Fi since Fi is shifted and b < a. But then we
have |[a] ∩ σba(F ) ∩

⋂
j∈[r]\i Fj | < t , which again contradicts F1, . . . ,Fr being r-cross t-

intersecting with maximal necessary intersection point a.

Roughly speaking, the proof proceeds by iteratively decreasing the maximal necessary
intersection point, i.e., replacing the currently considered families by families with a smaller
maximal necessary intersection point. In this �updating� process we need to be careful
with those sets which need a ful�l the intersection property. To make this more precise,
we introduce the following notation.

Let F1 ⊆P([n]), . . . ,Fr ⊆P([n]) be r-cross t-intersecting families and let a be their
maximal necessary intersection point. For every j ∈ [r] de�ne Fj(a) to be the set of
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all F ∈ Fj for which there exist Fi ∈ Fi for every i ∈ [r] \ j such that (6.1) holds. We
also refer to the sets in Fj(a) as the sets in Fj depending on a. Further, for A ⊆ [a − 1]
set Fj(A, a) = {F ∈ Fj(a) : F ∩ [a− 1] = A}.

The following lemma is the key of our proof. It will allow us to �push down� the
maximal necessary intersection point of the families considered in case that we are not
already done. Since we will prove Theorem 6.7 and Theorem 6.8 simultaneously (by proving
Proposition 6.9), we phrase this lemma in a general setting. The families with indices in [r1]
are families as in Theorem 6.7 and the remaining families are as in Theorem 6.8.

Lemma 6.3. Let r, t, n ∈ N, r1 ∈ N0 with r ≥ r1, r ≥ 2, and r1 6= 1, and let a ∈ [n].
If r1 ≥ 2, suppose that k1, . . . , kr1 ∈ [n] are such that n ≥ 2 max

i∈[r1]
ki + secmin

i∈[r1]
ki − t, and

let µ1, . . . , µr1 : [n]0 → R≥0. For i ∈ [r1 + 1, r], set ki = n and let µi : [n]0 → R≥0 be
non-increasing. For i ∈ [r], let Fi ⊆ [n](≤ki). If F1, . . . ,Fr are shifted r-cross t-intersecting
families with maximal necessary intersection point a ≥ t + 1 such that for all i ∈ [r], the
family Fi \ Fi(a) is non-empty, then there are non-empty families H1, . . . ,Hr such that

(a) for i ∈ [r] we have Hi ⊆ [n](≤ki),

(b) H1, . . . ,Hr are r-cross t-intersecting with maximal necessary intersection point at
most a− 1, and

(c)
∑
j∈[r]

µj(Hj) ≥
∑
j∈[r]

µj(Fj).

Proof. Roughly speaking, the families H1, . . . ,Hr will be obtained from F1, . . . ,Fr by
deleting Fi(a) from some of them and adding new sets to the others. More precisely,
de�ne for every i ∈ [r1] the family

Fadd

i =
⋃
k∈[ki]

⋃
A⊆[a−1]:

Fi(A,a)k 6=∅

{A ∪ T : T ∈ [a+ 1, n](k−|A|)} , (6.2)

and for i ∈ [r1 + 1, r] de�ne the family Fadd
i = {F \ a : F ∈ Fi(a)}. Next, for i ∈ [r] we

set F−i = Fi\Fi(a) and F+
i = Fi∪Fadd

i . Note that for all i ∈ [r] we have F+
i ,F

−
i ⊆ [n](≤ki)

and, hence, they satisfy (a).
We aim to show that considering F−i for some indices and F+

j for the other indices will
yield families as desired. To this end let us now observe the following claim, ensuring that
such a collection will ful�l (b).

Claim 6.4. Let i ∈ [r].

1. The families F−1 , . . . ,F
−
i−1,F

+
i ,F

−
i+1, . . . ,F−r are r-cross t-intersecting with maximal

necessary intersection point at most a− 1.

2. The families F+
1 , . . . ,F

+
i−1,F

−
i ,F

+
i+1, . . . ,F+

r are r-cross t-intersecting with maximal
necessary intersection point at most a− 1.

Proof. (1): Assume the contrary and let Fj ∈ F−j for j ∈ [r] \ i and Fi ∈ F+
i such

that |[a − 1] ∩
⋂
j∈[r] Fj | < t. Since F1, . . . ,Fr are r-cross t-intersecting, this means that
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there is some F ′ ∈ Fi(a) (potentially F ′ = Fi) with Fi ∩ [a − 1] = F ′ ∩ [a − 1]. But
then |[a−1]∩F ′∩

⋂
j∈[r]\i Fj | < t, which is a contradiction because Fj ∈ F−j = Fj \Fj(a).

(2): Assume the contrary and let Fj ∈ F+
j for j ∈ [r]\i and Fi ∈ F−i such that |[a−1]∩⋂

j∈[r] Fj | < t. Since F1, . . . ,Fr are r-cross t-intersecting, this means that for all j ∈ [r] \ i
there is an F ′j ∈ Fj(a) with Fj∩ [a−1] = F ′j∩ [a−1]. But then |[a−1]∩Fi∩

⋂
j∈[r]\i F

′
j | < t,

which is a contradiction because Fi ∈ F−i = Fi \ Fi(a).

Now, let us show that the updated families will still have maximum measure, that is,
that (c) holds. This essentially follows from the next two claims.

Claim 6.5. For i ∈ [r] we have µi(Fadd
i ) ≥ µi(Fi(a)).

Proof. If i ∈ [r1 + 1, r], note that the de�nition of Fadd
i implies an injection ϕ : Fi(a) →

Fadd
i with |ϕ(F )| = |F | − 1. Thus, recalling that µi is non-increasing, the claim is proved.
If i ∈ [r1], we need to work a bit more. If r1 = 0, there is nothing else to show, so

assume that r1 ≥ 2. First, we want to get an upper bound on a. Let s be the minimal
integer such that there is some m∗ ∈ [r1] and A∗ ∈ [a − 1](s) such that Fm∗(A∗, a) 6= ∅.
By de�nition we know that for F ∈ Fm∗(A∗, a) there are Fj ∈ Fj for all j ∈ [r] \m∗ such
that |[a−1]∩F ∩

⋂
j∈[r]\m∗ Fj | < t. Thus, Lemma 6.2 yields that [a−1] ⊆ F ∪

⋂
j∈[r]\m∗ Fj .

Since |F ∩ [a− 1]| = |A∗| = s and r1 ≥ 2, this entails a ≤ s+ 1 + minj∈[r1]\m∗ kj − t.
To show µi(Fadd

i ) ≥ µi(Fi(a)) it is enough to show that for all k ∈ [ki] we have
|(Fadd

i )k| ≥ |(Fi(a))k|.
Further, it is easy to see that for all k ∈ [ki],

(Fi(a))k ⊆
⋃

A⊆[a−1]:

Fi(A,a)k 6=∅

{A ∪ a ∪ T : T ∈ [a+ 1, n](k−1−|A|)} .

Hence, in view of (6.2), to show |(Fadd
i )k| ≥ |(Fi(a))k| it is enough to show that for

every A ⊆ [a − 1] with Fi(A, a)k 6= ∅ we have
(

n−a
k−1−|A|

)
≤
(
n−a
k−|A|

)
, which in turn holds

if n−a2 > k − 1− |A|. And indeed, the bounds on a and n entail

n− a
2
≥
n− s− 1−minj∈[r1]\m∗ kj + t

2
≥

2 maxi∈[r1] ki − s− 1

2
> k − 1− |A| .

Further let us observe the following.

Claim 6.6. For i ∈ [r] we have Fi ∩ Fadd
i = ∅.

Proof. Assume there is some F ∈ Fi ∩Fadd
i . Then, because F ∈ Fadd

i , there is some F ′ ∈
Fi(a) with [a − 1] ∩ F = [a − 1] ∩ F ′. For F ′ on the other hand, there are Fj ∈ Fj
for all j ∈ [r] \ i such that |[a] ∩ F ′ ∩

⋂
j∈[r]\i Fj | = t and a ∈ F ′ ∩

⋂
j∈[r]\i Fj . But

since F ∈ Fadd
i , we know that a /∈ F and thus we have |[a]∩F ∩

⋂
j∈[r]\i Fj | < t. This gives

us a contradiction since F ∈ Fi and F1, . . . ,Fr are r-cross t-intersecting with maximal
necessary intersection point a.
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Finally, we can �update� the collection of families. If µr(Fr(a)) ≤
∑

i∈[r−1] µi(Fi(a)),

we consider the families Hi = F+
i for i ∈ [r − 1] and Hr = F−r . Recall that we have Hi ⊆

[n](≤ki) for i ∈ [r] and that they are non-empty by the condition that Fi \ Fi(a) 6= ∅
for all i ∈ [r]. By Claim 6.4 these families are r-cross t-intersecting with their maximal
necessary intersection point at most a − 1 and by Claim 6.5, Claim 6.6, and µr(Fi(a)) ≤∑

i∈[r−1] µi(Fi(a)) we have
∑

i∈[r] µi(Fi) ≤
∑

i∈[r−1] µi(F
+
i ) + µr(F−r ). Together, this

yields (a)-(c) in the conclusion of the lemma.
If µr(Fr(a)) ≥

∑
i∈[r−1] µi(Fi(a)), we consider the families F−1 , . . . ,F

−
r−1,F+

r . Similarly
as before, it follows that these will satisfy (a)-(c).

We are now ready to prove our main theorems.

Theorem 6.7. Let r ≥ 2 and n, t ≥ 1 be integers. Further, for every i ∈ [r] let µi :
[n]0 → R≥0, let k̂i ∈ [n] and ki ∈ [k̂i]0 such that µi is non-increasing on [ki, k̂i]. If F1 ⊆
[n](≤k̂1), . . . ,Fr ⊆ [n](≤k̂r) are non-empty r-cross t-intersecting families and n is at least
maxi∈[r](ki + minj∈[r]\i k̂j)− t+ 1, then

∑
j∈[r]

µj(Fj) ≤ max
{
µ`(A(n, a, t)≤k̂`) +

∑
j∈[r]\`

µj(B(n, a)≤k̂j ) : ` ∈ [r], a ∈
[
t, min
i∈[r]\`

k̂i
]}
.

Theorem 6.8. Let n be an integer, k̂ ∈ [n], and k ∈ [k̂]0, let F ⊆ [n](≤k̂) be an t-
intersecting family, and let µ : [n]0 → R≥0 such that µ is non-increasing on [k, k̂]. If n is

at least k + k̂ − t+ 1, then
µ(F) ≤ µ(B(n, t)) .

Both Theorem 6.7 and Theorem 6.8 can be obtained from the following more general
result by setting r1 = r and r1 = 0 respectively. Moreover, this result also provides the
maximum of

∑
i∈[r] µi(Fi) in the case when some of the families and measures satisfy the

conditions in Theorem 6.7 and the others satisfy those in Theorem 6.8.

Proposition 6.9. Let r, t, n ∈ N, r1 ∈ N0 with r ≥ r1, r ≥ 2, and r1 6= 1, and let a ∈ [n].
If r1 ≥ 2, for i ∈ [r1] let ki ∈ [n] be such that n ≥ 2 max

i∈[r1]
ki + secmin

i∈[r1]
ki − t, and let µi :

[n]0 → R≥0. For i ∈ [r1 + 1, r] set ki = n and let µi : [n]0 → R≥0 be non-increasing.
For i ∈ [r] let Fi ⊆ [n](≤ki). If F1, . . . ,Fr are non-empty r-cross t-intersecting families
with maximal necessary intersection point at most a, then∑

j∈[r]

µj(Fj) ≤ max
{
µ`(A(n, a∗, t)

≤k`) +
∑
j∈[r]\`

µj(B(n, a∗)
≤kj )

}
, (6.3)

where the maximum is taken over ` ∈ [r] and a∗ ∈
[
t,min

{
a, min
i∈[r]\`

ki
}]
.

Proof. We perform an induction on r. The beginning is the same for the induction start
and the induction step. Let all the parameters and µi be given as in the statement of the
theorem and note that without restriction t ≤ mini∈[r] ki. Further, let F1, . . . ,Fr be such
that

1. for i ∈ [r] we have Fi ⊆ [n](≤ki),
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2. they are r-cross t-intersecting with maximal necessary intersection point at most a,

3. they maximise
∑

j∈[r] µj(Fj) among all families satisfying (1) and (2),

4. their maximal necessary intersection point is minimal among those families that
ful�l (1), (2), and (3).

Since the properties (1), (2), (3), and (4) are preserved when shifting, we may assume
that F1, . . . ,Fr are shifted. Denote the maximal necessary intersection point of F1, . . . ,Fr
by a∗ and observe that if a∗ = t, we are done. So we assume that a∗ ≥ t+ 1.

First, consider the case that for all i ∈ [r] we have that F−i 6= ∅. Then Lemma 6.3 yields
families H1, . . . ,Hr satisfying (1)-(3) with a maximal necessary intersection point smaller
than a∗. This is a contradiction to the choice of the families (see (4)) and thereby completes
the proof of both the induction start and the induction step.

Second, consider the case that for some j ∈ [r], without loss of generality r, it holds
that Fr \ Fr(a∗) = ∅. That is to say, all sets in Fr depend on a∗.

Assume that there is a b ∈ [a∗ − 1] and F ∈ Fr such that b /∈ F . As Fr is shifted, we
have that σba∗(F ) ∈ Fr, but this set does not depend on a∗. Hence, for every F ∈ Fr we
have [a∗] ⊆ F , in other words Fr ⊆ B(n, a∗)

≤kr .
For r = 2 notice that since a∗ is the maximal necessary intersection point, every F1 ∈ F1

has at least t elements in [a∗]. This yields F1 ⊆ A(n, a∗, t)
≤k1 and hence

µ1(F1) + µ2(F2) ≤ µ1(A(n, a∗, t)
≤k1) + µ2(B(n, a∗)

≤k2) ,

which �nishes the proof of the induction start.
For r ≥ 3 observe that the families F1, . . . ,Fr−1 are (r − 1)-cross t-intersecting fami-

lies with maximal necessary intersection point at most a∗ which maximise
∑

j∈[r−1] µj(Fj)
(among all (r− 1)-cross t-intersecting families Gi ⊆ [n](≤ki) with maximal necessary inter-
section point at most a∗). Thus, the induction hypothesis implies that there is an ` ∈ [r−1]
and an a∗∗ ∈ [a∗] such that∑

j∈[r−1]

µj(Fj) ≤ µ`(A(n, a∗∗, t)
≤k`) +

∑
j∈[r−1]\`

µj(B(n, a∗∗)
≤kj ) .

Since Fr ⊆ B(n, a∗)
≤kr ⊆ B(n, a∗∗)

≤kr , this entails∑
j∈[r]

µj(Fj) ≤ µ`(A(n, a∗∗, t)
≤k`) +

∑
j∈[r]\`

µj(B(n, a∗∗)
≤kj ) ,

which �nishes the induction step.

6.3 Concluding remarks

We point out some particularly important special cases in the following corollaries. Firstly,
if we apply Theorem 6.7 with the measure µi =

(
n
k

)
νk, and ki = k̂i = k for every i ∈ [r],

we obtain the following result.
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Corollary 6.10. Let r ≥ 2, and n, t ≥ 1 be integers, k ∈ [n], and for i ∈ [r] let Fi ⊆ [n](k).
If F1, . . . ,Fr are non-empty r-cross t-intersecting families and n > 2k − t, then∑

j∈[r]

|Fj | ≤ max
i∈[t,k]

{ ∑
m∈[t,k]

(
i

m

)
·
(
n− i
k −m

)
+ (r − 1)

(
n− i
k − i

)}
and this bound is attained.

In the context of non-uniform families, one of the results of a very recent work by Frankl
and Wong H.W. [52] establishes the maximum possible size of cross t-intersecting families.
By taking µi ≡ 1, ki = 0, and k̂i = n for every i ∈ [r] in Theorem 6.7, we generalise that
result to r-cross t-intersecting families with r ≥ 2.

Corollary 6.11. Let r ≥ 2, n, t ≥ 1 be integers and let F1, . . . ,Fr ⊆ P([n]) be non-
empty r-cross t-intersecting families. Then,∑

j∈[r]

|Fj | ≤ max
i∈[t,n]

{
2n−i

∑
m∈[t,i]

(
i

m

)
+ (r − 1)2n−i

}
and this bound is attained.

Observe that the maxima in our results are attained for di�erent i (and `), depending
on the measures and r, t, and n. However, we remark the following.

Remark 6.12. For given t, n, k ∈ N and a measure µ there is an r0 such that if r ≥ r0,
the maximum in Theorem 6.7 and Theorem 6.8 is always attained for i = t if µ = µj
(and kj = k) for all j ∈ [r].

One can also ask for the maximum of the product of sizes or, more generally, the
product of measures of r-cross t-intersecting families, instead of the sum. More precisely,
for given measures µ1, . . . , µr �nd the maximum possible value of∏

i∈[r]

µi(Fi) (6.4)

for F1, . . . ,Fr being r-cross t-intersecting families.
There are some partial results concerning this problem ([49, 14, 73, 65]). Frankl and

Tokushige [50] determined the maximum product of the sizes of r-cross 1-intersecting
families. In [14], Borg determined the maximum of (6.4) for r-cross 1-intersecting families
and measures with certain properties (which include the product measure, the uniform
measure, and the constant measure) (see also [15] for a general result). It is well known
that for a1, . . . , ar ∈ R≥0 with

∑
i∈[r] ai ≤ a the product

∏
i∈[r] ai is maximised if ai = a

r
for all i ∈ [r]. Therefore, considering Remark 6.12, given n, measures µi = µ (and ki = k)
with µ (and k and n) satisfying the conditions in Theorem 6.7 or Theorem 6.8, there is
an r0 such that for r ≥ r0 these theorems actually also yield that the maximum of (6.4)
is (µ(B(n, t)≤k))r. This particularly includes the product measure, the uniform measure,
and the constant measure, and solves a few instances of the Problems 12.10 and 12.11, and
of the Conjectures 12.12 and 12.13 posed by Frankl and Tokushige in [51].
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