
Chapter 17
Evolutionary Inclusions

This chapter is devoted to the study of evolutionary inclusions. In contrast to
evolutionary equations, we will replace the skew-selfadjoint operator A by a so-
called maximal monotone relation A ⊆ H ×H in the Hilbert space H . The resulting
problem is then no longer an equation, but just an inclusion; that is, we consider
problems of the form

(u, f ) ∈ ∂t,νM(∂t,ν) + A, (17.1)

where f ∈ L2,ν(R; H) is given and u ∈ L2,ν(R; H) is to be determined. This
generalisation allows the treatment of certain non-linear problems, since we will
not require any linearity for the relation A. Moreover, the property that A is just a
relation and not neccessarily an operator can be used to treat hysteresis phenomena,
which for instance occur in the theory of elasticity and electro-magnetism.

We begin to define the notion of maximal monotone relations in the first part
of this chapter. In particular, we introduce the notion of the so-called Yosida
approximation of A and provide a useful perturbation result for maximal monotone
relations, which will be the key argument for proving the well-posedness of (17.1).
For this, we prove the celebrated Theorem of Minty, which characterises the
maximal monotone relations by a range condition. The second section is devoted
to the main result of this chapter, namely the well-posedness of (17.1), which
generalises Picard’s theorem (see Theorem 6.2.1) to a broader class of problems.
In the concluding section we consider Maxwell’s equations in a polarisable medium
as an application.
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276 17 Evolutionary Inclusions

17.1 Maximal Monotone Relations and the Theorem
of Minty

Definition Let A ⊆ H × H . We call A monotone if

∀(u, v), (x, y) ∈ A : Re 〈u − x, v − y〉 � 0.

Moreover, we call A maximal monotone if A is monotone and for each monotone
relation B ⊆ H × H with A ⊆ B it follows that A = B.

Remark 17.1.1 Let A ⊆ H × H be a monotone relation.

(a) It is clear that A is maximal monotone if and only if for each x, y ∈ H with

∀(u, v) ∈ A : Re 〈u − x, v − y〉 � 0

it follows that (x, y) ∈ A.
(b) From (a) it follows that A is demiclosed; i.e., for each sequence ((xn, yn))n∈N

in A with xn → x in H and yn → y weakly or xn → x weakly and yn → y in
H for some x, y ∈ H as n → ∞ it follows that (x, y) ∈ A (note that in both
cases we have 〈u − xn, v − yn〉 → 〈u − x, v − y〉 for each (u, v) ∈ A).

We start to present some first properties of monotone and maximal monotone
relations.

Proposition 17.1.2 Let A ⊆ H × H be monotone and λ > 0. Then the following
statements hold:

(a) The inverse relation (1 + λA)−1 is a Lipschitz-continuous mapping, which
satisfies

∥
∥(1 + λA)−1

∥
∥

Lip � 1.

(b) If 1 + λA is onto, then A is maximal monotone.

Proof For showing (a), we assume that (f, u), (g, x) ∈ (1 + λA)−1 for some
f, g, u, x ∈ H . Then we find v, y ∈ H such that (u, v), (x, y) ∈ A and u + λv = f

as well as x + λy = g. The monotonicity of A then yields

‖u − x‖2 = Re 〈f − g − λ(v − y), u − x〉 � Re 〈f − g, u − x〉 � ‖f − g‖ ‖u − x‖ .

If now f = g, then u = x. Hence, (1 + λA)−1 is a mapping and the inequality
proves its Lipschitz-continuity with

∥
∥(1 + λA)−1

∥
∥

Lip � 1.
To prove (b), let B ⊆ H × H be monotone with A ⊆ B and let (x, y) ∈ B.

Since 1 + λA is onto, we find (u, v) ∈ A ⊆ B such that u + λv = x + λy. Since
(1 + λB)−1 is a mapping by (a), we infer that

x = (1 + λB)−1(x + λy) = (1 + λB)−1(u + λv) = u

and hence, also v = y, which proves that (x, y) ∈ A and thus, A = B. 
�
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Example 17.1.3 Let B : dom(B) ⊆ H → H be a densely defined, closed linear
operator. Assume Re 〈u,Bu〉 � 0 and Re 〈v,B∗v〉 � 0 for all u ∈ dom(B)

and v ∈ dom(B∗). Then B is maximal monotone. Indeed, the monotonicity
follows from the linearity of B and by Proposition 6.3.1 the operator 1 + B is
continuously invertible, hence onto. Thus, the maximal monotonicity follows by
Proposition 17.1.2(b). In particular, every skew-selfadjoint operator is maximal
monotone. Moreover, if M : dom(M) ⊆ C → L(H) is a material law such that
there exist c > 0, ν0 � sb (M) with

Re 〈zM(z)φ, φ〉 � c ‖φ‖2 (φ ∈ H, z ∈ CRe�ν0),

then ∂t,νM(∂t,ν) − c is maximal monotone for each ν � ν0.

Our first goal is to show that the implication in Proposition 17.1.2(b) is actually an
equivalence. This is Minty’s theorem. For this, we start to introduce subgradients
of convex, proper, lower semi-continuous mappings, which form the probably most
prominent example of maximal monotone relations.

Definition Let f : H → (−∞,∞]. We call f

(a) convex if for all x, y ∈ H,λ ∈ (0, 1) we have

f (λx + (1 − λ)y) � λf (x) + (1 − λ)f (y).

(b) proper if there exists x ∈ H with f (x) < ∞.
(c) lower semi-continuous (l.s.c.) if for each c ∈ R the sublevel set

[f � c] = {x ∈ H ; f (x) � c}

is closed.
(d) coercive if for each c ∈ R the sublevel set [f � c] is bounded.

Remark 17.1.4 If f : H → (−∞,∞] is convex, the sublevel sets [f � c] are
convex for each c ∈ R. Hence, if f is convex, l.s.c. and coercive, the sets [f � c]
are weakly sequentially compact (or, by the Eberlein–Šmulian theorem [50, theorem
13.1], equivalently, weakly compact) for each c ∈ R. Indeed, if (xn)n∈N is a
sequence in [f � c] for some c ∈ R, then it is bounded and thus, posseses a
weakly convergent subsequence with weak limit x ∈ H . Since [f � c] is closed
and convex, Mazur’s theorem [50, Corollary 2.11] yields that it is weakly closed
and thus, x ∈ [f � c] proving the claim.

Definition Let f : H → (−∞,∞] be convex. We define the subgradient of f by

∂f := {(x, y) ∈ H × H ; ∀u ∈ H : f (u) � f (x) + Re 〈y, u − x〉} .

Remark 17.1.5 Note that u 
→ f (x) + Re〈y, u − x〉 is an affine function touching
the graph of f in x. Thus, the subgradient is the set of all pairs (x, y) ∈ H such
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that there exists an affine function with slope y touching the graph of f in x. It is
not hard to show that if f is differentiable in x, then (x, y) ∈ ∂f if and only if
y = f ′(x) (see Exercise 17.1). Thus, the subgradient of f provides a generalisation
of the derivative for arbitrary convex functions.

Proposition 17.1.6 Let f : H → (−∞,∞] be convex and proper. Then the
following statements hold:

(a) If (x, y) ∈ ∂f , then f (x) < ∞. Moreover, the subgradient ∂f is monotone.
(b) If f is l.s.c. and coercive, then there exists x ∈ H such that f (x) =

infu∈H f (u).

(c) Let α � 0, x, y ∈ H and g : H → (−∞,∞] with g(u) := α
2 ‖u − y‖2 + f (u)

for u ∈ H . Then g(x) = infu∈H g(u) if and only if (x, α(y − x)) ∈ ∂f .
(d) Let α > 0 and y ∈ H . If f is l.s.c., then g : H → (−∞,∞] with g(u) :=

α
2 ‖u − y‖2 +f (u) for u ∈ H is convex, proper, l.s.c and coercive. In particular
1 + α∂f is onto and hence, ∂f is maximal monotone.

Proof

(a) If (x, y) ∈ ∂f we have f (u) � f (x) + Re 〈y, u − x〉 for each u ∈ H . Since
f is proper, we find u ∈ H such that f (u) < ∞ and hence, also f (x) < ∞.

Let now (u, v), (x, y) ∈ ∂f . Then we have f (u) � f (x) + Re 〈y, u − x〉 and
f (x) � f (u) + Re 〈v, x − u〉 = f (u) − Re 〈v, u − x〉 . Summing up both
expressions (note that f (x), f (u) < ∞ by what we have shown before), we
infer

Re 〈y − v, u − x〉 � 0,

which shows the monotonicity.
(b) Let (xn)n∈N in H with f (xn) → infu∈H f (u) =: d . Note that d ∈ R, since

f is proper. Without loss of generality, we can assume that xn ∈ [f � d + 1]
for each n ∈ N and by Remark 17.1.4 we can assume that xn → x weakly as
n → ∞ for some x ∈ H . Let ε > 0. Since xn ∈ [f � d + ε] for sufficiently
large n ∈ N, we derive x ∈ [f � d + ε] again by Remark 17.1.4 and so,
f (x) � d + ε for each ε > 0, showing the claim.

(c) Assume that g(x) = infu∈H g(u) and let u ∈ H . Since f is proper, so is g and
thus, we have g(x) < ∞, which in turn gives f (x) < ∞. Let λ ∈ (0, 1] and set
w := λu + (1 − λ)x. Then the convexity of f yields

λ (f (u) − f (x)) � f (w) − f (x)

= g(w) − g(x) + α

2
(‖x − y‖2 − ‖w − y‖2)

� α

2
(‖x − y‖2 − ‖w − y‖2)
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= α

2

( ‖x − y‖2 − ‖λ(u − x) + x − y‖2 )

= α

2

( − 2λ Re 〈u − x, x − y〉 − λ2 ‖u − x‖2 )

.

Dividing the latter expression by λ and taking the limit λ → 0, we infer

−α Re 〈u − x, x − y〉 � f (u) − f (x),

which proves (x, α(y − x)) ∈ ∂f.

Assume now that (x, α(y − x)) ∈ ∂f . For each u ∈ H we have

‖x − y‖2 − 2 Re 〈y − x, u − x〉 = ‖y − x − (u − x)‖2 − ‖u − x‖2 � ‖u − y‖2

and thus,

f (u) � f (x) + Re 〈α(y − x), u − x〉 � f (x) + α

2

( ‖x − y‖2 − ‖u − y‖2 )

,

which shows the claim.
(d) We first show that there exists an affine function h : H → R with h � f . For

this, we consider the epigraph of f given by

epi f := {(x, β) ∈ H × R ; f (x) � β} .

Since f is convex and l.s.c., one easily verifies that epi f is convex and closed.
Moreover, since f is proper, epi f �= ∅. Let now z ∈ H with f (z) < ∞ and
η < f (z). Then (z, η) ∈ (H ×R) \ epi f and by the Hahn–Banach theorem we
find w ∈ H and γ ∈ R such that

Re 〈w, z〉 + γ η < Re 〈w, x〉 + γβ

for all (x, β) ∈ epi f. In particular

Re 〈w, z〉 + γ η < Re 〈w, x〉 + γf (x)

for each x ∈ H and since this holds also for x = z, we infer γ > 0. Choosing
h(x) := 1

γ
Re 〈w, z − x〉 + η for x ∈ H , we have found the asserted affine

function.
Using this, we have that

g(u) � α

2
‖u − y‖2 + h(u) (u ∈ H)
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and since the right-hand side tends to ∞ as ‖u‖ → ∞, we derive that g is
coercive. Moreover, g is convex, proper and l.s.c. (see Exercise 17.2) and thus,
there exists x ∈ H with g(x) = infu∈H g(u) by (b). By (c), (x, α(y − x)) ∈ ∂f

and thus, (x, y) ∈ 1 + α∂f . Since y ∈ H was arbitrary, 1 + α∂f is onto and so,
∂f is maximal monotone by (a) and Proposition 17.1.2(b). 
�

We can now prove Minty’s theorem.

Theorem 17.1.7 (Minty) Let A ⊆ H ×H maximal monotone. Then 1+λA is onto
for all λ > 0.

Proof Since λA is maximal monotone for each λ > 0, it suffices to prove the
statement for λ = 1. Moreover, since A − (0, f ) is maximal monotone for each
f ∈ H , it suffices to show 0 ∈ ran(1+A). For this, define fA : H ×H → (−∞,∞]
by (note that A �= ∅ by maximal monotonicity)

fA(u, v) := sup {Re 〈u, y〉 + Re 〈v, x〉 − Re 〈x, y〉 ; (x, y) ∈ A} .

As a supremum of affine functions, we see that fA is convex and l.s.c. Moreover,
we have that

fA(u, v) = − inf {− Re 〈u, y〉 − Re 〈v, x〉 + Re 〈x, y〉 ; (x, y) ∈ A}
= − inf {Re 〈x − u, y − v〉 ; (x, y) ∈ A} + Re 〈u, v〉

for each u, v ∈ H and since A is maximal monotone, we get by using Remark 17.1.1

inf {Re 〈x − u, y − v〉 ; (x, y) ∈ A} � 0 ⇔ (u, v) ∈ A

⇔ inf {Re 〈x − u, y − v〉 ; (x, y) ∈ A} = 0

and so

inf {Re 〈x − u, y − v〉 ; (x, y) ∈ A} � 0 (u, v ∈ H).

In particular, we get fA(u, v) � Re 〈u, v〉 for each u, v ∈ H and fA(u, v) =
Re 〈u, v〉 if and only if (u, v) ∈ A. Thus, fA is proper since A �= ∅. By
Proposition 17.1.6(d) we obtain that 0 ∈ ran(1 + ∂fA) and thus, we find (u0, v0) ∈
H × H with ((u0, v0), (−u0,−v0)) ∈ ∂fA. Hence, by definition of ∂fA,

fA(u, v) � fA(u0, v0) + Re 〈(−u0,−v0), (u − u0, v − v0)〉
= fA(u0, v0) + ‖u0‖2 + ‖v0‖2 − Re 〈u0, u〉 − Re 〈v0, v〉

for all (u, v) ∈ H × H. In particular, using that fA(u, v) = Re 〈u, v〉 for (u, v) ∈ A

we get

0 � fA(u0, v0)+‖u0‖2+‖v0‖2−Re 〈u0, u〉−Re 〈v0, v〉−Re 〈u, v〉 ((u, v) ∈ A).
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Taking the supremum over all (u, v) ∈ A, we infer

0 � fA(u0, v0) + ‖u0‖2 + ‖v0‖2 + fA(−u0,−v0),

� Re 〈u0, v0〉 + ‖u0‖2 + ‖v0‖2 + Re 〈−u0,−v0〉 = ‖u0 + v0‖2

Thus, u0 + v0 = 0 and instead of inequalities, we actually have equalities in the
expression above. Thus, fA(u0, v0) = Re 〈u0, v0〉 and so, (u0, v0) ∈ A. From
u0 + v0 = 0 it thus follows that 0 ∈ ran(1 + A). 
�
Next, we show how to extend maximal monotone relations on a Hilbert space H

to the Bochner–Lebesgue space L2(μ; H) for a σ -finite measure space (�,A, μ).
The condition (0, 0) ∈ A can be dropped if μ(�) < ∞.

Corollary 17.1.8 Let A ⊆ H × H maximal monotone with (0, 0) ∈ A. Moreover,
let (�,A, μ) be a σ -finite measure space and define

AL2(μ;H) := {(f, g) ∈ L2(μ; H) × L2(μ; H) ; (f (t), g(t)) ∈ A (t ∈ � a.e.)} .

Then AL2(μ;H) is maximal monotone.

Proof The monotonicity of AL2(μ;H) is clear. For showing the maximal monotonic-
ity we prove that 1 + AL2(μ;H) is onto (see Proposition 17.1.2(b)). For this, let
h ∈ L2(μ; H) and set f (t) := (1 + A)−1(h(t)) for each t ∈ �. Note that f is well-
defined by Theorem 17.1.7. Since (1 + A)−1 is continuous by Proposition 17.1.2(a)
and h is Bochner-measurable, f is also Bochner-measurable. Moreover, using that
(0, 0) ∈ 1 + A and

∥
∥(1 + A)−1

∥
∥

Lip � 1, we compute

∫

�

‖f (t)‖2 dμ(t) �
∫

�

‖h(t)‖2 dμ(t) < ∞

and so, f ∈ L2(μ; H). Thus, h − f ∈ L2(μ; H), which yields (f, h − f ) ∈
AL2(μ;H) and so, h ∈ ran(1 + AL2(μ;H)). 
�

17.2 The Yosida Approximation and Perturbation Results

We now have all concepts at hand to introduce the Yosida approximation for a
maximal monotone relation.

Definition Let A ⊆ H × H be maximal monotone and λ > 0. We define

Aλ := λ−1
(

1 − (1 + λA)−1
)

.

The family (Aλ)λ>0 is called Yosida approximation of A.
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Since for a maximal monotone relation A ⊆ H × H the resolvent (1 + λA)−1 is
actually a Lipschitz-continuous mapping (by Proposition 17.1.2(a)), whose domain
is H (by Theorem 17.1.7), the same holds for Aλ. We collect some useful properties
of the Yosida approximation.

Proposition 17.2.1 Let A ⊆ H × H maximal monotone and λ > 0. Then the
following statements hold:

(a) For all x ∈ H we have
(

(1 + λA)−1(x),Aλ(x)
) ∈ A.

(b) Aλ is monotone and ‖Aλ‖Lip � 1
λ
.

Proof

(a) For all x ∈ H we have that
(

(1 + λA)−1(x), x
) ∈ 1 + λA, and therefore,

(

(1 + λA)−1(x),Aλ(x)
) ∈ A.

(b) Let x, y ∈ H. Then we compute

λ Re 〈Aλ(x) − Aλ(y), x − y〉
= ‖x − y‖2 − Re

〈

(1 + λA)−1(x) − (1 + λA)−1(y), x − y
〉

� ‖x − y‖2 −
∥
∥
∥(1 + λA)−1(x) − (1 + λA)−1(y)

∥
∥
∥ ‖x − y‖

� 0

by Proposition 17.1.2(a) and hence, Aλ is monotone. Moreover,

Re 〈Aλ(x) − Aλ(y), x − y〉
= Re

〈

Aλ(x) − Aλ(y), (1 + λA)−1(x) − (1 + λA)−1(y)
〉

+ λ ‖Aλ(x) − Aλ(y)‖2

� λ ‖Aλ(x) − Aλ(y)‖2 ,

where we have used (a) and the monotonicity of A. The Cauchy–Schwarz
inequality now yields ‖Aλ‖Lip � 1

λ
. 
�

We state a result on the strong convergence of the resolvents of a maximal monotone
relation, which we already have used in previous sections for the resolvent of ∂t,ν .
For the projection PC(x) of x ∈ H onto a non-empty closed convex set C ⊆ H ,
recall Exercise 4.4 and that y = PC(x) if and only if y ∈ C and

Re 〈x − y, u − y〉H � 0 (u ∈ C).
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Proposition 17.2.2 LetA ⊆ H ×H be maximal monotone. Then dom (A) is convex
and for all x ∈ H we have (1+λA)−1(x) → Pdom (A)(x) as λ → 0+, wherePdom (A)

denotes the projection onto dom (A).

Proof We set C := conv dom (A). Then C is closed and convex. Next, we prove
that (1 + λA)−1(x) → PC(x) as λ → 0+ for all x ∈ H . So let x ∈ H and
set xλ := (1 + λA)−1(x) for each λ > 0. Then we have Aλ(x) = 1

λ
(x − xλ)

and hence, using Proposition 17.2.1(a) and the monotonicity of A, we infer

Re
〈

xλ − u, 1
λ
(x − xλ) − v

〉

� 0 for each (u, v) ∈ A. Consequently, we obtain

‖xλ‖2 � Re 〈xλ − u, x〉+ Re 〈xλ, u〉− λ Re 〈xλ − u, v〉 ((u, v) ∈ A). (17.2)

In particular, we see that (xλ)λ>0 is bounded as λ → 0 and so, for each nullsequence
we find a subsequence (λn)n with λn → 0 such that xλn → z weakly for some
z ∈ H . By (17.2) it follows that

‖z‖2 � Re 〈z − u, x〉 + Re 〈z, u〉 (u ∈ dom (A)).

It is easy to see that this inequality carries over to each u ∈ C and thus
Re 〈z − u, z − x〉 � 0 for each u ∈ C which proves z = PC(x) and hence,
xλn → PC(x) weakly. Next we prove that the convergence also holds in the norm
topology. From (17.2) we see that

lim sup
n→∞

∥
∥xλn

∥
∥

2 � Re 〈PC(x) − u, x〉 + Re 〈PC(x), u〉 (u ∈ dom (A))

and again, this inequality stays true for each u ∈ C. In particular, choosing u =
PC(x) we infer lim supn→∞

∥
∥xλn

∥
∥

2 � ‖PC(x)‖2, which together with the weak
convergence, yields the convergence in norm (see Exercise 17.3). A subsequence
argument (cf. Exercise 14.3) reveals xλ → PC(x) in H as λ → 0.
It remains to show that dom (A) is convex. By what we have shown above, we have
(1 + λA)−1(x) → x as λ → 0 for each x ∈ C and since (1 + λA)−1(x) ∈ dom (A)

for each λ > 0, we infer x ∈ dom (A). Thus, C ⊆ dom (A) and since the other
inclusion holds trivially the proof is completed. 
�
We conclude this section with some perturbation results.

Lemma 17.2.3 Let A ⊆ H × H be maximal monotone and C : H → H Lipschitz-
continuous and monotone. Then A + C is maximal monotone.

Proof The monotonicity of A + C is clear. If C is constant, then the maximality
of A + C is obvious. If C is non-constant we choose 0 < λ < 1

‖C‖Lip
. Then for all

f ∈ H the mapping

u 
→ (1 + λA)−1 (f − λC(u))
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defines a strict contraction (use Proposition 17.1.2(a) and dom((1 + λA)−1) = H

by Theorem 17.1.7) and thus, posseses a fixed point x ∈ H , which then satisfies
(x, f ) ∈ 1+λ(A+C). Thus, A+C is maximal monotone by Proposition 17.1.2(b).


�
We note that the latter lemma particularily applies to C = Bλ for a maximal
monotone relation B ⊆ H × H and λ > 0 by Proposition 17.2.1(b).

Proposition 17.2.4 Let A,B ⊆ H ×H be two maximal monotone relations, c > 0
and f ∈ H . For λ > 0 we set

xλ := (c + A + Bλ)−1(f ).

Then f ∈ ran(c + A + B) if and only if supλ>0 ‖Bλ(xλ)‖ < ∞ and in the latter
case xλ → x as λ → 0 with (x, f ) ∈ c + A + B, which identifies x uniquely.

Proof Note that xλ is well-defined for λ > 0 by Lemma 17.2.3, Theorem 17.1.7
and Proposition 17.1.2.

For all λ > 0 we find yλ ∈ H such that (xλ, yλ) ∈ A and cxλ +yλ +Bλ(xλ) = f.

We first assume that there exist x, y, z ∈ H such that (x, y) ∈ A, (x, z) ∈ B and
cx + y + z = f . Thus, we have

c(x − xλ) = yλ + Bλ(xλ) − y − z,

which gives

0 � c ‖xλ − x‖2 = Re 〈y − yλ, xλ − x〉 + Re 〈z − Bλ(xλ), xλ − x〉
� Re 〈z − Bλ(xλ), xλ − x〉
= Re

〈

z − Bλ(xλ), (1 + λB)−1(xλ) − x
〉

+ Re 〈z − Bλ(xλ), λBλ(xλ)〉
� Re 〈z − Bλ(xλ), λBλ(xλ)〉

where we have used the monotonicity of A in the second line and the monotonicity
of B as well as Proposition 17.2.1(a) in the last line. The latter implies

‖Bλ(xλ)‖2 � Re 〈z, Bλ(xλ)〉 ,

and the claim follows by the Cauchy–Schwarz inequality.
Assume now that K := supλ>0 ‖Bλ(xλ)‖ < ∞ and let μ, λ > 0. As above, we

compute

c
∥
∥xλ − xμ

∥
∥2 = Re

〈

yμ − yλ, xλ − xμ

〉 + Re
〈

Bμ(xμ) − Bλ(xλ), xλ − xμ

〉

� Re
〈

Bμ(xμ) − Bλ(xλ), xλ − xμ

〉
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= Re
〈

Bμ(xμ) − Bλ(xλ), (1 + λB)−1(xλ) − (1 + μB)−1(xμ)
〉

+ Re
〈

Bμ(xμ) − Bλ(xλ), λBλ(xλ) − μBμ(xμ)
〉

� Re
〈

Bμ(xμ) − Bλ(xλ), λBλ(xλ) − μBμ(xμ)
〉

� 2(λ + μ)K2.

Thus, for a nullsequence (λn)n∈N in (0,∞) we infer that (xλn)n∈N is a Cauchy
sequence whose limit we denote by x. Since (Bλn(xλn))n∈N is bounded, we can
assume, by passing to a suitable subsequence, that Bλn(xλn) → z weakly for some
z ∈ H . Then

∥
∥
∥(1 + λnB)−1(xλn) − x

∥
∥
∥ �

∥
∥xλn − x

∥
∥ + ∥

∥λnBλn(xλn)
∥
∥ → 0 (n → ∞)

and since ((1 + λnB)−1(xλn), Bλn(xλn)) ∈ B for each n ∈ N by Proposi-
tion 17.2.1(a), the demi-closedness of B (see Remark 17.1.1) reveals (x, z) ∈ B.
Moreover,

yλn = f − Bλn(xλn) − cxλn → f − z − cx =: y (n → ∞)

weakly and hence, by the demi-closedness of A, we infer (x, y) ∈ A, which
completes the proof of the asserted equivalence. By a subsequence argument (cf.
Exercise 14.3) we obtain the asserted convergence (note that x = (c+A+B)−1(f )

is uniquely determined by f ). 
�
To treat the example in Sect. 17.4 we need another perturbation result, for which we
need to introduce the notion of local boundedness of a relation.

Definition Let A ⊆ H × H and x ∈ dom (A). Then A is called locally bounded at
x if there exists δ > 0 such that

A[B(x, δ)] = {y ∈ H ; ∃z ∈ B(x, δ) : (z, y) ∈ A}

is bounded.

Proposition 17.2.5 Let A ⊆ H × H be maximal monotone such that
int conv dom (A) �= ∅. Then int dom (A) = int conv dom (A) = int dom (A)

and A is locally bounded at each point x ∈ int dom (A).

In order to prove this proposition, we need the following lemma.

Lemma 17.2.6 Let (Dn)n∈N be a sequence of subsets of H with Dn ⊆ Dn+1
for each n ∈ N and D := ⋃

n∈N Dn. If int conv D �= ∅, then int conv D =
⋃

n∈N int conv Dn.
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Proof Set C := int conv D. By Exercise 17.4 we have C = conv D. Since (Dn)n∈N
is increasing we have convD = ⋃

n∈N conv Dn and hence, C ⊆ ⋃

n∈N convDn ⊆
C. Since C is a Baire space by Exercise 17.5, we find n0 ∈ N such that
int conv Dn0 �= ∅ and hence, int conv Dn �= ∅ for each n � n0. Hence, conv Dn =
int conv Dn for each n � n0 by Exercise 17.4. Thus,

C =
⋃

n∈N
conv Dn =

⋃

n∈N
int conv Dn =

⋃

n∈N
int conv Dn.

Finally, since
⋃

n∈N int conv Dn is open and convex, we infer C = ⋃

n∈N int conv Dn

by Exercise 17.4. 
�
Proof of Proposition 17.2.5 We first show that A is locally bounded at each point
in int conv dom (A). For this, we set

An := {(x, y) ∈ A ; ‖x‖ , ‖y‖ � n} (n ∈ N).

Then dom (A) = ⋃

n∈N dom(An) and dom(An) ⊆ dom(An+1) for each
n ∈ N. Since int conv dom (A) �= ∅, Lemma 17.2.6 gives int conv dom (A) =
⋃

n∈N int conv dom(An). Thus, it suffices to show that A is locally bounded at
each x ∈ int conv dom(An) for each n ∈ N. So, let x ∈ int conv dom(An) for
some n ∈ N. Then we find δ > 0 such that B[x, δ] ⊆ conv dom(An). We
show that A[B(x, δ

2 )] is bounded. So, let (u, v) ∈ A with ‖u − x‖ < δ
2 and

note that u ∈ conv dom(An) ⊆ B[0, n]. Then for each (a, b) ∈ An we have
Re 〈u − a, v − b〉 � 0 and thus

Re 〈a − u, v〉 = Re 〈a − u, v − b〉 + Re 〈a − u, b〉
� Re 〈a − u, b〉 � 2n2 (a ∈ dom(An)).

Clearly, this inequality carries over to each a ∈ conv dom(An). If v �= 0 we choose
a := δ

2‖v‖v + u ∈ B[u, δ
2 ] ⊆ B[x, δ] ⊆ conv dom(An), and obtain

‖v‖ � 4n2

δ
,

which shows the boundedness of A[B(x, δ
2 )].

To complete the proof we need to show that int dom (A) = int conv dom (A) =
int dom (A). First we note that dom (A) is convex by Proposition 17.2.2 and hence,
conv dom (A) = dom (A). Now Exercise 17.4(b) gives

int dom (A) = int conv dom (A) = int conv dom (A).

To show the missing equality it suffices to prove that int conv dom (A) ⊆ dom (A).
So, let x ∈ int conv dom (A). Then x ∈ dom (A) and hence, we find a sequence
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((xn, yn))n∈N in A with xn → x. Since A is locally bounded at x, the sequence
(yn)n∈N is bounded and hence, we can assume without loss of generality that yn →
y weakly for some y ∈ H . The demi-closedness of A (see Remark 17.1.1) yields
(x, y) ∈ A and thus, x ∈ dom (A). 
�

Now we can prove the following perturbation result.

Theorem 17.2.7 Let A,B ⊆ H × H be maximal monotone,
(

int dom (A)
) ∩

dom(B) �= ∅. Then A + B is maximal monotone.

Proof By shifting A and B, we can assume without loss of generality that (0, 0) ∈
A∩B and 0 ∈ (int dom (A))∩dom(B). We need to prove that ran(1+A+B) = H .
So, let y ∈ H and set

xλ := (1 + A + Bλ)
−1(y) (λ > 0).

Since (0, 0) ∈ A ∩ Bλ and
∥
∥(1 + A + Bλ)

−1
∥
∥

Lip � 1, we infer that ‖xλ‖ � ‖y‖
for each λ > 0. For showing y ∈ ran(1 + A + B) we need to prove that
supλ>0 ‖Bλ(xλ)‖ < ∞ by Proposition 17.2.4. By definition we find yλ ∈ H

such that (xλ, yλ) ∈ A and y = xλ + yλ + Bλ(xλ) for each λ > 0. Since A is
locally bounded at 0 ∈ int dom (A) by Proposition 17.2.5 we find R, δ > 0 with
B(0, δ) ⊆ dom (A) and

∀(u, v) ∈ A : ‖u‖ < δ ⇒ ‖v‖ � R.

For λ > 0 we define uλ := δ
2‖yλ‖yλ if yλ �= 0 and uλ := 0 if yλ = 0. Then ‖uλ‖ �

δ
2 < δ and thus, uλ ∈ dom (A). Hence, there exist vλ ∈ H with (uλ, vλ) ∈ A and
‖vλ‖ � R for each λ > 0. The monotonicity of A then yields

0 � Re 〈yλ − vλ, xλ − uλ〉
= Re 〈yλ, xλ〉 − Re 〈vλ, xλ〉 − Re 〈yλ, uλ〉 + Re 〈vλ, uλ〉

� Re 〈y − xλ − Bλ(xλ), xλ〉 − Re 〈yλ, uλ〉 + R ‖y‖ + δ

2
R

� Re 〈y, xλ〉 − Re 〈yλ, uλ〉 + R ‖y‖ + δ

2
R

� ‖y‖2 − Re 〈yλ, uλ〉 + R ‖y‖ + δ

2
R,

where we have used the monotonicity of Bλ and Bλ(0) = 0 in the fourth line. Hence,
we obtain

δ

2
‖yλ‖ = Re 〈yλ, uλ〉 � ‖y‖2 + R ‖y‖ + δ

2
R,

which shows that (yλ)λ>0 is bounded and thus, also supλ>0 ‖Bλ(xλ)‖ < ∞. 
�
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17.3 A Solution Theory for Evolutionary Inclusions

In this section we provide a solution theory for evolutionary inclusions by general-
ising Picard’s theorem (see Theorem 6.2.1) to the following situation.

Throughout, we assume that A ⊆ H × H is a maximal monotone relation with
(0, 0) ∈ A. Moreover, let M : dom(M) ⊆ C → L(H) be a material law satisfying
the usual positive definiteness constraint

∃ν0 � sb (M) , c > 0 ∀z ∈ CRe�ν0, φ ∈ H : Re 〈φ, zM(z)φ〉 � c ‖φ‖2 .

Then for ν � max{ν0, 0}, ν �= 0, we consider evolutionary inclusions of the form

(u, f ) ∈ ∂t,νM(∂t,ν) + AL2,ν(R;H), (17.3)

where AL2,ν(R;H) is defined as in Corollary 17.1.8. The solution theory for this kind
of problems is as follows.

Theorem 17.3.1 Let ν � max{ν0, 0}, ν �= 0. Then the inverse relation
Sν := (

∂t,νM(∂t,ν) + AL2,ν(R;H)

)−1
is a Lipschitz-continuous mapping,

dom(Sν) = L2,ν(R; H) and ‖Sν‖Lip � 1
c
. Moreover, the solution mapping

Sν is causal and independent of ν in the sense that Sν(f ) = Sμ(f ) for each
f ∈ L2,ν(R; H) ∩ L2,μ(R; H) and μ � ν � max{ν0, 0}, ν �= 0.

In order to prove this theorem, we need some prerequisites. We start with an
estimate, which will give us the uniqueness of the solution as well as the causality
of the solution mapping Sν .

Proposition 17.3.2 Let ν � max{ν0, 0}, ν �= 0, and

(u, f ), (x, g) ∈ ∂t,νM(∂t,ν) + AL2,ν(R;H).

Then for all a ∈ R

∥
∥1(−∞,a](u − x)

∥
∥

L2,ν
� 1

c

∥
∥1(−∞,a](f − g)

∥
∥

L2,ν
.

Proof By definition, we find sequences ((un, fn))n∈N and ((xn, gn))n∈N in
∂t,νM(∂t,ν) + AL2,ν(R;H) such that un → u, xn → x, fn → f and gn → g

as n → ∞. In particular, for each n ∈ N we find vn, yn ∈ L2,ν(R; H) such that
(un, vn), (xn, yn) ∈ AL2,ν(R;H) and

∂t,νM(∂t,ν)un + vn = fn,

∂t,νM(∂t,ν)xn + yn = gn.
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Since (0, 0) ∈ A, we infer (1(−∞,a]un,1(−∞,a]vn), (1(−∞,a]xn,1(−∞,a]yn) ∈
AL2,ν(R;H) and hence, we may estimate

Re
〈

1(−∞,a](fn − gn), un − xn

〉

= Re
〈

1(−∞,a]∂t,νM(∂t,ν)(un − xn), un − xn

〉

+ Re
〈

1(−∞,a]vn − 1(−∞,a]yn,1(−∞,a]un − 1(−∞,a]xn

〉

� Re
〈

1(−∞,a]∂t,νM(∂t,ν)(un − xn), un − xn

〉

,

where we used Corollary 17.1.8. Moreover, since z 
→ (zM(z))−1 is a material law,
(∂t,νM(∂t,ν))

−1 is causal. By Proposition 16.2.3, for φ ∈ dom(∂t,νM(∂t,ν)) we have

Re
〈

1(−∞,a]∂t,νM(∂t,ν)φ, φ
〉

� c
∥
∥1(−∞,a]φ

∥
∥

2
. Thus, we end up with

Re
〈

1(−∞,a](fn − gn), un − xn

〉

� c
∥
∥1(−∞,a](un − xn)

∥
∥

2
,

which yields

∥
∥1(−∞,a](un − xn)

∥
∥ � 1

c

∥
∥1(−∞,a](fn − gn)

∥
∥ .

Letting n → ∞, we derive the assertion. 
�
Next, we address the existence of a solution for (17.3) for suitable right-hand sides
f . For this, we provide another useful characterisation for the weak differentiability
of a function in L2,ν(R; H).

Lemma 17.3.3 Let ν ∈ R, u ∈ L2,ν(R; H). Then u ∈ dom(∂t,ν) if and only if
sup0<h�h0

1
h

‖τhu − u‖ < ∞ for some h0 > 0. In either case

1

h
(τhu − u) → ∂t,νu (h → 0)

in L2,ν(R; H).

Proof For h > 0 we consider the operator Dh : L2,ν(R; H) → L2,ν(R; H) given
by Dhv = 1

h
(τhv − v). If v ∈ C1

c (R; H) we estimate

‖Dhv‖2 =
∫

R

1

h2
‖v(t + h) − v(t)‖2 e−2νt dt =

∫

R

1

h2

∥
∥
∥
∥

∫ h

0
v′(t + s) ds

∥
∥
∥
∥

2

e−2νt dt

�
∫

R

1

h

∫ h

0

∥
∥v′(t + s)

∥
∥2

ds e−2νt dt = 1

h

∫ h

0

∫

R

∥
∥v′(t + s)

∥
∥2

e−2νt dt ds

� e2νh
∥
∥v′∥∥2

.

By density of C1
c (R; H) in H 1

ν (R; H) we infer that

sup
0�h�1

‖Dh‖L(H 1
ν (R;H),L2,ν (R;H)) � eν .
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Moreover, for v ∈ C1
c (R; H) it is clear that Dhv → v′ in L2,ν(R; H) as h → 0 by

dominated convergence. Since (Dh)0�h�1 is uniformly bounded, the convergence
carries over to elements in H 1

ν (R; H), which proves the first asserted implication
and the convergence statement.
Assume now that sup0<h�h0

1
h

‖τhu − u‖ < ∞ for some h0 > 0. Choosing a
suitable sequence (hn)n∈N in (0, h0] with hn → 0 as n → ∞, we can assume
that 1

hn
(τhnu − u) → v weakly for some v ∈ L2,ν(R; H). Then we compute for

each φ ∈ C∞
c (R; H)

〈v, φ〉 = lim
n→∞

∫

R

1

hn

〈u(t + hn) − u(t), φ(t)〉 e−2νt dt

= lim
n→∞

∫

R

1

hn

〈

u(t), φ(t − hn)e
2νhn − φ(t)

〉

e−2νt dt

=
∫

R

〈

u(t),−φ′(t) + 2νφ(t)
〉

e−2νt dt = 〈

u, ∂∗
t,νφ

〉

,

which—as C∞
c (R; H) is a core for ∂∗

t,ν (see Proposition 3.2.4 and Corol-
lary 3.2.6)—shows u ∈ dom(∂∗∗

t,ν) = dom(∂t,ν). 
�
Proposition 17.3.4 Let ν � ν0 and f ∈ dom(∂t,ν). Then there exists u ∈ dom(∂t,ν)

such that

(u, f ) ∈ ∂t,νM(∂t,ν) + AL2,ν(R;H).

Proof We recall that B := ∂t,νM(∂t,ν)−c is maximal monotone by Example 17.1.3.
Let λ > 0 and set

uλ := (

c + B + (

AL2,ν(R;H)

)

λ

)−1
(f ) = (

∂t,νM(∂t,ν) + (

AL2,ν(R;H)

)

λ

)−1
(f ).

We remark that
(

AL2,ν(R;H)

)

λ
= (

Aλ

)

L2,ν (R;H)
(see Exercise 17.6). Hence, we have

τh

(

AL2,ν(R;H)

)

λ
= (

AL2,ν(R;H)

)

λ
τh for each h > 0. Thus, we obtain

τhuλ = (

∂t,νM(∂t,ν) + (

AL2,ν(R;H)

)

λ

)−1
(τhf )

and so, due to the monotonicity of B and
(

AL2,ν(R;H)

)

λ
,

‖τhuλ − uλ‖ � 1

c
‖τhf − f ‖ .

Dividing both sides by h and using Lemma 17.3.3, we infer that uλ ∈ dom(∂t,ν) and

∥
∥∂t,νuλ

∥
∥ = lim

h→0

1

h
‖τhuλ − uλ‖ � 1

c
sup

0<h�1

1

h
‖τhf − f ‖ =: K
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and hence,

sup
λ>0

∥
∥
(

AL2,ν(R;H)

)

λ
(uλ)

∥
∥ = sup

λ>0

∥
∥f − ∂t,νM(∂t,ν)uλ

∥
∥ � ‖f ‖ + K

∥
∥M(∂t,ν)

∥
∥ .

Proposition 17.2.4 implies uλ → u as λ → 0 and (u, f ) ∈ ∂t,νM(∂t,ν)+AL2,ν(R;H).
Moreover, since (∂t,νuλ)λ>0 is uniformly bounded, we can choose a suitable
nullsequence (λn)n∈N in (0,∞) such that ∂t,νuλn → v weakly for some v ∈
L2,ν(R; H). Since ∂t,ν is closed and hence, weakly closed (either use ∂∗∗

t,ν = ∂t,ν or
Mazur’s theorem [50, Corollary 2.11]) again), we infer that u ∈ dom(∂t,ν). 
�
We are now in the position to prove Theorem 17.3.1.

Proof of Theorem 17.3.1 Let ν � ν0. Since ∂t,νM(∂t,ν) − c is monotone (Exam-
ple 17.1.3), the relation ∂t,νM(∂t,ν) + AL2,ν(R;H) − c is monotone and thus,
(∂t,νM(∂t,ν)+AL2,ν(R;H))

−1 defines a Lipschitz-continuous mapping with smallest
Lipschitz-constant less than or equal to 1

c
. Since this mapping is densely defined by

Proposition 17.3.4, it follows that Sν = (

∂t,νM(∂t,ν) + AL2,ν(R;H)

)−1
is Lipschitz-

continuous with ‖Sν‖Lip � 1
c

and dom(Sν) = L2,ν(R; H). Moreover, Sν is
causal, since for f, g ∈ L2,ν(R; H) with 1(−∞,a]f = 1(−∞,a]g for some
a ∈ R it follows that 1(−∞,a]Sν(f ) = 1(−∞,a]Sν(g) by Proposition 17.3.2.
Thus, the only thing left to be shown is the independence of the parameter ν.
So, let f ∈ L2,ν(R; H) ∩ L2,μ(R; H) for some ν0 � ν � μ. Then we find a
sequence (φn)n∈N in C1

c (R; H) with φn → f in both L2,ν(R; H) and L2,μ(R; H).
We set un := Sν(φn) ∈ L2,ν(R; H) and since 0 = Sν(0), we derive that
inf spt un � inf spt φn > −∞ by Proposition 17.3.2. Thus, un ∈ L2,μ(R; H) and
since un ∈ dom(∂t,ν) by Proposition 17.3.4 and spt ∂t,νun ⊆ spt un, we infer that
also ∂t,νun ∈ L2,μ(R; H), which shows un ∈ dom(∂t,μ) and ∂t,μun = ∂t,νun by
Exercise 11.1. By Theorem 5.3.6 it follows that

∂t,νM(∂t,ν)un = M(∂t,ν)∂t,νun = M(∂t,ν)∂t,μun

= M(∂t,μ)∂t,μun = ∂t,μM(∂t,μ)un.

Since we have (un, φn − ∂t,νM(∂t,ν)un) ∈ AL2,ν(R;H) it follows that (un, φn −
∂t,μM(∂t,μ)un) ∈ AL2,μ(R;H) by the definition of AL2,μ(R;H) and thus, un =
Sμ(φn). Letting n → ∞, we finally derive Sμ(f ) = Sν(f ). 
�

17.4 Maxwell’s Equations in Polarisable Media

We recall Maxwell’s equations from Chap. 6. Let � ⊆ R
3 open. Then the electric

field E and the magnetic induction B are linked via Faraday’s law

∂t,νB + curl0 E = 0,
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where we assume the electric boundary condition for E. Moreover, the electric
displacement D, the current jc and the magnetic field H are linked via Ampère’s
law

∂t,νD + jc − curl H = j0,

where j0 is a given external current. Classically, D and E as well as B and H are
linked by the constitutive relations

D = εE, and B = μH,

where ε, μ ∈ L(L2(�)3) model the dielectricity and magnetic permeability,
respectively. In a non-polarisable medium, we would additionally assume Ohm’s
law that links jc and E by jc = σE with σ ∈ L(L2(�)3). In polarisable media
however, this relation is replaced as follows

‖E‖ < E0 ⇒ jc = σE

‖E‖ = E0 ⇒ ∃λ � 0 : jc = (σ + λ)E,
(17.4)

where E0 > 0 is the called the threshold of ionisation of the underlying medium.
The above relation is used to model the following phenomenon: Assume that the
medium is not or weakly electrically conductive (i.e., σ is very small) but if the
electric field is strong enough (i.e., reaching the threshold E0), the medium polarises
and allows for a current flow proportional to the electric field. Such phenomena
occur for instance in certain gases between two capacitor plates, where the gas
becomes a conductor if the electric field is strong enough.

Our first goal is to formulate (17.4) in terms of a binary relation. For this, we set

B :=
{

(u, v) ∈ L2(�)3 × L2(�)3 ; ‖u‖ � E0, Re 〈u, v〉 = E0 ‖v‖
}

.

Lemma 17.4.1 Let u, v ∈ L2(�)3. Then (u, v) ∈ B if and only if

(‖u‖ � E0) and (‖u‖ < E0 ⇒ v = 0) and (‖u‖ = E0 ⇒ ∃λ � 0 : v = λu).

Proof Assume first that (u, v) ∈ B. Then ‖u‖ � E0 by definition. Moreover,

E0 ‖v‖ = Re 〈u, v〉 � ‖u‖ ‖v‖

and hence, if ‖u‖ < E0 it follows that v = 0. Moreover, if ‖u‖ = E0 we have
equality and thus, u and v are linearly dependent; that is, we find λ1, λ2 ∈ C with
λ1λ2 �= 0 such that λ1u +λ2v = 0. Note that λ2 �= 0 since u �= 0 and hence, we get
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v = λu with λ := −λ1
λ2

. We then have

0 � |λ|E2
0 = ‖v‖ E0 = Re 〈u, v〉 = Re λ ‖u‖2 = Re λE2

0 ,

which shows 0 � Re λ = |λ| and thus, λ � 0. The other implication is trivial. 
�
The latter lemma shows that (E, jc) satisfies (17.4) if and only if (E, jc −σE) ∈ B,
or equivalently (E, jc) ∈ σ + B. Thus, we may reformulate Maxwell’s equations in
a polarisable medium � as follows

((

E

H

)

,

(

j0

0

))

∈ ∂t,ν

(

ε 0
0 μ

)

+
(

σ 0
0 0

)

+
(

B − curl
curl0 0

)

.

To apply our solution theory in Theorem 17.3.1, we need to ensure that

A :=
(

B − curl
curl0 0

)

=
(

B 0
0 0

)

+
(

0 − curl
curl0 0

)

(17.5)

defines a maximal monotone relation on L2(�)6 ×L2(�)6. This will be done by the
perturbation result presented in Theorem 17.2.7. We start by showing the maximal
monotonicity of B.

Lemma 17.4.2 We define the function I : L2(�)3 → (−∞,∞] by

I (u) =
{

0 if ‖u‖ � E0

∞ otherwise.

Then I is convex, proper and l.s.c. Moreover, B = ∂I . In particular, B is maximal
monotone.

Proof This is part of Exercise 17.7. 
�
Proposition 17.4.3 The relation A given by (17.5) is maximal monotone with
(0, 0) ∈ A.

Proof Since B is maximal monotone by Lemma 17.4.2, it is easy to see that
(

B 0
0 0

)

is maximal monotone, too. Moreover, by definition we see that 0 ∈

int dom(B) and thus, 0 ∈ int dom

(

B 0
0 0

)

= int dom(B) × L2(�)3. Since

clearly 0 ∈ dom

(

0 − curl
curl0 0

)

and

(

0 − curl
curl0 0

)

is maximal monotone (see

Example 17.1.3), the assertion follows from Theorem 17.2.7. 
�
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Theorem 17.4.4 Let ε, μ, σ ∈ L(L2(�)3) with ε, μ selfadjoint. Moreover, assume
there exist ν0, c > 0 such that

νε + Re σ � c and μ � c (ν � ν0).

Then for each ν � ν0 we have that

Sν :=
(

∂t,ν

(

ε 0
0 μ

)

+
(

σ 0
0 0

)

+
(

B − curl
curl0 0

)

L2,ν(R;L2(�)6)

)−1

is a Lipschitz-continuous mapping with dom(Sν) = L2,ν(R; L2(�)6) and
‖Sν‖Lip � 1

c
. Moreover, Sν is causal and independent of ν in the sense that

Sν(f ) = Sη(f ) whenever ν, η � ν0 and f ∈ L2,ν(R; L2(�)6) ∩ L2,η(R; L2(�)6).

Proof This follows from Theorem 17.3.1 applied to M(z) :=
(

ε 0
0 μ

)

+ z−1
(

σ 0
0 0

)

and A as in (17.5). 
�

17.5 Comments

The concept of maximal monotone relations in Hilbert spaces was first introduced
by Minty in 1960 for the study of networks [66] and became a well-studied subject
also with generalisations to the Banach space case. For this topic we refer to the
monographs [16] and [49, Chapter 3]. The concept of subgradients is older and it
was found out by Rockafellar [99] that subgradients are maximal monotone. Indeed,
one can show that subgradients are precisely the cyclically maximal monotone
relations (see e.g. [16, Theoreme 2.5]).

The Theorem of Minty was proved in 1962, [65] and generalised to the case of
reflexive Banach spaces by Rockafellar in 1970 [100]. The proof presented here
follows [106] and was kindly communicated by Ralph Chill and Hendrik Vogt.

The classical way to approach differential inclusions of the form (u, f ) ∈
∂t + A where A is maximal monotone uses the theory of nonlinear semigroups of
contractions, introduced by Komura in the Hilbert space case, [56] and generalised
to the Banach space case by Crandall and Pazy, [24]. The results on evolutionary
inclusions presented in this chapter are based on [117, 118] and were further
generalised to non-autonomous problems in [122, 126].

The model for Maxwell’s equations in polarisable media can be found in [36,
Chapter VII]. We note that in this reference, condition (17.4) is replaced by

|E| < E0 ⇒ jc = σE

|E| = E0 ⇒ ∃λ � 0 : jc = (σ + λ)E,
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which should hold almost everywhere. To solve this problem, one cannot apply
Theorem 17.2.7, since 0 is not an interior point of the domain of the corresponding
relation and thus, a weaker notion of solution is needed to tackle this problem, see
[36, Theorem 8.1].

Exercises

Exercise 17.1 Let f : H → (−∞,∞] be convex, proper and l.s.c. Moreover,
assume that f is differentiable in x ∈ H (in particular, f < ∞ in a neighbourhood
of x). Show that (x, y) ∈ ∂f if and only if y = f ′(x).

Exercise 17.2 Let f, g : H → (−∞,∞]. Prove that

(a) f + g is convex if f and g are convex.
(b) f + g is l.s.c. if f and g are l.s.c.

Exercise 17.3 Let H be a Hilbert space, (xn)n∈N in H and x ∈ H . Show, that
xn → x if and only if xn → x weakly and lim supn→∞ ‖xn‖ � ‖x‖.

Exercise 17.4 Let X be a normed space (or, more generally, a topological vector
space) and C ⊆ X convex. Prove the following statements:

(a) If x ∈ int C and y ∈ C, then (1 − t)x + ty ∈ int C for each t ∈ [0, 1).
(b) If int C �= ∅, then C = int C and int C = int C.
(c) If C is open and K ⊆ X is open with K ⊆ C. Then K ⊆ C.

Hint: For (a) take an open set U ⊆ X with 0 ∈ U such that x + U − U ⊆ C and
show (1 − t)x + ty + (1 − t)U ⊆ C.

Exercise 17.5 Let X be a topological space and U ⊆ X open. We equip U with the
trace topology. Prove the following statements:

(a) For A ⊆ U we have A
U = A

X ∩ U and intU A = intX A.

(b) If A ⊆ U is closed in U and intU A = ∅, then intX A
X = ∅.

(c) If X is a Baire space, then U is a Baire space.

Recall, that a topological space X is a Baire space if for each sequence (An)n∈N of
closed sets with int An = ∅ it follows that int

⋃

n∈N An = ∅ or, equivalently, if for
each sequence (Un)n∈N of open and dense sets it follows that

⋂

n∈N Un is dense.

Exercise 17.6 Let A ⊆ H × H be maximal monotone.

(a) Let μ, λ > 0. Show that (Aλ)μ = Aλ+μ.
(b) Let (0, 0) ∈ A and (�,A, μ) a σ -finite measure space. Prove that (Aλ)L2(μ) =

(AL2(μ))λ for each λ > 0.
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Exercise 17.7 Let H be a Hilbert space and C ⊆ H non-empty, convex and closed.
Moreover, define IC : H → (−∞,∞] by

IC(x) :=
{

0 if x ∈ C,

∞ otherwise.

Show that IC is convex, proper and l.s.c. and show

(x, y) ∈ ∂IC ⇔ x ∈ C,∀u ∈ C : Re 〈y, u − x〉 � 0.

Moreover, prove Lemma 17.4.2.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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