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On a Simple Methüd für Calculating Laminar
Büundary Layers

K. E. G. WIEGHARDT

(Formerly Admiralty Research Laboratory, Teddington, now at
Hamburg University)

Summary: A simple one parametric method, due to A. Walz and based on the
momentum and energy equations, for calculating approximately laminar bouridary
layers is extended to cover axi-symmetric flow as weIl as plane flow. The necessary
computing work is reduced a little.

Another known method which requires still less computing work is also extended
for axi-symmetric flow and, with the amendment of a numerical constant, proves
adequate for practical purposes.

1. lntroduction
Since there are already several methods of ca1culating approximately laminar

boundary layers for incompressible flow, it would seem necessary to justify the
development of yet another method. The following method tries to obtain in a
practical manner, results as correct as possible and with the smallest amount of
computing work. Obviously a very accurate method is to represent the velocity
profiles approximately by a two parametric dass whereby the partial differential
equation for boundary layers is replaced by two ordinary differential equations:
the momentum and the energy equation!l). But here the interpolation in the two
parameters requires considerably more computing work than that with the usual
one parametric methods. Therefore A. Walz(2) altered this method back again into
a one parametric method using the energy equation instead of the boundary condi-
tion for the second derivative a2u/ay2 on the wall. By this means he obtained better
results than by the usual one parametric methods based on the momentum equation
only. So he proved that it is more important to satisfy the energy balance on the
average over the whole layer rather than the usual boundary condition for the
curvature of the velocity profile at the wall. As the latter condition is too sharp for
a limited variety of profiles, a wrong profile is sometimes selected by it. The method
of A. Walz can be altered slightly as follows. It is extended so as to ca1culate
boundary layers on axi-symmetric bodies (withoutincidence) as well as in two-
dimensional plane flow. Also, the computing work is reduced.

Notation

x the axial co-ordinate
r the radial co-ordinate

ro the co-ordinate of the body of revolution

Paper originally received January 1952.
(The Aeronaotleal Quarterly. Vol. V, May 1954]
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s the distanee measured along the surfaee of the body

the distanee normal to the surfaeen

,
I '0 .

h
d,o

= +-wlt tana=-n eosa dx

u

the normal veloeity eomponents at any point in the layer

the velocity at the edge of the boundary layer

the velocity of the undisturbed stream

the density of the incompressible fluid

the viseosity

= fJ.1p = the kinematic viseosity

the thickness of the boundary layer

p

00

01 = J ( 1- ;)~dn = the displaeement thiekness
o

00

O2 = J ~ ( 1- ; ) ~ dn = the momentum thiekness
o

00.

03 = J ~ [ 1- (ij- r ] ~ dn = the energy thiekness
o

00

D = J e~~~~~r ~ d(~) =the dimensionless dissipation in the layer
o

H = (,1/(,2= a parameter eharaeterising the veloeity profile

H32 = (,3/(,2

R2 = U (,2/'/=the loeal Reynolds number of the boundary layer

R = U 0 R' 1'/ = the Reynolds number of the main stream

R' a eharaeteristie length

X = O2R2 = U 0221'/= a useful eomputing quantity

I~ (:~)n=o =the shear stress at the wall=the skin frietion

E = (0 (u 1U») T 0 R h d '
.

I k
.

f
. ,

a (nl(,J 0 = p U2 2=t e ImenSlOn ess s In netlOn

_ 022 (02 u) = another eharaeteristie Profile Parameter
U an2 0

A=
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ME1HOD FOR CALCULATING LAMINAR BOUNDARY LAYERS

2. The Calculation Method
As the equations for axi-symmetric flow inc1ude those for plane flow and are

only a little more complicated. the method may be derived for the boundary layer
along a body of revolution. the co-ordinates of which are x (along the axis) and the
radius ro (x). In the case of plane flow all the equations are to be simplified by
putting ro (x) = constant---+ 00.

The equation of continuity is

a a
-(ru)+-- (r11)=0as an

(1)

and the boundary layer equation

au au dU a"u
u--+v-=U--+'I-- . (2)

as an ds an"

From the latter. two ordinary differential equations can be derived by multiplying
by r or ur and integrating through the layer. These are the momentum equation

00 00

(au) d
f

dU
f'Ir" -- =- u(U-u)rdn+-- (U-u)rdn

an" ds ds
o 0

(3)

and the energy equation

00 00

'I f (~~r rdn= ~J u(!U"-!u2)rdn.
o 0

(4)

The physical meaning of the latter equation is that the energy dissipated by the
viscosity equals the loss of kinetic energy inside the whole layer.

Equations (3) and (4) can be written more shortly by introducing the quantities
defined. Then equation (3) becomes

dX { I dU 2 dro}- + (3+2H) -- +- - X -20=0ds U ds r0 ds
(5)

This is the usual differential equation for X or <\.the momentum thickness. Another
equation for the profile parameter H can be derived by combining equations (3) and
(4) as folIows:

dH I dU I
- -- =1- - +g-ds U ds X . (6)

where (7)

27



K. E. G. WIE G H A R D l'

T ABLE I
--- -----.--------- ----.-------..-..--H A B C D E F G €

- -------'--~------_._-~-----~-------~---~---_._--_.- ---2 -1,11 -0,83 6-4 0,73 2.2 7'9 0.26 0,465
4 0'25 0'8 6 0'3 0'8 9 26

2.05 -1,07 -0,58 7.2 0,79 2.5 8'7 0,35 0'439
4 0'27 0'9 7 0'4 0'8 0'10 25

2.1 -1,03 -0,31 8.1 0,86 2'9 9'5 0-45 0.414
5 0'30 1'0 7 0"4 0'9 0'10 24

2.15 -0,98 -0,01 9.1 0,93 3,3 10'4 0,55 0,390
6 0'34 1'1 9 0'5 1'0 0'10 23

2.2 -0,92 +0,33 10.2 1'02 3,8 11'4 0,65 0,367
7 0'39 1'2 9 0'5 1'1 O'll 22

2.25 -0,85 0,72 11.4 1'11 4,3 12'5 0,76 0,345
8 0'45 1'3 0'10 0'5 1-3 0'13 21

2.3 -0,77 1.17 12.7 1.21 4,8 13'8 0,89 0.324
9 0'51 1'4 O'll 0'6 1'5 0'13 20

2.35 -0,68 1.68 14.1 1.32 5,4 15.3 1.02 0,304
0'11 0'59 1-6 0'12 0'7 1-6 0'14 19

2'4 -0'57 2.27 15'7 1.44 6.1 16'9 1.16 0.285
0'13 0'66 1'8 0'14 0'7 1-8 0'15 18

2.45 -0,44 2.93 17,5 1.58 6'8 18'7 1.31 0.267
0'15 0'74 2'0 0'15 0'8 1'9 0'17 17

2'5 -0,29 3,67 19.5 1.73 7,6 20'6 1:48 0,250
0'17 0'82 2'2 0'16 0'9 2'1 0'18 16

2.55 -0,12 4'49 21.7 1.89 8'5 22.7 1.66 0.234
0.18 0'90 2.4 0'18 1'0 2'4 0'19 15

2'6 +0'06 5,39 24.1 2.07 9,5 25'1 1.85 0.219
0'19 0'99 2'7 0'20 1'0 2'6 0'22 15

2.65 0.25 6,38 26,8 2.27 10,5 27'7 2.07 0.204
0'21 1'09 2-9 0'22 1'1 2'9 0'23 14

2.7 0,46 7,47 29'7 2.49 11.6 30'6 2.30 0.190

0'23 1'21 3'2 0'24 1'2 3'2 0'25 13

2.75 0'69 8'68 32.9 2.73 12.8 33'8 2.55 0.177

0'26 1'32 3'5 0'26 1-4 3-6 0'28 12

2.8 0,95 10,0 36,4 2.99 14.2 37,4 2.83 0'165
0'29 1'5 3'9 0'28 1'5 4'0 0'29 11

2.85 1.24 11.5 40,3 3.27 15.7 41.4 3.12 0.154

0'32 1'7 4'3 0'30 1'7 4'4 0'31 11

2.9 1'56 13.2 44.6 3,57 17'4 45'8 3,43 0.143

0'36 1.9 4'7 0'32 2'0 4'8 0'33 10

2.95 ].92 15.1 49,3 3,89 19.4 50'6 3,76 0.133

0'40 2'0 5.2 0'34 2.2 5-3 0'35 10
3,0 2.32 17.1 54'5 4.23 21.6 55'9 4.11 0.123

-----

These equations are still exact, of course, in general it would be impossible to
compute the boundary layer only by equations (5) and (6), as these two ordinary
differential equations cannot rep1ace the partial differential equation (2) and all its
boundary conditions. However, restricting oneself to an approximate ca1culation
by assuming a one parametric c1ass of velocity profiles, H32, € and D and conse-
quently fand g become functions of the one parameter Halone: f (H) and g (H).

In this case obviously equations (5) and (6) enable X (s) and H (s) to be computed
if the body r0 (s) and its pressure distribution, or U (s), are given.

28
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METHOD FOR CALCULATING LAMINAR BOUNDARY LAYERS

For axi-symmetric fiow this assumption of a one parametric class implies
neglecting the term rlro during the integration across the layer (see the definitions
of the characteristic quantities). This is the same approximation Mangier (3)made
in his paper about the transformation of an axi-symmetric boundary layer into a
corresponding plane one. Since usually the layer is very thin when compared with
the radius of the body of revolution, the assumption r Ir0 = I is good enough as r
varies only between ro and ro+ö. The infiuence of the shape of the body of revolu-
tion still remains in the term (2Iro)(drolds)X in equation (5), whereas equation (6)
is approximately the same whether the fiow is axi-symmetric or plane, as it is
independent of ro'

The system of the two differential equations (5) and (6) is to be solved step by
step. For that the step I::::..s may be chosen so small that (1 I V) dV I ds can be taken as
constant through the integration step. Then the local pressure gradient is
characterised by

V2-V1 I dV I dpy= (V, + V2)/2 = Uds
I::::..s=- pV2 ds I::::...~, (8)

where the index I denotes the beginning and 2 the end of the interval. Practically
this means that the steps !::::..smust be made as small as is necessary to draw the curve
V (s) with reasonable accuracy.

In the same way all the other functions are linearised over the interval. Hence
from equation (6)

2 (g+tgI::::..H)
X.= - ~--~~;--~--I::::..s-X" where I::::..H=H2-H,- I::::..H+(f+1fI::::..H)y

i= ffk and . dg
g= (IH . (9)

Introducing this expression for X in equation (5) a quadratic equation for I::::..His
obtained. Yet for small steps I::::..s,I::::..Hwill also be small so that the term with
(1::::..H)2can be neglected. Then

AA (l+w)+By+C& y
I::::..H= -

~
X X '

D+Ey+F Al y+ Al +GuJ
s I J>.S

(10)

where

(w=O for plane fiow), and A, B, ... Gare the following functions of H: --.

29
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A
.

B (3 ) I . I. I . 1=g, = 2- +H g+Ef.C=f,D= 'il?+E,E= 'iB.F= If,G= 'ig.

(11)

In equation (10) the argument H in these functions is to be taken at the beginning
of the step: A (H]), B (H]),

'"

G (H,). Once /::;.His computed /::;.X follows from an
equation derived from equation (5):

(12)

According to its definition X gives the momentum thickness

(13)

where R=UoR'/'I is the Reynolds number of the undisturbed stream and R' a
characteristic length. With O2giving the size and H the shape of the velocity profile
the boundary layer is known once X (s) and H (s) are ca1culated.

To establish the functions A, B,
'"

G a certain dass of velocity profiles has to
be chosen. Walz(2) has shown that the results do not depend very much on the
particular dass if the energy equation is used together with that for the momentum.
This independence obviously is fundamental for the usefulness of the whole method.
So the Hartree-profiles which have been proved useful before may be taken again.
Hartree(4) tabulated the velocity profiles for the case U , , sm where the boundary

layer equation (2) can be tackled analytically. For each of his profiles (for various
m) the integrations for 31,°2 and 03 were carriea out numerically and the functions
A, B, ... G calculated (see Table I). It was not necessary to integrate the dissipation
D to find g (H) after equation (7), as for these profiles

. 3,,2(a2U )g= -Af wlth A= - -=- .U an "=0
(14)

For, in this case, U , , sm, the velocity profile does not change its shape at all along

the distance from the stagnation point s as long as m is constant. Hence dH /ds=O
and, according to equation (6), g= - (1/ U)(dU / ds) Xf. Further, as these are exact
solutions the general boundary condition for equation (2)

\
Ö22dU XdU ( db dfi "

\
ö,,2 (a2U ))= - - = - - an y e nltlon I\.= - -=- - .

'I ds U ds U an2 0

(15)

is satisfied, and so simply g= - Af. Yet it is just this boundary condition (15) which
has been dropped in favour of the energy equation in the approximate method
already described. Therefore, it will be fulfilled only approximately when the
relation U , , sm no longer holds.

30
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Fig. 1.

Howarth's flow: U = 1 - s. Comparison of the dimensionless skin friction E calculated by

various methods.

3. Examples

To check the accuracy of the ca1culation method the plane boundary layer has
been computed for the case U = 1 - s, which Howarth(6) has treated analytically by
series. The ca1culation begins at s=0'05 where 82=0'162, X=0.1622 (1-0'05)=
0'0249 and H=2'77, E=O'l72. The result as given in Fig. 1 (the dimensionless
skin friction over the distance s) deviates very little from the exact solution. The
separation point is only found by extrapolating as the range of Table I is not great
enough. Namely, between H=3-480 and 4.031 (for the separation profile) no
profiles are tabulated by Hartree so that an extension of Table I is impossible
without computing more velocity profiles afresh. However, in practice the laminar
boundary layer will turn into a turbulent one at some distance before separation.
Hence it would not pay to strive after greater accuracy near to the separation
point itself.

For comparison Fig. 1 gives the separation point as found by various methods
when starting at s=0'05:

(a) Th. v. Karman-c. B. Millikan(6) 88e.=0'102
(b) A. Walz (Hartree profiles; based on the momentum equation only)(7)=0'103
(e) A. Walz (Hartree-profiles)(1!)=0'114

(d) Two parametrie dass of velocity profiles(l) = 0.116

(e) H. Görtler (relaxation method)(S) =0'118

(f) L. Howarth (series)(SbO'120

(g) D. Meksyn (series)(9) =0'1235

(h) Present method=0'125

(i)

(k)

(I)

A. Walz (profile: polynomial of the fourth degree)(2)=0'125
H. Schlichting (profile: polynomial of the sixth degree)(lO)=0'138

K. Pohlhausen (profile: polynomial of the fourth degree)(llbO'160,

31
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'.2

',0

0"

0,6

0.2

..L.~/(R)
10 pU

o
o 0.2 0,6

0" 10 '.2
:x:
R'

Fig. 2.

Half-body of revolution (produced by a single source) : Velocity outside the boundary layer,
momentum thickness, skin friction and neutral stability point for various Reynolds numbers.

Further, the boundary layer has been computed for three types of head of an
infinite long body of revolution:

(a) half-body
(b) hemisphere and cylinder
(c) t-calibre rounded head and cylinder.

The pressure distribution in (b) and (c) was that calculated recently by Vandrey(12)
by a new method (applicable to bodies with discontinuous curvature of the meridian).
As these pressure distributions are calculated for ideal fluid the results as given in
Figs. 2, 3 and 4 hold only for high Reynolds numbers.

The strokes on the surface of the bodies indicate the position of the neutral
stability point at the respective Reynolds number, i.e. the point after which the
laminar layer might become unstable. The actual transition to the turbulent
boundary layer will occur between this point and the separation point. The estima-
tion of the neutral stability point is given in the Appendix.

In (b), U (s) was given only at a few points s, as indicated by Fig. 3, so that the
actual curve is rather uncertain near the end of the head. But obviously as the
separation is there in any case it does not matter very much.

Bach case needed only a couple of hours' computing work.
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0.6

0.4

o.z

o
o 0.2 04 0.6 0.8

:x:
i{

'.0 ,.z 1.+

Fig.3.

Hemispherical head: Velocity outside the boundary layer, momentum thickness, skin friction
and neutral stability point for various Reynolds numbers.

4. Comparison with Another Very Simple Method
For plane boundary layers a somewhat simpler calculation method has been

proposed by H. Holstein and T. Bohlen(l4) and A. Walz(l5) in Germany and by
Young and Winterbottom(lt;) and, in detail, by Thwaites(l1) in this country. It is
based on the momentum equation (5) alone which might be written

dX X dU
ds = -(3+2H)

U 'ds'
+20. (5a)

Supposing that the velocity profiles can be represented by a one parametrie class,
the right side of (5a) is a function of the parameter Halone. For E this is obvious.
Yet it holds also for (X j U) dU j ds which equals another parameter

(J'ujU
A (H)= - a(nj(,.)"

(compare equation (15» according to the general boundary condition which has
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16

~
,R'

Fig.4.

If4-calibre head : Velocityoutside the boundary layer, momentum thickness, skin friction and
neutral stability point for various Reynolds numbers,

been dropped in the method already described. Hence, the left side of equation (5a),
dX / ds, is also a function of Halone.

Using Thwaites's notation for A= - m, E = 1(m) and L (m) = (28 + 4) m + 21, the
momentum equation becomes ..

dX
-;[s-= L (m)- m. (16)

For various known solutions of plane boundary layer problems the relation L (m)
is almost the same, which proves the main assumption of a one parametric dass of
velocity profiles. Furthermore, L (m) can be approximated by a linear function
such as

L (m)=a+bm. (17)

Then equation (16) can easily be integrated to give an explicit formula
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I

X=V~~ = U~-l fVb-lds,

o

(18)

and the parameter is to be found by

XdV
m= - V ds'

(19)

For axi-symmetrie ftow Mangler's transformation(3) alters this equation (18) into

I

X -
al fU "-i

" I-- Ub -1 ? r" {s

" o

(20)

with ro (s)=loeal radius of the body of revolution. This might also be written

'IB'

~~:R= (Uj(;-';Y' -;.,,~R'f(UjV")b-l(r,,jR')2dsjR',

o

(21)

=
_ dU j U" (.()~

. / R )"m dsjR' R' v (22)

and (23)

with I (m) after Table I in (17). The results of u~ing this formula are given for
two examples in Figs. 2 and 4 (half-body and !-ealibre rounded head). The broken
lines eorrespond to the eonstants as proposed by Thwaites(17), a = O'45 and b = 6.

As he was interested mainly in (plane) eases with inereasing pressure-whereas
in these examples the region with deereasing pressure is of importanee-better
results (single marked points in Figs. 2 and 4) are reaehed by a = 0-45 and b = 5,5*.

Thus it is shown that this simple formula, (18) or (20), ean be used for axi-
symmetrie ftow as wen as for plane flow with an aeeuraey suffieient for most
praetical purposes. But it seems advisable to make b = 5, 5 as long as dU j ds > 0
and afterwards b = 6 for dV j ds < 0, with a= 0,45 in both eases.

APPENDIX
For practical use some known formulae are given, (a) for the flow near the stagna-

tion point and, (b) to estimate the indifference point.

*Nate added in praaf: Meantime E. TRUCKENBRODT.lng.-Arch. 20 (1952), p. 211, proposed
the same method with a=0-47 and b=6'O.
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2.

STAGNATION POINTS
()

PLANE fLOW

. AXIALLY SYMMETRICAL FLOW

()
FLAT PLATE (PLANE fLOW)

2'8

Fig.5.

Diagram for estimating the neutral stability point from the profile parameter Hand the loeal
Reynolds number of the boundary layer (for Hartree profiles).

(a) Flow near the stagnation point

(2) Two-dimensional:

(ß) Axi-symmetric :

E=0.32", X =0.0613 s,

~-" VR = ~~~? ~
(IV" vU, siR"
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METHOD FOR CALCULAJING LAMINAR ROUNDARY LAYERS

(b) Neutral stability point

Schlichting(1O) and Pretsch(13) have shown that it is possible to attach to each
boundary layer profile approximately a critical Reynolds number:

If the actual R"
is smalIer, the laminar layer is stable in any case; if R">R2crH the

layer is unstable to certain disturbances so that transition can occur. The real transition
to the turbulent layer will take place somewhere between this neutral stability point and
the theoretical separation point of the laminar boundary layer.

Usually R',crit is given as a function of the parameter A. Yet as A is determined by
H for one parämetric classes, Fig. 5 gives directIy R"crit-actually the logarithm of it-
depending on H.

This diagram holds for axially symmetrical flow as weIl as for plane flow. It is to
be seen that a good approximation is given by the straight line corresponding to

(24)

When X (s) and H (s) have been calculated the critical Reynolds number of the main
flow Rcrit=(UoR'/'I)crit can be estimated by (24) for any distance s of the neutral
stability point from the stagnation point, respectively the position of the neutral stability
point s for a given Reynolds number R. For this it is practical to write (24) as follows

log,oRcl'it=7'55-6'95(H-2'2)-log,,,(~g).
o

(25)
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