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Abstract

In the dynamic analysis of structures condensation methods are often used
to reduce the number of degrees of freedom to manageable size. Substruc-
turing and choosing the master variables as the degrees of freedom on the
interfaces of the substructures yields data structures which are well suited
to be implemented on parallel computers. In this paper we discuss the addi-
tional use of interior masters and modal masters in substructuring. The data
structure is preserved such that the condensed problem can be determined
substructurewise.

1 Introduction

In the analysis of the dynamic response of a linear structure using finite ele-
ment methods very often prohibitively many degrees of freedom are needed
to model the behaviour of the system sufficiently accurate. In this situation
static condensation methods are employed to economize the computation of
a selected group of eigenvalues and eigenvectors. These methods choose from
the degrees of freedom a small number of master variables which appear to
be representative. The rest of the variables (termed slaves) is eliminated by
use of the static equations leaving a much smaller problem for the master
variables only.

Partitioning the structure under consideration into substructures and



choosing the masters as the interface degrees of freedom leads to data struc-
tures and formulae for the individual substructure which are independent of
each other. Taking advantage of these properties Rothe and Voss obtained
a fully parallel (improved) condensation method for eigenvalue problems
(cf. [5])

The part of the spectrum which can be approximated accurately enough
depends crucially on the size of the minimum slave eigenvalue which is the
constrained eigenvalue problem with fixed masters. Therefore additional
masters should be chosen such that the minimum slave eigenvalue is in-
creased as much as possible without destroying the data structure that
allows substructurewise determination of the condensed problem.

A method at hand is to incorporate additional master variables which
are degrees of freedom at interior nodes of the substructures. In this case
the data structure essentially is preserved and the parallel method of [5]
carries over in a straightforward way.

A maximum increase of the minimum slave eigenvalue is obtained if we
choose those modal degrees of freedom corresponding to the smallest eigen-
values of the substructures. To apply the approach of [5] directly a transfor-
mation of variables to a new orthonormal basis of the space spanned by the
slave eigenvectors under consideration and its orthogonal complement has
to be performed for each substructure which is very time consuming. In [2]
Mackens and the author introduced a non nodal condensation method which
circumvents the use of the orthonormal basis of the orthogonal complement.
In this paper we apply this approach to condensed eigenvalue problems us-
ing interface masters, interior masters, and modal masters. An algorithm
results which computes the the reduced problem substructurewise. A nu-
merical example demonstrates the favourable properties of the method.

2 Nodal Condensation

Free vibration analysis of structures results in the linear eigenvalue problem
Kz =Mz (1)

where the stiffness matrix & € IR™"™ and the mass matrix M € R™™ are
real symmetric and positive definite, = is the vector of modal displacements,
and A is the square of the natural frequencies.

To reduce the number of the unknowns to manageable size the vector
x is partitioned into a set of variables x5 (termed slaves) which are to be
eliminated and the remaining variables x,, (termed masters) which are to be



retained. After reordering the unknowns and equations system (1) obtains
the following block form:

[X]mm [ers xm _ Mmm MmS xm
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Solving the second equation of (2) for x; one gets

2s(N) = — (Ko — AM ) N (Ko — AM g )2 =2 S(N) 2. (3)

Hence, if ,, is the master portion of an eigenvector & corresponding to
the eigenvalue A then S(X):Z‘m is the slave part of Z. Therefore, if we are
interested in eigenvalues close to 5\, it is reasonable to project the eigenvalue
problem (2) to the linear space
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i.e. to consider the projected eigenvalue problem

I
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For A = 0 this is the statically condensed eigenproblem
[(me == )\Mol’m (5)

introduced by Guyan [1] where
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For fixed A # 0 (4) is called the dynamically condensed problem, and
for variable A = X one obtains the exactly condensed problem

TNy, =0 (6)
where
TA) = —=Kom + AMpm + (Kps — AM ) (K5 — )\MSS)_I(KSm — AM,5).

Usually in the literature approximations to some of the smallest eigen-
values of (1) and to the master portions x,, of the corresponding eigenvec-
tors are obtained from the statically condensed problem (5), and the slave
portions x5 are calculated by equation (3). Observe, however, that only
very few eigenmodes are derived from (5) with sufficient accuracy. Several
attempts have been made to enhance the quality. Most of them are very



time consuming since an iterative process is involved. A different approach
which substantially improves the eigenvalue and eigenvector approximations
from static condensation was introduced in [6], [4]. It takes advantage of a
Rayleigh functional of the exactly condensed problem (6).

Suppose that r substructures are considered and that they connect to
each other through the master variables on the interfaces only. If the slave
variables are numbered appropriately, then the stiffness matrix is given by
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and the mass matrix M has the same block form.

Taking advantage of the blockstructure of K and M the reduced matri-
ces Ky and My can be calculated substructurewise, and hence, completely
in parallel. Obviously,
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3 Non nodal masters in condensation

We already mentioned that static condensation usually allows accurate ap-
proximations only at the lower end of the spectrum. It is known [6] that
the attainable accuracy of an eigenvalue A\ of interest increases with the
distance of this value to the smallest eigenvalue w(> A;) of the slave eigen-
value problem, which is the constraint eigenvalue problem with the masters
fixed to be zero. For the above choice of interface masters the slave problem
splits into independent eigenproblems for the decoupled substructures and
w 1s the minimal eigenvalue of the union of the substructures eigenvalues.

It is clear by physical intuition (or by mathematical minimax theory)
that w will be raised (and w — Ay be increased) by the introduction of
additional constraints. In order not to destroy the parallel data structure in



substructured static condensation each additional master should use interior
degrees of freedom of only one of the substructures. This obviously preserves
the block structure of the mass and stiffness matrices and therefore the
parallel algorithm from [5] applies.

An optimal increase of w with a fixed number of additional masters
per substructure would be gained if the corresponding constraints would
impose M-orthogonality to the substructures eigenvectors corresponding to
its lowest eigenvalues.

Theoretically it is no problem to incorporate such generalized masters

into the condensation process. If the columns of Z € IR(™™ consist of

(n,n—m) are

linearly independent master-vectors and the columns of ¥ € IR
complementary such that (7,Y") has full rank, then every vector # € IR"
can be written as * = Zx,, + Yz,. Going with this representation into eqn.

(1) and multiplying with (Z,Y)" the following equivalent form of (1) arises:
[(ZZ [(zy T o Mzz sz T
l K,. K, ] { s } = l M,. M., ] { v, } (8)

L..:=2'LZ, L., :=Z'LY, L,.:=L' L, =Y'LY, Le{K M}. (9)
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If (8) were accessible, the generalized degrees of freedom vector x,, could
readily be used as master vector as before. We remark, that the nodal
masters are still included by choosing the corresponding unit vectors as
master vectors.

Practically this naive approach is not executable, however. Though the
master vectors are certainly accessible, there is no chance to store the ex-
cessive number of complementary y-vectors in general.

Fortunately, it turns out, that the influence of Y in the calculation
of the projection matrix P in (4) can be totally characterized by span(Y)
being the orthogonal complement of span(Z) with respect to an appropriate
inner product. If we let the inner product be described by the symmetric
positive definite matrix V, such that ZTVY = O, one can compute the
static condensation by the following result from [2], which will be the key
to determining the condensed eigenvalue problem substructurewise in the
presence of substructural modal masters.

Theorem 1:
With Z € R™y ¢ R™™ let (Z,Y) € RM™ be regular and
Z'WVY = 0 with the symmetric positive definite matrix V € IR"™™ . Then
the statically condensed eigenvalue problem corresponding to problem (8)
is given by

P'KPz,, = A\P'M Pz, (10)



where the matrix P € IR can be calculated from

B R

Moreover the reduced stiffness matrix satisfies

P'KP =S. (12)

4 Modal condensation and substructuring

We consider the free vibrations of a structure which is decomposed into r
substructures. Let the vibration problem be discretized (by finite elements
or finite differences) in correspondence to the substructure decomposition,
i.e. k;; = 0 and m;; = 0 whenever ¢ and 7 denote indices of interior nodes of
different substructures. We choose as masters those degrees of freedom which
are located on the boundaries of the substructures. Additionally we allow
generalized masters. We assume that the support of any of the generalized
masters is contained in exactly one substructure. Here we have in mind
nodal interior masters and modal masters, i.e. eigenvectors of the eigenvalue
problem restricted to the substructure under consideration.

In this section we describe how the reduced eigenvalue problem can
be computed substructurewise. For reasons of limited space we do not in-
clude how the method is deduced from Theorem 1 nor do we give details
of an implementation on a parallel computer. These will be contained in a
forthcoming paper [3].

We number the variables in the usual way where the coupling of the
nodal masters is given by K,,,, and M,,,,, and the interaction of the interior
degrees of freedom of the j-th substructure and the nodal masters is given
by Kenj = K, ; and M,,,; = M/ .. Then the stiffness matrix K" and the
mass matrix M obtain the block structure given in (7).

The modal masters corresponding to the j-th substructure are collected
in the matrix Z; € IR(™3) where s; denotes the number of interior degrees
of freedom of the j-th substructure and m; the number of modal masters
having their support in the j-th substructure.

Finally, let

I, O ... 0O I, O ... O
0O M,y ... O o 7 ... O
. . , . and Z=1| . . | .

O ... O M o ... 0 Z



Then the condensed eigenvalue problem
Kof := P'K P& = AP'M PE =: AMoé

can be determined substructurewise in the following way:

(i) For y =1,...,r solve the linear systems
[\;ssj —MSSJ‘Z]‘ P]‘ _ _[(smj ‘ (13)
— 7 M O S O

These are r decoupled systems of s;+m; linear equations. Notice that
most of the columns of the matrix K, ; are null vectors, and that
only those columns of the right hand side have to be considered which
correspond to the nodal master degrees of freedom on the boundary
or in the interior of the j-th substructure.

(ii) For j =1,...,r solve the linear systems
[(55]‘ —MSSJ‘Z]‘ Q]‘ . O
— 7M. O ] l I3 I I (14)

Systems (14) and (13) share the same coefficient matrix. Hence, the
LDLT-decomposition of problem (13) can be reused in the solution
process of (14).

(iii) Compute

Si= Ky + > Konsi P

i=1

(iv) From (12) it follows that the reduced stiffness matrix is given by

S s st
| 5 0
S, 0 .. R
(v) The reduced mass matrix My = P'MP can be determined in the
following way: For j = 1,...,r compute
Uji= My Py, Vii= M Qj, Xji= Mo Py, Y= Mis; Q.
Then
My + S (U + UL+ PIX)) Vit PY, . V4 PIY,
Mo = ]ﬁ+ﬁﬂ QY ... O

Vi+YIP, 0 QY



Notice that most of the computations (namely, solving the linear sys-
tems and determining the matrix products) can be done substructurewise
and therefore completely in parallel. Only in the compilation of the reduced
matrices Ky and My communication between the processes is needed.

5 A numerical example

We consider the L-shaped membrane problem
—Au=Xuin Q, w=0ondN (15)

where © := ((—1,1)x(0,1))U((0,1)x(—1,0]) denotes an L-shaped region in
IR?. We discretized problem (15) on a square grid with mesh size h = 1/24
using the ordinary 5-point difference approximation of the Laplace operator
which yields a linear eigenvalue problem of dimension 1633.

If we decompose €2 into 12 identical substructures each being a square
with side length 0.5, and if we choose the masters and slaves as the boundary
and interior grid points of the substructures, respectively, then we arrive at
a reduced problem of dimension 181. The approximation properties of this
condensed problem are really poor. The smallest eigenvalue of the condensed
problem approximates the smallest eigenvalue of the original problem with
a relative error of 8.23%. The approximation properties are enhanced sub-
stantially if one evaluates the Rayleigh functional of the exactly condensed
problems at the eigenvectors of the statically condensed problem (cf. [6]).

The following table contains the ten smallest eigenvalues of the discrete
version of the L-shaped membrane, the relative errors of its approxima-
tions from the statically condensed problem, and the values of the Rayleigh
functional at the eigenvectors of the condensed problem. We were able to
approximate 10 eigenvalues at the lower end of the spectrum with a relative
error of less than 1%.

# eigenvalue | condensation | Rayleigh fct.
11]9.662291e 4 00 8.23e — 02 3.42e — 05
2| 1.517498¢ + 01 1.24e — 01 1.55e — 04
3 11.971104e + 01 1.59¢ — 01 3.25e — 04
4 12.944159¢ + 01 2.19¢ — 01 2.86e — 03
5 | 3.189298e + 01 2.54e — 01 5.82¢ — 03
6 | 4.133373e + 01 4.95¢ — 01 | —5.34e — 03
71 4.470593¢e 4 01 5.93e — 01 | —2.42¢ — 03
8 4.910897e + 01 6.10e + 01 0
9 14.910897e + 01 6.10e + 01 0

10 | 5.651630e + 01 5.53e 4+ 01| —8.91e — 03




In each substructure we added 1 interior master in the center and 5 inte-
rior master (one in the center and the other ones at the points (0.25¢,0.25(),
(0.250,0.750), (0.750,0.250), (0.75¢,0.75() where ¢ denotes the sidelength of
the substructure). The condensed eigenvalue problems of dimensions 193
and 241, respectively, improved the eigenvalue approximations a little. The
relative errors are contained in the following table. We were able to approx-
imate 11 and 13 eigenvalues, respectively, at the lower end of the spectrum
with a relative error less than 1% with 1 and 5 additional interior masters,

respectively.
1 interior master 5 interior masters
# | condensation | Rayleigh fct. | condensation | Rayleigh fct.
1 5.95e — 02 2.80e — 05 3.33e — 02 1.49¢ — 05
2 9.11e — 02 1.30e — 04 5.4he — 02 6.85e¢ — 05
3 1.18¢ — 01 3.10e — 04 7.05e — 02 1.63e — 04
4 1.69¢ — 01 1.89¢ — 03 1.03e — 01 9.02e — 04
5 1.94e — 01 3.25e¢ — 03 1.18¢ — 01 1.46e — 03
6 3.33e — 01 | —2.51le — 04 1.93¢ — 01 2.82e — 04
7 3.89¢ — 01 1.31e — 03 2.24e — 01 8.44e — 04
8 4.21e — 01 3.79¢ — 03 2.44e — 01 1.95¢ — 03
9 4.21e — 01 3.79¢ — 03 2.44e — 01 1.95¢ — 03
10 4.28¢ — 01 7.55e — 03 2.58e — 01 4.66e — 03

Finally, we incorporated 1, 3 and 9 modal masters of each substruc-
ture, respectively, in the condensation process yielding reduced problems of
dimensions 193, 217 and 289, respectively. The relative errors for the ten
smallest eigenvalues are contained in the following tables. We were able to
approximate 10, 26 and 66 eigenvalues at the lower end of the spectrum
with a relative error less than 1%.

1 modal master 3 modal masters

=

condensation | Rayleigh fct. | condensation | Rayleigh fct.
7.18¢ — 03 6.77¢ — 06 3.37¢ — 03 1.11e — 06
1.48e — 02 4.01e — 05 4.88¢ — 03 3.96¢ — 06
2.14e — 02 9.17¢ — 05 6.21e — 03 9.94¢ — 06
3.85¢ — 02 7.56e — 04 8.74e — 03 3.93¢ — 05
3.62e — 02 1.21e — 03 9.08¢ — 03 5.90e — 05
2.54e — 02 | —3.40e — 04 9.07¢ — 03 8.00e — 05
1.98e — 02 7.51le — 05 8.7le — 03 8.13¢ — 05
2.93e — 02 1.05¢ — 03 7.65e — 03 7.24e — 05
2.93e — 02 1.05¢ — 03 7.65e — 03 7.24e — 05
5.53e — 02 4.79¢ — 03 7.29¢ — 03 1.23e — 05
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9 modal masters
# eigenvalue | condensation | Rayleigh fct.
119.662291e + 00 7.53e — 04 6.21e — 08
21 1.517498¢ + 01 1.38¢ — 03 3.25e — 07
3| 1.971104e + 01 1.96e — 03 8.17e¢ — 07
41 2.944159¢ + 01 3.22e¢ — 03 4.81e — 06
5| 3.189298¢ + 01 3.16e — 03 7.67¢ — 06
6 | 4.133373e + 01 2.40e — 03 5.68¢ — 06
714.470593€ + 01 2.02e — 03 2.84e — 06
8 14.910897¢ + 01 2.73e — 03 9.27¢ — 06
9 14.910897¢ + 01 2.73e — 03 9.27¢ — 06
10 | 5.651630e + 01 4.47e¢ — 03 3.00e — 05
20 | 1.007678¢e 4 02 9.42e¢ — 03 3.59e — 05
30 | 1.598435¢ 4 02 1.11e — 02 1.64e — 03
40 | 1.983320e + 02 1.55e — 02 3.62e — 04
50 | 2.427713e + 02 2.60e — 02 2.50e — 04
60 | 2.817866€e 4 02 2.22e — 02 3.02e — 04
70 | 3.257477e + 02 3.91e — 02 1.62e¢ — 03
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