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Abstract

This paper presents a two-stage procedure for density-based optimization towards a fail-safe design. Existing approaches
either are computationally extremely expensive or do not explicitly consider fail-safe requirements in the optimization.
The current approach trades off both aspects by employing two sequential optimizations to deliver redundant designs that
offer robustness to partial failure. In the first stage, a common topology optimization or a topology optimization with local
volume constraints is performed. The second stage is referred to as “density-based shape optimization” since it only alters
the outline of the structure while still acting on a fixed voxel-type finite element mesh with pseudo-densities assigned to
each element. The performance gain and computational efficiency of the current approach are demonstrated by application
to various 2D and 3D examples. The results show that, in contrast to explicitly enforcing fail-safety in topology
optimization, the current approach can be carried out with reasonable computational cost. Compared to the local volume
constraint approach, the suggested procedure further increases the fail-safe performance by 47% for the example
considered.
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1. Introduction Embedding the fail-safe requirements in structural optimiza-
tion is straight forward and has already been done by Sun, Arora,
and Haug (1976), where the fail-safe design in the optimization
of truss structures was addressed by applying stress, buckling,
and displacement constraints for each failure case. Due to the
large number of constraints and computational limits, this ap-
proach is restricted to relatively small examples. For larger mod-
els, Sun et al. only considered a few failure cases at the same
time.

Implementing fail-safe requirements in topology optimiza-
tion raises the question of how to remove structural elements,
when these evolve during the optimization. Jansen, Lombaert,
Schevenels, and Sigmund (2013) tackled this problem by intro-
ducing a simplified damage model using damage patches of
fixed shape. Since the location of damage is not known a priori,
a vast number of possible damage locations have to be evaluated
in each iteration. The result is a structure with redundant load
paths, but the computational cost is extremely high.

Safety-critical structures often need to be designed such that
they resist a certain load level, even after one load path failed.
For instance, according to the Certification Specifications for
Large Aeroplanes CS-25 by the European Aviation Safety Agency
(2012), a “multiple load path construction” is mandatory for cer-
tain airframe structures, as well as the proof that “the aeroplane
may function safely with an element missing”. In other words,
these structures need to be fail-safe by being able to resist the
design load, even if one load path fails. This ability is also of-
ten referred to as damage tolerance in the aircraft industry. Mo-
tivated by the advances in additive manufacturing, according
to Sossou, Demoly, Montavon, and Gomes (2018), design opti-
mization and in particular topology optimization is increasingly
used for the design of aircraft structures. Therefore, it is desir-
able to consider fail-safe requirements already at the optimiza-
tion stage.
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Figure 1: Workflow for proposed fail-safe optimization.

Zhou and Fleury (2016) presented an approach to down-
select the locations at which damage patches are to be placed.
This reduced the computational cost, that however remains on
a very high level. Furthermore, their approach produces designs
that are sensitive to damage in locations that have been sorted
out (see Ambrozkiewicz and Kriegesmann 2018). Liideker and
Kriegesmann (2019) discussed approaches for combining failure
cases in order to improve computational efficiency. They showed
that this is not necessarily a conservative approach, and more-
over, the number of analyses to be run per iteration remains un-
acceptably high.

The authors Ambrozkiewicz and Kriegesmann (2018) pre-
sented a method for fail-safe optimization where structural el-
ements are identified as “beams” and “knots” during the opti-
mization. Based on this identification, the damage patch size,
shape, and location are adaptively adjusted during the optimiza-
tion to cover all load-bearing parts of the structure, preferably in
a minimal amount of damage patches. In the authors’ opinion,
this approach is close to the intention of the Certification Spec-
ifications for Large Aeroplanes. The number of damage patches
to be considered per iteration decreases by orders of magnitude
when compared to the method in Jansen et al. (2013). However,
since the optimization problem is continuously changed, the op-
timization does not converge reliably in all cases.

Besides explicitly formulating the fail-safe requirement as
objective or constraint in the optimization, a redundant struc-
ture can also be achieved by using the local volume constraints
introduced by Wu, Aage, Westermann, and Sigmund (2017).
These constraints penalize large accumulations of solid volume
in the design space and therefore enforce structural members to
be distributed over the whole design space. While this approach
is extremely efficient, the evaluation of failure scenarios is not
part of the optimization and hence, the fail-safe behavior of the
resulting structure is not optimal, and the desired damage tol-
erance cannot be guaranteed.

The current paper aims at combining the advantages of the
approach suggested in Wu et al. (2017) with an explicit formu-
lation of the fail-safe requirement as in Jansen et al. (2013) by
a sequential optimization procedure. The workflow for the pro-
posed fail-safe optimization is shown in Fig. 1.

The first step consists of carrying out a topology optimization
with the local volume constraint method. Afterward, the struc-
tural members are identified. Finally, a density-based shape op-
timization is carried out in which only the failure of the previ-
ously identified structural elements is considered. Thereby, the
huge efficiency improvement as in Ambrozkiewicz and Krieges-

mann (2018) is driven even further. By limiting the second opti-
mization step to a shape optimization, the convergence behavior
is not jeopardized.

This paper outlines as follows: In Section 2, an overview of
the proposed method is given, while later sections describe the
details of the individual calculation steps. Section 3 recapitu-
lates the theory of topology optimization. The identification of
load-bearing parts and the modeling of damage scenarios are
explained in Section 4. Density-based shape optimization with
fail-safe consideration is the main contribution of this paper and
described in Section 5. Numerical examples in 2D are given in
Section 6, 3D examples can be found in Section 7. A discussion
of computational cost in Section 8 sets the proposed method in
comparison to the methods of Jansen et al. (2013), and Zhou and
Fleury (2016).

As shown in Fig. 1, the proposed method consists of these main
steps:

(1) Deterministic topology optimization to get a preliminary de-
sign I

(2) Identification of load-bearing members of I and creation of
damage scenarios

(3) Density-based shape optimization of design I to get a fail-
safe design II

In the first step, a computationally cheap topology optimiza-
tion of the part is run without any fail-safe considerations (see
Section 3). This stage will define the final topology of the part.
Since redundant structures are most likely more robust to par-
tial damage, using the local volume constraint (see Section 3.7)
is a good choice if aiming for optimized damage tolerance.

Afterward, the load-bearing parts of the structure are identi-
fied by an automated algorithm (see Section 4) and damage sce-
narios are generated.

To finally evaluate and minimize the effect of damage on
these load pathsis the task of the density-based shape optimiza-
tion stage (see Section 5).

Minimizing compliance ¢ under a volume constraint h is a well-
studied topology optimization task that can be performed to de-
liver the preliminary design I of the structure.

This section recapitulates the equations for deterministic
topology optimization problems under a global volume con-
straint. Later, the local volume constraint is presented as a cheap
modification of the problem formulation to obtain redundant
structures.

The optimization task states as follows:

minc(e) = fTu ®

st. h(e)=V(e)/Vo—ky <0 )
0<oi<1Vi 3)
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The stiffness matrix K is dependent on the vector of design
variables ¢ and is obtained by a finite element discretization of
the design domain. The nodal displacement vector u is the solu-
tion to the FEM equation of linear elasticity (4) under an external
load vector f. Vj is the total volume of the design domain and V
is the volume occupied by the part which is limited by an upper
bound k4 on the global volume fraction V/Vj.

The design variables ¢ are mapped to filtered variables g by a
mesh independency filter (Bourdin 2001; Bruns and Tortorelli
2001):

5 2 W~ xi)vjo)
Qi = Zj w(x)' — xi)vj (5)
w(x) := max(r — x|, 0) Q]

Here, v; are the element volumes, x; the locations of the ele-
ment centers and w is a conic weighting function dependent on
the filter radius r.

The filtered variables g are then transformed to projected vari-
ables p via an approximation to the Heaviside step-function with
a variable steepness parameter g and the threshold parameter
n (Wang, Lazarov, and Sigmund 2011):

__ tanh(gn) + tanh(B(ci — 7))
%= tanh(gn) + tanh(B(1 — 1))

)

Finally, the element’s stiffness matrix for element i is assem-
bled based on an effective Young’s modulus E; calculated by
the SIMP approach dependent on the projected element variable
0i (Bendsge 1989):

Ei = Emin + (EO - Emin)(éi)p, éi S [O, 1] (8)

For the material interpolation, Ey and E,;, are set as the
Young’s moduli of the solid and void phase, respectively. The ex-
ponent p > 1is used to penalize intermediate densities.

With the pseudo-densities ¢; and the element volumes v; the
global volume fraction « can be defined, and the constraint
equation (2) can be expressed as

Vi oivi
= = 9
=% T 5w ©)
h—w-k <0 (10)

When using gradient-based optimization algorithms, the sen-
sitivities of the objective function ¢ and the constraint equa-
tion h are required. Firstly, the partial derivatives with respect
to the pseudo-densities are calculated. For ¢ the adjoint method
is used (Bendsge and Sigmund 2004), whereas for h direct differ-
entiation of equations (9) and (10) is performed:
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Then, the total derivatives with respect to the design vari-
ables are obtained by applying the chain rule:
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A cheap way to get redundant load paths in a topology optimiza-
tion is to suppress the forming of overly thick members by con-
straining volume fractions locally (Wu et al. 2017). For the local
volume constraint, the volume fraction w; in a local neighbor-
hood N; around each element i is constrained by a maximum
allowed value k;:

. 0il;
o = Z)G[N, QjUj (15)
ZjeNg vj
hi:wi—hfo (16)

With N; being the neighborhood of element i including all
surrounding elements, that have their centers within a maxi-
mum distance radius of R:

Ni = {j | IXj — xi[2 < R} (17)

By enforcing a certain amount of void in each neighborhood,
thick members need to be split into separate thinner members
with enough void space in between to satisfy the local volume
constraint. This leads to a redundant design, where the degree
of redundancy may be tuned by the relation of the filter radius r
and the radius R of the local volume constraints.

The n constraints h; may be combined into a single constraint
hagg by applying the p-mean aggregation function on the local
volume fractions w; (Wu et al. 2017):

1
hagg = <ﬁ Za)ip‘l%>

This aggregation approximates the maximum value of all w;
in a differentiable way. It converges to the real maximum with
increasing values for the parameter p,4q, with the downside that
the nonlinearity of the constraint is increased. In this paper a
value of pagq = 16 is used (Wu et al. 2017).

The minimum compliance topology optimization task with
local volume constraint is obtained by taking equations (1)—(4)
and changing the inequality constraint (2) to (18).

-k <0 (18)

After a design is obtained in optimization stage I, individ-
ual damage scenarios have to be defined to tackle the origi-
nal problem of considering failure of single load-bearing mem-
bers of the structure. This section describes the proposed
method of defining the damage scenarios, consisting of these
steps:

(1) Identification of load-bearing members
(2) Analytical description of individual members by auxiliary
“member shapes”
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Figure 2: Load-path identification for the cantilever beam example.

(3) Conversion of “member shapes” to “damage shapes”
(4) Generation of damage mask vectors ¥4

Load-bearing members are extracted by subdividing the solid
phase from the result obtained in stage I into “beams” and
“knots” (c.f. Fig. 2b). Beams are slender, highly directional parts,
whereas knots are the regions where several beams meet. Par-
ticularly for lattice-type structures, automated processes exist
for this subdivision. Appendix A describes the details of two
methods successfully applied by the authors based on a sim-
ple stress criterion (Ambrozkiewicz and Kriegesmann 2018) and
image processing algorithms.

Due to the automated methods available, this paper focuses
on lattice-type structures. For 2D problems with low volume
fractions, these are mostly automatically obtained. For 3D prob-
lems often plate-like structures are optimal. However, when uti-
lizing the local volume constraint, even for 3D problems lattice-
type structures are enforced.

As an example, the stress criterion method by Am-
brozkiewicz and Kriegesmann (2018) is applied to the cantilever
beam structure from Section 6.1 with the density field seen
in Fig. 6a. The normalized stress criterion values for the ele-
ments of the solid phase are shown in Fig. 2a. Within the value
set ¢ € [0, 1], low values indicate a beam region, higher values
are obtained for knot regions.

The classification into beams and knots is done by selecting a
threshold value for the criterion, e.g. by choosing a specific prob-
ability value and reading the threshold value from the empiri-
cal cumulative distribution function of the criterion values. In
this example, the structure is dominated by slender beams with
relatively little material in the interconnection regions. Conse-
quently, a probability value of 0.7 was chosen, such that 70%
of the elements were classified into the beam class and the re-
maining 30% into the knot class. This procedure is robust to-
wards moderate variations in the exact threshold value, since
altering it would only let the knot regions grow or shrink by a
small amount, without negatively affecting the overall subdivi-
sion process.

After each solid element is assigned to a class (beam or knot),
a recursive algorithm collects neighboring elements of the same
class. Each individual group is assigned a cluster number. In an
automated post-processing step, undesired small clusters are
suppressed and too large clusters are split, providing the re-
sult in Fig. 2b. Appendix A discusses the classification and post-
processing steps in more detail.

Auxiliary “member shapes” are constructed for each identified
cluster: Beams are expected to be slender members of constant
thickness which could best be described by rectangular boxes,
whereas knots are aggregations of material of varying shapes
which are approximated by ellipsoids. To generalize the shapes,
superellipses (in 2D) and superellipsoids (in 3D) are used to de-
scribe the member shapes.

For every cluster, the following geometric quantities are
needed to describe the auxiliary shapes mathematically:

® The location of the center point x.
* A matrix V with unit vectors of the principal axes as columns
® A size vector a with the elongation along the half-axes

Appendix B describes how these quantities are calculated for
each of the clusters.

The surface for the outline of a superellipsoid (for the 2D case
the z-coordinate can be omitted, leading to a superellipse) in lo-
cal coordinates (X, y, z) with the center at (0, 0, 0) is
X

a

E(X):= q+‘zq+ -1=0 (19)

b

Here a = [a,b,c]T are the lengths of the half-axes, q is the
power to alter the shape of the edge transitions: For the aux-
iliary shapes for knots a value of q = 2 will be used, a higher
value of q = 10 is used for beams, resulting in almost box-type
shapes.

In general, the superellipsoids will have their centers shifted
by a position vector to the center point x. and their principal
axes inclined compared to the global coordinate system. The
principal axes will be defined as an orthonormal basis V:

V= [U1, V2, 1)3] (20)

The relation between global coordinates x and local coordi-
nates x’ is then

X =VT(x—-x) (21)

An overlay of the outlines of the member shapes calculated
from the clusters in Fig. 2b on the example design is shown
in Fig. 2c. With the scaling of the size vector a derived in Ap-



pendix B, a close fit of the outlines of the member shapes to the
original density field is achieved.

Each damage scenario is modeled by removing material from
the structure inside geometric entities referred to as “damage
shapes” in this paper. Parameterizing the shapes’ sizes and lo-
cations means that, in contrast to the approach from Jansen et
al. (2013), the geometry of the damage shapes used here is not
constant and the shapes are not necessarily aligned with the FE
mesh axes.

The previously obtained member shapes cannot be directly
used as regions of damage for a downstream fail-safe optimiza-
tion. The shapes need to be enlarged, otherwise, the optimizer
would simply circumvent the damage by slightly shifting the
outline of the part. A simple approach to counter this undesired
effect is to use upscaled versions of the member shapes as dam-
age shapes e.g. by multiplying the size vector a by 2. The circum-
vention effect and the influence of the scaling factor on the final
optimization result is discussed in Appendix C.

The fail-safe optimization procedure described in Section 5 is
not sensitive to the exact size of the damage shapes, they only
need to be large enough to reliably cut through the correspond-
ing structural member in the density field. Beam-type members
only need to be cut in the middle since beams lose all their load-
bearing capacity once they are cut through their whole cross-
section at any location. These more compact damage shapes are
used for the actual fail-safe optimization.

An example of the final damage shapes can be seen in Fig. 6b,
where a scaling factor of 2 was applied to the size vector a ob-
tained for the member shapes from Fig. 2c. For beams, more
compact centered damage shapes were obtained by modifying
the largest half-axis (length direction) to be half the size of the
second half-axis (width direction): a = 0.5b.

A multiplicative mask 4 is used to describe every damage sce-
nario d. The physical densities of the damaged structure are the
Hadamard (entrywise) product of the undamaged projected den-
sities and the damage mask:

ea=go¥a.vd (22)

The entries of ¥4 are values in the interval from 0 to 1, with
1 meaning that the structure is unchanged and 0 meaning that
material is completely removed in this area. Also, partial remov-
ing is possible when using values between 0 and 1.

To generate the mask for a damage case d, all elements
with center points inside the corresponding damage shape su-
perellipsoid (E(x’) <0) shall get a mask value close to zero,
while all other elements outside (E(x') > 0) shall be mapped
to one. A smooth approximation for this mapping function
can be constructed by using the hyperbolic tangent function.
For each element i with the center point at x; the mask
value is

tanh(«E (x])) + 1

: (23)

Yai =

X = VT (% — x) (24)

1

The parameter o controls the sharpness of the transition be-
tween zero and one and is set to « = 10 in this paper. An example

(a) Undamaged design g with contour line E =0
at a “knot” location

(b) Corresponding damage mask ¥ with o = 10

(c) Resulting damaged design g o ¥

Figure 3: Example of applying damage to a structure by a multiplicative mask y
generated from a parameterization E of an ellipse.

of applying a single damage patch to a structure by the described
method is shown in Fig. 3.

In a shape optimization, the contour of a part is altered to min-
imize an objective function. Typically, the shape of the part is
described by a set of parameters that are used as the design
variables of the problem. The part is meshed with a conform-
ing mesh with nodes on the part’s boundary. During the opti-
mization, the outer nodes are moved according to a mapping
function between the design variables and the nodal positions
(see e.g. Hojjat, Stavropoulou, and Bletzinger 2014; Le, Bruns, and
Tortorelli 2011).

In contrast to that, the density-based shaping optimization
presented here uses the same mesh as for the topology opti-
mization, therefore no remeshing nor data conversion or map-
ping is needed.

The interface of the structure optimized in stage I using the
SIMP approach with relaxed continuous density variables is not
sharp but blurred out due to the averaging effect of the density
filter (5). The projection step (7) is applied to make the gradual
interface region more compact for larger g values such that the
interface appears sharper.

However, when modifying the projection threshold value 7,
the outline of the part can be altered. This was used e.g. to
include the effects of uniform (see Sigmund 2009; Wang et al.
2011) or spatially varying (see Kriegesmann and Liideker 2019;
Lazarov, Schevenels, and Sigmund 2012; Schevenels, Lazarov,
and Sigmund 2011) manufacturing errors into the optimization,



Figure 4: Relation of variables for the two optimization stages, the design vari-
ables are displayed in red.

where eroded and dilated designs were calculated besides the
nominal design by altering n values. In Appendix D, the effect of
uniformly varying 5 is shown for an example structure.

In this paper a field of ! values is used in optimization
stage II to apply different projection thresholds to each finite
element in the design space. Where needed, the superscripts
(- ) or (-)! are included to clarify if variables originate from
the preliminary design of stage I or from the shape optimization
of stage II discussed in this section. Figure 4 shows the relations
of the variables and is intended as a help to keep track of which
variables are used in the individual optimization stages.

In stage I the 5" values take the role of design variables, whereas
the final filtered variables g! of the preliminary design I are used
as the basis and stay constant (cf. Fig. 4):

o" =e"(@".1". B) (25)

Since now with the element-wise p!!

I each physical density o/
can again be modified independently of its neighbors, the effect
of the density filter of stage I is nullified: Checkerboarding may
occur again and mesh independency is lost. Therefore, another
filtering and projection step with a constant uniform il = 0.5 is

applied:
e =2"(e".7) (26)

e =2"@".ng.p) (27)

Note that the constant scalar nl is a different variable than
the element-wise defined »'! which will vary spatially and is the
design variable of stage II.

The differences between the two optimization stages may be
summarized as follows:

* Stage I: ¢! can directly be altered by the optimizer.
* Stage II: " is the result of 3! projected by »'. ! is now the
design vector and is altered by the optimizer.

To make the results of the stages I and Il comparable, the global
volume constraint function h from equation (10) is used to pro-
hibit that the total volume of design II exceeds the volume of
design L.

To optimize for a fail-safe design, the effect of all damage sce-
narios, each degrading a single load-bearing member, has to be
evaluated. A separate FE calculation is performed to calculate
the structural response for every damage scenario d.

The individual damaged configurations are obtained by ap-
plying the damage mask ¥4 to the projected densities using
equation (22). The compliance ¢4 of the damaged structure is
therefore a function of ! and y4:

cq = C(r[H ,¥4), vd (28)

The compliance of the damage scenario with maximum in-
fluence should be minimized in optimization stage II. This leads
to a min-max problem:

minmaxcg (29)
il d

By using the Kreisselmeier-Steinhauser formula (Kreis-
selmeier and Steinhauser 1983), the min-max problem for the
objective function is approximated by a differentiable form with
a scaling factor y. The problem for the stage Il optimization with
a global volume constraint states now:

min log (Z exp (ycd)> (30)
oy P
st. h=—w—kg <0 (31)
0<nll <1,vi (32)
K@n"u = f (33)

Derivatives with respect to ' are required for the shape op-
timization of stage II. The volume constraint h will be calcu-
lated for the undamaged configuration. Compared to the gra-
dient used for topology optimization from equation (14), the
chain needs to be augmented by another partial derivative
term:

dh _ Z ﬂ ﬁ @ def! (34)

dnft 5= 00f 92] def" onf!
For the additional partial derivative, the projection equa-
tion (7) has to be differentiated for the threshold parameter 7.

In optimization stage II, the compliances ¢4 under damage con-
ditions will be calculated. Applying the adjoint equation (11)
only yields the derivative of c¢; with respect to the damaged pro-
jected densities o4.

By incorporating the damage masks ¢4 into the gradients,
derivatives obtained with respect to the damaged configurations
can be transformed into derivatives with respect to the undam-
aged configuration:

() _ 9() d0a; _ 9()

90;  00aj 00;  90a;

Va j (35)

If material for an element j is completely removed by a dam-
age scenario (q,; = 0), then also the derivative of the studied
function will be zero for this element and this damage case, be-
cause any change in material at this location will be erased any-
way.

Augmenting the gradient (13) with the procedure described
in Section 5.5 and applying equation (35) yields the gradient of
the compliance under damage c; with respect to »*:



Figure 5: Design domain in 2D with boundary conditions and tip load. Damage
is only applied in the region left of the blue line.

deg Z dcq 901 80} a0l

T T 2 5ol Anl o 0 (36)
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The initial design used in stage II is chosen to be close to the
preliminary design in the final iteration of stage I. Therefore, the
initial values of the shape design variables »" are set to a vector
with the value n} for each component:

" =gl (38)

Hence, for the initial state (iteration 0) of stage II following
equality holds (cf. Fig. 4):

ohitia = @fina (39)
However, due to the second filtering step in stage II, slight

differences in the projected densities can be observed (slight di-
lation in sharp corner regions):

Ohitial # @ fina (40)

These effects are minimal and very localized, thus the devi-
ations introduced by double filtering of the starting design can
be ignored, having in mind that the shape of the part’s outline
is still strongly dominated by the effect of changing the projec-
tion thresholds »!' throughout the optimization. Additionally, a

global volume constraint will make sure the final design does
not exceed the maximum allowed volume.

For the 2D examples, a design domain of 80 x 240 elements is
used. The filter radius is set to r = 4. The design domain is pinned
on the left side with a transverse unit load acting on the middle
node of the right side (see Fig. 5). The loaded end of the beam is
excluded from damage considerations (right of the blue line in
Fig. 5), meaning that no damage shape may lie in this region.

For all 2D examples, the objective is to minimize the com-
pliance c of the structure for a single load case. The method of
moving asymptotes (MMA) by Svanberg (1987) is used as opti-
mization algorithm. For the preliminary design, 200 iterations
are performed.

Load path member identification is done using the stress cri-
terion (see Appendix A.1). The damage shapes are obtained by
scaling the auxiliary member shapes by a factor of 2. This en-
sures that the damage shapes are large enough so that any gain
of performance in stage Il is based on the change of the shape of
the individual members and not simply on having circumvented
the damage patches. The shapes for the damage on “beam” re-
gions are reduced to slim orthogonal cuts through each beam’s
midpoint (cf. Fig. 6b).

(c¢) Shape optimized design II

Figure 6: Results for the 2D example of compliance minimization with a global
volume constraint.

Table 1: Numerical results for 2D example with global volume
constraint.

Design I Design II
Volume fraction 40.00% 39.98%
Nominal compliance 211.58 249.40
Worst case compliance 11263.91 5486.43

For the shape optimization of stage II, 25 iterations are per-
formed and fast convergence is observed. A global volume con-
straint is employed in stage II, limiting the volume to be equal
or below the volume of the design from stage I.

A global volume constraint of k; = 0.4 is used in the optimiza-
tion stage I for the preliminary design. The resulting structure is
depicted in Fig. 6a.

Figure 6b shows the outlines of the superellipses that make
up the cuts for the individual damage scenarios. In total 14
“beams” and 10 “knots” are automatically identified. The result
of the shape optimization in stage II is shown in Fig. 6c. The
topology of the structure is conserved.

Numerical values are given in Table 1. The compliance under
a worst case damage scenario is reduced to about 49% by the
shape optimization. However, a slight penalty of under 18% on
the compliance of the undamaged structure is observed. Figure 7
shows the displacements of both designs for their worst case
damage.
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Figure 7: Absolute displacements in the transverse direction of both designs for
their worst case damage.
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Figure 8: Beam model of the structure with absolute values of cross-sectional
moments colored from low values (blue) to high values (red) for the intact (back-
ground) and one of the damaged configurations.

N

The design from stage I consists of beams of constant width
since the structure is dominated by tension and compression
section forces. In contrast to this, the beams from design II are
shaped into beams of varying widths, which means the sections
are dominated by bending moments.

To investigate the influence of the bending moments, an ad-
ditional FE model is set up. The structure is discretized by beam
finite elements that each has a thickness assigned to that is ex-
tracted from the original density field.

In Fig. 8, the FE model with the absolute values of the cross-
sectional moments is shown as a line representation. For the
intact structure in the background, the bending moments are
low, the load is mostly carried by tension or compression forces.

(b) Identified damage shapes

(¢) Shape optimized design II

Figure 9: Results for the 2D example of compliance minimization with a local
volume constraint.

However, if one of the beams fails, the bending moments be-
come dominant, as shown in the foreground of Fig. 8 for a rep-
resentative example. The forces are redistributed such that in
many beams the function of the moment is zero in the center.
To increase the bending resistance, the moments of inertia are
optimized for this loading and therefore, beams with thin mid-
dle sections are obtained.

The influence of damages on the structure in Section 6.1 is high
since it does not offer redundant load paths. To enforce redun-
dancy, a local volume constraint of k; = 0.4 is used within a con-
trol radius of R = 16. The redundant load paths from stage I will
be conserved in stage II. Therefore, again only the global volume
constraint is needed to limit the total volume of the solid phase
in stage IIL.

Figure 9 shows the design from stage I, the identified damage
shapes (50 “beams” and 28 “knots”) and the final result from the
shape optimization stage II. Numerical values of compliance are
given in Table 2.

In this example, the nominal compliance for the undam-
aged structure has even slightly improved. In stage II only a
global volume constraint is active, allowing redistribution of ma-
terial not allowed for the more restrictive local volume con-
straint in stage I. Not strictly sticking to the local volume con-
straint is acceptable here, since applying it in stage I is only a
means to obtain more robustness to damage by a redundant

topology.



Table 2: Numerical results for 2D example with local volume
constraint.

Design I Design II
Volume fraction 35.47% 35.46%
Nominal compliance 340.30 330.27
Worst case compliance 1597.73 847.34

0 500 1000 1500

(a) Design I

(b) Design II

Figure 10: Absolute displacements in the transverse direction of both designs
for their worst case damage.

The compliance under a worst case damage is again consid-
erably lowered to about 53%. The according displacements are
shown in Fig. 10.

For the 3D examples, a design domain of 20 x 20 x 60 is used.
The filter radius is r = 3. A lattice-type structure is enforced by
using the local volume constraint with low volume fractions in
control spheres with a radius of R = 9. This procedure breaks
shell-like structures down to lattice-type structures which are
easier to be automatically identified and partitioned.

The design domain is again pinned on one side. Loads are
distributed to a group of 3 x 3 central nodes of the opposite side
(see Fig. 11).

For the 3D examples, 300 iterations are performed in stage
I and again only 25 iterations in stage II. A global volume con-
straint in stage I ensures that the shape optimized structure has
less or equal volume than the initial structure.

/////ﬂ

/,r

(a) Design domain with boundary condition,
loaded nodes (green) and border of the damage
zone (blue)

(b) Detailed view of the loads on the front face
for the torsion (blue) and transverse (red) load
case

Figure 11: Geometry and loading for the 3D examples. Damage is only applied
in the region left of the blue lines in the top figure.

The load cases are a torsion load and a downwards point-
ing transverse tip load with resultant magnitudes of 1 (see
Fig. 11b). The objective is to minimize the weighted sum of the
compliances of the two load cases with weights of 1 for tor-
sion and 0.01 for the transverse load. The local volume con-
straint is set to k; = 0.1. The resulting structure is shown in
Fig. 12a.

Since multiple load cases are considered in the optimization,
also the stress states inside the structure will be different be-
tween the load cases and the assumption of uniaxially loaded
“beam” segments is not met (for details see Appendix A.1).
Therefore, the stress criterion cannot be used here. Instead, load
paths are identified by volumetric image processing algorithms
(see Appendix A.2). For better visibility Fig. 12b only shows the
damage shapes for a quarter of the structure. For the full struc-
ture 30 “beams” and 21 “knots” are identified.

The result from optimization stage Il is shown in Fig. 12c. The
change in shape is rather small, but comparing the numerical
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(a) Preliminary design of stage I

(b) A selection of damage shapes

(c) Design of stage II

Figure 12: Results for compliance minimization with a local volume constraint
for a structure under torsional loading and transverse load. For better visibility,
the beams on the far side are shown with less contrast.

Table 3: Numerical results for 3D example with multiple load cases.

Design I Design II
Volume fraction 8.45% 8.44%
Nominal compliance 5.19 5.39
Worst case compliance 23.49 14.64

values in Table 3 reveals a significant decrease of compliance
under the damaged condition to about 62% compared to the ini-
tial design. The displacements under torsion for the worst case
damage are shown in Fig. 13.

0 500 1000 1500 2000 2500

(a) Design I

>

0 500 1000 1500 2000 2500

(b) Design II

Figure 13: Absolute displacements of both designs for their worst case damage
under the load case of torsion.

7.2. Lattice-type 3D structure and non-ideal loading

This example demonstrates that more drastic changes in shape
are possible in stage II. A structure is first optimized in stage I for
a torsional load only. In optimization stage II not only damage
to the load paths is applied but also small transverse forces with
a resultant magnitude of 0.1 in up- and downwards directions
are additionally applied to simulate a non-ideal load application.
The individual load distributions are still the same as shown in
Fig. 11b.

A local volume fraction of k; = 0.13 is used, the design from
stage Iis shown in Fig. 14a. By using the stress criterion, 75 dam-
age shapes (48 “beams” and 27 “knots”) are generated. Due to
symmetry, only a subset of these shapes is shown in Fig. 14b. In
optimization stage II the upper and lower region beams become
axially aligned to better absorb the bending introduced by the
additional transverse load, as seen in Fig. 14c.

Numerical values for the compliances c are given in Table 4.
The performance for the non-ideal loading is increased and the
overall impact of the transverse load is significantly lowered. A
more robust design is obtained at the price of a lowered perfor-
mance for the ideal loading.

Since the transverse forces are acting in both directions (up
and down), two load cases exist for the non-ideal load. Due to
symmetry of the design, the compliances for both are the same.
The values in Table 4 for the non-ideal loading refer to a single
load case, for the mirrored transverse load the same value ap-
plies.
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(a) Preliminary design of stage I

(b) A selection of damage shapes

(c) Design of stage IT

Figure 14: Results for compliance minimization with a local volume constraint
for a structure optimized for torsional loading. In stage II additional transverse
forces are acting simultaneously. For better visibility, the beams on the far side
are shown with less contrast.

Table 4: Numerical results for 3D example with misaligned loading.

Design I Design II
Volume fraction 11.00% 11.00%
Nominal ¢, ideal load 0.56 1.00
Worst case c, ideal load 1.49 2.02
Nominal ¢, non-ideal load? 17.66 4.39
Worst case ¢, non-ideal load? 30.66 15.56

2Compliance in each direction of non-ideal loading.

8. Discussion of Computational Cost

Table 5 summarizes the overall expected computational cost for
a fail-safe optimization of the example problems in 2D and 3D
from Sections 6 and 7 using different methods.

The approach of Jansen et al. (2013) is taken as a reference.
For this method, a rather large damage patch size of one quar-
ter of the shortest design space dimension is chosen (20 x 20
in the 2D case, 5 x 5 x 5 for 3D). This leads to a total count
of 11041 damage cases for the 2D example and 11776 for 3D
which is the number of FE analyses to be done per single op-
timization iteration. Assuming that the number of iterations is
the same as for the preliminary optimizations in this paper (200
for 2D or 300 for 3D), the total number of FE analyses would be
in the millions, rendering the method unfeasible for industrial
application.

With the reduction proposed by Zhou and Fleury (2016), using
the second coarsest damage density level of 2, still 133 analyses
have to be done per iteration for the 2D example and 931 for the
3D example. The total number of analyses would then be in the
order of magnitude of 10-10° for the shown examples. However,
these computational savings come at the price that the coarser
the damage density level is, the more likely it is that a critical
damage location is simply disregarded, as shown by the authors
in Ambrozkiewicz and Kriegesmann (2018).

For the proposed method for fail-safe optimization, a con-
stant number of FE analyses for the preliminary design plus a
variable number of analyses for each design iteration of the sec-
ond optimization stage need to be conducted. The total number
of analyses is now dependent on the number of identified load
paths of the structure and therefore different for every loading
scenario considered here. Table 5 reveals that for the shown ex-
amples the total number of analyses is in the thousands, inde-
pendently of the design space being modeled in 2D or 3D.

The density-based shape optimization converges much
faster than a topology optimization “from scratch”. Therefore,
25 iterations were sufficient to achieve convergence. But even if
the same number of iterations is used for topology and density-
based shape optimization, the numerical effort of the sequen-
tial approach presented here would be lower than with the ap-
proach of Zhou and Fleury (2016) and much lower than with the
approach of Jansen et al. (2013).

9. Conclusions

A sequential procedure for fail-safe topology and shape opti-
mization has been presented, where the main contribution is
the second optimization stage which consists of a density-based
shape optimization.

By application to 2D and 3D examples, it has been demon-
strated that this density-based shape optimization significantly
improves the fail-safe behavior of a structure that originates
from a preliminary topology optimization while using the same
amount of material.

Compared to topology optimization schemes with explicit
fail-safe considerations, the computational effort of the sequen-
tial optimization approach is smaller by orders of magnitude
which makes it feasible for industrial applications. However,
since stage Il is a shape optimization, the design freedom is more
restricted than for a topology optimization and the result is de-
pendent on the preliminary design of stage I.

Compared to the approach of implicitly increasing damage
tolerance only by enforcing redundancy with a local volume con-
straint, the fail-safe performance of the sequentially optimized



Table 5: Total number of FE analyses.

Example Method

2D Jansen et al. (2013)

2D Zhou, Fleury (2016), level 2
2D (Section 6.1) Proposed

2D (Section 6.2) Proposed

3D Jansen et al. (2013)

3D Zhou, Fleury (2016), level 2
3D (Section 7.1) Proposed

3D (Section 7.2) Proposed

structures improves significantly within a few additional itera-
tions of density-based shape optimization. For the 2D example
in Section 6.2, the compliance of the worst case damage scenario
was further decreased by 47%. Simultaneously, the compliance
of the intact structure was also decreased.

This shows that the sequential approach of topology opti-
mization with the local volume constraint and the subsequent
density-based shape optimization is an efficient procedure to
design fail-safe structures.

Financial support of the German Ministry for Economic Affairs
and Energy (project REGIS, funding reference 20W1708E) and the
German Research Foundation (reference number KR 4914/3-1) is
acknowledged.

Declarations of interest: none.

Ambrozkiewicz, O., & Kriegesmann, B., (2018). Adaptive strate-
gies for fail-safe topology optimization. in EngOpt18-6th In-
ternational Conference on Engineering Optimization, Lisbon, Por-
tugal.

Bendsge, M.P,, (1989). Optimal shape design as a material distri-
bution problem. Structural Optimization, 1(4), 193-202.

Bendsge, M.P.,, & Sigmund, O., (2004). Topology optimization the-
ory, methods, and applications (2nd ed.), Berlin/Heidelberg:
Springer-Verlag.

Bourdin, B., (2001). Filters in topology optimization. Interna-
tional Journal for Numerical Methods in Engineering, 50(9),
2143-2158.

Bruns, T.E., & Tortorelli, D.A. (2001). Topology optimization of
non-linear elastic structures and compliant mechanisms.
Computer Methods in Applied Mechanics and Engineering, 190(26),
3443-3459.

Hojjat, M., Stavropoulou, E., & Bletzinger, K.-U., (2014). The Ver-
tex Morphing method for node-based shape optimization.
Computer Methods in Applied Mechanics and Engineering, 268,
494-513.

Jansen, M., Lombaert, G., Schevenels, M., & Sigmund, O., (2013).
Topology optimization of fail-safe structures using a simpli-
fied local damage model. Structural and Multidisciplinary Opti-
mization, 49(4), 657-666.

Kreisselmeier, G., & Steinhauser, R., (1983). Application of vec-
tor performance optimization to a robust control loop de-
sign for a fighter aircraft. International Journal of Control, 37(2),
251-284.

Kriegesmann, B., & Liideker, J.K., (2019). Robust compliance

Damage cases Total solves

11041 2208200
133 26 600
24 800
78 2150

11776 3532800
931 279300
51 1575
75 2175

topology optimization using the first-order second-moment
method. Structural and Multidisciplinary Optimization, 60(1),
269-286.

Lazarov, B.S., Schevenels, M., & Sigmund, O., (2012). Topology
optimization with geometric uncertainties by perturbation
techniques. International Journal for Numerical Methods in Engi-
neering, 90(11), 1321-1336.

Le, C., Bruns, T, & Tortorelli, D., (2011). A gradient-based,
parameter-free approach to shape optimization. Computer
Methods in Applied Mechanics and Engineering, 200(9), 985-996.

Lideker, J. K., & Kriegesmann, B., (2019). Fail-safe optimization of
beam structures. Journal of Computational Design and Engineer-
ing, 6(3), 260-268.

European Aviation Safety Agency, (2012). Certification specifica-
tions for large aeroplanes. Tech. Rep. CS-25, Amendment 12.

Otsu, N, (1979). A threshold selection method from gray-level
histograms. IEEE Transactions on Systems, Man, and Cybernetics,
9(1), 62-66.

Pratt, W.K., (2006). Digital image processing (3rd. ed.) , Hoboken,
New Jersey: John Wiley & Sons, Inc.

Schevenels, M., Lazarov, B.S., & Sigmund, O., (2011). Robust topol-
ogy optimization accounting for spatially varying manufac-
turing errors. Computer Methods in Applied Mechanics and Engi-
neering, 200(49-52), 3613-3627.

Sigmund, O., (2009). Manufacturing tolerant topology optimiza-
tion. Acta Mechanica Sinica, 25(2), 227-239.

Sossou, G., Demoly, F., Montavon, G., & Gomes, S., (2018). An ad-
ditive manufacturing oriented design approach to mechani-
cal assemblies. Journal of Computational Design and Engineering,
5(1), 3-18.

Sun, PF, Arora, J.S., & Haug, EJ., Jr, (1976). Fail-safe optimal de-
sign of structures. Engineering Optimization, 2(1), 43-53.

Svanberg, K., (1987). The method of moving asymptotes - A new
method for structural optimization. International Journal for
Numerical Methods in Engineering, 24(2), 359-373.

Wang, F, Lazarov, B.S., & Sigmund, O., (2011). On projection
methods, convergence and robust formulations in topol-
ogy optimization. Structural and Multidisciplinary Optimization,
43(6), 767-784.

Wu, J., Aage, N., Westermann, R., & Sigmund, O., (2017). Infill op-
timization for additive manufacturing — Approaching bone-
like porous structures. IEEE Transactions on Visualization and
Computer Graphics, PP(99), 1-1.

Zhou, M., & Fleury, R., (2016). Fail-safe topology optimization.
Structural and Multidisciplinary Optimization, 54(5), 1225-1243.

The presented method for fail-safe optimization uses a set of
parametric shapes from which damage scenarios are derived.



Journal of Computational Design and Engineering, 2020, 7(0), 1-15 | 13

Figure A1l: Identified clusters: Beams “B” and knots “K” before splitting.

Ideally, these shapes can be extracted by automated algorithms.
The authors propose to subdivide the lattice-type result of stage
Iinto “beams” and “knots”.

Two methods successfully applied by the authors are briefly
presented here: The stress criterion method (Ambrozkiewicz
and Kriegesmann 2018) and a method based on image process-
ing algorithms. These methods may be substituted by any other
algorithm offering the same functionality or even a manual sub-
division can be performed.

A.1. Stress criterion

When using the stress criterion method, no additional simula-
tion is needed and no special algorithms have to be used. The
basic identification algorithm consists of the following steps:

(1) Classification of elements into classes “beam” and “knot”
(2) Clustering of adjacent elements of the same class
(3) Post-processing of the clusters

Classification: It is assumed that the structural beams are in a
uniaxial stress state. For each finite element, the criterion uses
the stress state o evaluated at the element’s center point. The
normalized criterion value is calculated as

onlo) = % arctan(e/3) (A1)

Here, 5 is the highest principal stress magnitude (in absolute
values) and ¢ is the second highest principal stress. To limit the
range of values of the criterion, a scaled arctan function is used
to map the result to the interval of [0, 1]. Low values of ¢, indicate
a strongly directional stress state, whereas in the extreme case
the value of ¢, becomes 1, if the principal stresses are of equal
magnitude, indicating a mixed stress state. Figure 2a shows the
stress criterion values for the deterministic 2D cantilever beam
example.

The classification into beams and knots is then done by
choosing a threshold value for the criterion, e.g. based on the
empirical cumulative distribution function of the criterion val-
ues. For Fig. Al the threshold was chosen such that 70% of the
elements were classified as belonging to beams and the remain-
ing 30% to knots.

Clustering: Neighboring elements that are classified as the
same type (beam or knot) are grouped into clusters. This is done
by using a recursive algorithm iterating over the direct neighbors
of an element until all solid elements are processed once.

Post-processing: In a post-processing step, very small clusters
under a desired minimal value are merged with the largest sur-
rounding cluster. The result from Fig. Alis obtained. Undesirably
large beam clusters “B1” and “B9” can be seen in the top and bot-
tom regions. These overly large clusters may occur at locations,
where a knot cluster intersects a beam along its length but does
not fully cut through it. The beam cluster needs then to be split
at this position. An example of that is knot “K3”, where the bot-
tom beam in the final post-processed result in Fig. 2b is split into

Figure A2: Identified beam clusters by image recognition. Locations of branch
points are shown as red dots.

two separate beams “B1” and “B11” (the same accounts for the
top with “K9”, “B9”, and “B14”).

Branched beams are not desired either. They can be easily
identified since for them the dominant principal stress direc-
tion is not constant within the cluster. This information is used
to subdivide the cluster by choosing a threshold value on the
inclination angle by Otsu’s method (Otsu 1979). In this example
this was the case for the beams “B1” and “B9” from Fig. A1 which
are branched near the left side. In the final result in Fig. 2b, “B12”
and “B13” resulted from this splitting procedure.

A.2. Image processing

As an alternative to the stress criterion, methods from image
processing can be used for automatic classification. These algo-
rithms work on binary images in 2D or volumetric voxel images
in 3D.

For regular FE meshes with a rectangular design space, a bi-
nary image can be easily obtained by treating each finite element
as a pixel or voxel of an image and projecting the density values
with a hard threshold value of e.g. 0.5 into a 0/1 binary represen-
tation. For irregular meshes, a sampling into an image of finer
resolution can be performed.

In MATLAB the skeleton of a part’s image can be extracted by
the command bwskel. The result will be a one pixel wide center
line along each feature of the part obtained by the medial axis
transformation (see Pratt 2006).

The branch points of the skeleton can be extracted via the
functions bwmorph for 2D or bwmorph3 for 3D with the argument
’branchpoints’. Dilated branch points can be directly used as
the “knot” regions of the part. However, the actual size of the
knot region has to be set manually.

The difference between the skeleton and the branch points
gives segmented line representations of the individual “beam”
regions. A mapping of each solid element to the nearest skeleton
segment or branch point finishes the automatic classification.
Applied to the 2D cantilever beam example from Section 6.1 the
result from Fig. A2 is obtained, where for knots only the mid-
points are displayed.

Appendix B: Calculating Parameters of
Auxiliary Shapes from Element Clusters

For each cluster the location of the center point x., the matrix
V with unit vectors of the principal axes of the auxiliary shape
as well as the corresponding size vector a need to be calculated.
This section shows the individual calculation steps if for every
cluster a set S that contains the corresponding element indices
is given.

The center point x. of the shape is determined by calculating
the center of mass of all elements belonging to the cluster:

_ ZisS Xi Vi (B 1)
ZieS Vi ’

Xc



The principal axes are the eigenvectors of the covariance ma-
trix of the coordinates of all elements belonging to a cluster. The
corresponding element center points x; are concatenated into a
matrix X and the covariance matrix ¥ is calculated:

X=[x,] VieS (B.2)

¥ = Cov(X) (B.3)

A Matrix V with unit vectors of the principal axes as columns
is obtained by an eigen decomposition of X:

TV =VA (B.4)

V = [01. vy, v3] (BS)
A1 00

A=[01,0 (B.6)
0 0 23

The eigenvalues on the diagonal of A are used to determine
the size vector a with the sizes of the shape in every princi-
pal direction. Assuming that structural beams have an almost
constant thickness over their length, the location of the centers
of their underlying elements can be treated like uniformly dis-
tributed random coordinates. The eigenvalues of the covariance
matrix would be the squared standard deviations:

o =\ (B.7)

For a 1D uniform distribution with a width of 2a the relation
to the standard deviation o is:

2 _ (20)®
0" = 1 <

This relation can be applied to all principal directions of the
shape to obtain the size vector a:

a=+30 (B.8)

a o1
a=|b|=v3|0, (B.9)
C o3

Applying the factor +/3 from equation (8) as a scaling factor
between the standard deviations calculated by equation (7) and
the half-axes of the auxiliary shapes stored in a will give a close
fit to the original clusters (cf. Fig. 2c).

After the preliminary design is obtained in optimization stage I,
auxiliary shapes are calculated for every beam and knot region
of the structure. The member shapes will fit very closely to the
original structure (cf. Fig. 2c).

If the damage shapes derived from the member shapes (see
Section 4.3) are not scaled up, they may easily be circumvented
during the fail-safe optimization stage II. Considering the ex-
ample from Section 6.1 without upscaling the final result from
Fig. Cla is obtained which clearly differs from the result shown
in Fig. 6¢. The most critical damage shapes have been circum-
vented by material that has been placed just around the dam-
age shape, hinders the corresponding structural member to be
cut entirely and therefore jeopardizes the fail-safe optimization.

The numerical value of the compliance for the worst case
damage with a damage shape scaling factor of 1 is given in
Table C1 and is now much lower than for the example in Sec-
tion 6.1 with a scale of 2. This is not due to increased robustness
to damage but rather due to the incomplete cutting of the indi-
vidual members. Figure C1b shows some exemplary incomplete
cuts in the upper region of the part.

(a) Outlines of damage shapes on optimized design

(b) Some incomplete cuts at potentially critical locations at
the top shown simultaneously

Figure C1: Results of the fail-safe optimization for a damage shape scaling of 1.

Table C1: Calculated worst case compliances for optimizations with
different damage scaling factors.

Damage scaling factor Worst case compliance

1 (cf. Fig. Cla) 532.57
2 (cf. Fig. 6b) 5486.43
4 (cf. Fig. C2a) 5578.64

(a) Outlines of damage shapes on optimized design

(b) Optimized design for a scaling factor of 4 (top) and 2
(bottom)

Figure C2: Results of the fail-safe optimization for a damage shape scaling of 4.

The other extreme would be a much too high scaling fac-
tor. The damage shapes and the result after fail-safe optimiza-
tion for a scaling factor of 4 are shown in Fig. C2a. Because
these overly large damage regions are an even more conserva-



tive approach than the ones with the recommended scaling fac-
tor of 2 (seen in Fig. 6b), also the worst case compliance listed in
Table C1 has increased, but only slightly. The difference in the
final structure is minimal when comparing the scaling factors 4
and 2, as shown in Fig. C2b.

The projection step from equation (7) is applied to the filtered
variables g. Its purpose is to make interface regions between the
solid and void phase more sharp for larger g values.

(a) Filtered variables g

>

(b) Projected variables g with threshold value n = 0.5

Figure D1: Filtered and projected variables with projection parameter g = 8.

Figure D1 a shows the filtered variables g and the resulting
projected variables ¢ when using a uniform n = 0.5 as the thresh-
old and g = 8 as the steepness parameter.

Modifying the n value allows for thickness variations of the
members of a structure. When altering the threshold value,
parts become eroded or dilated. Projecting the filtered variables
from Fig. D1 a with uniform values of n = 0.2 and = 0.8 results
in the designs shown in Fig. D2.

In this paper, a non-uniform projection threshold field 5
is used to apply spatially varying thickness modifications to
a part.

(a) Threshold value n = 0.8, eroded design

XX

(b) Threshold value n = 0.2, dilated design

Figure D2: Effect of uniform variation of n with g = 8 on the projected variables.



