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In the dynamic analysis of a structure quite often a small number of the smallest
eigenvalues and eigenmodes of a large and sparse general eigenvalue problem have
to be determined assuming that good approximations to the demanded eigenmodes
are available from previous computations. In this situation powerful approaches
like Lanczos method or Jacobi-Davidson may be inferior to methods which in
general are known to be slower. In this note we demonstrate this effect comparing
P_ARPACK, the parallel version of ARPACK, with a parallel condensation method
with general masters for a finite element model of a container ship.

1 Introduction

The response of a structure to dynamic excitations depends, to a large extent,
on the natural frequencies of the structure. Excessive vibration occurs when
the frequency of the excitation is close to one of the natural frequencies of the
structure. Hence, in a design process one has to modify a structure several
times to shift the natural frequencies of the structure out of the range of excita-
tion frequencies. Typically, in each design step the structure is perturbed only
by a small amount, and the modal shapes are not altered very much whereas
the natural frequencies can change significantly. Therefore, in the design pro-
cess reasonable approximations of the desired mode shapes are available from
previous computations. A similar situation occurs in the dynamic analysis of
a structure where the dynamic behaviour has to be determined for different
loadings.

Powerful approaches like Lanczos or Jacobi-Davidson methods for sparse
general eigenvalue problems

Kz =AMz (1)

are not able to exploit the knowledge of good initial approximations to the set
of desired eigenvectors, but they have to solve each eigenvalue problem from
scratch. Hence, with a good approximation already available methods like si-
multaneous inverse iteration” or condensation methods with general masters*
which are usually inferior to the powerful approaches mentioned above could
be faster. In particular this could be true in the dynamic analysis of struc-
tures since the eigenvalue problem under consideration is the discrete version
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of a system with an infinite number of degrees of freedom which itself is only
a model of the real structure. Hence, it does not make sense to compute
the eigensolutions with higher accuracy than the modelling error and the dis-
cretization error, and therefore the accuracy requirements for approximations
to the eigenvalues and eigenvectors are not very high.

Moreover, in a parallel environment a small number of Rayleigh quotient
iterations or condensation methods need only little communication whereas
in the Lanczos process in every iteration step communication is necessary to
perform 2 scalar products, 2 _axpys and to compute K ~! Mz for some vector
x, and similar considerations hold for Jacobi-Davidson’s method.

In this note we report on numerical experiments computing approxima-
tions to some eigenvalues and corresponding eigenvectors of a finite element
model of a container ship as they are needed in the analysis of the dynamic
response. We considered a parallel implementation of condensation with gen-
eral masters on two environments: a heterogeneous HP workstation cluster
and an HP N-Class parallel computer. We found that it well compares to
the Lanczos method implemented in the established package P_ARPACKS if
only approximations of low accuracy of a few eigenvalues at the lower end of
the spectrum are needed and if reasonable approximations to eigenvectors are
available.

Our paper is organized as follows. In Section 2 we briefly sketch conden-
sation with general masters, Section 3 summarizes our parallelization concept
using substructuring, and Section 4 describes details of the finite element
model under consideration, the accuracy requirements in the response analy-
sis, and the numerical results.

2 Condensation with general masters

We consider the general eigenvalue problem (1) where K € R"™™ and M €
R(™™ are symmetric and positive definite which are usually the stiffness and
the mass matrix of a finite element model of a structure. To deal with the large
number of degrees of freedom static condensation is frequently employed to
economize the computation of a selected group of eigenvalues and eigenvectors.

To this end the degrees of freedom are decomposed into masters and
slaves. After reordering the equations and unknowns problem (1) can be

rewritten as
Kmm Kms xm _ Mmm Mms xm
(Ksm Kss><xs>‘A<Msm M)(a:) @)

Neglecting the inertia terms in the second equation, solving for z, and sub-
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stituting x5 into the first equation one obtains the condensed problem
K[)Z’m = )\Mgl‘m (3)
where

Ko = Ky — Kps K Ko, (4)

MO = Mmm - KmsK;slMsm - MmsK;glem + KmsK;glMssK;qlem- (5)

Nodal condensation has the disadvantage that it produces accurate results
only for a small part of the lower end of the spectrum. The approximation
properties can be improved substantially if general masters* are considered.
Let z1,...,2zm € R" be independent vectors, and define Z := (z1,...,2m) €
IR(™™) . Then the projected eigenvalue problem

Koz = PTKPx,, = \PT M Px,, =: A\Mox,, (6)
where
P=K'Z(Z"K='2)"'Zz"7 (7)

is called condensed eigenvalue problem with general masters z1, ..., zm,. It is
easily seen that this is exactly the reduced problem of nodal condensation if
we choose z1, ..., 2, as unit vectors corresponding to the master degrees of
freedom.

Since (ZT'K~1Z)"1Z*Z is a nonsingular matrix the condensed problem
(6) is equivalent to the projection of problem (1) to the space spanned by
the columns of K~'Z. Hence, condensation is nothing else but one step
of simultaneous inverse iteration with initial guess X = M~'Z € R(™™)
Therefore, we can expect good approximation properties of condensation if
we include general masters z; = Mx; into the condensation process where
x; are approximate eigenvectors of problem (1) corresponding to the desired
eigenvalues. Hence, choosing approximate eigenvectors from previous design
steps as general masters should yield reasonable eigenvalue approximations.

In the next section we combine nodal condensation with substructuring
to obtain a coarse grained parallelization. To generalize this concept to con-
densation in the presence of general masters the following result is of great
convenience.

Theorem 1 Assume that ZT7Z = I. Then the projection matriz Z in (7)
can be determined from the linear system

() (5)- (%) (®)
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Moreover, the condensed stiffness matriz is given by

PTKP=5. (9)

3 Parallel Condensation

For nodal condensation the following strategy yields a coarse grained parallel
algorithm® based on the master-worker paradigm. Suppose that the structure
under consideration has been decomposed into r substructures and let the
masters be chosen as interface degrees of freedom. Assume that the substruc-
tures connect to each other through the master variables only. If the slave
variables are numbered appropriately, then the stiffness matrix is given by

Kmm Kmsl Km32 L] Kmsr

K1 Kssi 0 ... 0
K = Kegpo 0 Kgo ... 0 ’ (10)
Kepnr O 0 ... Ky

and the mass matrix M has the same block form.
It is easily seen that in this case the reduced matrices in (3) are given by

f(O :Kmm_ZKmmj = Kpm _ZKmst;s;Ksmj (11)
j=1 j=1
and
MO = Mmm - Z Mmmj: (12)
Jj=1

Mmmj = Kmsts_s;‘Msmj + Mmsts_s;‘Ksmj - Kmsts_s;Mssts_s;'Ksm(j- )

13

Hence they can be computed completely in parallel, and the only communi-

cation that is needed is one fan-in process to determine the reduced matrices
K{) and Mo.

If general masters z1,...,2, are added to the interface masters then ac-
cording to Theorem 1 the block structure of K in (10) has to be augmented
by columns and rows containing the general masters. If the support of each
of the general masters is contained in exactly one substructure then the linear
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Figure 1. Container ship

system (8) can be solved substructurewise®, and the reduced matrices Ky and
My again are obtained by a fan-in process.

For general masters having global support as they appear in reanalysis
problems we developed a coarse grained parallelization concept which is dis-
cussed in detail in a report®. In this algorithm the communication consists of
two fan-in processes and one broadcast to compute the reduced matrices K
and M().

We implemented the algorithm in Fortran90 using LAPACK 3 and BLAS
routines for the linear algebra and MPI 1.05 for message passing. We tested
the program on a heterogeneous workstation cluster consisting of (subsets
of) one HP J5000, one HP J2240 (each with a double processor), one HP
C3000 and five HP 9000, 712/100 connected by fast ethernet, and on an HP
N-Class parallel computer with 8 PA 8500/440 Mhz processors organized as
one cluster.

4 Results and Discussion

To test the performance of the parallel method mentioned in Section 3 we
considered the vibrational analysis of a container ship which is shown in Figure
1. Usually in the dynamic analysis of a structure one is interested in the
response of the structure at particular points to harmonic excitations of typical
forcing frequencies. For instance in the analysis of a ship these are locations
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in the deckshouse where the perception of the crew is particularly strong.

The finite element model of the ship (a complicated 3 dimensional struc-
ture) is not determined by a tool like ANSYS or NASTRAN since this would
result in a much too large model. Since in-plane displacements of the ship’s
surface do not influence the displacements in the deckshouse very much it
suffices to discretize the surface by linear membrane shell elements with ad-
ditional bar elements to correct warping, and to model only the main engine
and the propeller as three dimensional structures. For the ship under consid-
eration this yields a very coarse model with 19106 elements and 12273 nodes
resulting in a discretization with 35262 degrees of freedom.

We consider the structural deformation caused by an harmonic excitation
at a frequency of 4 Hz which is a typical forcing frequency stemming from the
engine and the propeller. Since the deformation is small the assumptions of
the linear theory apply, and the structural response can be determined by the
mode superposition method taking into account eigenfrequencies in the range
between 0 and 7.5 Hz (which corresponds to the 50 smallest eigenvalues for
the ship under consideration).

The dynamic behaviour of the ship has to be simulated for different service
conditions, i.e. for different velocities and different cargo distributions, and
each of these positions yields a specific position of the ship in the water.

When computing the vibrations of a ship embeded in the water the in-
fluence of the surrounding fluid on the structure is accounted for in the form
of the so-called hydrodynamic masses which have to be added to the masses
in the nodal degrees of freedom on the wet surface?. Physically, these masses
represent the amount of fluid that is accelerated by the vibrating solid.

To summarize, the dynamic analysis of a ship necessitates to solve a
couple of sparse generalized eigenvalue problems the mass matrices of which
are small modifications of each other. The finite element model is very coarse
and therefore the accuracy requirements are very modest. An error of 10 %
for the natural frequencies often suffices’.

In our experiments we assume that the eigenmodes of the dry ship (i.e.
without hydrodynamic masses) corresponding to eigenfrequencies which are
less than 7.5 Hz have been computed in a previous calculation and are known.
To determine the modes of a specific wet ship we subdivide the model into
10 substructures (cf. Figure 2 where we attached the number of degrees of
freedom to the substructures). Choosing all interface degrees of freedom as
masters we obtain a reduced problem of dimension m = 2097 and the slave
subproblems are of dimensions between 1134 and 4792.

Although the eigenfrequencies of these two models differ quite a bit (the
relative differences of the natural frequencies lie between 10 % and 50 %) the
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Figure 2. Substructuring of a container ship

approximation properties of the condensation method are enhanced consider-
ably if we add 50 dry modes as general masters to the interface masters when
solving the wet model. For nodal condensation only the 15 smallest eigenfre-
quencies are obtained with a relative error less than 10 % whereas with 50
dry modes as additional general masters the relative error of the 50 smallest
eigenfrequencies of the wet model is less than 9.83 %.

Next we dropped the interface masters, i.e. we considered only 50 dry
modes as general masters in the condensation method. The accuracy de-
creased only slightly to a maximal relative error of 9.89 % of the eigenfre-
quency approximations.

We compared the performance of these condensation methods to that of
P_ARPACK where we provided vectors K~'Mz in the reverse communica-
tion interface taking advantage of the substructuring above and the Schur
complement and where we tuned the parameters such that we obtained ap-
proximations to the 50 smallest natural frequencies with a maximal relative
error of about 10 % (actually 12.5 % were arrived). The following table con-
tains the runtimes needed for these 3 methods on the HP N-Class parallel
computer and on a network of one HP J5000, one HP J2240, one HP C3000
and 3 HP 9000, 712/100.

int.face+glob. mast. glob. mast. P_ARPACK

HP N-Class 158 90 249
Workstation cluster 925 273 424
Notice that the user can only define processes, and assign these processes
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to workstations but not to processors. Hence, with a heterogeneous cluster
with workstations of different computing speed and different numbers of pro-
cessors it is not easy to obtain a good load balancing. This is in particular
the case since the substructuring can not be changed easily without increasing
drastically the number of interface masters and the dimension of the Schur
complement, respectively. For the N-Class parallel computer the user defines
processes and the local scheduling is organized by the operating system.
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