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Abstract
A semi-intrusive approach for robust design optimization is presented. The stochas-
tic moments of the objective function and constraints are estimated using a Taylor 
series-based approach, which requires derivatives with respect to design variables, 
random variables as well as mixed derivatives. The required derivatives with respect 
to design variables are determined using the intrusive adjoint method available in 
commercial software. The partial derivatives with respect to random parameters as 
well as the mixed second derivatives are approximated non-intrusively using finite 
differences. The presented approach provides a semi-intrusive procedure for robust 
design optimization at reasonable computational cost while allowing an arbitrary 
choice of random parameters. The approach is implemented as an add-on for com-
mercial software. The method and its limitations are demonstrated by academic test 
cases and industrial applications.

Keywords  Topology optimization · Robust design optimization · Uncertainty · 
Taylor series approach · Semi-intrusive approach

1  Introduction

Deterministic optimization approaches tend to provide designs that are sensitive 
to variations of parameters such as the applied load, the part geometry or material 
properties. This motivated a large and broad community of researchers to incor-
porate considerations of uncertainty in design optimization. One possibility to 
distinguish these activities is by the approach to quantify uncertainties. The cur-
rent paper focuses on the widespread concept of probabilistic approaches. Those 
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approaches considering a certain probability (e.g. probability of failure) as objective 
or constraint for optimization are referred to as reliability-based design optimization 
(RBDO) approaches, see for instance the overview article by Schuëller and Valdebe-
nito (2010). However, this is not the scope of the current paper. We focus on robust 
design optimization (RDO) approaches, which aim at reducing the sensitivity of the 
design. An overview of different approaches to tackle RDO problems is given by, for 
instance, Park et al. (2006) and more recently by Kanno (2020). Other approaches 
to robust optimization include the consideration of worst-case designs or load-cases 
(Ben-Tal et  al. 2009; Elishakof and Ohsaki 2010). What all previously mentioned 
approaches have in common is that the computational cost of optimization under 
uncertainty is significantly larger (often order of magnitude larger) compared to 
deterministic optimization.

Maute and Frangopol (2003) were amongst the firsts who incorporated proba-
bilistic analysis into topology optimization, considering a random load component. 
Various following studies considered loads as random parameters (e.g. Jung and 
Cho 2004; Kharmanda et al. 2004; Mogami et al. 2006), as this typically involves 
a small number of random parameters. The first study incorporating random fields, 
describing the spatial variation of Young’s modulus or geometry, into topology opti-
mization is the paper of Schevenels (2011). They dealt with the large number of 
random parameters by using Monte Carlo simulations to predict mean and standard 
deviation of the objective function, which in their study increased the computational 
cost by factor of 100 compared to a strictly deterministic optimization. Using sur-
rogate models to speed up the Monte Carlo simulations, as for instance in (Balokas 
et al. 2021), seems challenging due to the high dimension of the parameter space. 
Hence, Lazarov et  al. (2012a) picked up the approach proposed by Doltsinis and 
Kang (2004) and used the perturbation technique to perform the probabilistic analy-
sis more efficiently, which they embedded into topology optimization. The perturba-
tion technique is based on a Taylor expansion of the residuum and the number of 
linear equation systems to be solved scales with the number of random parameters. 
Kriegesmann and Lüdeker (2019) proposed to use the first-order second-moment 
method for robust design optimization, which is based on a Taylor series of the 
objective function. This approach requires the solution of only one additional adjoint 
system and hence, it is the RDO approach with the lowest computational cost. How-
ever, due to the linear approximation of the objective function, the approach fails to 
provide a robust design for certain parameters, such as random loads (Kriegesmann 
2021).

The aforementioned approaches, which are based on Taylor series, are highly 
intrusive. Each combination of objective function or constraints, random variables 
and design parameters requires a new implementation of adjoint systems to be 
solved. Commercial software already offers a variety of combinations of objective 
functions, constraints and parameters for deterministic design optimization, which 
can easily be used for RDO with Monte Carlo simulations. In contrast, this paper 
presents a semi-intrusive approach for robust design optimization using a Taylor 
expansion for the design responses considered as objective function or constraints. 
The gradients used for deterministic design optimization, which are available in 
commercial software, are used and the partial and mixed partial derivatives with 
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respect to random parameters are approximated using finite differences. This semi-
intrusive approach is implemented as an add-on and does not require modifications 
of the core source code of the solver. Simultaneously, the implementation offers an 
arbitrary choice of design variables, objective functions and constraints for the RDO 
at a much lower computational cost when compared to RDO using Monte Carlo 
simulations. The application to an academic test case and industrial use cases dem-
onstrates the potentials and limitations of the present semi-intrusive approach.

Often numerical approaches for probabilistic analyses or optimization are referred 
to as “non-intrusive” if the objective function is called as a “black box”. The method 
presented in this paper assumes that the gradients with respect to (deterministic) 
design variables are determined by the adjoint method. This part of course requires 
a dedicated implementation. Therefore, the approach is referred to as “semi-intru-
sive”. However, given the fact that these gradients are available in many commercial 
software, the approach could also be referred to as “non-intrusive”.

2 � Semi‑intrusive robust design optimization 

The current section describes the present optimization setup, the probabilis-
tic approach and the corresponding gradients for mathematical programming 
optimization.

2.1 � Robust design optimization approach

A function g(x,y) is considered as a function of realizations x of the random vec-
tor X and the design vector y. Typical examples of such a function are the struc-
tural compliance, the maximal stress or the reaction forces at certain locations of 
the structure. Due to the variability of X, g is also randomly distributed, having the 
mean value μg and the standard deviation σg.

Typically, robust design optimization aims at minimizing both the mean value μg 
and the standard deviation σg, compiled in the optimization objective g̃ defined as

where κ is the weight factor for the standard deviation. The present formulation in 
Eq. (1) can be interpreted as a multi objective optimization problem, where varying 
κ provides the Pareto front. However, g̃ can also be regarded as a quantile of g. For 
instance, assuming g to be Gaussian and choosing κ = 3 means that g̃ is a value of g 
which is exceeded with a probability of 0.135%, whereas the probability of exceed-
ance equals 1.19% when assuming Gumbel distribution (Haldar and Mahadevan 
1999). However, during the optimization the distribution type of g is unknown and 
may change. Therefore, this consideration only helps to find a reasonable magnitude 
for κ. Note Eq.  (1) does not represent a risk averse approach, as demonstrated by 
Shapiro (2008).

The function g̃ may serve as an optimization constraint by restricting it to be 
lower than a given value g . Finally, multiple functions g̃i may be considered at the 

(1)g̃(�) = 𝜇g(�) + 𝜅 𝜎g(�)
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same time as objective and constraints (for instance compliance and stress), each 
having its own weight factor κi. Hence, the optimization problem yields

where I is the number of probabilistic constraints, R is the residual of the state equa-
tions, � and � are the lower and upper bounds of the design variables defined by the 
vector y. The derivative of the probabilistic objective or a probabilistic constraint g̃i 
is determined by

where the probabilistic methods used in the following determine the variances �2

g,i
 

and their gradients.
Generally, the mean value and the variance of a function g are defined by

where the function fX(x) defines the probability density function of the random vec-
tor X.

The simplest but numerically most expensive approach to determine μg and σg 
is the Monte Carlo method. For that, realizations x(i) of X are generated based on 
its distribution, and g is numerically evaluated for each realization. The mean and 
variance using the Monte Carlo method are then estimated using

Typically, the number of realizations m must be very large. Thus, the Monte 
Carlo approach is numerically very costly when each realization is a full finite 
element solution for the state equation �(�) = � in Eq. (2). For the present work, 
the Monte Carlo method is used only as verification and validation method of 
the optimization results. Several methods exist for improving the efficiency of 
the Monte Carlo simulations by reducing the number of realizations for the state 
equation in Eq. (2) as importance sampling (Haldar and Mahadevan 1999), use 
of surrogate models (Papadrakakis et al. 1996; Sudret et al. 2017) and multilevel 
approaches (Krumscheid et al. 2020). However, all the present Monte Carlo simu-
lation approaches are considered computationally too expensive for the present 
non-parametric optimization including uncertainties.

(2)

min
�

g̃0 = 𝜇g,0(�) + 𝜅0 𝜎g,0(�)

s.t. g̃i = 𝜇g,i(�) + 𝜅i 𝜎g,i(�) ≤ gi i = 1,… , I

�(�) = �

� ≤ � ≤ �

(3)
dg̃i

dyk
=
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dyk
+ 𝜅i

1
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(
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Consequently, a different type of approach is applied for estimating the stochastic 
moments, which is based on a Taylor series expansion of the function g at the mean 
vector μ of the random input vector X. The approach is sometimes referred to as a 
first-order second-moment (FOSM) method (Kriegesmann and Lüdeker 2019) or a 
method of moments (Papoutsis‐Kiachagias et al. 2012), and similar to the perturba-
tion approach used in (Doltsinis and Kang 2004; Lazarov et al. 2012a). Thereby, the 
Taylor expansion of g at μ reads

where n is the number of entries xi of x (i.e. the number of random parameters) and 
μi are the entries of μ. Inserting Eq. (6) into Eq. (4) yields

and

where cov(Xi, Xj) is the covariance of the i-th and j-th entries of X.
Considering only linear terms of the Taylor expansion in Eq. (6) for the deriva-

tion of Eqs. (7) and (8) is referred to as first-order second-moment method. Con-
sidering also quadratic terms is referred to as second-order fourth-moment (SOFM) 
approach, see Appendix A.

2.2 � Semi‑intrusive determination of gradients

The derivatives with respect to the design variables �g
/
�yk are assumed to be known 

using the adjoint sensitivity approach given by Michaleris et al. (1994) and imple-
mented in, e.g., Abaqus (2021). Then, it is straightforward to implement the gradi-
ents of the mean value when using the Monte Carlo method as

where the realization of the value g
(
�(i), �

)
 and of the gradient �g

(
�(i), �

)/
�yk are 

obtained from the same function call for solving the state equation. Hence, the com-
putational cost for carrying out a Monte Carlo simulation scales with the number of 
realizations m.

When using the FOSM approach, the derivative of the mean value is simply 
given by

(6)

g(�) = g(�) +

n∑
i=1

�g(�)

�xi

(
xi − �i

)
+

1

2

n∑
i=1

n∑
j=1

�2g(�)

�xi �xj

(
xi − �i

)(
xj − �j

)
+…

(7)�g =

∞

∫
−∞

g(�) f�(�) d� = g(�) +
1

2

n∑
i=1

n∑
j=1

�2g(�)

�xi �xj
cov

(
Xi,Xj

)
+…

(8)�2

g
=

∞

∫
−∞

(
g(�) − �g

)2
f�(�) d� =

n∑
i=1

n∑
j=1

�g(�)

�xi

�g(�)

�xj
cov

(
Xi,Xj

)
+…

(9)

d�g

dyk
≈

1

m

m∑
i=1

�g
(
�(i), �

)
�yk

and
d�2

g

dyk
≈

2

m − 1

m∑
i=1

[
g
(
�(i), �

)
− �g

]�g(�(i), �)
�yk



	 K. Steltner et al.

1 3

and the derivative of the variance is given by

The computation of the variance Eq. (8) and its derivative Eq. (11) requires the 
derivatives of g with respect to the random parameters xi and the mixed deriva-
tives �2g

/
�xi�yk . These mixed derivatives can be determined analytically using, 

for example, the adjoint method as shown by Kriegesmann and Lüdeker (2019) 
for a topology optimization minimizing the mean and variance of the compliance 
subject to a random Young’s modulus or random geometrical properties. For the 
approach in (Kriegesmann and Lüdeker 2019), only one adjoint system has to be 
solved in addition to the residual R for the equilibrium. However, the approach 
in (Kriegesmann and Lüdeker 2019) is highly intrusive for the numerical imple-
mentation and requires the analytical implementation of the gradient computa-
tion for each combination of objective function g0 and constraints gi (e.g. compli-
ance, stress, displacement, reaction force, …), design variable types yj (relative 
densities, nodal coordinates, thicknesses, …) and random parameter types xi (e.g. 
Young’s modulus, load direction, geometry, …).

Therefore, we propose using finite differences with the step size Δxi for deter-
mining the derivatives with respect to random parameters as follows:

Note that Eqs. (12) and (13) are determined from the same simulation, i.e. 
n + 1 simulations have to be carried out, where n equals the number of random 
parameters (i.e. the length of X). If central differences are applied for Eqs. (12) 
and (13), then 2n + 1 simulations have to be carried out. For the second-order 
approach the necessary number of simulations is 2n + 1 + ½ (n2–n).

When the number of random parameters xi is small (n ≤ 50), robust design opti-
mization using FOSM and the present finite difference approach in Eqs. (12) and 
(13) is computationally favorable compared to numerically costly sampling-based 
probabilistic methods as, for example, the Monte Carlo method. If a spatially var-
ying variable, i.e. a random field is considered, the number of random parameters 
can easily become much larger. However, the method may still be applied when 
using a discrete Karhunen-Loève transform to reduce the number of random 
parameters and perform the finite difference steps with the reduced parameters. 

(10)
d�g

dyk
=

�g(�, �)

�yk

(11)
d�2

g

dyk
= 2

n∑
i=1

n∑
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)
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g
(
�1,… ,�i + Δxi,… ,�n, �
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− g(�, �)
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(13)�2g(�, �)
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�yk

−
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Δxi
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This procedure is described in Appendix B. How much the random parameters 
can be reduced depends on the convergence of the Karhunen-Loève expansion, 
i.e. on the correlation length of the random field. For instance, Lazarov (2012a) 
reduced a random field discretized with 40000 elements to only 8 independent 
parameters. Additionally, the finite difference analyses for the mixed derivatives 
can be submitted in parallel on an HPC cluster, yielding no or just an insignifi-
cant increase in computational runtime when the number of random variables is 
increased.

Note that the derivatives �g∕�y with respect to the design variables are determined 
using the adjoint sensitivity approach. The linearization of Eqs. (12) and (13) with 
respect to design variables yj and the random parameters xi are only quantitatively valid 
in a given interval of yj and xi. However, numerical experiments show that even if the 
mathematically linearization of Eqs. (12) and (13) is only valid for a certain interval, 
equations Eqs. (12) and (13) can still qualitatively capture the overall behavior of the 
functions g optimized in Eq. (2) when used for a larger interval (Kriegesmann et al. 
2011). The approximations of the stochastic moments Eqs. (10) and (11) depend sig-
nificantly on the step size for the finite differences in Eqs. (12) and (13). A step size of 
magnitude Δxi = 1… 1.5 × �xi

 was found to provide good results for the approxima-
tion of stochastic moments (Kriegesmann et al. 2011). Therefore, the larger step size is 
chosen for its improved approximation of the stochastic moments over a small step size 
possibly yielding improved local gradient approximations.

3 � Numerical implementation

The approach presented in Sect. 2 is implemented as an add-on to commercial software 
using, for example, Abaqus (2021), Tosca (2021) and Isight (2021). For the present 
work, Abaqus is used for both the finite element modeling and simulations as well as 
adjoint derivatives with respect to the design variables. Tosca defines the design vari-
ables and reads the derivatives with respect to the design variables from Abaqus. Isight 
is applied for the finite difference calculations determining the mixed derivatives with 
respect to the random parameters and the design variables. Figure 1 shows the overall 
workflow implemented by connecting the different modules using python scripts. The 
design variables are updated per optimization iteration using mathematical program-
ming based upon the Method of Moving Asymptotes (MMA) approach implemented 
in Tosca. The individual commercial software components may be replaced by similar 
software providing the same functionality with respect to the adjoint derivatives and 
gradient based optimization algorithm.

4 � Numerical results 

The present approach will be tested on three different optimization targets. Ini-
tially, the numerical optimization results address topology strength optimization for 
an academic test case where the objective is to minimize the mass subject to stress 
constraints. Secondly, numerical optimization results show the classic topology 
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stiffness optimization for compliance minimization subject to a relative material 
volume constraint applied to an industrial use case of a bracket design. Finally, the 
strength optimization problem is also applied to the industrial use case of the bracket 
design, considering different ranges of input scatter. A worst-case approach to robust 
strength optimization is compared to the Taylor-based approach presented in this 
work.

All the present numerical topology optimization results use the so-called SIMP-
model [Solid Isotropic Material with Penalization (Bendsøe and Sigmund 2004)] 
for modeling the constitutive material model as being proportional to a power-law 
of the relative elemental density for the design variables of all structural design ele-
ments in the design domain. Additionally, a density filter is applied for regulariza-
tion introducing a length-scale and for suppressing checkerboards, see (Sigmund 
and Maute 2013). The radius of the density filter for all present optimization results 
is 1.3 compared to the average element size for all elements specified in the design 
domain. The optimization iteration convergence is considered achieved when the 
change in elemental densities is equal to or lower than 0.001.

4.1 � Strength optimization of an L‑bracket

The present section addresses strength topology optimization of an L-bracket 
model shown in Fig. 2 by minimizing the mass g0 subject to a stress constraint g1 
of 100 MPa. An elastic material is applied with a Young’s modulus of 70 GPa and 
a Poisson’s ratio of 0.3, respectively. Figure 2 also shows the discretization of the 
L-bracket being fully clamped at the top. The deterministic force P = 100 kN is 
applied at the mid-top of the right leg where also the two random loads x1 = PRV1 
and x2 = PRV2 are applied perpendicular to the deterministic force P for the robust 

Fig. 1   Optimization workflow of the implemented semi-intrusive approach using the mixed derivatives 
with respect to the random parameters x and with respect to the design variables y for the mean value μg 
and variance σg of the functions g for the objective and for the constraints
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design optimization. The L-bracket model mesh consists of 382′684 hexahedral 
elements (C3D8) yielding 1′213′560 DOFs. Except for the elements attached and 
close to the clamping and loading, all elements are defined as design space and 
thereby being the design variables y for Eq. (1). All stresses of elemental inte-
gration points of the elements attached to the clamping and to the loading are 
excluded in the stress calculations for equation Eq. (2) to avoid stress singulari-
ties for the optimization setup.

The design response g1 is the von Mises stress of the elemental integration points 
being applied as a single aggregated response. The stress response is constrained by 
the stress constraint value g1 . The stress response for the topology optimization is 
applied using a relaxation similar to (Bruggi 2008; Holmberg et al. 2013). Addition-
ally, the applied aggregation function is in the form of a p-norm approach for the 
elemental integration stress points similar to (Bruggi 2008; Duysinx and Bendsøe, 
1998; Holmberg et  al. 2013; Verbart et  al. 2016), avoiding having a stress design 
response per elemental stress integration point. However, the p-norm approach does 
not accurately approximate the maximum stress value when using, e.g, p = 6 . This 
approximation issue also persists for higher p-values. Therefore, we apply an adap-
tive scaling method as suggested in (Le et  al. 2009; Oest and Lund 2017; Zhang 
et  al. 2019) which ensures that the true maximum stress of the optimized design 
fulfills the applied stress constraint.

Figure  3a shows the optimized results for the deterministic optimized design 
where x1 = PRV1 = 0 and x2 = PRV2 = 0. The robust optimized design is shown in 
Fig. 3b. The random parameters PRV1 and PRV2 are assigned the following values for 
the robust design optimization: μRV1 = 0, σRV1 = 0.01 P = 1 kN, μRV2 = 0, σRV2 = 0.01 
P = 1 kN. The finite difference step size for Eqs. (12) and (13) is Δx = �RV = 1 
kN. The robust design optimization is carried out using the FOSM approach and a 
weight factor κ = 1.  

(a) Design space and nodes(red) where the 
deterministic load P and the random loads PRV1 and 
PRV2 are applied 

(b) Discretized design space and non-design space 
(red)

Fig. 2   L-bracket finite element model showing a the applied load and design space and b boundary con-
ditions and non-design space
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Both optimization approaches yield well converged optimized results as shown 
by the histograms for the optimized element density distributions in Fig. 4 and the 
optimization iteration histories shown in Fig. 5. The histograms show a clear solid/
void material distribution for both the deterministically optimized design as well as 
the robust optimized design. Additionally, the present optimized designs have a low 
volume fraction compared to the design domain. The present robust design optimi-
zation approach also yields clear solid/void material distributions for this challeng-
ing case. Nonetheless, the differences of the topologies of the optimized designs are 
only small. The numerical results of the optimizations are listed in Table  1. The 
performance of each optimized design in terms of robustness shown in Table 2 is 
determined using the Taylor-based FOSM and SOFM approaches and validated by 
Monte Carlo simulations considering 100 realizations of random loads. By using 
the descriptive sampling method in Isight (2021) for generating the samples of ran-
dom variables, the number of realizations can be reduced from 1000 to 100 with-
out losing the required accuracy. The descriptive sampling technique is used for 

(a) Deterministically optimized design having a 
volume fraction of 11.7% after smoothing.

(b) Robust optimized design having a volume fraction 
of 12.5% after smoothing 

Smoothing is an iso-cut of the relative element 
densities creating a surface

Fig. 3   L-bracket structures strength optimized subject to a stress constraint of 100 MPa
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Fig. 4   Design variable histograms for a deterministically and b robust optimized L-bracket
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all subsequent Monte Carlo analyses. The FOSM approach yields a lower mean 
compliance for the robust optimized design at the cost of slightly higher weight. 
The standard deviations of the deterministically and robust optimized designs are 
almost identical. However, the validation of the FOSM approximation of stochastic 
moments fails. This shows a limitation of the approach considering random loads. 
For symmetric load cases FOSM yields a standard deviation of 0. Due to small devi-
ations from perfect symmetry of both designs as well as the non-symmetric ran-
dom parameter PRV1, the estimated standard deviation is not exactly 0 but close to 0, 

(a) Optimization iteration history for objective 
function relative volume.

(b) Optimization iteration history for stress constraint 
in MPa

Fig. 5   Optimization iteration history for deterministic and robust design optimization of L-bracket

Table 1   Optimization results for 
the L-bracket example

Optimization Volume (%) Constraint max(σ) [MPa] Analyses 
per cycle

Deterministic 11.7 max(σ) = 100 1
RDO (FOSM) 12.5 μ + σ = 96.6 + 1.9 = 98.5 5
RDO (SOFM) 14.2 μ + σ = 97.4 + 1.8 = 99.2 6

Table 2   Probabilistic validation 
analyses of the optimized 
designs using different 
approaches

Design optimized by Probab. analysis μ σ FE analyses

Deterministic FOSM: 99.4 3.0 5
approach SOFM: 107.4 9.6 6

MC: 107.4 8.8 100
RDO (FOSM) FOSM: 96.6 1.9 5

SOFM: 104.3 11.5 6
MC: 102.5 9.4 100

RDO (SOFM) FOSM: 96.3 0.2 5
SOFM: 97.4 1.8 6
MC: 97.0 0.9 100
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nonetheless. In contrast, the Monte Carlo simulations show that the standard devia-
tion of the maximum stress is in fact larger than estimated by the FOSM approxima-
tion. Consequently, the FOSM method should not be used as probabilistic approach 
for robust design optimization for the present use case. 

The limitation of the FOSM approach can be overcome by using a quadratic 
approximation as the SOFM method for approximating the stochastic moments. 
In contrast to the invalid FOSM approximation, the numerical performance of the 
robust optimized design using FOSM estimated by SOFM is valid when compared 
to the Monte Carlo (MC) simulation as shown in Table 2. Therefore, a second robust 
design optimization is carried out using the SOFM approach. The optimized design 
is shown in Fig. 6. The histogram for the relative elemental density distribution in 
Fig. 7 shows acceptable solid/void material distribution in the design variables. The 

Fig. 6   Robust strength optimized design of L-bracket yielding a volume fraction of 14.2% subject to a 
stress constraint of 100 MPa using SOFM

Fig. 7   Design variable his-
togram for robust optimized 
L-bracket using SOFM
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optimized topology differs significantly from the deterministically optimized design. 
The numerical results shown in Table 2 show that the robustness, i.e. the standard 
deviation of the compliance, is significantly reduced at the cost of higher weight. 
The comparison of the SOFM approximation with Monte Carlo shows the validity 
of the approach. The increase in computational cost in comparison to the FOSM 
approach is small (one additional FE analysis per iteration) due to the small number 
of random parameters.

In summary, robust design optimization of the three-dimensional L-bracket sub-
ject to random loads is not valid when using the FOSM method. However, robust 
design optimization using the SOFM approach yields a structure having an overall 
improved performance at small computational cost. Additionally, both approaches 
yield clear results for the solid/void material distribution of the robust designs.

4.2 � Compliance optimization of an aircraft bracket

The present section addresses the objective of generating a robust stiffness design 
for an aircraft bracket. An elastic material is applied having a Young’s modulus of 
68 GPa and a Poisson’s ratio of 0.33. Figure 8 shows a bracket being meshed using 
448′914 first order linear tetrahedron elements (C3D4) as well as the design and non-
design partitions. The loading is introduced using a distribution coupling at the top 
hole of the bracket and four load cases are considered. The forces F =  ± 11.27 kN 
of load cases 1 and 2 are acting in z-direction. The forces F =  ± 6.44 kN are act-
ing in x-direction and applied as load cases 3 and 4, respectively. The sum of the 
compliance of each load case is considered as the objective function g0. The volume 
is constrained to remain below or equal to 12.5%. Clamping boundary conditions 
are applied to the eight connector elements representing the stiffness of bolts at the 
bottom of the bracket. The bolt connectors are attached to the bracket using rigid 
distribution couplings. Preliminary numerical studies showed that the stiffness of 
the four corner bolts is the most sensitive for the optimization as these counteract 
the bending moments caused by the external forces applied in load case 3 and 4, 

(a) Meshed design space and 
non-design space (red) 

(b) Design space showing loads and 
random parameters (red boxes)

(c) Connector element 
representing the bolt stiffness

Fig. 8   Aircraft bracket showing the design space and non-design space a, the locations of loading and 
the four bolts having scattering stiffness b and a single connector element representing the bolt stiffness c 
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respectively. Accordingly, the stiffnesses of the four corner bolts are chosen as ran-
dom parameters for the robust design optimization. The random parameters xi = RVi 
are implemented as scale factors of the bolt stiffness.

Figure 9 shows the optimized designs for the deterministic and the robust opti-
mization. Histograms for the relative elemental density distributions are provided 
in Fig.  16. For the deterministic optimization all random variables are fixed at 
xi = 1. For robust design optimization and evaluation, the random parameters are 
chosen to have a mean value of μRVi = 1 and a standard deviation of σRVi = 0.57. 
This standard deviation corresponds to a uniform distribution in the interval [0.01, 
1.99]. The scatter was chosen that large because previous numerical studies show 
that the compliance is not very sensitive with respect to local structural stiffness 
properties, as also shown in (Kriegesmann and Lüdeker 2019). Considering a scat-
ter that practically allows failure of one bolt can be interpreted as a worst-case or 
fail-safe approach. The finite difference step size for the gradient approximation is 
ΔRV = 1.5 × �RVi

= 0.86 . The factor κ is κ0 = 3 for the robust design optimization 
objective in Eq. (2). For smaller variations of the random parameters and κ0 = 1 as 
in the previous section, the robust design optimization does not provide different 
results than a deterministic optimization. Despite the large scatter of the random 
parameters, the robust design shows only little differences compared to the deter-
ministic design both in optimized material layout shown in Fig. 9b and numerical 
results listed in Table  3. This indicates, as additional numerical experiments also 
show, that the mixed sensitivities have a low dependency upon the present varia-
tions of the connector stiffness both for the initial design and optimized design. The 
FOSM approximation for the robust optimized design indicates a slightly decreased 
sensitivity with respect to the random variables which is validated by the Monte 
Carlo simulation. The improved robustness is a result of the additional connections 
of bolts to the optimized structure. Table  3 shows that the FOSM approximation 
is not accurate compared to the Monte Carlo validation results for the optimized 

(a) Deterministically optimized 
design

(b) Robust optimized design using 
FOSM

(c) Robust optimized design 
considering partially correlated 
random variables

Fig. 9   Stiffness optimized aircraft bracket designs for compliance topology optimization subject to a vol-
ume constraint of 12.5%. The robust optimization objective is to minimize the compliance (μc + 3σc) con-
sidering uncorrelated variation of the stiffness of the four corner bolts indicated in Fig. 8b
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designs. Especially the standard deviation is underestimated by approximately a fac-
tor of two. As stated in Sect. 2.2, the FOSM approximation is based upon a lineari-
zation assumption. For the present case this is not valid, since the compliance is a 
reciprocal function of the bolt stiffness representing the random variables. Thereby, 
the gradient approximation by finite differences fails to deliver a proper approxi-
mation of the nonlinear design response for the FOSM approximation. The limited 
applicability of FOSM is due to the scatter of the random variables being as sig-
nificantly large as anticipated for the present example. The assumption of linearity 
is less problematic for random variables having small variations and consequently 
causing less variations in the design responses. 

The robust optimized design shown in Fig.  9b is based on the assumption of 
uncorrelated random parameters. Therefore, another robust design optimization is 
performed where correlation between random parameters is assumed. The correla-
tion of the stiffness of adjacent bolts is chosen equal to 0.5. The covariance required 
for Eq. (8) is given by cov(RVi, RVj) = ρij σ2, where ρij is an entry of the correlation 
matrix P. Hence, the correlation matrix P is defined as

(14)� =

⎡⎢⎢⎢⎣

1 0.5 0 0.5

0.5 1 0.5 0

0 0.5 1 0.5

0.5 0 0.5 1

⎤⎥⎥⎥⎦

Table 3   Statistic performance 
and validation of stiffness-
optimized aircraft bracket 
considering uncorrelated 
random variables for the designs 
shown in Fig. 9a and b

*Considered as objective in the optimization (the deterministic com-
pliance equals the mean value according to FOSM)

Optimization approach Probabilistic 
approach

Compliance [mm/N]

μ σ μ + 3σ

Deterministic FOSM: 5939* 1049 9086
MC: 7133 1828 12,617

Robust FOSM: 6025 883 8674*
MC: 7051 1477 11,482

Table 4   Statistic performance 
and validation of stiffness-
optimized aircraft brackets 
considering partially correlated 
random variables shown in Eq. 
(14)

*Considered as objective in the optimization (the deterministic com-
pliance equals the mean according to FOSM)

Optimization approach Probabilistic 
approach

Compliance [mm/N]

μ σ μ + 3σ

Deterministic FOSM: 5939* 1282 9785
MC: 7347 3287 17,208

Robust FOSM: 6100 1020 9160*
MC: 7104 2072 13,320
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Table 4 shows an increased standard deviation of the compliance for the deter-
ministically optimized design due to the correlation of random variables defined 
by Eq. (14). Figure  9c shows the robust optimized design considering correlated 
random variables alongside the robust design considering uncorrelated random 
variables (Fig. 9b). The material layout for the robust optimized design considering 
correlated random variables has an additional connection between the bolts in the 
middle of the optimized structure to compensate for the increased sensitivity with 
respect to the correlated scatter of the bolt stiffness. The FOSM approximation in 
Table 4 is inaccurate again for the case of correlated variables when compared to 
the values obtained using Monte Carlo simulations. However, the robust optimized 
design shows a reduced standard deviation in comparison to the deterministically 
optimized design. The improvement in robustness is validated by the Monte Carlo 
estimation given in Table 4. Note that for all cases the FOSM approximation indi-
cates a slightly increased mean value while the Monte Carlo simulations show an 
improvement of the mean compliance. Thereby, the FOSM approximation might 
be quantitatively inconsistent as discussed in Sect. 2.2, but qualitatively the robust 
design optimization using FOSM still introduces designs having a reinforcement in 
the material layout for robustness against variations in the stiffness of the bolts.

Concluding on the stiffness optimization results shown in Fig.  9 and validated 
in Tables 3 and 4, it is shown that large variations in the stiffness of the bolts are 
required for impacting the optimized designs, and the changes in the optimized 
designs are still small considering the large variations of the random variables. Gen-
erally, we can conclude that three-dimensional compliance optimized designs for 
multiple load cases are rather insensitive to variations of random parameters. This 
conclusion is rather similar to previous findings in the literature for two-dimensional 
compliance optimization subject to variation of the Young’s modulus or geometri-
cal properties (Kriegesmann and Lüdeker 2019; Lazarov et al. 2012b). The present 
work confirms this observation for a three-dimensional application.

4.3 � Strength optimization of an aircraft bracket

The present section addresses strength optimization of the aircraft bracket presented 
in the previous section by minimizing the mass subject to a stress constraint. The 
FE-model is identical to the model in Sect. 4.2 and the optimization setup is iden-
tical to the strength optimization of the L-bracket in Sect.  4.1 except for a stress 
constraint per load case. The maximum von Mises stress value over the elemental 
integration points per load case are introduced as the design responses g1, g2, g3 and 
g4, and constrained separately by gi = 300 MPa for Eq. (2). The finite difference step 
size is increased to ΔRV = 1.5 ×  σRV = 0.86 (based on the findings in (Kriegesmann 
et al. 2011)) and κ is set to κ  = 1.

The deterministically optimized design and the robust design are shown in 
Fig. 10a and b, respectively. Again, histograms for the relative elemental density dis-
tributions are included in Appendix C in Fig. 17 and show clear solid/void material 
distribution for both the deterministically and robust optimized design. Even though 
the smoothed results are not perfectly symmetrical with respect to the z-y-plane, the 
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stresses for the forces acting in the opposite directions are practically identical, and 
therefore considered to be the same when discussing numerical results in the follow-
ing. The stresses are referred to as σLC 1,2 and σLC 3,4, respectively. The robust opti-
mization yields a design slightly different to the deterministically optimized design. 
The stress constraint for load cases 1 and 2 is not active for the robust optimal design 
as shown in the optimization iteration history in Fig. 11b.

The numerical results are listed in Table 5. In contrast to the bracket design 
optimized for stiffness, the robustness with respect to strength is of concern for 
the optimized bracket design. The standard deviation of the maximum stress is 
approximately 1/3 of its mean value based on the Monte Carlo analysis, which is 
quite large. The reason for this large scatter is that the same distribution of the ran-
dom variables is considered as in the previous section for stiffness optimization, 
but the maximum stress is much more sensitive with respect to the random vari-
ables than the compliance. Again, FOSM yields an inaccurate approximation of 
the stochastic moments. The standard deviations are underestimated significantly 

(a) Deterministically optimized design (b) Robust optimized design using FOSM

Fig. 10   Strength optimized aircraft bracket designs where the material volume is minimized subject to 
stress constraints of g

1…4
= 300 MPa

(a) Objective: Relative volume (b) Constraint: Stress in load case 1 
and 2

(c) Constraint: Stress in load case 3 
and 4

Fig. 11   Optimization iteration history for the deterministically and robust volume optimized designs of 
an aircraft bracket subject to stress constraints of 300 MPa per load case
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for both optimized designs and thereby, implying a low sensitivity with respect 
to the random variables. This causes the structural difference between optimized 
designs to be minor. However, the qualitative tendency provided by FOSM in 
terms of standard deviation is correct and therefore, the robust design optimiza-
tion using FOSM indeed has a lower scatter for the active constraint (load case 3 
and 4) as is shown by the results of the Monte Carlo simulation.

As observed in the previous section, the significant scatter of the random vari-
ables yields a large and highly nonlinear variation of the stress design response. 
The maximum stresses of each load case resulting from the Monte Carlo analysis 
of the robust design are shown in Fig. 12. All four random variables are varied 
at the same time following a uniform distribution in an interval of [0.01, 1.99]. 
Four configurations of random variables are marked in each of these plots. The 
corresponding values for each random parameter are listed in Table 6. The data 
illustrates the nonlinearity of the design response with respect to the variation 
of the random variables. Especially the third configuration of the random design 
variables demonstrates that low values for the random variables do not neces-
sarily yield high stresses, as the stress distribution does not depend solely on the 

Table 5   Statistic performance and validation of aircraft brackets optimized for minimized volume subject 
to individual stress constraints per load case. Load cases 1 and 2 (3 and 4, respectively) yield the same 
maximum stress

*Considered as constraint in the optimization (the deterministic compliance equals the mean according 
to FOSM)

Optimization approach Objective: volume Probabilis-
tic approach

Max (σLC 1,2) [MPa] Max (σLC 3,4) [MPa]

μ σ μ + σ μ σ μ + σ

Deterministic 11.5% FOSM: 300* 13 313 300* 12 312
MC: 339 106 445 349 132 481

Robust 12.7% FOSM: 241 22 263* 291 9 300*
MC: 386 55 441 316 90 406

Fig. 12   Maximum stress with respect to the random variables resulting from Monte Carlo simulation of 
robust design in Fig. 10b. Numerical values of the random variables and corresponding maximum stress 
for the four configurations highlighted are listed in Table 6



1 3

Semi‑intrusive approach for stiffness and strength topology…

individual random variables, but also highly on the ratio between the random 
variables.

Stress is a local measure in contrast to global stiffness (represented by compli-
ance). As a result, the maximum stress location does not move continuously but 
frequently occurs at arbitrary locations in the model when varying the random 
variables for the bolt stiffness. Therefore, the maximum element stress is generally 
non-differentiable. For illustration, stress plots of load case 3 for the four configura-
tions of the random variables marked in Fig. 12 are shown in Fig. 13. The location 
of maximum stress is always in the bottom area of the model close to the bolts, 
but the location changes non-continuously depending on the individual random 
variables and their mutual ratio. Consequently, the local approximation, that the 
FOSM method is based on, fails to provide feasible approximations of the stochas-
tic behavior of the maximum stress measure. Numerical studies using SOFM and a 
reciprocal approximation for FOSM [see (Kriegesmann and Lüdeker 2021)] did not 
yield a better approximation of the stochastic moments, and therefore the numerical 
results are not discussed separately. Consequently, the Taylor-based approximation 
of stochastic moments fails because of the severe non-linearity of the stress response 
introduced by the large scatter of the random variables. Again, a limitation of the 
approach to robust design optimization is shown when large scatter is considered for 
the random parameters.

The efficiency of Monte Carlo simulations can be increased by using surrogates 
models, see for instance (Balokas et  al. 2021). We trained two different types of 
surrogate models, namely Kriging and Polynomial Chaos Expansion, for estimating 
the maximum stress as a function of the random parameters. However, even when 
training these surrogate models using the same 100 samples as considered for the 
plain Monte Carlo simulation using descriptive sampling for the random parameters, 

Table 6   RV configurations and 
maximum stress corresponding 
to the configurations of the 
random variables marked in 
Fig. 12

RV 
configu-
ration

RV 1 RV 2 RV 3 RV 4 σLC 1,2 [MPa] σLC 3,4 [MPa]

1 0.88 1.18 0.02 0.42 867 1006
2 1.88 1.60 1.10 0.02 754 871
3 0.26 0.44 0.55 1.41 279 290
4 1 1 1 1 285 295

Fig. 13   Stress plots for robust design having different configurations for the random variables as marked 
in Fig. 12. Stress distribution is shown for load case 3 and the maximum stress location for the model is 
marked with a circle
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the estimated stochastic moments of the maximum stress deviate significantly. The 
reason is the non-smooth and highly non-linear stress response as shown in Fig. 12.

4.3.1 � Small scatter of random variables

As previously discussed, robust design optimization considering heavily scattering 
random variables and design responses is a limitation of the present Taylor-based 
approach. Therefore, the scatter of the random parameters is reduced and a smaller 
standard deviation of σRVi = 0.1 is applied. The reduced standard deviation corre-
sponds to a uniform distribution in the interval [0.83, 1.17]. The finite difference 
step size is chosen to ΔRV = 1.5 ×  σRV = 0.15 and the factor κ for the robustness 
constraint remains at κ = 1.

The optimized robust design is shown in Fig. 14b next to the deterministically 
optimized aircraft bracket. The corresponding histograms of the relative elemental 
material distributions are shown in Fig. 17 in Appendix C. The difference in topolo-
gies of the two optimized designs is now more pronounced even though the scatter 
of the random parameters considered is smaller compared to the scatter applied in 
the previous section. The numerical performance of both designs listed in Table 7 
shows that the robustness regarding maximum stress is not of concern when the 
scatter of the bolt stiffness is small. The robust design optimization yields a design 
that satisfies the robustness constraints in Eq. (2). However, this result is only 
obtained by improving the mean performance of the design while the robustness is 
actually decreased. Still, the method yields a clear converged design with respect to 
the.solid/void material distribution, and the approximation of stochastic moments is 
successfully validated by Monte Carlo simulations.   

(a) Deterministically optimized design (b) Robust optimized design

Fig. 14   Aircraft bracket designs optimized for minimized volume subject to separate stress constraints 
per load case considering small scatter of the random variables for the robust design optimization
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4.3.2 � Robust design optimization using design of experiments

Due to the computational cost of embedding Monte Carlo simulations in a RDO 
and due to the lack of accuracy of FOSM in presence of large input scatter, another 
approach for robustness in strength optimization is tested. Instead of performing 
a full Monte Carlo simulation, only designs considering possible combinations of 
extreme values for the random variables may be considered for the optimization. 
Two different Designs of Experiments (DOE) are applied in order to use the results 
of each evaluation as individual constraints for the robust design optimization. This 
approach resembles a worst-case optimization by means of DOE.

One DOE is a reduced axial point design and the other is a central composite 
design, combining a full factorial with the axial point design for the random var-
iables (Dean 2017). The individual designs are generated by considering a mean 
value of μRVi = 1 and axial points of μRVi ± ΔRV = 1 ± 0.86, correlating to the large 
scatter of the random variables considered in Sect.  4.2 and 4.3, respectively. The 
maximum stresses of each design are considered as individual constraints for the 
optimization. The axial point design yields constraints for each pair of load cases 
and therefore, eight constraints in total. The central composite design considers 

Table 7   Statistic performance and validation of aircraft brackets optimized for minimized volume subject 
to individual stress constraints per load case. Load case 1 and 2 (3 and 4, respectively) yield the same 
maximum stress. The scatter of the random variables is reduced in comparison to the previous section

Optimization approach Objective: volume Probabilis-
tic approach

max(σLC 1,2) [MPa] max(σLC 3,4) [MPa]

μ σ μ + σ μ σ μ + σ

Deterministic 11.5% FOSM: 300* 0.3 300 300* 1.1 301
MC: 300 0.3 300 300 1.1 301

Robust 11.7% FOSM: 299.5 0.5 300* 298 1.9 300*
MC: 299.5 0.5 300 298 1.9 300

(a) Optimized designs considering axial point design 
for random variables

(b) Optimized design considering central composite 
design for random variables 

Fig. 15   Optimized aircraft bracket design for stress topology optimization minimizing relative volume. 
Statistic design methods are applied to consider variation of random variables as constraints
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a full 24 factorial design as well as the four axial points for the random variables 
yielding 20 constraints for each pair of load cases and a total of 40 constraints (see 
Appendix D for the corresponding design matrices). The designs obtained using 
these two approaches are shown in Fig. 15. The final designs are evaluated using 
a Monte Carlo simulation, and the stochastic moments listed in Table 8 show that 
the variability of maximum stress is reduced compared to the deterministically opti-
mized design. The central composite design yields a design having a lower standard 
deviation than the robust optimized design in Sect.  4.3, even though the standard 
deviation is not explicitly considered in the optimization. The computational cost 
of the central composite DOE using 20 function calls per iteration is significantly 
larger than for the axial point DOE (4 function calls) and the RDO using FOSM (5 
function calls). This discrepancy increases with the number of random parameters 
considered. For structures subject to large scatter of the random parameters, the cen-
tral composite worst-case approach is an alternative to the Taylor-based approach 
only if the number of random variables is very small. The computational cost of 
this DOE-based approach increases rapidly and nevertheless, a Monte Carlo simula-
tion has to be performed to determine the stochastic performance of the optimized 
design. The Taylor-based FOSM method provides a more cost-efficient approach to 
determine robust designs for problems having a moderate amount of random vari-
ables as shown in the present work.

5 � Conclusions and outlook 

A new semi-intrusive approach for robust topology optimization is presented. The 
semi-intrusive approach has two motivations. Firstly, it allows an arbitrary choice of 
design responses and random parameters. Secondly, the approach approximates the 
mean and standard deviation of design responses with respect to the random vari-
ables using the Taylor series-based first-order second-moment (FOSM) method or 
the second-order fourth-moment (SOFM) method, because using Monte Carlo simu-
lations for determining the robustness in each optimization iteration is infeasible due 
to high computational cost. The numerical implementation for the mixed gradients 
combines existing adjoint derivatives with respect to the topology design variables 

Table 8   Statistical performance determined by Monte Carlo simulation of the optimized designs result-
ing from robust design optimization considering statistical design methods to generate constraints

RV design Solver calls Volume (%) Constraint max(σ1) 
[MPa]

Constraint max(σ2) 
[MPa]

μ σ μ + σ μ σ μ + σ

Axial points 4 10.5 327 97 424 325 112 437
Central composite 20 10.2 279 39 318 298 39 337
Deterministic 1 11.5 339 106 445 349 132 481
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and derivatives with respect to the random variables using finite differences. The 
adjoint sensitivities with respect to the design variables are assumed to be imple-
mented intrusively in a given finite element solver, while the finite differences for 
the gradient approximation with respect to the random variables are implemented 
non-intrusively using additional mathematical programming. When the number of 
random variables is significantly lower than the number of topology design vari-
ables, the gradient calculations using finite differences can be parallelized using a 
HPC cluster environment to reduce the runtime significantly. The gradients are then 
applied in a mathematical optimization.

Consequently, the present semi-intrusive robust design optimization approach has 
a moderately low runtime and is easy to implement for an arbitrary choice of ran-
dom parameter types. However, it has the drawback that the robustness is approxi-
mated linearly. This is presented using numerical examples for both academic and 
industrial models, showing the approach is practically feasible with respect to the 
computational cost, and that the FOSM method yields similar responses compared 
to those obtained using Monte Carlo simulations for small scatter of the random 
variables. For larger scatter of the random variables, the stochastic moments approx-
imated using the FOSM method are different in comparison with a Monte Carlo 
simulation. Therefore, the linearization for calculating the FOSM method is not 
validated generally. However, the robust optimized topology can still be driven to 
a more robust design compared to a deterministically optimized design. All exam-
ples show a clear solid/void material distribution while having low volume fractions 
compared to the design domain. Thus, the method yields clear converged solid/void 
material distributions when robustness is included in the optimization formulation 
for these challenging cases.

The semi-intrusive approach is used for examining the design impact of uncer-
tainties on both stiffness optimized designs and strength optimized designs. Some 
of the observations previously reported in the literature for two-dimensional stiff-
ness optimization under uncertainty can similarly be observed in the present three-
dimensional stiffness optimization under uncertainty. Practically, robustness is of 
no concern for stiffness optimization (compliance minimization) when having more 
than two load cases. This has now been shown for three-dimensional examples. Fur-
thermore, the FOSM method and the SOFM method provide feasible results within 
the limitations discussed, while the evaluation of the Taylor-based methods is com-
putationally inexpensive compared with sampling-based probabilistic methods.

In contrast to stiffness topology optimization, robustness is of practical con-
cern for strength topology optimization. However, the approximation of stochastic 
moments using Taylor-based methods fails, because the locations of the maximum 
stress are frequently relocating positions location-wise subject to variations of the 
random variables. Thereby, the stress responses are highly discontinuous for large 
scatter of the random variables, and approximation methods for Taylor-based (e.g., 
FOSM) or sampling-based (e.g., Kriging) determination of stochastic moments fail 
due to the discontinuity in the stress responses with respect to large variations of the 
random variables. Consequently, only the computationally very expensive Monte 
Carlo simulation is feasible for robust design optimization subject to large scatter of 
random variables in strength topology optimization. Nonetheless, the Taylor-based 
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approximation methods for the robustness work mathematically well when having 
small scatter of the random variables

6 � Replication of results

All optimizations in this work are performed using penalty factor of 3 for the SIMP 
approach and a filter radius of 1.3 relative to the mesh size. Additional scripts gener-
ated during the study that extend the functionality of SIMULA Abaqus and Tosca 
are available from the corresponding author on reasonable request.

Appendix A: Second‑order approximation

Using a second-order Taylor series, the approximation of the variance is given by

This is referred to as second-order fourth-moment approach. All derivatives are 
evaluated at the mean vector of the random vector μX. The stochastic moments μij 
refer to the covariance of Xi and Xj, μijk is the third joint central moment of Xi, Xj and 
Xk, and μijkl is the fourth joint central moment, i.e.

Assuming independence of the random variables, Eq. (15) can be simplified to

Here, only joint central moments of a random parameter with itself are consid-
ered. For instance, the fourth central moment of Xi is now written as μiiii = μi,4. If the 
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random variables are not independent, the transformation discussed in Appendix B 
needs to be applied.

The second order derivatives are determined with central differences

Determining mixed derivatives requires several function calls. The number of 
required function calls increases quadratically with the number of random param-
eters, namely 2n + 1 + ½ (n2 ˗ n).

Appendix B: Transformation to independent random parameters 
and parameter reduction

In general, random parameters may be dependent and hence, Eq. (15) has to be used 
for the second-order approach instead of Eq. (17). However, a random vector X hav-
ing correlated entries can be transformed to a vector with uncorrelated entries Z 
using the transformation

Here, μX is the mean vector and ΣX the covariance matrix of X. The random 
vector Z has zero mean and its covariance matrix is the identity matrix. Hence, 
the entries of Z are uncorrelated and the second moments evaluate to μii = 0 for 
I ≠ j. However, the entries of Z are not independent, and their higher-order joint 
moments may be different from zero. If X follows Gauss distribution, then the 
entries of Z are indeed independent. So in order to obtain independent parame-
ters, the entries of X first have to be transformed to Gauss distribution by using 
the Rosenblatt transformation (see e.g. (Haldar and Mahadevan 1999)) and also 
the mean vector and covariance matrix of this transformed vector have to be deter-
mined. Then, the transformation Eq. (19) can be applied to obtain independent 
parameters. Afterwards, the Taylor series in Eq. (6) is expanded in terms of the 
transformed parameters Zi and hence, also the finite difference steps in Eqs. (12), 
(13) and (18) are carried out for Zi.

The transformation Eq. (19) may also be applied for reducing the number of ran-
dom parameters. Especially when a spatially varying quantity (e.g. when material 
parameters change within a structure) is considered, the number of random param-
eters equals the number of elements of the discretized random field (which typically, 

(18)

�2g

�x2
i

≈
g
(
�1,… ,�i + Δxi,… ,�n, �

)
− 2g(�, �) + g

(
�1,… ,�i − Δxi,… ,�n, �

)

Δx2
i

(19)� = �

1

2

�
� + �� ⇔ � = �

−
1

2

�

(
� − ��

)
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but not necessarily, equals the number of finite elements). The entries of adjacent 
elements are typically strongly correlated and the correlation in space is described 
by the correlation length. In this scenario, the covariance matrix ΣX is very large, 
but has very few eigenvalues significantly different from zero. The root of ΣX in this 
case can be determined from its spectral decomposition, i.e.

where Q is a matrix with eigenvectors qi of ΣX and Λ is a diagonal matrix with the 
eigenvalue λi of ΣX. Then the transformation Eq. (19) yields

By restricting the number n of considered eigenvalues and eigenvectors, the 
length of the transformed vector Z, i.e. the number of random variables, is reduced. 
This procedure is also referred to as principal component analysis or discrete Kar-
hunen-Loève transformation. It has been demonstrated that one can reduce the num-
ber of random variables describing a random field by orders of magnitude without 
significant loss of accuracy (Kriegesmann et al. 2011; Lazarov et al. 2012a).

Appendix C: Histograms for relative elemental densities

The following histograms show the material distribution of the relative elemental 
densities.

(20)�
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2
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1

2
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1

2 � + �� = �� + �1

√
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√
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Aircraft bracket – Compliance optimization

(a) Deterministically optimized 
design w.r.t. Fig. 9a

(b) Robust optimized design 
(uncorrelated random variables) 
w.r.t. Fig. 9b

(c) Robust optimized design 
(correlated random variables) 
w.r.t. Fig. 9c
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Fig. 16   Design variable histograms for stiffness optimized aircraft bracket
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Appendix D: Design of experiment

For the Design of Experiment the combinations of random variable RVi shown in 
Tables 9 and 10 are used. The central composite design combines both, the axial 
point and the full factorial design.

Aircraft bracket – Strength optimization

(a) Deterministically optimized 
design w.r.t. Fig. 10a

(b) Robust optimized design w.r.t. 
Fig. 10b

(c) Robust optimized design 
(small scatter of random variables) 
w.r.t. Fig. 14b
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Fig. 17   Design variable histograms for strength optimized aircraft bracket

Table 9   Design matrix for axial 
point design

Axial point design

RV1 0.14 1 1 1
RV2 1 0.14 1 1
RV3 1 1 0.14 1
RV4 1 1 1 0.14
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