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Abstract: Patterned surfaces have proven to be a valuable design to enhance adhesion, increasing
hysteresis and the detachment stress at pull-off. To obtain high adhesive performance, soft mate-
rials are commonly, used, which easily conform to the countersurface, such as soft polymers and
elastomers. Such materials are viscoelastic; i.e., they show rate-dependent properties. Here, the
detachment of two half spaces is studied, one being flat and the other having a dimple in the limit
of short range adhesion and a power law rate-dependent work of adhesion, as observed by several
authors. Literature results have suggested that the dimpled surface would show pressure-sensitive
adhesion, showing two possible adhered states, one weak, in partial contact, and one strong when
full contact is achieved. By accounting for a power law rate-dependent work of adhesion, the “weak
state” may be much stronger than it was in the purely elastic case, and hence the interface may
be much more tough to separate. We study the pull-off detachment stress of the dimpled surface,
showing that it weakly depends on the preload, but it is strongly affected by the dimensionless
unloading rate. Finally, possible implications of the presented results in the detachment of soft
materials from rough substrates are discussed.

Keywords: adhesion enhancement; dimple model; patterned surfaces; viscoelasticity; enhancement

1. Introduction

Tribology is a very active field of research of utmost importance in several engineering
applications, ranging from automotive [1] to aerospace [2] and bio-engineering [3]. In
automotive, for example, the role of adhesion and viscoelasticity is crucial in determining
tires’ adherence and performance [4]. Adhesion due to van der Waals interactions is
commonly exploited in nature, in which very efficient strategies have been developed
to adhere to almost any kind of surface [5,6]. Lizardw, geckos and insects in general in
most cases outperform the most advanced human designed adhesive technologies, and
the topic still has far to go. Geckos for example have developed a multiscale hierarchical
structure, so that the “macroscopic” foot splits in several lamellae, which branch in the
setae and finally in fine spatulae of the size of nanometers [7,8]. Inspired by nature, several
adhesive strategies have been pursued, among the others, that of fabricating patterned
surfaces [9] present in mushroom pillars [10] or depressions (“dimples”) [9] (see Figure 1a)
and have been shown to be able to reach far higher adhesive stress with respect to the
smooth case. Nevertheless, simple criteria to discern sticky from unsticky surfaces are
still unavailable [11–13], except maybe the criterion introduced by Dalquist at 3M, who
suggested that a strong adhesive tape should have a Young’s modulus lower than 0.3 MPa
to be able to conform well to the harder counterpart [14], which, only recently, has received
some support from a theoretical perspective [11,12].

Over the years, several authors have conceived of contact mechanics models to as-
certain how the enhancement is originated and possibly indicate routes for further de-
velopment or better performance [15–17]. A very elegant model for the detachment of a
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halfspace with a dimple from a flat substrate was proposed by McMeeking et al. [17], who
developed a contact mechanics model in the limit of short range adhesion (the so-called
“JKR limit” from Johnson, Kendall, and Roberts’ seminal paper [18]) and showed that the
dimple surface behaved as a pressure-sensitive adhesive: detaching the dimple from its
equilibrium position would lead to “weak adhesion” in partial contact, but upon applica-
tion of a compressive pressure, a full-contact state would be achieved that would require a
(theoretically) infinite tensile traction to be detached (“strong adhesion”). In this respect, the
finding recalls the seminal work of Johnson [19], who considered the contact of a halfplane
with sinusoidal waviness. Johnson had to postulate the presence of a flaw at the interface
(air trapping, contaminants, fine scale roughness...), which would guarantee the possibility
to separate the two surfaces. Zhou et al. [15] have applied the McMeeking et al. [17]
model to study the adhesion capabilities of both cockroach pads (Nauphoeta cinerea) and
dock beetles pads (Gastrophysa viridula), showing that they are strongly influenced by the
geometric features of the interfacial pattern, and Cañas et al. [20] adopted the McMeeking
et al. [17] model to fit experimental results of adhesion of biomimetic polydimethylsiloxane
(PDMS) surfaces patterned with pillars with mushroom-shaped tips.

(a) (b)

d

Figure 1. (a) SEM images of a surface pattered with dimples (adapted from [9]). (b) Geometry of the
dimple surface considered in this study. The model is axysimmetric.

Recently, Papangelo and Ciavarella [21] generalized the “dimple” model of McMeek-
ing et al. [17] by using a cohesive Maugis–Dugdale model, which introduces two new
parameters, i.e., the theoretical strength of the material and the range of interaction of
the adhesive tractions, and allowed investigation of the detachment performance of the
dimple ranging from soft to hard materials as a function of a dimensionless parameter
that is similar to that introduced by Tabor for the sphere [21,22]. It was shown that the
dimple adhesive performance, particularly the “strong adhesive state”, becomes rapidly
degraded, moving towards the rigid limit; hence for the dimple to effectively work as a
pressure-sensitive mechanism, soft materials should be employed.

The above studies have considered the work of adhesion (the work needed to separate
two flat surfaces from their equilibrium position up to infinity) as a constant that depends
on the contact pair. Nevertheless, it is well-known that soft materials show rate-dependent
properties. In particular, the dependence of the work of adhesion w on the velocity of the
peeling vp (the velocity at the crack tip) is well documented both experimentally [23,24]
and theoretically [25,26]. Although with some variants in the nomenclature, most of the
authors agree that the dependence of the work of adhesion on the peeling velocity is well
captured by a power law form (Reference [27])

w = w0

[
1 +

(
vp

V0

)n]
(1)
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where w0 is the adiabatic (or thermodynamic) work of adhesion for vanishing peeling
velocity, while V0 and n are material properties with V0 a reference velocity, and n an
exponent usually in a range from 0.1 to 0.9 for realistic materials. Here, we revise the model
of McMeeking et al. [17] by accounting for the effect of the rate at which the external load
is applied. It will be shown that the dimple still behaves as a pressure-sensitive adhesive,
but the “weak” adhesive state is strongly influenced by the unloading rate so that the
pull-off stress in partial contact and the interfacial toughness can largely increase for high
unloading velocity. The enhancement effect is greatly dependent on the exponent n, larger
exponents leading to larger strengthening of the interface, but it is only marginally affected
by the level of preload.

2. Griffith Equilibrium Solution for a Dimple
2.1. Elastic Problem

Here, the model introduced by McMeeking et al. [17] for the detachment of two elastic
half-spaces is summarized. The geometry consists of two elastic bodies (see Figure 1b),
with Young’s modulus and Poisson’s ratio {E1, ν1} and {E2, ν2}, one of those flat while the
other with an axysimmetric dimple, whose geometry is defined by (see Figure 1b){

δ = 2
π δ0ε

( r
b
)
, r

b ≤ 1
δ = 2r

πb δ0

[
ε
(

b
r

)
−
(

1− b2

r2

)
κ
(

b
r

)]
, r

b > 1
(2)

where r is the radial coordinate, δ0 is the dimple amplitude, b is the dimple radius, κ(θ)
and ε(θ) are, respectively, the complete elliptical integral of first and second kind with
argument θ. Johnson [28] has shown that a uniform axisymmetric pressure of magnitude p
applied over a region r < b on the surface of a half-space produces surface displacements
as in Equation (2); hence, to make the two half-spaces conform to each other, one would
need within the dimple (r ≤ b) a tensile traction T equal to [28]

T =
E∗δ0

2b
, r ≤ b (3)

where 1
E∗ =

1−ν2
1

E1
+

1−ν2
2

E2
is the composite elastic modulus. Hence, if a remote stress σA (>0,

when tensile) is applied, the stress σzz at the interface of the two half-spaces will be{
σzz = σA + E∗δ0

2b , r
b ≤ 1

σzz = σA, r
b > 1

(4)

The combination of the remote stress applied and the inner (constant) stress within
the dimple can be easily studied in the framework of the Linear Elastic Fracture Mechanics
(LEFM) theory, as the dimple behaves as an axisymmetric crack under internal pressure
p(r) [29]. Let us define, for a crack of radius c, the auxiliary function ([29], 3.114a) g(x) =∫ x

0
sp(s)ds√

x2−s2 {
g(x) = (σA + T)x, x < b
g(x) = σAx + T

(
x−
√

x2 − b2
)

, x > b
(5)

Then, Equation (3.117) in [29] gives the stress intensity factor as KI = 2√
πc g(c), or

equivalently, the energy release per unit area G = K2
I /2E∗

G = 2c
πE∗

(
σA + E∗δ0

2b

)2
, c

b ≤ 1

G = 2c
πE∗

[
σA + E∗δ0

2b

(
1−

√
1−

(
b
c

)2
)]2

c
b > 1

(6)

Hence McMeeking et al. [17] apply the classical Griffith energetic argument that the
energy release per unit area G should be equal to the surface energy w0 of the contact pair



Appl. Sci. 2021, 11, 3107 4 of 10

(the “toughness”), leading to their LEFM model [17]. The equilibrium curves that link the
remote tension to the crack radius are written in dimensionless form as

σ̂A = −1 + αd

√
1
ĉ , ĉ ≤ 1

σ̂A = −1 + αd

√
1
ĉ +

√
1−

(
1
ĉ

)2
, ĉ > 1

(7)

where we have introduced the following dimensionless parameters

α2
d =

2πw0b
E∗δ2

0
, σ̂A =

σA
T

, ĉ =
c
b

, (8)

Notice that αd is analogous to the parameter that Johnson defined for the sinusoid [28]
as it is proportional to the ratio between the adiabatic work of adhesion and the strain elastic
energy to flatten the dimple. Figure 2 shows the equilibrium solutions for αd = [0.1, 0.5, 0.9],
where we used a solid (dashed) line to identify the stable (unstable) branches of the curve.
For the curve αd = 0.5, we have labelled some noteworthy points. The system is in
equilibrium under vanishing remote stress σ̂A = 0 at the point “C”, which corresponds
also to a certain radius (not null) of the crack ĉ. If a tensile stress is applied, the crack
radius increases and detachment takes place at point “B” in partial contact (Reference [21]
reports ĉ at pull-off), which will be referred to as the “weak” adhered state. If, from the
equilibrium position “C”, a compressive pressure is applied below σ̂A,C = −1 + αd, the
dimple jumps from point “A” to a full contact state (the branch below ĉ = 1 is unstable);
hence, the crack shrinks, and theoretically an infinite tensile pressure will be needed to
separate the two bodies. In practice, there may be flaws, contaminants, air trapping or
simply the two surfaces will be detached when the theoretical strength is reached (see [21]
for a detailed analysis).

0 1 2 3 4 5

-1

-0.5

0

0.5

1

Figure 2. Remote stress σ̂A versus the crack radius ĉ in the McMeeking et al. [17] elastic model for
αd = [0.1, 0.5, 0.9]. For the curve αd = 0.5, point “C” determines the equilibrium position (σ̂A = 0),
point “B” the “weak” adhesive state, while point A is the point where the jump to full contact happens.

2.2. Effect of a Rate-Dependent Work of Adhesion

We have introduced above the McMeeking et al. [17] LEFM elastic model for the
detachment a dimpled half-space from a flat substrate. Nevertheless, soft matter has
viscoelastic behavior; hence, we here extend the McMeeking et al. [17] model to account
for a rate-dependent work of adhesion. According to Equation (1), the effective work of
adhesion is a power-law function of the peeling velocity vp = dc/dt (t is the time), i.e., the
velocity at the crack tip, which can be written as

vp =
dc
dt

= ± ·σA
dc

dσA
(9)
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where
·
σA = dσA/dt [Pa/s] is the externally imposed unloading rate and the “+” (“−”)

sign holds when the crack advances (dc/dt > 0) or retracts (dc/dt < 0). Hence, using (1),
(6) and (9) and imposing the Griffith equilibrium concept, one obtains

w0

[
1 +

(
−
·
σA
V0

dc
dσA

)n]
= 2c

πE∗

(
σA + E∗δ0

2b

)2
, c

b ≤ 1

w0

[
1 +

( ·
σA
V0

dc
dσA

)n]
= 2c

πE∗

[
σA + E∗δ0

2b

(
1−

√
1−

(
b
c

)2
)]2

, c
b > 1

(10)

which in dimensionless notation reads
dĉ

dσ̂A
= − 1

·
σ̂A

[
ĉ

α2
d
(σ̂A + 1)2 − 1

]1/n
, ĉ ≤ 1

dĉ
dσ̂A

= 1
·
σ̂A

{
ĉ

α2
d

[
σ̂A +

(
1−

√
1− 1

ĉ2

)]2
− 1
}1/n

, ĉ > 1
(11)

where the dimensionless unloading rate
·
σ̂A =

·
σA

TV0/b has been introduced. The ordinary
differential equations in (11) are of first order and can be easily solved numerically using
as a starting point a solution of the elastic problem in Equation (7). Clearly, physically
admissible starting points are those on the stable branch AB in Figure 2; hence, as we shall
see later, a rate-dependent work of adhesion will not affect the “strong” adhesive state,
but only the “weak” one. In the next section we shall investigate the effects of the various

parameters
{

n,
·
σ̂A, αd

}
on the detachment stress in partial contact (“weak” state).

3. Results
3.1. Detachment Curves

Let us investigate first the effect that a rate-dependent work of adhesion has on the
detachment curve of the dimple by solving Equation (11). Figure 3 shows the unloading
curves for the rate-dependent model (Equation (11), black dot-dashed curves) starting
from different initial conditions ĉ0 on the branch AB (Figure 2) for αd = 0.5, n = 0.5 and
·
σ̂A = 1. The red curve (solid for the stable, dashed for the unstable branches) shows the
Griffith elastic reference solution [17]. Clearly, the rate-dependence of the work of adhesion
has a toughening effect (dot-dashed black curves). Figure 4a shows the dimensionless
peeling velocity v̂p = vp/V0 as it changes during the detachment process, while panel
(b) shows the corresponding dimensionless work of adhesion ŵ = w/w0, while the crack
propagates. The peeling process starts with a vanishing velocity; i.e., instantaneously,
the remote stress increases without change of the crack radius ĉ, and this can be easily
checked if one substitutes a solution of the Griffith elastic model (Equation (7)) into the

rate-dependent model (Equation (11)). By further unloading the dimple surface
( ·

σ̂A > 0
)

,

the peeling velocity v̂p increases with a power law behavior, and so does the interfacial
toughness. Notice that the slope of the σ̂A(ĉ) curve is inversely proportional to the peeling
velocity; hence, the latter decays with a power law. We define the pull-off detachment
stress as σ̂A,pull = limĉ→+∞ σ̂A. Furthermore, Figure 3 shows the crack retraction curve,
when the dimple is forced into the unstable regime (ĉ ≤ 1, blue dot-dashed curve). Apart
from a different transient behavior, similarly to the elastic solution, the rate-dependent
solution will jump into a full contact strong adhesive state. Figure 3 shows that the effect
of the initial preload on the detachment stress σ̂A,pull is marginal, particularly in light of

the dependencies on the parameters
{

n,
·
σ̂A, αd

}
that we will show in the following. From

now on, we will consider as initial condition only the more “likely” situation of unloading
the dimple from its equilibrium position σ̂A = 0, which belongs to the stable branch AB
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for αd ≤ 1 (otherwise for αd > 1, the dimple naturally jumps into the full-contact strong
adhesive state).

0 1 2 3 4 5

-1

-0.5

0

0.5

1

Figure 3. Unloading curves of the dimpled surface starting from different initial conditions ĉ0 =

[1.05, 1.2, 1.5, 2, 2.5] for αd = 0.5, n = 0.5 and
·
σ̂A = 1. Red lines for the Griffith elastic solution,

dot-dashed black lines for the rate-dependent model unloading curves.

1 2 3 4 5
10-2

100

102

1 2 3 4 5
100

101

(b)

(a)

Figure 4. (a) Dimensionless peeling velocity and (b) corresponding apparent work of adhesion
ŵ = w/w0 for the unloading curves in Figure 3.

Let us look at the influence of the exponent n and of the unloading rate
·
σ̂A on the

dimple detachment curves. Figure 5a shows that starting from the dimple equilibrium

position “C” for αd = 0.5, n = 0.5 and
·
σ̂A = 10[−3,0,1,2], where black dot-dashed curves

indicate the rate-dependent solutions, while the red curves show the reference elastic
solution. Figure 5a shows that the unloading rate has a strong influence on the detachment
stress σ̂A,pull and that the elastic solution is approached only for the very low unloading

rate
·
σ̂A = 10−3. Notice that, in this particular case, for the reference elastic solution,

we have σ̂A|max ≈ 0.23,, while in the a rate-dependent case σ̂A,pull ≈ 1.7 at
·
σ̂A = 102,
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which gives a detachment stress increased by a factor ' 7. Finally panel (b) shows

that for the same unloading rate
·
σ̂A = 1, the pull-off stress σ̂A,pull increases with the

exponent n = [0.1, 0.3, 0.5, 0.7, 0.9] as for the increasing of the effective surface energy w
(see Equation (1)).

0 1 2 3 4 5
-1

0

1

2

0 1 2 3 4 5
-1

-0.5

0

0.5

1

1.5

n

(a)

(b)

Figure 5. (a) Unloading curves of the dimpled surface starting from σ̂A = 0 for αd = 0.5, n = 0.5

and
·
σ̂A = 10[−3,0,1,2]. Red lines for the Griffith elastic solution, dot-dashed black lines for the a

rate-dependent unloading curves. (b) As panel (a) but for
·
σ̂A = 1 and n = [0.1, 0.3, 0.5, 0.7, 0.9].

3.2. Pull-Off Detachment Stress

We have investigated the effect of the unloading rate
·
σ̂A and of the exponent n

on the detachment curves of a dimple from an elastic substrate with rate-dependent
work of adhesion. Here we give a closer look at the dependence of the pull-off stress

σ̂A,pull on the unloading rate
·
σ̂A by varying αd and n. Figure 6a shows the pull-off stress

σ̂A,pull as a function of the dimensionless unloading rate
·
σ̂A for αd = [0.2, 0.4, 0.6, 0.8] and

n = 0.5. Panel (a) shows that the the pull-off stress σ̂A,pull approaches the elastic value

(obtained from Equation (7)) only at very low unloading rate
·
σ̂A ≈ 10−4, while it increases

considerably when
·
σ̂A is increased, or by increasing αd. In the regime of high unloading

rate, the pull-off stress dependence on
·
σ̂A is well captured by a power law behavior, while

that on αd is linear. For
·
σ̂A & 10−2 and n = 0.5, a very good fit of the pull-off stress is given

by the power law

σ̂A,pull = (1.32αd + 0.065)
·
σ̂

0.2

A (12)

whose predictions are given by dot-dashed black lines (almost indistinguishable from the
solid curves obtained numerically). Panel (b) shows that for a fixed αd = 0.5, the pull-off

stress increases with the exponent n. At low
·
σ̂A, all the curves start from the same elastic

solution (black dashed lines) as the pull-off stress depends only on αd and then increases
for larger unloading rates with a power law behavior whose slope is very well fitted by
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a power law σ̂A,pull ∝
·
σ̂

0.3n+0.05

A . (For
·
σ̂A & 10−2, an estimate of the pull-off stress as

a function of αd and n can be obtained by σ̂A,pull = 2n(1.32αd + 0.065)
·
σ̂

0.3n+0.05

A , where
we found this to be more accurate close to n ≈ 0.5 and αd = 0.5.) Notice that typically
0 < n < 1; hence, the increase of the pull-off stress with the unloading rate is sublinear.

10-4 10-2 100 102

10-1

100

101

10-4 10-2 100 102
10-1

100

101

(a)

(b)

Figure 6. (a) Pull-off detachment stress σ̂A,pull as a function of the dimensionless unloading rate
·
σ̂A for αd = [0.2, 0.4, 0.6, 0.8] and n = 0.5. (b) Pull-off detachment stress σ̂A,pull as a function of the

dimensionless unloading rate
·
σ̂A for n = [0.2, 0.4, 0.6, 0.8], αd = 0.5. For all the curves, the initial

condition is σ̂A = 0. In both panels, the black dashed lines indicate the Griffith equilibrium solution
from Equation (7). Black dot-dashed lines serve as a guide to the eye.

4. Conclusions

In this work, the detachment of a surface with an axisymmetric dimple from an elastic
substrate with rate-dependent work of adhesion has been studied in the limit of short-
range adhesion. Previous elastic model with constant work of adhesion has shown that
the dimpled surface has two adhered states, one “strong” in full contact, one “weak” in
partial contact. The rate dependence of the work of adhesion has been accounted for by
adopting a power law dependence (with exponent n) of the effective work of adhesion on
the pealing velocity as it is commonly observed in experiments [27]. Notice that, in this
analysis, we have neglected bulk effects (we used the relaxed modulus of the viscoelastic
material E0 = Eω=0, with ω being the excitation frequency of the material); hence, the
results presented should be representative for not too high peeling velocity. It has been
shown that a rate-dependent work of adhesion does not affect the “strong” adhesive state,
but it strongly influences the detachment pull-off stress in partial contact, resulting in
a strong toughening of the interface. In this respect, we have shown that for a given
unloading rate, after a transient, the peeling velocity increases with a power law behavior
during the detachment process, and so does the effective work of adhesion. Furthermore,
it has been shown that the pull-off stress (in partial contact) does not depend much on the
particular initial condition chosen to unload the dimple. Instead, the pull-off stress depends
on three dimensionless parameters; i.e., it increases by increasing the unloading rate, the
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exponent “n” or the dimensionless parameter αd. Clearly, for a real viscoelastic material,
the interfacial toughening will not increase to infinity but will be limited by the ratio
Eω=∞/Eω=0, which is known to vary anyway by orders of magnitude with the excitation
frequency [26]. In this respect, for a real material, the curves in Figure 4 will be bounded.
In conclusion, the presented results suggest that viscoelasticity may play a strong role in
determining the apparent interfacial toughness in patterned interfaces. In particular, when
soft rough substrates are considered, it may be very difficult to recognize other sources
of toughening, such as those due to the increase of contact area due to roughness [30] or
due the local jump instabilities as in the Guduru problem [31], unless an extremely low
unloading rate is adopted as indeed recently attempted by Dalvi and coauthors [32].
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