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Abstract. In the context of numerical computation of
indirect lightning effects it is customary to use volume-
discretizing methods in time domain, such as the Finite
Difference Time Domain (FDTD) method, the Finite Inte-
gration Technique (FIT), or the Transmission Line Matrix
(TLM) method. If standard lightning electromagnetic pulses
(LEMPs) of tenths of microseconds duration are used as ex-
citations, these methods require long computation times, as
implied by the Courant criterion. It is proposed to use shorter
pulse forms and to compare the transfer functions obtained
by different pulse durations by means of macromodels that
are obtained from the vector fitting method. Numerical com-
putation of lightning related transfer functions of a canonical
structure indicate that the duration of the exciting pulse can
typically be shortened by at least one order of magnitude if
compared to a standard pulse.

1 Introduction

Modern computer-based computation techniques make it
possible to simulate lightning related effects on aircraft struc-
tures (Apra et al., 2008). These techniques are defined either
in time or frequency domain. In case of time domain com-
putations long computation times usually are required. This
is a consequence of the Courant criterion which relates the
minimum discretisation length of the geometric model to the
maximum allowed time step (Hoffman, 2001). Typically, if
geometric details in the range of millimeters need to be re-
solved, the maximum allowed time step will be of the order
of picoseconds. Then the simulation of the lightning strike
over its whole duration of several tenths of microseconds
usually is a time consuming task.
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In this contribution an adaptive macromodelling technique
is introduced which is based on the idea to determine the
LEMP transfer function of a system by the use of excita-
tion pulses that are shorter than standard lightning pulses.
This method is based on an adaptive stopping criterion which
has been used in the context of time domain characteriza-
tion of microwave components (Deschrijver et al., 2009). In
the present case of lightning analysis, several simulations
with comparatively short excitation pulses have to be per-
formed. The resulting transfer functions are characterized by
a small number of parameters which are obtained from the
vector fitting procedure and represent macromodels of the
system (Gustavsen and Semlyen, 1999; Gustavsen, 2006).
These macromodels can be used to quantitatively compare
the transfer functions that are obtained by means of the dif-
ferent excitation pulses.

In principle, transfer functions calculated from different
excitations should be the same if they relate to the same sys-
tem. However, due to numerical inaccuracies of the time
domain data and rounding errors the use of short pulses is
limited. On the other hand, the use of comparable long ex-
citation pulses will result in long computation times. There-
fore a compromise between these two constraints needs to
be found. To this end, comparatively short pulses are used
at the beginning of an adaptive procedure. The duration of
the first pulse can be chosen to be about a hundredth of the
duration of a regular LEMP pulse, yielding a first transfer
function with an associated macromodel. Then the duration
of the excitation pulses is successively increased, yielding
further transfer functions with associated macromodels. The
differences between the parameters of different macromod-
els are observed until they fall below a predefined limit and
an approximate convergence has been achieved, thus finally
yielding an acceptable transfer function.

In the following Sect. 2, the methodology of the proposed
method is described in more detail. In Sect. 3, a numerical
example illustrates the method by means of a canonical tank
model and Sect. 4 provides the conclusion.
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2 Methodology

In lightning analysis, LEMP transfer functions are the main
quantities of interest. They relate a lightning currentiin(t) as
relevant input variable to an observable which often is given
by an induced voltagevout(t). In case of numerical light-
ning analyis in time domain an observable, such asvout(t), is
calculated from the excitationiin(t) for a number of discrete
points in time. Then a discrete transfer functionHD(k) is
obtained by Fourier or Laplace transformation according to

HD(k) =
Vout(k)

Iin(k)
=

F{vout(m)}

F{iin(m)}
, (1)

wherek andm denote discrete indices in frequency and time
domain, respectively. The vector fitting method allows to
approximately fit a rational function to the discrete transfer
function (Gustavsen and Semlyen, 1999; Gustavsen, 2006).
This rational function can be written as a residue-pole expan-
sion of the form

HR(s) =

N∑
j=1

rj

s −pj

+d +s ·e. (2)

The advantage ofHR(s) is that, as a result, in the context of
lightning analysis LEMP transfer functions usually are char-
acterized by only a small number of parametersrj , pj , d,
ande. As will be seen below, realistic LEMP transfer func-
tions can already be represented by a first order approxima-
tion with N = 1.

The proposed method can now be illustrated by the block
diagram which is shown in Fig.1. Starting from a compar-
atively short excitation pulse, the desired observable is ob-
tained from a numerical time-domain calculation. This al-
lows to calculate the desired transfer functionHD(k) and a
corresponding macromodel which is expressed byHR(s). A
problem that is associated to the use of short pulses is that
the discrete Fourier transform of such a signal will tend to
have a sparse set of samples in the low frequency range. Due
to dominant quasistationary contributions of typical light-
ning currents, the main frequency range of interest is actu-
ally located within this sparsely populated range of low fre-
quencies. However, the sparsity makes the determination of
a related transfer function susceptible to numerical errors.
Therefore it is necessary to check the stability of results by
using longer excitation pulses. It is then possible to compare
the transfer functionsHR(s) that are obtained by excitation
pulses of different lengths. If an increase of pulse duration
does not lead to a significant change ofHR(s) it is assumed
that the desired transfer function is obtained with sufficient
accuracy.

To make the notion of a short excitation pulse more pre-
cise, in Fig.2 a standard double exponential lightning pulse
of the form

2J. Anatzki and F. Gronwald: Accelerating the Numerical Computation of Indirect Lightning Effects by means of Vector Fitting

2 Methodology

In lightning analysis, LEMP transfer functions are the main
quantities of interest. They relate a lightning currentiin(t) as
relevant input variable to an observable which often is given
by an induced voltagevout(t). In case of numerical light-
ning analyis in time domain an observable, such asvout(t),
is calculated from the excitationiin(t) for a number of dis-
crete points in time. Then a discrete transfer functionHD(k)
is obtained by Fourier or Laplace transformation according
to

HD(k) =
Vout(k)

Iin(k)
=

F{vout(m)}

F{iin(m)}
, (1)

wherek andm denote discrete indices in frequency and time
domain, respectively. The vector fitting method allows to
approximately fit a rational function to the discrete transfer
function (Gustavsen and Semlyen, 1999; Gustavsen, 2006).
This rational function can be written as a residue-pole expan-
sion of the form

HR(s) =

N
∑

j=1

rj

s − pj

+ d + s · e . (2)

The advantage ofHR(s) is that, as a result, in the context of
lightning analysis LEMP transfer functions usually are char-
acterized by only a small number of parametersrj , pj , d,
ande. As will be seen below, realistic LEMP transfer func-
tions can already be represented by a first order approxima-
tion with N = 1.

The proposed method can now be illustrated by the block
diagram which is shown in Fig. 1. Starting from a compar-
atively short excitation pulse, the desired observable is ob-
tained from a numerical time-domain calculation. This al-
lows to calculate the desired transfer functionHD(k) and a
corresponding macromodel which is expressed byHR(s). A
problem that is associated to the use of short pulses is that
the discrete Fourier transform of such a signal will tend to
have a sparse set of samples in the low frequency range. Due
to dominant quasistationary contributions of typical light-
ning currents, the main frequency range of interest is actu-
ally located within this sparsely populated range of low fre-
quencies. However, the sparsity makes the determination of
a related transfer function susceptible to numerical errors.
Therefore it is necessary to check the stability of results by
using longer excitation pulses. It is then possible to compare
the transfer functionsHR(s) that are obtained by excitation
pulses of different lengths. If an increase of pulse duration
does not lead to a significant change ofHR(s) it is assumed
that the desired transfer function is obtained with sufficient
accuracy.

To make the notion of a short excitation pulse more pre-
cise, in Fig. 2 a standard double exponential lightning pulse
of the form

i(t) = I0(e
−αt − e−βt) (3)

FDTD Simulation using a 

Gaussian pulse with defined duration tD

Determine HD(k)

HD(k) = 
FFT{uout(m)} 

FFT{iin(m)} 

Determine HR(s)n 

by Vector-Fitting HD(k)

Determine the deviation 

between old and new model

δn  =
|HR(s)n - HR(s)n-1| 

is the desired TF HR(s)n 

Increase tD

if n < 2

n = n+1

|HR(s)n-1| 

δn > ε

δn < ε

Start from short pulse duration tD

δn 

Fig. 1. Block diagram of the proposed adaptive macromodelling
routine.
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Fig. 2. Graphical comparison between a double exponential pulse
and a Gaussian pulse. Both pulses have the same maximum value
and are characterized by a similar rise rime. The double expo-
nential pulse is a standard pulse, defined within the standard (SAE
5412A, 2005), where the time from beginning to peak value 200kA
is 6.4 us, the time from beginning to decay to 50 percent peak value,
that is 100 kA, is 69 us.

Fig. 1. Block diagram of the proposed adaptive macromodelling
routine.

i(t) = I0(e
−αt

−e−βt ) (3)

is contrasted to a unipolar Gaussian pulse of the form

i(t) = I1 ·e
−

(t−t0)2

2·T 2 . (4)

The parameters of the pulses are adjusted such that they have
a similar rise time but the Gaussian pulse decays much faster
if compared to the double exponential pulse. The amplitude
spectrum of both pulses is shown in Fig.3. For the dou-
ble exponential pulse, the amplitude spectrum is well-known
and characterized by dominant low-frequency contributions
(Lee, 1995). The amplitude spectrum of the unipolar Gaus-
sian pulse is characterized by dominant low frequency con-
tributions as well and thus the Gaussian pulse represents a
suitable excitation to obtain LEMP transfer functions from
time-domain analysis.
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that is 100 kA, is 69 us.
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Fig. 3. Amplitude spectrum of both double exponential pulse and
Gaussian pulse, as displayed in Fig. 2.
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(Lee, 1995). The amplitude spectrum of the unipolar Gaus-
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tributions as well and thus the Gaussian pulse represents a
suitable excitation to obtain LEMP transfer functions from
time-domain analysis.

The duration of a Gaussian excitation is determined by the
parameterT that is introduced in Eq. (4). It is inversely pro-
portional to the frequencyFmax which is defined as the fre-
quency where the amplitude spectrum of the Gaussian pulse
has decayed by -20 dB if compared to its maximum value,

T ∼
1

Fmax
. (5)

Therefore a longer pulse duration implies a smaller value
for Fmax and vice versa. This circumstance is illustrated
in Fig. 4 where Gaussian pulses corresponding toFmax =
1 MHz, 3 MHz, and 10 MHz are displayed. Additionally,
the amplitude spectrum of the Gaussian pulse withFmax =
3 MHz is shown in Fig. 5.

It is suggested to use Gaussian excitations of different pa-
rametersFmax, corresponding to different time durations,
within the macromodelling routine of Fig. 1. In the following
section this routine will be illustrated by a numerical exam-
ple.
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Fig. 4. Gaussian pulses corresponding toFmax = 1 MHz, 3 MHz,
and 10 MHz. A larger value ofFmax implies a shorter pulse dura-
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Fig. 5. Amplitude spectrum of a Gaussian pulse withFmax =
3 MHz. At 3 MHz its value has decayed by 20 dB if compared
to the maximum value.

3 Numerical Example: LEMP Transfer Function of a
Canonical Tank Model

As a specific example a canonical tank model is considered.
The tank model consists of a rectangular box which contains
a fuel pipe. The fuel pipe is electrically bonded to one side
of the interior of the tank and leaves the tank through a circu-
lar hole as shown in Fig. 6. The tank is subject to a lightning
current sourceiin(t) and the induced voltagevout(t) between
the fuel pipe and the boundary of the circular hole is the ob-
servable of interest, compare Fig. 7 . Then a LEMP transfer
function is defined according to Eq. (1).

The tank model has been created within the CST Mi-
crowave Studio software which also is used to run the sim-
ulation model and to generate the time domain datavout(t)

Fig. 3. Amplitude spectrum of both double exponential pulse and
Gaussian pulse, as displayed in Fig.2.
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The tank model consists of a rectangular box which contains
a fuel pipe. The fuel pipe is electrically bonded to one side
of the interior of the tank and leaves the tank through a circu-
lar hole as shown in Fig. 6. The tank is subject to a lightning
current sourceiin(t) and the induced voltagevout(t) between
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1 MHz, 3 MHz, and 10 MHz are displayed. Additionally,
the amplitude spectrum of the Gaussian pulse withFmax=

3 MHz is shown in Fig.5.
It is suggested to use Gaussian excitations of different

parametersFmax, corresponding to different time durations,
within the macromodelling routine of Fig.1. In the following
section this routine will be illustrated by a numerical exam-
ple.
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Fig. 6. Canonical tank geometry with interior tank pipe. For better
visibility the front side of the tank is removed. The outer metallic
frame serves as a return conductor.

Fig. 7. Enlarged view of tank pipe and circular exit hole. The ar-
rows between tank pipe and boundary of the circular hole indicate
voltage monitors which record the voltagevout(t) during the nu-
merical simulation.

from the input variableiin(t) by means of the Finite Inte-
gration Technique (Clemens and Weiland, 2001). The result
of a sample calculation is shown in Figs. 8 and 9. A mainly
inductive response is observed, where voltage and current ap-

Fig. 8. Sample Gaussian current excitationiin(t).

Fig. 9. Induced voltagevout(t) which is due to the current excita-
tion of Fig. 8.

proximately are related byu(t) = L di(t)
dt

. This observation
has been discussed in more detail in (Gronwald, 2010). As
a general rule, LEMP transfer functions of aircraft structures
are mainly characterized by inductive and resistive contribu-
tions. This is due to the quasistationary nature of the light-
ning current which makes radiation contributions negligible.
Also capacitive effects can be neglected as long as the metal-
lic parts of aircraft structures are properly bonded (Fisher et
al., 1990). Therefore, in the present case, it is meaningfulto
consider the transfer admittance

YR(s) =
1

R + s · L
=

1/L

s + R/L
, HR(s)

∣

∣

∣

N=1

=
r

s − p
(6)

as an appropriate first order macromodel for the (inverse)
transfer function of the canonical tank model. For details on
macromodels of elementary networks it is referred to (An-
tonini, 2003).

To calculate the parametersL and R which, according
to (6), determine the LEMP transfer admittanceYR(s), it is
first necessary to perform a time domain calculation for a
given excitationiin(t) to computevout(t). Then the corre-
sponding discrete transfer functionHD(k) can be obtained
from (1). Next, the inverse of this transfer function is fit-
ted by means of the vector fitting method to the first order
macromodelYR(s) which is given by (6). This yields the
polep and residuer which both determine the parametersL
andR.

Following the procedure described in the previous para-
graph, macromodels for the LEMP transfer function of the
canonical tank model have been obtained for nine different
Gaussian excitations. The results are given in Tab. 1. The
chosen pulse durations vary by a factor of 80, that is, the
computation times to computevout vary by a factor of about
80 as well. The computations were performed on a single PC

Fig. 6. Canonical tank geometry with interior tank pipe. For better
visibility the front side of the tank is removed. The outer metallic
frame serves as a return conductor.
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3 Numerical example: LEMP transfer function of a
canonical tank model

As a specific example a canonical tank model is considered.
The tank model consists of a rectangular box which contains
a fuel pipe. The fuel pipe is electrically bonded to one side of
the interior of the tank and leaves the tank through a circular
hole as shown in Fig.6. The tank is subject to a lightning
current sourceiin(t) and the induced voltagevout(t) between
the fuel pipe and the boundary of the circular hole is the ob-
servable of interest, compare Fig.7 . Then a LEMP transfer
function is defined according to Eq. (1).

The tank model has been created within the CST Mi-
crowave Studio software which also is used to run the sim-
ulation model and to generate the time domain datavout(t)
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as an appropriate first order macromodel for the (inverse)
transfer function of the canonical tank model. For details on
macromodels of elementary networks it is referred to (An-
tonini, 2003).

To calculate the parametersL and R which, according
to (6), determine the LEMP transfer admittanceYR(s), it is
first necessary to perform a time domain calculation for a
given excitationiin(t) to computevout(t). Then the corre-
sponding discrete transfer functionHD(k) can be obtained
from (1). Next, the inverse of this transfer function is fit-
ted by means of the vector fitting method to the first order
macromodelYR(s) which is given by (6). This yields the
polep and residuer which both determine the parametersL

andR.
Following the procedure described in the previous para-

graph, macromodels for the LEMP transfer function of the
canonical tank model have been obtained for nine different
Gaussian excitations. The results are given in Tab.1. The
chosen pulse durations vary by a factor of 80, that is, the
computation times to computevout vary by a factor of about
80 as well. The computations were performed on a single PC
with 3.0 GHz CPU, 4 GB RAM, using the CST Microwave
Studio 2010 software on a 32-bit Windows platform.

In order to judge the resulting parametersL and R one
should note that the material of the tank model is mod-
elled as highly conducting aluminium (σ = 3.72·107 S/m).
Therefore the voltage response is dominantly inductive, such
that the resistive response is somewhat hidden and does not
significantly contribute to the voltage response. To judge
the quality of the fitted macromodels the relative root mean
square error is included in Tab.1 which quantifies the de-
viation between the numerically calculated transfer function
H−1

D (k) and the fitted first order LEMP transfer admittance
YR(s). It is seen that this deviation is small, thus justifying
the assumption of a simple first order macromodel. Towards
shorter pulse durations the fit error increases. This indicates
that the possibility to shorten the pulse duration is limited due
to numerical inaccuracies that accompany the computation of
the Fourier transformation in order to obtainH−1

D (k). How-
ever, the fit error increases towards longer pulse durations
as well. To explain this observation it is noted that for long
computation times numerical instabilities tend to build up,
at least for the present numerical model which only contains
minor losses. The smallest fit error occurs for the Gaussian
pulse of time duration 1.83 us.

For further validation, it is of interest to compare the re-
sults that were obtained from the Gaussian excitations to an
analogous calculation using a standard double exponential
pulse as displayed in Fig.2. However, as it turns out, the
long pulse duration leads to strong oscillations that are inter-
preted as numerical instabilities and make it not feasible to

Table 1. Resulting macromodels for various Gaussian excitation
pulses of different durations.

Fmax Duration L R RMSE Solver Time
MHz us nH u� 10−6 sec

8.0 0.46 0.5216 2.512 24.79 535
6.0 0.61 0.5214 2.982 15.09 716
4.0 0.91 0.5216 2.226 6.072 1073
2.0 1.83 0.5220 1.633 1.211 2114
1.0 3.66 0.5225 0.907 3.605 4279
0.8 4.58 0.5227 0.765 5.584 5328
0.6 6.11 0.5230 0.619 8.732 7015
0.3 12.2 0.5242 0.334 31.64 14077
0.1 36.6 0.5262 0.251 116.6 42537

extract a meaningful LEMP transfer function. As an alter-
native, an independent calculation was performed using the
Method of Moment code CONCEPT-II which is defined in
frequency domain (Brüns et al., 2011). To this end, a surface
discretized model of the canonical tank was created and sim-
ulations at 161 discrete frequency samples between 1 kHz
and 8 MHz were performed. From the resulting data a corre-
sponding first order macromodel was obtained with parame-
tersL = 0.5192 nH,R = 2.8887 u�, and a relative root mean
square error RMSE= 0.0023, thus supporting the results of
Tab.1.

4 Conclusions

Standard lightning pulses are characterized by durations of
tenths of microseconds, thus leading to long computation
times for time domain calculations of lightning current in-
duced quantities. However, in order to obtain LEMP transfer
functions it is also possible to use shorter excitation pulses,
involving less computation time. Typically, LEMP transfer
functions are characterized by only a small number of pa-
rameters. Therefore the vector fitting procedure is useful to
obtain these parameters which, in turn, can be used to quan-
titatively compare transfer functions that are obtained from
different excitation pulses. This makes it possible to quantify
whether a short excitation pulse is sufficient to determine a
LEMP transfer function with sufficient accuracy.
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