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Abstract
The major goal of these notes is an elaborate presentation of a prob-

abilistic framework. This framework allows a formulation of classical
probability theory, thermodynamics, and quantum probability with a
common set of four principles or axioms. In particular, it provides a
general prognostic algorithm for computing probabilities about future
events. Our principles distinguish strictly between possibilities and out-
comes. A well-defined possibility space and a sample space of outcomes
resolves well-known paradoxes, and make quantum interpretations like
”many worlds“ or ”many minds“ superfluous. In addition, the superpo-
sition principle and the entanglement of systems obtain a new meaning
from our point of view.

This framework offers an axiomatic approach to probability in the
sense of Hilbert. He asked for treating probability axiomatically in his
sixth of the twenty-three open problems presented to the International
Congress of Mathematicians in Paris in 1900. We have applied our
framework to various problems, including classical problems, statistical
mechanics and thermodynamics, diffraction at multiple slits, light reflec-
tion, interferometer, delayed-choice experiments, and Hardy’s Paradox.

Particular emphasis is also placed on C.F. von Weizsäcker’s work,
who developed his ur theory as early as the 1950s. Today, leading
researchers continue his work under the name ”Simons Collaboration
on Quantum Fields, Gravity, and Information“.

1 Preface

Sir Roger Penrose is a physicist, mathematician, philosopher of science, and
Nobel Laureate in Physics in the year 2020. It should get the alarm bells
ringing that this famous scientist, author of the excellent book ”The Road to
Reality, A complete Guide to the Laws of the Universe“ said in an interview:

Physics is wrong, from string theory to quantum mechanics.
Roger Penrose, 2009, DISCOVER

In 2010 he said farewell to our celebrated ”big-bang theory“ and proposed the
old ”steady-state model“:

The scheme that I am now arguing for here is indeed unortho-
dox, yet it is based on geometrical and physical ideas which are very
soundly based. Although something entirely different, this proposal
turns out to have strong echoes of the old steady-state model! Pen-
rose1

By the way, the widely glorified and seemingly experimentally verified message
about the age of our universe would be wrong when believing Penrose.

Two recommendable, critical, recently published books are written by
Cham and Whiteson2 with the telling title ”We Have no Idea, A Guide to
the Unknown Universe“, and by Hossenfelder3 ”Lost in Math. How Beauty

1Penrose [2010, Preface]
2Cham, Whiteson [2017]
3Hossenfelder [2018]



2 INTRODUCTION 5

Leads Physics Astray“.
Perhaps, Penrose’s first statement might be expressed in the form ” All

physical models are wrong, but several are useful“.
This publication aims to provide a useful description of some new aspects

of probability theory, thermodynamics, and quantum information theory, use-
ful especially for students, engineers, and philosophers, but not exclusively.
The mentioned new aspects rest on an evident categorization when describing
and explaining experimental results. In particular, this categorization allows
a useful probabilistic theory that is closely based on our daily experiences.
It contains quantum mechanics without paradoxes and is teachable without
magic. Moreover, we aim to answer the question: What has the second law
of statistical thermodynamics and the reflection of one photon on a mirror in
common? In particular, we show a close relationship between Feynman’s path
integral and thermodynamic multiplicity.

2 Introduction

The true logic of the world is in the calculus of probabilities.
James Clerk Maxwell

More than 100 years ago, many scientists were uncontent with the miss-
ing clarity and rigor in probability theory since the basic concepts, such as
randomness, events, or trials, turned out to be outside mathematics.

In 1900, Hilbert presented twenty-three fundamental problems. His sixth
problem claimed to treat probability axiomatically, similar as in geometry.
In particular, he called for a ”rigorous and satisfactory development of the
method of average values in mathematical physics, especially in the kinetic
theory of gases“. Many responses reemerged; see the excellently written paper
of Shaver and Vovk4.

In 1912 however, Poincaré5 wrote

One can hardly give a satisfactory definition of probability. H. Poincaré

Much later, von Weizsäcker6 wrote:

Probability is one of the outstanding examples of the episte-
mological paradox that we can successfully use our basic concepts
without actually understanding them. von Weizsäcker 2006

Even today, classical probability and its relationship to quantum probability
are discussed somewhat nebulous. The right way how to assign probabilities
to elementary events is a controversial philosophical discussion.

We shall investigate the following questions concerning probabilities:

Formal aspect: Is there a widely accepted definition of probability?

4 Shafer, Vovk [2006]
5 Poincaré [1912] [Page 24]
6von Weizsäcker [2006, Page 59]
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Rules: Are there universal mathematical rules or axioms that can be used in
all applications, from coin tossing to quantum electrodynamics?

Time: Are probabilities time-dependent, and if so, in what form?

Quantum Probability: What is the relationship between classical probabil-
ity, thermodynamics, and quantum probability?

The concept of probability is related to phenomena with uncertain out-
comes or elementary events that form mutually exclusive alternatives. We
can always distinguish between mutually exclusive events. They either hap-
pen or do not happen. But two or more elementary events cannot happen
simultaneously.

According to the Cambridge dictionary, a probability is a number that
represents how likely it is that a particular outcome will happen. In other
words, probability describes a quantitative measure of the uncertainty of an
outcome.

When investigating quantum probability, the debates and discussions be-
come strange and weird. Fuchs7 noted about the annual meetings and confer-
ences:

What is the cause of this year-after-year sacrifice to the ”great
mystery?” Whatever it is, it cannot be for want of a self-ordained
solution: Go to any meeting, and it is like being in a holy city in
great tumult. You will find all the religions with all their priests pit-
ted in holy war - the Bohmians[3], the Consistent Historians[4], the
Transactionalists[5], the Spontaneous Collapseans[6], the Einselec-
tionists[7], the Contextual Objectivists[8], the outright Everettics[9,
10], and many more beyond that. They all declare to see the light,
the ultimate light. Each tells us that if we will accept their solution
as our savior, then we too will see the light. Fuchs 2002

Weinberg8 2017 writes in a worth reading article about quantum mechanics,
in particular, about the measurement problem:

Even so, I’m not as sure as I once was about the future of quan-
tum mechanics. It is a bad sign that those physicists today who are
most comfortable with quantum mechanics do not agree with one
another about what it all means. The dispute arises chiefly regard-
ing the nature of measurement in quantum mechanics. Weinberg
2017

In these notes, we argue that probability theory, thermodynamics, and
quantum probability can be formulated with a common set of rules or ax-
ioms, providing a predictive algorithm for computing probabilities about fu-
ture events, like detector clicks. Our rules distinguish strictly between internal
possibilities and outcomes. It is a theory characterizing the future and telling

7Fuchs [2002]
8Weinberg [2017]
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us exactly what one should expect. Our approach avoids many well-known
paradoxes and interpretations like ”many worlds“ or ”many minds“.

This article also contains and summarizes parts of two lecture notes9, in-
cluding some corrections. Both lecture notes contain much more issues, in
particular, a new formulation of quantum mechanics.

In Section 3 we put things, such as mathematical or physical quantities,
objects, or ideas into four different categories. This classification allows a
better understanding of physics and probability. In particular, we replace the
concept of an external time parameter with the trinity future, present, and
past and show its consequences. We discuss the differences and relationships
between possibilities, outcomes, and facts.

The primary goal of these notes is an elaborate presentation of a prob-
abilistic framework consisting of four general principles which contain and
marries classical probability and quantum probability. These principles form
the content of Section 4. Readers only interested in probability theory can
switch immediately to this section. It can be viewed as an axiomatic approach
to probability in the sense of Hilbert, who asked for treating probability ax-
iomatically in his sixth of the twenty-three open problems presented to the
International Congress of Mathematicians in Paris in 1900. In particular, sub-
section 4.2 contains the central and fundamental part of these notes. In my
lecture notes10 this framework is applied to various problems, including classi-
cal problems, statistical mechanics, diffraction at multiple slits, light reflection,
interferometer, delayed-choice experiments, and Hardy’s Paradox.

In Section 5 we give a short survey about statistical thermodynamics and
entropy, and we show its reconstruction. Perhaps thermodynamics is the most
fundamental theory based on classical probability theory. Therefore, it is an
essential touchstone for our probability theory. The basic ideas and tools
of statistical thermodynamics are described. In particular, macrostates, mi-
crostates, multiplicities, and some examples are considered. Moreover, ”The
Fundamental Assumption of Statistical Thermodynamics” and its relation-
ship to the Boltzmann entropy and the second law of thermodynamics are
discussed. Then a new form of entropy which we call quantum Boltzmann
entropy is introduced.

Finally, in Section 6, we present a concise overview of quantum infor-
mation theory, including some historical remarks and several aspects of von
Weizsäckers fundamental work, the ur theory.

Acknowledgements I wish to thank Frerich Keil and Fritz Mayer-Lindenberg
for their critical reading of parts of the manuscript, their feedback, and their
suggestions.

Hamburg, Germany, September 2021
Christian Jansson

9Jansson [2017], Jansson [2019]
10Jansson [2019]
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3 Categorization and Representation

Classical categorization dates back to Plato and Aristotle. They grouped ob-
jects according to their similar properties. In their understanding, categories
should be clearly defined and mutually exclusive. Categorization schemes ap-
ply in language, prediction, decision making, types of interaction with the
environment, and several other areas. Categories are the basic concepts of our
thinking, and thus have a significant influence on all scientific descriptions.

A simple example in physics is the categorization of waves into longitu-
dinal waves versus transverse waves versus surface waves, or electromagnetic
waves versus mechanical waves versus quantum wave functions11. This type of
categorization is derived from our observations and experiments for periodic
vibrations.

We introduce a categorization of physics that is very close to our daily
sense experiences. It is related to the four questions:

(1) What are the objects that have structure?

(2) What might happen in the future?

(2) What happens momentarily?

(4) What has happened?

A consequent application of these four categories to physics leads to sur-
prising results, especially in probability theory, thermodynamics, and quantum
information theory. It results in a different interpretation of the quantum su-
perposition principle, which avoids the strange idea that a material object is
in several places simultaneously.

It is not the intention to explain this world in an ontological sense or exhibit
the basic structures of reality. But we would like to describe probability and
physics in a useful way, preferably without paradoxes or magic.

3.1 Time and Structure

Even Neanderthals would immediately agree with the following observations:
(1) The world is structured. There are buffalos, trees, and spears. (2) We do
not know what will happen, for example, whether we will be successful on the
next hunt. (3) There is no rest, and things happen momentarily. Right now,
the spear hits the buffalo. (4) Many things have happened. Today we were
successful on the hunt.

These four simple observations are so fundamental that physics perhaps
should be described and understood in terms of these observations. Which
notions and quantities belong to which observation?

Indeed, a primary goal of this publication is to describe physics in terms
of these four categories. We classify things, such as mathematical or physical
quantities, objects, or ideas in accordance with these categories.

11See ”The Physics Classroom > Physics Tutorial > Vibrations and Waves > Categories
of Waves“ for more details.
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(1) Structure: Things are structured. We receive all information from
detector clicks, that is, from special machines in the broadest sense.
Machines are best described or characterized by their possibilities. Pos-
sibilities form mutually exclusive alternatives. They either happen or do
not happen, but two or more possibilities cannot happen simultaneously.
Experimental set-ups consist of various machines which form a web of
relationships. The set-up itself creates a machine. In Section 4, we argue
that outcomes or elementary events consist of sets of possibilities.

In slit experiments, for example, the path from the source via any slit
to a particular detector is a possibility. The outcome, where a particle
is detected, consists of the set of paths from the source to this detector.
Possibilities and outcomes belong to the structure of the experiment and
should not be mixed up with probabilities or dynamics. The action, a
geometrical functional which takes a path as its argument and has a real
number as its result, and the related amplitudes are structural quantities.
Moreover, in Section 5, we show that thermodynamic microstates corre-
spond to possibilities, macrostates correspond to outcomes, and entropy
and some versions of the second law of thermodynamics belong to the
category structure. For example, the second law is sometimes formulated
as12: Removing any constraints from an isolated thermodynamical sys-
tem, thus changing the experimental set-up, will increase entropy. If the
experimental set-up is not changed, then the entropy does not change.

(2) Future: Things that might happen. The future is characterized, in
contrast to the structural category, as a timeless probabilistic framework.
It is best described by the phrase ”What might happen if nothing hap-
pens“. The future is prognostic and includes the principle of indifference,
classical probability, and quantum probability.

(3) Present: Things that happen momentarily. Dynamics take place in
the present: There is no rest (see also Section 4.8), and physical particles
and systems tend to move towards states of larger probability. Events
that are expected to occur more frequently occur more frequently. The
motion can be thought of as a sequence of collapses in accordance with
the probability distribution. In other words, the dynamics, say Wiener
processes and zigzag Brownian motion, obey statistical concepts only, not
classical deterministic laws like Newton’s equations or Maxwell’s equa-
tions. The latter equations approximate the stochastic dynamics under
certain conditions and serve to calculate actions, which are required for
calculating probability amplitudes.

(4) Past: Things that have happened. Relative frequencies, measure-
ments, and occurred interactions belong to this category. These things
form our history and usually change the structure. Experiments must
first be built up before they can be carried out. This requires a lot of
interaction.

12Ben-Naim [2018] Section 4.5
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3.2 Trinity of Time

If I look at where we have paradoxes and what problems we have,
in the end they always boil down to this notion of time. Renato
Renner13

Quantum theory, often referred to as the fundamental physical theory, can
be understood rather easily when we replace the concept of an external time
parameter t, generally used in physics, by the trinity future, present, and
past. This replacement is very close to our sense experiences and avoids many
paradoxes. In this section, we present a short and rough overview. More details
and several applications are considered and discussed in my lecture notes14.

We consider quantum mechanics as a theory of probabilistic predictions
that characterize the future only. The future is timeless, nothing happens.
Quantum mechanics has to be understood prognostic. It is a probability the-
ory that assigns to mutually exclusive alternatives, describing possibilities of
machines, experimental set-ups, or physical systems, complex numbers which
are called probability amplitudes.

We look at three types of experiments: throwing a die, the slit experiment,
and the polarization of photons.

When throwing a fair die, we obtain six mutually exclusive possibilities
k = 1, 2, 3, 4, 5, 6. When we assign to each possibility the probability amplitude
1/
√

6, then squaring according to Born’s rule, gives the probability 1/6.
Now, we consider the polarization experiment15 in Figure 1. The mutually

exclusive possibilities in a future execution are:

• (1) The photon is absorbed by the first polarizer.

• (2) The photon passes the first polarizer, then moves on the upper beam
between the birefringent plates, and finally is absorbed by the second
polarizer.

• (3) The photon passes the first polarizer, then moves on the lower beam
between the birefringent plates, and finally is absorbed by the second
polarizer.

• (4) The photon passes the first polarizer, then moves on the upper beam
between the birefringent plates, and finally passes the second polarizer,
detected after that.

• (5) The photon passes the first polarizer, then moves on the lower beam
between the birefringent plates, and finally passes the second polarizer
detected after that.

So far to the prognostic future. In the present, experiments are performed.
The present is characterized by classical random access. In the present, mo-
mentary decisions take place. The possible results, expressed by the detectors,

13Wolchover [2020]
14Jansson [2017]
15For more details see Jansson [2017, Sections 2.3, 2.4, 2.5]
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Figure 1: The first polarizer generates photons polarized at an angle α. The
first birefringent plate splits into two beams of horizontally x-polarized and
vertically y-polarized photons. These are recombined in a second birefringent
plate which has an optical axis opposite to the first plate. According to the law
of Malus, the transition probability after the second polaroid is cos2(β − α).

are called outcomes or elementary events. They define the sample space. In
general, possibilities and outcomes differ. The outcomes are those possibilities
that represent possible interactions with detectors or the environment. They
may consist of various internal alternatives, which we call internal elemen-
tary possibilities. We call physical models classical if all outcomes consist of
precisely one elementary possibility.

When throwing a fair die, the table where the die is finally located acts as
a detector. Possibilities and outcomes don’t differ for this example; they are
the numbers k = 1, 2, 3, 4, 5, 6. Hence, we have a classical model.

In a double-slit experiment, see Figure 2, the paths from a fixed initial point
s via any slit to any final point at the screen, here defined as a position detector
dm, describe the possibilities. They are allocated with complex probability
amplitudes16. There are several paths through the slits, describing internal
possibilities that lead to the same outcome. Thus, this is a non-classical model.
However, if we position detectors at the slits, then we obtain a classical model.

Let us look at the outcomes for the polarization experiment in Figure 1:

• (1) The photon is absorbed by the first polarizer.

• (2) The photon passes the first polarizer, then moves through the bire-
fringent plates, and finally is absorbed by the second polarizer.

• (3) The photon passes the first polarizer, then moves through the bire-
fringent plates, and finally moves through the second polarizer, detected
after that.

Hence, five possibilities are reduced to three (detected) outcomes. It is a
non-classical model. The possibilities describing what happens between the
birefringent plates are internal, that is, they are not given to the environment.
In fact, this characterizes a fundamental difference between the future and the
present. In the literature, the property that there may be more possibilities

16Jansson [2017, Sections 2.6 and 2.7]
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Figure 2: The double-slit experiment described for a discrete spacetime. The
particle leaves source s, passes one of the two slits a or b, and is finally detected
in d1.

than outcomes leads to statements like ” a material object occupies several
locations simultaneously “. The failing distinction between past, present, and
future in physics is the reason for many paradoxes in current quantum theory.
In our categorization, the probabilities belong to the future where nothing
happens. Only in the present, a material object chooses one elementary pos-
sibility in agreement with the probabilities. The object has the tendency to
select possibilities with higher probabilities. However, occasionally the object
might also choose possibilities with lower probabilities.

Deterministic models, like classical mechanics or electromagnetism, are de-
scribed in terms of differential equations that don’t allow alternative solutions
provided initial conditions are given. There is a unique outcome changing de-
terministically with time, yielding a classical model. Statistical mechanics is
classical since there are no internal elementary possibilities. All possibilities
are outcomes. In general, quantum mechanics is non-classical since outcomes
can be reached via several internal elementary possibilities. To summarize, we
have precisely defined the notion ”classical”. In the literature, this notion is
vague.

In statistical mechanics, the concept probability is defined mathematically
as a map from the set of all outcomes, namely the sample space, into the set
of real numbers between zero and one. Since classical probabilities are non-
negative numbers, cancellation or interference cannot occur. In contrast, a
probability amplitude is defined as a map from the set of all possibilities into
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the set of complex numbers. Squaring the magnitude of probability amplitudes
for outcomes gives the probabilities, according to Born’s rule. Probability
amplitudes are the quantities that can describe appropriately geometric details
of the experimental set-up. Since these are complex numbers, cancellation
producing interference phenomena may occur.

In the past, one of the outcomes has become a fact. The past is determin-
istic. The concept of relative frequencies describes the outcomes or measured
results of repeated experiments and thus belongs to the past. Not surprisingly,
the past serves to verify or falsify prognostic statements. But from the philo-
sophical point of view, however, it is doubtful to define probabilities for events
via concepts of the past.

It is essential to notice that in our approach possibilities are prop-
erties of the machines that form the experimental set-up, as seen
above. Possibilities represent mutually exclusive alternatives in the
sense that in a future experiment, a particle interacting with a ma-
chine chooses exactly one of these alternatives, not two or more. For
example, polarization is first and foremost a property of the optical apparatus,
not of a photon itself. We can only say that a photon interacts in the present
with a specific crystal or polarizer by choosing precisely one of its possibilities.
A single material object doesn’t occupy several locations at the same time. It
chooses in the present exactly one location. In the past, this location becomes
a fact.

This trinity of time is closely related to experience. Learning would be
impossible if we don’t distinguish between things that might happen and things
that have happened. Time is one of the most discussed concepts in physics and
philosophy. Time t appears in almost all physical equations. Physicists think
that these equations describe what happens in the next moment. Variables
such as the position x(t), the velocity v(t), the momentum p(t), the energy
E(t), and so on, are time-dependent. In the case of the harmonic oscillator, the
well-known Euler-Lagrange equation takes the form of a differential equation

d

dt
(mẋ)− kx = 0. (1)

The idea of equations without variable time seems questionable at first or even
very strange. But after a while, we can realize that the variable time is not
necessary. We can establish timeless relationships between the other variables.
For the harmonic oscillator, for instance, the Hamiltonian

H =
p2

2m
+

1

2
kx2 (2)

is the conserved total energy, that is, the sum of kinetic and potential energy.
This equation describes the harmonic oscillator just as well without time t,
implicitly. It represents an ellipse in the phase space.

The same situation can be found in the famous Wheeler-de Witt equation,
a candidate for the solution of the well-known quantum gravitation problem.
This equation contains no time parameter. The time-dependent equations
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don’t describe what happens in the next moment but describe geometric quan-
tities in their explicit form.

The fundamental theory of statistical thermodynamics, which can be ap-
plied to almost all physical models, independent of which concrete laws the
systems satisfy, is timeless17. The entropy as well as the second law of thermo-
dynamics has nothing to do with time. In Section 5 we reconstruct statistical
thermodynamics with our probabilistic framework below.

In my lecture notes18, several arguments are given to choose an Euclidean
(3+3)-position-velocity space as a basis of physics, without any time param-
eter. It was shown how to reconstruct the mathematical formalism of special
relativity by constructing clocks in this position-velocity space. In particular,
we derived the key of relativity theory, namely the Lorentz transform, without
any assumption about ”propagation of light”. Hence, Einstein’s derivation of
the relativistic spacetime can certainly be questioned.

Von Weizsäcker19 emphasizes at various places the fundamental difference
between the ”factual past“ and the ”possible future“. Using the language
of temporal logic, he distinguished between ”presentic, perfectic, and futuric
statements“. However, he returned to spacetime by investigating the quantum
theory of binary alternatives.

At a first glance, the presented trinity seems to create another time con-
cept. However, this concept is completely different from other ideas about time
since it rotates the past into the future, the future into the present, and the
present into the past. Moreover, it differs significantly from the well-known
”arrow of time“ which is discussed controversially. This thermodynamic arrow
expresses a ”one-way property of time“, and was created in 1928 by Eddington
in his famous book ”The Nature of the Physical World“. However, Ben-Naim20

writes:

Reading through the entire book by Eddington, you will not find
a single correct statement on the thermodynamic entropy. Ben-
Naim 2017

4 The Calculus of Probability Amplitudes

At the beginning of the twentieth century, mathematicians realized that prob-
ability theory seemed to use concepts outside mathematics like events, un-
certainty, trial, randomness, probability. They were dissatisfied, and Hilbert
asked for a clarification in his sixth of the twenty-three open problems pre-
sented to the International Congress of Mathematicians in Paris in 1900. He
claimed to treat probability axiomatically. A nice presentation of the his-
tory of probability is presented by Shafer and Vovk21. In this section, we
want to present a probabilistic framework consisting of four general principles

17Ben-Naim [2018]
18Jansson [2017, Sections 4.13 and 4.14]
19von Weizsäcker [1988], von Weizsäcker [1992], von Weizsäcker [2006]
20Ben-Naim [2018, p. 3]
21Shafer, Vovk [2006]
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which unify classical probability and quantum probability. We show for vari-
ous applications how these principles work. We have applied our probabilistic
framework to classical problems, statistical mechanics, information theory and
thermodynamics, double-slit and diffraction at multiple slits, light reflection,
interferometer, delayed-choice experiments, and Hardy’s Paradox; see my two
lecture notes22.

4.1 The Space of Possibilities

In physics, we observe or measure outcomes of experiments only. In the fol-
lowing, we investigate an imaginary experiment, say ABC, consisting of three
machines described by finite sets A,B, and C, which are connected in se-
ries. The generalization to a large number of machines A,B,C,D, .....,K is
straightforward. Our notation is close to Feynman’s famous publication23.

The machines can interact with a specific type of particles. Which type
doesn’t matter in the following. The machines are characterized by its ele-
mentary mutually exclusive alternatives, that is, the elementary possibilities
a ∈ A, b ∈ B, and c ∈ C. Elementary means that the possibilities cannot be
further separated. Mutually exclusive means that the elementary possibilities
are non-overlapping and distinguishable. In the present, a particle or a sys-
tem interacts with the machines by choosing exactly one possibility, but two
or more possibilities cannot be chosen simultaneously. For example, viewing
space as a machine of positions, a single material object cannot occupy several
locations simultaneously.

Possibilities of machines belong to the category structure. The elemen-
tary possibilities of the complete experiment ABC consist of all triples abc.
Typically, such a triple means that, in a future interaction of a particle or a
system with the experimental set-up, it starts by choosing a possibility a ∈ A,
then interacts with B by choosing any possibility b ∈ B, and finally chooses
an elementary possibility c ∈ C where it is detected. We call the set of all
elementary possibilities abc the possibility space ABC of the experiment, that
is,

P = ABC = {p = abc : a ∈ A, b ∈ B, c ∈ C} . (3)

The experimental set-up itself can also be viewed as one single machine24.
The set of all subsets of ABC, is denoted by FABC . We identify the el-

ementary possibilities abc with {abc}, the subsets consisting of one element.

22Jansson [2017], Jansson [2019]. These notes contain some bugs. This publication
includes corrections and further developments.

23See Section 2, Feynman [1948]
24In this subsection, we assume that P is a finite set.
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Other subsets are the non-elementary possibilities, such as

abC := {abc : c ∈ C} , (4)

aBc := {abc : b ∈ B} , (5)

Abc := {abc : a ∈ A} , (6)

aBC := {abc : b ∈ B c ∈ C} , (7)

AbC := {abc : a ∈ A c ∈ C} , (8)

ABc := {abc : a ∈ A b ∈ B} , (9)

. (10)

For instance, the possibility aBc means that in a future interaction of a parti-
cle with the experimental set-up ABC, the particle has chosen the elementary
possibility a, finally has chosen c, and further, it must have chosen some inter-
mediate, not further specified, elementary possibility b of machine B. It may
be that we are not interested in the possibilities of B. But it may also be that
the interaction with B is unknown, and the experimental set-up does not allow
the knowledge of a specific b ∈ B. In other words, b cannot be given outside
to the environment. Then we say that the possibilities b ∈ B are internal.
It turns out that the internal possibilities of an experimental set-up
must be defined explicitly. They are responsible for interference. We
speak of a classical experiment if internal possibilities do not occur.

The double-slit experiment, described in Figure 2, consists of three ma-
chines denoted by SWD. The first machine represents the source S producing
particles, the second machine W is the wall with two slits without detectors,
say a and b, and the third machine D is the screen of position detectors dm.
Since there are no detectors at the slits, the possibilities of W , representing
both slits, are internal. In the present, it is not given to the environment
through which slit the particle passes, yielding a non-classical experiment.
This experiment becomes classical if we put detectors at the slits.

Notice, we consider future interactions that do not happen but might hap-
pen in the present. Hence, any particle choosing a possibility a ∈ A in the
present fortunately need not go through all internal possibilities b ∈ B simulta-
neously, as it is usually assumed in quantum theory. Similarly, the possibility
aBC means that, in the present, there is some interaction with A in a, but the
interactions with B and C are not further specified. Hence, we can identify
aBC with a itself. Now, we have defined non-elementary possibilities in terms
of subsets of the possibility space. But what are outcomes? Well, this is the
information given to the environment.

Let us consider three examples. For the double-slit experiment, where no
detectors are at the slits, both slits at the wall W describe internal elementary
possibilities. In the present, a particle interacts with W in exactly one slit,
which is not given outside since it is not detected. Hence, only the subsets
sWdm ∈ FSWD define outcomes, and thus may become facts in the past.

The second one is the classic experiment where we throw a die two times.
This can be viewed as three machines ABC, where machine A describes the
first throw by the set of possibilities {1, 2, 3, 4, 5, 6}, B describes the second
throw, and C describes the outcomes of both throws. There are no internal
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possibilities, and each elementary possibility, say abc, is an outcome and thus
can become a fact. For example, abc = 66(6, 6) is the elementary possibility
that the die would show 6 in each throw. The possibility space ABC coincides
with the classical sample space O of outcomes25. Hence, we have a classical
experiment. For a fair die, the probabilities for the outcomes are 1/62.

Let us change this experiment such that the result of the second throw
described by B cannot be recovered. In other words, the possibilities of B
are internal. Then the outcomes are aBc and thus differ from the elementary
possibilities abc. Clearly, a change of the experimental set-up changes the
probabilities. For a fair die, the probabilities are 1/6.

More general, for the experimental set up ABC, when we assume internal
possibilities b ∈ B, the sample space of outcomes is the set of subsets

O = {F = aBc : a ∈ A, c ∈ C} . (11)

All other subsets of ABC are not outcomes. Notice that the outcomes are
disjoint sets which partition the possibility space, that is,

ABC =
⋃
{F ∈ O}. (12)

The outcomes are characterized by their elementary possibilities abc ∈ aBc,
which we call the accessible elementary possibilities.

Keep in mind that the notions of possibilities and outcomes are timeless
and belong to the category structure, whereas the probabilities belong to the
prognostic future.

4.2 A Unified Probabilistic Framework

After this physical motivation, we describe our probabilistic framework from
the mathematical point of view. According to the Cambridge dictionary, a
probability is a number that represents how likely it is that a particular outcome
will happen. In other words, probability describes a prognostic measure of the
uncertainty of an outcome. It belongs to the category future. In contrast,
the relative frequency belongs to the past, since it is defined as the number
of experiments in which a specific outcome occurs divided by the number of
experiments performed. It makes probability empirically testable, at least
approximately.

An experiment is described by three sets:

(i) The possibility space P consisting of all elementary possibilities p ∈ P.

(ii) The possibility algebra (also called field) F defined as the collection of
subsets of the possibility space that contains P itself, and is closed under
complement and under countable unions. The subsets F ∈ F which don’t
coincide with the elementary possibilities {p} are called non-elementary.

25Based on the word ”outcome“, we use the letter O for the sample space and not, as
usual, Ω. The latter is used in the Boltzmann entropy equation.
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(iii) The sample space O of outcomes F ∈ F which form a partition of the
possibility space, such that each elementary possibility p ∈ P is contained
in exactly one outcome F .

These definitions belong to the category structure. In Section 4.1, the
possibility space is P = ABC, the field F = FABC is the set of all subsets of
ABC, and O is defined in (11).

Moreover, we assume:

(iv) A probability amplitude26 is given, which is defined as a mapping ϕ from
the field of possibilities F into the set of complex numbers:

F → ϕF = ϕ(F ) ∈ C, F ∈ F. (13)

We call the quadruplet (P,F,O, ϕ) possibility measure space. This space be-
longs to the category structure.

Motivation for the description of probabilistic and physical foundations
with complex numbers can be found in Jansson27. See also the recent publi-
cation of Wood28. There, it is argued that complex numbers are fundamental
and essential for describing reality. Notice that in the literature a measure is a
non-negative function in contrast to amplitudes. We consider a measure with
complex numbers.

The possibility measure space satisfies four general principles. The first
principle states that for any countable set of pairwise disjoint possibilities
Fm ∈ F, such that F = ∪mFm, it is

ϕF = ϕ

(⋃
m

Fm

)
=
∑
m

ϕFm . (14)

This rule is called the superposition of probability amplitudes. It expresses in a
slightly different manner Feynman’s first principle: ”When an event can occur
in several alternative ways, the probability amplitude for the event is the sum
of the probability amplitudes for each way considered separately”29. Notice
that Feynman does not distinguish between outcomes and possibilities.

The second principle is Born’s rule which transforms the probability
amplitudes of outcomes F to probabilities Pr(F ):

Pr(F ) = |ϕF |2 for all F ∈ O, and
∑
F∈O

|ϕF |2 = 1. (15)

Thus, we obtain by computing the square of the magnitude of probability
amplitudes the classical probabilities for the outcomes. If we sum up the
probabilities of all outcomes, we get one. Hence, with Born’s rule we obtain

26We use the notation in Feynman [1948] p.4
27Jansson [2017], Section 2.2
28Wood [2021]
29Feynman Lectures [1963] p.1-16
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a probability measure on the sample space O, and we can use Kolmogorov’s
rules for obtaining probabilities for the subsets of the sample space.

An experiment is called deterministic if the sets P and O consist of one
element. In this case, Born’s rule implies that the probability of the unique
outcome is one. An experiment is called classical if both sets P and O coincide.
In this case, classical probability theory applies from the very beginning.

(Consistency, U(1) symmetry): Our probabilistic framework is
consistent, that is, it does not lead to a contradiction. Moreover,
all probabilistic statements are invariant if one transforms all ele-
mentary possibilities with one element of U(1).

At first, we show that the probability amplitude is well-defined, that is, the
amplitude ϕF does not depend on the partitioning of F . If F contains only one
element, nothing is to proof. For two disjoint elements we have F = ∪{F1, F2}
and ϕF = ϕF1 + ϕF2 = ϕF2 + ϕF1 is well-defined. If F is the union of three
pairwise disjoint possibilities F1, F2, F3, we can partition F = ∪{F1, F2, F3} as
follows:

F1, F2, F3; ∪{F1, F2} , F3; ∪{F1, F3} , F2; ∪{F2, F3} , F1. (16)

Since complex addition is associative and commutative, in all cases our first
principle yields

ϕF = ϕF1 + ϕF2 + ϕF3 . (17)

Hence, ϕF is well-defined. The same is true if F is partitioned into more than
three elements:

ϕF =
∑
m

ϕFm . (18)

The second principle requires that the sum of the square of the magnitudes
of probability amplitudes for all outcomes is one. This is a simple normalization
condition that can always be achieved.

Moreover, if we multiply all probability amplitudes with the same element
eiφ ∈ U(1), then due to Born’s rule, the probabilities do not change.

The fundamental symmetry group U(1) leaves the inner product of two
complex numbers and thus their norm constant. This group is locally iso-
morphic to the symmetry group SO(2) of rotations in a two-dimensional real
space. U(1) gauge symmetry is well-known in quantum electrodynamics, where
one cannot measure the absolute phase of the wave functions of electrons and
photons.

As the most simple example, consider a fair coin toss. The two elementary
possibilities are Heads H and Tails T . They define the possibility space P =
{H,T}. The field of possibilities is

F = {∅, {H} , {T} , {H,T}} . (19)
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The set of outcomes coincides with the two elementary possibilities:

O = {{H} , {T}} , (20)

They form a partitioning of the possibility space. We define

ϕ∅ = 0, ϕ{H} =
1√
2
, ϕ{T} =

1√
2
. (21)

Then our first principle yields

ϕ{H,T} =
1√
2

+
1√
2

=
√

2. (22)

The fact that |ϕ{H,T}|2 6= 1 does not imply any contradiction, since Born’s rule
defines probabilities only for the outcomes.

It is also simple to model an unfair coin, say with probability 1/3 for
Heads and 2/3 for Tails. In this case we define the possibility space in the
form P = {H,T1, T2}, where the outcome Tails is the set {T} = {T1, T2}.
Then the amplitudes of the elementary possibilities receive the values

ϕ{H} =
1√
3
, ϕ{T1} = ϕ{T2} =

1

2

√
2

3
, (23)

yielding the required probabilities.
Both principles describe consistent mathematical conditions for probability

amplitudes. But how can we compute substantial probability amplitudes?
This is the content of the following two principles. From the second principle,
we know that it is sufficient to calculate the amplitudes for all outcomes. From
the first principle, it is clear to compute the amplitudes for the elementary
possibilities only.

The third principle states that the amplitudes ϕF contribute equally in
magnitude for all elementary possibilities, that is, the amplitudes are propor-
tional to some constant times a complex number of magnitude one, namely

e
i
~S(F ) for all elementary possibilities F ∈ F. (24)

The real-valued function S(F ) is called the action of the elementary possibility
F .

This principle remembers at Laplace’s principle of indifference where all
outcomes should be equally likely assigned with unit one. Thus, the third
principle can be viewed as a generalization that applies to elementary possi-
bilities, and unit one is replaced by the set of complex numbers of magnitude
one. If we define the phase as equal to zero, then we get back to Laplace’s
theory.

Originally, Feynman formulated this principle for probability amplitudes in
the case of space-time paths: ”The paths contribute equally in magnitude, but
the phase of their contribution is the classical action (in units of ~); i.e., the
time integral of the Lagrangian taken along the path30.” Later he explained
and summarized his rules as follows:

30Feynman [1948] p.9
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The total amplitude can be written as the sum of amplitudes
of each path - for each way of arrival. For every x(t) that we
could have - for every possible imaginary trajectory - we have to
calculate an amplitude. Then we add them all together. What do
we take for the amplitude for each path? Our action integral tells
us what the amplitude for a single path ought to be. The amplitude
is proportional to some constant times exp(iS/~), where S is the
action for the path. If we represent the phase of the amplitude by
a complex number, Planck’s constant ~ has the same dimensions.
Feynman and Hibbs31

Thus Feynman’s formulation for actions in phase space can be viewed as a
particular case of our third principle. Please notice we make no further as-
sumptions about the action except that it is real-valued. Hence, we are very
flexible in describing physical problems outside space-time paths.

Our fourth general principle generalizes Feynman’s principle for space-
time routs32 : ”When a particle goes by some particular route, the amplitude
for that route can be written as the product of the amplitude to go partway
with the amplitude to go the rest of the way.“ This property goes back to
Laplace, who investigated how to calculate the probability of events or exper-
iments that can break down into a series of steps happening independently.
Then the probability of the occurrence of all is the product of the probability
of each.

Two possibilities F and G are called independent if their intersection is
non-empty, and if the occurrence of one possibility does not affect the other
one, that is, both have no influence on each other.

Mathematically, both possibilities are independent, if and only if their joint
amplitude is equal to the product of their amplitudes:

ϕF∩G = ϕF ϕG. (25)

In our set-theoretic language of Section 4.1, parts of routs are subsets of
the possibility space F. The transition from a to b is the set F = abC, and the
transition from b to c is the set G = Abc. If both transitions are independent
of one another, then we multiply both corresponding amplitudes. We obtain
F ∩G = {abc} and ϕ{abc} = ϕF ϕG.

In general, events are affected by previous events and thus are dependent.
In accordance with Laplace experiments and classical probability theory, the
probability amplitudes for independent possibilities are multiplied. In other
words, the multiply-and-add rule carries over to complex numbers yielding the
fundamental rule of quantum mechanics.

Notice that these principles would not be consistent if amplitudes would
map into octonions or quaternions instead of complex numbers. These number
systems are not associative and commutative.

In summary, these four principles serve to calculate the complex amplitudes
for outcomes. They allow interference. Born’s rule provides probabilities for all

31Feynman, Hibbs [1965], p.19
32Feynman Lectures [1963] p.3-4
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outcomes. With Kolmogorov’s axioms, we obtain classical probabilities for the
non-elementary events. In most applications, the essential and challenging task
is calculating the probability amplitudes. These are the relevant quantities,
and sometimes it is not easy to calculate them.

Basic facts: The recipe for calculating probabilities:
Given an experimental set-up:

1. Define the possibility space P and the field F.

2. Define the sample space O of outcomes. They are subsets of
the possibility space incorporating all internal possibilities.

3. Calculate the probability amplitudes for the possibilities by
using the multiply-and-add rule, that is, the probability am-
plitudes for disjoint possibilities are added (superposition),
and the probability amplitudes for independent possibilities
are multiplied.

4. Calculate the probabilities for the outcomes using Born’s rule.

5. Calculate with Kolmogorov’s axioms the probabilities for the
classical non-elementary events.

The possibility space P and the field of subsets F are defined sim-
ilarly as in classical probability theory the sample space and the
related field of subsets of the sample space. Moreover, the multiply-
and-add rule holds for probability amplitudes as well. The es-
sential difference to other theories about probability is (i)
that complex numbers are used from the very beginning,
(ii) that possibilities and outcomes are different quantities,
(iii) that internal possibilities, responsible for interference,
are essential, and (iv) that we use the language of sets in
contrast to many formulations of quantum theory. Our the-
ory can be viewed as a calculus with complex numbers that deliver
numerical probabilities for outcomes based on experimental set-ups.
This calculus is not restricted to microscopic systems. In contrast,
it is mainly based on macroscopic machines. Quantum theory and
classical probability theory are not conflicting probability theories
but complement one another. We speak of classical experiments
if internal possibilities are absent. This recipe completes our
formulation of probability theory and the fundamentals
of quantum mechanics. Feynman’s path integral, one of the
mathematical equivalent formulations of quantum mechanics, is an
immediate consequence of our principles, see below. Experiments,
classical or quantum ones, can be explained by using this recipe.
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4.3 Reconstruction of Quantum Mechanics

We reconstruct Feynman’s formulation33 of quantum mechanics, which is known
to be mathematically equivalent to Schrödinger’s and Heisenberg’s formula-
tions. This reconstruction is rather simple since our probabilistic framework
is closely related to Feynman’s formulation. However, there are some differ-
ences: First of all, our language is set theory which significantly distinguishes
between possibilities and outcomes. Secondly, classical probability and ther-
modynamics are incorporated. Thirdly, a massive object is not at several
places simultaneously.

Let us assume that in the experimental set-up ABC the elementary pos-
sibilities of machine B are internal, such that the possibilities ac := aBc are
the outcomes. Moreover, let the possibilities ab := abC and bc := Abc be
independent. The value ϕab is the probability amplitude that if the possibility
a ∈ A is chosen, then the possibility b ∈ B will be selected in the next step.
The value ϕabc is the probability amplitude that firstly the possibility a ∈ A
is chosen, then the possibility b ∈ B, and finally c ∈ C. The other probability
amplitudes are defined analogously. Since the elementary possibilities {abc}
are pairwise disjoint, formula (14) implies

ϕac =
∑
b∈B

ϕabc. (26)

Since ab∩ bc = {abc}, from (25) we get Feynman’s34 well-known formula (5):

ϕac =
∑
b∈B

ϕab ϕbc. (27)

The superposition of probability amplitudes (26) and (27) is the sum of sev-
eral complex amplitudes, one for each route. This allows the cancellation of
probability amplitudes, yielding the typical phenomena of interference. Both
formulas provide the core of Feynman’s theory, sometimes called Feynman’s
sum-over-histories formulation. The superposition of amplitudes for calculat-
ing the amplitude of an outcome occurs only if the experiment contains internal
possibilities. If there are no internal possibilities, the outcomes coincide with
the elementary possibilities abc, and for each outcome, there is precisely one
route. Cancellation of amplitudes, and thus interference, does not occur. This
is the reason why we speak of classical experiments if internal possibilities are
absent.

Since all possibilities of B are internal and thus not given to the environ-
ment, the probability of detecting a particle in a and c must take account
of all routes abc where b varies in B. Therefore, it is frequently stated that
the quantum object seems to move on all possible routes simultaneously. In
our approach the particle chooses only one route in the present, but with the
tendency to move to states of higher probability.

In quantum mechanics, two fundamental concepts are striking. Firstly,
the superposition principle which is discussed above. Secondly, entanglement

33Feynman [1948]
34See Section 2, Feynman [1948]
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which is based on the quantum rule that composed systems are described by the
tensor product space. The development of quantum informatics and quantum
computing made it very clear that entangled multiple-particle states, which
cannot be written as a product of single-particle states, are not exceptional
but are the rule in quantum theory. Both concepts are discussed controversial
depending on the used philosophic interpretation.

Entanglement is a structural and natural concept. There are easy under-
standable forms of entanglement, for instance, two welded coins or when a cat
is entangled with a killing machine box. It is, however, far from being simple
when two photons are entangled, but a large distance separates them. Einstein,
believing in (3+1)-spacetime, referred to it with the phrase ”spooky action at
a distance”. In a (3+3)-position-velocity space35, however, the ”spooky action
at a distance“ of two entangled photons vanishes. The two photons are welded
in the velocity space V , that is, they can be connected via a velocity v ∈ V .
Notice that the notion of distance depends on the underlying space.

4.4 The Slit Experiment

Let us go through our probabilistic framework in terms of the double-slit ex-
periment SWD, see Figure 2. The possibility space is

SWD = {sadm, sbdm : s ∈ S, a, b ∈ W,dm ∈ D} . (28)

The internal possibilities are the slits a and b in W . Without detectors at the
slits, it cannot be observed through which slit the particles goes in the present.
Hence, the sample space of outcomes is the set

O = {sWdm : s ∈ S, dm ∈ D} . (29)

Now, we use the multiply-and-add rule. Our fourth principle implies

ϕsadm = ϕsa ϕadm , ϕsbdm = ϕsb ϕbdm . (30)

These are disjoint elementary possibilities, and the superposition of both am-
plitudes yields the amplitudes of the outcomes

ϕsWdm = ϕsadm + ϕsbdm for all dm ∈ D. (31)

Inserting the concrete amplitudes for the possibilities using the third prin-
ciple, we obtain the amplitudes for the outcomes. Born’s rule provides the
probabilities of the outcomes and using Kolmogorov’s rules, we can calculate
the probabilities for the non-elementary events. This shows the unbelievable
simplicity of explaining the double-slit experiment within our framework of
possibilities, internal possibilities, outcomes, and our categorization.

Now, we have a very general algorithm working with complex
probability amplitudes assigned to possibilities which allow us to
calculate probabilities for outcomes. This algorithm is applicable to

35Jansson [2017], see Section 4.13 for more details.
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classical statistical problems as well as to problems with interference
phenomena. This formalism is a key in our interpretation of the re-
construction of quantum mechanics, the latter known as the most
fundamental physical theory. From our point of view, quantum theory is
a timeless theory belonging to the categories structure and future. It uses the
geometrical properties of experimental set-ups for calculating classical prob-
abilities of outcomes. Quantum theory and classical probability theory are
not different probability theories that are in contrast. In our approach, they
complement one another. Dynamics happens in the present: There is no rest,
and physical particles and systems have the tendency to move towards states
of larger probability.

Feynman36 wrote very honestly in his well-known book about quantum
mechanics:

One might still like to ask: ”How does it work? What is the
machinery behind the law?” No one has found any machinery be-
hind the law. No one can ”explain” any more than we have just
”explained”. ”No one will give you any deeper representation of the
situation. We have no ideas about a more basic mechanism from
which these results can be deduced. [...] Yes! Physics has given up.
We do not know how to predict what would happen in a given cir-
cumstance, and we believe now that it is impossible - that the only
thing that can be predicted is the probability of different events. It
must be recognized that this is a retrenchment in our earlier ideal
of understanding nature. Feynman 1963

Feynman’s point of view that ”the only thing that can be predicted is the
probability of different events” is supported much later by Fuchs and Peres37:

The thread common to all the nonstandard ”interpretations” is
the desire to create a new theory with features that correspond to
some reality independent of our potential experiments. But, try-
ing to fulfill a classical world view by encumbering quantum me-
chanics with hidden variables, multiple worlds, consistency rules,
or spontaneous collapse without any improvement in its predictive
power only gives the illusion of a better understanding. Contrary
to those desires, quantum theory does not describe physical reality.
It provides an algorithm for computing probabilities for the macro-
scopic events (”detector clicks”) that are the consequences of our
experimental interventions. This strict definition of the scope of
quantum theory is the only interpretation ever needed, whether by
experimenters or theorists. Fuchs and Peres 2000

We have presented a short algorithm for computing classical and quantum
probabilities, summarized above on one page. From a slightly different point
of view, the main features are:

36Feynman Lectures [1963] p.1-16
37Fuchs, Peres [2000]
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• We describe physics in terms of four categories: structure (background),
future (prognostic view), present (momentary decisions, dynamics), and
past (facts).

• We understand the basics of quantum mechanics as part of the structure
and the future. Born’s rule is a prognostic tool providing probabilities
of future events38.

• We distinguish between possibilities and outcomes. The presence of in-
ternal possibilities is responsible for interference.

• The amplitude of an elementary possibility is proportional to some con-
stant times exp(iS/~), where S is the action. Both belong to the category
structure.

• Dynamics is fundamentally stochastic and happens in the present such
that (i) there is no rest, and (ii) there is the tendency to move toward
states of higher probability.

• According to a theorem of Hurwitz, the field of complex numbers is the
largest commutative field possessing indispensable properties of numbers.
This is as a basic reason that quantum mechanics, the most fundamental
physical theory, is a theory based on complex numbers39 with a U(1)
symmetry.

In the recent publication of Wood40, several historical remarks about the
use, the necessity, and the evidence of complex numbers in physics are pre-
sented.

4.5 Some Philosohical Aspects

The double-slit experiment41 with its diffraction pattern has been called “The
most beautiful experiment in physics”. The used experimental set-ups depend
on the type of objects interacting with the slit apparatus. It can be done
with photons or electrons and becomes more difficult for increasing size of the
particles. Even large molecules, combined of 810 atoms, show interference. In
2012, scientists at the University of Vienna developed a double-slit experiment
using large molecules called phthalocyanine. These molecules can be seen with
a video camera exhibiting their macroscopic nature. The molecules are sent
one at a time through the wall with slits, such that exactly one molecule only
interacts with the set-up. At the screen of detectors, they arrive localized at
small places. This behavior is typical for macroscopic objects, not for classical
waves. Nobody has ever seen a collapsing wave. Moreover, the pictures of the
molecules produced with a video camera demonstrate that the wave picture is
dubious. Over a long period, the molecules, one after the other, build up into

38von Weizsäcker [2006]
39See Section 2.2 and Appendix A in Jansson [2017]
40Wood [2021]
41Crease [2002]
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an interference pattern consisting of stripes. This distribution shows the same
wave interference as if you drop two stones into a smooth pool simultaneously.
Hence, it seems to be evidence that this big molecule might travel as a wave,
in agreement with the widely celebrated wave-particle duality.

Strangely enough and frequently emphasized, the interference patterns in
two-slit experiments disappear if we obtain information through which slit
the molecule passes. Let a detector be positioned only at one slit. Then the
interference pattern, where both slits are open without detectors, vanishes.
Hence, the molecules passing through the slit without the detector seem to
know that the other slit is equipped with a detector. This phenomenon is
called non-locality: what happens in one location seems to affect what happens
in a distant location instantaneously. Non-locality is a fundamental mystery
of today’s quantum mechanics.

There is another strange mystery called the observer effect, that is, observ-
ing effects reality. Whether an interference pattern or a classical pattern occurs
depends on observing the slits. The usual explanation is that ”which-slit in-
formation“ makes the wave collapse into a particle. Therefore, in experiments,
we can change the way reality behaves by simply looking at it. Consequently,
many physicists say that there is ”no reality in the quantum world“. For ex-
ample, the von Neumann-Wigner interpretation, also known under the name
”consciousness causes collapse“, consciousness is postulated to be necessary
for the completion of quantum measurements.

Zeilinger, well-known for his pioneering experimental contributions to the
foundations of quantum mechanics, gave an impressive talk in 2014 42 ”Break-
ing the Wall of Illusion“. He said that in science, we broke down many illusions
in the course of history, for instance, that ”the earth is flat“, that ”the earth
is the center of the universe“, that ”we are biologically special and different
from other animals“, that ”space and time is something absolute“, and ”in
quantum mechanics we broke down many illusions about reality. One of the
illusions we first broke down in quantum mechanics is that an object can only
be at a given place at a given time. There have been many experiments about
that. One of the experiments was done by Jürgen Blinek many years ago, the
so-called double-slit experiment with atoms, which shows that particles can go
through two slits at the same time.“

The basic postulates of quantum mechanics seem to be far away from sense
experiences. Also Penrose supported this viewpoint. In his excellently written
book43 he writes on page 216 :

As we have seen, particularly in the previous chapter, the world
actually does conspire to behave in a most fantastical way when
examined at a tiny level at which quantum phenomena hold sway.
A single material object can occupy several locations at the same
time and like some vampire of fiction (able, at will, to transform
between a bat and a man) can behave as a wave or as a particle
seemingly as it chooses, its behavior being governed by mysterious

42See for example YOUTUBE
43Penrose [2016, p.216]
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numbers involving the ”imaginary“ square root of -1. Penrose 2016

Penrose gave, not unfounded, his famous book the title FASHION, FAITH and
FANTASY.

These philosophical thoughts and insights are based on the foundation of
standard physics using relativistic spacetime. Our categorization, the division
into structure, future, present, and past, leads to a completely different way
of looking at things. In the following, we want to examine this more closely.

Our conclusion: The slit experiment in 2012 with the large ph-
thalocyanine molecules shows: (i) a molecule is not a wave, (ii)
it supports our probabilistic approach, (iii) the pictures of the
molecules with the video camera show that a material object is
not at different places at the same time, and (iv) it leaves many
quantum interpretations at least doubtful.

Let us now show in detail how changing the experimental set-up changes
the outcomes and the statistics. At first, we consider the experiment where
slit b is closed. Then the possibility space is

SWD = {sadm : s ∈ S, a ∈ W,dm ∈ D} . (32)

There are no internal possibilities. Therefore, the outcomes coincide with the
elementary possibilities. The probability amplitude ϕsa = 1 since the other
slit is closed. Hence,

ϕsadm = ϕsaϕadm = αm. (33)

There is only one route. Born’s rule implies Pr(sadm) = |αm|2. Thus, we
obtain a classical probability without any interference, as expected. Similarly,
when slit b is closed, we obtain Pr(sbdm) = |βm|2 without any interference.

Now, we assume that both slits are open. Then the possibility space is
defined in (28). The internal possibilities are the two slits a and b in the wallW .
Hence, the sample space consists of the outcomes (29). The possibility space
is larger than the sample space yielding a non-classical model. We assume
that the experiment is symmetric with respect to both slits, that is, in a
future experiment, the particles would pass with probability 1

2
through each

slit. Hence, we set ϕsa = ϕsb = 1√
2
. The probability amplitudes calculated by

the multiply-and-add rule are

ϕsWdm = ϕsaϕadm + ϕsbϕbdm

= 1√
2
αm + 1√

2
βm.

(34)

Therefore, we get the probabilities

Pr(sWdm) = | 1√
2
αm + 1√

2
βm|2

= 1
2
(αm + βm)∗(αm + βm)

= 1
2
(α∗mαm + α∗mβm + β∗mαm + β∗mβm)

= 1
2

(|αm|2 + |βm|2) + 1
2
(α∗mβm + β∗mαm).

(35)
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Figure 3: Schematic illustration of the double-slit experiment. The arrows
represent the complex amplitudes for each path and their sum. Squaring the
magnitude of the sum determines the corresponding probability. This leads to
destructive and constructive interference, as displayed on the wall of detectors.

The first term in this sum corresponds to the classical probability, and the
second term describes interference.

This can easily be seen as follows. For amplitudes with αm = βm we obtain
from (35)

Pr(sWdm) = 2|αm|2. (36)

This doubles the classical probability, where only one slit is open. Hence, we
have constructive interference. If αm = −βm, the probability of finding the
particle at detector dm is

Pr(sWdm) = 0, (37)

yielding destructive interference. For other combinations we obtain probabili-
ties that are between both extreme cases.

Until now, we don’t have the correct values for all amplitudes, such as
αm and βm. We use the third principle. To calculate the amplitude for a
particle with momentum p going from one position x1 to another x2, we need
the classical physical action of this process. In classical mechanics a first order
approximation of the action is S = p(x2 − x1), and the related amplitude of
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a path between positions x1 and x2 is proportional to the complex number
eip(x2−x1)/~, where ~ is Planck’s constant.

We have described three different experiments that lead to different prob-
abilities. In almost the entire literature, the question is asked how the particle
knows which slits are open. The answer: magic, non-locality, wave-particle
dualism, etc. The reason is the mental fixation on the particle. But it’s the
other way around. The experimental set-up plays the primary role;
the particle only plays a secondary role, which is limited to the in-
teraction with the experimental set-up in the present. It tends to
move to states of larger probability. Quantum mechanics is a theory
that describes the structure of an experiment in its entirety with
so-called amplitudes leading to probabilities via Born’s rule. In the
following, this will become more clear.

Now, we want to discuss the case where we can get information about
through which slit the particle passes. This information can be given by two
additional detectors da and db that click when a particle passes slit a or b,
respectively. Of course, detectors may fail, and information might be wrong.
Such cases are not considered at the moment. We assume that the detectors
work correctly, that is, it cannot happen that a particle in a future interaction
arrives at detector dm via slit b and detector da clicks, or both detectors da
and db don’t click.

The experimental set-up has changed. Additionally, we have at the third
place the machine I = {da, db} of detectors which gives information through
which slit a particle passes. Looking at the experiment SWID, displayed
in Figure 4, we have the possibilities that a particle is detected at point m
and the detector da or db clicks. Obviously, there are no internal possibilities.
Therefore, the outcomes coincide with the possibilities, and the possibility
space

SWID = {sadadm, sbdbdm : s ∈ S, a, b ∈ W,da, db ∈ I, dm ∈ D} (38)

coincides with the sample space. Thus, we have a classical experiment without
any interference. But the outcomes have changed. They are doubled. Of
course, a change of the possibility space and the sample space must imply a
change of the statistics.

The amplitude that a particle goes from source s via slit a to point m and
detector da clicks is

ϕsadadm = ϕsaϕadaϕdadm . (39)

For each outcome we have exactly one path. Our assumptions imply the

probability amplitudes ϕada = 1 and ϕsa =
1√
2

. Hence,

ϕsadadm = ϕsaϕadaϕdadm =
1√
2
αm, (40)

which leads to the classical probability Pr(sadadm) = 1/2|αm|2. Analogously,
we obtain the classical probability Pr(sbdbdm) = 1/2|βm|2. The fact that in
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Figure 4: The double-slit experiment with slit-detectors. There are two paths
for the event that a particle arrives at point 2 and detector da clicks. For the
other points there are two paths as well.

this experiment internal possibilities are absent, such that possibilities coin-
cide with outcomes, implies the disappearance of interference. It is simply a
consequence that there are no internal possibilities.

The same result is obtained when we use only one detector, say detector
da. Then the detector db is replaced by the possibility ”detector da does not
click“. As above, we obtain the same possibilities and outcomes yielding the
same classical probabilities.

It may also happen that a particle arrives at dm via slit b and detector da
clicks, or that a particle arrives at dm via slit a and detector db clicks, or both
detectors click or both don’t click. These situations can be modeled as above
and are left as an exercise. For example, if both detectors don’t work, it is
easy to show that we have interference as in the case without any detectors.

We want to explain how the strange philosophical aspects described above
change when using our categorization.

• Non-locality: Whether there are detectors at the slits or not, or which
slits are closed, are properties of the experimental set-up and belong
to the category structure. Different set-ups imply different probability
amplitudes. For example, we have seen that a detector at a slit gives
further information outwards and changes the outcomes leading to other
statistics. Born’s rule provides probabilities that belong to the prognostic
category future. The particle comes into play in the present and has no
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idea of the experimental set-up and the placed detectors. The only thing
it does is to act according to the probabilities: There is no rest, and the
particle tends to move towards states of larger probability. Hence, in our
categorization, this weird non-locality does not appear. It is simply a
structural property of the experimental set-up, not a strange behavior of
the particle.

The next aspect mentioned above says that observing changes the reality.
In other words, the act of observation may affect the properties of what is
observed.

• Observing: In our framework, observing is described in terms of de-
tectors belonging to the experimental set-up. The addition of further
detectors, their functioning and their reliability is responsible for the
occurrence of interference, as we have seen. It should be realized that
an observer, who takes note of what happens, is entirely unnecessary.
Nothing weird happens. The set-up of the experiment decides which
of the mathematical models described above applies to the double-slit
experiment.

The third aspect is the widely celebrated wave-particle duality, which is
deeply embedded into the basics of quantum theory.

• Wave-particle duality: It states that every particle may be described
as either a particle or a wave. The complete information about a par-
ticle is encoded in its wave function, which evolves according to the
Schrödinger equation. Wave-particle duality expresses the incapability
to describe the behavior of quantum objects with the standard physical
concepts ”wave“ and ”particle“. In our framework, we can: the
particle concept continues, and the wave is not like a water or
a sound wave. It is simply a probability distribution according
to the experimental set-up.

We mention a further series difficulty of the wave-particle picture. Ob-
viously, Schrödinger’s wave equation can be no longer an ordinary wave
propagating in spacetime, if systems with N particles are considered. In-
stead, it propagates in the so-called configuration space of dimension 3N,
where even for a small macroscopic system, this dimension becomes as-
tronomically large. Moreover, in quantum mechanics, two-state systems
are frequently discussed. These are systems that can exist in a superpo-
sition of two mutually exclusive base states. They form the fundamental
quantities in quantum information theory, namely the qubits, or the urs
as von Weizsäcker calls them. Polarization states or spin 1/2 states are
examples. It is questionable to use the term ”wave“ for a two-state sys-
tem. The right way is to speak of probability distributions, generated
by all machines that form the experimental set-up. These machines are
globally positioned in a large area. Sometimes this give the impression
that quantum mechanics is non-local as described above.
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The wave concept is based on the superposition principle. Perhaps, the
most fundamental question in quantum mechanics is: ”What really happens
in a superposition when only one particle is the experiment¿‘ This question
is usually answered with weird statements such as: ”The particle is in several
states at once” and ” The particle interferes with itself“. This is a view with a
focus on the tiny particles. As frequently mentioned, our focus is on probabil-
ities derived from the experimental set-up where active particles are irrelevant
since they interact with the set-up only in the present.

• Superposition: Usually, the superposition principle means that states
are described by vectors in a Hilbert space, and that each linear combina-
tion of states is a state again. In other words, every vector of a Hilbert
space corresponds to a state. In our probabilistic approach we have
not defined states. We work with set theoretical concepts possibilities
and outcomes which live in the category structure. There, superposition
means that the possibilities of one machine can be expressed in terms of
the possibilities of other machines via probability amplitudes. For exam-
ple, the possibility that a particle will hit a detector in the wall of the
detectors in the future can be expressed by all possible paths through
the wall of the slits to this detector as the end point via probability am-
plitudes. A particle would be able to choose this path as well as another
path. Only in the present it has to choose either this or that path.

What about Zeilinger’s mysteries?

• Zeilinger’s mysteries: How do we resolve Zeilinger’s quantum myster-
ies? Our categorization and explanation of the double-slit experiment
below break down the illusion that a particle is a wave and can be at
several places simultaneously. This supports experimental observations:
an atom being at different places simultaneously has never been mea-
sured. The latter statement is only a mathematical conclusion, not an
experimental one. Secondly, the slit experiment (in our approach) is a
simple consequence of a probability theory that carefully distinguishes
between outcomes and possibilities. The experimental set-up, consisting
of various machines, is responsible for the patterns. These machines are
distributed non-local over space. They are responsible for the possibility
space, the sample space, and the probability amplitudes. The molecule’s
property is the local interaction with the machines in the present. The
patterns of the double-slit experiment become facts of the past. There
is no mystery. Mystery occurs because most well-known arguments are
based on pushing the ”local“ properties of molecules in the foreground,
and not the global aspects of experimental set-ups.

4.6 Dice Unlike Any Dice

The physicist Anthony Zee44, well-known for his publications in quantum field
theory, particle physics, and other topics in theoretical physics, has used the

44Zee [2015], p.141
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title of this section in his book ”Fearful Symmetry“. He started this section
with the words

Welcome to the strange world of the quantum, where one can-
not determine how a particle gets from here to here. [...] When a
die is thrown, the probability of getting a 1 is 1/6. The probability
of getting a 2 is, of course, also 1/6. Now, consider the follow-
ing question: What is the probability of getting a 1 or a 2 in one
throw? The answer is evident to gamblers and non-gamblers alike:
The probability is 1/6 + 1/6 =1/3. In everyday life, to obtain the
probability of either A or B occurring, we simply add the probability
of A occurring and the probability of B occurring.

The quantum die is astonishingly different. Suppose we are told
that for the quantum die the probability of throwing a 1 is 1/6, and
the probability of throwing a 2 is also 1/6. In contrast to what our
experience with ordinary dice might suggest, we cannot conclude
that the probability of getting either a 1 or a 2 in one throw is 1/3!
It turns out that the probability of throwing a 1 or a 2 can range
between 1/3 and 0!

It seems that quantum theory gives other results than the classical prob-
ability theory. Zee is an expert in quantum theory, and what he writes is
widely accepted and is common sense. Apparently, Zee views classical proba-
bility theory as incompatible with quantum theory, that is, both theories are
entirely different and handle different statistical applications and problems.
This understanding is contrary to our unified probabilistic recipe.

Let us apply our recipe to dies. What is the probability of getting a 1 or
a 2 in one throw? A die has 6 elementary possibilities 1, 2, 3, 4, 5, 6. For each
possibility, we set the action equal to zero and choose the probability amplitude
equal to 1/

√
6. There are no internal possibilities. The outcomes coincide

with the elementary possibilities, yielding with Born’s rule the probabilities
1/6 for each outcome. Then, using the classical Kolmogorov rules, we get the
probability 1/3 for obtaining a 1 or a 2 in one throw? There is nothing strange.

However, there is a fundamental difference between standard quantum the-
ory and our probabilistic framework, although we have reconstructed quantum
theory. The significant difference is the clear distinction between internal pos-
sibilities, possibilities, and outcomes. In Section 5, we show how our recipe
reconstructs the fundamental theory of statistical thermodynamics. There, mi-
crostates correspond to elementary possibilities, and macrostates correspond to
outcomes. Similarly, our recipe works satisfactorily and reasonably for various
classical applications.

4.7 Causality

One of the fundamental principles in physics, consistent with our daily expe-
rience, is that of causality: Events always happen in a fixed order, that is,
they cannot occur in different orders simultaneously. In recent literature45, it

45See for example Goswami et al. [2018], Wolchover [2021]
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is stated that causality should be banned, in particular, because of the rules
of quantum mechanics differing much from classical mechanics. These rules
seem to imply that causality is violated.

An example is the quantum switch where two operations A and B are
connected. There, we obtain two mutually exclusive possibilities: Either ”B
follows A“ or ”A follows B“. Then it is argued that in quantum mechanics
both possibilities can be superposed, leading to an indefinite causal order such
that both cases occur simultaneously. In other words, in the same manner as
a material object can be at different places simultaneously, both causal cases
exist at the same time, thus destroying causality.

Experimentally, the quantum switch can be realized as an optical set-up
with a control qubit |ψ〉c defined in terms of the photon’s polarization. The
operations A and B, viewed as ”black box operations“, are optical machines
applied to a target qubit |φ〉t defined in terms of the transverse spatial mode.
The control bit determines the order in which both operations apply to the
target qubit. When the control bit is |0〉c, then operation B follows A. When
the control bit is |1〉c, then operation A follows B. But when the control qubit
is in the superposition

|ψ〉 =
1√
2
|0〉c +

1√
2
|1〉c, (41)

then the output state of the system is in the superposition

|Ψ〉 =
1√
2
BA|φ〉t ⊗ |0〉c +

1√
2
AB|φ〉t ⊗ |1〉c, (42)

because of the bilinearity of the tensor product. Seemingly, quantum theory
tells us that the daily experienced causality is violated.

In the experimental realization of the quantum switch, there is a source
producing randomized photons. They pass a first calcite crystal with a variable
polarization axis. The second calcite has a polarization axis along the z-axis
with the two base states |0〉c and |1〉c. Finally, the two machines describing
both cases, ”B follows A“ and ”A follows B“, are implemented. According to
the requirements, we change the polarization axis of the first calcite such that
only photons with the desired polarization |0〉c, |1〉c, or their superposition
pass the second calcite.

Not surprisingly, in our approach causality is not violated. Why? All
probabilities can be calculated with our recipe. Since nothing happens in the
future, causality cannot be violated. Starting the experiment with one photon,
in the present exactly one route is selected with the calculated probability.
Hence, causality is not violated in our categorization.

4.8 Our World on Three Pages

Most textbooks in physics are filled with equations of motion described as dif-
ferences of some physical quantities. A completely different approach in physics
is the action principle. From the mathematical point of view, the most simple
form of an action is defined as a real-valued function that has trajectories, also
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called paths or histories, as its arguments. If a particle moves in spacetime,
the action is calculated as follows: We subtract the potential energy from the
kinetic energy, and then we sum up (integrate) these energy differences over
the time interval corresponding to the path. Time t can be viewed merely as
a geometrical parametrization of the path, not as our perception of a physical
flow corresponding to reality.

The action allows to derive the equations of motion. In classical mechanics,
the path followed by a system is that one that makes the action stationary. The
symmetry of spacetime demands that the equations of motion must hold in
each reference frame. They must be covariant with the Lorentz transformation,
that is, when applying a Lorentz transformation, the quantities on both sides
of the equation change, but such that both sides stay equal. In contrast,
invariant quantities do not change when applying these transformations. The
equations of motion are covariant, but the action is invariant with respect to
Lorentz transformations46. Hence, the actions of the elementary possibilities
in the third principle (24) are invariant for these spacetime transformations
and thus fit into our timeless probability recipe.

The action is an additive quantity, and as soon as we can describe a new
area in physics in the form of an action, this action is added to the whole
action expression. Then we get a single formula, called the path integral, that
could be similar to the expression

S =

∫
dx
√
g

[
1

G
+

1

g2
F 2 + ψD̂ψ + (Dψ)2 + V (ψ) + ψφψ

]
. (43)

Unfortunately, understanding this formula requires years of intensive study of
physics47.

It has been found that the principle of action is universal and can
be applied to all physics. In other words, the entire physical world
is based on a fundamental quantity, the action. This affects clas-
sical mechanics, Maxwell’s equations, the ten equations of general
relativity, and quantum mechanics. The important symmetries in
physics (spacetime translation, gauge symmetry, etc.) are symme-
tries of the action. The continuous symmetries of the action imply
conservation laws.

It seems to be very natural to believe that the the single purpose of clas-
sical time-symmetric theories, like mechanics in spacetime, electromagnetism,
or gravitation, is to compute an action functional, which produces the phases
of probability amplitudes. The probability amplitudes form the basis of sta-
tistical motion, as described in our probabilistic algorithm. There is a close
relationship to the Wiener integral for solving problems in diffusion and to
Brownian motion yielding non-smooth zigzag paths. In fact, the Feynman
principles are referred frequently to the work of Norbert Wiener on Brownian
motion in the early 1920s. Since Feynman sums up all paths, his approach

46Zee [1993], Chapter 7, Zwiebach [2004], Chapter 5
47Zee [1993], The heading of this section is a variation of the german title in Zee’s book

”Die ganze Welt auf einer Serviette”, page 134.
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is well-known under the name Feynman path integral. Even strange claims
survive until now. For example, Dyson writes:

Thirty-one years ago [1948], Dick Feynman told me about his
”sum over histories” version of quantum mechanics. ”The electron
does anything it likes,” he said. ”It just goes in any direction at
any speed, forward or backward in time however it likes, and then
you add up the amplitudes and it gives you the wave-function.” I
said to him, ”You’re crazy.” But he wasn’t.48

There is a fascinating, beautifully written, and comprehensive physic book
by Schiller 49 where he investigated in part IV “The Quantum of Change”.
This book is highly recommendable for students in engineering. His starting
thesis is:

• the action values S1 and S2 between two successive events of a quantum

system cannot vanish. They satisfy the inequality |S2 − S1| ≥
~
2

.

This minimum action principle is in complete contrast to classical physics, but
has never failed a single test, as pointed out in his book. Based on the quantum
of change, Schiller deduced several consequences that cannot be found in other
textbooks but agree with Feynman’s view:

• In nature, there is no rest.

• In nature, there is no perfectly straight or perfectly uniform motion.

• Perfect clocks do not exist.

• Motion backward in time is possible over microscopic times and distances.

• The vacuum is not empty.

• Photons have no position and cannot be localized.

• Microscopic systems behave randomly.

• Light can move faster than the speed of light c.

Now, unbelievable many applications of path integrals in physics are known,
including the harmonic oscillator, particles in curved space, Bose-Einstein con-
densation and degenerate Fermi gases, atoms in strong magnetic fields and the
polaron problem, quantum field-theoretic definition of path integrals, or string
interactions. The Feynman path integral is known as a candidate theory for
the quantum gravity problem. In the context of quantum cosmology, some
investigations about the start of our universe using path integrals are known.
One can find many details in the comprehensive book of Kleinert50.

48https://en.wikiquote.org/wiki/Freeman_Dyson
49Schiller [2016]
50Kleinert [2009]

https://en.wikiquote.org/wiki/Freeman_Dyson
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In summary, the fundamental quantity action, appropriately applied to
our probability recipe in Section 4, provides an algorithm that allows us to
describe almost all experimental results but avoids well-known paradoxes. This
algorithm might be viewed as a program for solving experimental problems,
not for explaining our world ontologically.

5 Reconstruction of Thermodynamics

A theory is the more impressive the greater the simplicity of its
premises is, the more different kinds of things it relates, and the
more extended is its area of applicability. Therefore the deep im-
pression which classical thermodynamics made upon me. It is the
only physical theory of universal content concerning which I am
convinced that within the framework of the applicability of its basic
concepts, it will never be overthrown. Albert Einstein, Autobio-
graphical Notes (1946)

It is an important touchstone for our probability theory to recon-
struct thermodynamics, this physical theory of universal content. It
turns out that thermodynamics can be viewed as a straightforward application
of our probabilistic recipe described in Section 4.

Statistical thermodynamics, a large area of statistical mechanics, was de-
veloped primarily by the Austrian physicist Boltzmann (1844 - 1906), but also
other scientists contributed to it, among them Maxwell and Gibbs. Boltzmann
applied statistical methods to the controversial discussed atomic hypothesis.

Usually, in statistical mechanics, huge numbers of constituents are consid-
ered. For a system composed of a large number of particles, say of the order of
Avogadro’s number ≈ 1023 which corresponds to 1 mole of molecules, it is not
possible to follow their trajectories, regardless of whether they even exist. No-
tice that the number of all grains of sand on all beaches in our world is about
1019. Moreover, we have no accurate initial conditions, namely exact posi-
tions and momenta of each particle, required for such calculations. Therefore,
one can deduce only statistical descriptions in thermodynamics. The question
arises whether there exist few statistical macroscopic parameters that deter-
mine approximately the thermodynamical system. Actually, such parameters
exist.

Thermodynamics, however, with its basic concepts like the second law, en-
tropy, and the ”Time’s Arrow“, is discussed controversially; see for example
Ben-Naim51. He writes that ”Time does not feature in thermodynamics in gen-
eral, nor in entropy“, and ”Reading through the entire book by Eddington52,
you will not find a single correct statement on the thermodynamic entropy“.
We would like to show that our approach leads to a new understanding of
thermodynamics.

51Ben-Naim [2018] Chapter 1
52Eddington [1927]
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5.1 Two-State Systems

It is beneficial, but not necessary, if the reader has some knowledge of statistical
thermodynamics. There are plenty of books and articles on this subject. For a
nice introduction, we mention Penrose53, and moreover four textbooks54 which
are well-suited for engineers.

We start this section with an introductory example. Suppose that n in-
distinguishable molecules are placed in a box consisting of N cells. There are

Ω(n,N) =

(
N
n

)
=

N !

n! (N − n)!
. (44)

possibilities of dividing n objects in N cells: N cells where the first molecule
can be placed, N−1 cells where the second one can be placed, and finally N−n
cells where the last one can be positioned. Hence, we get N !

(N−n)! possibilities.
But the constituents are indistinguishable such that the n! configurations are
not distinct, leading to the remaining denominator. The number Ω(n,N) is
called the multiplicity of the macrostate (n,N). Its distinct configurations are
called the accessible microstates.

Instead of always working with large multiplicities, it is convenient to define
the entropy

SB(n,N) = k ln Ω(n,N). (45)

This form is called Boltzmann entropy. It is placed on his gravestone. The
logarithm makes large numbers manageable, but more important is that the
entropy of two independent systems must be added to get the entropy of the
combined total system. Entropy is an additive quantity like energy.

Suppose we have a second box consisting of M cells that contains m
molecules. Then the number of configurations, when both boxes are kept
separate, is the product

Ω(n,m,N,M) = Ω(n,N) Ω(m,M), (46)

since for each microstate of the first system there are Ω(m,M) microstates of
the second system. Hence, the entropy is in this case

SB(n,m,N,M) = k ln Ω(n,m,N,M) = SB(n,N) + SB(m,M). (47)

The constant factor k is purely conventional and is chosen according to the
application. Boltzmann has chosen a special constant kB for k that relates the
average relative kinetic energy of gas molecules with the temperature. The
multiplicity, and equivalently the entropy, express in some sense the disorder
or uncertainty of the system in a given macrostate. If the system has a small
multiplicity, then the system can be only in a few microstates and has low
entropy.

53Penrose [2005], Chapter 27
54 Schroeder [1999], Gould, Tobochnik [2010], Schwarz [2017], Swendsen [2020]
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macrostates microstates
(3, 0) (p1p2p3)
(2, 1) (p1p2q1)(p1p3q1)(p2p3q1)(p1p2q2)(p1p3q2)(p2p3q2)
(1, 2) (p1q1q2)(p2q1q2)(p3q1q2)

Table 1: Two boxes with 3 macrostates and 10 microstates. The number of
accessible microstates, the multiplicity, varies between one and six.

What happens if it is allowed that the molecules can be interchanged be-
tween both boxes? What are the microstates of both boxes in this case? Let
us consider the case n = 2, N = 3,m = 1,M = 2. There are three macrostates
of the combined boxes. The first one contains all three molecules in the first
box, denoted by (3, 0), the second one is (2, 1), and the third one is (1, 2).
Other combinations are not possible. Each macrostate consists of a set of con-
figurations, that is, of accessible microstates. For example, (p1p3q2) denotes
the state where one molecule occupies the first cell p1 in the first box, a second
molecule occupies the third cell p3 in the first box, and the third particle is
in the second cell q2 of the second box. All macrostates and microstates are
displayed in Table 1.

There may be many accessible microstates for each macrostate. The total
multiplicity Ωtot is the sum over the multiplicities of all macrostates, that is,
the sum over all microstates. In our example, we have 10 microstates yielding
the total multiplicity 10. The total entropy of the system is SB = k ln Ωtot.

A macrostate is observable. We have to separate both boxes, thus disallow-
ing the interchange of molecules. Separating both boxes acts as a constraint.
For example, if we separate both boxes and observe the macrostate (2, 1),
then the first box has only one macrostate (2) containing three microstates
(p1p2), (p1p3), (p2p3), and the second box has only one macrostate (1) con-
taining two microstates (q1), (q2). Hence, removing any constraint of an
isolated combined system will increase multiplicity and entropy. This
is one formulation, perhaps not the most known version, of the second law of
thermodynamics55.

The thermodynamic equilibrium56 is the macrostate with the greatest mul-
tiplicity, or equivalently with the highest entropy. In our example, it is the
state (2, 1). If N = M and n = m, then it is easy to show that the equilib-
rium is the macrostate (n, n,N,N) where both boxes have an equal number
of molecules. If the number of cells and the number of molecules are different,
then the boxes have equal concentrations ñ/N and m̃/M in the equilibrium
state. This property justifies the name equilibrium.

So far, all these thermodynamic quantities, namely microstates, macrostates,
multiplicity, entropy, equilibrium, the second law of thermodynamics, and dis-
order belong to the category structure. They describe the deterministic struc-
ture of the experimental set-up without any dynamics or uncertainty.

The fundamental principle in statistical thermodynamics states that all
microstates of a system are equally probable. This is a probabilistic

55Ben-Naim [2018] Chapter 4
56Attard [2002], Chapter 1
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statement and thus belongs to the category future. It follows that the proba-
bility of a macrostate is the multiplicity of this macrostate divided by the total
multiplicity Ωtot.

But what about the dynamics of a thermodynamic system? We claim
that a system is never at rest and has the tendency to move from
microstate to microstate toward macrostates of larger probability.
Macrostates that are supposed to occur more frequently occur more frequently.
However, this is a tendency, and the system may also move to a macrostate
with low probability. Even if the macrostate is the equilibrium, the system may
move to other macrostates with lower probabilities. We speak of fluctuations.
These weak statements about motion belong to the category present.

In our example, we have 10 microstates, and each has the probability 1/10.
The microstates are mutually exclusive. Thus the macrostate (3, 0) has prob-
ability 1/10, the macrostate (2, 1) has the probability 6/10, and (1, 2) has the
probability 3/10. Hence, on the average we expect to observe the system in
state (3, 0), (2, 1), or (1, 2) in about 1/10, 6/10, or 3/10 of the observations, re-
spectively. It is simple to write a program that simulates transitions between
the microstates in agreement with these probabilities. Obviously, a system
starting in a low probability macrostate and moving to an equilibrium, some-
times returns to this initial state. Hence, thermodynamics is not irreversible.
In particular, the entropy may decrease. Depending on the experiment, a re-
turn to the initial state is not impossible but may be extremely improbable.
The widely celebrated association of entropy and the idea of the ”times arrow“
is barely comprehensible.

To illustrate the basics above, we could also examine each other two-state
system, such as a paramagnet, spin, polarization, coin toss, or mixing colors.
Two-state systems are considered universal by some scientists. Very early in
the fifties, Weizsäcker57 formulated two principles of his ur theory:

• Principle of alternatives: Physics reduces to measurement outcomes,
the only available quantities. Thus physics is best formulated based on
empirical decidable alternatives. Alternatives describe mutually exclusive
states, events, outcomes, possibilities, or facts. They either happen or do
not happen, but two or more alternatives cannot happen simultaneously.

Then he restricted physics further, stating his

• Ur hypothesis: All alternatives can be constructed from binary alter-
natives.

Hence, physics can be defined entirely in terms of binary alternatives and their
symmetries58. In other words, Weizsäcker developed the view that ”all physical
models can completely be derived from the information contained in an ur”.
For more details, see Section 6.

This small section already provides the basic machinery of statistical ther-
modynamics. In the following sections, we will deal more generally with ther-

57von Weizsäcker [1955],von Weizsäcker [1958]
58See also von Weizsäcker [1988], von Weizsäcker [1992], von Weizsäcker [2006]
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modynamics, its reconstruction from the principles in Section 4.2, and its
generalizations up to optics in Section 5.5.

5.2 Reconstruction

Each thermodynamic system is fundamentally described by a set of microstates,
which are specified by the states of each constituent of the system, such as po-
sitions and momenta or the quanta of energy for each constituent. In other
words, it is a specific microscopic configuration of a system where all possible
microscopic variables are fixed. The microstates form distinguishable alterna-
tives, that is, they either happen or do not happen in the present, but two or
more of the microstates cannot occur simultaneously.

Macrostates refer to the state of the system as a whole. There are only
a few macroscopic variables such as the total energy E, pressure P , volume
V , temperature T , the total number N of gas molecules, or magnetization
M . Many experiments can be described by the three macroscopic variables
E, V,N only. In contrast to few macrostates, the number of microstates may
be huge, and they contain all details of the system. A macrostate emerges
by fixing the value of every macroscopic variable. The macroscopic variables
can be observed or measured in contrast to the large number of microstates.
Macrostates form a partitioning of the set of microstates.

The obvious way to connect the concepts of thermodynamics to our recipe
for calculating probabilities is to identify the microstates as elementary pos-
sibilities. The macrostates, as observable states, correspond to the outcomes.
These are characterized by their accessible microstates. They define the el-
ementary events of the corresponding classical sample space. The accessible
microstates of a macrostate are indistinguishable with regard to macroscopic
observations, but microstates belonging to different macrostates are macro-
scopically distinguishable. In the following, we will use the equivalent terms
microstates and elementary possibilities as well as macrostates and outcomes
optionally. Moreover, we write shortly M for a macrostate and µ for a mi-
crostate.

Next, we shall reconstruct the probabilities for macrostates with our prob-
abilistic framework described in Section 4.2. The third principle states that
all elementary possibilities contribute equally in magnitude, that is, the ampli-
tudes are proportional to some constant times a complex number of magnitude
one. Given a macrostate M, then its accessible microstates µ have the ampli-
tudes

ϕµ = const e
i
~S(µ) for all microstates µ ∈M. (48)

Since we have no further knowledge about actions of the constituents, it seems
to be natural to set the action S(µ) = 0 for all microstates. The action belongs
to the category structure. Moreover, we set

const =
1

√
Ωtot

√
Ω(M)

. (49)
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Then

ϕµ =
1

√
Ωtot

√
Ω(M)

1. (50)

The microstates are pairwise disjoint, and using the second principle (super-
position) we get the probability amplitude of the macrostate M:

ϕM =
∑
µ∈M

ϕµ = Ω(M)
1

√
Ωtot

√
Ω(M)

=

√
Ω(M)

Ωtot

. (51)

With Born’s rule we obtain by computing the square of the magnitude of
probability amplitudes the classical probabilities for the outcomes, namely the
multiplicity of this macrostate divided by the total multiplicity Ωtot. These
probabilities belong to the prognostic category future.

Notice, in our derivation, we did not apply the probabilistic principle of
indifference belonging to the category future. Instead, we set the action of all
elementary possibilities equal to zero, which is a statement about the experi-
mental set-up.

5.3 Entropy

Entropy is a fundamental physical quantity in thermodynamics, statistical
mechanics, quantum theory, and information theory. Unfortunately, there
is a problem because of the various definitions of entropy. Two interesting
publications about different forms of entropy are given by Schwartz59 and
Županovi and Kui60. In this and the next section, we try to establish some
relationships between these definitions.

The Boltzmann entropy is defined for macrostates M as

SB(M) = k ln Ω(M), (52)

and the total entropy of the system is

SB = k ln(Ωtot), Ωtot =
∑
M

Ω(M). (53)

The entropy belongs to the category structure and can be rewritten as:

SB = k
1

Ωtot

∑
M

Ω(M) ln(Ωtot). (54)

Since all microstates of a system are equally probable, we can write

SB = k
∑
M

Pr(M) ln(Ωtot). (55)

59Schwartz [2019], Chapter 6
60Zupanovi, Kui [2018]
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Since

ln(Ωtot) = ln(Ω(M)) + ln
Ωtot

Ω(M)
= ln(Ω(M))− ln(Pr(M)), (56)

we finally obtain

SB =
∑
M

Pr(M)SB(M)− k
∑
M

Pr(M) ln Pr(M). (57)

Notice that we have two mathematical identities for the entropy SB. How-
ever, these are not contentwise identities since probabilities are prognostic
statements, whereas multiplicities and the Boltzmann entropy are structural
properties of the experiment. The first term in this sum is the mean value
of the Boltzmann entropy. The second term applies to macrostate probabil-
ities only. It describes the uncertainty due to the various macrostates of the
system. If this distribution is sharply peaked around the equilibrium state,
then its probability is almost one. Since ln 1 = 0, the second term and the
uncertainty vanish. Moreover, the total entropy is nearly equal to the mean
value of the Boltzmann entropy.

Frequently in the literature, the macrostate probability is expressed as an
exponential of the entropy:

Pr(M) =
Ω(M)

Ωtot

=
1

Z
eSB(M)/k, where Z = Ωtot =

∑
M′

eSB(M′)/k. (58)

Formally, the second term in (57) applies to any probability distribution.
It was originally presented by Gibbs. Later, Shannon derived this expression
in his theory of communication and information.

The second law of thermodynamics is frequently formulated in terms of en-
tropy. There are, however, several different opinions about the second law. For
example, the well-known free encyclopedia Wikipedia61 introduces the second
law with the words:

The second law of thermodynamics establishes the concept of
entropy as a physical property of a thermodynamic system. En-
tropy predicts the direction of spontaneous processes and determines
whether they are irreversible or impossible, despite obeying the re-
quirement of conservation of energy, which is established in the
first law of thermodynamics. The second law may be formulated by
the observation that the entropy of isolated systems left to sponta-
neous evolution cannot decrease, as they always arrive at a state
of thermodynamic equilibrium, where the entropy is highest. If all
processes in the system are reversible, the entropy is constant.

In our approach, this fundamental law has an entirely different meaning. It
belongs to the category structure and says that when we remove in the ex-
perimental set-up of an isolated system any constraint, then multiplicity and

61[https : //en.wikipedia.org/wiki/Secondlawofthermodynamics]
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entropy will increase. Contrary, if we add new constraints, then the entropy
will decrease. We have seen in Section 5.1 that a system starting in a low
probability macrostate and moving to the equilibrium can sometimes return
to the initial state. This is not impossible but highly improbable. It is just
as unlikely as an archaeopteryx will grow out of the earth. But according to
the theory presented here, that would be possible. Thermodynamics is not
irreversible. In particular, the entropy may decrease.

5.4 Quantum Entropy

In quantum theory a fundamental postulate says that quantum states are state
vectors ψj in a complex Hilbert space. Frequently, so-called mixed states are
considered, where only classical probabilities Pj = Pr(ψj) for some orthogonal
state vectors are known. These mixed states are described by the density
matrix

ρ =
∑
j

Pjψjψ
T
j . (59)

The von Neumann entropy is defined as

SN = −k Trace(ρ ln ρ). (60)

The density matrix is a positive semi-definite, Hermitian operator of trace one.
It is not hard to prove that SN is well-defined, basis independent, and can be
written in the form

SN = −k
∑
j

〈ψj|ρ ln ρ|ψj〉 =
∑
j

Pj lnPj. (61)

This is the same mathematical form as the right-hand side in formula (57), and
formally equivalent with the Gibbs and the Shannon entropy, as already men-
tioned. For a pure state, such that Pj = 1 for some j and zero otherwise, the
von Neumann entropy is zero. In a pure state, we have certainty. Otherwise,
it is a basis-independent measure of uncertainty.

The von Neumann entropy is the standard in quantum information theory.
Our probabilistic framework allows a completely other way to look at entropy
from the point of view of quantum theory. The Boltzmann entropy (45) can
be viewed as a scaled multiplicity. The multiplicity of a macrostate M is the
number of its accessible microstates µ ∈M, and thus can be written as

Ω(M) =
∑
µ∈M

1. (62)

Our third principle replaces the principle of indifference by substituting
the 1 with a complex number of magnitude one. If we apply this rule to the
multiplicity, we get a complex multiplicity for a macrostate M:

ΩC(M) =
∑
µ∈M

e
i
~S(µ), (63)
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where S(µ) denotes the action of microstate µ. The action allows to incor-
porate geometrical properties of the experimental set-up. When we have no
additional geometrical information as in statistical thermodynamics, the action
is set equal to zero, and we get back classical multiplicities.

In the case of a slit experiment, the paths correspond to the microstates.
The outcomes, or equivalently the macrostates, correspond to the set of paths
from the source to a particular detector. Then, except for one real constant,
the complex multiplicity coincides with Feynman’s path integral. This is a
surprising fact. In other words, we can identify the complex multiplicity with
Feynman’s path integral. Conversely, the usual multiplicity is a special case
of the path integral.

If we replace in Boltzmann’s entropy the multiplicity by the complex mul-
tiplicity, it follows that

SB,C(M) = k ln ΩC(M) = k ln
∑
µ∈M

e
i
~S(µ). (64)

We call it the quantum Boltzmann entropy.
The complex multiplicity is a complex number, and can be written in the

form

ΩC(M) = r e
i
~S, (65)

where r and S are real numbers. Thus, the quantum Boltzmann entropy takes
the form

SB,C(M) = k ln r + k
i

~
S. (66)

In the extreme case where the action S(µ) = 0 for all accessible microstates
µ ∈ M, it follows that S = 0, and SB,C(M) coincides with the Boltzmann
entropy. It is natural to interpret S as an average action of a macrostate M
and r as an average real multiplicity. In other words, this quantum entropy
gives back an average Boltzman entropy k ln r on the real axis and an average
action S on the imaginary axis.

5.5 Light Reflection

In this section, we answer the question stated in the preface: What has statis-
tical thermodynamics and the reflection of light on a mirror have in common?

The seemingly simple problem of how light is reflected by a mirror is usually
solved with the well-known ray model of light in optics, see Figure 5. It says
that the mirror reflects light in a way such that the angle of incidence is equal
to the angle of reflection. Moreover, the length of the mirror, as well as the
right and the left end of the mirror, do not influence the light that reaches
the detector. This model describes light in terms of rays and holds in many
practical situations.

The experimental set-up is as follows: at a source, the light of one color is
emitted, and at another point, there is a photomultiplier for detecting light.
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Figure 5: The classical view of the ray model: the mirror reflects light such
that the angle of incidence is equal to the angle of reflection.

We use a very low light intensity such that some time passes between the clicks
of the photomultiplier. In other words, only one photon is in the experiment
at any time. To prevent a photon from going straight across to the detector
without being reflected, a wall is placed in the middle.

We want to investigate the reflection of light within the framework of sta-
tistical thermodynamics, except that we replace the principle of indifference
with the third principle (24). We model this experiment as a two-state sys-
tem. The photomultiplier P for detecting photons is one state. The universe
U without P forms the second state. The classical ray model says that the
mirror reflects light such that the angle of incidence is equal to the angle of
reflection. Our experiment is constructed symmetrically such that a photon
can only move on one path, as displayed in Figure 5. This path is the only mi-
crostate. The macrostate P has exactly one microstate, which represents this
path. The macrostate U is empty. The probability of P is one and is zero for
U . Unfortunately, this model disagrees with experimental results. If we cut off
several parts of the mirror, including the essential middle part of the mirror,
then sometimes the photomultiplier clicks. We observe reflection. Hence, the
photon should also move on other paths than on the unique microstate of P .

This observation suggests claiming that all paths from the source S to
P or U are the microstates (possibilities). Only paths through the wall are
forbidden62. The macrostates (outcomes) P and U are the sets of paths from
source S to P and U , respectively. The macrostates are observable. Either the
detector P clicks or the photon disappears in U . Both macrostates are disjoint
and cannot happen simultaneously in the present.

In thermodynamics, all accessible microstates contained in the current
macrostate have, according to the principle of indifference, equal probability.
This can be represented geometrically by allocating the same unit vector to ev-
ery accessible microstate of a given macrostate. Summing up all these vectors
yields a vector that represents the multiplicity of the macrostate. Obviously,
this approach does not work. In agreement with our probabilistic framework,
we replace the principle of indifference with the third principle (24): Each
possible path is furnished with a reasonable amplitude as displayed in Figures
6 and 7. The phase of the amplitude is the action. In spacetime, the action
is invariant with respect to Lorentz transformations63, and thus fit into our

62We assume that there is only a finite number of paths to avoid complicated mathematics.
63Zee [1993], Chapter 7, Zwiebach [2004], Chapter 5
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Figure 6: Feynman’s view says that light has an amplitude equal in magnitude
for each possible path from the source to the photomultiplier. In particular, it
can be reflected from every part of the mirror, that is, from the middle as well
as from the other parts.

timeless probability theory.
This is the way how the well-known wave-particle duality is resolved in

Feynman’s formulation: The photon has no complementary partner, such as
a wave. Instead, paths are equipped with arrows, namely the probability am-
plitudes that satisfy the general rule: For each path from the source to the
photomultiplier, draw an appropriate arrow, and add all arrows with parallel-
ogram addition. This is the quantum rule of superposition. Then square the
magnitude of the resulting arrow. This returns the probability of being de-
tected by the photomultiplier. The wave turns out to be simply a probability
distribution.

The action for photons depends only on the length of the paths. This is
a geometrical property of the experimental set-up and thus belongs to the
category structure.

In many textbooks, it is stated that a photon should simultaneously move
on all possible paths from the source to the detector, a strange visualization64.
This seems to be, however, the only consistent conclusion if we assume that we
live in four-dimensional space-time. In our framework, this weird imagination
does not apply due to our categorization trinity of time and structure. There,
the amplitudes are related to possibilities, not to interactions of particles in
the present.

The small arrows in this sum are displayed65 in Figures 6 and 7 where
we have divided the mirror into little squares, with one path for each square.
When we add all contributions for the paths, then, as seen in Figure 7, the
final arrow length evolves mainly from arrows of the middle part of the mirror,
whereas the contributions from the left and right parts almost cancel out each
other. This sum is the complex multiplicity (63) for the macrostate P .

More precisely, for all paths from the source to the photomultiplier, the
action Spath is very large compared to Planck’s constant. Therefore, for nearby
paths, the amplitudes differ very much, since a relatively small change of the
action is large compared to ~, thus yielding a completely different phase. This

64The usual interpretation of this experiment can be found in the nice talk of Girvin in
the KITP Public Lectures, see online kitp.edu/online/plecture/girvin.

65The figures in this section are modifications of related ones in the book Feynman [1985]

kitp.edu/online/plecture/girvin
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Figure 7: The amplitudes for all possible paths are added together. The major
contribution to the final arrow’s length is made by the paths of minimal action,
that corresponds to the paths of minimal length.

implies the cancellation of the arrows in the sum.
There is only one exception, namely the paths that are infinitesimally close

to the path of least action, also called the extremal path. In this case, the first
variation of the action is zero. This implies that nearby paths have almost equal
action and thus have equal amplitudes in the first approximation. Exactly
these paths are the important ones and contribute coherently. This occurs in
the region where the arrows almost point in the same direction.

In other words, all paths distant from the classical path of least action
interfere destructively. On the other hand, the paths in the neighborhood of
the classical path interfere constructively. This is the reason why we observe
mainly classical events, such as light travels in a straight line. Only the middle
part of the mirror seems to be responsible for reflections. It is astonishing,
however, that the ”stopwatch“ e

i
~S(µ) rotates ten thousands of times until the

photon reaches the photomultiplier, but the amplitude for this event is the
final hand direction of the watch.

This, however, is not the whole story. The fundamental question is: How
does the photon find the path of extremal action? Does the photon smell out all
possible paths to find the right path. Or is this approach only a mathematical
description far away from any reality? If this formalism has any validity, we
should be able to show in an experiment that a photon sometimes chooses also
other paths.

It is simple to answer these questions using the following experiment. We
cut off a large part of the mirror such that only three segments on the left side
are leftover, see Figure 8. Moreover, the amplitudes are displayed in greater
detail. If we add all arrows, we see that they cancel out, and the probability
of being detected in the photomultiplier is almost zero.

But if Feynman’s theory is true, then photons should be detected when
we reduce the left part of the mirror in a manner such that no cancellation
can occur, see Figure 9. Then the majority of arrows points to the right, and
in total, we obtain an amplitude that predicts a strong reflection. In fact,
in agreement with our theory, the photomultiplier clicks sometimes. This
sounds crazy: in theory as well as in practice, you cut off the critical
middle of the mirror, from the remaining part, you scrape away
appropriate pieces, and then you observe reflection. Once more, the
photon seems to walk on each possible path with a stopwatch. This
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1 2 3

Figure 8: Considering only the piece of the left part of the mirror, the detector
does not click, since the amplitudes add up to approximately zero.

1 2 3

Figure 9: A striped mirror reflects a substantial amount of light, and is called
a diffraction grating.

weird view vanishes when we ascribe the amplitudes as a structural
concept.

The size of the experiment, the placements of source, photomultiplier and
cut-out’s of the mirror, and hence the direction of the arrows also depend on
the color of the light, hence on its energy or equivalently, its frequency. This
follows from the definition of the action that depends on the frequency or
equivalently on the wavelength of light.

We have seen that cutting off parts of the mirror results in the complex
multiplicity being close to zero since the amplitudes for the microstates cancel
each other out. Further appropriate cutting off of the mirror then leads to
amplitudes that are different from zero because no cancellation takes place.
In classical thermodynamics, such situations cannot happen because all mi-
crostates are equipped with one. The second law of thermodynamics, stated
in Section 5.1, does not help since it says that removing any constraint of an
isolated combined system will increase the multiplicity and entropy. The re-
flection of light shows that for complex multiplicities and complex entropy, a
more general, almost trivial law does hold: Changing constraints of an isolated
combined system changes the quantum Boltzmann entropy and the complex
multiplicity, thus Feynman’s path integral.
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Figure 10: The angle of reflection depends on the color (wavelength) of light.

6 Quantum Information Theory

In classical information theory, information-processing tasks like storage and
transmission of information, data compression, Shannon entropy, or channel
capacity are investigated. This theory is based on the observation that there
is a fundamental link between probability and information. Quantum me-
chanics is a probabilistic theory, thus connected with information and leading
to quantum information theory. This is a rather new and rapidly developing
discipline. The special probabilistic rules of quantum mechanics lead to funda-
mental differences between quantum and classical information theory. We can
present only a concise overview, including some historical remarks. There are
many good introductions to quantum information theory. We mention only
few textbooks66.

6.1 History of ”It from BIT“

Besides the striking concepts superposition and entanglement, there are many
further fundamental questions in physics. Among them: Which of the vari-
ables or quantities are basic, and which of the quantities emerge? Is time
an illusion, or emerges time from a timeless physical model? Emerges even
Minkowski spacetime? Is the asymmetry of time an accident? Why is the
distinction between the past, present, and future almost absent in the fun-
damental physical models? Is at least our three-dimensional Euclidean space
fundamental? Is causality violated in physics? Can we reconstruct physics by
using only simple principles based on our experience? Discussions and answers
to these and many similar questions cannot be found in usual textbooks. How-
ever, they are discussed in the literature. We have already considered some of
these questions in terms of our categorization.

In 1990, Wheeler67 discussed the fundamental relationship between physics,
quantum theory, and information? Section 19.2 has the title ” ’It from Bit’
as Guide in Search for Link Connecting Physics, Quantum, and Information“.

66Nielsen, Chuang [2010], Lyre [2004], von Weizsäcker [2006], Jansson [2017]
67Wheeler [1990]
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He writes:

’It from bit’ symbolizes the idea that every item of the physical
world has at the bottom - a very deep bottom, in most instances
- an immaterial source and explanation; that which we call reality
arises in the last analysis from the posing of yes-or-no questions
and the registering of equipment-evoked responses; in short, that
all things physical are information-theoretic in origin and that this
is a participatory universe. John A. Wheeler, 1990

So, what is information? In 1948, Shannon68 formulated his groundbreak-
ing paper ”The Mathematical Theory of Communication“. There, he intro-
duced a measure of uncertainty, describing an average amount of information,
which he called entropy. John von Neumann suggested this name to Shannon
with the following words:

”You should call it entropy, for two reasons. In the first place,
your uncertainty function has been used in statistical mechanics
under that name. In the second place, and more importantly, no
one knows what entropy really is, so in a debate you will always
have the advantage.“ John von Neumann69

In 2015 under the name ”Simons Collaboration on Quantum Fields, Grav-
ity, and Information70“ some of the leading researchers try to foster communi-
cation, education, and collaboration in the mentioned areas. On page 1, they
write:

When Shannon formulated his groundbreaking theory of infor-
mation in 1948, he did not know what to call its central quantity,
a measure of uncertainty. It was von Neumann who recognized
Shannon’s formula from statistical physics and suggested the name
entropy. This was but the first in a series of remarkable connec-
tions between physics and information theory. Later, tantalizing
hints from the study of quantum fields and gravity, such as the
Bekenstein-Hawking formula for the entropy of a black hole, in-
spired Wheeler’s famous 1990 exhortation to derive ”it from bit”, a
three-syllable manifesto asserting that, to properly unify the geom-
etry of general relativity with the indeterminacy of quantum me-
chanics, it would be necessary to inject fundamentally new ideas
from information theory. Wheeler’s vision was sound, but it came
twenty-five years early. Only now is it coming to fruition, with the
twist that classical bits have given way to the qubits of quantum
information theory.

68Shannon [1948]
69See Tribus, McIrving [1971]
70See Simon [2015]



6 QUANTUM INFORMATION THEORY 53

The members of Simon’s collaboration include well-known leaders in quan-
tum information and the fundamentals of physics, among them Aaronson,
Aharonov, Hayden, Preskill, and Susskind.

Forgotten in Wheeler’s paper 71 and Simon’s proposal is C.F. von Weizsäcker72

who dealt already in the fifties with such fundamental questions in probabil-
ity, information, and physics. Concerning Simon’s statement that ”Wheeler’s
vision was sound, but it came twenty-five years early“, Weizsäcker’s theory
came sixty years early. He assumed that quantum theory is the fundamental
theory describing nature. He attempted to reconstruct this theory with binary
alternatives by realizing the Kantian idea of justifying the fundamental laws
of nature from our experience.

In his program, all physical objects and their properties shall be deduced
from abstract quantum information theory, based on binary alternatives, nowa-
days called qubits. He used the name ”ur“ instead of ”qubit“ and called his
theory ”ur theory“. The name qubit was introduced much later in 1995 and
is attributed to Benjamin Schumacher. Frequently, physicists speak of spinors
instead of urs or qubits. In Weizsäcker’s program, a temporal logic using the
structure of past, present, and future is incorporated. Already at an early
stage, reconstructions of quantum theory, relativity theory, and quantum field
theory were published73.

By the way, Wheeler was invited already in 1980 by Weizsäcker to the
fourth conference on Ur Theory and consequences. Wheeler spoke about ”The
Elementary Quantum Act as Higgledy-Piggledy Building Mechanism,” and ten
years later74, Wheeler gave the lecture with the very intuitive title ”It from
Bit”. However, Wheeler did not reference the existing research of C. F. von
Weizsäcker and his co-workers75.

6.2 Physics and Information

After these historical remarks, we ask: What is information? It is a concept
associated with different phenomena, such as meaning, truth, communication,
knowledge, reference, entropy, data compression, and physical processes. This
word derives from the Latin verb ”informare” with the meaning like ”to in-
struct” or ”to give form”. An accurate definition of any fundamental concept
seems to be hard, if not hopeless. A precise answer must use more fundamental
concepts, which at some point cannot be further explained. Perhaps a working
hypothesis might be:

• Information is a quantitative measure of form. Form is neither
matter nor mind, but a property of material objects such as experimental
set-ups or machines. These have form, mathematics allows to describe
this form, and the form is expressed through experimental results.

71Wheeler [1990]
72See von Weizsäcker [1955], von Weizsäcker [1988], von Weizsäcker [1992], von

Weizsäcker [2006], and the literature referenced therein.
73 von Weizsäcker [1988], Görnitz, Graudenz, von Weizsäcker [1992]
74Wheeler [1990]
75See Görnitz [2019]
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There is, however, an actual debate whether information is physical, whether
information is more fundamental than matter, whether all things are reducible
to information, or whether the universe is a computational system like a Turing
machine. In the following, we briefly present the opinions of three prominent
researchers.

Very early in the fifties, Weizsäcker76 formulated some principles of his
ur theory, see Section 5.1. He postulated in his principle of alternatives that
physics is best formulated based on empirical decidable alternatives. More-
over, he stated in his ur hypothesis that all alternatives can be constructed
from binary alternatives. Hence, physics should be defined entirely in terms of
binary alternatives and their symmetries77. In other words, Weizsäcker devel-
oped the view that ”all physical models can be derived from the information
contained in an ur”.

A bit is a physical quantity that can occupy one of two distinct classical
states, conventionally labeled by the binary values 0 or 1. An ur or qubit is
represented by a vector in a two-dimensional complex Hilbert space. It can
be characterized as one bit of potential information. The two binary values
represent two orthonormal vectors in this Hibert space. In ur theory, urs per-
mit a decomposition of state spaces into the tensor product of two-dimensional
complex Hilbert spaces. Consequently, every physical object can be described
as a composition of urs, or qubits if you like. His ur theory allows an entirely
new perspective on the three entities matter, energy, and gravitation. Werner
Heisenberg wrote about his concept ”that the realization of Weizsäcker’s pro-
gram requires thinking of about such a high degree of abstraction that up to
now - at least in physics - has never happened.” Not surprisingly, Weizsäcker’s
approach was hardly appreciated, perhaps it was far too abstract. Moreover,
his predictions were beyond the imagination of most physicists. For instance,
that one proton is made up of 1040 qubits is hard to believe, even today. How-
ever, a quantum field theory, particles, and a cosmological model has been
presented in Weizsäcker’s framework, already in the last century. His work is
hardly mentioned in the literature, and not surprisingly, it cannot be found
in ”Simons Collaboration’78“. His ur theory uses symmetry from the very be-
ginning. It can be viewed as the start of a quantum theory of information,
where symmetry groups are considered to give rise to the structure of space
and time.

Wheeler79 is an advocate viewing physics as information:

It from bit symbolizes the idea that every item of the physical
world has at bottom - at a very deep bottom, in most instances - an
immaterial source and explanation; that what we call reality arises
in the last analysis from the posing of yes-no questions and the
registering of equipment-evoked responses; in short, that all things
physical are information-theoretic in origin and this is a participa-
tory universe.

76von Weizsäcker [1955],von Weizsäcker [1958]
77See also von Weizsäcker [1988], von Weizsäcker [1992], von Weizsäcker [2006]
78See Simon [2015]
79Wheeler [1990] page 311
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Three examples may illustrate the theme of it from bit. First,
the photon. With polarizer over the distant source and analyzer of
polarization over the photodetector under watch, we ask the yes or
no question, ”Did the counter register a click during the specified
second?” If yes, we often say, ”A photon did it.” We know perfectly
well that the photon existed neither before the emission nor after
the detection. However, we also have to recognize that any talk
of the photon ”existing” during the intermediate period is only a
blown-up version of the raw fact, a count. The yes or no that is
recorded constitutes an unsplittable bit of information. Wheeler
1990

Continuing, Wheeler80 says:

To the question, ”How come the quantum?” we thus answer,
”Because what we call existence is an information-theoretic en-
tity.” But how come existence? Its as bits, yes; and physics as
information, yes; Wheeler 1990

Not surprisingly, Wheeler’s understanding is very closely related to Weizsäcker’s
framework. This is expressed in the same paper in Section 19.6:

19.6 Agenda
Intimidating though the problem of existence continues to be,

the theme of it from bit breaks it down into six issues that invite
exploration:

One: Go beyond Wootters and determine what, if anything, has
to be added to distinguishability and complementarity to obtain all
of standard quantum theory.

Two: Translate the quantum versions of string theory and of
Einstein’s geometrodynamics from the language of continuum to
the language of bits. .... Wheeler 1990

We remark that Wootters81 derived 1980 the Hilbert space together with
its complex probability amplitudes mainly from the fundamental demands of
complementarity and distinguishability.

The contrary view is that information depends on physical objects or sys-
tems, rather than the other way around. In other words, experimental set-ups
or machines have form and contain all information. A prominent advocate of
this view is Preskill82, who writes:

Information, after all, is something that is encoded in the state
of a physical system; computation is something that can be car-
ried out on an actual physically realizable device. So the study of
information and computation should be linked to the study of the
underlying physical processes. [....] ”The moral we draw is that
’information is physical’. Preskill 1998

80Wheeler [1990] page 313
81Wootters [1981],Wootters [1981]
82Preskill [1998], pp. 7, 10
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It means that information only exists when encoded in any physical device.
This is supported by the fact that the device has form. For example, an
electron in a double-slit experiment depends not only on the physics of the
electron but on each detail of the experiment.

We have now come to completely contradictory views of information and
physics. But neither of the theses, whether information can be reduced to
physics or vice versa, can be falsified by mathematics or experiments. Perhaps,
each of these conceptions has its justification.

Today, Weizsäcker’s ur theory and his ur hypothesis, stating that all alter-
natives can be constructed from binary alternatives, form the basis of quantum
information. He can be called the founding father of quantum information the-
ory.

For an intuitive understanding of the concept of physical information, we
imagine a physical object, such as a coin, a door, or an electron, and we
ask: What is the information content of this physical object? Think of some
people who share the same background about this object, but they don’t know
the actual state: heads or tails, a door is open or closed, an electron has
spin up or down. It is natural to define the amount of information of the
object as the alternatives or instructions which are necessary to be able to
reconstruct the state of the object. Obviously, for our three objects, we need
only one binary alternative, namely a bit, to identify in each case the state.
A bit can be viewed as a question with two possible answers. The amount of
information of a Bescon die with 4 facets can be reduced to two bits, namely
whether we get the lower numbers 1 and 2 or not and whether we get an odd
number or not. In this sense information is physical, or we can say that
physical objects carry information. It is hard to believe that information
and logic would exist in an empty universe without any objects. Information
can be not a purely mathematical idea but is dictated by the substance in our
universe. We can possibly say that information without physical objects
is just as meaningless as physical objects that cannot be described
by information.

Given an n-fold alternative X = {x1, ..., xn} describing an object with n
mutually exclusive states. What is its amount of information? If X consists
of only one element, then no question is necessary to obtain a state, and the
amount of information is zero. If X consists of two elements, it is a bit, only
one question is required for getting a state, and the amount of information
is one. If X consists of four elements, then two questions are required, and
the amount of information is two. If X consists of three elements, then either
one or two questions are required, and the amount of information is defined as
I = log2 3 = 1.585. If X consists of n elements, then the amount of information
I is defined in terms of binary questions as

I = log2 n. (67)

This number corresponds to the height of the related binary decision tree,
that is, the largest number of edges in a path from the root node to a leaf
node. Each edge in the tree represents a binary decision with values 0 or 1.
Hence, a path corresponds to a binary register. The amount of information is
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a characteristic number of this tree and belongs to the category structure of
physical objects.

6.3 Information and Shannon-Entropy

Shannon83 was interested in his groundbreaking paper ”The mathematical
Theory of Communication“ in a theory describing the communication of in-
formation, not in information itself. In his theory an alternative X, called
the source, generates consecutively random outcomes xk, called letters. The
outcomes obey the probability distribution pk = Pr(xk). Shannon asked:

• What is a measure of information or the uncertainty for the next outcome
xk associated with a probability distribution pk?

In contrast to the geometrical height (67) of a binary register, this is a proba-
bilistic question.

Shannon was not interested in semantic aspects and the meaning of in-
formation. His starting problem was to reproduce at least approximately a
message that arrived from another point. The simplest case of a probability
distribution is that all outcomes are equally likely. Then the probability for
each of n outcomes is pk = 1/n. Think of throwing a coin 4 times. The sam-
ple space consists of all quadruples with values 0 or 1 (Heads or Tails), thus
contains n = 24 elements. The amount of information (67) of one element
is log2 24 = 4, and the probability is 1/16 = 1/(24). We have to multiply
the probabilities 1/2 for four questions to get the probability of one outcome.
Hence, it is natural to assign to the uncertainty the number 4. Thus, the
amount of information coincides with the uncertainty for equally likely events.

More general, the identity

I = log2 n = − log2 1/n = − log2 pk (68)

indicates to define for equally likely probabilities the uncertainty as the nega-
tive logarithm of the probability. In this case, both values, the determin-
istic amount of information (67) and the uncertainty associated with
a probability distribution, are equal although they have completely
different derivations and interpretations. One represents the character-
istic number of the related decision tree; the other one represents a random
walk through this tree.

What is the average uncertainty of X for equally likely outcomes? This is
just the average value

n∑
k=1

1

n
log2 n = −

n∑
k=1

pk log2 pk = log2 n, (69)

where pk = 1/n. Of course, this value coincides with the amount of informa-
tion, that is, the number of binary decisions necessary to specify any outcome.
Hence, we have a mathematical identity, not a physical one.

83Shannon [1948]
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Now let us look at general non-uniform probabilities pk? This case cor-
responds to binary questions, which may not be equally likely. What is the
average uncertainty of X? The most reasonable generalization of formula (69)
is just the average value

SS = SS(X) = −
∑
k

pk log2 pk. (70)

The quantity SS is called the Shannon entropy or information entropy. We
speak of this entropy as a measure of missing information associated with any
probability distribution, or simply of a measure of uncertainty? It is formally
identical with the Gibbs entropy and the von Neumann entropy (61).

The entropy SS is (i) a monotonically decreasing function of the probabil-
ities pk, (ii) is additive for independent events, where probabilities are multi-
plied, (iii) does not change if events with zero probability are added, and (iv)
is maximized when all probabilities are equal. It is well-known that SS is, up
to a constant k, the unique function satisfying these four criteria.

6.4 Data Compression

As an application of entropy, let us consider data compression. Suppose we
have a data file, say a text containing a sequence of letters. Depending on the
text, different letters occur with different frequencies. In data compression, we
want to compress the given text into the smallest possible data file. What is
a good compression algorithm?

It is standard to write an uncompressed text as numbers in ASCII code
where every letter is assigned a number represented with 8 bits. In books and
other texts, some letters, such as ’e’, ’a’ or ’o’, are much more common than
’x’, ’q’ or ’z’. Hence, it should be possible to compress texts rather efficiently.
Let us look at the short text X consisting of three words ”begin prologue end“.
The text consists of 16 letters with corresponding frequencies in brackets: e(3),
g(2), n(2), o(2), b(1), i(1), p(1), r(1), l(1), n(1), d(1). We expect that a good
compression algorithm would use fewer than 8 bits for the letters with high
frequency. Our text has 11 different letters. Hence, the most straightforward
coding requires 4 bits, since 11 < 24.

But what is the smallest number of bits to encode a given text? Shannon’s
answer was: this is the entropy SS. He proved that, on average, it is not
possible to encode data with fewer than SS bits. This is the well-known source
coding theorem. For our text we obtain

SS = −(
3

16
log2

3

16
+ 3 · 1

8
log2

1

8
+ 7 · 1

16
log2

1

16
) = 3.328. (71)

Shannon’s theorem states that on average the best we can do is to represent
the letters above with 3.328 bits. A text with 1000 letters and the same
entropy could be encoded with 3328 bits. If we would use 4 bits for each
letter, we need 4000 bits. A good algorithm uses the extra information of
different probabilities.
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When we use words rather than letters, the entropy decreases. For our
text with three words, assumed to be uniformly distributed, we obtain SS =
−3·1/3 log2 1/3 = 1.585. This leads to a compression factor of 4/1.585 = 2.523.
We refer the reader for compression algorithms to the literature but mention
that many file systems automatically compress files when storing them. Images
on the web are compressed, frequently in a JPEG or GIF format.

6.5 Von Weizsäcker’s Reconstruction of Physics

Already 1955 von Weizsäcker introduced a quantum theory of information
which he called ur theory 84. His theory is a consistent interpretation of quan-
tum theory in terms of information. It is the quantum theory of empirical
decidable alternatives. It is based on his ur hypothesis which says that

• (i) all physical objects, quantities, and all dynamics are characterized
by alternatives, and (ii) all alternatives can be constructed from binary
alternatives.

In other words, he postulated that quantum theory should be taken as the basic
theory for all physical models. This principle has fundamental consequences.
Some of them are discussed in the following.

U(2) Symmetry and the Einstein Space

In Weizsäcker’s ur theory, dynamics is modeled as interactions between
urs, that is, qubits which are vectors in C2 representing binary alternatives.
The continuous symmetry group of a binary alternative is the unitary group
U(2). It contains two subgroups, namely the special unitary symmetry group
SU(2) and the circle group U(1). It follows that nothing changes if all urs are
simultaneously transformed with the same unitary matrix in U(2).

A fundamental question is to understand the three-dimensional position
space and the four-dimensional spacetime. If all physical objects, including
particles and spaces, are constructed via binary alternatives, then answers
should come off from the symmetry group of urs. Mathematically, SU(2) is
locally isomorphic to the three-dimensional rotation group SO(3) in Euclidean
space. Thus, it is natural to view it as the rotation group in a three-dimensional
real position space or in a three-dimensional real momentum space. In ur
theory, the group U(1) is interpreted as the group of the temporal changes.
Therefore, spacetime emerges from the invariance group of the ur.

At the moment we have derived a three-dimensional reference frame and
a further coordinate, both may be interpreted as position and time. It is
interesting to look at the unitary matrices in SU(2) itself. It is easy to show
that each unitary matrix U takes the form

U =

(
w + iz ix+ y
ix− y w − iz

)
, (72)

84See Section 1.7 von Weizsäcker [1992], von Weizsäcker [2006], von Weizsäcker [1955]
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where the real coordinates x, y, z, w satisfy the normalization condition

x2 + y2 + z2 + w2 = 1. (73)

These four coordinates, together with the normalization condition, are the
points of the so-called Einstein space. It is the three-dimensional sphere S3

in a four-dimensional real space. In the theory of general relativity, the Ein-
stein space is a special solution of Einstein’s field equations85. Therefore, the
symmetry group of an ur corresponds uniquely to the sphere S3. Moreover,
we have a second derivation of how spacetime emerges from the invariance
group of urs. This derivation says that each state of an ur can be mapped to
a point on the S3, leading to the surprising observation that the topology of
the cosmos would result directly from quantum theory. Many physicists have
a different point of view. They think of gravity as an emergent phenomenon
that arises from collective statistical behavior.

Weizsäcker thought about the essential question: What must be added to
distinguishability and complementarity to obtain the rules of quantum theory?
He published his reconstruction program in the article ”Komplementarität und
Logik86”, which is dedicated to Bohr’s 70th birthday. A recommendable survey
on his program for reconstruction is written by Görnitz and Ischebeck87. In
summary, Weizsäcker attempted to unify physics, rather than to give another
interpretation.

Binary Alternatives

Physics investigates decidable alternatives. An alternative represents at-
tributes or properties of any physical object or experiment. In classical logic
an n-fold alternative

a = {a1, ..., an} , n ∈ N (74)

is a set of n mutually exclusive statements or possibilities ai, where exactly
one turns out to be true if an empirical test happens, but none of the other aj
with j 6= i. A binary alternative is a 2-fold alternative.

It turns out that information and knowledge in physics can be ascribed to
n-fold alternatives via binary alternatives. From the point of view of logic,
this is evident, since every n-fold alternative can be decomposed by deciding
k binary YES-NO questions successively, where 2k ≥ n. Thus, we get a logical
decomposition of an alternative into a set of binary alternatives.

However, a decomposition of an alternative into binary alternatives is not
unique. For example, the 4-fold alternative consisting of the possibilities
a1, a2, a3, a4 can be decomposed in several different ways. Let us look at the
two binary alternatives b and c:

b1 = {a1, a2} , b2 = {a3, a4} , (75)

85See von Weizsäcker [2006] page 121
86von Weizsäcker [1955],von Weizsäcker [1958]
87Görnitz, Ischebeck [2003]
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and

c1 = {a1, a3} , c2 = {a2, a4} . (76)

Then the possibilities of a can be written as

a1 = {b1, c1} , a2 = {b1, c2} , a3 = {b2, c1} , a4 = {b2, c2} . (77)

We can define a third binary alternative d

d1 = {a1, a4} , d2 = {a2, a3} , (78)

and describe a in terms of the binary alternatives b and d, yielding another
decomposition

a1 = {b1, d1} , a2 = {b1, d2} , a3 = {b2, d2} , a4 = {b2, d1} . (79)

If we assign the logical values 0 and 1 to the binary alternatives, we obtain
a register representation of alternatives. For example, when assigning 0 to b1
and c1, and 1 to b2 and c2, then we get the registers

a1 = 00, a2 = 01, a3 = 10, a4 = 11. (80)

For simplicity we have dropped the brackets.
Thus, from the logical point of view, the decomposition of an alternative

into binary alternatives is almost trivial. How can we decompose alternatives
in the vector representation? We assign the values 0 and 1 to orthonormal unit
vectors in C2:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
. (81)

We use the well-known Dirac’s “bracket” notation. Weizsäcker called each
two-dimensional complex vector ur. We can rewrite (80) as tensor products of
vectors:

a1 = |00〉 =
(
1
0

)
⊗
(
1
0

)
= (1 0 0 0)T ,

a2 = |01〉 =
(
1
0

)
⊗
(
0
1

)
= (0 1 0 0)T ,

a3 = |10〉 =
(
0
1

)
⊗
(
1
0

)
= (0 0 1 0)T ,

a4 = |11〉 =
(
0
1

)
⊗
(
0
1

)
= (0 0 0 1)T .

(82)

The alternatives ai are represented as orthonormal vectors contained in the
tensor product C4 = C2 ⊗ C2. Hence, we speak also of base states88.

Quantum theory describes observable values in terms of self-adjoint oper-
ators with a discrete eigenvalue spectrum and an orthonormal basis. Because
of the orthonormality condition such an operator can be interpreted as an
empirically decidable alternative.

88See Section 4.2 Jansson [2017] for further discussions of vector and register representa-
tions.
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It is easy to see that each n-dimensional Hilbert space can be embedded
into a subspace of the tensor product of k two-dimensional Hilbert spaces

Cn ⊆
⊗
k

C2, 2k ≥ n, (83)

such that the linear structure and the metric are maintained.
The resulting quantum theory is obtained by assigning to the alternative

orthonormal basis vectors, say |ai〉 in an n-dimensional complex Hilbert space
Cn. Then an n-fold alternative is identified with some vector |a〉 ∈ Cn, the
latter embedded in the tensor product

⊗
k C2. Thus, the ur hypothesis is

logically and mathematically correct.
The binary alternatives b, c and d are distinct, leading to urs that are

distinguishable. We can speak of the Boltzmann-statistic of urs.

Bosonic Representations

Each n-fold alternative a = {a1, ..., an} can be decomposed also into n− 1
indistinguishable urs. Let the binary alternative e be defined as

e0 : index i of a stays, e1 : index i of a is replaced by i+1. (84)

For n = 4 we get the decomposition

a1 = {e0, e0, e0} , a2 = {e0, e0, e1} , a3 = {e0, e1e1} , a4 = {e1, e1, e1} . (85)

Vectorization leads to the base states in C8:

a1 = |000〉 =
(
1
0

)
⊗
(
1
0

)
⊗
(
1
0

)
,

a2 = |001〉 =
(
1
0

)
⊗
(
1
0

)
⊗
(
0
1

)
,

a3 = |011〉 =
(
1
0

)
⊗
(
0
1

)
⊗
(
0
1

)
,

a4 = |111〉 =
(
0
1

)
⊗
(
0
1

)
⊗
(
0
1

)
.

(86)

Since the alternatives are invariant with respect to permutations of the binary
alternative e, we get

a1 = |000〉,

a2 ∈ {|001〉, |010〉, |110〉} ,

a3 ∈ {|011〉, |110〉, |101〉} ,

a4 = |111〉.

(87)

It is likely to represent the alternatives in the symmetric form

a2 =
1

3
(|001〉+ |010〉+ |110〉),

a3 =
1

3
(|011〉+ |110〉+ |101〉).

(88)
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All considerations above can be easily generalized to arbitrary n-fold al-
ternatives. For example, consider a roulette with a ball in one of the 37 cells,
describing a 37-fold alternative. Then this ball can be identified with the cell
containing the ball, and the cell can be identified with a bosonic representation
consisting of zeros and ones.

On Some Large Numbers in Physics

In physics, usually one works with numbers, such as natural, nonnegative,
real, or complex numbers and corresponding vectors and matrices. In contrast,
we have seen that the ur theory basically works with logical quantities, namely
questions and decisions. For example, a fundamental problem is: how many
questions are necessary to describe any single physical object?

The ur theory provides a ”logical atomism” in the sense that the small-
est objects are not spatially small but logically small. However, it should be
noticed that an ur is by no means a particle. It’s just one bit of information
representing one YES-NO decision. This is a language that uses bits and se-
quences of bits, called registers. At a first glance, this leads to an unusual way
of thinking. In the following, we discuss several aspects of the relationship
between some cosmological numbers and the ur theory89. In particular, we
illustrate the ur language when calculating the number of nucleons in the uni-
verse and the photon-nucleon ratio. We work with approximate results where
prefactors of order 10 or 100 are neglected in the following rough estimates.

The Compton wavelength λ = h/mc is known to be a measure of the size
of particles. The ratio of a plausible estimated cosmic radius R ≈ 1026 m, and
the Compton wavelength of a proton λp ≈ 1.3 · 10−15 m is

E1 =
R

λp
≈ 1040. (89)

E1 is called the first Eddington number. It is the ratio of a cosmological distance
and an atomic distance. Surprisingly, the ratio of the force between an electron
and a proton e2/r2 and their gravitational force Gmemp/r

2 is approximately
equal to E1, such that

E1 ≈
e2

Gmemp

≈ 1040. (90)

Notice that this number is independent of the distance between the electron
and the proton.

The second Eddington number E2, defined as the number of nucleons in the
universe and estimated according to the cosmological mass density, is about

E2 ≈ 1080. (91)

. Hence, it is the square of the first Eddington number.

89See Lyre [1995], Lyre [2004], von Weizsäcker [2006], and the references therein for
further discussions.
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Eddington observed that the volume with classical electron radius coincides
with the product of the cosmic radius R and the Planck area l2p, where lp =

(~κ/c)1/2 is the Planck length and κ = 8πG/c2 the gravitational constant.
Since the Compton wavelength of a proton is almost equal to the classical
electron radius, it follows that

λ3p ≈ R l2p, (92)

If we divide the volume of the observable universe into three-dimensional dis-
joint cells of size λ3p and it’s surface into two-dimensional disjoint cells of the
Planck area, then the Planck pixels on the surface correspond to the cells of
volume λ3p. In other words, the three-dimensional world seems to be an image
of data that can be stored on a two-dimensional projection. Now, this is known
as the holographic principle.

The third Eddington number is defined as

E3 ≈
R3

λ3p
≈ R2

l2p
≈ 10120. (93)

Summarizing, we have obtained the relations E2
1 = E2 and E3

1 = E3.
Already Dirac emphasized that all this cannot be an accident and needs an
explanation. In the following, we show how ur theory explains such numbers.

A central assumption in ur theory is that all physical objects are only
measurable in position space90. This assumption coincides with the experience
in experimental physics where at the end the measurement apparatus measures
a position. Theoretically, this agrees with Heisenberg’s uncertainty principle,
where precise knowledge of a position makes momentum completely uncertain.

It is natural to assume that the length size of a massive particle is deter-
mined by its Compton wavelength λ. The measurement of smaller distances
would require high energies that destroy the particle. It follows that the cells
with the smallest possible volume, which may contain a massive particle with
Compton wavelength λ in the three-dimensional space, have the value λ3.
Hence,

N ≈ R3/λ3 (94)

is the number of disjoint cells with the smallest possible volume which may
contain such a particle. This number forms an N -fold alternative that can be
represented by N bosonic urs.

A binary alternative can be defined by asking whether the cell contains a
particle or not. How many bosonic urs are necessary for deciding this question?
For localizing a particle91 on a line segment with radius R, we have n disjoint
intervals of width λ, that is,

nλ ≈ R. (95)

90See Lyre [1995], page 3.
91We neglect the prefactor 2 as already mentioned.
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An ur can describe a decision on a vertical line of positions with ”UP or
DOWN”. Using the bosonic representation, we need n−1 binary alternatives,
that is, n− 1 urs for localizing this particle. We say that the particle contains
n − 1 urs, or is identified with these urs. In the three-dimensional space,
the three spatial axes require 3(n − 1) urs for identifying a cell of volume λ3.
Because working only with rough estimates, we identify a particle of Compton
wavelength λ with n bosonic urs.

A fundamental question in physics is: How many particles are in our uni-
verse? Since nucleons (consisting of protons and neutrons with roughly the
same Compton wavelength) form the ponderable matter in our universe, which
is otherwise almost void, it is natural to ask for the number of nucleons. We
know, this is the second Eddington number E2 = 1080. In the same sense, we
ask: How many bosonic urs exist in our universe?

Since the Compton wavelength, λp of a proton is a good approximate mea-
sure for nucleons, asking for the number of bosonic urs in our universe, we
consider the Compton wavelength of protons only. Then the universe can be
divided simultaneously into cells with volume λ3p.

From (89) and (95) it follows that for detecting a proton on a line we need

np ≈ 1040 (96)

bosonic urs, that is, a register with about 1040 zeros and ones. This register
can be identified with one proton; or we can also say that the proton consists
of 1040 urs.

The cells with smallest possible volume containing a nucleon in the three-
dimensional space has the value λ3p. Hence, the cosmos could in principle be
partitioned into

N = R3/λ3p ≈ 10120 (97)

cells that may contain nucleons. Thus, we postulate that the total number of
bosonic urs in the universe is 10120. On the other hand, from (96) we know
that a proton or nucleon consists of np ≈ 1040 urs. Therefore, if all cells
accommodate nucleons, we can estimate their number by

mp = N/np ≈ 1080. (98)

This is the second Eddington number E2 = 1080 which was estimated empiri-
cally by measuring the cosmological mass density. The ur theory has used the
Compton wavelength of a proton and the estimated cosmological radius only.
Then, taking the bosonic representation of the ur theory, we can explain the
second Eddington number without any further measurements. This was one
of the first testable consequences of the ur theory.

Another application92 is the determination of the photon-nucleon ratio, an
important cosmological number. This ratio is estimated between 108 and 1010.
Similar considerations as above prove this ratio. Thus it seems reasonable to
speak of confirmation of ur theory since it’s hard to believe that these estimates
of large numbers are an accident.

92See Lyre [1995], Schramm [1996] page 285.
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6.6 Reconstruction of Relativity Theory

So far, we have reconstructed quantum mechanics as a timeless theory, the
theory of future possibilities where nothing happens. In physics, the theory
of relativity is beside quantum theory and statistical thermodynamics another
fundamental theory. The center of this theory is the four-dimensional space-
time and the Lorentz transformation. Can we reconstruct this theory out of a
timeless framework?

At a first glance, this seems to be impossible. However, in my lecture
notes93, a reconstruction of the mathematical formalism of special relativity
based on a timeless (3+3)-position-velocity space is presented. In particular,
we derived the key of relativity theory, namely the Lorentz transform, without
any assumption about ”propagation of light”. It was shown that the Euclidean
position-velocity space94, being close to our sense experiences, allows us to
describe Hamilton’s classical mechanics, the theory of special relativity, and a
reasonable explanation of entanglement. We refer the reader to this book.

Finally, remember that von Weizsäcker has derived spacetime, the Einstein
space and relativity from U(2) symmetry, see Section 6.5.

6.7 Bell’s Theorem

Bell’s fundamental theorem and inequalities investigate hidden-variable theo-
ries and local realism95. Roughly spoken, it was proved that quantum theory
is incompatible with local hidden-variable theories. This research gave much
insight into quantum information theory. In this final section, we examine how
our probabilistic framework can be applied to related questions.

We consider the following experiment: There are two spatially separated
calcite crystals, say A and B. Between them is a source that produces pairs
of photons. One photon moves toward A, and the other one toward B. The
pairs of photons are entangled: They are always polarized in perpendicular
directions, provided both crystals have the same optical axis. The interaction
of a photon with one crystal instantaneously changes the polarization of the
other one. They seem to influence each other non-locally.

Einstein regarded this phenomenon as ”spooky action at a distance“. With
two colleagues he formulated in the well-known EPR paper96 this paradox as
follows:

If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of reality corresponding to
that quantity.

93Jansson [2017], Sections 4.13 and 4.14
94Geometrically described by the isomorphic Lie algebras so(4) ∼= so(3)× so(3) ∼= su(2)×

su(2).
95Bell [1987] Ch. 16, Sakurai [1994] pp. 174-187, 223-232, Bellac [2011] Ch.6, Jansson

[2017] Section 2.13
96Einstein, Podolsky, Rosen [1935]
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Figure 11: Three separate random experiments on pairs of entangled photons.
The optical axes of the crystals are α, β and γ.

They concluded that quantum mechanics is an incomplete theory that should
be extended with hidden variables. The discussion around this paper is known
as the EPR paradox. EPR corresponds to the initials of the three authors.

In the case of photons, the entanglement mostly relates to polarization.
However, photons can also be entangled with regard to the direction of flight.

Bell investigated the EPR paradox supposing that the photon-producing
source ascribes hidden variables to each photon. We follow the approach of
Sakurai (1994), who assumed:

• Assumption 1: A hidden variable is assigned that labels one photon as
horizontally polarized and the other one as vertically polarized, for any
optical axis.

• Assumption 2: Each photon, when interacting with a crystal, has an in-
finite number of hidden variables that correspond to the crystal’s optical
axes.

We suppose that the two crystals have three possible optical axes, which
we label α, β, and γ. We perform three types of random experiments, as
displayed in Figure 11.

Because of assumption (2) each photon has its own polarization state with
respect to each of these optical axes. We label the states with + for horizontally
polarized and − for vertically polarized states, respectively. For three axes, we
obtain for the photon pair eight possible polarization states, see Table 2.

In the first random experiment, crystal A has optical axis α and crystal B
has optical axis β. It is assumed that the polarization of the produced photon
pair exist for the three optical axes α, β, and γ, although the third crystal with
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Crystal A Crystal B Probability
α, β, γ α, β, γ
+ + + −−− Pr(1)
+ +− −−+ Pr(2)
+−+ −+− Pr(3)
+−− −+ + Pr(4)
−+ + +−− Pr(5)
−+− +−+ Pr(6)
−−+ + +− Pr(7)
−−− + + + Pr(8)

Table 2: Each row describes the polarization of a photon pair for three optical
axes α, β, and γ, and their probabilities Pr(j).

optical axis γ is not part of this experiment. However, the eight possibilities
are interpreted as outcomes that have the probabilities Pr(j), j=1,...,8.

The non-negative number Pr(α = +, β = +) denotes the probability that
both photons are horizontally polarized with respect to the two axes α and
β, when interacting with both crystals. Since the probability of two mutually
exclusive outcomes can be added, from Table 2, it follows immediately that

Pr(α = +, β = +) = Pr(3) + Pr(4). (99)

Similarly, for the other two random experiments we get

Pr(α = +, γ = +) = Pr(2) + Pr(4), (100)

and

Pr(γ = +, β = +) = Pr(3) + Pr(7). (101)

Adding together implies Bell’s inequality as presented by Sakurai:

Pr(α = +, β = +) ≤ Pr(α = +, γ = +) + Pr(γ = +, β = +). (102)

In the literature, it is argued that quantum theory predicts a violation in
the inequality (102. This violation is experimentally verified97.

In the following we argue that (i) the explanation of this experiment does
not require quantum mechanics, (ii) classical statistical mechanics is sufficient,
(iii) Bell’s inequality does not describe this experiment appropriately, and (iv)
our probabilistic frameworks is a nice guide for investigating this experiment.

Actually, we have not one but three different experiments, see Figure 11.
Let us look at the first one with optical axes α and β. Then the pair of
entangled photons has four possibilities when interacting with both crystals:

α = +, β = +; α = +, β = −; α = −, β = +; α = −, β = −. (103)

There are no internal possibilities. The outcomes coincide with these four
elementary possibilities. Hence, we have a classical probabilistic experiment.

97Aspect et al. [1982]
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What can we say about the probability amplitudes and the probabilities?
The law of Malus98, already formulated in 1810, states that the intensity of
a beam of light that has passed two polarizers with optical axes α and β is
proportional to cos2(β − α). If only one photon is in the experiment, just as
it is possible today in the experiments, the intensity should be identified with
the probability. Thus, the probability is a function of the angles between the
optical axes.

In the case β = α, the probabilities

Pr(α = +, β = +) = Pr(α = −, β = −) = 0 (104)

since the entangled pair of photons is always polarized at right angles. Vice
versa, if β = α± π/2 the probabilities

Pr(α = +, β = −) = Pr(α = −, β = +) = 1/2. (105)

Generally, the law of Malus suggests

Pr(α = +, β = +) = Pr(α = −, β = −) =
1

2
sin2(β − α), (106)

and

Pr(α = +, β = −) = Pr(α = −, β = +) =
1

2
cos2(β − α). (107)

These four numbers are non-negative and adding them up gives one. Indeed,
these probabilities are experimentally verified. The related probability ampli-
tudes are their roots. This finishes the application of our probabilistic frame-
work.

What happens with Bell’s inequality (102) if we insert these probabilities?
Without loss of generality, we set α = 0. Then

1

2
sin2(β) ≤ 1

2
sin2(γ) +

1

2
sin2(γ − β). (108)

This inequality must be fulfilled for all angles β and γ. For the angles β = 3γ
the inequality (108) becomes

0 ≤ 1

2
sin2(γ) +

1

2
sin2(−2γ)− 1

2
sin2(3γ). (109)

The function on the left hand side is negative for the angles γ between 0.1
and 0.5. Hence, Bell’s Theorem is violated. What are the reasons for this
violation?

The first reason is assumption 2, which assigns infinitely many optical axes
to the tiny photon, and leave the large crystal completely out of considera-
tion. Our approach is exactly the opposite: the crystal is the machine that is
characterized by all possibilities, while the photon only interacts and chooses
exactly one possibility. The experimental set-up determines all probabilities.

98Halliday, Resnick, Walker [2005]



6 QUANTUM INFORMATION THEORY 70

The latter belong to the category future. The interaction is part of the present
only.

The second reason is the incorrect description of the experiment, where the
three experiments are pretended to be one. For example, in the experiment
with optical axes α and β the value + + + denotes an outcome or elementary
event of the experiment. But there was no interaction of a photon with some
crystal with optical axis γ. Hence, this triple value is not an outcome and
thus, has no probability as assumed in Bell’s inequality.

This experiment also has little to do with quantum mechanics. We have
described it classically with the old law of Malus from 1810, long before quan-
tum mechanics started. The typical quantum superposition did not appear in
our derivation.
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