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Abstract

The subject of the paper is the derivation and analysis of new multidimensional,
high-resolution, finite volume evolution Galerkin (FVEG) schemes for systems of
nonlinear hyperbolic conservation laws. Our approach couples a finite volume for-
mulation with approximate evolution operators. The latter are constructed using
the bicharacteristics of the multidimensional hyperbolic system, such that all of the
infinitely many directions of wave propagation are taken into account. In partic-
ular, we propose a new FVEG-scheme, which is designed in such a way that for
a linear wave equation system the approximate evolution operator calculates any
one-dimensional planar wave exactly. This operator makes the FVEG-scheme stable
up to a natural CFL limit of 1. Using the results obtained for the wave equation
system a new approximate evolution operator for the linearised Euler equations is
also derived. The integrals over the cell interfaces also need to be approximated
with care; in this case our choice of Simpson’s rule is guided by stability analysis
of model problems. Second order resolution is obtained by means of a piecewise bi-
linear recovery. Numerical experiments confirm the accuracy and multidimensional
behaviour of the new scheme.
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1 Introduction

We consider the initial value problem for systems of hyperbolic conservation laws

ut + divF(u) = 0, u(x, t) : Rd × R+ → Rm, (1.1)

u(x, 0) = u0(x).

In particular, we present methods for the two-dimensional Euler equations of compressible
fluid flows. As a first step in the exposition we treat their linearized form at zero advection
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velocity as in [4]. Generalization to the three dimensional case follows naturally, but it is
more technical, see e.g. Zahaykah [13]; and the incorporation of boundary conditions for
initial-boundary value problems is also achieved in a natural way.
In general, finite volume methods are of two types: residual distribution (or fluctuation
splitting) schemes were developed for steady hyperbolic problems and are most approriate
for near-steady situations; while those derived from evolution Galerkin or semi-Lagrangian
methods are our preference in cases where the evolutionary behaviour is most important.
Our concern here is with the second class of methods and this paper forms a natural
development from two earlier papers—Morton [11] which considered FVEG methods for
scalar problems, and Lukáčová et al. [4] which introduced the approximate evolution
operators we shall use here.
Let Ω be our computational domain. We consider a general mesh for Ω with mesh size
parameter h > 0. Suppose that Sp

h and Sr
h are finite element spaces consisting of piecewise

polynomials of degrees r ≥ p ≥ 0. Let Un be an approximation in the space Sp
h to the exact

solution u(·, tn) at a time tn > 0 and take Eτ : Sr
h → X to be a suitable approximation to

the exact evolution operator E(τ), τ > 0, where X is a suitable function space for (1.1).
We denote by Ph : X → Sp

h the L2-projection onto Sp
h and by Rh : Sp

h → Sr
h a recovery

operator introduced to give a higher order accuracy than that provided by Sp
h.

An evolution Galerkin method can be written in the equivalent forms

Un+1 = PhE∆RhU
n or (RhU

n+1) = RhPhE∆(RhU
n), (1.2)

where the second form is used in the error analysis, see [10].
In [4] we presented first order schemes of this form for hyperbolic systems in two space
dimensions. No recovery from the space of piecewise constants was considered, i.e. p = 0
and Rh = Id. First order approximations E∆ to the evolution operator were used on
the piecewise constant data. Here we shall develop new approximate evolution operators
and use them in a finite volume framework. This allows second order methods to be
based on the first order evolution operators, after an appropriate recovery stage has been
introduced.
If Un

i is an approximation to the average of u(x, tn) over a cell Ωi of measure |Ωi|, then
our schemes will be of the form

|Ωi|(Un+1
i − Un

i ) + ∆t

∫
∂Ωi

n · F(Un+ 1
2 )dS = 0, (1.3)

where Un+ 1
2 is generated from a, possibly recovered, approximation RhU

n which has been
evolved to tn+ 1

2
∆t. This formula was obtained by integration of (1.1) over (tn, tn+∆t)×Ωi

and use of the Gauss theorem as well as the midpoint rule in time on the flux term.
The approximate evolution will be accomplished through bicharacteristic cones constructed
at quadrature points chosen for the integration of the fluxes over the cell faces; in the
simplest cases these will be just the vertices of the mesh, but we shall see that this is not
always appropriate. Hence a higher order algorithm consists of three steps: recovery of
a higher order approximation RhU

n from the cell averages {Un
i }; approximate evolution

to tn + 1
2
∆t to calculate the fluxes; and then an update of the cell averages by (1.3).

Such an algorithm is closely related to two-step versions of the Lax-Wendroff method; in
particular, the advantages of the so-called rotated-Richtmyer form, in which the fluxes are
approximated by applying the trapezoidal rule to updated quantities at the vertices, have
been pointed out by Morton and Roe [12]. On a uniform square mesh this scheme will
therefore be taken as a yardstick for our numerical comparisons; and it will also provide a
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guide to the analysis of stability. Thus on a general two-dimensional mesh, if we use the
trapezoidal rule for the flux integrals and use a cyclic notation {α} to label the vertices
of a polygonal cell Ωi, the update equation that includes this Lax-Wendroff method and
some of our FVEG schemes becomes

|Ωi|(Un+1
i − Un

i ) + 1
2
∆t

∑
α

{
[F 1(U

n+ 1
2

α+1 ) + F 1(U
n+ 1

2
α )][yα+1 − yα]

− [F 2(U
n+ 1

2
α+1 ) + F 2(U

n+ 1
2

α )][xα+1 − xα]
}

= 0, (1.4)

where we have written (F 1,F 2) for the F of (1.3).

However, we shall show that in general it is preferable to use Simpson’s rule for the
integrals of the fluxes along the cell edges. Its advantages for the scalar advection equation
are easily demonstrated, and these are carried over to the system wave equation with
advection, and to the Euler equations. The stability analysis used here, and in the
selection of approximate evolution operators, has been based on a combination of energy
analysis, Fourier analysis and maximum principles, followed up by extensive numerical
validation. Details of the analysis will be presented elsewhere, in order to limit the length
of the present paper.

The layout of the paper is as follows. Its core is formed by the next section, together
with the appendix, where we will derive the approximate evolution operators to be used
later: Section 2.1 gives the general formulae on the bicharacteristic cones obtained by
quasi-diagonalising the locally frozen Jacobian matrices; then these are applied to the
system wave equation in Section 2.2, giving exact integral equations for the solution;
and in Sections 2.3 and 2.4 the approximate, explicit, evolution operators to be used in
Section 3.1 are derived—for piecewise constant and continuous bilinear data respectively.
The key idea here is to exploit the fact that an explicit solution to the wave equation
is available for one-dimensional data, and to make the formulae exact for such cases. In
Section 3 we first describe the discontinuous bilinear recovery scheme that is preferred,
and give the reasoning for selecting Simpson’s rule for edge integrals of the fluxes; then
the proposed FVEG schemes are derived for the wave equation and Euler system—in
Sections 3.3 and 3.4 respectively. Finally, in Section 4 numerical results are presented
to show the superior stability and accuracy of the proposed FVEG schemes as compared
with the natural alternatives considered during their derivation.

2 Approximate evolution operators

The distinctive feature of our proposed methods is the use of approximate evolution
operators in the calculation of the fluxes F 1 and F 2. So we first describe a general
approach to the derivation of the exact evolution operator for any constant coefficient
first order hyperbolic system and point out the role of the bicharacteristics.

2.1 General formulae

Consider a general hyperbolic system in d space dimensions

ut +
d∑

k=1

Akuxk
= 0, x = (x1, . . . , xd)

T ∈ Rd, (2.1)
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Figure 1: Bicharacteristic along the Mach cone through P and Q`(θ).

where the coefficient matrices Ak, k = 1, . . . , d are in Rm×m and the dependent variables
are u = (u1, . . . , um)T ∈ Rm. Because of the assumed hyperbolicity of the system we
have m real eigenvalues λj, j = 1, . . . , m and corresponding linearly independent right

eigenvectors rj = rj(n), j = 1, . . . ,m of the matrix pencil A(n) :=
∑d

k=1 nkAk for any
unit vector n = (n1, . . . , nd)

T ∈ Rd. Since a common factor is irrelevant we assume
|n| = 1. In the case d = 2 we replace n on the unit circle by (cos θ, sin θ), θ ∈ [0, 2π[.
We denote by R = R(n) := (r1, . . . , rm) the matrix of the right column eigenvectors. For
any direction n the characteristic variables w = w(n) = (w1, . . . , wm)T for a general, pos-
sibly nonlinear, hyperbolic system, are defined by ∂w(n) = R−1(n)∂u, i.e. for constant
coefficient matrices this can be integrated to yield w = R−1u, u = R w. Multiplying
(2.1) by R−1 from the left we obtain the system in characteristic variables

wt +
d∑

k=1

Bkwxk
= 0 (2.2)

where Bk := R−1AkR = (bk
ij)

m
i,j=1. We introduce the decomposition Bk = Dk + B′

k, where
Dk is the matrix containing the diagonal part of Bk. This gives a quasi-diagonalised
system

wt +
d∑

k=1

Dkwxk
= −

d∑
k=1

B′
kwxk

=: S, (2.3)

The `-th bicharacteristic corresponding to the `-th equation of the system (2.3) is defined
by

dx`

dt
= b``(n) := (b1

``, . . . , b
d
``)

T . (2.4)

We integrate the `-th equation of the system (2.3) from the point P down to the point
Q`(n), where the bicharacteristic hits the plane through P ′. This situation is depicted in
Figure 1 for a special case. Note that in general the set traced out by Q`(n) can be quite
complicated, see Courant and Hilbert [3, pp. 599-618]. For a linear constant coefficient
problem this will be a straight line. In this case A(n) is constant. For a nonlinear system
we have to linearize by freezing the Jacobian matrices Ak(u) at a suitable state ū. Thus,
without lost of generality we assume in what follows that A(ū,n) is constant.
Integration along the bicharacteristics introduces a formula for the characteristic variables

w`(P,n) − w`(Q`(n),n) = S ′
`(n), ` = 1, . . . ,m, (2.5)

with S ′
`(n) =

∫ t+4t

t
S`(x`(t̃,n),n, t̃) dt̃. This is already an exact integral representation

of the solution at a new time step t + ∆t. By multiplication of (2.5) by R from the left

4



and integration of the variable n over the unit sphere O in Rd we obtain the exact integral
equation in the original variables u,

u(P ) = u(x, t + 4t) =
1

|O|
∫

O

R(n)




w1(Q1(n),n)
...

wm(Qm(n),n)


 dO + S̃

=
1

|O|
∫

O

m∑
j=1

wj(Qj(n),n) rj(n) dO + S̃

(2.6)

with

S̃ = (S̃1, . . . , S̃m)T :=
1

|O|
∫

O

R(n) S′(n) dO =
1

|O|
∫

O

∫ t+∆t

t

R(n) S(n, t̃) dt̃ dO.

This is an exact implicit representation formula for the evolution operator. The second
term contains the integral between the two time levels t and t + ∆t which in general
cannot be evaluated exactly; it is a mantle integral over the mantle of the characteristic
cone. The main goal of this paper is to derive a suitable approximation of the source term
integrals, which would lead to a scheme stable up to a natural CFL limit of 1.

2.2 System wave equation

Let us now illustrate the above general procedure on the two-dimensional linear hyperbolic
system of the wave equation. Application to a nonlinear system of the Euler equations
will be done in Section 3.4. The wave equation system can be written in the following
form

ut + A1ux + A2uy = 0, x = (x, y)T ∈ R2, (2.7)

where the, noncommuting, coefficient matrices A1,A2 ∈ R3×3 are defined by

A1 :=


 0 c 0

c 0 0
0 0 0


 , A2 :=


 0 0 c

0 0 0
c 0 0


 .

Here c ∈ R denotes the speed of sound and u = (φ, u, v)T ∈ R3 is the vector of dependent
variables. We have three eigenvalues λ1 = −c, λ2 = 0, λ3 = c and corresponding linearly
independent right eigenvectors

r1 =


 −1

cos θ
sin θ


 , r2 =


 0

sin θ
− cos θ


 , r3 =


 1

cos θ
sin θ




of the matrix pencil A(n) := A1 cos θ + A2 sin θ for any unit vector n = (nx, ny)
T =

(cos θ, sin θ)T ∈ R2. Repeating the above procedure for this particular system we end
with the following exact integral equations for the solution of the wave equation system
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(2.7), see also [4] for a detailed derivation: with t̃ = t + ∆t − τ , we have

φ(x, t + 4t) =
1

2π

∫ 2π

0

[φ(Q(θ)) − u(Q(θ)) cos θ − v(Q(θ)) sin θ] dθ

− 1

2π

∫ 2π

0

∫ 4t

0

S(x + cτn(θ), θ, t̃) dτ dθ, (2.8)

u(x, t + 4t) =
1

2π

∫ 2π

0

[−φ(Q(θ)) cos θ + u(Q(θ)) cos2 θ + v(Q(θ)) sin θ cos θ] dθ

+
1

2
u(P ′) +

1

2π

∫ 2π

0

∫ 4t

0

cos θS(x + cτn(θ), θ, t̃) dτ dθ

− c

2

∫ 4t

0

φx(P
′(t̃)) dτ, (2.9)

v(x, t + 4t) =
1

2π

∫ 2π

0

[−φ(Q(θ)) sin θ + u(Q(θ)) sin θ cos θ + v(Q(θ)) sin2 θ] dθ

+
1

2
v(P ′) +

1

2π

∫ 2π

0

∫ 4t

0

sin θS(x + cτn(θ), θ, t̃) dτ dθ

− c

2

∫ 4t

0

φy(P
′(t̃)) dτ, (2.10)

where the so-called source term S is given by

S(x̃, θ, t̃) := c[ux(x̃, θ, t̃) sin2 θ (2.11)

− (uy(x̃, θ, t̃) + vx(x̃, θ, t̃)) sin θ cos θ + vy(x̃, θ, t̃) cos2 θ],

and Q(θ) = (x + c∆t cos θ, y + c∆t sin θ, t), P ′ ≡ P ′(t) = (x, y, t), P ′(t̃) = (x, y, t̃).
Note that this form of the integral equations is not unique. There are other equiva-
lent variations, see [4] for an example or (2.14) - (2.16). The difference plays a role in
subsequent approximations where different forms of the integral equations may lead to
different schemes. We have chosen to take the above formulation because it is the form
that directly follows from the procedure described in Section 2.1.
A major drawback of the approximate evolution operators used for the EG schemes in
[4] was that they did not provide full stability for a CFL number of 1, where we define
CFL= c∆t/h. Since we had derived our approximate evolution operators from exact
integral equations, the loss of stability was obviously due to the approximations we derived
from the integral equations (2.8), (2.9) and (2.10). One of the steps was to use quadrature

in time on the mantle integrals 1
2π

∫ 2π

0

∫ ∆t

0
dτdθ over the bicharacteristic cones. In our first

order EG schemes we were using piecewise constant data, in which case a discontinuity cuts
through the cone mantle. The rectangle or the trapezoidal rule are not good quadrature
rules for such discontinuous integrands.

6



From one dimensional advection on a uniform mesh we know that any scheme that is stable
for CFL numbers up to 1 reproduces the exact solution to the advection problems, i.e. the
data shifted by one mesh cell for CFL= 1. We decided to look for correction terms to our
approximate evolution operators by postulating the following design principle. Consider
plane wave data parallel to one of the spatial axes. For a first order scheme these are
taken as piecewise constant, i.e. quasi-one-dimensional Riemann data. Now we would look
for approximate evolution operators that reproduce the exact solution at the apex of the
bicharacteristic cone centered at the original discontinuity. When considering slopes for
second order schemes we devise approximate evolution operators for the slopes that again
reproduce the solution for piecewise linear data exactly at the apex of the bicharacteristic
cone centered at the kink or discontinuity of such data.

2.3 Piecewise constant data

Let us consider first order schemes and piecewise constant data first. Take the following
plane wave, of Riemann problem type, as initial data for the wave equation system (2.7)

φ(x, y, 0) =

{ φ+ x > 0
(φ+ + φ−)/2 x = 0
φ− x < 0,

u(x, y, 0) =

{ u+ x > 0
(u+ + u−)/2 x = 0
u− x < 0,

v(x, y, 0) = 0. (2.12)

The average value that we have accorded to x = 0 will be used in formulae below. Then
the exact solution at any time t > 0 is given by

φ(x, y, t) =

{ φ+ x > ct
(φ+ + φ−)/2 − (u+ − u−)/2 ct > x > −ct
φ− x < −ct,

u(x, y, t) =

{ u+ x > ct
(u+ + u−)/2 − (φ+ − φ−)/2 ct > x > −ct
u− x < −ct,

v(x, y, t) = 0. (2.13)

An analogous solution for φ and v with u = 0 may be considered for plane waves in
y−direction. Due to obvious symmetry between u and v we do not need to work this out
explicitly.
Let us now consider the integral equations (2.8), (2.9) and (2.10) as our starting point.
To avoid the derivatives of the dependent variables appearing in S we may use Lemma
2.1 of [4] to convert these into a more convenient form involving the dependent variables
themselves, see e.g. [4, (2.16)]. This gives us the following equivalent system of exact
integral equations that we will normally use in all further considerations in this paper.
With Q(θ, t̃) = (x + cτ cos θ, y + cτ sin θ, t̃), t̃ = t + ∆t − τ,

φ(x, t + 4t) =
1

2π

∫ 2π

0

[φ(Q(θ)) − u(Q(θ)) cos θ − v(Q(θ) sin θ)] dθ (2.14)

− 1

2π

∫ 4t

0

1

τ

∫ 2π

0

[
u(Q(θ, t̃)) cos θ + v(Q(θ, t̃)) sin θ

]
dθ dτ,
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u(x, t + 4t) =
1

2π

∫ 2π

0

[−φ(Q(θ)) cos θ + u(Q(θ)) cos2 θ + v(Q(θ)) sin θ cos θ
]

dθ

+
1

2
u(P ′) +

1

2π

∫ 4t

0

1

τ

∫ 2π

0

[
u(Q(θ, t̃)) cos 2θ (2.15)

+v(Q(θ, t̃)) sin 2θ
]

dθ dτ − c

2

∫ 4t

0

φx(P
′(t̃)) dτ,

v(x, t + 4t) =
1

2π

∫ 2π

0

[−φ(Q(θ)) sin θ + u(Q(θ)) sin θ cos θ + v(Q(θ)) sin2 θ
]

dθ

+
1

2
v(P ′) +

1

2π

∫ 4t

0

1

τ

∫ 2π

0

[
u(Q(θ, t̃)) sin 2θ (2.16)

+v(Q(θ, t̃)) cos 2θ
]

dθ dτ − c

2

∫ 4t

0

φy(P
′(t̃)) dτ.

To complete the elimination of derivatives we replace the terms in φx(P
′), φy(P

′) by their
averages over the corresponding circular sections Ωτ of the characteristic cone,

φx(P
′(t̃)) ≈ 1

πc2τ 2

∫
Ωτ

φx dxdy =
1

πcτ

∫ 2π

0

φ(Q(θ, t̃)) cos θ dθ

so that we obtain

c

2

∫ ∆t

0

φx(P
′(t̃)) dτ ≈ 1

2π

∫ ∆t

0

1

τ

∫ 2π

0

φ(Q(θ, t̃)) cos θ dθdτ, (2.17)

with a similar expression for the φy term. Note that these are now in the same form as
the other source term integrals in (2.14)-(2.16).
In the appendix these formulae are evaluated exactly for the one-dimensional solution
(2.13) so that they yield the exact update from the data at t = 0 to the solution at
(0, 0, ∆t). Moreover, they show how in this case the mantle integral can be combined with
that round the cone base. From this result we propose the following approximate evolution
operators for application to piecewise constant data on a general two-dimensional mesh,
on the design principle that it gives the exact result at the origin for the data of (2.12).

Approximate evolution operator Econst
∆ for piecewise constant functions:

φ(P ) =
1

2π

∫ 2π

0

[φ(Q) − u(Q) sgn(cos θ) − v(Q) sgn(sin θ) ] dθ + O(∆t2), (2.18)

u(P ) =
1

2π

∫ 2π

0

[−φ(Q) sgn(cos θ) + u(Q)
(

1
2

+ cos2 θ
)

+ v(Q) sin θ cos θ
]
dθ + O(∆t2),

(2.19)
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v(P ) =
1

2π

∫ 2π

0

[−φ(Q) sgn(sin θ) + u(Q) sin θ cos θ + v(Q)
(

1
2

+ sin2 θ
)]

dθ + O(∆t2),

(2.20)

where Q = (x + c∆t cos θ, y + c∆t sin θ, t), P ′ = (x, y, t), and P = (x, y, t + ∆t). Our
choice seems to be the simplest approximation that produces the desired effect.

2.4 Continuous bilinear data

To obtain second order schemes we choose to use a bilinear recovery of the data, cf. (3.1,
3.2) for a precise definition. We now need an approximate evolution that incorporates the
slopes φx, φy, φxy, ux, etc. Let us consider the following initial data

φ(x, y, 0) =
{ φRx x > 0

0 x ≤ 0,
u(x, y, 0) =

{ uRx x > 0
0 x ≤ 0,

v(x, y, 0) = 0.

(2.21)

For simplicity we have taken the left state to be zero. Note that for the linear wave
equation system the superposition principle holds and a more general piecewise linear
solution can easily be deduced. The exact solution is given by

φ(x, y, t) =

{φRx − uRct x > ct
1
2
(φR − uR)(x + ct) −ct < x ≤ ct

0 x ≤ −ct
(2.22)

u(x, y, 0) =

{ uRx − φRct x > ct
1
2
(uR − φR)(x + ct) −ct < x ≤ ct

0 x ≤ −ct

v(x, y, t) = 0.

The appendix gives the result of substituting these data into the mantle integrals of (2.14)
-(2.17). As a result it is shown how the corresponding cone base integrals can be modified
so as to incorporate the contributions from the mantle integrals, in such a way that the
exact solution (2.22) is reproduced at (0, 0, ∆t). This leads to an approximate evolution
operator Ebilin

∆ for continuous piecewise bilinear data which is given as follows:

φ(P ) = φ(P ′) +
1

4

∫ 2π

0

[φ(Q) − φ(P ′)] dθ − 1

π

∫ 2π

0

[u(Q) cos θ + v(Q) sin θ] dθ

+O(∆t2), (2.23)

u(P ) = u(P ′) − 1

π

∫ 2π

0

φ(Q) cos θ dθ +
1

4

∫ 2π

0

[
3 (u(Q) cos θ + v(Q) sin θ) cos θ

−u(Q) − 1
2
u(P ′)

]
dθ + O(∆t2), (2.24)

v(P ) = v(P ′) − 1

π

∫ 2π

0

φ(Q) sin θ dθ +
1

4

∫ 2π

0

[
3 (u(Q) cos θ + v(Q) sin θ) sin θ

−v(Q) − 1
2
v(P ′)

]
dθ + O(∆t2). (2.25)
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As indicated here, these formulae are generally only first order accurate; but they have
been designed in such a way that they will be second order accurate for certain classes of
data. The formulae we have derived in this section have been designed by modifying the
integrands to reproduce for specific simple data the exact solution. Though our particular
application is somewhat unusual, we have only used the well established design principle
for numerical methods, namely producing formulae that are exact for specific data with
a finite number of degrees of freedom.

3 Second order schemes based on linear recovery

3.1 Continuous and discontinuous bilinear recovery

On a general two-dimensional mesh, of triangules or quadrilaterals, a useful first step in
the construction of more accurate approximations from cell averages is to recover values
at each of the vertices of the mesh. Each vertex value is typically obtained as a mean of
the cell averages from all the cells that share the vertex, see [11] for examples and further
references. On a triangular mesh this leads immediately to a piecewise linear interpo-
latory approximation; on a quadrilateral mesh it again gives a continuous interpolatory
approximation through the vertex values which is bilinear in the local variables on each
quadrilateral (the so-called isoparametric bilinear approximation). Unfortunately, the cell
averages are not preserved in either case. And even in a finite volume method, in which
the recovered approximation is used only to calculate the fluxes through the cell bound-
aries, it is important to preserve the cell averages - what Barth calls conservation in the
mean, see Barth [1] and Morton [11] for arguments making this point. The simplest way
to retain this property is to add a constant to the approximation in each cell, so that it
is now discontinuous across cell boundaries.

We limit ourselves here to considering such recovery procedures in the case of a uniform
square mesh, partly so that we can readily compare with alternative finite difference
schemes. So we consider a regular mesh for our computational domain Ω, which consists
of the square mesh cells Ωij ≡ [(i− 1

2
)h, (i + 1

2
)h]× [(j − 1

2
)h, (j + 1

2
)h] = [xi−1/2, xi+1/2]×

[yj−1/2, yj+1/2] = [xα, xα+1] × [yβ, yβ+1], where i, j ∈ Z are used to denote indices of mesh
cells, α, β ∈ Z are indices of vertices, and h > 0 is the mesh size parameter. We introduce
the finite difference operators

µxv(x) = 1
2
[v(x + h/2) + v(x − h/2)] and δxv(x) = v(x + h/2) − v(x − h/2)

with an analogous notation for the y-direction. Then the recovery of the vertex values is
expressed as Ũ = µxµyU ; with the parametrization just given this leads to

Ũαβ = µxµyU i+1/2,j+1/2 ≡ 1

4
[U i+1 j+1 + U i+1 j + U i j+1 + U ij] ,

but it is often clearer to omit the subscripts which we shall do below when this is the
case. Continuous bilinear recovery with these vertex values can be expressed directly in
terms of the cell averages as

RC
h U

∣∣∣
Ωij

=

(
µ2

xµ
2
y +

(x − xi)

h
µxµ

2
yδx +

(y − yj)

h
µ2

xµyδy +
(x − xi)(y − yj)

h2
µxµyδxδy

)
U ij.

(3.1)
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To restore the cell averages we need a shift of (1−µ2
xµ

2
y)U ij, or equivalently the use of the

vertex values only to approximate the x-, y- and xy-derivatives, giving the conservative
discontinuous bilinear recovery

RD
h U

∣∣∣
Ωij

=

(
1 +

(x − xi)

h
µxµ

2
yδx +

(y − yj)

h
µ2

xµyδy +
(x − xi)(y − yj)

h2
µxµyδxδy

)
U ij,

(3.2)

We have studied both recoveries theoretically from the stability point of view, as well
as experimentally. In the following we will use them to derive new second order FVEG
methods.

3.2 Stability and the evaluation of edge fluxes

The key step in a finite volume method is the evaluation of the cell interface fluxes. By
the use of the midpoint rule in (1.3) for the time integration, and by approximating the
mantle integrals in the evolution operator of (2.8) - (2.10) by the cone base integrals of
(2.18) - (2.20) and (2.23) - (2.25), we have reduced the four-dimensional flux integrals for
the wave equation to just two dimensions. The integration along a cell edge we prefer to
approximate by a suitable quadrature, for ease of generalization to the Euler equations.
But the integral around the perimeter of the cone base we will evaluate exactly so as to
pick up all characteristic directions.

The obvious quadrature points are vertices, used in the trapezoidal rule, and the mid-
edge points used in the midpoint rule; in combination they give Simpson’s rule. We have
considered these three quadrature rules as alternatives to the exact evaluation of edge
fluxes for both piecewise constant data and the continuous bilinear data given by the
recovery RC

h in (3.1). We know that for the wave equation the use of the trapezoidal rule
has the special property of preserving a natural discrete measure of vorticity, see [12].
However, the Euler equations have advected Mach cones, see Figure 2, so that another
natural test problem for our methods is the scalar two-dimensional advection equation

ut + aux + buy = 0, (3.3)

where a, b > 0 are constant advection velocities. Now for (3.3) exact flux evaluation for
piecewise constant data yields the FV-scheme

Un+1
ij =

[
1 − νx∆−x

(
1 − 1

2
νy∆−y

) − νy∆−y

(
1 − 1

2
νx∆−x

)]
Un

ij (3.4)

≡ [1 − νx∆−x] [1 − νy∆−y] U
n
ij,

where νx := a∆t/h, νy := b∆t/h, and the backward difference ∆−x is defined as ∆−xUi :=
Ui − Ui−1, with an analogous notation for the y-direction.

The scheme (3.4) is thus the tensor product of the one-dimensional upwind schemes and
it is well-known that it is monotone and stable for (νx, νy) ∈ [0, 1] × [0, 1]. Note too that
this is normally derived by exact time integration of the fluxes, but with these data the
same result is obtained by using the midpoint rule for the time integration. However, if
we used the midpoint rule along the edge we would obtain the scheme

Un+1
ij = [1 − νx∆−x − νy∆−y] U

n
ij, (3.5)
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which is stable only for νx + νy ∈ [0, 1]. Worse still, the use of the trapezoidal rule for the
edge integrals gives

Un+1
ij =

[
1 − νx∆−x

(
1 − 1

2
∆−y

) − νy∆−y

(
1 − 1

2
∆−x

)]
Un

ij (3.6)

and one can show that this is stable only if νx = νy!
On the other hand, combining (3.5) and (3.6) by using Simpson’s rule for the edge integrals
gives the scheme

Un+1
ij =

[
1 − νx∆−x

(
1 − 1

6
∆−y

) − νy∆−y

(
1 − 1

6
∆−x

)]
Un

ij, (3.7)

which is stable in a region of the (νx, νy)-plane that includes the line νx = νy out to
νx + νy ≤ 6/5 and extends outwards to include the axes out to 12/13. (Stability analysis
for the schemes discussed in this paper has been carried out by a combination of Fourier
analysis and energy analysis and will be published elsewhere.) Extensive numerical testing
of the stability and accuracy of the schemes based on Simpson’s rule, some of which is
reported in Section 4, has led us to adopt it as the standard means of implementing our
FVEG schemes.
When continuous bilinear recovery is used, stability restrictions depend much less on the
quadrature rule used for the edge integrals. The second order Lax-Wendroff (rotated-
Richtmyer) scheme, studied in [12] for the wave equation, uses the trapezoidal rule as a
key element in its design and takes the form

Un+1
ij =

[
1 − νL∆

(
µxµy − 1

2
L∆

)]
Un

ij, (3.8)

where ν = ∆t/h and L∆ is a central difference approximation to the spatial differential
operator. For the linear advection equation (3.3) we therefore substitute

L∆ = aµyδx + bµxδy (3.9)

in (3.8). An energy analysis shows that this is stable for

ν2
x + ν2

y ≤ 1.

When applied to the wave equation the stability condition is c∆t/h ≤ 1 and the scheme
has many similarities with our FVEG schemes, based on the approximate evolution op-
erator (2.23) - (2.25) and the continuous bilinear recovery (3.1). So we have used it as
a guide to the stability analysis of our schemes; and, in Section 4, we present numerical
results to show that the use of Simpson’s rule is as good as the trapezoidal rule in this
case.
However, our numerical tests have shown that when the trapezoidal rule is used with
discontinuous data for the wave equation system with constant, but different, advection
velocities a, b strong oscillations appear in the numerical solutions; this does not occur
with Simpson’s rule.
In order to construct local Mach cones for general nonlinear systems we need to define
the local velocity of the flow (ū, v̄) as well as the local speed of sound ā. This local
flow information can be computed, for example, by an averaging process. When the
trapezoidal or Simpson’s rule is used, we average over four cells adjacent to the vertex
or over two cells adjacent to the midpoint, respectively. Another possibility to get the
local flow states ū, v̄ and ā would be to use a predictor step, e.g. the Lax-Friedrichs or the
Osher-Solomon method, in order to compute this auxiliary information. This gives us the
desired local flow velocities, which are computed either at the midpoints of cell interfaces
or at the vertices, depending on the integral evaluation. From experiments we observed
that it is fully sufficient to use the simple averaging described above.
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3.3 Wave equation system

In this section we will specify more precisely how to compute Un+1/2 in order to evaluate
the fluxes in (1.3). In particular we consider the wave equation system (2.7) and write
down the finite difference formulation of the approximate evolution operators (2.18) -
(2.20), (2.23) - (2.25) when piecewise constant or continuous piecewise bilinear approxi-
mate functions are used, respectively.
First, let us consider the approximate evolution operator Econst

∆ , given by (2.18) - (2.20)
operating on a piecewise constant approximation, i.e. we have Rh = Id. We denote the
CFL number by ν = c∆t/h. Then the exact evaluation of the edge integral (as well as the
mantle integrals) yields, e.g. for the vertical edge, the following finite difference scheme
for Econst

∆,edgeU
n

Φ
n+1/2
edge =

(
1 +

ν

π
δ2
y

)
µxΦ

n −
(

1

2
+

ν

8
δ2
y

)
δxU

n − νπ

4
µxµyδyV

n, (3.10)

U
n+1/2
edge =

(
1 +

5ν

6π
δ2
y

)
µxU

n −
(

1

2
+

ν

8
δ2
y

)
δxΦ

n +
ν

3π
µxδxδyV

n,

V
n+1/2
edge =

(
1 +

5ν

6π
δ2
y

)
µxV

n − νπ

4
µxµyδyΦ

n +
ν

3π
µyδxδyU

n.

The equations for the horizontal edge follow from symmetry. In what follows we give
for the sake of simplicity only equations for the first and second components Φ and U ,
respectively; equations for the third component V will be analogous to those for U .
Using quadrature rules, e.g. the trapezoidal or Simpson’s rule, we need to evaluate U

n+1/2
α,β

at a vertex (α, β). After exact evaluation of the Mach cone integrals the finite difference
formulae for Econst

∆ Un at a vertex read

Φ
n+1/2
vertex = µxµyΦ

n − 1

2
µyδxU

n − 1

2
µxδyV

n, (3.11)

U
n+1/2
vertex = µxµyU

n − 1

2
µyδxΦ

n +
1

4π
δxδyV

n.

Analogous formulae hold for midpoints of cell interfaces, e.g. on a vertical edge we have

Φ
n+1/2
midpt = µxΦ

n − 1
2
δxU

n, (3.12)

U
n+1/2
midpt = µxU

n − 1
2
δxΦ

n.

Now let us consider continuous piecewise bilinear recovery RC
h , cf. (3.1), which can be

rewritten equivalently in the following way. For example, for the upper right cell cor-
responding to a vertex (α, β), i.e. that centred at xi = xα + h/2, yj = yβ + h/2, we
have

RC
h U

∣∣∣
Ωij

:=

(
1 +

x − xα

h
∆+x +

y − yβ

h
∆+y +

(x − xα)(y − yβ)

h2
∆+x∆+y

)
Uαβ,

where ∆+xUα := Uα+1 −Uα denotes the forward finite difference, and an analogous nota-
tion holds for the y−direction.
The finite difference formulation of the scheme

Un+1/2 = Ebilin
∆ RC

h Un (3.13)
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then yields, after the exact evaluation of the integrals of (2.23) - (2.25) around the bi-
characteristics cone,

Φ
n+1/2
vertex =

(
1 +

ν

4
δ2
x +

ν

4
δ2
y +

ν2

32
δ2
xδ

2
y

)
µxµyΦ

n (3.14)

−ν

2

(
1 +

ν

4π
δ2
y

)
µ2

xµyδxU
n − ν

2

(
1 +

ν

4π
δ2
x

)
µxµ

2
yδyV

n,

U
n+1/2
vertex =

(
1 +

ν

4
δ2
x −

ν

16
δ2
y +

ν2

64
δ2
xδ

2
y

)
µxµyU

n

−ν

2

(
1 +

ν

4π
δ2
y

)
µ2

xµyδxΦ
n +

3πν2

64
µ2

xµ
2
yδxδyV

n.

In Section 4 we will present some numerical experiments for the FVEG scheme (1.3) where
the value Un+1/2 is evolved by means of (3.14). We show that the scheme is stable up to
the CFL number ν = 1. However the recovery operator RC

h in (3.13) does not preserve cell
averages, which leads to reduced accuracy of this FVEG scheme, cf. scheme B in Table 1.
Therefore in order to maintain the cell averages at the recovery stage, by using RD

h =
RC

h + (1 − µ2
xµ

2
y) as given in (3.2), we propose the following EG operator. It combines

approximate evolution (3.14), which is used to evolve slopes, with (3.11), which evolves
the constant part:-

Un+1/2 = Ebilin
∆ RC

h Un + Econst
∆ (1 − µ2

xµ
2
y)U

n. (3.15)

Numerical experiments indicate that the above approximate evolution operator is stable
up to the CFL number ν = 1, and its accuracy is considerably better than that of (3.13).
Moreover, it is also easy to implement a limiting step, if it is required. Let Ψ : R3 → [0, 1]
be a limiter operator, then the approximate evolution operator for the second order FVEG
scheme can be given in the following way

Un+1/2 = Econst
∆ Un +

(
Ebilin

∆ RC
h (µxµy)

−1 − Econst
∆ µxµy

)
(ΨµxµyU

n) . (3.16)

Due to its better properties we denote the scheme (3.15) as FVEG-A. Note that a separate
evolution that incorporates the slopes has also been used by Ben-Artzi and Falcovitz [2]
in their GRP method. The scheme (3.13) will be called FVEG-B. It is perhaps worth
noting that if the operator Ebilin

∆ is applied directly to RD
h Un, with Un(P ′) interpreted as

a local average, the resulting scheme is stable only to CFL numbers 0.6 or 0.8 according
to Simpson’s rule or the trapezoidal approximation of the edge integrals, respectively.

3.4 Euler equations

The finite volume formulation, which automatically implies conservation over the cell,
works with the conservation form of the Euler equations

ut + F 1(u)x + F 2(u)y = 0, (3.17)

where the vector of conservative variables and the fluxes are

u :=




ρ
ρu
ρv
e


 , F 1(u) :=




ρu
ρu2 + p

ρuv
(e + p)u


 , F 2(u) :=




ρv
ρuv

ρv2 + p
(e + p)v


 .
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Here ρ denotes the density, u and v components of velocity, p pressure, e total energy and γ
stands for isentropic exponent, γ = 1.4 for dry air. The state equation gives a relationship
between the pressure and total energy, e = p/(γ − 1) + ρ(u2 + v2)/2. However, we have
shown in [9] that in order to consider bicharacteristics and derive approximate evolution
operators it is more appropriate to work with the simpler system in the primitive variables
v = (ρ, u, v, p), namely

vt + A1(v)vx + A2(v)vy = 0, x = (x, y)T ∈ R2, (3.18)

where

v :=




ρ
u
v
p


 , A1 :=




u ρ 0 0
0 u 0 1

ρ

0 0 u 0
0 γp 0 u


 , A2 :=




v 0 ρ 0
0 v 0 0
0 0 v 1

ρ

0 0 γp v


 .

This is the simplest and most convenient form for studying the bicharacteristics of the
system away from shocks. To derive the integral equations we linearise system (3.18) by
freezing the Jacobian matrices at a point P̄ = (x̄, ȳ, t̄). These points are chosen to be
vertices or midpoints of cell interfaces depending on the quadrature rule used for the flux
integration along cell interfaces. Denote by v̄ = (ρ̄, ū, v̄, p̄) the local variables at the point
P̄ and by ā the local speed of sound there, i.e. ā =

√
γp̄/ρ̄. Thus the linearised system

(3.18) with frozen constant coefficients has the form

vt + A1(v̄)vx + A2(v̄)vy = 0, x = (x, y)T ∈ R2. (3.19)

The eigenvalues of the matrix pencil A(v̄) = A1(v̄)nx + A2(v̄)ny, where n = n(θ) =
(nx, ny)

T = (cos θ, sin θ)T ∈ R2, are

λ1 = ū cos θ + v̄ sin θ − ā

λ2 = λ3 = ū cos θ + v̄ sin θ

λ4 = ū cos θ + v̄ sin θ + ā.

Thus we have two simple eigenvalues, λ1 and λ4, which give genuinely nonlinear fields,
i.e. acoustic or pressure waves; and two multiple eigenvalues, λ2 = λ3 associated with
the entropy waves and vorticity waves, which are linearly degenerate. We can choose the
following linearly independent right eigenvectors

r1 =




− ρ̄
ā

cos θ
sin θ
−ρ̄ā


 , r2 =




1
0
0
0


 , r3 =




0
sin θ

− cos θ
0


 , r4 =




ρ̄
ā

cos θ
sin θ
ρ̄ā


 .

Let R(v̄) be the matrix of the right eigenvectors and multiply system (3.19) by R−1(v̄)
from the left. The quasi-diagonalised characteristic system of the linearised Euler equa-
tions has the following form

wt+




ū − ā cos θ 0 0 0
0 ū 0 0
0 0 ū 0
0 0 0 ū + ā cos θ



wx+




v̄ − ā sin θ 0 0 0
0 v̄ 0 0
0 0 v̄ 0
0 0 0 v̄ + ā sin θ



wy=S,

(3.20)
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where the vector w of characteristic variables reads

w =




w1

w2

w3

w4


 = R−1(v̄)v =




1
2
(− p

ρ̄ā
+ u cos θ + v sin θ)

ρ − p
ā2

u sin θ − v cos θ
1
2
( p

ρ̄ā
+ u cos θ + v sin θ)


 ,

and the right hand side is given as follows

S =




S1

S2

S3

S4


 =




1
2
ā(sin θ ∂w3

∂x
− cos θ ∂w3

∂y
)

0
ā sin θ(∂w1

∂x
− ∂w4

∂x
) − ā cos θ(∂w1

∂y
− ∂w4

∂y
)

1
2
ā(− sin θ ∂w3

∂x
+ cos θ ∂w3

∂y
)


 .

Note that it is the wave equation system which creates the key part of (3.20): suppose
we set ρ̄ = 1/ā and remove the first row corresponding to density as well as first column
from the Jacobian matrices A1, A2 in (3.19); then moving the third equation for pressure
to the first row leads to the so-called system wave equation with advection

ut + A1ux + A2uy = 0, x = (x, y)T ∈ R2, (3.21)

where u = (p, u, v)T and

A1 :=


 ū ā 0

ā ū 0
0 0 ū


 , A2 :=


 v̄ 0 ā

0 v̄ 0
ā 0 v̄


 .

Further, if the advection velocities are ū = v̄ = 0 and ā = const. we get the well-known
linear wave equation system (2.7), which describes the propagation of acoustic waves. Note
that in Section 2 as well as in [4] we did not consider advection terms, which are present
in the linearised Euler equations system. These terms lead to more complex characteristic
cone configurations that have to be taken into account in the implementation of the FVEG
methods.

P = (x, y, t + ∆t)

P ′

Q`(θ)

x
y

t

Figure 2: Bicharacterestics along the Mach cone through P and Q`(θ).

The approximate evolution operators for the Euler equations can be derived in an analo-
gous way as in Section 2 for the wave equation system (2.7). The set of all bicharacteristics
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which connect the apex P = (x, y, t + ∆t) down to the footpoints Q`(θ) creates the Mach
cone shown in Figure 2. More precisely, the footpoints of the corresponding bicharacter-
istics are

Q1(θ) = (x − (ū − ā cos θ)∆t, y − (v̄ − ā sin θ)∆t, t),

Q2 = Q3 = (x − ū4t, y − v̄∆t, t),

Q4(θ) = (x − (ū + ā cos θ)∆t, y − (v̄ + ā sin θ)∆t, t).

After some computations, similarly to those in Section 2, we obtain the following formulae
for the exact solution v of the linearised system at the point P = (x, t + ∆t). In order to
use consistent notation we put Q := Q1(θ), P ′ := Q2 and t̃ = t + ∆t − τ . Then we have

ρ(x, t + 4t) = (1 − 1

γ
)ρ(P ′) +

1

2π

∫ 2π

0

[
ρ(Q)

γ
− ρ̄

ā
(u(Q) cos θ + v(Q) sin θ)

]
dθ

− ρ̄

ā

1

2π

∫ 2π

0

∫ 4t

0

S(x − (ū − ān(θ))τ, θ, t̃) dτ dθ, (3.22)

u(x, t + 4t) =
1

2π

∫ 2π

0

[
−p(Q)

ρ̄ā
cos θ + (u(Q) cos θ + v(Q) sin θ) cos θ

]
dθ

+
1

2π

∫ 2π

0

∫ 4t

0

cos θ S(x − (ū − ān(θ))τ, θ, t̃) dτ dθ

+
1

2
u(P ′) − 1

2ρ̄

∫ 4t

0

px(P
′(t̃)) dτ, (3.23)

v(x, t + 4t) =
1

2π

∫ 2π

0

[
−p(Q)

ρ̄ā
sin θ + (u(Q) cos θ + v(Q) sin θ) sin θ

]
dθ

+
1

2π

∫ 2π

0

∫ 4t

0

sin θS(x − (ū − ān(θ))τ, θ, t̃) dτ dθ

+
1

2
v(P ′) − 1

2ρ̄

∫ ∆t

0

py(P
′(t̃)) dτ, (3.24)

p(x, t + 4t) =
1

2π

∫ 2π

0

[p(Q) − ρ̄ā (u(Q) cos θ + v(Q) sin θ)] dθ

−ρ̄ā
1

2π

∫ 2π

0

∫ ∆t

0

S(x − (ū − ān(θ))τ, θ, t̃) dτ dθ, (3.25)

where
x − (ū − ān(θ))τ = (x − (ū − ā cos θ)τ, y − (v̄ − ā sin θ)τ)
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and the source term S is given by

S(x, θ, t̃) := ā[ux(x, θ, t̃) sin2 θ − (uy(x, θ, t̃) + vx(x, θ, t̃) sin θ cos θ

+ vy(x, θ, t̃) cos2 θ]. (3.26)

Approximate evolution operators for the Euler equations.

In our previous paper [9] we have approximated the source term integrals, i.e. the so-
called mantle integrals, with respect to time by the rectangle rule, which gives an O(∆t)
approximation. As for the wave equation system this led to the reduced stability of the
FVEG scheme. Thus the mantle integrals need to be approximated in a better way; and
we do this in such a way that each one-dimensional wave is calculating exactly. Using
results from Section 2 and the Appendix for the wave equation system we can derive new
EG approximate evolution operators for the Euler equations, which are stable up to a
natural stability limit.

Corresponding to (2.18) - (2.20) the approximate evolution operator Econst
∆ for piecewise

constant functions reads:

ρ(P ) = (1 − 1

γ
)ρ(P ′) +

1

2π

∫ 2π

0

[
ρ(Q)

γ
− ρ̄

ā
(u(Q) sgn(cos θ) + v(Q) sgn(sin θ))

]
dθ

+O(∆t2), (3.27)

u(P ) =
1

2π

∫ 2π

0

[
−p(Q)

ρ̄ā
sgn(cos θ) + u(Q)

(
1
2

+ cos2 θ
)

+ v(Q) sin θ cos θ

]
dθ + O(∆t2),

(3.28)

v(P ) =
1

2π

∫ 2π

0

[
−p(Q)

ρ̄ā
sgn(sin θ) + u(Q) sin θ cos θ + v(Q)

(
1
2

+ sin2 θ
)]

dθ + O(∆t2),

(3.29)

p(P ) =
1

2π

∫ 2π

0

[p(Q) − ρ̄ā (u(Q) sgn(cos θ) + v(Q) sgn(sin θ)) ] dθ + O(∆t2), (3.30)

where Q = (x − ∆t(ū − ā cos θ), y − ∆t(v̄ − ā sin θ), t), P ′ = (x − ∆tū, y − ∆tv̄, t), and
P = (x, y, t + ∆t).

Further, the approximate evolution operator Ebilin
∆ for continuous piecewise bilinear func-

tions is given as follows:

ρ(P ) = ρ(P ′) +
1

4

∫ 2π

0

1

γ
[ρ(Q) − ρ(P ′)] dθ − 1

π

∫ 2π

0

ρ̄

ā
[u(Q) cos θ + v(Q) sin θ] dθ

+O(∆t2), (3.31)

u(P ) = u(P ′) − 1

π

∫ 2π

0

p(Q)

ρ̄ā
cos θ dθ +

1

4

∫ 2π

0

[
3 (u(Q) cos θ + v(Q) sin θ) cos θ

−u(Q) − 1
2
u(P ′)

]
dθ + O(∆t2), (3.32)
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v(P ) = v(P ′) − 1

π

∫ 2π

0

p(Q)

ρ̄ā
sin θ dθ +

1

4

∫ 2π

0

[
3 (u(Q) cos θ + v(Q) sin θ) sin θ

−v(Q) − 1
2
v(P ′)

]
dθ + O(∆t2), (3.33)

p(P ) = p(P ′) +
1

4

∫ 2π

0

[p(Q) − p(P ′)] dθ − 1

π

∫ 2π

0

ρ̄ā [u(Q) cos θ + v(Q) sin θ] dθ

+O(∆t2). (3.34)

It is possible to define a second order FVEG scheme just by using the approximate
evolution operator (3.31) - (3.34) and continuous or discontinuous recoveries, RC

h or RD
h ,

respectively. Thus, in the same way as for the wave equation system, we will get the
FVEG-A and FVEG-B schemes defined by (3.15) and (3.13), respectively. However, our
experience from the wave equation system shows us that the desirable scheme, i.e. the
best stability range as well as the best accuracy, is the scheme FVEG-A, which is given
by the combination of Econst

∆ with Ebilin
∆ ; cf. (3.16) for the version with a limiter.

4 Numerical experiments

We will present results of several numerical experiments for the linear wave equation
system as well as for the nonlinear Euler equations and compare the behaviour of various
second order FVEG schemes.
First we refine our notation for the schemes. The FVEG-A is the second order FVEG
scheme (3.15), which uses the continuous bilinear recovery RC

h but is adjusted to main-
tain the cell average; then we distinguish FVEG-A1 and FVEG-A2 according to whether
Simpson’s rule or the trapezoidal rule is used for the integration of the edge fluxes. Sim-
ilarly the FVEG-B1 and FVEG-B2 are those schemes based on the unadjusted operator
combination (3.13). Finally, for comparison let FVEG-C be the first order scheme, based
on piecewise constants with no recovery and exact evaluation of the edge integrals, given
by (3.10).
We will also make some comparisons with the second order Lax-Wendroff (rotated Richt-
myer) scheme (3.9) and a FVEG scheme based on the earlier operator EG3 studied in
[4]-[8], [13].

Problem 1.
We consider the initial value problem for the wave equation system with the initial values

φ(x, 0) = −1

c
(sin 2πx + sin 2πy), u(x, 0) = 0 = v(x, 0).

In this case the exact solution is known

φ(x, t) = −1

c
cos 2πct(sin 2πx + sin 2πy), (4.1)

u(x, t) =
1

c
sin 2πct cos 2πx, (4.2)

v(x, t) =
1

c
sin 2πct cos 2πy. (4.3)

First we have tested stability ranges of the above schemes for this example. The maximum
stable CFL numbers ν = c∆t/h that are indicated by the numerical experiments are all
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equal to 1.0, except for a scheme FVEG3 (based on the RD
h recovery but the earlier EG3

evolution operator) where the limit was 0.56. Note that for systems with zero advection
velocity the choice of numerical quadrature for the edge flux integrals has no influence on
the stability limit of the schemes FVEG-A and FVEG-B. This is why all schemes FVEG-
A1, FVEG-A2 and FVEG-B1, FVEG-B2 are stable up to CFL=1.0. Similarly, the first
order scheme with the edge flux integrals computed either exactly or by Simpson’s as well
as the trapezoidal rule has the CFL limit 1.0.

Next we compare the accuracy of the above FVEG schemes. We take the CFL number ν =
0.8 and an end time T = 1.0. In Table 1 the L2− errors for the second order Lax-Wendroff
scheme and the FVEG schemes are given for meshes of 20×20, 40×40, . . . , 320×320 cells,
together with the experimental order of convergence (EOC) computed from two meshes
of sizes N1 and N2 as

EOC = ln
‖uN1(T ) − Un

N1
‖

‖uN2(T ) − Un
N2
‖/ ln

(
N2

N1

)
.

Here we have denoted by uN(T ) and by Un
N the exact and the approximate solutions on

a mesh of size N , respectively.

Use of the trapezoidal or Simpson’s rule for the cell interface integrals gives the same
global error for all schemes FVEG-A, B and C to the accuracy in the table. For the
first order scheme FVEG-C we can also compare the global error obtained by the scheme
with exact edge integrals as well as by means of numerical quadratures, i.e. trapezoidal
or Simpson’s rule; the error is the same.

In summary, the recommended scheme FVEG-A is roughly five times more accurate than
the Lax-Wendroff and twenty-five times more accurate than the scheme FVEG-B that
does not preserve cell averages at the recovery stage.

Table 1: Accuracy of the FVEG schemes and the Lax-Wendroff scheme, T = 1.0,
CFL = 0.8.

‖u(T ) − Un‖/N A B C LW

20 0.074389 1.141908 0.698391 0.297976
40 0.014173 0.315654 0.358860 0.073712
80 0.003220 0.080285 0.188042 0.018567
160 0.000783 0.020136 0.096310 0.004649
320 0.000194 0.005038 0.048745 0.001163

EOC 2.0129 1.9988 0.9824 1.9991

Similar comparisons with a CFL number 0.55 allow the inclusion of the FVEG3 scheme:
it is more accurate than (non cell average preserving) FVEG-B but has roughly double
the error of FVEG-A.

Problem 2.

The aim of this experiment is to demonstrate the influence of a nonzero advection velocity
on the choice of an appropriate quadrature rule for the flux integration. We consider for
the wave equation system with advection the same initial value problem as above. Now
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the exact solution reads

φ(x, t) = −1

ā
cos 2πāt(sin 2π(x − ūt) + sin 2π(y − v̄t)), (4.4)

u(x, t) =
1

ā
sin 2πāt cos 2π(x − ūt), (4.5)

v(x, t) =
1

ā
sin 2πāt cos 2π(y − v̄t), (4.6)

where (ū, v̄) are constant advection velocities and ā represents the constant speed of sound,
cf. (3.21). We set ū = 1.0, v̄ = 0.5 and ā = 1.0.
The maximum CFL number

ν =
∆t

h
max (|ū| + ā, |v̄| + ā)

has been taken 0.8 and the end time T = 1.0. We compare the behaviour of the first
and second order schemes FVEG-C1, FVEG-C2, FVEG-A1 and FVEG-A2, which use
Simpson’s and the trapezoidal quadrature for the flux integrals, respectively. In Table 2
the L2-errors are given for meshes of 20 × 20, . . . , 320 × 320 cells.
The experiment demonstrates even for this simple test the instability of the FVEG-C2
schemes, which is appearing on the mesh with 320×320 cells. Similarly we see the lost of
accuracy of the second order scheme FVEG-A2, which also indicates the instability and
would be seen more clearly on a finer mesh. The instability is due to the trapezoidal rule
approximation of the flux integrals as was predicted theoretically for a simplified model
advection equation in Section 3.2.

Table 2: Accuracy of the FVEG schemes using Simpson’s and the trapezoidal rule for the
wave equation system with advection, T = 1.0, CFL = 0.8.

‖u(T ) − Un‖/N A1 A2 C1 C2

20 0.117556 0.117556 0.874757 0.874757
40 0.025421 0.025421 0.519180 0.519180
80 0.006054 0.006054 0.286375 0.286375
160 0.001494 0.001494 0.150871 0.150871
320 0.000372 0.000627 0.077495 4.026278

Problem 3.
In this example we present the behaviour of our FVEG schemes for the nonlinear Eu-
ler equations of gas dynamics. Let us take the well-known Sod-2D test problem with
discontinuous initial data

ρ = 1, u = 0, v = 0, p = 1, ‖x‖ < 0.4

ρ = 0.125, u = 0, v = 0, p = 1, else.

We consider this initial-value problem as a spherical explosion problem. The computa-
tional domain is a square [−1, 1] × [−1, 1]. The mesh is uniform square and initial data
are implemented by taking the integral average on each cell, i.e. by projecting them onto
a piecewise constant function in S0

h. As pointed out by Toro in [14] this avoids the forma-
tion of small amplitude waves created at early times by a staircase configuration of the
data. We set the CFL number to 0.9 and take a mesh with 400 × 400 cells.
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The solution exhibits a circular shock travelling away from the centre, a circular contact
discontinuity travelling in the same direction and a circular rarefaction wave travelling
towards the origin at (0, 0). We have compared the numerical solutions computed by the
FVEG-A1 and FVEG-A2 schemes, i.e. using Simpson’s rule and the trapezoidal approx-
imation of the edge integrals, respectively; in Figures 3 and 4 are given the isolines of
density, velocity, and pressure. The results confirm that the trapezoidal rule is not ap-
propriate for problems with arbitrary advection velocities, i.e. ū 6= v̄. Figure 4 illustrates
good multidimensional resolution of all significant structures of the solution.

5 Conclusions

In this paper we have derived new genuinely multidimensional finite volume evolution
Galerkin schemes, which are based on the use of a multidimensional approximate evolution
operator. The method consists of two steps and couples a finite volume formulation
with an approximate evolution Galerkin operator. The latter is constructed using the
bicharacteristics of the multidimensional hyperbolic system, such that all of the infinitely
many directions of wave propagation are taken in account. In the first step a recovered
(or reconstructed) approximate solution is evolved by the approximate evolution operator,
and fluxes along cell edges are calculated. In the second step the finite volume update is
done.
We have derived new approximate evolution operators, Ebilin

∆ and Econst
∆ , which work with

continuous piecewise bilinear or piecewise constant functions, respectively. The operators
are constructed in such a way that any one-dimensional planar wave, oriented with the
mesh, is calculated exactly. As a result, the stability ranges of the FVEG schemes are
improved up to a natural stability limit, i.e. CFL = 1. Moreover, if the slopes of the
approximate solution are evolved by means of Ebilin

∆ and constant parts are corrected by
means of Econst

∆ , in order to preserve cell averages at the recovery stage, the accuracy of
the FVEG scheme is also improved considerably to yield our preferred scheme FVEG-A.
Furthermore in the case of advected characteristic cones it is shown to be important to
use Simpson’s rule to evaluate the edge fluxes, giving scheme FVEG-A1.
Numerical experiments for the linear wave equation system as well as for the nonlinear
Euler equations of gas dynamics confirm the improved accuracy and stability of new
FVEG schemes, as well as good multidimensional resolution.

A Appendix: Exact mantle integrals for the evolu-

tion operator of the system wave equation

For one-dimensional data, the solution of the wave equation can be written down explicitly
and substituted into the mantle integrals occurring in the formulae (2.14) - (2.17). Exact
evaluation of these integrals for discontinuous, piecewise linear data then provides a guide
to the choice of quadrature to be used for more general two-dimensional data.
We begin with the piecewise constant initial data (2.12) and the resulting exact solution
(2.13). Suppose this is substituted in the evolution operator formulae (2.14) - (2.15) to
give the solution at the origin after one time step; thus

φ(0, 0, ∆t) =
1

2π

∫ 2π

0

[φQ − uQ cos θ] dθ − 1

2π

∫ ∆t

0

1

τ

∫ 2π

0

uQ′ cos θdθ dτ, (A.1)
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where Q(θ) = (c∆t cos θ, c∆t sin θ, 0) and Q′ = (cτ cos θ, cτ sin θ, ∆t − τ). For these data,
the first integral gives

1

2π

∫ 2π

0

[φQ − uQ cos θ] dθ =
1

2

(
φ+ + φ−) − 1

π

(
u+ − u−)

. (A.2)

In the second integral over the mantle uQ′ is constant, independently of θ, unless τ > ∆t−
τ , i.e. τ > 1

2
∆t; indeed, there is cancellation between the left and right of the origin unless

τ | cos θ| > ∆t − τ. With θ̄ given by τ cos θ̄ = ∆t − τ , so that dτ/τ = sin θ̄dθ̄/(1 + cos θ̄),
the integral therefore becomes

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

uQ′ cos θ dθdτ =
1

2π

∫ ∆t

1
2
∆t

1

τ
(u+ − u−)2 sin θ̄ dτ (A.3)

=
1

π
(u+ − u−)

∫ π/2

0

sin2 θ̄

1 + cos θ̄
dθ̄ =

1

π
(u+ − u−)

(π

2
− 1

)
.

Hence the exact solution is reproduced through exactly integrating the two integrals, that
is

φ(0, 0, ∆t) =
1

2
(φ+ + φ−) − 1

π
(u+ − u−) −

(
1

2
− 1

π

)
(u+ − u−)

=
1

2
(φ+ + φ−) − 1

2
(u+ − u−). (A.4)

It should be noted that the combined integral over u on the right can be written as

u+

2π

∫ π/2

−π/2

[
cos θ +

sin2 θ

1 + cos θ

]
dθ ≡ u+

2π

∫ π/2

−π/2

dθ. (A.5)

It is this form that leads to the approximate evolution operator for piecewise constant
functions on a general mesh that is given in (2.18) - (2.20); it motivates the use of

1

2

(
u+ − u−)

=
1

2π

∫ 2π

0

uQ sgn(cos θ) dθ.

In one dimension, the update for u should be the same as that for φ; however, we use the
general two-dimensional formula of (2.15), together with (2.17), to give for the solution
after one step

u(0, 0, ∆t) =
1

2π

∫ 2π

0

[−φQ cos θ + uQ cos2 θ]dθ +
1

2
uP ′

+
1

2π

∫ ∆t

0

1

τ

∫ 2π

0

[uQ′ cos 2θ − φQ′ cos θ] dθdτ. (A.6)

We see from this that the dependence on φQ and φQ′ is exactly the same as that on
uQ and uQ′ in the formula (A.1) for φ(0, 0, ∆t). Also, the integral of uQ′ cos 2θ gives no
contribution from these data; and uP ′ should be interpreted as the integral average of
uQ. We then reproduce the exact formula for u(0, 0, ∆t) to match that for φ(0, 0, ∆t). So
again this leads to the approximate evolution operator for u(P ) that is given in (2.18) -
(2.20).
Next, let us consider the continuous linear initial data given by (2.21), which results in the
exact solution (2.22). We again substitute the latter in the evolution operator formulae
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(2.14) - (2.17) and carry out the integrals over the cone base and mantle exactly. From
(A.1) with these data the first integral is very simple, giving

1

2π

∫ 2π

0

[φQ − uQ cos θ] dθ =
1

2π

∫ π/2

−π/2

(
φR − uR cos θ

)
c∆t cos θdθ = c∆t

(
1

π
φR − 1

4
uR

)
,

(A.7)
instead of (A.2).
The mantle integral is more complicated, because of the change of solution form along
the line x = ct̃ = c(∆t− τ), which cuts the mantle at θ = θ̄ (given by τ cos θ̄ = ∆t− τ as
used in (A.3) ) if τ ≥ 1

2
∆t. We therefore first prove a more general result which we can

utilize later.

Lemma A.1 For the 1D wave equation solution

φ(x, t) = f(x − ct) + g(x + ct), u(x, t) = f(x − ct) − g(x + ct), (A.8)

where f, g ∈ H1(R), the mantle integrals in (2.14) and (2.15) (evaluated at the origin)
are given by

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

fQ′

(
cos θ
cos 2θ

)
dθdτ =

( −1
1/2

)
f(−c∆t) (A.9)

+
1

2π

∫ 2π

0

(
1

cos θ

)
f(c∆t cos θ)(1 − cos θ)dθ,

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

gQ′

(
cos θ
cos 2θ

)
dθdτ =

(
1

1/2

)
g(c∆t) (A.10)

− 1

2π

∫ 2π

0

(
1

cos θ

)
g(c∆t cos θ)(1 + cos θ)dθ.

Proof: For fQ′ cos θ the left-hand side equals

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

f(cτ cos θ − c(∆t − τ)) cos θdθdτ

=
1

2π

∫ ∆t

0

1

τ

{
[sin θf(·)]2π

0 +

∫ 2π

0

cτ sin2 θf ′(c(1 + cos θ)τ − c∆t)dθ

}
dτ

=
1

2π

∫ 2π

0

c sin2 θ

{∫ ∆t

0

f ′(τ)dτ =
f(c∆t cos θ) − f(−c∆t)

c(1 + cos θ)

}
dθ

=
1

2π

∫ 2π

0

(1 − cos θ) [f(c∆t cos θ) − f(−c∆t)] dθ

= −f(−c∆t) +
1

2π

∫ 2π

0

f(c∆t cos θ)(1 − cos θ)dθ,

as given in (A.9).
For fQ′ cos 2θ, after integrating cos 2θ to give 1

2
sin 2θ = sin θ cos θ, we obtain instead on

the third line

1

2π

∫ 2π

0

c sin2 θ cos θ

{∫ ∆t

0

f ′(τ)dτ =
f(c∆t cos θ) − f(−c∆t)

c(1 + cos θ)

}
dθ

=
1

2π

∫ 2π

0

(1 − cos θ) cos θ [f(c∆t cos θ) − f(−c∆t)] dθ

=
1

2
f(−c∆t) +

1

2π

∫ 2π

0

f(c∆t cos θ)(1 − cos θ) cos θdθ,
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as given in (A.9).
For the left-moving waves, gQ′ cos mθ gives with the change θ −→ π + θ and g(ψ) −→
f(−ψ)

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

g(cτ cos θ + c(∆t − τ)) cos mθ dθdτ

=
1

2π

∫ ∆t

0

1

τ

∫ 2π

0

g(−cτ cos θ + c(∆t − τ))(−1)m cos mθdθ dτ

=
(−1)m

2π

∫ ∆t

0

1

τ

∫ 2π

0

f(cτ cos θ − c(∆t − τ)) cos mθdθ dτ (A.11)

to which (A.9) can be applied; then the changes back, θ −→ π + θ and f(ψ) −→ g(−ψ),
gives the result in terms of g(·) as (A.10). ¤

For the initial data (2.21) we write the solution (2.22) at Q′ in the form

φQ′ = 1
2
(φR + uR)(x − ct̃)+ + 1

2
(φR − uR)(x + ct̃)+ (A.12)

uQ′ = 1
2
(φR + uR)(x − ct̃)+ − 1

2
(φR − uR)(x + ct̃)+, (A.13)

where x = τ cos θ and t̃ = ∆t − τ . Now we can use the lemma to compute the mantle
integral in the φ update of (2.14) or (A.1): from f(x) ≡ x+ ≡ max(x, 0), so that (cos θ)+

gives a contribution only if θ ∈] − π/2, π/2[, we get

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

(x − ct̃)+
Q′ cos θdθdτ =

c∆t

2π

∫ π/2

−π/2

cos θ(1 − cos θ)dθ = c∆t

(
1

π
− 1

4

)
;

(A.14)
and from g(x) ≡ x+ we get

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

(x + ct̃)+
Q′ cos θdθdτ = c∆t− c∆t

2π

∫ π/2

−π/2

cos θ(1 + cos θ)dθ = c∆t

(
3

4
− 1

π

)
.

(A.15)
Putting these together from (A.11), the mantle integral becomes in this case

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

uQ′ cos θdθdτ =
1

2
(φR + uR)c∆t

(
1

π
− 1

4

)
− 1

2

(
φR − uR

)
c∆t

(
3

4
− 1

π

)

= c∆t

[(
1

π
− 1

2

)
φR +

1

4
uR

]
. (A.16)

Subtracting this from (A.7) then yields for (A.1) the result

φ(0, 0, ∆t) = 1
2
c∆t(φR − uR), (A.17)

which is in agreement with the exact solution given by (2.22).
Thus in order to modify the cone base integral, giving (A.7), so that it incorporates the
effect of the mantle integral, given by subtracting (A.16), we need to make two changes:
firstly, the term arising from integrating uQ cos θ needs to be doubled, which has the same
effect as applying the rectangle rule to approximate the mantle integral; and secondly,
the term from φQ needs to be split into the two parts φP ′ +(φQ −φP ′), and that from the
latter must be multiplied by π/2. This leads to the update formula (2.23) - (2.25).
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For the update of u, the cone base terms with the data of (2.21) give

1

2
uP ′ +

1

2π

∫ 2π

0

[uQ cos2 θ − φQ cos θ]dθ =
c∆t

2π

∫ π/2

−π/2

(uR cos3 θ − φR cos2 θ)dθ

= c∆t

(
2

3π
uR − 1

4
φR

)
. (A.18)

The mantle term in φQ′ cos θ, introduced in (2.17), gives as in (A.16)

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

φQ′ cos θdθdτ = c∆t

[(
1

π
− 1

2

)
uR +

1

4
φR

]
. (A.19)

Finally, the mantle term in uQ cos 2θ is obtained from (A.9) and (A.10), as in (A.12) -
(A.16), giving

1

2π

∫ ∆t

0

1

τ

∫ 2π

0

uQ′ cos 2θ dθdτ =
1

2
(φR + uR)

c∆t

2π

∫ π/2

−π/2

cos2 θ(1 − cos θ)dθ

−1

2
(φR − uR)

[
1

2
c∆t − c∆t

2π

∫ π/2

−π/2

cos2 θ(1 + cos θ)dθ

]

=
1

2
(φR + uR)c∆t

(
1

4
− 2

3π

)
− 1

2

(
φR − uR

)
c∆t

(
1

4
− 2

3π

)
=

(
1

4
− 2

3π

)
c∆tuR.(A.20)

Thus the combination of (2.15) and (2.17) gives the update from (A.18) - (A.19) and
(A.20) as

u(0, 0, ∆t) = c∆t

[
uR

(
2

3π
− 1

π
+

1

2
+

1

4
− 2

3π

)
+ φR(−1

4
− 1

4
)

]

= c∆t

[(
3

4
− 1

π

)
uR − 1

2
φR

]
. (A.21)

Unlike (A.17), this is not in agreement with the exact solution given by (2.22). This is
because of the approximation made in (2.17): for the present data, the left-hand side
of (2.17) can be calculated exactly to give 1

4
c∆t(φR − uR); if (A.19) is replaced by this

expression we recover the exact solution.
Finally, then, to deduce the update formula (2.23) - (2.25), based on only cone base
values and so that (2.23) is exact for continuous linear one-dimensional data, we first
need to double the term arising from φQ cos θ. In the same way we add a term uQ cos 2θ,
corresponding to applying the rectangle rule to the mantle term uQ′ cos 2θ, to the cone
base integral of uQ cos2 θ to give uQ(3 cos2 θ−1). Then we split uQ into uP ′+(uQ−uP ′) and
multiply the term arising from the latter by π/2. This leads to the update formula (2.23)
- (2.25). Note that there is a close similarity between the treatment of the φ update and
the u update, except that the cos2 θ coefficient is introduced so as to respect the integrity
of the term u cos θ + v sin θ, whose integral around the perimeter of the cone base equals
the divergence of the velocity field averaged over the base.
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Figure 3: Cylindrical explosion, isolines of the solution obtained by the FVEG-A2 scheme
with the trapezoidal rule at T = 0.2 on a 400 × 400 mesh: the plots show density rho,
velocities (u,v) and pressure p.
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Figure 4: Cylindrical explosion, isolines of the solution obtained by the FVEG-A1 scheme
with Simpson’s rule at T = 0.2 on a 400×400 mesh: the plots show density rho, velocities
(u,v) and pressure p.
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