- A PORTABLE, HARDWARE AND LANGUAGE INDEPENDENT
ARCHITECTURE FOR COMMUNICATION (PCA) -

-188-

e e rw—————

ESPRIT 2434 30 Months Report June 1991

Contribution to:
Activity Task 2.5

-~ System Concept for Advanced CIM/AI Controller --

Tite:
APORTABLE,
HARDWARE AND LANGUAGE INDEPENDENT ARCHITECTURE

FOR COMMUNICATION (PCA)

Author/Company/Copyright:
Jorg - Ingo Jakob

(c) Philips GmbH Forschungslaboratorium Hamburg 1991

Achievements:

A portable, hardware and language independent architecture (called PCA) for continuous
cxchange of messages in a heterogenous computer network was conveived. In the context of
EP2434, PCA is used for implementation of a distributed heterogenous CIM/AI network. A
knowledge-based application is reported.

Summary:

A portable, hardware and language independent architecture for continuous exchange of
messages in a heterogenous computer network is described. The most difficult part is to
overcome resource contention of message sender and recciver under some operating
systems, the receiver wants to read the message before the sender has finished writing it.
Synchronization of these asynchronous tasks can be achieved by meeting two basic
preconditions: (1) both computers are able to read, write and share files on a virtual disk or
directory, (2) a non-interruptible rename operation is available for both computers to operate
on the virtual disk or directory. It is shown how a primitive portable message passing
mechanism (called PCA, the Portable Communication Architecture) can be fully
implemented in high level languages, virtually without recoursing to any low level operating
System or net management routines. Having implemented PCA on two or more computers
connected by a network, it is then possible to implement message passing, mailboxes and
remote computation mechanisms casily as variations of the PCA. Applications and
transmission speed measurements are reported.

PFH
-189.

INDEX

1. Introduction
2. PCA: A Hardwarc and Language Independent Communication Architecture

3. Common Lisp Implementation of PCA
4. Applications

5. Acknowledgements

6. References

190 -

A Portable, Hardware and Language Independent Architecture for
Communication

JORG-INGO JAKOB

Philips GmbH Forschungslaboratorium Hamburg, Vogt-Kélin-Strafe 30, D - W2000 Hamburg 54,
Germany

SUMMARY

A portable, hardware and language independent architecture for continuous exchange of
messages in a heterogenous computer network is described. The most difficult part is to
overcome resource contention of message sender and receiver: under some operating
systems, the receiver wants to read the message before the sender has finished writing it.
Synchronization of these asynchronous tasks can be achieved by meeting two basic
preconditions: (1) both computers are able to read, write and share files on a virtual disk or
directory, (2) a non-interruptible rename operation is available for both computers to operate
on the virtual disk or directory. It is shown how a primitive portable message passing
mechanism (called PCA, the Ponable Communication Architecture) can be fully
implemented in high level languages, virtually without recoursing to any low level operating
System or net management routines. Having implemented PCA on two or more computers
connected by a network, it is then possible to implement message passing, mailboxes and
remote computation mechanisms easily as variations of the PCA. Applications and

transmission speed measurements are reported.

KEY WORDS Communication Architecture Heterogenous computer network Portability

PFH
-191-

INTRODUCTION

During implementation of CIM and Al related software in ESPRIT 2434, a need for a
hafdwarc and language independent communication architecture became obvious. This
architecture would enable us to implement heterogenous distributed Al systems with a
minimum of effort and a maximum of standardization and portability amongst software and
hardware components involved. The resulting architecture, called Portable Communication
Architecture (PCA), is introduced here. In a sense, each instantiation of PCA on one
computer implements a communicating sequential process (C. A. R. Hoare 19782 and Figure
1 below).

PCA: A HARDWARE AND LANGUAGE INDEPENDENT
COMMUNICATION ARCHITECTURE

Different Types of Communication Architectures

Hardware independence of a communication architecture we define as the
architecture's ability to not rely on any specific underlying computer or communication
hardware for the achievement of communication between two or more programs.

Software independence of a communication architecture we define as the architecture's
ability not to rely on any specific underlying language or operating system software for the
achievement of communication between two or more programs

There are a number of "common” approaches to achieving hardware and/or software
independence in distributed, heterogenous computer Systems. These approaches can be
classified into vendor-dependent, vendor-independent and vendor-spanning approaches.

An example for a vendor-dependent approach (taken from ESPRIT 2434) is a
collection of VAXes which monitor a line for manufacturing of clectronics consumer goods

in one of Philips' plants in Germany. These VAXes communicate on the hardware level by

means of DEC's DECNet (DEC's own communication architecture based on Ethemet3). On
the software level, the communication is fully handled by the operating system (in our case,
VAX/VMS). VAX/VMS provides several ways of communication between VAX computers:
exchanging files, or exchanging messages by a mailbox mechanism. There is nothing wrong
with vendor-dependent approaches, excspt (1) when a computer of another vendor shall be
connected to this net, or (2) when a progrum shall be ported to another computer from
another manufacturer. In both cases, difficulties arise due to lack of compatibility of
equipment, which can be resolved (at a minimum expense) by rewriting parts of the
program(s) which use(s) the vendor-dependent net. However, costs can be considerably
higher when extra hardware must be purchased and/or when special communication drivers
need to be purchased or written. »

Examples for vendor-independent approaches are all efforts to standardize
communication protocols (most prominently, the ISO Open Systems Interconnection (OSI)
reference model4; and in the area of manufacturing most notably MAP3 as an instantiation of
the ISO-OSI reference model). The ISO reference model distinguishes seven layers (physical
layer, data link layer, network layer, transport layer, session layer, presentation layer,
application layer). The number of layers (likewise: the amount of documentation) associated
with the ISO reference model and its derivatives indicate the difficulties of fully
implementing such all-embracing protocols.

| On the other end of vendor-independent approaches there are very simple protocols (e.

g- Kermit®) which basically need only a small communication program on each computer,
and a serial link between them. These kinds of simple protocols, however, are typically very
limited by their transmission speeds, safety and lack of usefulness (in the sense that they
usually do not allow for "automatic” transmission of data, or that they are not properly
integrated into an operating system).

.VA' vendor-spanning approach is any software available on the market which is
explicitely intended to enable communication between two operating systems. Examples:
PCSA from Digital Equipment which serves as a bridge between VAX/VMS and MS-DOS;
Novell Netware (version 3.1 and higher), which serves as a bridge between MS-DOS and the

PFH
-193.

UNIX world (TCPAP); Symbolics' GENERA 7.2 operating system, which has a built-in
communications capability obeying the DECNet standard, emulating a VAX to the rest of the

connected DECNet; etc.

By contrast, the hardware and language independent communication architecture we
are describing here is a pragmatic approach. Only the most necessary components of the
above approaches are borrowed to maintain high levsl communication between two or more
computers, and to achicve portability of code.

The central idea of our approach is to identify those components of a communication
architecture which are necessary in order to establish high level communication between two
or more computers, and which at the same time are primitives available in (nearly) every
operating system and high level programming language. If we succeed in finding a non-
empty intersection of components and primitives which is powerful enough to establish high
level communication, we only need to find a standardized algorithm which can then be
implemented in arbitrary programming languages and/or operating systems. Our main
concem here is standardization and portability. Which layers our pragmatic approach actually
uses of e. g. the ISO reference model is of not much concern to us, because our pragmatic
approach ensures proper operation no matter what the underlying software, opuaﬁng system
or hardware is. In other words, we are looking for a primitive *virtual communication
machine", which we then implement in various computing environments, but whose user (i.

e., programmer) interface is always (nearly) the same.

The Portable Communication Architecture Approach (Virtnal Communication

Machine)

The following components can be identified as belonging to the class of high level

communication objects and to the class of primitive objects available in (nearly) every

operating system and high level programming language (Table 1)

PFH

ana

Table 1: Necessary Components for the Virtual Communication Machine

- ASCII text files (i. e., messages)®

- ahierarchical file system (using directories and disks)

- primitive operations on files (e. g. OPEN, READ, WRITE, CLOSE, RENAME,
COPY, DELETE)

- real or virtual disks or directories

- sharing of disks or directories between computers™®

- a non-interruptible RENAME or COPY operation on files .

Table 1 can be used as a checklist to verify if a particular combination of hardware
and software possibly will support PCA, the Portable (or Pragmatic) Communication
Architecture.

The basic idea of the pragmatic communication architecture approach can then be
formulated in the following algorithm. We start in a moment where a me-ssage (which is
originating from Computer B) shall be received by Computer A, which then processes the
message received and sends a response (i. e., another message) to Computer B (Figure 1 and
Algorithm 1).

Figure 1 summarizes the Pragmatic Communication Architecture as two interacting

state machines. Synchronization of both asynchronous processes is achieved by the interplay
of the SUBMIT and WAIT operations.

* Binay files are suitable for messages as well. However, their portability is more restricted.

In pra.cticc., uns mostly cqmponds to the availability of network software (and underlying network
bardware) which simulate a virtual disk or directory, This is where all underlying layers (confer the OSI
protocol) are hidden. Most network software or operating systems provide a virtual disk or directory, and this
is why PCA is a portable architecture.

PFH
-195.

WRITE

(A

CECEVE"" L

SEND

SEND @

hat
i

PROCESS

SUBMITH—] ~=RECEIVE

AMessage
N

PROCESS

Computer A Computer B

Fig.:1

-196- g

(1) WAIT FOR INCOMING MESSAGE: An incoming message is always
submitted to the receiver (here: Computer A) as a file of a particular name
Namel, which has to appear on a particular disk and directory. Receiver (here:
Computer A) waits for an indefinite period of time until the incoming message
(the file) Name! appears.

{2) RECEIVE MESSAGE: Receiver (here: Computer A) reads the incoming
message (the file) Namel.

(3) PROCESS MESSAGE: Process the incoming message (here: Computer A
computes a response to the message, and computes associated side effects, if any).

(4) SEND OUTGOING MESSAGE:

(4a) WRITE OUTGOING MESSAGE: An outgoing message to the
receiver (here: Computer B) is always written to a temporary file of a particular
name Name?2 [different from the file names Namel and Name3 of steps (1) and
(4b)] at first. The temporary file has to appear on a particular disk or directory
[often identical to the disk or directory of step (1)).

(4b) SUBMIT OUTGOING MESSAGE: To ensure that the message is
not read before its writing (sending) has been finished, the message was written to
a temporary file Name2. After completion of the outgoing message, the temporary
file is renamed or copied to a file of a particular name Name3 [different from the
file names Namel and Name2 of steps (1) and (4a)], which can be found by the
receiver (here: Computer B).***

Algorithm 1: Sending a message from computer A to computer B using the proposed
architecture

Algorithm 1 can as well be used to send a message from Computer B to Computcr A
(by simply substituting Computer B for Computer A, and Computer A for Computer B; and
by substimting file name Namel by Name3, and Name3 by Namel). As a net effect,
computers A and B may be sending cach other messages until one of them refuses to send or
receive a message. _

As can be seen, the components used in Algorithm 1 are those of Table 1. Thus the
algorithm can be easily implemented using a high level programming language, running on

an arbitrary operating system.

b 'nn.s Step is necessazy to disable any efforts of the receiver (here; Computer B) to read the message (file)
’oefon:' it was properly and completely written. Appearance of this difficulty depends on the underlying
operating system.
PFH
«-197.

Verification of feasibility of Algorithm 1 under the constraints of Table I is
particularly straightforward for high level languages which possess a well-defined file system
interface. In the context of Al, the most notable example is Common Lisp's file system
interface™ . The standards of other high level language prefer not to define a file system
interface having the same consistency and expressiveness as Common Lisp's (example: 1SO
Pascal). However, as common sense (and the Common Lisp standard !) safeguard, all the
primitive operations of Table 1 are available on commercial ISO Pascal implementations
(since they are available from the underlying operating system).

Figure 2 summarizes the hardware aspects of the Portable Communication
Architecture: Figure 2a depicts the arrangement of two computers [arrangement marked by
2" in Table 2 below]. The disk belongs either to Computer A or Computer B; Figure 2b
depicts the arrangement of three computers, using a third Computer C as a virtual disk
[marked by "3" in Table 2 below]; Figure 2c depicts the use of PCA one computer (either
multitasking or multiuser) [arrangement marked by "1” in table 2 below].

Feasibility Study of the Portable Communication Architecture

We implemented Algorithm 1 in various languages and under various operating
systems, using various network software packages. Printed representations of integer numbers
were exchanged as messages here. (However, there is no limitation on the type and size of
messages as long as they are exchanged as ASCIH text files). As & side effect, each
communication program is incrementing the incoming integer by one before sending it out
again.

Implementation details are to be found in chapter 'Common Lisp Implementation of

PCA' below.

FILE operation is not available under the Common Lisp standard, but can be easily implemented from the
other primitive operations available under the Common Lisp file system interface.

PFH

L

Computer A

Computer C

Computer A
U

Computer A

a)

b)

c)

Table 2 summaries the implementations and communications we successfully
established between various high level languages, operating systems and computers:
Table 2: Successful communications implemented by the PCA. Numbers 1, 2, 3 indicate

number of physical computers involved in test communication (cf. Figure 2). A double dash
indicates an infeasible communication.

Computer B

GENERA MS-DOS VAX/VMS WINDOWS
Computer A
GENERA 7.2 1,2 3 2,3
MS-DOS 3.3 - 2,3 -
VAX/VMS 5.2 1,2,3 2,3
WINDOWS 3.0* 1

The communications reported in Table 2 do furthermore not depend on the high level
language used for implementation. Thus, a C-based PCA may communicate with a Lisp-

based PCA without knowing or recognizing it.
From the experiences reported in Table 2, we are confident that Algorithm 1 may be

'implemented in nearly any high level language under nearly any operating system.

Measurements

Several measurements were conducted using PCA on a standalone computer (Figure
2¢) and on an Ethernet (Figures 2a and 2b). Results are reported in the following tables. All
these machines are connected by the same physical Ethernet. All measurements were
performed at times were the Ethernet transmission load was very low.

Measurement 1 measures trensmission speed of the hardware arrangement of Figure
2¢c. PCA is used to measure the speed of message exchange between two tasks running on the
same computer, directly implementing Figure 1. Message exchange is always done by
actually writing onto the default system harddisk (no RAM disks etc. are used), For

* Inter-task communication using PCA was thus established without recoursing 10 Microsoft Windows 3.0's

special Dynamic Data Exchange (DDE) mechanism?®,
PFH
-200-

measurement purposes, communication is terminated after 50 messages were sent and
received (25 from Task 1 to Task 2, and 25 from Task 2 to Task 1). The total time needed for
sending and receiving these 50 messages is taken. Bach message consisting of a single integer
(cf. Listing I below), which is incremented by the receiver before being sent out again. Care
was taken that no other tasks (except the underlying operating System) are executing.
Standard operating system parameters have been taken, no tuning for speed took place.
During the measurement, the delay time of function (procedure) MakeDelay (cf. Listing 1)
was always set to zero.

Measurement 1 typically measures the sum of task switch times and the time it takes
to write/read onto the local hard disk. Other times can be disregarded. Therefore, it should not

muatter whether these measurements were performed using a C, Pascal or Lisp based version
of PCA. Results:

COMPAQ DESKPRO 486/25, Windows 3.0, Turbo Pascal 6.0: 010"
VAXStation 3500, VAX/VMS 4.7, VAX Pascal 3.6: 037"
Symbolics 3645, Genera 7.2, Symbolics Zetalisp: 136"
VAXStation 3500, VAX/VMS 4.7, VAXLisp 2.2; 500™.

Discussion: "Simple" multitasking operating systems are the fastest at inter-task
communication. The results of VAXLisp are disappointing; obviously, the bottleneck is not
the operating system or hard disk, but the intermediate virtual Lisp machine that interprets the
“binary" Lisp code. By contrast, the Symbolics Lisp Machine executes Lisp code in hardware.

Measurement 2 measures transmission speed of the hardware arrangement of Figure
2a. Only the measurement for Novell netware uses the arrangement of Figure 2b (i. e., a third
computer as a virtal disk). The computers A, B, C are always of the same brand and use the
same operating system. Otherwise this measurement is similar to Measurement 1. 50
messages are sent.

Méasurcmcm 2 typically measures the sum of synchronization times of the Ethernet,
of transmission times via Ethemet, and the time it takes to write/read onto the hard disk.
Other times can be disregarded. Therefore, it should not matter whether these measurements
were performed using a C, Pascal or Lisp based version of PCA. Results:

PFH
-201-

No Name 386/33 PC-AT, PC-DOS 3.3, Turbo C++, Novell Netware 3.0: ¢'03"
No Name 386/33 PC-AT, Windows 3.0/PC-DOS 3.3, Twrbo C++, Novell Netware 3.0: 0'16™

VAXStation 3500 to VAXStation 3500, VAX/VMS 4.7/5.2, VAX Pascal 3.6: 221"
Symbolics 3640 to 3645, Genera 7.2, Symbolics Zetalisp: 325"
VAXSttion 3500 to VAXStation 3500, VAX/VMS 4.7/5.2, VAXLisp 2.2: 758",

Discussion: The transmission speed of Novell Netware 3.0 is surprising. Even when
we take into account that DOS and Windows do no or little maintenance of operating system
background tasks, this is somewhat astonishirg, since all computers are connected to the same
physical Ethemet"® .

Measurements of transmission speeds of heterogenous systems (e. g, COMPAQ to
VAX) were conducted but will not be reported. Thus we avoid blaming the wrong computer
for slow speed.

COMMON LISP IMPLEMENTATION OF PCA

PCA was implemented in ISO Pascal, ANSI C and Common Lisp so far. Here only
one implementation of the PCA is described. The Common Lisp instantiation of the PCA will
be used for that purpose because it tums out to be the most concise and most readable PCA
(due to the well-defined syntax and file system interface of Common Lisp).

The states of Figure 1 were implemented as follows (Table 3):

Table 3: Correspondence of PCA states and Lisp function names chosen

STATE FUNCTION NAME

Wait WaitForMessage(F.leName)

Receive ReceiveMessage(InFile)

Process ProcessMessage(InFile)

Write WriteMessage(TempFile)

Submit SubmitMessage(TheFile OldFileName
NewFileName)

* In case much longer files had been sent as messages, one should expect that the sum of times would equate
each other asymptotically, since "physical” transmission time via net should dominate all other sum terms.

PFH ;
.202- .

All function parameters ending with -Name are of Common Lisp data type string. All
function parameters ending with -File are of Common Lisp data type stream. The Common
Lisp source is to be found in Listing 1.

13 Remkkhwkdnakds GLOBAL VARIABLES RAWANKANAARAAN ARk

{(defvar *Counter* nil)
{defvar *I0SuccessP* nil
"Keeps track of success of last IO operation.”)

P wwkkhRAkawandd AUXTILIARY FUNCTIONS *adaaddaddnkdddid

{defun MakeDelay ()

;; calls to MakeDelay take load from the network,
;; depending on the length of the delay chosen
#+VAX (sleep 0.5)

#+Symbolics (sleep 0.5)

t)

23 RARARARARkE*n FILE SYSTEM INTERFACE *#*anudawwans

(defun OpenAfile (FileName Mode)
;; returns the open stream when successful
{setq *IOSuccessp*
(case Mode
(WriteMode
{open FileName :direction :output :if-exists :supersede))
(ReadMode
(open FileName :if-does-not-exist nil))
(ProbeMode
(open FileName :direction :probe))}))

{(defun CloseAFile (TheFile)
(close TheFile))

{defun FileExistsP (FileName TheFile)

Listing 1 (continued) :PCA Implementation in Common Lisp

-203-

(let ({Success nil))
(setq TheFile (OpenAFile FileName 'ProbeMode))
(setqg Success *IOSuccessP*)
(wvhen Success (CloseAFile TheFile))
Success))
{defun DeleteFile (FileName)
(let ((TheFile nil))
(vhen (FileExistsP FileName TheFile)
{(delete—file FileName)

n)

33: Wwerakwankd MESSAGE SYSTEM INTERFACE #hawdewanwd
{(defun SubmitFile (TheFile OldFileName NewFileName)

;; Waits indefinitely until successful message submission.
:; Achieves desired synchronization.

{loop
(wvhen (FileExistsP TheFile Oldrilename)
#+VAX (zrename-file-by-copying OldFileName NewFilename)
#-VAX (rename~file OldFileName NewFilename)
(return t))))

(defun WaitForMessage (FileName)
:; Waits indefinitely for message. Returns stream when successful.
{let ((Success nil)) .
{(loop
(setq Success (OpenAFile FileName ‘ReadMode))
(unless Success (MakeDelay))
(when Success (return t)))
Success))

(defun ReceiveMessage (InFile)

;; assuming message is an integer (for demonstration purposes !)

{setq *Counter* (read-from-string (read-line InFile))))
(defun SendMessage (TempFile)

;; assuming message is an integer (for demonstration purposes !)
(format TempFile "~a~%" *Counter*))

(defun ProcessMessage ()
;: assuming message is an integer (for demonstration purposes !)

(incf *Counter*})

Listing 1: PCA Implementation in Common Lisp

-204 -

The functions of the file system interface and the message system interface are
designed in a way that they can easily be implemented in other programming languages in a
very similar way. The Pascal and C implementations of the PCA both use functionally
identical functions (procedures). Only the way return values are passed from a returning
function (procedure) to its environment typically differs from language to language.
Structurizing the PCA in a language-indcpendem (and thereby portable) way was partly
influenced by the concept of software "clichés” as presented in the book of Rich and Waters?.

Complementary, Listing 2 reports in detail about the code used for performing the
above measurements.

Note that the following correspondences hold (cf. Algorithm 1): Namel = IN1.DAT,
Name2 = TEMPDAT, Name3 = 'IN2DAT. These file names (global variables
InFileNamel, *TempFileName*, *InFileName2*) are assembled in the main
program.

When Listing 1 and Listing 2 are loaded into a Common Lisp system, the user must
answer the question "START AS ONE=1, TWO=2 OR TEST=3 ?:". In case the user types 'l',
the program assumes that it shall act as Computer A (also: Task 1) of Figure 2; in case the
user types '2', the program assumes that it shall act as Computer B (also: Task 2) of Figure 2.
It is always necessary to load the (otherwise identical 1) program two times on two computers
(or as two independent tasks) to perform the above Measurements 1 and 2.

If the user types '3, the program is running a self-test. In this case, it locally runs on

one computer only.

" -205.

3:2 122222 2 0 00 0 4 22 mHER GI'OBAL vmws (2322 221 2 2 22238 &4

#+VAX (defparameter *FileHeader*

=999\ "USER PASSWORD\":: [USER.NET]")
#+VAX (defparameter *FileName* “IN")
#§+VAX (defparameter *FileExtension* ".DAT")
$+VAX (defparameter *TFileName* “TEMP.DAT")
$+VAX (defparameter *FileTrailer* ";"*)

$+Symbolics (defparameter *FileHReader* “8929: {USER.NET] ")
#+Symbolics (defparameter *FileName* "IN")

#4Symbolics (defparameter *FileExtension* “.DAT")
#+Symbolics (defparameter *TFileName* “TEMP.DAT")
$+Symbolics (defparameter *FileTrailer* "*)

(defvar *InFile* nil)

(defvar *QutFile* nil)

(defvar *TempFile* nil)

(defvar *FileNamel* nil)

{defvar *FileName2* nil)

(defvar *TempFileName* nil)

(defvar *Limit* 50 "Number of messages to be sent.®)

s3; wmnaawakawkwn® PCA STATE MACHINE ##a#wahsandasdiid

(defun PerformDialogue (OneTwo)
(let ((InFileName nil)
(QutFileName nil))
(case OneTwo
(1
(setq InFileName *FileNamel*)
(setq OutFileName *FileName2*))
(2
(setq InFileName *FileName2*)
(setq OutFileName *FileNamel*)))

(setq *InFile* (WaitForMessage InFileName))
(ReceiveMessage *InFile¥*)

(format t " ~a~10d~%" InFileName *Counter”*)
(CloseAFile *InFile*)

{(DeleteFile InFileName)

{PxocessMessage)

(setq *TempFile*

(OpenAFile *TempFileName* WriteMode))
{SendMessage *TempFile*)

{CloseAFile *TempFile*)

(SubmitFile *TempFile* *TerpFileName* OutFileName)))

Listing 2 (continued) : Additional code for measurem.ents reported

<206 -

B ENRENTRAENR RN R MAIN PROGRAM LT3 24222222 2222 2% 2]

{format t ®~%%)
{(loop
(format t * START AS ONE=l, TWO=2 OR TEST=3 ?2: %)
(setqg *Choice* (read-line))
{(when (member *Choice* ' (w1" =2% ®3%) :test #'string=)
(return t)))
(fomat t *~%~%")

(setq *Counter* Q)

(setq *FileNamel*
(concatenate 'string *FileHeader* *FileName* "1" *FileExtension*

FrileTrailer))
{setq *FileNamae2*

(concatenate 'string *FileHeader* *FileName* ®2% *FjileExtension*
FileTrailer))
{setq *TempFileName*

{concatenate ‘'string *FileHeader* *TFileName* *FileTrailer*))
(when (member *Choice* * (1" ®"3%) :test #'string=)

7+ start from scratch
(DeleteFile *FileNamelx*)
(DeleteFile *FileName2*)
{DeleteFile *TempFileName*)

;; create file "IN1.DAT®

{setq *TempFile*

(OpenAFile *TempFileName* 'WriteMode))

(format *TempFile* "~a~y" Q)

(CloseAFile *TempFile*)

(SubmitFile *TempFile* *TempFileName* *FileNamel*))

(time
(loop

(if (string= *Choice* "1%) (PerformOneTwo 1)
(if (string= *Choice* ®2%) (PerformOneTwo 2)
{progn
(Performbialogue 1)
{Performbialogue 2))))

(when (> *Counter* *Limit*) (return t))))

Listing 2 : Additional code for measurements reported

«207 -

APPLICATIONS
Example 1: Distributed Artificial Intelligence

_The author is professionally concemned with developing knowledge-based systems in
the area of production planning and scheduling. We wrote a knowledge-based job shop
scheduling expert system called AIPLANNER!® which is currently available on VAX and
Symbolics computer hardware. However, real factory applications require that one is fluent in
many software and hardware languages, which motivated the design and realization of the
PCA. Ommtly,weusePCAtoconnectPCstomeVAXhostwhichismnningthe
AIPLANNER job shop scheduling system. By using the PC as an intelligent graphics
terminal, we can inquire AIPLANNER about manufacturing progress information, suggest
changes to the current plan and use it as a data base. We are able to display manufacturing
information using Microsoft Windows 3.0 based graphics, and to locally process
manufacturing information on PCs when needed. We intend to use the cheap computing
power of 486-based PCs to perform remote, knowledge-based optimization of the
manufacturing plans. To that end, we currently are implementing a PC hardware accelerator
board for performing planning and scheduling tasks using temporal logic as a description
language!!. Further plans include connecting AIPLANNER to a knowledge-based quality
information system with the help of PCA,; etc. There are many useful applications for PCA in
diverse manufacturing environments.

Example 1 reports on a typical request sent to AIPLANNER from a remote PC, and
the response sent by AIPLANNER. The request inquires on the current manufacturing plan of
a workeell, which is returned within seconds. In reality, however, these "low level” details are
hidden by a graphical user interface.

ASCII message send to AIPLANNER (running on 2 VAX under VAX/VMS) by a

remote PC:

(get.all.orders.on.wc)

-208 -

This message asks for all orders that are currently to be produced on the default
workcell. Within a few seconds (depending on the current load of the net), AIPLANNER
responds:

((("A1.P681/90.E8474" P681/90 283 1 393.0 1)
("A2.P681/00R.E8484" P681/0CR 500 1 398.0 2)
("A3.P681/60E.E8442" P681/60E 464 1 371.0 3)
("A4.P681/60E_E8474" P681/60E 200 1 393.0 4)
("AS.P631/60X.E8483" P681/60X 400 1 397.0 5)
("A6P681/60.E8461" P681/60 294 1 386.0 6)
("A7.P681/60.E8473" P681/60 200 1 392.0 7)
("A8.P681/75 E8445" P681/75 90 1 380.0 8)
("A9.P681/79.E8462" P681/79 600 1 387.09)
("A10.P681/79.E8472" P681/79 600 1 391.0 10)
("A11.P682/00R E8475" P682/00R 200 1 394.0 11)
("A12.P682/00.E8484" P682/00 200 1 398.0 12)
("A13.P685/02.E8464™ P685/02 S5 1388.0 13)
("A14 PT74/02R E8462" PT74/02R 239 1 387.0 14)
("A1S.P774)02R E8474" PTT4/02R 150 1 393.0 15)
("A16.PT74/02.E8402" P774/02 4 1 357.0 16)
("A17.P794/02R E8483" P794/02R 450 1 397.0 17)
("A18.P534/71.E8472" P584/71 600 1 391.0 18)
("A19.P584/71 E8474" P584/71 600 1 393.0 19)
("A20.P585/71.E3461" P585/71 600 1 386.0 20))
0K)

Each sublist of the responds describes one order to be produced. The description is by
name, type, amount, earliest start date and latest end date (relative to the current planning

horizon).

Example 2: Message Passing Mechanism

Listing 1, using the primitive functions of Algorithm 1, is desribing a portable message
passing mechanism. The mechanism is the underlying mecbanism of Example 1. In this
mechanism, both participants are sending a request, waiting indefinitely for an answer to this
requcs_t_t then process a new request from the answer received. This mechanism may be
modified according to practical needs. More than two remote participants may be sending

each other messages; or a request is sent, and the sender continues with other computations

while it is waiting for an answer.

<209-

Example 3: Mailbox Mechanism

A mailbox mechanism can be implemented by modifying the message passing
mechanism of Example 2. In 2 mailbox mechnism, a sender sends information (called mail)
to a receiver. However, it is only loossly depending on receiving an answer (return mail)
from the receiver. The sender might also decide to send several pieces of mail to the receiver
without receiving (or processing) return mail itself. This means practically, the WAIT state of
the PCA is relaxed, and messages must become distingnishable by some attribute (name
and/or time stamp) since several messages may be waiting for being read in a mailbox.

Example 4: Remote Computation

Sender and receiver of messages are supposed to reside on different hardware
platforms. The receiver of a message interprets the message as a request to run a certain
program (possibly using certain data enclosed to the message) on its local hardware machine.
After the program has finished, a result of the remote computation may be reported to the

original sender by sending a return message.

ACKNOWLEDGEMENTS

Regards to Stephan Becker, Ralf Parr (both Technical University of Hamburg-
Harburg) and to Dr. Randolf Isenberg (Philips GmbH Forschur.gslaboratorium Hamburg) for
proof-reading and commenting on this paper. Ralf Parr also implemented a Smalltalk/V
version of PCA. The work reported here was partially funded by the Commission of the
European Communities, Directorate General XIII, under ESPRIT Project 2434 (Knowledge-
Based Real-Time CIM Controllers for Distributed Factory Supervision).

PFH
-210 - .

s

9.

REFERENCES

W. Meyer, Expert Systems in Factory Management: Knowledge-based CIM, Ellis
Horwood, Chichester 1990.

C. A.R. Hoare, 'Communicating Sequential Processes’, Commun. ACM, 21, (8)666 -
677 (1978).

R. M. Metcalfe and D. R. Boggs, Ethemet: Distributed Packet Switching for Local
Computer Networks', Commun. ACM, 19, (7) 35 - 404 (1976).

H. Zimmermann, 'OSI Reference Model ~ The ISO Model of Architecture for Open
Systems Interconnection’, IEEE Trans. Communications, 28, (4) 425 - 430 (1980).
General Motors Inc., MAP Specification 2.1. Contacts: General Motors Technical
Center, Manufacturing Building, A/MD-39, 30300 Mound Road, Warren, Michigan
48090-9040, USA.

Kemmit Distribution, Columbia University, Center for Computing Activities; Contacts:
612 West 115th Street, New York, NY 10025.

G. Steele, Common Lisp: The Language, Digital Press, Billerca 1984.

Microsoft Corp., Microsoft Windows Software Development Kit Guide to Programming

Version 3.0, USA 1990.

C. Rich and R. Waters, The Programmer's Apprentice, Addison-Wesley, Reading 1990.

10. J.-I Jakob and R. Isenberg, 'An Advanced Graphical Knowledge Acquisition Module

11.

for a Production Planning Expert System in CIM’, Proc. IMACS-IRAC Symp.

Modelling and Control of Technological Systems, Lille (France) May 7 - 10 1991, (1)
769 - 774.

J.-L Jakob, "Temporal Inference Accelerator Board Progress Report’, ESPRIT 2434 30

Months Report, Hamburg 1991.

-211-

FIGURE CAPTIONS

Figure 1: PCA depicted as two identical, interacting state machines.
Figure 2: Possible hardware arrangements for the PCA

-212-

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21
	Seite 22
	Seite 23
	Seite 24
	Seite 25

