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—— Abstract

Event arrival functions are commonly required in real-time systems analysis. Yet, event arrival
functions are often either modeled based on specifications or generated by using potentially

unsafe captured traces. To overcome this shortcoming, we present a compiler-based approach to
safely extract event arrival functions. The extraction takes place at the code-level considering a
complete coverage of all possible paths in the program and resulting in a cycle accurate event
arrival curve. In order to reduce the runtime overhead of the proposed algorithm, we extend
our approach with an adjustable level of granularity always providing a safe approximation of
the tightest possible event arrival curve. In an evaluation, we demonstrate that the required
extraction time can be heavily reduced while maintaining a high precision.
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1 Introduction and Motivation

The design of safety-critical real-time systems often requires an effective analysis of the
worst-case timing behavior in order to determine the compliance of the system to the timing
constraints. This usually involves a traditional two-steps approach [3] which consists of a first
low-level code analysis to determine the worst-case execution time of every task based on its
program structure, followed by a system-level timing analysis to determine the worst-case
response time of interfering tasks based on abstract models of the tasks activations and the
scheduling policy.

In particular, system-level analysis often makes use of event arrival functions [18, 20, 23, 1]
in order to bound the number of accesses to the shared resources and analyze the amount of
induced interference. Event streams abstract the notion of traces and describe the possible
I/0 timing of interfering tasks sharing resources in the system under analysis. System
properties are then computed in a compositional way using algebraic techniques where event
streams are used to connect components’ analyses according to the system’s application and
communication structure.

The code-level and system-level analysis steps are complementary, however in practice
they are often considered separately. Some existing approaches, such as [19, 4] extend
? Dominic Oehlert, Selma Saidi, anc? Heiko Falk;

5v icensed under Creative Commons License CC-BY
30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 4; pp. 4:1-4:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:dominic.oehlert@tuhh.de
mailto:selma.saidi@tuhh.de
mailto:heiko.falk@tuhh.de
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Compiler-based Extraction of Event Arrival Functions

code-level analysis to system-level analysis by considering in a multicore system shared
cache preemption delays to bound tasks’ response times. These methods result in tight
upper bounds on the response times. However, they consider a holistic approach for the
evaluation of the worst-case execution time which cannot capture all the timing dependencies
of interfering tasks. Furthermore, they are hard to scale with the complexity of the system
and therefore they cannot be applied to complex hardware architectures involving on-chip
interconnects and multi-level memory hierarchies.

On the other hand, system-level performance analysis approaches such as [23, 10] are
more scalable and can be applied to analyze in a compositional way complex hardware
structures [15]. They take as input for every task the worst-case execution time resulting
from the code-level analysis, and abstract models of the arrival curves corresponding for
instance to a known (periodic) activation pattern but which are very seldom derived using
appropriate tools. This leads to harsh overapproximations in terms of timing, as the detailed
event arrival curves are not known. Furthermore, the system-level results may even be
unsafe due to unsafe event arrival curves resulting from e.g., traces which do not capture the
worst-case behavior.

In this paper we present a compiler-based extraction of event arrival curves. Our goal is
to bridge the gap between abstract system-level analysis and low-level code analysis. This
is in particular very relevant for the analysis of multicore systems where there is a strong
correlation between the individual timing of tasks and their cross-core interference [21].
Memory accesses constitute one main example where compared to existing approaches, such
as [6, 24] that only consider a maximum total number of memory accesses for each program,
arrival curves give a more precise information about the distribution of data accesses during
the program execution. This allows to provide a more detailed and accurate analysis of the
timing behavior of the system and to ease the integration between the worst-case execution
and response time analysis steps. Yet, our proposed approach is not limited to memory
accesses as it takes abstract events as an input, enabling various actions to be defined as an
event (e.g., function calls).

Several existing work have investigated deriving access patterns by exploiting low-level
informations. Li et al. [16] presented a mode-controlled data-flow model of real-time memory
controllers. It is capable of deriving a tight worst-case bandwidth (WCBW) estimation for
shared SDRAM memories. For this analysis, it is required to describe the dynamic command
scheduling used by the memory controller and transaction sequence of the applications via
so-called mode sequences.

Jacobs et al. [11] presented an approach for extracting safe upper event arrival curves
at the code-level using compiler-based techniques. They proposed a modified version of the
implicit path enumeration technique (IPET) [17] to find the maximum number of events
potentially occurring in a given time interval on any path of the program. This approach is
used to model all potential sub-paths implicitly by formulating an integer linear program
(ILP). Yet, the presented approach lacks formalisms for critical aspects to ensure safeness
(i.e., the resulting arrival curve should not be underapproximated) and tightness (i.e., the
level of overapproximation due to the model should be minimal). The modification of the
IPET approach is required since the standard approach only covers complete paths through a
program. However, it is necessary to explore all possible sub-paths in a program starting and
ending at any arbitrary node when deriving an event arrival curve. We extend this approach
to also support lower event arrival curves and introduce a variable granularity during the
extraction to find a compromise between extraction time and overapproximation.
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Beside Jacobs et al. [11], only few existing work have considered IPET-based approaches
exploring sub-paths in a program. Altmeyer et al. [2] presented an approach where sub-paths
are defined by introducing additional preemption nodes. However, these sub-paths are
restricted to the preemption nodes and are forced to terminate there which reduces the
number of explored sub-paths. Kleinsorge et al. [14] presented an explicit path analysis
which is capable of evaluating arbitrary partial worst-case execution paths. However, due to
its nature all existing loops have to be unrolled during the analysis.

Contribution

We present a formal description of a compiler-based extraction of event arrival functions. It
builds on the primary approach of Jacobs et al. and extends it in several aspects, e.g., the

non-trivial extraction of lower arrival curves and increasing tightness of the arrival curves.

The extraction of lower arrival curves is introduced since system-level analyses, such as
Real-Time Calculus [23] or SymTA/S [10], partially rely on them as well. Tightness of the
event arrival curves is increased by differentiation of loop control types and consideration
of minimum loop bounds. For this, we introduce a complete formalized set of equations of
the model. As the essential benefit of a compiler-based extraction of event arrival functions
lies in its safe- and tightness, it is relevant to formulate the description well to ensure these
characteristics. Besides, we provide an algorithm in order to derive a bound on the number
of events for all possible time intervals of a program’s runtime. The algorithm considers
a complete coverage of all possible paths and therefore builds a safe upper bound on the
number of events. The execution time of the proposed algorithm depends on the structure of
the program but also on the granularity of the considered time intervals and the clustering
of events per basic block. Therefore, we relate the extraction time of the proposed algorithm
to the granularity and discuss the duality between the considered granularity level and the
precision of the derived arrival curves.

The remainder of the paper is structured as follows. In Section 2 we present the system
model and how the IPET approach is extended to extract the event arrival curves while
providing a full coverage of all execution paths in a program. Section 3 presents our proposed
algorithm for the extraction of the event arrival curves and its extension to consider different
granularities. Section 4 evaluates our algorithm and confirms our findings. Section 5 concludes
the paper.

2 System Model

2.1 Context and Prerequisites

Event arrival functions allow to model the dynamics of a real-time system, even for arbitrarily
triggered events. They are generally defined as follows,

» Definition 1 (Event Arrival Functions). Let n;"(At) and n; (At) denote for each task i the
maximum and minimum number of events issued within a time window of size At. Their
pseudo-inverse counterparts 67 (n) and §~(n), return the maximum /minimum time interval
between the first and the last event in any sequence of n event arrivals. The conversion
between 1 and 0 functions is straightforward and can be easily derived as explained in [5].

In order to extract event arrival curves using code-level analysis, we consider as input the
low-level representation of the program implementing a task annotated with loop bounds
and timings. The low-level representation of a program is close to its actual assembly
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representation, yet still represented by certain data structures to ease the handling. Loop
bounds are annotations which indicate the maximum or minimum number of possible
iterations of a loop and can be inserted by the user or automatically. Prior to the extraction
of the arrival curve, a worst-case execution time (WCET) analysis is performed considering
no interference from other cores or tasks. The WCET of a program is the worst possible
time it needs when it runs in isolation from its start until its termination. Subsequently, a
best-case execution time (BCET) analysis is also performed. We are not discussing these
analyses in further detail, since existing methods are used.

We denote events as actions triggered by an instruction or a sequence of instructions.
Most notably this can be a memory access to a shared memory region or an access to an
I/0 device. However, the model is not restricted to this, since it solely takes as input the
maximum and minimum of occurring events per basic block (BB).

2.2 Path Analysis and Event Arrival Functions

We base the extraction of the event arrival curves of a program on the control flow graph
(CFG) extracted from its low-level representation. In order to determine the maximum (resp.,
minimum) number of events in a specific time interval At, all possible paths in this CFG have
to be considered. Since the number of existing paths grows exponentially with the depth of
conditional statements and variable loop bounds, considering all existing paths individually
easily becomes infeasible. Jacobs et al. [11] proposed to exploit the so-called implicit path
enumeration technique (IPET) as presented by Li and Malik [17]. This technique is typically
used to locate the worst-case execution path (WCEP) of a program, over which its WCET
occurs.

Using the IPET, a set of integer linear programming (ILP) flow constraints is generated to
describe the CFG. All possible paths through the task’s CFG are then implicitly described by
the relation of its basic blocks in the constraints. By setting distinctive conditions, e.g., the
first and last basic blocks have to be executed exactly once while maximizing the accumulated
time, the WCEP can be found.

Yet, the classical IPET formulation can not be directly applied to the problem of finding
maximum number of events during a given time window. This originates from the fact that
we do not enforce one full path through the CFG, since we are only interested in sub-paths.
Such a sub-path does not need to start at an entrypoint, nor end at an exit block. This way
all possible sub-paths, which can be executed in a given time window, need to be considered.

Jacobs et al. introduced a modified IPET-based approach, in which all possible sub-paths
are considered. Therefore any basic block can act as a source, whereas any reachable block
can be a sink. This way any consecutive path, starting and ending at an arbitrary basic
block, can be chosen by the ILP solver in order to find the sub-path over which the maximum
number of events with respect to a given time interval are present.

In the sequel, we present the underlying basic model based on the previous work. A set
of linear inequations is set up to describe the CFG of a program. The objective function is
set to maximize the number of events on a to be chosen sub-path of the CFG, whereas the
timing of this sub-path is not allowed to exceed a user-given constant.

For the upcoming we use the following notational conventions. Lower case italic Latin
letters like a will be used for ILP variables. Upper case italic Latin letters like A represent
constants inside the ILP model. Table 1 contains all ILP variables used in the paper. Unless
otherwise stated, all ILP variables have a lower bound of 0. Lower case Latin letters as a
subscript represent an index. Table 2 contains further miscellaneous symbols used.
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Table 1 ILP decision variables.

Symbol

Description

al (a;)

(3

+ —
ATotal (a’Total)

bs

Maximum (minimum) number of events contributed by basic block i on the
sub-path
Maximum (minimum) number of events occurring along the sub-path

Reduction factor for basic block ¢ if it is used as a starting and/or ending
block

Basic block 7 is used as an end of the sub-path

Binary variable indicating if the chosen path covers a complete path through
the program

Number of flows at the loop entrance of loop ¢

Number of flows exiting the loop ¢

Maximum number of flows through the back edge of tail-controlled loop ¢
Maximum number of flows into the body of head-controlled loop ¢

Binary variable indicating the if the start of the sub-path was placed inside
the loop ¢

Total number of flows from basic block i to j

Binary variable indicating if a timing reduction is applied at the starting
(ending) block

Edge from basic block i to j is used as a starting edge

Any incoming edge at basic block j is used as starting edge

Total number of cycles contributed by basic block ¢ on the sub-path when
generating an upper (lower) arrival function

Table 2 Miscellaneous symbols.

Symbol Description

AT (4A)) Maximum (minimum) number of events of basic block &
B A set containing all basic blocks of the program

B;® (Bf°™) | The upper (lower) loop bound of loop £

Ct (C7) | WCET (BCET) of basic block i
C. A set containing all calling edges to the function z
& A set containing all entry basic blocks of loop £

& (&) A set containing all regular (irregular) entry basic blocks of loop ¢

A set containing all functions of the program

L A set containing all loops of the program

Lr (Lw) A set containing all tail-controlled (head-controlled) loops
M, A set containing all basic blocks belonging to loop ¢
Ne A set containing all back edges of loop ¢
Pi A set containing all direct predecessors of basic block i
R A set containing all possible return edges of the function z

Rz, 6.5 A set containing all possible return edges of the function z when called using

edge (i, )

S; A set containing all direct successors of basic block &
Ty Equals 1 if loop ¢ is tail-controlled, otherwise 0
Xe A set containing all exit basic blocks of loop ¢

ECRTS 2018
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As mentioned previously, a WCET (resp., BCET) analysis is first executed where all
accesses to a shared memory are assumed with a minimal (resp., maximum) latency. Addi-
tionally, variable timings (which may be influenced by the event-type under focus or caches)
have to be considered carefully, such that they do not thwart a safe WCET (resp., BCET)
estimation. Note that, the system is evaluated in isolation, without considering interference
from other cores. We consider the timing of a basic block in terms of cycles. Therefore
integer variables are suitable to represent the timing of a basic block. Subsequently, the CFG
is synthetically modified, such that every basic block has a successor and predecessor. These
additional blocks are not inserted into the actual program code and are only present in our
analysis. A virtual source © is created for the entrypoint and inserted as a predecessor to
the first basic block. In the same fashion, virtual sinks | are created for all possible exits
and inserted as a successor to the last basic blocks. Therefore, for every basic block i in the
CFG, a flow constraint is generated as follows,

Y opii—ei= Y (Pik—sik) (1)

JEP;: keS;

The integer variable p; j, describes the number of times the control flow (subsequently
simply called flow) enters basic block k from basic block i. Each input flow of a basic block
represents one execution of the basic block. The variable e; is bound to a binary value and
is set to 1 when the basic block ¢ is used as the last basic block in the chosen sub-path. It
represents a "movable" sink. In a similar manner, the variable s; j is bound to a binary value
and is set to 1 when the basic block k is the first basic block in the chosen sub-path. In
particular, the edge from basic block ¢ to basic block & is used as the initial flow. The set P;
contains all directly preceding basic blocks of i. Similarly, the set S; contains all directly
succeeding basic blocks of ¢. This way, Equation (1) functions as a node law, assuring that
the amount of flow into a node is equal to the amount of flow leaving it. Additionally, one
initial flow can be inserted into a basic block without violating the constraint. In the same
fashion, a path can end at a particular node if the corresponding e variable is set to 1.

The flows originating from (resp., directed to) the virtual sources (resp., sinks) are defined
as follows,

Pe.i = Se.i (2)
pi,L =0 (3)
Since only one consecutive path is allowed, the sum over all starting (ending) points is limited

to be smaller or equal to one. Additionally, if a starting point is existing, there has to be an
ending point as well:

YD si=) @<l (4)
i€EB jEP; 1€B

where, B is the set holding all basic blocks of the current task.
The ILP variable s; is set to 1 if any of the ingoing edges of basic block i is used as an
initial flow. It is defined as follows:

S; = \/ Sjﬂ' (5)
JEP;

Logical operators like V or A can be easily described inside the ILP formulation as shown by,
e.g., Johannes [12].
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We assume that all instructions which may cause an event are known. It is possible to
perform a value analysis for this purpose, although potential over- or underapproximations
due to unknown values should be handled carefully. Architectures featuring out-of-order
execution need a particularly careful micro-architectural analysis, as instruction order may
change during the execution. We will not discuss these issues in detail since they exceed the
scope of this paper. We define the maximum number of events per basic block i as A;r. This
is used to calculate the amount of events happening on the chosen sub-path.

af =AY p (6)
JEP;:

a%otal = Z a;L (7)

i€B

The ILP variable aj' represents the maximum accumulated number of events of basic block
over all its executions which are part of the chosen sub-path. ajr'otal defines the maximum
number of events existing on the chosen sub-path.

Besides the control flow and the events, also the timing has to be considered. We define

 as the number of cycles which basic block i contributes on the chosen sub-path.

w;

wi={C7 > pii| —(C; —1)-b; (8)
JEP;

C; is the BCET of the basic block ¢. The BCET is chosen instead of WCET here, since we

are interested in the maximum amount of events in a given time interval. Hence, using the

WCET would be too optimistic, as the accumulated time over the sub-path may require less

time. The ILP variable b; is bound to an integer value between [0,2] and is defined as follows:

0 ifsi:ei:O,

bi=+<2 ifSi/\(ii/\(z:pj,i>1>7 (9)

JEP:
1 else.

The variable b; functions as a reduction factor to the timing contribution of basic block
1. As it is not considered at which particular location inside the basic block its events are
triggered, the first and last basic block of the sub-path need to be handled with special care
in order to be safe: Since a sub-path through the program can in fact start (or end) at a
specific instruction inside the basic block, assuming its full BCET for this case would be
too pessimistic. For this particular case we assume that all events at this bounding block
happen at the very last (or first if the ending block) cycle of the basic block. In case the
chosen sub-path does neither start nor end at basic block ¢, the accumulated timing w;r is not
reduced, as the reduction factor b; is set to 0. If basic block i is chosen as the start and end
of the sub-path (and it does not solely consist of the basic block ), the reduction factor b; is
set to 2. Thereby the timing contribution of basic block 7 is reduced by 2 - (C;” — 1). Finally,
if the basic block 7 is chosen as the start or end block (or the sub-path only consists of BB i),
the reduction factor is set to 1 as a safe overapproximation. We show in Section 3 a simplistic
approach to increase the granularity to a single-event level with a minor preparation of the
control flow graph to reduce the introduced pessimism.

4:7
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(a) Tail-controlled. (b) Head-controlled. (c) Head-controlled (irr.).

Figure 1 Sample loop structures.

Finally, the sum of all timing contributions is limited to be smaller or equal to the chosen
time interval At, while maximizing the number of events.

A=Y wf (10)
ieB

max : a¥0ta1 (11)

2.3 Handling Loops and Function Calls

So far, the model does not limit loop iterations. It is assumed that all loops are annotated
with loop bounds. The deriving of loop bounds or control type (head- or tail-controlled) is
beyond the scope of this paper and well researched [22, 25]. The previous work by Jacobs
et al. [11] covers the handling of loops only very briefly. It is stated that the original IPET
formulation has to be extended for the case that a path is starting inside a loop, where the
loop’s back edge may be taken an additional loop bound-times. Yet, no formal description is
given. In the sequel, we introduce a tight and accurate description of handling loops. Besides,
we introduce how function calls can be handled which the previous work [11] lacks of.

We differentiate between head- and tail-controlled loops. For tail-controlled loops we
limit the number of back edges taken:

VleLy: Z Dij < n% (12)
(4,5)EN,
L7 defines the set of all tail-controlled loops. The set Ny contains all back edges of the loop
£. A back edge of a loop originates from the loop tail to its head. In the exemplary loop
in Figure la this is the edge from basic block D to B. The ILP variable n{ denotes the
maximum flow through all back edges of the loop /.

g =B -1 (Y. DY piito (13)

1€& jE(Pi\My)

ng is defined as the upper loop bound of loop £. The upper loop bound of a loop defines
the maximum number of loop body iterations. The set £ contains all basic blocks, which
are entrances of loop ¢, while M, contains all members of this loop (including nested loop
members). We define an entrance block of a loop as a basic block which belongs to the loop
and has a predecessor which is not part of the loop. In the exemplary loop in Figure 1la basic
block B is the entrance block. This implies that p;; in Equation (13) covers all edges which
are entering the loop from outside, which would be the edge p4 g in the sample loop.

The binary ILP variable oy is forced to 1 in case any of the basic blocks inside the loop is
chosen as a starting point and is defined as follows:

0=, > s (14)

€My jE(PiNMy)
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Thereby, Equation (13) permits the loop body to be executed ng times for every time the
loop is entered. Furthermore, if the starting point is chosen inside the loop, the loop body
can be executed ng times additionally. This is required, as the starting block can also be
chosen inside a loop.

The constraints handling head-controlled loops are very similar, yet with a few modifica-
tions in order to tighten the resulting number of events. In contrast to the tail-controlled
loops, for head-controlled loops we limit the number of times the loop is actually entered.
Otherwise, one additional loop execution more than feasible by the CFG would be permitted.

Ezample: Assume the head-controlled loop in Figure 1b has an upper loop bound of
1. If the starting point is chosen at, e.g., basic block B, the number of executed back
edges would be restricted to 1, since there is no flow entering the loop. Yet, without
violating the constraints, the loop body could be executed twice according to the model
(sequence {B,C, D, B,C, D}), since the back edge is only executed once. Especially in case
of nested loops, an overapproximation of a single loop iteration can lead to a significant
overapproximation of total number of events. We therefore introduce the following equations,
which limit the number of times a head-controlled loop is entered.

Vle Ly Z Z pi; <nil (15)

1€E) FE(SiNMy)

The set Ly contains all head-controlled loops, while the set £ contains the regular entrance
block of the loop ¢ (|€;| = 1). The exemplary loop in Figure 1b only has a regular entry,
while the exemplary loop in Figure 1c has two entries: One regular entry (B), and one
irregular entry (C) (irregular entries arise due to, e.g., goto-statements into loops at the
source code level). Equation (15) restricts the number of times the loop body is entered
via its regular entry to a maximum of nf . Regarding the exemplary loop in Figure 1c this
represents the edge from B to C. This limit is defined as follows:

nf =B;P. Z Z pjit+oe | —or— Z Z Dy (16)

i€E JE(PI\My) i€€l JE(P\M.)

Similar to tail-controlled loops, Equation (16) permits the loop body to be executed BEP
times for every flow entering the loop. In case the starting point is chosen inside the loop
(0¢=1), the loop body can be entered an additional (ng—l) times. The deduction of 1 stems
from the fact that if the starting point is chosen inside the loop, the loop is already entered
once. The right-hand subtractive term is required for irregular loops. If the loop is entered
via an irregular entry, the first loop iteration clearly does not include one entry from the
regular entry into the loop body. As we limit the loop iterations via the number of times
the loop body is entered via its regular entry, the upper limit nf has to be lowered for each
time the loop is entered via an irregular entry.

In order to tighten the results, the ILP model also considers the minimum loop iterations.

VieLl:g = Z Z Dj,i (17)

i€ jE(Pi\My)

he = Z Z Dij (18)

i€Xy je(Si\ M)

> pij =min(ge, he) - (B — Ty) (19)
(ivj)ENZ

4:9
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Figure 2 Exemplary CFG.

The set £ contains all loops, whereas set X, contains all exit blocks of the loop ¢. Equa-
tions (17) and (18) are solely present for a better readability. Equation (17) defines the
number of flows arriving at the loop head, while (18) defines the flows exiting the loop.
Equation (19) sets a minimum number of loop iterations for each time the loop is entered
and exited. B%OW is the lower loop bound of loop ¢, whereas Ty equals 1 if ¢ is tail-controlled
and 0 otherwise. The min()-Function in Equation (19) is described in the ILP as shown by
Oehlert et al. [19].

Beside loops, our model is also capable of modeling function calls. It is sensitive to call
edges and their corresponding return edges, i.e., for each calling edge, all valid return edges
are evaluated. Calling contexts are currently not supported. To ensure tightness, we restrict
the difference between ingoing and outgoing flows of functions. Since the start or end block
may be chosen inside a called function, the in- and outgoing flows of a function may differ.

Vy e F:V(i,j) €Cy:pij > min Z DPrns Z Doy | — Sy (20)
(m,n)eR%(,;yj) (a:,y)ecv

Z Pm.n > min Di,js Z Pz,y | — €y (21)

(m,n)ER, (i.5) (z,y)ERy

The set F consists of all functions inside the program, while C,, contains all calling edges to the
function . The set R, contains all possible return edges from the function ~. Furthermore,
the set R (;, ;) contains all possible return edges from the function v when called via the edge
(4,7) (Ry,ii,5) € Ry). 54 is set to 1 if any basic block of function ~ or a basic block contained
by a function called by + is used a starting block. e, is the corresponding counterpart for
the ending points. Equation (20) sets up one constraint for every call inside the program.
It sets a lower bound for the number of times the calling edge (i, j) is executed. Therefore,
the minimum of flows entering the function v and exiting via a return-edge belonging to the
caller-edge (4, j) is determined. Equation (21) then sets a lower bound on the number of times
a corresponding return-edge is executed. More generally speaking, the equations enforce
that only call- and return-edges which belong together are allowed to be used. Example:
Figure 2 depicts an exemplary CFG with 2 calls. The set of constraints modeling the function
Fun contains two incoming edges, one from basic block A and one from B, as well as two
corresponding exiting edges. Obviously, only the CFG-feasible paths A — Fun — B and
B — Fun — C should be allowed, yet paths like A — Fun — C not. The original IPET
formulation can easily ensure this by forcing a calling edge’s number of executions to be
equal to the executions of its feasible return edges. As in our case sub-paths may also start
(end) in a called function, the number of calls and returns may differ. Therefore the lower
bound of a call-edge (return-edge) is decreased by one in case the starting (ending) point
is chosen inside the called function. As recursive functions may be exited (called) multiple
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times without being called (exited), this difference can also be greater than 1 (e.g., the
sub-path is chosen to start in the deepest recursion level). Therefore the min()-function is
used, such that minimum of overall executed calling edges and dedicated returns is evaluated
in Equation (20), whereas Equation (21) handles the return-edges likewise.

This differentiation is done on one hand to ensure tightness (dedicated caller-return pairs)
and on the other to enable starting and ending points to be chosen inside called functions.

2.4 Lower Bound on the Event Arrival Function

The previous approach by Jacobs et al. only focused on the extraction of an upper event
arrival curve. In this section we present how lower event arrival curves can be extracted.

A lower bound on the event arrival function n; (At) can be similarly derived using the
introduced ILP model, yet with several modifications and additions. Since we want to
determine the minimum amount of events in a given time window, we use the WCET of
a basic block instead of the BCET used for the upper bound. Therefore Equation (8) is
replaced with the following one:

w; = C;_ Z Dii | —bi- ((si Ars) V(ei ATe)) (22)
JEP;:

Instead of the BCET C; of a basic block i, its WCET C; is used. In order to derive a

safe lower event arrival curve, C;r has to include all potential interferences, stalls or similar.

If C’j is depending on the event-type under focus, it is possible to derive an upper event
arrival curve up-front and use system analysis tools [5, 23] to determine a safe WCET. In
case the basic block 7 is used as a starting and/or ending block and the corresponding binary
variable r is set to 1, the block’s timing is reduced by b; (c.f. Equation (9)). This again is
done as a safe overapproximation, since we are not considering at which particular locations
the event triggering instructions are located in a basic block. Although the multiplication
term does not appear to be linear, it can be expressed using a simple case-structure since
((si Ars) V (e; Are)) is restricted to Boolean values. In a similar manner Equation (6) is
replaced:

a; = | A7) pii | =i ((siAre) V(e Are)) - Af (23)
JEP:

A; represents the minimum number of events in basic block . The first term remains the
same while a second subtractive term is introduced. Similar to Equation (22), in case basic
block i is the start and/or end block of the path, its number of events can be reduced by
b; - A7 . The modifications of (23) is done since we do not account for the location of events

inside the basic blocks, similarly as in Equation (22). By this overapproximation we assume,

that all events happen at the very first cycle (very last cycle) of a starting (ending) node.

Therefore, if ry (or respectively r. for an end block) is set to 1, a basic block’s timing is
reduced and b; - A; events are subtracted. The variables r, and r. are used in order to apply
a safe overapproximation for the first and last basic block of a sub-path, yet still cover all
occurring events when a full path through the program is found.
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We insert additional constraints to detect the case that a complete path through the
program (starting at the entrypoint and ending at a sink) is chosen.

Sg = S@J‘ (24)

e| = \/ €; (25)
i€T

f=soNheL (26)

In Equation (24) the basic block j is the entry basic block of the program (c.f. block A in
Figure 4). The set 7 contains all possible exiting basic blocks. Therefore f is set to 1 in case
the chosen path starts at the entrypoint and ends at an exiting block, resulting in a complete
path through the program.

Finally, Equations (10) and (11) are replaced by the following two:

At < (Zw;> +(fA(sVTe)) - M (27)

i€B

min : agg (28)

Most notably the direction of the comparison operator in Equation (27) is flipped and the
objective is changed to minimize. Again, At is given as a constant, representing the time
interval for which the minimum number of events should be determined. Therefore the solver
is forced to find a (sub-)path in the CFG which takes at least At cycles and the minimum
amount of events. M is a sufficiently large constant. A trivial sufficient value is the WCET
of the analyzed program.

In case a complete program path is covered and no reductions in terms of cycles and
events are applied, Equation (27) is always satisfied. Therefore the arrival function converges
at a complete path with the minimum number of total events.

3 Event Arrival Extraction Over All Existing Paths

In the following, we present how event arrival curves can be obtained with an adjustable
level of precision while still resulting in a safe overapproximation. This subject is not part of
the scope of the previous work [11].

3.1 Extraction Algorithms

As described previously, in order to derive an upper (resp., lower) bound on the event arrival
curves by a given task, we need to explore different time intervals and extract for each
duration the maximum (resp., minimum) number of events during this interval. For this,
the IPET approach is customized to consider all sub-paths of duration At and maximing
(resp., minimizing) the number of events. This procedure has to be repeated multiple times
to cover all possible values of At. In the following we present two algorithms to explore the
space of all possible values of time intervals.

Algorithm 1 is used to generate an arrival curve with an adjustable level of time granularity
I . Here the value of At is bound to increasing values with a fixed increment I while solving
the ILP for every value of At. The WCET of the program is used as an upper bound, since
by definition no path can result in a higher timing than the WCEP. Note that, the smaller
the value of I, the more fine-grained the generated arrival curve is. This comes with a linear
increase in the number of ILP variants to be solved, one for every possible new value of At.
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Algorithm 1 Fixed granularity extraction.

Input: I - Time granularity
Output: m - Map with the max. number of arrivals with At as a key
1: Map m
2: for (At=0; At < WCET; At += 1) do
3 m[ At ] = solveILP(At)
4: end for

Algorithm 2 Binary search.

Input: -
Output: m - Map with the max. number of arrivals with At as a key
1: Map m, List w // w contains all windows to be analyzed
2: w.push({ 0, WCET } )
3: while !(w.empty()) do
4:  Pair curWindow = w.pop()

5. if I(m[curWindow.lower] exists) then
6: At = curWindow.lower

7: m[curWindow.lower] = solvelLP(At)
8  end if

9:  if I(m[curWindow.upper| exists) then
10: At = curWindow.upper

11: m[curWindow.upper] = solvelLP(At)
12:  end if

13: if  mlcurWindow.lower] # m[curWindow.upper] and (curWindow.upper -
curWindow.lower ) > 1 then

14: x = | (curWindow.lower 4+ curWindow.upper) /2]
15: w.push({curWindow.lower, z})

16: w.push({z, curWindow.upper})

17 end if

18: end while

It is noteworthy that this approach still results in a safe (overapproximated) arrival curve
where a coarse-grain arrival curve always dominates a fine-grain arrival curve. A further
discussion will be presented in the evaluation Section 4.

While this approach is reasonable for a limited amount of sample points over the arrival
curve, it is not applicable for generating an arrival curve covering all potential intervals
(i.e I = 1). For this circumstance, we present in Algorithm 2 another procedure based
on a binary search. We exploit two facts regarding the event arrival curves: i) they are
monotonically increasing, ii) they are piecewise step functions (i.e., we will not necessarily
have for instance a memory access at every cycle of execution). Therefore, for a given interval
of At, we first examine the maximum number of events at the outer boundaries of the
interval. If this number is equal at the boundaries, then no new event has occurred during
this interval and thereby no further analysis is required inside the current time interval, since
all intermediate values will result in the same maximum (resp., minimum) number of events
at the interval boundaries. Otherwise, the interval (initially set to [0,WCET]) is split in half
and the procedure is further repeated until all intervals in the curve are covered. Note that,
both algorithms can be used to generate either an upper event arrival curve or a lower event
arrival curve.
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mov r0, r5

mov r5, ril
mov r0, r5 ldr r8, [ r5 ]
ldr r8, [ r5] add r8, r2
b]-.‘ sin b1 sin

(a) (b)

Figure 3 A sample basic block before and after splitting.

3.2 Refining the Basic Block Granularity

The number of events is analyzed on a basic block level. In case a basic block i has A; events,
this number is accounted for the whole block, leading to another overapproximation since we
do not consider where these events are located during the execution of the basic block. In
order to refine the level of granularity we partially re-structure the basic blocks which contain
potential event triggering instructions. These basic blocks are transformed into multiple
"sub basic blocks" as shown in [19]. Therefore, all basic blocks containing instructions which
potentially trigger an event are split up into so-called sub basic blocks to isolate the event.
Such sub basic blocks solely consist of the event’s single instruction.

Consider the example depicted in Figure 3. After refining the granularity the basic block
is split up into 3 sub basic blocks, where the second sub basic block only consists of the
potentially data accessing instruction. This is shown in Figure 3b. This technique can be
applied prior to the ILP generation. Besides, the ILP model with the refined sub basic blocks
can be set up using the same constraints as presented.

Therefore, combining this refining technique and the presented extraction algorithms, the
granularity can be adjusted at two levels: 1) Calculating a fixed number of sample points
versus a complete curve coverage. 2) Considering a clustered number of events per basic
block versus isolating each event in a separate sub basic block.

4 Evaluation

All experiments are performed on an Intel Xeon Server (20 cores at 2.3 GHz, 94 GB RAM)
and the ILPs were solved using Gurobi 7.5.0. For evaluation purposes the MRTC benchmark
suite [9] with annotated loop bounds from the TACLeBench project [7] are used. All
benchmarks are compiled with the WCET-aware C compiler (WCC) [8] and the -02 flag
activated which enables several ACET-oriented optimizations. As an exemplary evaluation
platform the ARM7TDMI architecture (without caches) is chosen. Timing analyses are
performed using methods described by Kelter [13]. The benchmark duff is excluded from
the evaluation, as it is not supported by the currently used timing analysis tool.

For all our experiments, we focus on extracting event-arrival functions for data accesses.
We therefore assume each access of a data object to generate an event.

4.1 An lllustrative Example

In the following, we illustrate the approach considering the control flow graph example
depicted in Figure 4. We show how to derive the arrival curve n(At) representing an upper
bound on the number of data accesses. For this, each basic block ¢ is annotated with its
execution time C; (for this particular example we assume that the BCET of a basic block
is equal to its WCET) and its number of events A;. Note that we do not consider any
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2x...4x

Figure 4 Sample control flow graph.

distribution of events inside a basic block. The considered example contains a tail-controlled
loop with a minimum and maximum number of executed back edges of 2 and 4 and therefore
loop bounds of [3,5].

We first derive the ILP model of the given CFG example. A virtual source is inserted as
a predecessor of the task’s entrypoint basic block A and a virtual sink as a successor to its

exiting basic block E. We start by setting up the node equation for the basic block A (cf.

Equations (1) - (3)).
So,A — €A =DPA,B — SA,B+DPAC — SAC (29)

We continue with the rest of the basic blocks of our main function.

PA,B —€B = PB,E — SB,E (30)
pa,c +DPp,c —€c =DcC,F — SC,F (31)
P1,p —€p =Pp,E — SD,E +PD,c — SD,C (32)
pBE+PpE—€g =0 (33)

As all node constraints for the main functions are set up, additional node constraints for the
function fun are inserted in the same fashion.

pc,F —efr =Pr,G — SF,G + PF,H — SF,.H (34)
DF,G — €G = PG,I — 5G,I (35)
Pr.H —€H = PH,I — SH,I (36)
PGa,1 +PH,I — € =PI1,D — SI,D (37)

After all basic node constraints have been inserted, additional constraints concerning the
loop are also inserted (cf. Equations (12)-(14)).

pp.c <niy (38)
ni, =4-(pac +or1) (39)
or1 = Sp,c t+Sc,Fr +Srg+ SrHE+Sa, 1+ SH,1+ SI,D (40)

As shown in Figure 4, the loop is tail-controlled. Therefore Equation (38) limits the
number of back edges executed to a maximum of nZ,. In case a chosen path starts inside
the loop body or; is set to 1. Since the loop is not nested, p4,c can be at most 1, which
bounds the number of back edges executed to be at most 4 in any case. In case the loop
would be nested, for each flow entering the loop an additional 4 flows through the back edge
would be permitted.
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In order to tighten the number of possible events, we also consider the minimum number
of loop iterations (cf. Equations (17)-(19)).

Pp,c = min(pa,c,pp,e) -2 (41)

Equation (41) sets a minimum number of loop iterations in case the chosen path enters and
exits the loop.

Furthermore, we restrict the number of in- and outgoing flows of the function Fun (cf.
Equations (20),(21)):

pe,r > min (pr.p, Po,F) — SFun (42)
pr,p = min (pe,F, P1,0) — Erun (43)

Anyhow, since Fun is only called by one location and not recursive, Equations (42) and (43)
can be omitted in this case.
Subsequently the constraints concerning the events are inserted (cf. Equations (6), (7)).

CL; =8- S5,A (44)
a; =10 ~pAyB (45)
af =0 (46)
fora = @) +af + . +af (47)

As the timing contribution of a basic block is dependent on the subtracting factor b; (cf.
Equation (9)), the corresponding constraints are inserted:

0 ifspg=esq=0,
ba=1+<2 ifSA/\eA/\(p@’A>1), (48)

1 else.

Finally, the timing constraints are added (cf. Equations (8)-(10)).

wi =88-55.,4—87-ba (49)
wi =32 (pe,; +pr,r) — 31 by (50)
At > wi +wh + ...+ wf (51)

With At being a constant, representing the length of the current interval.

The resulting lower and upper arrival function are depicted in Figure 5 where the
granularity of At for the algorithm of extraction was set to 1 cycle. In the following, we
detail the results of the arrival curve ™ (At). The very first step appears at At=1 to 10
events (basic block B). The subsequent second step to 18 events occurs at At=2, happening
on the path from basic block A to B. At At=85 a step to 19 events occurs which happens
on the path {A, B, E}. The next step to 20 events is at At=298. This is occurring on the
path {A,C,F,H,1I,D,C, F, H}. The next step up to 22 events happens at At=415, where
the previous path is extended to include basic blocks I and D (forming two complete loop
iterations). At A¢t=520 the maximum number of events increases to 27, including additional
executions of basic blocks C', F and H. Note that there is no intermediate step to 23 events
via the loop exiting path {D, E} due to the lower loop bound of 3. From this point on the
arrival curve follows a repetitive pattern. The arrival curve converges at At=1112 with 44
events, which covers the whole right side of the CFG from Figure 4 with the maximum
amount of loop iterations.
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Figure 5 Extracted event arrival curves for CFG in Figure 4.
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Figure 6 Extracted event arrival curves for benchmarks (refined BBs, binary search).

4.2 Benchmarks Evaluation

In the following, we present the event arrival curves of 4 selected benchmarks from the MRTC
benchmark suite [9]. The benchmarks are chosen in order to investigate different program

behaviors. Note that, an exhaustive evaluation of the benchmark suite follows in Section 4.3.

All event arrival curves were extracted using Algorithm 2, while refining the event granularity
to a single access. Additionally, an upper event arrival function n; (At) is generated using the
same parameters, yet neglecting the loop differentiation and minimum iteration constraints
introduced in Section 2.3. The sole purpose of this is to show the increased tightness due to
these additional constraints in comparison to the previous work. In case of the benchmark
qurt, 77 (At) is identical to n* (At).

Figures 6a and 6b show n*(At) and ~ (At) for the benchmarks compressdata and qurt.

For both benchmarks the upper curve differs from the lower curve. This is caused by variable
loop bounds, conditional statements and multiple program exits. E.g., the benchmark qurt
can terminate with solely 12 data accesses in total or with up to 48.

Figures 6¢ and 6d depict the lower and upper arrival curve functions for the benchmarks
sqrt and binarysearch. For both programs n*™(At) and ™ (At) converge to a common
value. This results from the fact that each possible path through the program covers an
identical total number of data accesses. However it is noteworthy that the minimum and
maximum arrival of events per interval of time differs.

4.3 Granularity Evaluation

The execution time of the algorithm used for extracting the arrival curves depends on the
granularity considered. Figure 7 depicts the upper event arrival functions for the benchmark
compressdata considering different granularities. The finest possible granularity (i.e., At =1
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Figure 7 Event arrival curves with a different granularity and therefore number of samples.

4 [ I T ]
107 ¢ + 3
F t —_ :
[ * L i
3 1 + T .
107 ¢ == * s ]
E + S
E - -+ - 1 r 1
SO =+ —
ERRUg = ~ b
& 5 —— 1 w &
= i T ! i s
[ | ‘ . B
10" l ! l | -
= T 1 — — | —— 3
r T I 1 .
[ i
100 | | | | | |
100 Samples 100 Samples 500 Samples 500 Samples 1000 Samples 1000 Samples Exact
(N. Refined) (Refined) (N. Refined) (Refined) (N. Refined) (Refined) (Refined)

Figure 8 Overall runtimes of the extraction algorithms with different granularities.

cycle) is leading to a total number of 696 sample points (using the presented Algorithm 2).
A more coarse granularity using only a total of 50 sample points is depicted as well. Note
that the arrival curve with a coarse granularity always dominates the arrival curve with a
finer granularity therefore leading to a safe approximation of the arrival curve. Even though
we reduce the number of sample points, we still receive an arrival curve very close to the
possible finest granularity but with the benefit of a smaller execution time. This obviously
depends on the structure of the program under analysis.

Figure 8 depicts the overall execution times of the extraction, separated by the applied
granularity. It is differentiated between the total number of sample points and considering
the utilization of the proposed basic block refinement in Section 3.2. The right-hand side
boxplot shows the execution time when using the binary search approach (Algorithm 2, 5h
timeout). The central mark of each box denotes the median, while the edges depict the 25th
and 75th percentiles. The maximum whisker length is defined as 1.5 times the difference
between the 75th and 25th percentile. Note that a higher number of sample points leads
to a finer granularity and therefore more precision of the results. The refined BB approach
also leads to more precise results as it isolates the instructions potentially accessing data,
compared to the non-refined BB approach where a basic block may contain multiple data
accesses. However, the refinement leads to a more complex ILP model and therefore longer
execution times.

Therefore, we can clearly see that the execution time increases as we increase the number
of sample points. As expected, the execution time increases as well with the utilization of the
BB refinement. While the median of the extraction runtime without a basic block refinement
and just 100 samples is about 9 seconds, it increases to 189 seconds with 1000 samples and
refinement applied. The median of the binary search approach runtime is 673 seconds. Out
of the 34 benchmarks evaluated, 10 benchmarks were canceled due to the 5h timeout when
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Figure 9 The metric used to evaluate the overapproximation is based on the area between the
extracted curve and a corresponding pessimistic curve.

performing Algorithm 2. Therefore, there is clearly a trade-off to find between precision and
execution time. In the following, we present a metric to measure the precision loss resulting
from a coarser granularity approach.

4.4 Measuring the Overapproximation

In order to evaluate the level of overapproximation, we introduce the metric dappe.  The
metric dappr is defined as the area between the extracted curve and a corresponding simplistic
pessimistic curve, normalized on the area below the pessimistic curve. The pessimistic curve
only takes into account the maximum number of events over a complete program path and
the minimum time between two events (given, e.g., by memory latencies). Therefore, dappr is
defined as follows:

_ APess - AExtr (52)

dappr AP
ess

Whereas Apegs is the area below the pessimistic curve and Agyi, is the area below the
extracted curve. Figure 9 depicts the parameters used. The upper curve represents the
pessimistic curve, solely generated using the maximum overall number of events and minimum
time between events. The lower curve represents a curve extracted using the presented ILP
model. The area difference (marked in yellow) is calculated and then normalized on the total
area below the pessimistic curve. Thereby, dapp: reflects a magnitude to which extend the
extracted curve is tighter in comparison to the pessimistic approach. When comparing the
metric dyppy Of curves extracted using different parameters of granularity (e.g., basic block
refinement), the level of introduced overapproximation can be evaluated. A higher value of
dappr denotes a tighter curve, hence most likely leading to a tighter system-level analysis.

Figure 10 shows dappr for the extracted upper arrival curves using 100, 500 and 1000
sample points. Accesses are considered separately considering a refined BB approach or
bundled as initially structured by the program. It also depicts dapp, for upper arrival curves
using the binary search approach (cf. Algorithm (2)) with basic block refinement applied. In
cases the binary search algorithm was canceled due to the 5h timeout, the bar is not depicted
in the diagram. The pessimistic reference curve for each benchmark was generated by using
the maximum overall number of events and the minimum number of cycles between two
events, given by the memory latencies. The benchmarks are listed on the x-axis. Benchmarks
janne_complex, expint, fac, fibcall, prime, recursion and cover were evaluated but
are not shown in the diagram, since no potential data accesses were detected (no data was
allocated to the .data section).

As expected, dappr is always greater or equal for a fixed number of samples when
considering separated requests in comparison to bundled requests. The highest relative
difference comparing separated and bundled accesses at a fixed number of sample points
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Figure 10 Metric dappr for benchmarks of the MRTC benchmark suite [9].

occurs, amongst others, at the fdct benchmark. Using 1000 sample points and considering
all requests separated, dappr is at 25.7%, whereas considering accesses bundled per BB (same
number of samples) results a dappe value of only 18.7%. However, there are also several
benchmarks for which the consideration of separated requests does not result in a lower value
of dappr- The benchmark bsort100 represents such an example. Though d,ppr increases with
the number of samples, it is irrelevant whether requests are split into single blocks or not.

An exception can be seen for the benchmarks adpcm_decoder and adpcm_encoder when
extracted with only 100 samples (BB refinement irrelevant), as they yield a value of dappr of
-1%. This is due to the low number of sample points in regard to the benchmarks’ size and
event arrival curves’ steepness. Besides, for no other benchmark and granularity configuration
a negative value of d.pp: was observed. Overall it can be observed that dappy is increasing
with a higher number of samples as it is expected.

Bringing together the results regarding the required runtime from Figure 8 and the
quality of the approximated curves, we can conclude that approximating the event arrival
curve offers a good trade-off between extraction time and quality. If we take the benchmark
crc as an example, the required extraction time for 500 samples and without basic block
refinement drops by 98% in comparison to the extraction using the binary search algorithm
in combination with refinement. Yet, dappy only drops by 0.2%.

5 Conclusion and Future Work

In this paper we presented an approach to extract safe and tight event arrival functions
from code-level analysis. The extracted event arrival functions can be generated with an
adjustable level of granularity in order to reduce the execution time of the proposed extraction
algorithm. Despite the induced overapproximation by the choice of the granularity, the
presented approach results safe upper bounds of the actual event arrival curve. Furthermore,
it has been shown that for some benchmarks a very good trade-off can be achieved in order
to extract rapidly event arrival functions with a very good quality precision.

As a part of future work, we plan to integrate calling contexts into the model. This could
further improve the tightness. Besides, we plan to exploit the detailed event arrival function
knowledge for optimizations, hence improving a system’s worst-case timing using the gained
informations.
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