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On a Simple Method for Calculating Laminar
Boundary Layers

K. E. G. WIEGHARDT

(Formerly Admiralty Research Laboratory, Teddington, now at
Hamburg University)

Summary: A simple one parametric method, due to A. Walz and based on the
momentum and energy equations, for calculating approximately laminar boundary
layers is extended to cover axi-symmetric flow as well as plane flow. The necessary
computing work is reduced a little.

Another known method which requires still less computing work is also extended
for axi-symmetric flow and, with the amendment of a numerical constant, proves
adequate for practical purposes.

1. Introduction

Since there are already several methods of calculating approximately laminar
boundary layers for incompressible flow, it would seem necessary to justify the
development of yet another method. The following method tries to obtain in a
practical manner, results as correct as possible and with the smallest amount of
computing work. Obviously a very accurate method is to represent the velocity
profiles approximately by a two parametric class whereby the partial differential
equation for boundary layers is replaced by two ordinary differential equations:
the momentum and the energy equation”’. But here the interpolation in the two
parameters requires considerably more computing work than that with the usual
one parametric methods. Therefore A. Walz!® altered this method back again into
a one parametric method using the energy equation instead of the boundary condi-
. tion for the second derivative 0%u/dy* on the wall. By this means he obtained better
results than by the usual one parametric methods based on the momentum equation
only. So he proved that it is more important to satisfy the energy balance on the
average over the whole layer rather than the usual boundary condition for the
curvature of the velocity profile at the wall. As the latter condition is too sharp for
a limited variety of profiles, a wrong profile is sometimes selected by it. The method
of A. Walz can be altered slightly as follows. It is extended so as to calculate
boundary layers on axi-symmetric bodies (without incidence) as well as in two-
dimensional plane flow. Also, the computing work is reduced.

Notation
x  the axial co-ordinate
r  the radial co-ordinate
r, the co-ordinate of the body of revolution

Paper originally received January 1952.
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K. E. G. WIEGHARDT

s the distance measured along the surface of the body

n the distance normal to the surface

T 14T with tana= 200
¥, ncosa dx
u,v  the normal velocity components at any point in the layer

U  the velocity at the edge of the boundary layer
U, the velocity of the undisturbed stréam
~p  the density of the incompressible fluid

i the viscosity

v =p/p=the kinematic viscosity

[~

the thickness of the boundary layer

o
-
l
Q,-_‘S

(1 - ﬂ) L dn=the displacement thickness
U/r,

>
|

. = J u (1 ) L dn=the momentum thickness
U r,

0,
u u\*>r .
3, = jf][l_ U) ]Edn_the energy thickness
]
_ T 2 (u/U)Y (
D= J 50/5) 5 ) =the dimensionless dissipation in the layer

H = 8,/8,—a parameter characterising the velocity profile
Haz = 83/ 82
R, = U3,/v=the local Reynolds number of the boundary layer

R = U, R’/v=the Reynolds number of the main stream
R’ a characteristic length

X =38,R,=U3,2/v=a useful cémputing quantity

T, = %) =the shear stress at the wall=the skin friction
n=0
_(o@/U)N T, _ . . P
t=\3 /) =7 U,Rz—the‘ dimensionless skin friction
L2 (0% u ..
A= — T \3), =another characteristic profile parameter
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METHOD FOR CALCULATING LAMINAR BOUNDARY LAYERS

2. The Calculation Method

As the equations for axi-symmetric flow include those for plane flow and are
only a little more complicated, the method may be derived for the boundary layer
along a body of revolution, the co-ordinates of which are x (along the axis) and the
radius r, (x). In the case of plane flow all the equations are to be simplified by
putting r, (x)=constant—> 00,

The equation of continuity is

%(ru)-l— a?’;(r'v)zo : ' (1)

and the boundary layer equation
ou ou dau 0*u
as Yan =V ds ane ’ ) ) @

From the latter, two ordinary differential equations can be derived by multiplying
by r or ur and integrating through the layer. These are the momentum equation

vr, ,,a”,) ; J‘ u (U - u) rdn+ &7 ‘[ U~wrdn . . &)

0 0
and the energy equation

(%Y ran= 2 [ugu—3uyran. . . . @
] ]

The physical meaning of the latter equation is that the energy dissipated by the
viscosity equals the loss of kinetic energy inside the whole layer.

Equations (3) and (4) can be written more shortly by introducing the quantities
defined. Then equation (3) becomes

LdU | 2 dr,
{(3+2H)U Tt ds}x 2:=0 . . . (5

This is the usual differential equation for X or é,, the momentum thickness. Another
equation for the profile parameter H can be derived by combining equations (3) and
(4) as follows:

dH 1 dU 1

~ 4 v e T8xe ©)
. az(H 1) _ EH32—2_D .
where f=- “aH_jdH and g= dH,,jdH . . D
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TABLE 1

H A B C D E F G ¢
2 -1l -08 64 073 22 79 02 0465
4 025 08 6 03 08 9 26
205 107 -058 72 079 25 87 035 0439
4 0-27 09 7 04 0-8 0-10 25
21 | -103 —031 81 08 29 95 045 0414
5 0-30 1-0 7 04 09 0-10 24
215 | 098 —001 91 093 33 104 055 0390
6 0-34 1-1 9 05 1-0 0-10 23
22 | -092 4033 102 102 38 114 065 0367
7 0-39 12 9 05 1-1 0-11 22
225 | —085 072 114 1111 43 125 076  0-345
8 0-45 1-3 0-10 05 13 0-13 21
23 | —077 1117 127 121 48 138 089 0324
9 0-51 1-4 011 06 15 013 20
2:35 | 068 168 141 132 54 153 102 0304
0-11 0-59 1-6 0-12 07 1-6 0-14 19
24 | —057 227 157 144 61 169 116 0285
013 066 1-8 014 07 1-8 0-15 18
245 | 044 293 175 158 68 187 131 0267
0-15 0-74 2:0 015 08 19 017 17
25 | -029 367 195 173 76 206 148 0250
0-17 0-82 2:2 016 09 2:1 0-18 16
2:55 | —0-12 449 217 189 85 2277 166 0234
0-18 0-90 2-4 018 10 2:4 0-19 15
26 | +006 539 241 207 95 251 185 0219
0-19 099 2:7 0-20 10 2:6 0-22 15
265 025 638 268 227 105 277 207 0204
0-21 1-09 29 0-22 11 29 0-23 14
27 0-46 747 297 249 116 306 230  0-190
023 121 32 024 12 32 025 13
275 0-69 868 329 273 128 338 255 0177
0-26 1-3, 35 026 1-4 36 0-28 12
28 0-95 100 364 299 142 374 283 0165
029 15 39 0-28 15 40 0-29 11
285 124 11’5 403 327 157 414 312 0154
032 17 43 030 1-7 4-4 0-31 11
29 1:56 132 446 357 174 458 343 0143
0-36 19 4-7 0-32 20 4-8 0-33 10
2:95 1-92 15-1 493 389 194 506 376 0133
0-40 2:0 52 034 22 53 0-35 10
30 232 171 545 423 216 559 411 0123

These equations are still exact, of course, in general it would be impossible to
compute the boundary layer only by equations (5) and (6), as these two ordinary
differential equations cannot replace the partial differential equation (2) and all its
However, restricting oneself to an approximate calculation
by assuming a one parametric class of velocity profiles, H;,, ¢ and D and conse-
quently f and g become functions of the one parameter H alone: f(H) and g (H).
In this case obviously equations (5) and (6) enable X (s) and H (s) to be computed
if the body r, (s) and its pressure distribution, or U (s), are given.

boundary conditions.
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METHOD FOR CALCULATING LAMINAR BOUNDARY LAYERS

For axi-symmetric flow this assumption of a one parametric class implies
neglecting the term r/r, during the integration across the layer (see the definitions
of the characteristic quantities). This is the same approximation Mangler ©®' made
in his paper about the transformation of an axi-symmetric boundary layer into a
corresponding plane one. Since usually the layer is very thin when compared with
the radius of the body of revolution, the assumption r/r,=1 is good enough as r
varies only between r, and r,+39. The influence of the shape of the body of revolu-
tion still remains in the term (2/r,)(dr,/ds) X in equation (5), whereas equation (6)
is approximately the same whether the flow is axi-symmetric or plane, as it is
independent of r,.

The system of the two differential equations (5) and (6) is to be solved step by
step. For that the step As may be chosen so small that (1/U)dU /ds can be taken as
constant through the integration step. Then the local pressure gradient is
characterised by

_ UmU  1dU, 1 dp
AT TU s T st o ®

where the index 1 denotes the beginning and 2 the end of the interval. Practically
this means that the steps As must be made as small as is necessary to draw the curve
U (s) with reasonable accuracy.

In the same way all the other functions are linearised over the interval. Hence
from equation (6)

N
ym o 2et3gAH) Ny where AH=H,-H,
AH +(f+4fAH)y
. df . dg
f=am 2™ &= gg- ©)

Introducing this expression for X in equation (5) a quadratic equation for AH is
obtained. Yet for small steps As, AH will also be small so that the term with
(AH)? can be neglected. Then

A(+o)+By+C ALy

AH= — . . ()

X X e
D+E7+FA—SY+ As +Go

where 0= L dn As =~ _ )= (),

Ty ds (o) +(ro)e]/2

(0 =0 for plane flow), and A, B, ... G are the following functions of H: —
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—on=(3 fC—fD=Ltorep_Llpp_Llig_ 1,
A=g,B= (2 +H)g+~f,C~f,D— ’2“£+~,EA 5 B.F= Ef,G—— ~ g,

. . . (1)
In equation (10) the argument H in these functions is to be taken at the beginning
of the step: A(H,), B(H,), ... G(H,). Once AH is computed AX follows from an
equation derived from equation (5):

&+ E2_'I:(Ii1"|'112'*'3)')’+2"‘)] XI/AS

AX= (

X T3, +H, + 37+ 20] t2)
According to its definition X gives the momentum thickness
) X_/B_'

=Xv/U or 2 VR= J U/U N (k)

where R=U,R’/v is the Reynolds number of the undisturbed stream and R’ a
characteristic length. With 3, giving the size and H the shape of the velocity profile
the boundary layer is known once X (s) and H (s) are calculated.

To establish the functions A4, B, ... G a certain class of velocity profiles has to
be chosen. Walz® has shown that the results do not depend very much on the
particular class if the energy equation is used together with that for the momentum.
This independence obviously is fundamental for the usefulness of the whole method.
So the Hartree-profiles which have been proved useful before may be taken again.
Hartree® tabulated the velocity profiles for the case U ~ s™ where the boundary
layer equation (2) can be tackled analytically. For each of his profiles (for various
m) the integrations for 8, 8, and 3, were carried out numerically and the functions
A, B, ... G calculated (see Table I). It was not necessary to integrate the dissipation
D to find g (H) after equation (7), as for these profiles

3‘)2 2
g=-M with A=— ZTM) ) R ¢ Y

For, in this case, U ~ s™, the velocity profile does not change its shape at all along
the distance from the stagnation point s as long as m is constant. Hence dH /ds=0
and, according to equation (6), g= —(1/U)(dU /ds) Xf. Further, as these are exact
solutions the general boundary condition for equation (2)

8, dU _ X dU ) ) @5)

A= S ds U ds and by definition A= — ﬁ 6n

is satisfied, and so simply g= — Af. Yet it is just this boundary condition (15) which
has been dropped in favour of the energy equation in the approximate method
already described. Therefore, it will be fulfilled only approximately when the
relation U/ ~ s™ no longer holds.
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Fig. 1.

Howarth’s flow: U=1—s. Comparison of the dimensionless skin friction ¢ calculated by
various methods.

3. Examples

To check the accuracy of the calculation method the plane boundary layer has
been computed for the case U =1 -5, which Howarth® has treated analytically by
series. The calculation begins at s=0-05 where 3,=0-162, X=0-162* (1-0-05)=
0-0249 and H=2'77, ¢=0-172. The result as given in Fig. 1 (the dimensionless
skin friction over the distance s) deviates very little from the exact solution. The
separation point is only found by extrapolating as the range of Table I is not great
enough. Namely, between H=3-480 and 4-031 (for the separation profile) no
profiles are tabulated by Hartree so that an extension of Table I is impossible
without computing more velocity profiles afresh. However, in practice the laminar
boundary layer will turn into a turbulent one at some distance before separation.
Hence it would not pay to strive after greater accuracy near to the separation
point itself.

For comparison Fig. 1 gives the separation point as found by various methods
when starting at s=0-05:
(@) Th.v. Kirm4n-C. B. Millikan® s, =0-102
(b) A.Walz (Hartree profiles; based on the momentum equation only){"’=0-103
(©) A. Walz (Hartree-profiles)® =0-114
(d) Two parametric class of velocity profiles?=0-116
() H. Gortler (relaxation method)®=0-118
(f) L. Howarth (series)® =0-120
(&) D. Meksyn (series)® =0-1235
(h) Present method=0-125
() A.Walz (profile: polynomial of the fourth degree)® =0-125
(k) H. Schlichting (profile: polynomial of the sixth degree)®® =0-138
(D K, Pohlhausen (profile: polynomial of the fourth degree))=0-160,
3
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Half-body of revolution (produced by a single source): Velocity outside the boundary layer,
momentum thickness, skin friction and neutral stability point for various Reynolds numbers.

Further, the boundary layer has been computed for three types of head of an
infinite long body of revolution:

(a) half-body
(b) hemisphere and cylinder
(¢) }-calibre rounded head and cylinder.

The pressure distribution in (b) and (c) was that calculated recently by Vandrey**
by a new method (applicable to bodies with discontinuous curvature of the meridian).
As these pressure distributions are calculated for ideal fluid the results as given in
Figs. 2, 3 and 4 hold only for high Reynolds numbers.

The strokes on the surface of the bodies indicate the position of the neutral
stability point at the respective Reynolds number, i.e. the point after which the
laminar layer might become unstable. The actual transition to the turbulent
boundary layer will occur between this point and the separation point. The estima-
tion of the neutral stability point is given in the Appendix.

In (b), U (s) was given only at a few points s, as indicated by Fig. 3, so that the
actual curve is rather uncertain near the end of the head. But obviously as the
separation is there in any case it does not matter very much.

Each case needed only a couple of hours’ computing work.
32
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Hemispherical head: Velocity outside the boundary layer, momentum thickness, skin friction
and neutral stability point for various Reynolds numbers.

4. Comparison with Another Very Simple Method

For plane boundary layers a somewhat simpler calculation method has been
proposed by H. Holstein and T. Bohlen”* and A. Walz®"® in Germany and by
Young and Winterbottom"® and, in detail, by Thwaites” in this country. It is
based on the momentum equation (5) alone which might be written

dX X dU

I _—(3+2H)ﬁ_d_§ +2e. N 1)

Supposing that the velocity profiles can be represented by a one parametric class,
the right side of (5a) is a function of the parameter H alone. For ¢ this is obvious.
Yet it holds also for (X /U)dU /ds which equals another parameter

*ufU

M= sy

(compare equation (15)) according to the general boundary condition which has
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1/4-calibre head: Velocity outside the boundary layer, momentum thickness, skin friction and
neutral stability point for various Reynolds numbers.

been dropped in the method already described. Hence, the left side of equation (54),
dX |ds, is also a function of H alone.

Using Thwaites’s notation for A= —m, s=I(m) and L (m)=2H +4)m+2l, the
momentum equation becomes -

dx
ds =L (m)—m. . : . T .(16)

For various known solutions of plane boundary layer problems the relation L (m)
is almost the same, which proves the main assumption of a one parametric class of
velocity profiles. Furthermore, L(m) can be approximated by a linear function
such as

L(m)=a+bm. . . . . . an

Then equation (16) can easily be integrated to give an explicit formula
34
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2 $
X:U%-:Uba_lfU"—‘ds, . La

and the parameter is to be found by

Xdu
m=— g . . . . .19

For axi-symmetric flow Mangler’s transformation®’ alters this equation (18) into

all(U"*‘r‘,'-’ds @

X=po=iry
[t °

with r, (s)=1local radius of the body of revolution. This might also be written

s/R’

2 . _a_____l bh—1 72 ‘ .
#iR= 7oy ,“/R,!(U/U“) uIRYdsIR. .. @D

duju,
T ds/R (R’ */R) N 0)
and 0 VR= g7 5 R )

with /(m) after Table I in (17). The results of ugmé this formula are given for
two examples in Figs. 2 and 4 (half-body and %-calibre rounded head). The broken
lines correspond to the constants as proposed by Thwaites"”, g=0-45 and b=6.

As he was interested mainly in (plane) cases with increasing pressure—whereas
in these examples the region with decreasing pressure is of importance—better
results (single marked points in Figs. 2 and 4) are reached by @=0-45 and b=5-5%.

Thus it is shown that this simple formula, (18) or (20), can be used for axi-
symmetric flow as well as for plane flow with an accuracy sufficient for most
practical purposes. But it seems advisable to make b=5-5 as long as dU /ds >0
and afterwards b=6 for dU/ds <0, with a=0-45 in both cases.

APPENDIX

For practical use some known formulae are given, (a) for the flow near the stagna-
tion point and, (b) to estimate the indifference point.

*Note added in proof: Meantime E. TRUCKENBRODT, Ing.-Arch. 20 (1952), p. 211, proposed
the same method with a=047 and b=6-0.
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Diagram for estimating the neutral stability point from the profile parameter H and the local
Reynolds number of the boundary layer (for Hartree profiles).

(a) Flow near the stagnation point

(2) Two-dimensional:

U/U,=u,(s/R), H=221,, =036, X=0-0845s.
7o 1233 1 B, o 0292
pU? VR= Ju, s|lR”° R VR= vu o

(8) Axi-symmetric:

U/U,=u, (s/R), H=229, £=032,, X=00613s,
_ 1312 1 3, ,p_ 0248
s VR= G sim RYRE G
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(b) Neutral stability point

Schlichting®® and Pretsch® have shown that it is possible to attach to each
boundary layer profile approximately a critical Reynolds number :

chﬁt = (U 82 / V)crit-

If the actual R, is smaller, the laminar layer is stable in any case; if R,>>R,. the
layer is unstable to certain disturbances so that transition can occur. The real transition
to the turbulent layer will take place somewhere between this neutral stability point and
the theoretical separation point of the laminar boundary layer.

Usually R,y is given as a function of the parameter A. Yet as A is determined by
H for one parametric classes, Fig. 5 gives directly R,,—actually the logarithm of it—
depending on H.

This diagram holds for axiaily symmetrical flow as well as for plane flow. It is to
be seen that a good approximation is given by the straight line corresponding to

(Rz)crit:ezﬁ‘s_“{ . . . . . (24)

When X (s) and H (s) have been calculated the critical Reynolds number of the main
flow R.iw=(U, R’/v)ai; can be estimated by (24) for any distance s of the neutral
stability point from the stagnation point, respectively the position of the neutral stability
point s for a given Reynolds number R. For this it is practical to write (24) as follows

XU
log,ORc,.“_755-695(H-22)—1og,,,(-E,v—o. X))
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