511 | September 1990

Walter Abicht

The Probability of Compartment and
Wing Compartment Flooding in the
Case of Side Damage

-New Formulas for Practical
Application-

Technische Universitdt Hamburg-Harburg



The Probability of Compartment and Wing Compartment Flooding in the Case of Side
Damage

New Formulas for Practical Application

Walter Abicht, Hamburg, Technische Universitdit Hamburg-Harburg, 1990

ISBN: 3-89220-511-6

© Technische Universitdt Hamburg-Harburg
Schriftenreihe Schiffbau
Schwarzenbergstrafie 95¢

D-21073 Hamburg

http://www.tuhh.de/vss



INSTITUT FUR SCHIFFBAU DER UNIVERSITAT HAMBURG
Bericht Nr. 511

THE PROBABILITY OF COMPARTMENT AND WING COMPARTMENT
FLOODING IN THE CASE OF SIDE DAMAGE
— NEW FORMULAS FOR PRACTICAL APPLICATION —

by

Walter Abicht

Presented at the Fourth International Conference on Stability of Ships and Ocean Vehicles,
24-25th Sept. 1990
Castel dell’Ovo, Naples, Italy



A new mathematical model for the distribution of side demages with reapect to damage location,
damage length, and damege penetration ia presented. Its correspondence with the results of damnage
statistics Is shown. For the probability that a compartment or wing compartment will be flooded,
formulas are set up which are satrictly based on the assumed distribution functions. It is
recommended to Introduce these formulas In a revised subdivialon regulation spplicable to all types
of sea-going merchant ships. The Importance of such a revision is demonstrated by a presentation
of Inaccuracles and shortcomings resulting from the calculation methods prescribed In the actual
probabllistic subdivision rules for passenger and dry cargo vessels.

INTRODUCTION

Thirty years after Wendel (1) introduced the
survival probability as a criterion for the
effectiveness of watertight subdivision, two
International subdivision rules based on the
probabilistic concept exist: Equivalent
Regulations on Subdivision and Stability of
Passenger Ships (IMO-Resolution A.265) and
the Regulations on Subdivision and Damage
Stability of Dry Cargo Ships (IMO-MSC 57/WP
13). Both regulations are based oa the
assumption of the occurrence of a side
damage. On account of the randomness of
location and dimensions of the side damage,
these quantities are presented by their
distribution functions. Bottom damages and
stem damages are not considered because of
the rather high effectiveness of the double
bottom in the case of grounding and of the
collision bulkhead in the case of ramming.

The method of subdividing ships by ailming
at a certain minimum survival probability is
less rigid than the conventional method of
arranging transverse bulkheads in accordance
with a given factor of subdivision. This is a
big advantage especially for dry cargo ships.
By a proper arrangement of transverse and
longitudinal bulkheads - if necessary, in
combination with a horizontal subdivision —
comparatively spaclous cargo holds are
possible without reducing the degree of
survivability.

It Is to be expected that in the near future
the aforementioned probabilistic subdivision
rules for passenger ships and dry cargo ships
will be revised and integrated in one
regulation. Furthermore, this regulation will
presumably replace the antiquated subdivision
requirements of SOLAS 1974 and other damage
stabllity rules which aré still based on the
concept of a one-, two- or three-compartment
standard. On this occasion, the errors and

shortcomings which are to be found in both
existing probabilistic regulations should be
eliminated. This especially applles to the
formulas for the calculation of the probability
of compartment and wing compartment
floodings. After a short demonstration of
thelr weak points new formulas without such
flaws and sulted for practical application in a
revised subdivision rule will be presented.

DETERMINATION OF THE PROBABILITY
OF FLOODING IN THE ACTUAL RULES

The equations by which the probability of
flooding must be calculated for passenger and
dry cargo vessels are based on the same
damage statlistics. Nevertheless. the formulas
to be applied are different.

In the equivalent subdivision rules for
passenger ships [2), the product a'p represents
the probability that a compartment (and oniy
the compartment under conslderation) will be
flooded. Factor a accounts for the location of
the compartment within the ship's length,
factor p is a basic probability of flooding for
a compartment of given length. The
probabilities a and p must be calculated by
the formulas given in the rules.

Unfortunately, these formulas are not quite
correct. This can be easily demonstrated by an
example: For a compartment extending over
the entire ship length, the flooding probability
necessarily Is exactly ap = 1. But the result
obtained from the formulas Is only a'p = 0.986
(for Lg < 200m).

In case of a wing compartment, the
flooding probability must be calculated by
multiplying the product a'p by a third factor r.
The formula for r is even more unacceptable.
This becomes evident if, for instance, the
distance b of the longitudinal bulkhead from
the shell is very short. For b>0 the reduction
factor r should converge to r>0. The values
we pget, however, are — depending on the
length of the wing compartment — between



r = 0.016 and r = 0.800 (for revised version of
the r-formula as published in the IMO-paper
STAB XII/8, Annex II).

The aforementioned inaccuracies may lead
to results which are completely wrong. This
mainly applies to ships being able to survive
floodings of two or more adjacent spaces.
Here, contributions to the survival probability
must be determined by subtracting relatively
high probability values. It I1s a well known
fact that the difference between two big
numbers can only be correctly calculated if
these numbers are absolutely exact. For this
reason, the formulas for the probability
calculations must strictly correspond with the
distribution functions assumed for location
and extent of damage. The distribution
functions themselves must be in accordance
with the results of damage statistics; here,
and only here, approximations are unavoidable
and can — because the survival probability
must be seen as a criterion — be accepted.
But after these functions are settled, no
further approximations should be made and all
calculations must follow with absolute
accuracy the assumed distribution law. This
principle, too much neglected in both of the
existing rules, should be consequently
observed in a revised regulation.

Being aware of some of the weak points of
the passenger ship rules, it was tried to
improve the formulas for the probability
calculation when the probabilistic subdivision
rules for dry cargo ships were formulated [3].
For the probability of compartment flooding
new formulas were established. Factor a,
evaluating the influence of the location of a
compartment on the flooding probability, is
now included in the formula for p,. For a
compartment length being equal to ship's
length, the correct result p, = 1 is obtained.
On closer examination, however, the revised
p,-formulas are found to have new and even
more severe shortcomings. As a result of
discontinuities of the probability density
function, on which the p,-formulas are based,
we get completely different flooding
probabilities p, for a compartment located at
the after or fore end of the ship and the
same compartment moved a little bit in the
midship direction [4].

Example:

A compartment of 0.12 L in length is shifted
from the outmost forward end a little
towards the midship section. According to the
formulas to be applied the probability of
flooding decreases from p, = 0.102 to
p, = 0.060. It is obvious that such a big
difference is unrealistic and that there is a
need for a correction.

The method of determining the flooding
probability of wing spaces is for dry cargo
ships the same as for passenger ships: the
flooding probability p; of a compartment of
the same location and the same length must
be multiplied by a reduction factor r. The
formulas for r were partly, but not
substantially revised. Generally, the critical
comments on the r-formulas are also

applicable to the rules for dry cargo ships. As
an example, for b = 0 we get r = 0.1 instead
r = 0.

DISTRIBUTION DENSITIES AND
DISTRIBUTION FUNCTIONS

In order to eliminate the shortcomings of the
formulas in the actual rules, it is advisable to
start from the foundations, namely the results
of damage statistics and their mathematical
presentation by distribution densities and
distribution functions.

For side damages, the most important
results of an analysis of the IMO damage
cards are [51, [6], [7):

— damage locations are distributed over the
total ship's length. They are a little more
frequent in the forward half of the ship
than in the aft part.

— the distribution density curve for the ratio
damage length to ship’s length (= non-
dimensional damage length) starts with a
steep upward slope. After having reached
its peak, the curve descends gradually.
Damage lengths of more than 0.25 of ship's
length are extremely seldom and may be
neglected. The median of the damage length
is somewhere between 5.55 percent and 6.68
percent of ship's length [5], [6].

— the distribution censity of the ratio damage
penetration to ship’s breadth (= non-
dimensional damage penetration) strongly
depends on the dimensionless damage
length. The peak of the curve Is located at
a penetration depth just above zero for the
shortest damage lengths and moves to a
penetration depth of about 0.4 of ship's
breadth for the longest damage lengths.
The median of the damage penetration is —
growing with damage length — between a
little above zero and 37.5 percent of ship's
breadth.

For the damage data, the following symbols
are used:

x : damage location (= distance between
forward end of damage and the aft end
of the ship)

y : damage length (= longitudinal extent of
damage)

t : damage penetration (= transverse extent
of damage)

or in dimensionless writing:

£ = x/L n=y/L T =t/B

In a system of E-y-coordinates each side
damage which may occur is represented by a
point within an triangular area. This triangle
is right-angled [4]. It would be an isosceles
triangle if — as In the existing subdivision

rules — the center of damage is taken as
damage location. The latter definition,
however, would complicate some of the
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following calculations, and it would be a
definition of damage location being different
from that for bottom and stem damages [8].
So , in this paper, x or £ respectively is
defined as written above.

For a graphic representation of the
distribution of a three-dimensional random
quantity like the side damage with the
parameters £, n, and 1, at least two diagrams
are needed.

In Fig. 1, a curved surface is plotted, the
run of which corresponds with the statistical
findings on the distributions of damage
locations and damage lengths. It represents
the distribution or probability density of side
damages if the third parameter, the damage
penetration 1, is ignored. In order to get a
simple analytic expression for the density
function p ( En }, the curved surface is
replaced by an inclined plane. According to
what is said in the preceding chapter, such an
approximation is acceptable.

Fig. 1. Distribution density p(E,n) of the two -
dimensional side damage according to damage
statistics

p(€,n)

Fig. 2. Linearized distribution density p(£,n) for
practical probability calculations

From Fig. 2, showing this plane, follows:

pz[l———— R Q)

plEn)= P2 M2 P2

The constants 7,, ng, py, and p, are defined
in Fig. 2. The function is only applicable to
pairs of E-n-values located within the area

ABCD of the E-n-plane; beyond this range, the
probability density is equal to zero.

According to the statistical results, realistic
values for the p,/p, - ratio and for 7, are
[4]:

py/pPg = 0.75 ng = 0.25

With these values we obtain 7, = 0.20. The
absolute values for p, and p,, and the median
damage length 150 follow from two definite
double integrals:

[fptEnrdedn=1 @
ABCD

and
ffptEn)dedn=05 @)

ABEF

The probabilities 1 or 0.5 respectively, as a
result of the double integration of the
probability density p ( £,n ), must be attained
for the following reasons:

1. Location £ and length n of the assumed
side damage cannot be predicted. The
probability, however, that a side damage
will occur and that its parameters £ and 7
lie within the area ABCD, is known: it is
exactly 1.

2. By definition, half of the side damages are
less than ngg in length. Accordingly, the
probability of the occurrence of such a
damage, the £-n-values of which are located
within the area ABEF, Is 0.5.

After having solved the integrals, we get:

90 120
| S T Pz = 41

A median damage length of ng, = 0.06268 is
between the values published in (51 and (6].
The present versions of the probabilistic
subdivision rules are based on a median of
0.06683. This value was taken in 1973, just
before the first oil crisis. At that time, there
was a clear tendency of growing speed of
ships, and consequently, a growing average
extent of damage was expected for the future.
In the opinion of the author, this effect was
overestimated. A median of 155, = 0.06268
seems to be more realistic. So, there is no
need for revising the above numerical values
for py, py, ny, and n,. With these values, the
final function for the two-dimensjonal
probability density p ( E,n ) is:

g0 = 0.06268

p (En) =30 (£ 169+ 3) (4)

In order to give a further proof of the
quality of this function, its marginal densities
p(E} and p(n) are compared with the
distribution densities p(£) and p{n) resulting
from the statistics {41, (7). As can be seen in
Fig. 3 and Fig. 4, the curves representing the
marginal densities are in good accordance with
the histograms of the statistical analysis.
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Fig. 3. Marginal density p(f) of the linear
distribution density p(E,n) and histogram of
damage locations according to statistical
analysis
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Fig. 4. Marginal density p{n) of the linear
distribution density p(E,n) and histogram of
damage lengths according to statistical
analysis

A diagram showing the distribution of the
penetration depths of side damages is given in
[7). It is presented in Fig. 5 and demonstrates
the influence of the damage length: the
smaller n is, the higher the probability P, that
a given penetration 1t will not be exceeded.
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Fig. 5. Distribution functions of damage

penetration 1 according to damage statistics

The curves in Fig. 5 are directly elaborated
from the IMO damage cards. For a translation
into a mathematical formula, a function must
be found, the graph of which is a family of
curves running in the same way as in Fig. 5.
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Fig. 6. Distribution functions of damage
penetration 1 for  practical probability
calculations

A function meeting this requirement quite
well, is

P (n,1) = (157)200. e20n(171:57) ©

Its family of curves is plotted in Fig. 6. For
damage lengths n < 0.25 and damage
penetrations t < 2/3, the differences between
the distribution functions in Fig. 5 and Fig. 6
are rather small. Beyond these limits, the
formula is not applicable. According to the
assumption that a damage penetration of
1 = 2/3 will not be exceeded, the probability
P; of the event of a penetration depth being
smaller than a given numerical value 1, Is for
2/3 < 1 < 1 always exactly Py = 1. A further
formula, namely for 7 > 0.25, is not needed
because n = 0.25 is assumed to be the upper
limit of the longitudinal damage extent
(Fig. 2).

The statistical informations given by the
presented functions p ( £, } and Py ( n1 ),
are sufficient to derive formulas for the
probability of flooding for compartments and
wing compartments. Using a model for the
reality, the above functions are considered to
be the true functions. In order to avoid the
errors of the actual probabilistic subdivision
rules, the following calculations are strictly
based on these functions. They are carried out
correctly without applying approximate terms.

NEW FORMULAS FOR THE SPACE
FLOODING PROBABILITY

A general calculation of the flooding
probability p; for side spaces includes the
special case of a breadth being equal to ship's
breadth (b = B). Therefore, in principle,
separate formulas for compartments and wing
compartments are not necessary.

Before dealing with the side space, we first
will have a look at a compartment. Its
forward end may be located at § = §, its
length may be AE. In Fig. 7, showing the
graph of the assumed density function p ( §,7 1,

-4 -



those side damages causing a flooding of this
compartment — and only of this compartment —,
are represented by pairs of E-n-values falling
into the triangular area MNO. We must
differentiate between two cases:

— compartment length AE < {/16 (point O of
the triangle MNO below line CD)

— compartment length A > (/16 (point O of
the triangle MNO above line CD)}

where [ = 3 + .

b} WING COMPARTMENTS OF AE < [/16 IN
LENGTH

The flooding probability p; of a wing
compartment depends on a further parameter,
namely on its dimensionless breadth b/B. The
knowledge of the distribution function P; ( 5,1}
enables us to derive a formula for p; for side
spaces being smaller than b/B = 2/3.
The flooding probability of side spaces of
b/B > 2/3 is — because damage penetrations of
v > 2/3 are excluded — the same like that of
a compartment with b/B = 1.

p(E,n)
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/
/
1 K
B D P

Fig. 7. Probability of flooding to a compartment of AE < [/16 by a side damage of given length 7,

a) COMPARTMENTS OF Af < {/16 IN LENGTH

The example given in Fig. 7 is a compartment
of this type. The flooding probability p, for
this compartment is obtained by an integration
of the probability density p ( §,n ) within the
limits of the triangle MNO. This can be done
in two steps: determination of the sectional
areas A ( {,AEn ) of the prism in direction
parallel to the p-E-plane, and integration of
A ( {,AE,n ) with respect to 1.

For A ( T,AE,n ) we get

AtCaEn) = Roae - B oa®-

6)

B (ce1s ag)n 4 465

Its definite integral with respect to n from 0
to Af is

oE
= JACCAEN dn= - ABY (30 - 174E)
0

From Fig. 7 it is easy to see: the probability
8p, that the compartment under consideration
will be flooded by a side damage of given
length 7, (exactly: v, - 81/2 < g < n; + 8y/2),
equals the volume of a "slice” located parallel
to the p-f-plane at n = 7, and having a
thickness of 3y:

5py = A (G,AEn ) - 81

The individual distribution function P; to be
applied if n = n,, is:

P, = (1.5 1) e20ml1 - 157)

By substituting b/B for 1, we get the
probability that in the case of a damage
length n ~ 7n,, the damage penetration t will
be smaller than b/B:

P = (15 b/B )20m ezom(l— 1.5 b/B)

The product of the above probabilities,
3p; - Py, represents the probability that the
flooding will be caused by a side damage with
a longitudinal extent of n =~ =n, and a
transverse extent of 1 < b/B. If these
products are evaluated for all damage lengths



— from the smallest just above zero up to a
length being equal to the compartment length
AE — and then summed up, the result is just
the probability p, we are looking for: the
probability of a flooding to the compartment
under consideration — and only to this
compartment — by a side damage with a
penetration depth not exceeding a given
numerical value. This probability is identical
with the flooding probability p, of a wing
compartment with a dimensionless breadth
b/B. From

AR
pr=J A ()P () - dn,
0

foltows, after substitution of the analytical
expressions for A and P;, the final formula
for practical application:

A5 AE (20 - AE) 30 (L +15AF),

Pi fic iic?

930 - 930e 2%+ 30c (L - 16 AE)e A%
30c |

* lc

(8)

where ¢ = 30 b/B - 20 In (1.5 b/B ) - 20.

As mentioned at the beginning, the limits to
be observed are:

AE < T/16  and b/B < 2/3.

If b/B = 2/3, the above formula gives us
the flooding probability for a compartment of
AE < [/16. In order to demonstrate this, we
must write — to avoid a negative denominator
{(for b/B = 2/3 we get ¢ = 0) —

e 8% =1 - cAE + 172 PAEE - 176 CAE 4o

By introducing this series for the exponential
function exp (-cAE), we get for p, the same

result as presented in subparagraph a) for
compartments of AE < {/16.

c} COMPARTMENTS OF AE = [/16 IN LENGTH

For compartments being more than [/16 in
length, the triangular area MNO in the
E-n-plane extends beyond the ABCD-region
where side damages are assumed to occur. As
demonstrated in Fig. 8, the prism with the
base MNGR, the volume of which equals the
flooding probability p, of the compartment
considered, has sectional areas of different
shape. For damage lengths 1 < ng, we get a
trapezoidal cut surface; its area A, is:

AtoEn) =30 car - B oA
- (gasag)n o+ Sy )

For damage lengths ng < n < np, the cut
surface becomes triangular, and its area A, is:

Aty = B0 - 50+ 300 27 o)

From the sum of the two definite integrals

il R
JACTAEN Y dn and  [A(Cn) dy
[+] ﬂG

follows the formula for the flooding
probability p; for compartments exceeding a
length of [/16:

. AE-T(T-AE), o' ¢
Py = 1 * 33 58 un

Fig. 8. Probability of flooding to a compartment of AE > [/16 by a side damage with 3, £ 55 and

with ag < 0y < 1R



d) WING COMPARTMENTS OF Af 2 [/16 IN
LENGTH

The flooding probability p, can be calculated
in the same way as described in subparagraph
b). The only difference is that it must be
observed whether the damage length under
consideration does or does not exceed ng
(Fig. 8). According to the assumed limitation
of the damage penetration to 1 = 2/3, the
resultant formula for p, is only applicable to
wing compartments which are smaller than
b/B = 2/3. For side spaces of a depth of more
than 2/3 of the ship's breadth, the formula
for compartments of A > [/16 must be
applied for the calculation of the flooding
probability p, (subparagraph ¢). If b/B < 2/3,
the steps of determining p, are:

Probability of flooding by a side damage of
n » 1y, and any depth ©

1t

0 <n € g 3py = AL LA ) - 8n

g £ My £ ws 5py = A Tny ) 39
Probability of flooding by a side damage of
n~n and 1 < b/B:

The above probabilities 8p; must be multiplied
by P ( vy ), where

)20711 . eZOnl(l‘l,S b/B)

Pi(n) = ( 1.5 b/B

-cny
e

Probability of flooding by a side damage of
1t < b/B and any length:

jile] TR
pr = [A () Pl - dny + JA(n) - Pelny) - dny
o] Y’G

The result of the integrations represents the
flooding probability  p, for a wing
compartment of Af > [/16 and b/B < 2/3:

_ISAE(20-AE) _ 30 (T+15AF) ,
i c it ¢

Py

c cl
--S(¢ -nE) -t
930 + 6750 e '8 - 7680 e '8

+
inc

(12)

From the definition
c =30 b/B - 20 In(1.5 b/B) - 20

follows ¢ = 0 if b/B = 2/3. If we develop the
exponential expressions into series, we get for
c = 0 the same p,-formula as presented in
subparagraph ¢} for compartments of AE 2
r/16.

DISCUSSION AND CONCLUDING REMARKS

The formulas derived in the preceding section
for the probabilities of compartment and wing
compartment floodings offer several
advantages. They are applicable in practical
subdivision rules and fulfil fundamental
requirements such as:

— no discontinuities in the results

— the p,-formulas for compartments follow
from the more general p;-formulas for wing
compartments. According to the assumption
that damage penetrations 1t > 2/3 do not
occur, they are identical with the
p,-formulas achieved for b/B = 2/3. This
applies to compartment lengths AE < (/16
as well as AE 2 [/16.

— for a compartment of Af = 1 the correct
result p; = 1 is obtained

— the correct flooding probability p; = 0 is
attained for AE = 0 as well as for b/B = 0

— application of the p;-formulas for AE < [/16
and AE 2 [/16 results in identical formulas
for AE = (/16

For the future, an universal probabilistic
subdivision regulation, to be applied to all
types of seagoing ships, is desirable. In this
context, it is recommended to introduce the
presented formulas into the new regulation.
By such a decision the judgement of the
safety of ships could be clearly improved.

Though not subject of this paper, it may be
mentioned that another requirement in the
present  subdivision rules calls for an
amendment. The assumption of a damage
stability based on a vertical center of gravity
which equals the allowable upper limit, is
against the probability concept. Efforts, for
instance, of attaining a high survivabllity by
giving the ship a great deal of damage
stability, do not find expression in the
survival probability criterion called "Attained
Subdivision Index” because not the actual but
unrealistic small minimum stability values
must be assumed to exist. Here, a
replacement of the highest permissible
KG-value by a mean value or by a distribution
of KG-values should be considered.

Coming back to the flooding probability p,,
it still remains to point out that the method
of defining the side damage location by the
distance of its forward end from the aft end
of the ship, leads to a graphic representation
of the survivable side damages which differs
from the conventional graph. This s
demonstrated by an example in Fig. 9. It
shows a ship subdivided by flve transverse
bulkheads. The following floodings are
assumed to be survivable: flooding of the
after two adjacent compartments, of the
forward two adjacent. compartments, or of any
of the two inner corapartments.
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Fig. 9. Triangular hatched areas representing
the survivable pairs of §£-n-values for a
transversely subdivided ship. In the left graph
E indicates the location of the center, in the
right graph the location of the forward end of
the side damage as well as of the floodable
compartment

If the location of a side damage or a
compartment is defined by the location of its
center, the areas of the survivable pairs of
E-n-values look like illustrated in the left
diagram of Fig. 9. The limiting isosceles
triangles change into right-angled triangles if
the forward end of damage and watertight
space respectively is taken to indicate the
position within ship's length. We then get the
diagram on the right side of Fig. 9.

In the author's opinion, it should be
unproblematic to introduce the new kind of
graphic representation. This view is confirmed
by practical experience gained from survival
probability calculations in the cases of bottom
and stem damages. For these types of
damages, the proposed definition of location is
in use from the beginning.
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