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Exclusive summary
The thesis reports on different methods developed to assess the structural response of ships
to soft grounding accidents, also referred to as stranding. These are exemplarily applied
to a container vessel. During stranding a vessel comes to rest upon a soft seabed and can
be subjected to the tide. If the water recedes, the hydrostatic forces change significantly
and the ultimate capacity is reduced. Severe global damage can be the consequence. The
ability to predict accidents and assess their consequences in order to minimise damage is
of great interest. This work contributes to the design of vessels against accidental load.
A simple method based on the ideal beam theory is presented to calculate the critical
combinations of stranding point and area, tidal range and load case, which lead to an ex-
ceedance of the permissible bending moment and shear force and/or to instability, as well
as the additional moments and forces during stranding. The ship’s form is not simplified.
Of all calculations stranding incidents amidship result in the highest bending moments
and shear forces. The shear force is detrimental at the vessels ends. Building on those
results a simulation procedure using the finite element method is developed to realisti-
cally simulate the damage process of the structure. The comparison with a real stranding
accident shows very good conformance. The advantage of the method is that the local and
global damage to the structure can be examined as a function of the soil characteristics,
ground geometry, the position of stranding and ebb tide. Most calculated scenarios end
in global damage to the structure and a fractured outer hull. The degree of damage, the
damage mode and the ultimate strength depend on the ground geometry and the soil char-
acteristics. It is necessary to model the ground with a sand material model because the
hull girder is not always less prone to hull collapse if set onto a soft bank. Furthermore,
the degree of collapse cannot be concluded from the height of the external forces and mo-
ments. The bending moments and shear forces have a different influence not only on the
damage but also on the hull capacity. Equations to assess moment-shear force interaction
curves based on the true and combined loading conditions during stranding are developed
to evaluate the influence of the shear force on the ultimate hull capacity. The true loading
of the structure during stranding reduces the ultimate strength by 10%.
The proposed methods are applicable to all ship types and ground geometries and to many
soil characteristics.

In der Dissertation werden verschiedene Methoden vorgestellt, um die Strukturantwort
von Schiffen bei weicher Grundberührung, auch Strandung genannt, zu berechnen. Sie
werden exemplarisch an einem Containerschiff gezeigt. Bei Strandung liegt das Schiff
auf weichem Boden auf und kann dann Tideeffekten ausgesetzt sein. Wenn das Wasser
abläuft, ändern sich die hydrostatischen Kräfte und die Grenztragfähigkeit der Struktur
wird überschritten. Es können starke Schäden auftreten bis hin zum Durchbrechen des ge-
samten Schiffes. Es ist von großem Interesse, diese Unfälle berechnen zu können, um den
Schaden zu minimieren. Diese Arbeit stellt Methoden vor, um Strukturen gegen globale
Schäden zu entwerfen.
Eine einfache Methode, basierend auf der idealen Balkentheorie wird eingeführt, mit der
die kritischen Kombinationen aus Strandungsposition, Tideeffekten und Beladung, die zum
Überschreiten des zulässigen Biegemomentes und der zulässigen Querkraft oder Instabi-
lität führen, berechnet werden können. Die Schiffsform wird nicht vereinfacht. Von al-
len berechneten Strandungsfällen ergeben sich die größten Momente und Querkräfte bei
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Strandung im Mittschiffsbereich. Die Querkraft ist im Falle der Strandung im Bereich
der Schiffsenden kritisch. Darauf aufbauend wird ein Verfahren unter Verwendung der
Finiten-Elemente Methode entwickelt, um lokale und globale Schäden bei Berücksichti-
gung aller realen Effekte zu berechnen. Der Vergleich mit einem bekannten Strandungsfall
zeigt gute Übereinstimmungen. Der Vorteil der Methode ist, dass der lokale und globale
Schaden in Abhängigkeit der Bodeneigenschaften und -geometrie, Strandungspositionen
und bei ablaufendem Wassers bestimmt werden kann. Fast alle berechneten Strandungs-
szenarien führen zum globalen Schaden und zum Aufreißen der Außenhaut. Die Scha-
densintensität, Schadensart und die Traglast hängen von der Bodengeometrie sowie den
Bodeneigenschaften ab. Der Boden sollte mit einem Sandmaterial simuliert werden, weil
der Strukturschaden bei Strandung auf weichem Untergrund größer sein kann als bei
Strandung auf (vereinfachtem) hartem Boden. Des Weiteren kann die Schadensintensität
nicht anhand der externen Momente und Querkräfte abgeschätzt werden. Die Biegemo-
mente und Querkräfte haben einen unterschiedlichen Einfluss nicht nur auf den Schaden,
sondern auch auf die Tragfähigkeit. Formeln zur Berechnung von Momenten-Querkraft-
Interaktionskurven werden entwickelt um u.a. den Einfluss der Querkraft auf das Traglast-
moment bei Strandung abzuschätzen. Die tatsächliche Belastung während der Strandung
führt zu einer Reduzierung der Traglast um 10%.
Die vorgeschlagenen Methoden sind auf alle Schiffstypen, Bodengeometrien und -eigen-
schaften anwendbar.
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1. Introduction

During stranding or soft grounding accidents a vessel comes to rest upon a seabed. Such
incidents are more likely to happen today than in the past in spite of continuous efforts
to prevent them. They can lead to loss of human life, severe environmental consequences
and economic losses. With the increasing demand for safety at sea and protection of the
ecosystem, the ability to predict accidents, assess their consequences and minimise the
damage of an accident is of great interest.

The probability of stranding incidents occurring, especially near harbours, is on the
increase for several reasons. Ship dimensions are still growing, harbour depth is more and
more limited and there is less and less room to manoeuvre.
The movement of goods is rising and more cost-efficient means of transportation are still
needed. A possible solution to the problem is to use larger ships. As a result, ship dimen-
sions are continuously growing and plans to build vessels with a capacity of 22 000 TEU
have already been announced, (United Nations [77]). At the same time the enlargement
of existing ports, especially in Europe, lags behind the commissioning of new generations
of ships. A good example is the Port of Hamburg, the biggest port in Germany. The ninth
deepening of the river Elbe has been planed since 2002. The dredging has not yet begun
but the ships for which the enlargement was planned are already sailing. Ships with a
draught of 13.5 m can reach the Port of Hamburg without tidal effects. Those with a max-
imal draught of 14.5 m must use tidal effects. At the moment vessels with a maximum
draught of 13.5 m call at the Port of Hamburg during the flood tide. The currently largest
container vessels ("Triple E" class) have a maximum draught of 15.5 m.
In addition to the limited depth of harbours, the demurrage is reduced and consequently
the manoeuvring room decreases.

Alongside the increasing probability of grounding accidents, the new generation of
container ship poses various challenges for harbour construction, e.g. container cranes
and handling facilities, quay construction, manoeuvrability of large vessels, erosions and
scours of the harbour bottom. The German Research Foundation (DFG) established the
Research Training Group "Ports for Container Ships of Future Generations: Interaction
of Ship, Fluid, Structure and Soil" (GRK 1096) to promote basic research to meet those
challenges. The present work forms part of the group’s work.

Research on the field of collision and grounding has begun early. First, the collision of
two ships was considered. Later, detailed studies on the punctuation of the hull structure
by diverse hard indenters were performed. There is a tendency in research to concentrate
on grounding on a sharp rock as a worst case scenario but the likelihood of such an oc-
currence is small. Research with focus on groundings on soft underground (also called
strandings) such as sand, silt or clay is rare. During stranding, the energy dissipation of
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the structure is low. A punctuation of the outer hull structure does not occur. The ship’s
speed is reduced and if there is enough friction it is stopped. When the contact area is
too large, additional measures have to be taken to drag the vessel free. A problem is that
stranded ships can be subjected to the tide. If the water level drops, the hydrostatic forces
change significantly and the structure can sustain a severe damage. In the worst case the
vessel breaks into two. But the crew has time until the next flood tide to take the right
action to save the ship.
Oil spills are the most typical consequence of grounding. A recent example is the strand-
ing of the container vessel Fowairet in September 2005. The vessel, which has a capacity
of 3800 TEU, was on its way to the Port of Antwerp (Belgium). Loaded with 1952 TEU,
it grounded in the Western Scheldt (The Netherlands) one hour after high tide. There was
no immediate damage to the vessel, but it started to crack as the tide receded, resulting
in oil leakage. A total rupture could be prevented. The salvage operation took two days.
During the third flood tide after the accident, the vessel was re-floated.
This event demonstrates that the risk level is not acceptable. Improvement of accident
prevention measures is essential to obtain the desired level of safety and protection of the
ecosystems. At the moment, very few tools are available to assess the consequences of
stranding. There are no methods in practice or in research to calculate stranding in all de-
tails. Therefore, it is important to develop simple methods to estimate the additional forces
and moments on the ship structure resulting from a stranding incident. Furthermore, for
a performance-based ship design, theoretical tools should be available to determine the
damage and the consequences of the accident with limited modelling and calculation ef-
fort.

Under normal conditions, the shear force needs to be very high to have an influence
on the bending moment. But during grounding the following aspects change the influence
of the shear force:

• The maximum shear force due to grounding is at the same position as the maximal
change of the bending moment. The highest values of shear force and bending
moment can coincide.

• Ships have a relatively low form factor α = Wpl/Wel, because their cross sections
are thin walled and often open. So their cross section capacity is small.

All calculations of this work are exemplarily applied to container vessels. The dimen-
sions of container ships are growing very fast. Especially container vessels are at risk
of sustaining severe damage during stranding. They have a low plastic reserve because
of their thin walled and open cross sections. Load forces are introduced into the bottom
structure at the bulkheads. If the ship comes to rest on a sandbank that is positioned in the
middle of a cargo hold there are no forces from the cargo on the inner double bottom.
Furthermore, container vessels are slender ships. The effect of trimming around the con-
tact area is greater than for full-bodied ships, since bow and stern have a very different
shape.
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The stranding process can be divided into two stages. The first stage begins with the
initial contact, includes the sliding phase and ends in the final stranding position. The
vessel does not suffer important damage during this stage (see section 2 and 3). The pro-
cess can be simulated independently with the kinetic model of Simonsen and Wierzbicki
[73] and Simonsen [69]. In the second stage the vessel is subjected to tidal actions. The
structural damage and the integrity of the stranded vessel has to be solved. This second
stage is investigated in the present work.





5

2. State-of-the-art of science and
technology

First the principles of stranding are described. Then damage statistics are given to demon-
strate the importance of the research field and to help identify realistic accident scenarios.
Later, existing theoretical and numerical approaches for grounding are discussed. Ap-
proaches for the determination of the ultimate hull girder strength follow, because this is
the criterion used to dimension the structure against extreme loads.

2.1. Stranding of ships

Ship stranding is a very complex process. Large contact forces, crushing of hull structure
and interaction with global motions result in a highly nonlinear process.
The vessel sails between cruising and manoeuvring speed in tidal waters. It runs on a soft
shoal. The ship structure does not suffer important damage between the initial contact
with the ground and the final stranding position. The impulse of the contact is basically
inelastic and reduces the ship’s speed. If there is enough energy the ship is stopped and
then lies on the ground. The soft ground will not penetrate the hull structure and the en-
ergy dissipation of the structure is low.
If the vessel is lying on the ground and the contact area is too large, additional measures
have to be taken to drag the vessel free. This has to happen immediately, otherwise the
stranded ship can be subjected to the receding tide and will loose substantial buoyancy.
The new distribution of the hydrostatic forces depends on the ship’s form, the draught,
the trim and the heel. If the contact to the ground does not exactly level with the ship’s
centre of gravity and the surface is drawn down, the ship’s draught changes and it trims
and/or heels around the contact point. The hydrostatic pressure forces are redistributed.
The ship partly loses its buoyancy. The lost buoyancy forces are introduced into the hull
structure at the grounding area via bedding pressure. The maximum shear force is now at
the same position as the maximal change of the bending moment. The interaction of the
contact force with the hogging bending moment affects the longitudinal resistance of the
hull. The predominant kind of damage is elasto-plastic buckles. If the ultimate hull girder
strength is reached, global damage can occur. As a result, bow and stern could immerse
and rotate around the contact area. This effect may reduce the hogging moment.
Not only the structure but also the soft ground is of deformable material. The load car-
rying capacity of the soil depends on its properties and conditions. “Soft ground” can
consist of different soil types, such as sand, silt, gravel or clay (among others). Compact-
ness and patterns in the arrangement of the particles as well as the void ratio and pore fluid
distributions define the capacity. Therefore, the contact forces between soil and structure
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also depend on the soil stress-stain behaviour.

2.2. Damage statistics

Data concerning the frequency and scenarios of stranding accidents are rare. In fact,
most classification societies have their own damage statistics. But the data are usually
not released out for publication. Open source statistics are given by some countries of
registration. The Federal Bureau of Maritime Casualty Investigation (BSU) of Germany
lists all accidents involving professional vessels that occur in German waters and those in-
volving vessels under the German flag. But the statistics are sorted differently according
to the requirements of the respective societies. They all collect different information on
accidents. Furthermore, shipowners are not interested in reporting accident information.
They are typically afraid that the occurrence of an accident could have a negative effect
on their reputation. So most likely some accidents are not disclosed and some reports
underestimate the extent of damage. Statistics are based on past events and they may not
reflect the present situation. In damage statistics only the final damage is given. It is not
immediately possible to derive the accident scenario, in particular the shape of the ground.
However, some statistics are given in table 2.1 to give an overview.

Table 2.1.: Grounding statisics.

source no. of accidents groundings years

Hampel [23] 3500 14% 1990-1996
GL 1356 40% 2000-2009
Lützen [40] 2946 32% 1950-2003
Samuelides [65] 441 43% 1993-2002
BSU 679 14% 2004-2009

Hampel [23] analysed data by the classification society Germanischer Lloyd (GL)
for vessel with a gross tonnage (GRT) over 100. Of the registered accidents 43% were
groundings on granular soil and 57% on rocks. In 51% of the grounding accidents the
place of junction was in the area of the cargo holds. 25% happened in the aft part and
24% in the fore part of the ship.
Lützen and Simonsen [40] analysed the HARDER (a project financed by the European
Union) damage database, which is collected from seven different sources. The vessels
are mostly conventional cargo ships with a length between 16 and 350 m. In 80% of the
grounding incidents the damage was below the tank top of the double bottom. Most ves-
sels were sailing at a reduced speed before the accident and the water depth was near the
draught of the vessel. The location of the centre of damage was mainly forward of the
midship.
Samuelides et al. [65] presented statistics for vessels over 100 GRT sailing under the
Greek flag. Assuming that the ship’s life is 25 years, Samuelides et al. [65] concluded
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that every fourth ship has a grounding during its lifetime.

The reviewed statistics give very different frequencies of grounding incidents. Other
publications, which are summarised in Committee III.1 [9] and Committee V.1 [10] of
the ISSC, do not provide more clarity. It is not possible to determine how many vessels
ground during their lifetime. However around one third of the reported accidents seem to
be groundings that happen inshore at reduced service speed. The structure is often dam-
aged. And the centre of damage usually occurs in the cargo hold region. Almost one half
of the grounding accidents are strandings because the vessel runs on a soft ocean bed.

2.3. Approaches for stranding accidents
Generals

Alsos and Amdahl [1] divided grounding accidents into three different cases depending
on the indenter shape (see figure 2.1).

Figure 2.1.: Ocean bed conditions: rock, reef, shoal (Alsos and Amdahl [1]).

Taking the hardness of the ground into the consideration, it decreases while the contact
area increases from the left to the right picture. With a bigger contact area the structural
damage rises as well. The accident scenario on a shoal is also called stranding or soft
grounding. If a ship hits a rock underneath the surface (left picture of figure 2.1), we talk
about hard grounding. In this case the structure is immediately damaged. The damage is
local e.g. punctuation while the overall structure remains intact. In hard grounding analy-
sis authors have focused on penetration and crushing mechanisms by the hard obstruction
(see e.g. Amdahl et al. [2], Kulzep [33], Naar et al. [44] Peschmann [54], Simonsen and
Wierzbicki [73], Simonsen [69], [72] and Zhang and Suzuki [85]). This resembles the
collision problem.
Simonsen and Wierzbicki [73] and Simonsen [69] presented a mathematical model for
calculation of loads and hull girder response during grounding on a rock pinnacle. The
computer program “DAMAGE” is based on this part of the work (see also Committee
V.1 [10]). Amdahl et al. [2] gave a scenario-based design procedure for hard grounding
and collision of tankers. The idea was applied for grounding of two tankers. Two dif-
ferent rigid indenters were forced into the double bottom. The use of the finite element
method (FE) was also verified by model tests. Naar et al. [44] compared the crashwor-
thiness of four different bottom structures during hard grounding with the FE programme
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LS-DYNA. Zhang and Suzuki [85] investigated the effect of boundary conditions, shell
element type, residual stresses, material model, friction coefficient and rupture strain on
the stiffness of a single-hull bottom hit by a rigid wedge shape rock also with the help of
LS-DYNA.

Approaches

The stranding scenario is described by a small number authors. At first works with an-
alytical/empirical approaches are given. Afterwards numerical solutions of the problem
are discussed. The chapter closes with a review of grounding experiments.

Lehmann [35] published a formula to estimate the additional bending moment at the
mainframe of any ship. The additional bending moment at the mainframe due to different
stranding positions is:

M(
Lpp

2
) =

∆T · B · Lpp
2 · cWp · ρw · g
8

·
(
4

e

Lpp
− cM

)
(2.1)

with ∆T = T0 −
Th + Tv

2

e is the distance between the grounding point and half of the length between perpen-
dicular Lpp/2. Furthermore, it is assumed that the maximal bending moment lies at Lpp/2,
so that the shear forces are zero at Lpp/2 in the initial position before grounding. This as-
sumption is correct if the longitudinal centre of gravity Lcg lies at Lpp/2. The required
coefficients cWp and cM are given by Lehmann [35] (pp. 924) for different block coeffi-
cients cB. They are assumed to be constant for different draught.

Östergaard et al. [47] developed formulas to calculate the additional vertical force
V (L∗, τ) and the additional bending moment Mv(L∗, τ, x) caused by stranding of a pon-
toon. The formula is based on geometrical examinations.
The additional bending moment is calculated with the following equations:

for 0 ≤ x ≤ (L− L∗)

Mv(L
∗, τ, x) = ρgB ·

(dh − dv
6L

x3 − D − dv
2

x2
)

(2.2a)

for (L− L∗) < x ≤ L

Mv(L
∗, τ, x) = ρgB ·

(dh − dv
6L

(x3 − L3)− D − dv
2

(x2 − L2)
)

(2.2b)

+V (L∗, τ) · (x− L)
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with V (L∗, τ) = ρgBLτ ·
(
1 +

3

2
L · (0.5− L∗

L
) · f(L∗, L)

)

and f(L∗, L) =
(L∗)2 − (L− L∗)2

(L∗)3 + (L− L∗)3

dh − dv = τ · 3
2
· L · f(L∗, L)

D − dv = τ · (3
2
· (L− L∗) · f(L∗, L) + 1)

The relevant geometrical dimensions are shown in Figure 2.2.

Figure 2.2.: Description of a grounded pontoon (Östergaard et al. [47])

Pedersen [52] presented a mathematical analysis model to calculate the contact force
between ship and ground. He divided grounding into two phases. During the first phase
the vessel experiences an impulse due to the sudden contact with the sea bottom. Pe-
dersen [52] developed a simplified methodology based on rigid-body motion theory. The
assumptions are: an inelastic impulse and a rigid ship. Therefore, the ships forward speed
is reduced and it only has surge, heave and pitch velocities. In the second phase the ship
slides up the ground slope. The rest of the kinetic energy from the first phase is trans-
formed into friction and potential energy. In the final laying position the contact force is
given to be:

Fz = ρgAz ·
z

(1 + !2

r2 )
(2.3)

with r =

(
∇ ·GML

Az

) 1
2

and % = (xc − s)− xF

The contact force Fz only depends on the vertical displacement of the centre of floata-
tion (LCF). The relevant dimensions are given in figure 2.3, with z for vertical displace-
ment of the hull section, r for equivalent radius of inertia and the typical ship parameter.
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Figure 2.3.: Description of grounded ship (Pedersen [52])

The equation is only valid for small values of z/T . Pedersen [52] gave formulas for
the additional bending moment (equation 2.4) in the final laying position, too. He as-
sumed that the breadth is constant over the length and that the waterplane area does not
change while emerging.

M(x) ≈ zρgAzL

(1 + !2

r2 )

[(
x

L
+

1

2

)[
lL

2r2

(x

L

)(
x

L
− 1

2

)
+

1

2

(
x

L
+

1

2

)

−4l

L

{(x

L

)2
− x

2L
+

1

4

}]
− x− xc

L
H(x− xc)

] (2.4)

with H(x− xc) =






0 : x ≤ xc

1 : x > xc

For two different tanker vessels Pedersen [52] exemplarily compared the grounding-
induced sectional shear forces and bending moments to the wave-induced shear forces and
bending moments according to IACS (Nitta et al. [46]) rules. He concluded that grounding
incidents of partly loaded ships are often more severe than of fully loaded ships and that
the grounding-induced shear forces are more critical than the grounding-induced bending
moment. Furthermore, the presented mathematical model was compared to model and
full-scale grounding experiments (also see Pedersen and Sterndorff [53]) and good agree-
ment was found. Pedersen [52] also found that large vessels are much more exposed to an
overall failure than smaller vessels in a grounding accident.

The publications of Simonsen and Pedersen [70], [71] and Simonsen [69] focused on
stranding of ships at the bow. A mathematical model for assessing loads and hull girder
response during soft grounding is derived. In Simonsen and Pedersen [70], [69] the reac-
tion of the ground is described. The focus is placed on the interaction between ship and
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ground. They approximated the hydrodynamic pressure forces by constant added-mass
terms. The ship hull was assumed to be rigid. Later, Simonsen and Pedersen [71] con-
sidered the hydrodynamic pressure forces due to shallow water effects. The method is
developed for the dynamics of ships stranding at the bow. The ship is modelled as an elas-
tic beam. So the structural response can be determined as flexural and longitudinal stress
waves cause the transient ground reaction and the hydrodynamic forces. Results, which
are the furrow of the bow in the sea bed, time variation of the grounding forces, sectional
shear forces and bending moments, are presented for a very large crude carrier. The dy-
namic grounding-induced sectional forces are 15-20% higher than the forces derived by
the method given in Pedersen [52]. Simonsen and Pedersen [70], [69] further presented
a mathematical model to calculate the sea bed soil reaction forces on the ship bow. The
vessel hits the soft ground with its bow. It is assumed that the penetration of the ship bow
generates a flow of pore water through the grain skeleton of the soil. The flow is driven
by Dacy’s law and by the pressure of the pore water. Besides being subjected to the pore
water pressure, the bow is also subjected to the effective stresses in the grain skeleton.
The model is implemented in a computer program and compared with experiments. Good
agreements of the stopping length, the furrow depths, the vertical soil reaction and the
effective coefficient of friction were found.

Relevant works that use numerical approaches to solve parts of the stranding problem
are those of Alsos and Amdahl [1] and Reich and Röhr [60], [61], [63].

Alsos and Amdahl [1] computed different grounding and stranding scenarios for a
tanker. They modelled three different rigid indenters (see also figure 2.1) which penetrated
into the ship bottom at four different locations amidships. By a prior mesh convergence
study they got the element size of 150 mm for the FE simulations. The model had almost
two tank lengths and Bernoulli boundary conditions at its ends. The rest of the vessel was
not considered. However, in the calculations with the “shoal” indenter they included the
global hull bending moment and the flexibility of the ship beam. The bending moment
due to grounding and the change of water level is considered via linear considerations.
Alsos and Amdahl [1] include the immersion of bow and stern when the ultimate resis-
tance of the girder is reached. Then the girder starts to rotate like a rigid body around the
damage location. They assumed that the waterplane area of fore and aft body are identical
and do not change with the heave motion. They did not include the influence of the trim.
Alsos and Amdahl [1] found that due to the contact with the “shoal” indenter, large parts
of the hull structure were deformed, e.g. web crushing and grillage deformation in the
double bottom. This leads to a reduced cross section and global bending resulted in buck-
ling of the longitudinal sections. So the interaction of the hogging bending moments and
the contact forces affects the longitudinal and penetration resistance of the hull. The skin
may not fracture but the overall damage can in the worst case lead to the collapse of the
hull beam. Collapse occurred after three to four meters of tidal effects.

Reich and Röhr [60], [61] coupled the FE method with the boundary element method
to calculate stranding for a midship section of a tanker. The method was developed to
compare two different constructions of the double bottom under extreme loading condi-
tions. The midship section is modelled with finite elements and the ground is represented
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by a boundary integral formation. The vessel comes to the stranding position without
any structural damage. In the first step the contact problem is solved. The qualitative
distribution of the bedding pressure resulting from the vertical forces (weight, loading
and hydrostatic pressure) is calculated. In the second step a global moment and a global
shear force are additionally introduced into the model at each end. The global forces are
increased until the structure starts to collapse. The characteristics of the ground are given
by an isotropic and linear elastic behaviour with three different transversal layers. The
computational model is developed further (see Reich and Röhr [63]) to couple external
and internal mechanics. This ties in with the idea of Simonsen and Pedersen [70, 71].
In their hybrid computational method a quasi hydro-elastic nonlinear Timoshenko beam
model for the hull girder structural responses, and a three-dimensional contact problem
model for grounding loads were combined.

The only known large-scale grounding experiment on soft ground was made by Ped-
ersen and Sterndorff [53]. A condemned fishing vessel was used. The experiments were
performed on an artificial island and samples were collected from the island’s ground.
They measured surge, heave and pitch acceleration as well as the deformations of the
ground and the ship bow for each test. The vessel suffered no damage during all ten tests.
The experiments were used to verify the mathematical models for the external dynamics
of stranding presented by Pedersen [52], Simonsen and Pedersen [70], [71] and Simonsen
[69].

Two large-scale grounding experiments were conducted by Peschmann et al. [55],
Peschmann [54] and Kulzep [33]. A double bottom section of a big tanker was scaled
down to 1:3 and fixed at a condemned inland water vessel. The tanker was navigated onto
a man-made, hard rock. For the second test the double bottom was filled with foam ma-
terial. The results, e.g. the energy balance, the deformation and the reaction forces, were
compared to non-linear FE calculations. The effect of half filled tanks was also taken into
account.

Wang et al. [80] analysed the effect of different rigid indenter shapes and sizes, which
represent a rock, through scaled down double bottom grounding experiments. Different
penetration locations were used. Four theoretical models were given to calculate the dif-
ferent failure mechanisms. The results are satisfactorily equal to those of the test. The
work shows that the outer hull is punctured easily by small indenters, while the internal
web configuration is damaged by larger indenters before the shell plating ruptures.
Later Wang [79] published a linear approach to calculate the ultimate hull girder bend-
ing moment for vessels in hogging condition and with accidental damage. He simply
compared the section modulus SM0 of the intact vessel with those of the damaged cross
section SM ′. The area of the damaged structure (A) is removed from the cross section
area. For grounding the following equation is given:

SM ′

SM0
= 1− α1

(
b

B

)
with α1 =

Ab

A

(
Az20
I

+ 1

)
(2.5)

The ship breadth B, the breadth of the damaged area b, the area of the bottom Ab as
well as the cross section area A, the height of the neutral axis z0 and the moment of inertia
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of the intact cross section are needed.

All existing studies simplify the distribution of the hydrostatic forces due to stranding
or the ground and can only be applied to a specific grounding position. Furthermore, the
presented methods are applied to full-bodied ships. Due to its specific form, it is not pos-
sible to calculate the new distribution by hand for a ship without any assumptions. This
is why a new method is introduced to calculate the total bending moment, shear force
and heeling angle due to grounding for any ship depending on the load case, the ground-
ing point/area and the surface drawdown (see section 3). This method is further used to
control the global forces, moments and reactions in the FE simulation of stranding sce-
narios (see section 4). The soft ground is also modelled. Therefore the three stages of the
problem, which are the external dynamics of the grounding event, the internal problem
involving structural damage, and the analysis involving the integrity of a stranded ship
subjected to tidal actions can be assessed. The first stage can be calculated with the ki-
netic models of Pedersen [52] and Simonsen [69], [70], [71] or Kulzep [33].

There are no experiments available to verify the presented procedure to simulate
stranding accidents within this work. Thus, other tools need to be found or used to verify
the results. For example, classification societies evaluate the capacity of the hull girder
considering extreme loads to ensure safe design of a ship’s hull. The known approaches
to achieve the ultimate hull girder strength are given in the next part (see section 2.4).

2.4. Ultimate hull girder strength

The maximum capacity, that structural members and systems can sustain is called the
ultimate strength. Buckling and yielding dominates the ultimate strength if compressive
stress is mainly present. When tensile stress is dominant yielding is the collapse mecha-
nism. We talk about ultimate strength if we consider small structural units. The capacity
of a ship’s hull on the other hand is measured by its ultimate hull girder strength (UHGS).
The longitudinal strength is the ability of a ship structure to resist longitudinal bending
under operational and extreme loads without failure. During stranding the structure can
be subjected to extreme bending moments and shear forces.
Numerous empirical and analytical methods are available for calculating the ultimate
strength of plates, stiffened plates and shells. A good summary is given in Committee
III.1 [9]. Most of the design equations are based upon numerical parametric studies and
not on test data.
There are two ways to calculate the ultimate hull girder strength under longitudinal bend-
ing for a ship. One is to directly calculate the UHGS and the second is to carry out a
progressive collapse analysis on a hull girder.
Caldwell [7] as the first to introduce a direct method. He theoretically evaluated the UHGS
of a vessel subjected to longitudinal bending. He considered the influence of buckling by
reducing the yielding stress of the material at the buckled elements. The ultimate strength
is generally overestimated by this method (and later improvements) because it is calcu-
lated without considering the strength reduction of the structural members beyond their
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ultimate strength.
In the progressive collapse analysis the strength reduction of each member is taken into
account. The best known simplified method for a progressive collapse analysis was pre-
sented by Smith [74], nowadays called Smith’s method. His idea was to consider the
strength reduction of structural members after their ultimate strength and the time lag in
collapse of each member. He divided the cross section into small elements (so-called pate-
stiffener combinations). The average stress-average strain relationship of these elements
is determined before performing the progressive collapse analysis. The results depend on
the accuracy of the average stress-average strain relationship of each element. There are
several works that focused on the development of more reliable stress-strain curves (see
Committee VI.2 [11]).
Another simplified method is the Idealised Structural Unit Method (ISUM), where the
structure is divided into larger structural units. Effective and simple elements are needed
to consider the influences of buckling and yielding. These are still under development
(see Committee VI.2 [11], Committee III.1 [9]).
It is also possible to simulate a progressive collapse analysis with the FE method. But
there are few applications because the influence of material and geometric nonlinearities
have to be taken into account and the hull girder may be too large. However, the FE
method is the most accurate method for progressive collapse analysis.

2.4.1. Ultimate hull girder strength check in classification
rules

Most classification societies use Smith’s method to predict the UHGS and thus the ca-
pacity of the hull. Part of this work was to check whether calculation of classification
societies have existing calculation rules that can be expanded to include the influence
of shear forces. Besides the Common structural rules (CSR), the rules of the following
classification societies are considered: Bureau Veritas (BV), Det Norske Veritas (DNV),
Germanischer Lloyd (GL), Lloyd’s Register (LR) and Nippon Kaiji Kyokai (ClassNK).
A comparison of the various rules is performed. With the exception of DNV, all societies
mentioned adopted the procedure described in the Common structural rules for bulk car-
riers (CSR-Bulkers) [26] with small modifications. Therefore, the CSR-Bulkers form the
basis of the comparison and are described in detail.

UHGS check in the Common structural rules for bulk carriers

The sum of still water and vertical wave bending moment has to be smaller then the ver-
tical ultimate bending moment MU divided by a partial safety factor γR. The ultimate
bending moment capacities of a hull girder transverse section are defined as the maxi-
mum values of the moment-curvature curve. The bending moment capacity MU versus
the curvature χ of the transverse section is calculated via Smith’s method. The algebraic
sign of the curvature depends on the load case, positive for hogging and negative for sag-
ging. The applied curvature, which equals the rotation angle of the hull girder transverse
section around its horizontal neutral axis, is incrementally increased and induces axial
strain. The basic procedure is divided into seven steps.
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First the longitudinal units of the structure are divided into stiffened elements. Three kinds
of elements are defined: ordinary stiffeners (stiffener and connected plate), hard corners
(in general two plates that are in different planes) and plating panels (lies in between or-
dinary stiffeners, hard corners or between ordinary stiffeners and hard corners). For each
element the stress-strain relationships is defined depending on the mode of failure in the
second step. Third, the curvature and the neutral axis for the first increment step need to be
found with the value of the incremental curvature that induces a stress equal to 1% of the
yield strength in the strength deck. In the fourth step the strain εi and stress σi depending
on the curvature χi is calculated for each element. Fifth, the neutral axis is determined at
each incremental step by establishing force equilibrium over the whole transverse section.
In the sixth step the contributions given by the stress σi acting on each element is summed
to obtain the moment Mi. Lastly the moment in the current incremental step is compared
with the moment in the previous incremental step. If the slope in the moment-curvature
curve is less than a negative fixed value the peak value is the searched ultimate bending
moment. Otherwise the curvature is increased and the analysis is done again beginning at
the fourth step.
Several assumptions are made. Among others, the ultimate strength is calculated at hull
transverse sections, that remain plane during each increment, between two transverse
webs. The material exhibits an elasto-plastic behaviour. The stress-strain curves are cal-
culated for the failure mechanisms of the element and the lowest stress is selected of the
values that are obtained from each of the considered load-end shortening curves. The
failure mechanisms are: ideal elasto-plastic collapse, beam column buckling, torsional
buckling, web local buckling of flanged profiles, web local buckling of flat bars and plate
buckling. The effects of shear force, torsion force, horizontal bending and side pressure
are neglected. Initial imperfections i.e. pre-deformation and residual stress are not con-
sidered.
The UHGS is calculated for sagging and hogging in intact, harbour and flooded condi-
tions.

Difference in the UHGS check of various classification societies

The differences are described with respect to the UHGS check of the CSR-Bulkers. The
most significant differences are also summarised in table 2.2 and 2.3.

• The incremental UHGS check of the Common structural rules for tanker (CSR-
Tankers) [25] is similar to the method for CSR-Bulkers. It is only required to check
the UHGS for sagging in the intact condition. The factors in the empirical deter-
mination of the vertical bending moment and the safety factors are a little different.
The incremental curvature step is different and the CSR-Tankers do not differentiate
between the yield stress in plates or stiffeners.
In addition to the progressive collapse analysis a simplified single step procedure
that is based on a reduced hull girder bending stiffness accounting for buckling of
the deck can be applied to calculate the sagging UHGS. If the assumption that the
ultimate sagging capacity is the point at which the ultimate capacity of the stiffened
deck panels is reached is fulfilled by the structural configuration this procedure is
valid.
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• Bureau Veritas (BV) [6] gives slightly different safety factors. There is no differ-
ence defined for the yield stress of plates or stiffeners. For the failure mechanism
’torsional buckling’ the Euler torsional buckling stress is given in another way. The
UHGS check needs to be performed for sagging and hogging cases in intact and
harbour conditions.

• In the rules of Germanischer Lloyd (GL) [18] the incremental UHGS check has
more differences to the CSR-Bulkers. The method is partly based on DIN 18 800
norm (see Committee III.1 [8]). The effective width bm has to be determined accord-
ing to the buckling strength analysis. The failure mechanism ’buckling of flat bars’
is not considered. The slenderness ratio is additionally dependent on a buckling
factor. The critical stresses for beam column and torsional buckling are differently
defined. The failure mechanism ’plate buckling’ is calculated with other definitions.
GL has also own safety factors and an other curvature definition. The yield stress
for plates and stiffeners is equal. The check is not necessary for harbour conditions.

• The classification society Lloyd’s Register (LR) [39] has no rules of its own. If the
UHGS check is necessary (for bulkers and tankers), the procedures of the CSR are
accepted.

• Nippon Kaiji Kyokai (ClassNK) [45] adopted the CSR-Bulkers and Tankers. The
safety factors are defined differently.
Besides those rules ClassNK has a single step method based on simplified equa-
tions. It can be applied if the deck and bottom longitudinal stiffeners are arranged
at almost the same interval, and that deck/bottom plating thickness is almost the
same. For bulker and container vessels the yield stress is not the same in stiffeners
and plates.

• For vessels over 100 m in length, that are classified by Det Norske Vertias (DNV)
[12], a different UHGS check has to be performed. The method is not based on
Smith’s method. For the buckling modes of plates and stiffened plates DNV uses the
elastic large deflection plate theory of Marguerre and von Karman in its program
PULS (for more details see Committee III.1 [8]). The bending moment capacity
MU is the sum of an elastic moment capacity ME and an additional moment due to
the increase in allowable stress above the elastic buckling limit ∆MU . There is an
additional moment because plate elements subjected to extreme loading can have
in-plane compressive stresses above the elastic buckling stress. Thereby, functional
requirements are not allowed to prohibit large and off-plane elastic deflections.
At first the maximum allowable compressive stress is calculated for each local panel
where elastic buckling is expected. This depends on the elastic buckling stress and
an excess factor. For the elastic buckling stress the buckling factor is determined
in the same way as described in CSR-Bulkers. Afterwards the effective breadth is
derived, because elastic buckling reduces the effective breadth of plates taking part
in the compression area. Now the bending moment capacity can be determined with
respect to the plastic neutral axis.
The check is only necessary for intact conditions. The yield stresses of plates and
stiffeners is different.
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The ultimate hull girder strength is calculated for a cross section of a container vessel
with the programs POSEIDON (GL), MARS2000 (BV) and NAUTICUS (DNV). The rele-
vant dimensions of the 4300 TEU POSTPANMAX container vessel (called Postpanmax)
built in 2009 are given in table 2.4.
It is possible to additionally calculate the UHGS based on CSR-Bulkers and CSR-Tankers
with the program Nauticus. This allows a comparison of the qualitative differences of the
UHGS checks based on CSR-Bulkers, CSR-Tankers, GL, BV and DNV. Although a con-
tainer vessel is typically in hogging the UHGS is also calculated for the sagging condition.

Table 2.4.: Dimensions of Postpanmax.

length Loa [m] 294.10
length Lpp [m] 285.60
breadth B [m] 40.00
height D [m] 24.20
design draught Td [m] 12.04
block coefficient cB 0.656
mainframe coefficient cM 0.98
speed v [kN] 24.00

At first the geometrical results are presented in table 2.5. The moment of inertia Iy, the
height of the elastic neutral axis from the base line z, the section modulus of the bottom
WB at z = 0 and the section modulus of the deck WD at z = 24.2 m are different. The
programs are based on different calculation methods and have rounding errors. There-
fore, it is not remarkable that the still water (MSW ) and wave induced vertical bending
moments (MWV ) for sagging and hogging are different (see table 2.6). Mhog and Msag

are the resultant bending moments at z = 0. γW is a safety factor.
The ultimate capacity of the hull under hogging (MU,hog) and sagging (MU,sag) is pre-
sented in table 2.8. The factors fUS,sag and fUS,hog reveal the ratio of the actual moment
from the requested moment. For example, for hogging the equation is:

fUS,hog =
Mhog · γR
MU,hog

> 1 → not acceptable (2.6)

The smaller the fUS,sag or fUS,hog the larger the reserve of the cross section against
collapse. Values above one are not acceptable. In the rules of DNV the security factor is
ηu (see table 2.3) whereas γR is equal to 1/ηu.
In the hogging condition the vessel has the largest UHGS if it is calculated according to
CSR-Bulkers, CSR-Tankers or BV that assume a similar value for fUS,hog. The smallest
UHGS is predicted via the rules of DNV. The results of GL lie in between.
For sagging the predicted UHGS is smaller than for hogging. Only from the viewpoint
of DNV is the UHGS higher under hogging. The lowest factor fUS,hog is achieved with
the rules of BV and the highest with the rules of GL. According to GL the structure is
not secure in extreme sagging conditions. All other rules lie in between those of BV and
GL. The difference arises because GL refers the section modulus of the deck to a higher
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z-position.

Table 2.5.: Geometry and section modulus.

Iy [m4] z[m] WB[m3] WD[m3]

CSR-B 456.78 10.43 43.79 33.17
CSR-T 458.55 10.41 44.07 33.24
GL 478.33 10.39 46.05 31.17
BV 477.31 10.28 46.44 34.28
DNV 475.69 10.30 46.19 34.22

Table 2.6.: Bending moments for hogging.

MSW[kNm] MWV[kNm] γγγW Mhog[kNm]

CSR-B 3 390 951 4 007 886 1.20 8 200 414
CSR-T 3 221 834 4 007 886 1.20 8 031 297
GL 3 390 851 4 009 026 1.20 8 201 682
BV 3 390 951 4 007 887 1.10 7 799 627
DNV 3 390 951 4 007 886 1.00 7 398 139

Table 2.7.: Bending moments for sagging.

MSW[kNm] MWV[kNm] γγγW Msag[kNm]

CSR-B 2 748 139 4 650 697 1.20 8 328 975
CSR-T 2 192 170 4 650 697 1.20 7 773 006
GL 2 741 894 4 657 983 1.20 8 331 473
BV 2 748 140 4 650 698 1.10 7 863 908
DNV 2 748 139 4 650 697 1.00 7 398 836

Table 2.8.: Comparision of UHGS of the checked classification rules.

MU,hog[kNm] MU,sag[kNm] γγγR fUS,hog fUS,sag

CSR-B 12 954 458 10 248 029 1.10 0.70 (3.) 0.89 (4.)
CSR-T 13 029 483 10 277 215 1.10 0.68 (1.) 0.83 (2.)
GL 11 480 584 8 804 525 1.20 0.86 (4.) 1.14 (5.)
BV 11 855 100 11 154 100 1.05 0.69 (2.) 0.74 (1.)
DNV 9 601 559 10 085 414 1.18 0.91 (5.) 0.86 (3.)
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All discussed methods do not consider the effect of shear force, torsion force, hori-
zontal bending and side pressure. To estimate the influence of stranding for the UHGS the
shear force should be taken into account, at least.
The class rules are based on the incremental increase of the curvature, no load distribution
is considered. Therefore it is not possible to derive the acting shear force. It is however
possible to introduce a fictive shear force that is incrementally increased together with the
fictive bending moment Mi. In each incremental step the effective cross section-area of
the stiffened elements could be reduced due to loading with shear forces and then the rest
of the cross section is taken for calculating the ultimate bending moment.

Although it is possible to expand the existing rule programs to include the shear force
in the calculation of the UHGS, this option is not chosen. The moment-shear force inter-
action would depend on the assumption of the fictive shear force. The change of the global
bending moment due to stranding would not be considered. The programs are optimised
for the midship section and are not open source.

2.4.2. Interaction of ultimate bending moment and shear force
Especially the additional shear force at the stranding area has an influence on the ultimate
hull girder strength. For symmetric beam structures, e.g. with double T-sections or full
cross sections, interaction curves can be found mainly in the field of civil engineering (see
among others Drucker [14], Petersen [56], Reckling [58], Schneider et al. [67], Windels
[82], Windels [83]). Usually the effective cross section is reduced due to loading with
shear forces and then the rest of the cross section is taken for calculating the ultimate
bending moment. The method is easily applicable because the elastic neutral axis is equal
to the plastic neutral axis.

Paik et al. [51] published analytical formulas to calculate the ultimate capacity under
pure bending moment or shear forces for ship-like cross sections. A moment-shear force
interaction curve is empirically derived for combined loading. Different cross sections
are modelled and calculated with ISUM. The shear force is first applied incrementally
and fixed at a certain value and then the moment is applied incrementally. The curves also
depend on different ship types as well as on a partly different relation of applied bending
moment and shear force. The formula for the ultimate bending moment is based on an
earlier publication (Paik [48]) and was expanded for every cross section type. It is also
compared to other analytical formulas, such as that of Caldwell [7], which overestimates
the ultimate bending moment in general. Caldwell [7] suggested the formula for a simple
cross section without double bottom or additional decks.

Ultimate moment and shear force capacity after Paik et al. [51]

For a pure hogging moment the ultimate moment capacity is given by Paik et al. [51] in
the following equation (2.7) whereas the coordinate system is changed to the standard
known coordinate system in shipbuilding (x: ship length, y: ship breadth, z: ship height):
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MV uh = Az0σuB(D − g) + Az1σuIB(D − z1 − g)

− 1

H
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[
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]
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σzSU ·H
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All relevant variables are plotted in figure 2.4 and are:

Ayi : sectional area of vertical members at y = yi

Azi : sectional area of horizontal members at z = zi

σuD, σuB, σuIB, σuSU , σuSL : ultimate compressive stress of panels at deck,
outer bottom, inner bottom, upper and lower side shell

σzD, σzB, σzSU , σzSL : yield stress of outer bottom, inner bottom, upper
and lower side shell

D : depth of ship

g : neutral linear elastic axis above base line
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(a) cross section (b) hogging

Figure 2.4.: Assumed longitudinal stress over hull cross section (Paik et al. [51]).

The ultimate compressive stresses σu can be calculated via an empirical formula, given
in Paik [48]:

σu = σz(0.995 + 0.936λ2 + 0.17β2 + 0.188λ2β2 − 0.067λ4)−0.5 (2.8)

The plate slenderness ratio β, the column stiffened slenderness ratio λ and the yield
stress σy are defined as:

β =
b′

t

√
σz

E
(2.9a)

λ =
a

πr

√
σz

E
(2.9b)

σy =
b′tσzp + Astσzs

b′t+ Ast
(2.9c)

b′ : spacing between longitudinal stiffeners
t : plate thickness
E : Young’s modulus
a : length of stiffened panel between transverse frames
r : radius of gyration of stiffener with full plating
σzp, σzs : yield stress of plate and stiffener
Ast : cross section area of one stiffener alone
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The ultimate shear force QV u is given by the known approach in equation (2.10) and
the ultimate shear stress τu of a rectangular plate between stiffeners was published by Paik
and Lee [49] (see equation (2.11)).

QV u = 2Asτu (2.10)

τu = τcr · α · d2 −
√

d22 − 4d1d3
2d1

(2.11)

with d1 = 0.0126 · τz
d2 = 0.1067 · τz + τcr
d1 = 1.084 · τz

α accounts for the influence of distortion of stiffeners and is set to 0.9. The critical
shear buckling stress τcr in equation (2.11) is achieved by a plasticity correction to the
elastic shear buckling stress σz given by American Bureau of Shipping [3] and the elastic
shear buckling stress τE is calculated according to Bleich [5] in equation (2.13).

τcr = τE for
τE
τz

≤ 0.5 (2.12a)

τcr = τz

(
1− τz

4τE

)
for

τE
τz

> 0.5 (2.12b)

τE =kτ · σE (2.13)

with σE =
π2E

12(1− ν2)

(
t

b′

)2

and kτ =5.34 + 4

(
b′

a

)2

for
a

b′
≥ 1

kτ =5.34 + 4
( a

b′

)2

for
a

b′
< 1

A moment-shear force interaction curve is empirically derived on the basis of the cal-
culated values MV u under pure bending moment and QV u under pure shear force loading
whereas the factors are given as c3 = 2 and c4 = 5:

(
MV

MV u

)c3

+

(
Q

QV u

)c4

= 1 (2.14)

Yao et al. [84] expanded their computer program HULLST, which is based on Smith’s
method, to calculate the influence of the shear stress and warping due to alternate loading.
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In both publications (Paik et al. [51] and Yao et al. [84]) the interaction of bending mo-
ment and shear force is examined under normal loading conditions.

There are few simple methods/formulas to estimate the influence of the shear force
in combination with the acting bending moment for ship hull-like structures. Here the
elastic and plastic neutral axis are different. The above mentioned methods are based on
non-commercial computer programs which are not available to the author. Furthermore,
the proposed methods are not for extreme loading conditions. Thus, an own method is
developed based on an experiment (see section 5) to estimate the influence of the shear
force on the ultimate bending moment for diverse cross sections. The aim is to predict
the reserve of the ultimate capacity when the acting bending moment due to combined
loading is known.

Schultz [68] tested transversely stiffened box girder models with a deck opening under
pure bending. He determined the buckling and post buckling behaviour. The specimens
had huge pre-deformations due to the fabrication. One longitudinal stiffened box girder
was tested by Gordo and Soares [19] also when loaded with a bending moment. The spec-
imens had their stiffeners on the outside of the box. A focus was placed on the residual
stresses. Reckling et al. [59] tested seven different box girders with longitudinal stiffeners
under pure bending load to determine the ultimate strength. The results were compared
to existing formulas. This experiment is chosen for recalculation because all relevant data
are given.

Pure bending moment experiment by Reckling et al. [59]

Experimental setup:
Seven specimens were used with a length between 1210 and 1800 mm and different cross
sections. Three of them are recalculated with FEM (see section 5). The relevant geome-
trical data are given in table 2.9 and figure 2.5.

Table 2.9.: Dimensions of specimen cross section used by Reckling et al. [59].

no %k t stiffeners b’ h
[mm] [mm] top/bottom [mm] side shell [mm] [mm] [mm]

31 1410 2.5 4 L profiles 2 I profiles 120 133
30× 20× 3 30× 2.5

22 1210 2.5 6 L profiles 3 I profiles 85.7 100
30× 20× 3 30× 2.5

23 1410 2.5 6 L profiles 3 I profiles 85.7 100
30× 20× 3 30× 2.5

Each specimen has two transverse stiffeners which are located at x = ± 250 mm (see
figure 2.6). The used coordinate system is given in figures 2.5 and 2.6. All specimens
collapse at the top plate between the two transverse stiffeners.
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Figure 2.5.: Cross section of specimen used by Reckling et al. [59].

Most specimens are connected via box-shaped subcarriers with the HEB-400 beams. The
HEB beams (European wide flange beams) are produced in accordance with DIN-1025.
The subcarriers have the same cross section as its specific specimen. Three specimens,
among number 31, are directly connected with the HEB beam. For the connection trans-
verse plates are welded on each end of the specimens, of the subcarriers and of the HEB
beams. The plates are screwed together.
The length between the bearings as well as the distance between the bearing and the load
introduction are always the same. The load is applied via two hydraulic pillars, which have
an increasing velocity of 0.3 mm/min during the experiment. The experimental setup is
shown in figure 2.6.

Figure 2.6.: Experimental setup used by Reckling et al. [59].

Except for one pilot test specimen all specimens are subjected to stress relief heat treat-
ment to reduce the pre-deformation. The top plate’s residual pre-deformation of specimen
31, 22 and 23 were gained by the Moiré-procedure [24] after the treatment.
To determine the yielding point of each specimen, tension tests with sheet metal samples
after DIN standard were carried out. The sheet metal samples were also treated with stress
relief annealing. The relevant results, which are needed for the FE calculation, are given
in table 2.10.
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Table 2.10.: Results of tension test and reference value given by Reckling et al. [59].

no σσσF [N/mm2] E [N/mm2] Me [kNm] fe [mm]

31 255 2.09 ·105 231.7 15
22 255 2.09 ·105 256.6 11.1
23 239 2.09 ·105 240.5 14.1

Analysis of tests:
Normalised moment-displacement curves and the deformation of the top plate are given.
The measured moments and displacements are divided by the elastic reference value. The
elastic limit moment Me and the appendant displacement fe are calculated for a hypothet-
ical girder, which has the same cross section as the corresponding test specimen and can
be loaded by the plastic limit moment Mp without buckling until full plasticity is reached.
Both calculated reference values are given in table 2.10.
Recalculations by ANSYS [4] and MARC MENTAT [43] revealed that the displacement fe
is given with a wrong unit in the paper. In table 2.10 the units are corrected.
The normalised moment-displacement curves of all tests have a smaller gradient than the
curves of the equivalent hypothetical girders. The authors state that the different gradients
are due to pre-deformations and manufacturing-related initial stresses, that are just partly
reduced by the stress relief heat treatment.
All specimens collapse due to buckling in the top plate between the transverse structures.
The top plate’s deformation of specimen 31, 22 and 23 are given after the ultimate strength
is reached and again gained by the Moiré-procedure.
The test series revealed that one cannot directly conclude from the pre-deformation to the
appearance of buckles after reaching the ultimate bending moment.

2.5. Finite element method
As already documented in the previous sections, many complex mechanical problems are
nowadays solved by the finite element method (FEM). Static and dynamic problems can
be modelled with various degrees of accuracy depending on the calculating capacity. To
use the method correctly knowledge in the field of mechanics is needed. The basic idea of
the method is to divide the structure into finite elements. There are diverse element types,
such as link, beam, plate, shell or volume. All elements are described by nodes which are
connected with even or curved lines. Thus, the geometry of each element is known. The
displacement within the elements is calculated via approximated relations depending on
the nodes’ displacements. The node displacement of neighbouring elements is equal. So
the force equilibrium is reached at each node and the system of equations is given for the
nodes’ displacement. The dimension of the system of equation corresponds to the number
of nodes’ displacement. By solving the system of equation, the nodes’ displacement is
achieved depending on the loading conditions. Other parameters, e.g. stresses can now be
calculated by the displacement of nodes.
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The finite element method is also applicable for hydrodynamic or electronic problems. If
a question can be formulated with linear or partial differential equations it can be solved
with the finite element method (see Lehmann [34]).

There are two different time integration methods within FEM. Depending on the prob-
lem either an implicit or an explicit time integration is used. The implicit method first
calculates the global equilibrium for each integration step and then the local element vari-
ables. Equation (2.15) is solved by converting the stiffness matrix to gain the displacement
vector:

[M ] {ẍ}+ [K] {x} = {f} (2.15)

⇒ {x} = [K]−1 · ({f}− [M ] {ẍ})

[M ] : mass matrix
[K] : stiffness matrix
{ẍ} : acceleration vector
{x} : displacement vector
{f} : external forces vector

The matrices are calculated iteratively. The integration is often done with the Newark
method. In every integration step the equilibrium is determined. Therefore, the implicit
method is best applicable to:

• linear problems

• static problems (change of external forces is small)

The explicit method (Euler forward time integration) directly calculates the global
variables without determining the global equilibrium. In each time step the following
equation is solved with the central difference procedure:

[M ] {ẍ} = {f}− [K] {x} (2.16)

⇒ {ẍ} = [M ]−1 · ({f}− [K] {x})

In the explicit method, criteria are needed to guarantee the correctness and the stabil-
ity of the calculation because it does not have any convergence criterion. The Courant
criterion is taken. It defines the maximal calculation time step which is equal to the time
that an acoustic wave needs to cross the smallest element. In each calculation step the
calculation time step size is determined. Thus, the calculation time step has a size of 1 to
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10 ms. If a simulation of a problem takes 10 s real time, the calculation needs 10 to 100
thousand time steps.
The explicit time integration method is recommended for the following problems:

• dynamic problems (acceleration)

• large deformation and contact (stiffness changes)

• rigid body motion (stiffness matrix can be solved)

• ultimate strength, snap-through buckling, crippling (external forces change due to
change in stiffness)

• plasticity (large non-linearities)

If structural response with extensive plasticity is simulated, as is the case for stranding,
FE codes offer advantages compared to analytical techniques. The modelling allows the
description of complicated geometries. The material models are far more realistic than
the material models incorporated in analytical techniques. It is not necessary to assume
the failure modes of the structural components as needed for using upper and lower bond
theorems to predict the collapse strength of structures. However, the use of FEM is linked
to uncertainties. The results depend on the selection of mesh and element types, on mate-
rial deformation and failure modes.
Most of this work is based on the application of FEM. All static/linear problems (see
section 3 and 5) within this work are solved with an implicit FE method. The program
ANSYS and LS-DYNA are used in its latest versions. The results presented in section 4 are
calculated with the explicit version of LS-DYNA.
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3. Parameter study
A simple method is presented for calculating the total bending moment, shear force and
heeling angle due to grounding for any ship depending on the load case, the grounding
point/area and the surface drawdown. The ship form is not simplified. The hydrostatic
forces are calculated exactly. Due to its specific form, it is not possible to calculate the
new distribution by hand and therefore computer tools are used.
The purpose is to find the critical combinations of stranding point/area, surface drawdown
and load case, which lead to an exceedance of the global bending moment and shear force
required by classification societies and/or instability in the final position. Furthermore,
the value of the additional forces and moments caused by stranding are determined and
the sections at risk are identified. By way of example, this method is applied to a container
vessel.

3.1. The proposed method
It is assumed that the ship structure does not suffer important damage between the initial
contact with the ground and the final stranding position (see section 2.1). This assumption
has also been made by Lehmann [35], Pedersen [52], Reich and Röhr [62] and Östergaard
et al. [47].
The hull behaves predominantly as a rigid body. Therefore, the immersion of bow and
stern, when the ultimate resistance of the girder is reached is neglected.
Grounding of the vessel at certain points/areas including surface drawdowns due to reced-
ing tide is simulated with the ship design program e4 (Krüger [31]). Then, the resulting
load forces and water pressure are applied to a beam modelled in the finite element pro-
gram ANSYS 14.0 (Ansys [4]). A FE program is chosen because later the beam is partly
replaced by a shell model (see section 4). As a result the total bending moment and the
total shear force over the ship length caused by a grounding incident and changes in water
level are gained for a predefined load case. Those data are transferred to a mathematical
optimisation method. It is possible to predict all critical combinations of the various pa-
rameters at once although only few grounding incidents are calculated via ANSYS. Results
in between the cases that are calculated in ANSYS can be determined due to approximation
and interpolation methods.

3.1.1. Grounding calculation in e4
In e4, the ship form is described by a series of curves, which are determined by points
and an interpolation code. The interpolation code is a two-dimensional cubic parametric
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spline. The floating condition is calculated by the theory of stability (see Söding [75]).
The vessel is considered to be rigid.
First the user chooses the load case. In the grounding subroutine the user defines the
position of grounding, surface drawdown and whether the trim and the heel are fixed or
free. Here, the trim and the heel are always set free. They are determined by the theory of
stability, so that the moments relative to the grounding location are equalised (see Krüger
[32]). The subroutine generates a sheet of hydrostatic tables. The relevant data are the
trim, the displacement and the reaction force as a function of surface drawdown at the
grounding point.
For each floating condition, a sectional area curve is generated. The sectional area curves
are generated on the basis of volumetric calculations. Each so-called ‘calculation frame’
is described as a function. The function is integrated to achieve the sectional area. The
areas between the frames are interpolated. The buoyancy at the centre line is converted
into a line load distribution by integration of the sectional area curve.
The weight distribution is also required for the FE calculations. e4 gives all relevant
weights as a line load distribution at the centre line depending on the load case.

3.1.2. Simple model

The total bending moments and vertical forces due to the grounding cases are calculated
in ANSYS and exported as data files. The ship is modelled as a beam. The element type
chosen is based on the Timoshenko beam theory. The forces resulting from weight and
buoyancy are applied as line loads onto the beam elements.
The line load distribution from the floating condition generated in e4 is in a ship-fixed co-
ordinate system. For a correct FE calculation, the distribution should be in aground-fixed
reference system. A test with a pontoon (L = 100 m, B = 1 m, T = 20 m, trim angle = 5◦)
reveals that the difference of the buoyancy distribution in a ship-fixed and a ground-fixed
system is marginal. A difference in the distributions only occurs at the first metre of one
end. After the first metre, the difference is less than 0.4%. For a real ship, the difference is
insignificant since ships have proportionally the least buoyancy at the bow and the stern.
The correct moment of inertia of the beam is in fact not required for the method because
only the moments and forces are examined. But for later simulation the displacement is
needed. Therefore the correct moments of inertia are taken from POSEIDON (see section
4). For the calculation with the grounding point, five degrees of freedom are fixed at the
grounding point. Only the rotation around y is free. The grounding area is modelled with
springs to simulate an elastic foundation. All springs have the same stiffness and the equi-
librium position is automatically achieved. The stiffness does not influence the courses of
the moments or shear forces. Therefore, the stiffness of the springs is chosen to be one.
A drawing of the beam and its boundaries is presented in figure 3.1 for each grounding
case. The coordinate system is plotted and the vessel is shown in light grey.
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(a) Cases A1, B1 and C1

(b) Case A2

(c) Case A1y

Figure 3.1.: Beam (idealised ship).

3.1.3. Dimensions and load cases

The container vessel, already described in section 2, is chosen to illustrate this method.
The relevant dimensions of the Postpanmax are given in table 2.4. Postpanmax is fully
inserted in e4 and in POSEIDON [17].
The effects of different loading conditions are examined. Thus, three load cases are con-
sidered: the arrival (A), the ballast (B) and the departure case (C). All load cases are
typical for estuary voyage.
In the arrival case, the ship has its design draugt. Figure 3.2 shows the weight distribution,
shear force and bending moment calculated for this load case. The figures for case B and
C are in appendix A.2.
During the ballast voyage, the ship’s draugt is 6.26 m. This load case has the largest bend-
ing moment and therefore defines the moments for the main frame design.
The vessel floats on the design draugt while departing from a port. The still water bending
moment is the smallest compared with the other two load cases.
Load case A is chosen for most calculations because its still water bending moment lies
between the one of load case B and C.
Furthermore, the effect of tank flooding on the bending moment and the shear force is ex-
amined. It is assumed that the double bottom fractures close to the stranding point during
receding tide. The structure fractures due to the additional forces and moments during
stranding. Water floods into the empty or partly filled tanks of the double bottom.
Table 3.1 gives an overview of the calculated cases. Most cases are calculated for different
coordinates of stranding points or area. The cases A2, A1y, B1, C1 and A1f are compared
with case A1.
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Figure 3.2.: Load case A: weight distribution, shear force and still water bending moment.

Table 3.1.: Stranding cases.

case load case point/area coo. x [m] coo. y [m] flooding

A1 A point 5,25,...,265,285 0 no
A2 A area 145 0 no
A1y A point 145 8 no
B1 B point 65, 145, 265 0 no
C1 C point 65, 145, 265 0 no
A1f A point 70, 145, 250 0 yes

In each stranding case, the water level is changed. The initial floating condition is
calculated (no grounding, no tide) and then the surface is drawn down in 1 m steps to a
total change of 5 m. 5 to 6 m of tidal range are found e.g. at the water mouth of the river
Seine.

3.1.4. Optimisation method
Optimisation is applied to find the best approximation to the above calculated functions of
bending moment and shear force by keeping the computational effort as low as possible.
The main purpose is to provide one graphical chart in which all critical combinations of
the parameter xfAP (= ship length coordinate), xcont (= stranding point), sd (= receding
tide level) can be shown for the bending moments, the shear forces or even both. Due to
interpolation all parameter combinations are available even if only some incidents (com-
binations of xfAP , xcont and sd) are calculated with ANSYS.
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The graphical chart is assessed by limit curve points for different sd-values as schemati-
cally shown in figure 3.3. In the resulting charts the points are not connected with lines.
In figure 3.3 the points are connected by dashed lines for a better overview. In the result-
ing chart there are enough points so that limit curves can be recognised. The limit curve
points enclose areas where the class permissible bending moments MT pos\neg(n) or the
class permissible shear forces QT pos\neg(n) are exceeded due to critical combinations of
(xfAP , xcont, sd). The class permissible bending moments and shear forces are determined
according to the rules of Germanischer Lloyd. They are the sum of class permissible still
water and vertical wave bending moments/shear forces.
In the following the optimisation method is exemplarily explained for the bending mo-
ments. For further details see Schenke [66].

Figure 3.3.: Schematic diagram of limit curve points.

The bending moment curves calculated with ANSYS are summed up in a data field
Mb(n, k,m). The continuous ship coordinates (xfAP , xcont, sd) are transformed into dis-
crete field coordinates (n, k,m). Approximation and interpolation methods enable re-
sults for any coordinate even between the discrete points (n, k,m). The class permissi-
ble bending moments MT (n) are attached to the coordinates (n, k,m) of the data field.
Mb(n, k,m) and MT (n) are the objects to be analysed.
Limit curve points are described by the set G = {PGi} where PGi are discrete points of a
limit curve.

Further aspects of the optimisation method to identify critical combinations are:

• Identify local maximum exceedance within one set of limiting curve points (m =
const) and its position.
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• Find limits of critical sub-intervals ICrit n\k ∈ G = {PGi}, if m,n = const or m, k =
const.

• Obtain the global maximum exceedances within the critical sub-intervals. These
may coincide with the local maximum exceedance.

The problem at hand is a combinatorial optimisation problem because the permissible
range S is finite. The data field Mb(n, k,m) contains of discrete functional values and is
limited by parameter bounds. The field coordinates n, k have functional values only in a
bounded interval that is limited by the ship length %. The parameter m is bounded by the
draught of the ship. In particular the parameter bounds are defined as:

1 ≤ n ≤ %; 1 ≤ k ≤ b; 1 ≤ m ≤ t with n, k,m ∈ N (3.1)

These parameter bounds finally define the permissible range S. The parameters b and t
depend on the resolution configuration (wk, wm). wk and wm are the number of additional
data generated between two known data points obtained from the ANSYS calculation.
wk additional data sets are calculated between two known bending moment curves (wm

accordingly for the surface drawdown).
Mb(n, k,m) and Mdiff (n, k,m) are nonlinear and limit curve points are not existent at
the bounds of the data field. Therefore, the optimisation problems can be solved via the
so-called simplex-method without the Karush-Kuhn-Tucker requirement (see Jungnickel
[28] and Großmann and Terno [21]).
To solve the above given aspects different optimisation problems have to be formulated.
At first the following case-by-case analysis is needed, because every point (n,m, k) is
related to two allowable moments (MT pos(n) and MT neg(n)):

|Mb(n, k,m)−MT pos(n)| < |Mb(n, k,m)−MT neg(n)| (3.2)

⇒ Mdiff (n, k,m) = MT pos(n)−Mb(n, k,m)

else Mdiff (n, k,m) = Mb(n, k,m)−MT neg(n)

Thereby the first optimisation problem is:

|Mdiff (n, k = const,m = const)| !
= max with Mdiff < 0

|Mdiff (n = const, k,m = const)| !
= max with Mdiff < 0 (3.3)

To get the local maximum exceedance of MT (n) within the limiting curve, equation
(3.4) is solved:

Mdiff (n, k,m = const)
!
= min with Mdiff < 0 (3.4)

The problem formulation for critical sub-intervals ICrit n\k results for equation (3.3)
in:
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Mdiff (n = const, k,m = const)
!
= min with Mdiff < 0

Mdiff (n, k = const,m = const)
!
= min with Mdiff < 0 (3.5)

Global maximum exceedance within the critical sub-intervals can be calculated by
equation (3.4), if n or k are also constant.
All points are defined as a set by one integer in G0(n, k,m). Hence, the combinational op-
timisation problem is transformed into an integer problem appropriate to the classification
of S:

G0(n, k,m = const) = −1, if P = (n, k,m = const)T fulfils equation (3.3)
G0(n, k,m = const) = −2, if P = (n, k,m = const)T fulfils equation (3.4)
G0(n, k,m = const) = −0, else (3.6)

Local and global approximation of the discrete function is implemented to calculate
data between the known discrete points. Local interpolation is used between two discrete
points with interpolating polynomials and approximation of the course of function around
a discrete expansion point with Taylor polynomials. The interpolation does not reproduce
the curvature. A Taylor polynomial applies only to the expansion point but any derivatives
of the output function can be reproduced. Since the output function is in discrete form,
the derivatives are approximated with a difference quotient within the expansion point.
To globally approximate additional bending moments in m-direction linear interpolation
is chosen, whereas in k-direction an equalisation calculus is used.

The optimisation method is implemented with MATLAB [41]. The program flow of
the optimisation is shown in figure 3.4. The flow charts of the mentioned functions are
given in appendix A.1

M_interpol (see figure A.1) defines the data field Mb(n, k,m) in the desired resolu-
tion. M_diff_interpol (see figure A.2) attaches the allowable moments (MT ) to the data
field Mb(n, k,m) and calculates the difference Mdiff (n, k,m). Limit points have a value
of 0 within the field Mdiff (n, k,m). G0_interpol (see figure A.3) characterises the data
Mdiff (n, k,m) by assigning integers. One integer in G0(n, k,m) stands for a defined
quality. The limit curve points from G0(n, k,m) are directly plotted as single points. If
the resolution wk is sufficient one sees curves.
Crit_Max_x_fAP_xcont (see figure A.4) calculates local maximum exceedance of MT for
Mdiff (n, k,m = const). Crit_Interval_x_fAP (see figure A.5) and Crit_Interval_xcont
give the limit of the critical intervals ICrit n or ICrit k. CritMax_x_fAP and CritMax_xcont
calculates the maximum exceedance within these intervals.

An additional tool of the above described optimisation method is to superimpose crit-
ical bending moments and shear forces. In one diagram one can see which parameter
combinations lead to the most critical combination of bending moment and shear force.
For that purpose a relative difference is introduced to get the percentage exceedance of
permissible MT and QT :
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Figure 3.4.: Flow chart of the optimisation program.

Mdiff rel(n, k,m) =

∣∣∣∣
Mdiff (n, k,m)

MT act(n)

∣∣∣∣ if Mdiff (n, k,m) < 0

Mdiff rel(n, k,m) = 0 else

Qdiff rel(n, k,m) =

∣∣∣∣
Qdiff (n, k,m)

QT act(n)

∣∣∣∣ if Qdiff (n, k,m) < 0

Qdiff rel(n, k,m) = 0 else (3.7)

The index act is the active positive or negative value of MT pos\neg(n) or QT pos\neg(n)
within n (see also equation (3.2)). The dimensionless values can now be superimposed to
one field EMQ(n, k,m = const) = EMQ(n, k) with the weighting coefficient α.

EMQ(n, k) = α ·Mdiff rel(n, k) + (1− α) ·Qdiff rel(n, k) (3.8)

For a simple use of all tools a graphical user interface with certain defaults is im-
plemented. The GUI is independent of the input data which are chosen first. The step
size of the surface drawdown (wm) can be switched from 0.1 m to 0.5 m. The step size
in ship length direction (wk) is 1 m. The user chooses between results for moments or
shear forces and can plot the limit curve points. To find limits of critical sub-intervals and
global exceedance within these sub-intervals one defines a constant value either xfAP or
xcont. Now for any chosen tide level a result is gained. The result is given as value and is
marked in the plot of the limit curve points. Furthermore, the user can get the maximum



3.2. Verification of the simple method 39

overstepping of MT or QT for a constant tide level and can produce a plot of the total
bending moment or of the shear force over the ship’s length for any tide level and any
stranding point within the limits (sd = 0 - 5 m, xcont = -5 - 289 m). Figure A.6 in appendix
A shows the interface with results for sd = 2 m and xfAP = xcont = 145 m.

3.2. Verification of the simple method
The stranding case A1 (load case A, various stranding points located at centre line, with-
out flooding) is also calculated with existing formulas of Lehmann [35], Pedersen [52]
and Östergaard et al. [47] to verify the method. All three make the same assumptions as
assumed for the proposed method: no damage during first contact with the ground and the
final stranding position and the hull behaves as a rigid body (see section 2).
The additional bending moment due to grounding is calculated at three points (65, 145
and 265 m AP) and again for 5 m of tide levels. Therefore, a total of 15 moments with
each formula are assessed and compared with the results of the described method.
In order to achieve more clarity, the additional bending moments due to grounding are
classified as follows:

• MZ(x): additional bending moment at all length metres after Zipfel.

• ML: additional bending moment at 143 m AP after Lehmann [35] with cWp = 0.8
and cM = 0.83.

• MO(x): additional bending moment at all length metres after Östergaard et al. [47],
multiplied by the coefficient of water plane cWp = 0.8.

• MP (x): additional bending moment at all length metres after Pedersen [52], multi-
plied by the coefficient of water plane cWp = 0.8, the longitudinal centre of floatation
LCF is taken from the hydrostatic tables (see subsection 3.1.1).

To attain MZ(x), the still water bending moment from load case A (see figure 3.1)
is subtracted from the calculated total bending moment due to the relevant grounding
position.
The formula of Lehmann [35] gives only results at the position Lpp/2 = 143 m AP. The
required coefficients in the formula are for a block coefficient of cB = 0.7.
The formulas of Östergaard et al. [47] and Pedersen [52] are valid for a pontoon or a
square-shaped ship. The formulas are multiplied by the same water plane coefficient as
required for ML to partly include the effect of the real water plane. The qualitative results
of Pedersen [52] mostly depend on the location of LCF .
In figures 3.5-3.7, the additional bending moments MZ(x), MO(x) and ML are plotted
for three water levels (1, 3 and 5 m). The moments MP (x) are not shown to achieve
more clearness. They are qualitatively equal to MO(x) and their maximum values lie in
between ML and MO(143 m). Table 3.2 gives the average deviation of ML, MP (143 m)
and MO(143 m) to MZ(143 m). The percentage differences of the moments resulting
from each water level are averaged for the considered stranding point.
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Table 3.2.: Average deviation of ML and MO(143 m) to MZ(143 m).

xcont ML [%] MP(143 m) [%] MO(143 m) [%]

65 m 48.85 58.90 66.08
145 m 7.65 24.17 40.22
265 m 5.96 8.15 9.42

For stranding in the midship or the bow part of the vessel the moments after Lehmann
[35] do not differ much from the moments achieved by the method presented here. The
formula after Lehmann [35] is a conservative estimation for these cases. If the vessel
strands in the aft part the moments ML are different to MZ(x = 143 m).
Östergaard et al. [47] and Pedersen [52] moments take good courses of the moment for
running aground in the forward part (see figure 3.7). At the stranding point the moments
are almost the same, whereas amidships at 143 m a deviation is seen. In the other two
cases, the absolute value of the moments MO(x) and MP (x) at the stranding point are
explicitly higher than MZ(x). For grounding at 145 m the curve of MO(x) equals the one
of MZ(x) (see figure 3.6).
Because all three formulas do not consider the real ship form the results differ from the
method presented here. The real buoyancy distribution of a slender ship is not included.
In particular, the formulas do not produce good estimations for grounding in the aft part
of slender ships. Then the bow immerses and the vessels’ bow produces less over-plus of
buoyancy than assumed by Lehmann [35], Östergaard et al. [47] and Pedersen [52]. The
coefficient of water plane cWp does not adequately considers the bow shape.
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Figure 3.5.: Additional bending moments due to stranding at 65 m AP.
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Figure 3.6.: Additional bending moments due to stranding at 145 m AP.
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Figure 3.7.: Additional bending moments due to stranding at 265 m AP.

If the stern immerses all methods give similar results. Thus, for this case (stranding in
the fore body and midship part) the ship form can be simplified. But if the bow immerses
one needs to take the real ship form into account.
Similar results to the method presented here could be achieved for accidents amidships by
combining the formula of Lehmann [35] and Östergaard et al. [47] (see figure 3.6).
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3.3. Calculation results
The results of the ANSYS calculation and the optimisation method are presented in the fol-
lowing. The ANSYS results provide the input data for the optimisation method. Therefore
the quality of the limit curves depends on the amount of calculated cases in ANSYS.
For selected grounding positions the total bending moments and shear forces are plotted
over the ship length. Thereby, the class permissible bending moments (MT ) and shear
forces (QT ) are always plotted with a grey line. The MT respectively shear forces in-
clude the reserve between the still water and the seagoing conditions of the structure.
The grounded vessel is probably not subjected to wave loads (see section 2), because soft
grounding happens close to the coast during estuary voyage. So, if the curves are ex-
ceeded, the structure will sustain severe damage.

3.3.1. Stranding case A1
Stranding case A1 is calculated with load case A, without flooded tanks and at 15 strand-
ing points that are located at the centre line. The positions are from 5 to 285 m AP in
20 m steps. The results of the optimisation method are shown in figure 3.8 and 3.9. In
figures 3.8 and 3.9 the limit curve points, the critical intervals of sd = 2, 3, 4 and 5 m for
xfAP = xcont = 145 m, the maximum exceedance within the critical interval (red cross)
and the maximum overstepping of MT for a tide level of 2 m are plotted (box only for the
moments). The absolute values of the last three listed results for the moments can also
be seen in the interface (see figure A.6). Figures 3.10-3.12 show by way of example the
bending moments and shear forces when the vessel rests on the ground at 65, 145 and 265
m from AP for each tide level.

Figure 3.8.: Case A1: limit curve points of bending moments.
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Figure 3.9.: Case A1: limit curve points of shear forces.

The exceedance of the class permissible MT always occurs around the contact point.
The critical stranding points for the bending moment are amidship between 94 m and 184
m from AP (see figures 3.8 and 3.11). Running aground between 99 and 179 m AP is
critical for 4 m of receding tide. 3 m of surface drawdown lead to overstepping of MT for
grounding between 106 and 169 m AP. If the vessel stands between 122 and 149 m AP all
tide levels higher than 2 m are critical.
The maximum bending moments for fixed tide levels always have the same coordinates
xfAP = xcont and are located amidship. For a water level reduction of sd = 2 m the max-
imum is reached for xfAP = xcont = 135 m (sd = 3 m: xfAP = xcont = 140 m, sd = 4 m:
xfAP = xcont = 143 m and sd = 5 m: xfAP = xcont = 145 m). The values of the maximum
bending moment increase with decreasing water levels. The highest bending moment out
of all positions occurs for grounding at 145 m (1.29 E7 kNm), measured directly at the
grounding point.

The shear force at the grounding position is remarkably high compared with the force
in the initial floating condition. The effect of running aground can clearly be seen for
every position by the large jump of the force value (see figure 3.10-3.12).
The permissible QT according to GL is exceeded for all stranding points except for the
position 232 to 246 m AP (see figure 3.9). Groundings at the stern and the bow (stern to
10 m AP, 26 to 36 m AP and 273 m AP to bow) lead to critical shear forces for all tide
levels. The shear force is outside the envelope for stranding points at stern to 16 m AP, 24
to 137 m AP, 142 to 188 m AP and 270 m AP to bow and a surface drawdown higher than
2 m. 3 m of tide level results in critical shear forces for the positions stern to 219 and 263
m AP to bow. And 4 m water level reduction is critical for accidents that happen at stern
to 227 and 253 m AP to bow.
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Figure 3.10.: Case A1: bending moments and shear forces for stranding at 65 m AP.
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Figure 3.11.: Case A1: bending moments and shear forces for stranding at 145 m AP.
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Figure 3.12.: Case A1: bending moments and shear forces for stranding at 265 m AP.
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The maximum shear force is at the position where the bending moment changes the
most. When the vessel strands amidship, the maximum shear force and the maximum
bending moment act at the same position. The maximum shear forces for fixed tide levels
of sd 1 to 2 m are reached for stranding at the bow (xcont = 279 m). For accidents at xcont

= 125 m the highest shear forces are measured when the water level is reduced by 3 to 5
m. Thus, stranding at 125 m AP generates the highest shear force of 1.89 E5 kN for 5 m
of surface drawdown out of all calculations. For an accident at 145 m AP the shear force
has a maximum value of -1.76 E5 kN. This is five times more than the shear force in the
initial floating condition (see figure 3.11) and the contact force is as high as 3.41 E5 kN.

If one superimposes the critical bending moments and the shear forces with a weight-
ing coefficient α = 0.5 for a tide level of 5 m the above described results can be summed
up in figure 3.13. In case of α = 0.5 the exceedance of MT and QT is equally weighted.
The areas in which either the permissible moment or shear force is exceeded are shown
in colour. The higher the functional value of EMQ corresponding to the colour scale the
more critical is the superimposition.
The plot underlies the results discussed above: The overstepping of MT /QT is always
close to the contact point. The critical cases occur for standing in the midship area and at
both ends of the vessel. The critical cases outside amidships are due to the shear forces,
which result in the highest value of EMQ. The two critical zones in figure 3.13 are also
existent in the plots for lower tide levels. The zones expand with increasing sd.

Figure 3.13.: Case A1: superimposition of critical bending moments and shear forces for
5 m of surface drawdown.

3.3.2. Stranding case A2
Stranding case A2 is calculated with load case A, without flooded tanks and the reaction
force is constantly distributed over 30 m (10% Loa).



48 Chapter 3. Parameter study

Figure 3.14 compares the total bending moments and shear forces for stranding at the area
of 130 to 160 m AP to grounding at the point 145 m AP for three different tide levels.
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Figure 3.14.: Case A2: bending moments and shear forces for stranding at 145 m AP.

The bending moments and shear forces are smaller than for grounding at one point
around midship. The effect increases with higher tide levels. The average deviation be-
tween the moments of case A1 and case A2 measured at 145 m AP is 8.7%. The signifi-
cant shear force change differs by 1.5%. The jump of the shear force now has a gradient
different to zero. The force does not jump at the same position, but changes over the
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contact area. A larger but still rigid contact area does not significantly reduce the acting
moments or shear forces.

3.3.3. Stranding case A1y
Stranding case A1y is calculated with load case A, without flooded tanks and at one
stranding points that is located beside the centre line. Stranding outside of the centre line
primarily produces a heeling moment. The force due to stranding is small. Table 3.3 gives
the stranding force FS , the trim and the heel angle for the vessel resting at the point x =
145 m AP and y = 8 m.
In this case, stability is the problem. The structure is only loaded with low forces and
moments compared with case A1. Figure 3.15 reveals that the stranding force FS of case
A1 is 10 times higher than in case A1y. Thus, this case will not be considered further.

Table 3.3.: Case A1y: force, heel and trim angle.

sd TAP [m] trim [◦] heel [◦] FS [kN]

1 11.858 -0.007 5.860 8547.951
2 11.519 0.105 11.063 14721.860
3 11.083 0.249 15.767 20439.133
4 10.581 0.395 20.081 26543.148
5 10.026 0.536 24.084 33413.660
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3.3.4. Stranding cases B1 and C1
Stranding cases B1 and C1 are calculated with load case B and C, without flooded tanks
and at three different stranding points (65, 145 and 265 m AP) that are located at the cen-
tre line. Stranding case B1 and C1 are summed up together. The graphs are shown in
appendix A.2.
Load case A is more critical for stranding than any position as load case B. The aver-
age deviation between case A1 and B1 for the moments and the shear force jump at the
stranding point is 41%. Amidships (145 m AP) the five moments are 17.27% and the
shear forces are 18.15% smaller than in load case A.
Load case C (departure) is similarly critical to load case A even though the bending mo-
ment in the initial floating condition is slightly higher than in load case A. In case C1, the
moments are smaller than in case A1. The average deviation of the moments compared
to case A1 is 15.58% when the vessel grounds amidships (see figure A.10). For running
aground in the area of aft body, the bending moments are almost the same at the ground-
ing point (e.g. for grounding at 265 m AP: 2.47%). The jump of the shear forces is 1.09%
higher for stranding at 65 and 265 m AP. When stranding amidships the shear forces are
almost the same (0.13% less than in case A1).

3.3.5. Stranding case A1f
Stranding case A1f is calculated with load case A, with flooded tanks and at stranding
points that are located at the centre line. Three positions are chosen for the flooding case:
70, 145 and 250 m AP .These positions are located in the middle of empty or partly filled
tanks that could be flooded due to a fracture of the outer hull. The effect of flooding is
best seen for standing at 145 m AP because the most water could flood into the tanks
compared to the other positions.
There are a half filled ballast tank (x-position: 139.98 to 154.12 m AP) and a 10% filled
HFO tank (x-position: 125.84 to 154.12 m AP) on each side (starboard and portside). It
is assumed that the structure fractures shortly after the vessel reached its final stranding
position on the ground and the water level reduction begun. So for one meter of surface
drawdown the tanks are already flooded and filled with 100% seawater. If they are flooded
a total weight of 1437.54 t is additionally loaded on the structure. Figure A.11 in the ap-
pendix A.3 shows the differences in the weight distribution with and without flooding.

In all three calculated cases the influence of the additional weight on the bending mo-
ment or shear force distribution is so small that one cannot see a difference in the graphs.
That is why in this case no courses of the bending moments and shear forces are shown.
The maximum bending moments are 3.96% smaller than in case A1. Whereas the aver-
age jump of the shear forces is 0.55% bigger. For stranding at 70 m AP the moments are
also smaller (0.72%) and the jump of the shear forces is 1.39% on average higher. If the
vessel runs aground at 250 m AP and tanks are flooded the effect is reversed. The average
deviation of the bending moments to case A1 is 0.61% and the shear force jump at the
stranding point is 1.26% smaller.
All tanks located directly at the outer hull are at least partly filled in load case A, so that
no significant forces are additionally introduced. The flooding scenario during the already
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extreme conditions of stranding does not have a significant influence on the total bending
moment and shear force in this case.

3.4. Discussion
In stranding case A1, B1 and C1 (load cases A, B and C, various grounding points at
centre line), the bending moments exceed the class permissible MT if the vessel strands
in the midship region. Considering the shear force all positions of grounding except 232
to 246 m AP are critical. Of all calculations stranding incidents amidship result in the
highest shear forces.
In case A2 (stranding on an area), the moments and forces at the grounding position are
reduced compared with case A1. The results of case A1 are conservative. In reality, the
ship lies on an area when running on soft ground.
Stability is the problem when the grounding point/area lies outside the centre line. The
forces and moments due to grounding are small. This case does not need to be further
examined for the structural analysis.
The three calculated load cases and the flooding case reveal that different loading condi-
tions do not have much influence on the total moments and shear forces. Stranding already
produces very high changes in the bending moments and shear forces.
The shear force due to grounding seems to be critical. Especially in combination with the
maximum bending moment at the same position, the structure can sustain severe damage.
The bending moment around the grounding position can be detrimental. This effect is not
significantly reduced when the vessel runs aground on a sandbank.

3.5. Conclusion
A method is introduced for calculating the total bending moment, the shear force and the
heel angle for a ship during soft grounding. Flooding of tanks and different load cases can
be taken into account. An optimisation tool is implemented for an easy and accurate rep-
resentation of the results. It is possible to superimpose the critical cases and even weight
the influence of bending moment versus shear force.
If the ship lies in the final position on the ground and the water level is reduced, the result-
ing bending moments and shear forces depend on the external forces. The distributions of
the weight and of the hydrostatic forces are relevant. The weight does not change unless
flooding is included. The hydrostatic forces on the hull depend on the water level and the
trim, which result from the new equilibrium position. In the proposed method, the new
equilibrium position is determined on the basis of the real ship form. The advantage of
the proposed method is that the correct hydrostatic forces, as a function of water level and
stranding position, are used to determine the bending moments and shear forces due to
stranding. The method is not limited to a specific ship type. Any vessel with any load
case can be used.
The critical combinations of grounding point/area, surface drawdown and load case (with
or without flooding) that lead to an exceedance of the class permissible MT and QT can
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be calculated. With the help of the optimisation tool all critical combinations can be deter-
mined at once even for parameters that lie in between calculated cases. The comparison
with existing formulas showed that the presented method gives reasonable results. The
method is quick and applicable for every existing vessel and to every ship design to esti-
mate the acting moments and forces.

Once the acting forces and moments as well as the sections at risk are known, the next
step is to reduce the simplification. The method cannot be used to give information about
local and global damage, the influence of the ground and the point of total collapse of the
structure. The method is further used to control the global forces, moments and reactions
in the simulation of stranding scenarios.
Load case A is chosen for further calculations. Stranding case A1 serves as a comparison.
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4. Simulation of stranding
scenarios

This chapter ties in with the previous chapter and the underlying stranding scenario is the
same as already defined in subsection 2.1. The acting forces and moments as well as the
sections at risk are known from chapter 3. But this method is not capable of giving infor-
mation about the structural resistance to the accidental load, the local and global damage
of the structure, the interaction of bending moment and shear force and the influence of
the ground. Thus in this chapter a simulation method based on the FE method is pre-
sented to gain all relevant details of stranding. The method can be used to calculate real
incidents.
The sections at risk are modelled according to the construction drawings and the ground is
represented by a geotechnical material model. To accurately simulate limit load capacity
the loads rather than a curvature are applied. The load increase has to be physically real-
istic and it is proven that the ship remains stable and does not capsize. This is the reason
why the method introduced in section 3 is used to control the global forces, moments and
reactions in the FE simulation of the stranding scenarios.
Three stranding positions are chosen for simulation: 65, 147 and 250 m AP. Thus in each
part of the ship stranding is exemplarily simulated. The part of the vessel that experiences
the highest moments and shear forces is amidships. The fore body and aft body parts are
additionally analysed because here the shear forces are detrimental. At each stranding
location the geometry of the ground is varied. In addition all scenarios are also simulated
with a rigid ground to have a conservative comparison case.
A special focus is placed on the ultimate hull girder strength and the influence of the com-
bination of high external bending moments and shear forces.

First the simulation method is described and verified and followed by the specification
of different parameters that are discussed with regard to optimal results and short calcu-
lation time. One scenario is additionally compared to a simpler model. A double T-beam
is chosen to reveal the stress distribution over the model’s height. Then the results of the
midship scenarios are given in detail. The results of the method are further compared to
the Fowairet stranding incident. At the end of the chapter the results for bow and stern
scenarios are discussed briefly.

4.1. Description of simulation method
Although the problem is quasi-static, it is solved with LS-DYNA [38] explicitly because of
the complex contact problem (see section 2.5). Comparative calculations with an implicit
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FE program (ANSYS) revealed that the model is extremely instable due to the contact and
the highly different material properties of sand and steel.
The FE models consists of three different parts. A detailed shell-model of three cargo
holds at the stranding point is generated. The rest of the ship is represented by beam-
elements. The ground is reproduced with shell or volume elements depending on the
parameters. Half of the vessel and the ground are modelled and symmetry conditions are
used. The structural arrangement in the midship and bow section are identical on star-
board and port side. At the aft body the bearing structure is the same on both sides, only
the spaces above the machinery room differ. Thus the important structural arrangement
are reproduced. It is assumed that the collapse is symmetrical and that the direction of
the crack is irrelevant. Using symmetry is standard within ultimate load calculation and
classification to save computational effort (see among others Germanischer Lloyd [18]).

Figure 4.1.: Flow chart of the simulation method.

Figure 4.1 shows the procedure of the simulation method. The shell model is gener-
ated with POSEIDON [17] and exported to ANSYS. All other information (cross section
data for the beam elements, ship and ground geometries, material data etc.) are also passed
to ANSYS, which is used as preprocessor. The light ship and dead weight as well as the
equivalent buoyancy depending on the tide level are calculated as in the parameter study
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(see chapter 3) and transferred to ANSYS as load curves. Three models are the output.
The first model represents the vessel and exists of beam and shell elements. It is loaded
with the forces according to the initial floating condition to initialise stresses and strains
via a pre-step in Implicit LS-DYNA. The second model only includes the hard ground. The
third model represents the soft ground, which is also transferred to Implicit LS-DYNA to
initialise stresses and strains due to its dead weight. The results from the pre-step of the
first model are combined with the hard or soft ground and the load curves depending on
the tide levels. The problem is finally solved in Explicit LS-DYNA.

4.1.1. Ship model
Three detailed parts of the vessel Postpanmax (see table 2.4) are modelled with shell ele-
ments to consider three different stranding points. The extensions are listed in table 4.1.
The centre of the stranding area lies in the middle of the shell section to exclude boundary
effects. Only in the stern part the stranding point is not exactly in the middle as a result
of the aft body construction. The models include all relevant structural elements given in
the construction drawings. A drawing of a midship frame is shown in figure 4.3. For the
drawings of the stern and bow section please refer to the appendix B.2.
The generation of the ship model is exemplarily described for the midship section and ap-
plies to the other sections. Figure 4.2 presents the entire midship model with one possible
sandbank geometry.

Table 4.1.: Shell models for stranding simulation.

stranding point extension shell elements

stern 65 m AP 37 to 82 m AP 168000
midship 147 m AP 126 to 168 m AP 163000
bow 250 m AP 228 to 270 m AP 153000

Figure 4.2.: Midship model with sandbank.

The detailed part of the vessel is modelled with Belytschko-Tsay elements (type 2)
(see LS-DYNA manual [38]). The element type is simple integrated, very fast and each
node has eight degrees of freedom. The mesh is regular and has a size of 200-250 mm
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and the number of shell elements is given in table 4.1.

Figure 4.3.: Construction drawing of midship frame.

The material model of the shell elements is nonlinear with regard to strain hardening.
True stress-strain curves and the coefficient of friction between steel and steel are known
from experiments performed by the Institute of Ship Structural Design and Analysis lo-
cated at Hamburg University of Technology. The curves are scaled for the different yield



4.1. Description of simulation method 57

stresses and taken into account via the modified piecewise linear plasticity material model
(type 123) (see figure 4.4). The yield stresses according to the construction drawings are
235 (A), 315 (A32) and 355 N/mm2 (A36). The coefficient of friction for all steel materi-
als is 0.23, also known from Karlsson et al. [29].
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Figure 4.4.: True stress-stain curves.

The universal failure criterion developed by Peschmann [54] is implemented as given
in equation (4.1). The criterion was developed by fitting experimental results with the FE
program LS-DYNA for numerical simulations.

εk = 0.1 + 0.8 · t
%

for t < 12 mm

εk = 0.08 + 0.65 · t
%

for t > 12 mm (4.1)

The critical strain εk depends on element thickness t and element edge length %. When
the strain of an element reaches the value εk the element is deleted and loads, moments or
stresses are no longer carried. Since the calculation is quasi-static, the strain rate has no
influence and can be disregarded.
One half of the edge cargo holds has no failure criterion. Otherwise the introduction of
the global forces and moments cannot be guaranteed. These edges of the shell model will
not be used for any analysis to exclude boundary effects.

The beam elements represent the rest of the ship (fore and aft body) and level with
the neutral axis. The beams are connected with constrained equations at both ends of the
shell-model. The elements (Belytschko-Schwer resultant beam) are 2 m long and their
cross-sectional data equal those of the real ship. In the appendix, figure B.1 shows the
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implemented and original moment of inertia Iy. The real moment of inertia has peaks
according to the stiff cross sections as bulkheads. The peaks are smoothed as usual for
finite-element calculations. The constrained equations guarantee that the cross sections
remain planar. The material model of the beam elements is ideal elastic. All beam nodes
are restricted in y-direction because of the symmetry condition.

Line and pressure loads are applied to the beam and shell elements according to the
stranding scenario. The forces equivalent to the sum of loading, weight and buoyancy
forces are generated with the method presented in section 3 whereas the buoyancy at the
initial contact area (between hull and sand) is deleted. The calculated forces are dis-
tributed over the entire inner double bottom within the shell model. All forces are always
normal to the element axis. The cargo load application over the entire inner double bottom
is conservative for a container vessel, because in reality loading forces are only exerted
on the bottom structure at the bulkheads. There are no forces from the cargo on the inner
double bottom which counteract the contact forces.

The initial floating condition is solved via a preliminary calculation. Thus the model
has initial stresses and strains as well as displacement due to the initial floating condition
at the start of the explicit calculation. The loads are applied in the time domain during
the explicit solution. The load curves start with the initial floating condition and end with
the loads equal to a maximum of 5 m of water level reduction. Each meter of surface
drawdown is applied over 10 s.

A single-surface contact including all elements is chosen to prevent nodes penetrating
element surfaces. Tests revealed that the contact type is not more expensive than a locally
applied contact algorithm.

4.1.2. Ground models

Two different ground models are used. The Mohr-Coulomb material model is considered
for the soft ground calculation. All simulations with the soft ground are named with ’S’ as
the first character. For comparison the ground is also calculated with rigid material (first
character of the titles is ’H’). The geometry and the mesh of the ground surface is in both
cases the same.

General description of the ground

Four sea floor geometries are listed in table 4.2. The slope angle a, the length p and
the width w of the plateau are varied and are shown in figure 4.5 (case Sa7p2). The
geometries are considered to be representative for typical ground conditions in discussion
with members of Institute of Geotechnical Engineering and Construction Management
located at Hamburg University of Technology and with members of Emergency Response
Service of GL.
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Figure 4.5.: Geometry of ground (Sa7p2).

Table 4.2.: Geometry of ground.

case angle a plateau p width w

a7p2 7◦ 2 m ∞
a7p22 7◦ 22 m ∞
a7p22w10 7◦ 22 m 10 m
a15p2 15◦ 2 m ∞

The modelled ground always has the same length as the shell model. The sharp edges
at the plateau are rounded to exclude structural damage due to a sharp edge. The middle
of the plateau levels with the stranding points 65, 147 or 250 m AP.
The above described single-surface contact is sufficient to guarantee no penetration of
ship and ground. If elements of the outer shell plating are deleted elements of the double
bottom still have a contact condition with the ground.

Hard ground

The hard ground model represents a bluff rock. It is a conservative but rare stranding
scenario (see e.g. Wang et al. [81]) and represents the upper bound of ground stiffness.
The hard ground calculations are also used to identify the influence of different ground
stiffness on the collapse of the hull girder.
The ground is represented by four-node Belytschko-Tsay elements and material type rigid
(type 20). Young’s modulus is the same as for the elements of the outer shell plating,
which is only needed to calculate the contact stiffness. Boundary conditions are defined
via the material definition. The ground is fixed in all directions.

Soft ground

The material properties of soil are needed to adequately represent the so-called soft ground.
Compactness and patterns in the arrangement of the particles as well as the pore size and
pore fluid distributions define the capacity of the soil.
A typical soil type in rivers, at coasts or in harbours is sand where the pores are filled with
water. Thus the soft ground consists of saturated sand. Sand is typically non-cohesive (c
= 0) i.e. the physical properties of the grains are determinant. The unit weight γr gives



60 Chapter 4. Simulation of stranding scenarios

the ratio of mass and volume. For saturated sand the buoyant unit weight γ′ is relevant. It
includes the unit weight of water γw:

γ′ = γr − γw (4.2)

There are different models to describe the deformation and strength behaviour (see
e.g. Grabe [20], Gudehus [22] and Kolymbas [30]). Most relationships used to char-
acterise the stress-deformation and strength properties are empirical and based on phe-
nomenological description of soil behaviour. The Coulomb equation (4.3) is by far the
most widely used for strength. Equation (4.3) and figure 4.6 clarify that the shear strength
τf is dependent on the cohesion c, the stress σ and the angle of friction ϕ. A ground with
a stress state that lies above the failure surface collapses.

τf = c+ σ · tan(ϕ) (4.3)
τf = c′ + σ′ · tan(ϕ′) (4.4)

Figure 4.6.: Shear strength τf as function of normal stress σ (Grabe [20]).

In saturated sand only effective stresses σ′ are active because water cannot carry shear
stresses. Thus equation (4.4) is relevant with the effective cohesion c′ and the effective
angle of friction ϕ′. The effective stress σ′ adds up to:

σ′ = σ − u with σ′ = γ′ · z (4.5)

Parameter z is the depth below ground surface and u is the pore-water pressure. It
is disregarded that depending on the permeability excess pore-water pressure may occur
during stranding.
The stiffness of the soil is given by the stiffness modulus, whereas the void ratio e can be
calculated by equation (4.7):

Es = σ′ · 1 + e

Cc
(4.6)
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e = e0 − Cc · ln
σ′

σ0
(4.7)

Cc is the compression index and e0 is the initial void ratio. Both values are given in
table 4.3 for the reference stress of σ0 = 10 kN/m2 of compact fine sand (see Gudehus
[22]).
Soil can increase its volume by reducing the compactness. This happens if shear forces
are acting and until the shear strength is reached. This property is described by the (effec-
tive) angle of dilatancy.

The Mohr-Coulomb model includes no post-failure modelling and no strain rate ef-
fects. It is perfectly elsato-plastic. However, the limited number and simple interpretation
of input parameters make this model a good choice for the purpose of this work. The
model enables soil to be modelled using familiar geotechnical parameters. It captures soil
plasticity behaviour very well and ensures a unique solution.
In LS-DYNA material type 173 is based on equation (4.3). The material has a Mohr-
Coulomb linear shear failure surface, where τf is the maximum shear stress on any plane,
σ is the normal stress on that plane. The tensile strength is not relevant for non-cohesive
soil and not used within this work. After the material reaches its tensile strength, further
tensile straining leads to volumetric voiding. Volumetric response to hydrostatic pressure
is linear and defined by the elastic shear modulus and Poisson’s ratio values provided by
the user. All input parameters are listed in table 4.3. The buoyant unit weight γ′, effective
angle of friction ϕ′, effective angle of dilatancy Ψ′, effective cohesion c′ and Poisson’s
ratio ν are given for compact fine sand.

Table 4.3.: Material data of saturated sand.

buoyant unit weight γ′ [kN/m3] 11.00
effective angle of friction ϕ′ [◦] 35.00
effective angle of dilatancy Ψ′ [◦] 5.00
cohesion c′ [kPa] 0.00
Poisson’s ratio ν [-] 0.30
initial void ratio e0 0.50
compression index Cc 0.005

The material model is only valid for Lagrangian solid elements. The chosen element
type is a constant stress solid element (type 1) (see LS-DYNA manual [38]). The elements
are eight nodes cuboid and the nodes have six degrees of freedom each. The element type
has a trilinear displacement approach and is single-point integrated.

The mesh is only finer at the top of the sandbank to represent the imprint of the vessel
and to save calculation time. Different mesh sizes with different numbers of elements are
tested. The calculation time depends on the element numbers whereas the results of the
vessel do not depend on the mesh size of the ground.
The bottom elements are restricted in z-direction. The side elements have either the sym-
metry condition or are allowed to move in z-direction. The total height of the sandbank is
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determined by weighting up the height versus the calculation time. An adequate height of
the sandbank is reached if no influence of the loading is measured at the bottom elements.
For the finally chosen height of 25 m the vectors representing the first main stress axis are
horizontal in the bottom elements. The calculation time is not increased compared to a
height of 15 m if the element number is the same. The mesh size at the top is the same for
all tested heights.
The stiffness of the soil is calculated with equation (4.6). In LS-DYNA a gradient of the
shear modulus versus the height of the sandbank can be provided by the user for the depth
dependency.
Initial stresses in the sandbank are needed for an accurate calculation (see equation (4.5)).
To initialise stresses the sand is loaded with gravity in a quick pre-calculation step. The
implicit solver is used for the pre-step.
The friction between sand and steel is determined by equation (4.8) with the angle of
wall friction δ given in Grabe [20]. There is no relative movement between sandbank and
vessel, so a dynamic coefficient of friction is not relevant.

µ = tan(δ) with δ =
2

3
· ϕ (4.8)

4.2. Verification of the simulation method

4.2.1. Ship model
The model with the rigid ground is calculated with an ideal elastic material and without
the failure criterion (Ha7p2el).
Figure 4.7 shows in black the total bending moment of the cross section at 147 m AP for
Ha7p2el. The acting moment and shear force are achieved by equations 4.9 and 4.10.

Mh =

∫

A

σx · z dA (4.9)

Qh =

∫

A

τz dA (4.10)

The bending moment Mh and shear force Qh are plotted over the surface drawdown
(see figure 4.7 and 4.8). The corresponding moments of case A1 from chapter 3 are
given in grey. The moment of Ha7p2el is almost equal to that of case A1. In simulation
Ha7p2el the vessel lies on a small area, whereas the beam has one contact point. The
differences are comparable to those between case A1 and A2 (see subsection 3.3.2). With
receding tide the differences increase because the initial contact length of 2 m rises. It
is doubled for a surface drawdown of 5 m. If the beam is also calculated with, e.g. a
contact area of 4 m, the moments and forces are identical for 5 m of receding tide. Case
A1 is chosen as a reference in all graphs because the contact area is not known before the
stranding scenarios are solved.
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Figure 4.7.: Ha7p2el: bending moment Mh at 147 m AP.
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The vessel can bear the same forces and moments that are globally applied. The sim-
ple beam theory is valid for both cases, because no nonlinear effects are existent.
The corresponding shear forces can be found in figure 4.8. The shear force at 147 m AP
of case A1 cannot be given because of the shear force jump. Thus the total shear forces
at 146 and 148 m AP are additionally given for both methods. The forces accentuate the
shear force jump around the contact point/area (see also fig. 3.11). The discrepancy be-
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tween case A1 and Ha7p2el reveals the effect of the contact area. The vessel trims to the
bow and the contact area is increased in bow direction. This effect cannot be reproduced
by the method presented in chapter 3. Thus the forces at 148 m AP differ to a greater
extent than those at 146 m AP. The change of sign in curve 147 m AP is the result of the
increasing contact area only in one direction.

The longitudinal stresses are correctly distributed over the ship’s height. In the double
bottom we find the maximum compression stress and at the hatch coaming we find the
maximum tensile stress (see figure 4.12). The maximum tensile and compression stress is
equal to the stress calculated with the beam theory from the pure beam calculation.
The load application is correct and the constrained equations introduce the global forces
and moments into the shell model. The equilibrium of forces is fulfilled and the contact
forces are equal to the reaction forces given in e4.
The trim of the vessel during receding tide is also reproduced. The data of the trim are
given in e4 for a rigid vessel without bending (see subsection 3.1.1). The trim from e4 is
compared to the values of Ha7p2el. The displacement at FP is slightly higher whereas
the aft body emerges more for the rigid vessel compared to Ha7p2el. The trim calculated
in e4 is overestimated at all water levels because of the rigid material model. The shell
section of Ha7p2el bends around the ground. It forms a sharp bend in the displacement
curve and the displacement of the aft body is attenuated.

The buoyancy forces are based on the floating condition of a rigid vessel (see section
3). At the moment it is not possible to calculate the new floating condition for a flexible
vessel depending on the grounding area and the tide level with e4. There are no other
ship line based tools known to generate the new buoyancy forces due to grounding and a
flexible vessel. If the buoyancy forces are applied correctly the method would need mul-
tiple iteration loops. The inaccuracy is accepted in favour of a simple and fast method.
In addition, it is shown that different buoyancy forces have a insignificant influence on
the ultimate hull girder strength (see subsection 4.3.3). Furthermore, the assumption is
conservative because now less buoyancy forces are assumed in the aft body. In fact for a
flexible ship the buoyancy forces are higher at the stern and that would counter the light
ship and dead weight.

4.2.2. Soft ground model

One oedometer and one triaxial test are calculated in LS-DYNA with the sand parameters
given in table 4.3. The above described methodology is used to guarantee the behaviour
of soil (implicit pre-step, explicit solution). The verification cases are also calculated with
the FE program ABAQUS. The results of ABAQUS are kindly provided by the Institute of
Geotechnical Engineering and Construction Management.

The configuration of the oedometer and triaxial test are shown in figure 4.9. A cubic
element is taken because the sandbank is meshed with such element geometries. There
are no different stresses at the corners of the element. In each case one volume element
is modelled and loaded with gravity in the pre-calculation step. The bottom nodes are
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Figure 4.9.: Oedometer and triaxial test configuration.

fixed in vertical direction (z). For the oedometer test all nodes are also restricted in both
horizontal directions (x,y). In the triaxial test the loading sides can slide. The pressures
p1 is applied in vertical direction. It starts with 10 kPa and is increased up to 1000 kPa for
the oedometer test. The triaxial test is calculated for three different starting pressures p3
= 50, 100 and 200 kPa which are applied constantly to the sides as support.
In both FE programs the same results are achieved. Therefore only the results from LS-
DYNA are presented.

The correct preloaded state can be checked via the vertical σ′
1 and horizontal stresses

σ′
3. They depend on the height and the buoyant unit weight of sand (see eq. 4.5):

σ′
1 = γ′ · z

σ′
3 = 0.5 · σ′

1 (4.11)

Stresses are calculated at one point in the middle of the element because of the single-
point integration. Thus the initial stresses due to gravity are averaged over the height of
the elements. In both tests the initial stresses are achieved for h = 1 cm, σ′

1 has to be -110
Pa and σ′

3 = -55 Pa according to equation (4.11). Exactly those values are found after
the pre-step.
A simple stress-strain diagram of the oedometer test is shown in appendix B.4. The curves
start at σ′

1 = -110 Pa due to the initial condition. After the solution the horizontal stresses
equal the horizontal pressure that was loaded onto the sand.

For the triaxial tests the p’-q-diagram is given. The ordinate is half of the principle
stress difference and the abscissa is half of the effective principle stress sum. The three
calculations are shown in figure 4.10. The maximum values of σ1 that the soil can carry
are connected with a straight line, according to DIN 18137-2 [13]. The angle between
the straight line and the x-axis is called α′. Via α′ the effective angle of friction can be
determined.

sin(ϕ′) = tan(α′) (4.12)

For the recalculated triaxial tests tan (α′) equals 0.574. The effective angle of friction
is 35◦ after equation (4.12), which is the value previously defined.



66 Chapter 4. Simulation of stranding scenarios

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500

q
=

σ
1
−
σ
3

2
[k

Pa
]

p′ = σ′
1+σ′

3
2 [kPa]

50 kPa
100 kPa
200 kPa

stress path

Figure 4.10.: Stess path of triaxial test.

The chosen soft ground model correctly represents the soil characteristics according
to equation (4.4). The effect of stresses on the strength of soil are considered. The initial
stresses are reproduced.

4.3. Specification of calculation parameters

All relevant parameters are listed in table 4.4 in the same order in which they are dis-
cussed now. The choice of some parameters as element type is the result of weighting up
their influence on the results and on the calculation time. If no modifications are made,
the calculations are very expensive. For other parameters, e.g. failure criterion, there are
different possibilities that need to be evaluated.

Table 4.4.: Calculation parameters.

speed of load increase 10 seconds per tide metre
time step size 1.98 E-5 s (mass scaling)
buoyancy at contact area constant: buoyancy deleted at initial contact area
element type type 2
failure criterion according to Peschmann [54]
stress-strain curve see figure 4.4, material type 123
initial deformation no initial deformation, welded joints not modelled
soft ground parameter see table 4.3
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The different calculation parameters are analysed at the midship section for a rigid
ground Ha7p2, because it is 5 h faster than Sa7p2. The average calculation time of model
Ha7p2 is 50 hours (using 4 cpu of cluster with 8 cores and 48 GB RAM). Primarily the
differences are compared for the total bending moment of the cross section at 147 m AP
and the collapse mode to determine the hull capacity.
At the beginning of each subsection the executed calculations are listed in a table.

4.3.1. Load increase

Table 4.5.: Calculations with different load increases.

case increase

li30 30 s per tide metre
li15 15 s per tide metre
Ha7p2 10 s per tide metre
li5 5 s per tide metre

Within the explicit solver any time-dependent values can play a role. Furthermore
applying loads is not a usual procedure in explicit solutions. To check the influences of
the load increase speed on the simulation results and to exclude dynamic effects different
speeds are analysed (see table 4.5). The computational effort directly depends on the load
increase, e.g. case li30 needs to be simulated 150 s whereas case Ha7p2 only needs 50 s.
The total calculation time has no linear dependency on the increase.
The differences in the bending moment for cases li30, li15 and Ha7p2 are very small,
whereby case li5 gives different results. The first eigenfrequency of the whole system is
2 Hz. It is clearly necessary in an explicit solution to increase the external loads more
slowly than one cycle period; 5 s is obviously to short. If the bending moments and shear
forces of case li5 are checked at the beam elements it becomes clear that the applied loads
are not fully acting. The system needs more time until the forces are active.
A load increase within 10 s provides a reasonable result and has a comparably short com-
putation time.

4.3.2. Time step size

Table 4.6.: Calculations with different time step sizes.

case time step [s] area [m2] contact stiffness damping

t1a1 ∆ t = 1.97 E-6 (auto) A = 4.8 penalty no
t1a1d ∆ t = 1.97 E-6 (auto) A = 4.8 penalty yes
t1a2 ∆ t = 4.90 E-6 (auto) A = 480 penalty no
t2a2 ∆ t = 1.98 E-5 (mass scaling) A = 480 penalty no
Ha7p2 ∆ t = 1.98 E-5 (mass scaling) A = 480 soft constraint no
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The time step size is 1.97 E-6 s without any adjustments (t1a1). It is very small and
does not change during the solution. The size and thereby the overall calculation time
needs to be reduced by coincidentally guaranteeing the correct solution to the problem.
The explicit solver has a time step problematic (see section 2). The integration method is
stable if the global time step size is smaller than the critical time step. The critical time
step depends on the highest eigenfrequency of the system and is given without viscous
damping in the following equation:

∆t ≤ ∆tcrit =
2

ωmax
(4.13)

The global time step size is the minimum value out of all finite elements. It is de-
termined after each time step with the Courant-Levy stability criterion (see LS-DYNA
theoretical manual [37]) given in equation (4.14).

∆t = 0.9 · %
c

(4.14)

The characteristic element length % is the shortest element edge length. For the cho-
sen element types the determination of the sound speed c depends on Young’s modulus,
Poisson’s ratio and mass density:

solid element: c =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(4.15)

shell element: c =

√
E

ρ(1− ν2)

beam element: c =

√
E

ρ

For the used beam elements the global time step size given in equation (4.14) and
(4.15) is not used because the bending-related time step size is smaller. This is calculated
by multiplying equation (4.14) with factor fact (see equation (4.16)). Thus not only the
element size but also the cross section area A and moment of inertia I directly influence
the time step size.

fact = 1.8 ·
(√

3I

[
3

12I + A%2
+

1

A%2

])−1

(4.16)

A good way to enlarge the time step size is to increase the mass density of the critical
elements, so-called mass scaling. Mass scaling influences the amount of inertial mass but
not the gravitational mass. The new time step size is provided by the user and will not
change during the solution. The new mass density of each critical element is achieved
by solving equation (4.14) for the density. Doubling the time step size quadruplicates the
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density and therefore mass scaling has to be used carefully.

In addition to the very small time step the model oscillates. Especially the beam el-
ements oscillate because of the relative low mass. They have a relative small area A of
maximal 4.8 m2 compared to the moment of inertia. If the area A is increased to 480 m2

(H · B/2) there are two positive effects: the model no longer oscillates and the time step
size is more than doubled to 4.9 E-6 s (t1a2). The bending moment of calculation t1a1
and t1a2 differ by 0.9%.
The other way to reduce the oscillations is to damp the system with a mass proportional
Rayleigh-damping. This type of damping only effects the mass matrix, damps the lower
eigenfrequencies and thus reduces global speeds. The mass proportional damping does
not influence the time step, because the highest eigenfrequency is almost unchanged.
However damping should not be used if not absolutely necessary, because it could dis-
tort the results. Furthermore, the calculation time raises with the use of damping. In
different simulations the best damping coefficient was found to be 0.2 and this is used
in calculation t1a1d. Although t1a1d gives similar results as t1a2 the latter is the better
choice concerning damping.

If the time step size is set to 1.98 E-5 s (t2a2) the calculation is 10 times faster than
t1a2. Thereby the total mass is increased by 2.33%. The critical elements that are loaded
with added mass are around the manholes.
Increasing the time step size a little bit more the added mass becomes disproportional
high. Then many elements would reach a critical size resulting in a high added mass.
The time step size has a small influence on the results. The maximum deviation between
case t1a2 and t2a2 is less than 1% for the bending moment at 3 m of surface drawdown.

The provided time step size of 1.98 E-5 s is higher than the size recommended due
to the contact if the default penalty method is used. The contact stiffness depends again
on the size of the elements involved in the contact. Here all elements are involved in the
contact condition (see section 4.1). The recommended time step size for the implemented
contact should be 1.16 E-5 s to avoid contact instabilities. Thus the soft constraint option
is chosen (Ha7p2). The contact stiffness k is thereby determined as needed for the speci-
fied time step size and multiplied by the factor sofscl (see equation (4.17)).

k = sofscl · ms

∆t2
(4.17)

Both methods to control the contact stiffness, t2a2 versus Ha7p2, give exactly the
same results and need the same calculation time. The penalty method does not lead to
instabilities even if the time step size is larger than the recommended size. However the
soft constraint method is chosen.



70 Chapter 4. Simulation of stranding scenarios

4.3.3. Buoyancy

Table 4.7.: Calculations with different buoyancy applications.

case type

Ha7p2 buoyancy at contact
Ha7p2B no buoyancy at contact

In the initial floating condition the buoyancy is applied at all vessel lengths. If the
water level is reduced contact with the ground arises. The contact area increases with
receding tide. There are no buoyancy forces at the contact area. For simplification the
buoyancy is only deleted at the initial contact area (between 146 and 148 m AP).
The changing length of the contact area is known from case Ha7p2 and thus the buoyancy
can be correctly deleted for the next case Ha7p2B. The enlarging contact area length is
given in table 4.9. When the water level is reduced by 5 m the three modelled cargo holds
are in contact with the ground.

The bending moment distribution is almost the same for both cases. Up to 1 m of re-
ceding tide the distribution of case Ha7p2 is shifted by 1% in the direction of the surface
drawdown. Thus this model suffers a little later the same loads as case Ha7p2B. The dif-
ference is so small that it is not necessary to consider the lost buoyancy at the contact area.

4.3.4. Element type and failure criterion

Table 4.8.: Calculations with different element types and failure criterion.

case type criterion

Ha7p2 2 Peschmann [54] criterion
e16f1 16 Peschmann [54] criterion
e16f2 16 no failure criterion
e16f3 2 GL criterion

Using under-integrated shell or volume elements (single point integration) can lead
to so-called hourglass modes. Hourglass modes are non-physical, zero-energy modes of
deformation that produce zero strain and no stress due to a rank drop in the stiffness
matrix. Hourglassing can be introduced by single loads or contact forces at single nodes.
There are two possibilities in LS-DYNA to control hourglassing. One is to automatically
stabilise the single integrated element against zero-energy deformation. A way to entirely
eliminate hourglassing is to switch to fully-integrated element formulations. But there is a
downside to this approach. They are much more expensive than the single point integrated
elements. Secondly, they are much more unstable in large deformation applications. And
third, they have some tendency to behave too stiffly in applications where the element
shape is poor.
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Hourglass modes do not occur in case Ha7p2. The hourglass control is sufficient and
critical elements are deleted because of the failure criterion before they have zero-energy
modes. If the model is simulated without the failure criterion houglassing becomes a
problem and the fully integrated element type 16 is chosen for the cargo hold section
(e16f2). Type 16 is a fully integrated formulation with enhanced assumed strain (EAS)
that is an extended distortion approach to compensate shear stiffening. To compare the
different failure criteria a third case is needed. To exclude the influence of the different
element types case e16f1 has the same failure criterion as Ha7p2 and the element type of
e16f2. In addition, the so-called GL failure criterion is tested, whereby the critical strain
εk also depends on the element thickness t and the element edge length %. For more details
reference is made to Egge et al. [15].

εk = 0.056 + 0.54 · t
%

(4.18)
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Figure 4.11.: Ha7p2, e16f1, e16f2 and e16f3: bending moment Mh at 147 m AP.

Figure 4.11 presents the ultimate strength measured at cross section 147 m AP of the
four cases. Between 0 and 1 m of surface drawdown the whole model is in the elastic
range of the material and all cases have the same total bending moment. After 1 m of
water level reduction the vessel enters the plasticity range and the different parameters
give other results. The course of the ultimate strength is the same. The highest bending
moment is achieved by case e16f2 and the lowest by e16f3. The distribution of e16f1 and
Ha7p2 lie in between. Case e16f1 and e16f2 are stiffer than Ha7p2 or e16f3 and can
sustain higher loads. The third downside mentioned above increases the stiffness of the
system when element type 16 is chosen. Without failure the loads are distributed to more
elements and transmission to intact structural elements is better. Therefore, cases Ha7p2
and e16f3 are conservative considerations. e16f3 can sustain lower moments than Ha7p2.
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Elements are deleted earlier because of the smaller critical strains (compare equation (4.1)
and (4.18)).
Using shell type 16 leads to longer calculation times. For example, e16f2 needs twice the
time of Ha7p2.

Of all parameters, the element type and failure criterion have the greatest influence on
the results. The quality of the results is the same and only the quantity varies. Ha7p2 is
chosen for the upcoming variations because its results lie in between the other cases. It is
cost-efficient and excludes the effects described above.

4.3.5. Summary of calculation parameters

The system is in any case very insusceptible to modification. The chosen modification to
achieve a faster calculation time does not cause a loss in the quality of the results.
The parameters used for further calculations are already given in table 4.4.

4.4. Comparison with double T-beam
A double T-beam, called Tbeam, is calculated with the length, height and the loading con-
dition of Ha7p2. The results of the calculation are useful to check the plasticity effects
of the simulation method. To compare the results to the theory of ultimate load-bearing
capacity for simple structures a failure criterion is not used. Thus the vessel is also calcu-
lated without any failure criterion (e16f2, see section 4.3.4).

An unsymmetrical double T-beam is modelled with the above described shell ele-
ments, material models and boundary conditions. Thus strain hardening and different
yield stresses are taken into account. The total length and height are the same as that of
the vessel. The flanges are very short to exclude the effect of effective breadth because the
double bottom in e16f2 has also no effective breadth. The plate thickness are chosen to
achieve best agreement with the cross-section area and the elastic/plastic section modulus.

The longitudinal stress distribution at cross section 147 m AP of Tbeam (in grey) and
e16f2 (in black) are compared in figure 4.12 for the initial floating condition (0 m), 1, 3
and 5 m of surface drawdown. The different yield stresses and their distribution in the
models over the height are given in colour: yellow for 235, green for 315 and red for 355
N/mm2. The thickness of the colour scale represents the amount of structural elements
with the specific yield stress. So, most elements have a yield stress of 315 N/mm2. Fur-
thermore, the height of the structural elements stringer s1, s3 and inner bottom ib as well
as the elastic (e.n.a.) and plastic neural axis (p.n.a.) are given. The results of Tbeam are
given in grey with many sampling points and the results of e16f2 are given in black with
dots for the sampling points.
Until 1 m of receding tide the stress distribution is linear and the stresses are below the
yield stresses. Because of the three different yield stresses the straight line has different
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Figure 4.12.: e16f2 and Tbeam: longitudinal stress distribution at 147 m AP.

gradients. At 3 m of water level reduction the cross section starts to plasticise and zero-
crossing is above the elastic neutral axis for case e16f2, whereas for Tbeam the axis does
not move. In both cases the neutral axis slides down with receding tide. After buckling
in the double bottom (see figure 4.13) the neutral axis moves towards the tension side and
further loads can be sustained until the deck yields. There is a reserve strength beyond
collapse of the compression side i.e. the double bottom. This phenomenon is also reported
by Rutherford and Caldwell [64] and Paik and Mansour [50] and comparable results for a
passenger ship are also presented in a benchmark study published in Committee III.1 [9].
For 5 m of surface drawdown the height of the plastic neutral axis is the same as the one
achieved by the following simplified formula given by Lehmann and Zhang [36].

p.n.a. =
A1 − A2 + Ast

2 · sst
= 10.2 m (4.19)

Equation (4.19) applies for unsymmetrical double T-girders and A1 is the area of the
top flanges, A2 the area of the lower flanges, Ast and sst the area/thickness of the web. If
p.n.a. is calculated for the cross section of e16f2 at 147 m AP by hand with the method
also proposed by Lehmann and Zhang [36] the same result is achieved.
The stress distribution for 5 m of receding tide of Tbeam is suitable with the plastic hinge
theory. It is not rectangular above and below the plastic neutral axis and the maximum
stresses in top and bottom are higher than the predominant yield stresses due to the differ-
ent yield stresses.
The differences between Tbeam and e16f2 are because of the different cross sections.
The joint of the side structure to the bottom structure (called stringer s1) is 5 m over the
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base line (see figure 4.13) which leads to a sharp change of the stress distribution for 3
and 5 m of tidal range. Even for the initial floating condition and a surface drawdown of
1 m it is seen. The inner double bottom ib also has an influence on the distribution. The
influence of stringer s3 can be identified in the stress distribution for 3 m of water level
reduction.
Figure 4.13 shows the deformation at cross section 147 m AP for e16f2. The buckling
of the double bottom structure until stringer s3 can be seen. The immense buckling phe-
nomenon explains why e16f2 reaches higher stresses at the base line as Tbeam for 5 m
of receding tide.

Figure 4.13.: e16f2: deformation of cross section 147 m AP.

The Tbeam calculation provides good results with respect to the stress distribution
and verifies model e16f2 beyond the elastic beam theory. But to analyse all effects of
stranding to a ship structure a T-beam model is not sufficient.

4.5. Results of the midship scenario
The results of the midship scenario are given in detail and those of the aft and the fore
body scenarios are given in brief at the end of the section. Most phenomena are dis-
cussed using ground geometry a7p2. Bending moment and shear force curves, ultimate
strengths, stresses, collapse modes and the influence of ground parameters and geometries
are shown.
Furthermore the stranding incident of the container vessel Fowairet is recalculated with
the presented method and the results are compared.
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4.5.1. Bending moment and shear force curves
Figure 4.14 shows the bending moment and shear forces of case Sa7p2 over the ship
length for 1, 3 and 5 m of tide level. In all graphs the results of case A1 of the pure beam
calculation are shown as a reference.
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Figure 4.14.: Sa7p2 and case A1: bending moments and shear forces.

For 1 m of surface drawdawn the bending moment and shear force curves are almost
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the same as for the pure beam calculation. The stresses are in between the elastic range,
being smaller than the yield stresses. The model behaves according to the elastic beam
theory.
The differences are at the stranding point/area according to the differences between
Ha7p2el and case A1 described in subsection 4.2.1. In simulation Sa7p2 the vessel al-
ready lies on an area of 9.3 m, whereas the beam has one contact point.
The contact area of Sa7p2 increases with receding water. The effect can be seen very well
for the shear force curve. The moments are clearly smaller than for the pure beam case.
The structure can not absorb the high forces and moments as predicted by the elastic beam
theory and the difference in the shear force capacity is smaller than for the bending mo-
ments. The bending moments of Sa7p2 stay inside the envelope of MT . The shear forces
are higher than the maximum permissible forces QT up to 3 m of surface drawdown. For
3 m of receding tide the curves are qualitatively the same as for case A1. The larger con-
tact area with a length of 16.5 m results in the rounded peak and in the gradient of the
shear force jump. But the main difference is a result of the different material properties.
As already shown in figure 4.12 the structure soon enters the plastic range. The bending
moment curve for 5 m of surface drawdown indicates the post collapse mode where the
whole shell-section is in contact with the ground.

In figure 4.15 the normalised bending moment at 147 m AP MSa7p2/Mcase A1 is plotted
over the normalised shear force jump QSa7p2/Qcase A1. To obtain this the moment/shear
force jump of Sa7p2 is divided by those of case A1. The shear force jump is built up by
the maximum positive and maximum negative shear force at the contact. The normali-
sation shows that the shear forces are better absorbed by the structure than the bending
moment, especially in the post-collapse range. The quantity of the points changes if an-
other reference, e.g. case A2, with the same contact area is taken, but the quality is the
same.
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Figure 4.15.: Sa7p2: normalised moments and shear forces at 147 m AP.
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4.5.2. Bending moment Mh

Figure 4.16 and 4.17 show the total bending moments and shear forces over the water
level reduction of calculation Ha7p2 and Sa7p2 measured at all intact elements of cross
section 147 m AP (see equation (4.9)). It implies how much of the globally applied mo-
ments the cross section can bear. Again the bending moment of case A1 is shown as a
reference. For the shear forces there is no reference line from the beam calculation be-
cause the cross section lies at the shear force jump. Thus calculation Ha7p2el is taken
as a reference case. Ha7p2el includes the effects of trim, bending and increasing contact
area which are relevant for the shear forces at that section (see subsection 4.2.1).

In both stranding simulations the moments lie below the pure beam results after 1 m
of water level reduction. The cross section cannot absorb such a high bending moment
as that predicted by the elastic beam theory. The highest yield stress of 355 N/mm2 is
already exceeded in positive and negative direction for 1.2 m (Sa7p2)/1.4 m (Ha7p2) of
surface drawdown. The first elements start to fail at 1.5 m of water level reduction in both
simulations. The ultimate hull girder strength is reached shortly after 3 m of receding tide
for Sa7p2 and at 4 m for Ha7p2. Ha7p2 reaches even higher moments and thus is not the
conservative case. After the ultimate strength is reached the vessel is still in an equilib-
rium position due to the support of the ground. The ultimate strength of the section during
stranding in both cases is around 30% less than predicted by the classification societies
(see subsection 2.4.1).
For 1 m of surface drawdawn all bending moments are almost the same. The differences
are again due to the different contact areas (see subsection 4.5.1 and table 4.9). The mo-
ment of Ha7p2 lies between Sa7p2 and case A1. The longitudinal stresses are below
the yield stresses and thus the models are still in the elastic range of the true stress-strain
curves.
When the water level is reduced further, the contact area and the differences to the ideal
elastic beam theory increase. After 1.2 m or 1.4 m of surface drawdown calculations
Sa7p2 and Ha7p2 are outside the ideal elastic range. Now the length of the contact area
has the contrary effect. The longer the contact area the higher the moments that can be
absorbed by the structure (see table 4.9 and figure 4.16). For 3 m of receding tide the
contact length is almost the same and so are the moments. This does not apply for 5 m of
receding tide because both simulations are in the post-collapse mode.
The vessel trims in both simulations to the bow and so the contact area length enlarges
faster in bow direction.

Table 4.9 also gives the z-displacement of the cargo hold section relative to the base
line of 0 m. The values are achieved by averaging the displacements of the double bot-
tom at the two bulkheads. At 3 m of surface drawdown the bulkheads of Ha7p2 touch
the ground and no more displacement is possible due to the rigid ground. In simulation
Sa7p2 the vessel is constantly pushed into the soft ground. Between 4 and 5 m of receding
tide the bulkheads are lifted. A main fold in the middle of the cargo hold lifts the midship
section.

The shear forces are hard to asses at cross section 147 m AP due to the shear force
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Figure 4.16.: Sa7p2 and Ha7p2: bending moment Mh at 147 m AP.
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Figure 4.17.: Sa7p2 and Ha7p2: shear force Qh at 147 m AP.

jump. The gradient of the jump is differently increased during receding tide. The shear
forces of Sa7p2 and Ha7p2 at cross section 146, 147 and 148 m AP are also given in
appendix B.4 to clarify the effect of different contact lengths. Ha7p2 and case A1 are
identical up to 1 m of surface drawdown and Sa7p2 differs due to the different contact
length. The gradient change of the curves, which is described in subsection 4.2.1 for
Ha7p2el, is immediately valid for Sa7p2. Up to a surface drawdown of 1 m it is also
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Table 4.9.: Sa7p2 and Ha7p2: contact length and z-displacement.

sd Sa7p2 Ha7p2
[m] contact [m] z-displ. [m] contact [m] z-displ. [m]

1 9.30 -0.42 2.00 -0.02
2 13.00 -0.66 6.30 -0.29
3 16.50 -0.88 18.80 -0.59
4 25.40 -0.98 35.50 -0.56
5 42.00 -0.88 42.00 -0.57

valid for Ha7p2, because the contact length increases in direction of the fore body. The
shear force curve of Sa7p2 reflects the bending moment between 0 and 4 m of receding
tide, whereas the shear force of Ha7p2 shows effects that are not indicated by the asso-
ciated moment. In fact almost the same shear forces are found at 3 m of receding tide
for both simulations. The outlier at 4 m of water level reduction arises because the dou-
ble bottom at that section and between the bulkheads is suddenly lifted 0.03 m from the
ground. Shortly afterwards it is lowered again. The midship section of Sa7p2 is lifted at
5 m water level reduction and thus the shear force also increases.

4.5.3. Stress and collapse
The following figures always show the results of Ha7p2 on the left side and the corre-
sponding results of Sa7p2 on the right side. The mesh is not shown. For a better orien-
tation some structural elements, the centre line (CL), the bilge and 147 m AP are marked
(see table 4.10).

Table 4.10.: Structural elements marked in figure 4.18, 4.20-4.22 and 4.26- 4.27.

number mark structural element
double bottom side structure

1 b1/b2 bulkhead (floor) bulkhead (web)
2 fl1/fl2/fl3 floor web frame
3 - bottom longitudinal frame longitudinal frame
4 s2/s3 longitudinal girder stringer

In figure 4.18 the final collapse of Ha7p2 and Sa7p2 is plotted. The deformation of
the middle cargo hold is given scale of 1:1. The transverse main folds are marked in red
and the longitudinal main folds/buckle fields are marked in yellow.
In both cases the structure starts to collapse at the connection of bilge plates and longitu-
dinal girders between 1 and 2 m of receding tide. From there the collapse moves into the
side and double bottom structure. In the double bottom there is an additional failure start-
ing point. The longitudinal girders start to buckle around their manholes between floor
fl1 and fl2, shorty after the failure of the bilge structure. At 5 m of surface drawdown
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there are one to two deep transverse and longitudinal folds and diverse deep buckles. The
outer shell of the side structure buckles isotropically around the main fold. In the outer
shell of the double bottom there are orthotropic buckles. In both simulations the main
transverse fold can be compared to a plastic hinge in beam theory and is mainly caused by
the huge bending moment at both ends of the modelled cargo hold section. Whereas the
longitudinal failure and the buckling of the side shell are due to the shear force. After the
collapse of the bilge structure the side is pushed into the ground. The supporting effect of
the ground and the contact area length depend on the ground material.
In particular the double bottom of Ha7p2 has a main orthotropic and inwards buckling
field in the middle of the cargo hold between floor fl1 and fl2. It levels with the manholes
of the longitudinal girders. The structure loses its contact with the stiff bank due to the
inward deformation (see also table 4.9). The deepest buckle in the bottom plating is 0.25
m. The buckling field becomes an outwards fold in the bilge and side structure that con-
tinues until stringer s2. At the fold elements are deleted due to high strains. In addition a
second but less distinct buckling field appears beside the bulkhead floor b1. One inward
longitudinal fold is found in the bilge at the change of the double bottom into the bilge
structure with a maximum depth of 0.8 m.

Figure 4.18.: Ha7p2 and Sa7p2: deformation at 5 m of surface drawdown.

In model Sa7p2 there are one inward transverse fold and buckling field as well as
two longitudinal folds. The longitudinal fold is beside the bulkhead structure b1. It has a
maximum depth of 0.74 m compared to the bulkhead floor and is thus 0.5 m deeper than
the buckling field of Ha7p2 at the same position. The outer shell even starts to fracture
close to the longitudinal girder at centre line. The longitudinal and orthotropic buckles of
Sa7p2 between floor fl1 and fl2 also level with the manholes of the longitudinal girders
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and are 0.3 m deeper than those of Ha7p2. At the same longitudinal direction there is the
fold of the bilge and side structure that deforms partly inwards and partly outwards. It
continues to stringer s2 and results in fracturing of the outer shell at many positions. The
outer shell folds at both sides of the longitudinal girder at the bilge structure, at which
point the backmost fold passes through the whole model including the outer shell at both
bulkheads. The second longitudinal fold continues from the aft bulkhead b2 through the
bilge fold into the longitudinal fold before the fore bulkhead structure b1. It connects the
main fold of the double bottom with the fold of the side structure. Furthermore the outer
shell of the bilge folds outwards between two longitudinal stiffeners, which underlines the
effect that the side structure is pushed into the ground. The collapse of the double bottom
is relocated at the indentation of soft ground. Figure 4.19 gives the z-displacement of the
sand. The sand is squeezed to the side of the bilge and piles up at the folds. The maximum
displacement of 1 m is found at the bilge radius. The sand piles up to 0.6 m at the area of
the main transverse fold.

Figure 4.19.: Sa7p2: indentation of sandbank in z-direction at 5 m of surface drawdown.

Figure 4.20 to 4.22 show the longitudinal stresses of Ha7p2 and Sa7p2 for 1, 3 and
5 m of tide levels. In the first row of each figure (a) the shell model without the edges is
plotted and the scale is fitted to the maximum yield stress of ±355 N/mm2. The second
row (b) shows the outer shell plating and the scale is now fitted to ±315 N/mm2, which is
the highest yield strength of the outer shell. Besides the stresses, the contact length, the
faster increasing length to the bow, the failure and the height of the plastic neutral axis are
found.
For 1 m of receding tide the stresses are below the yield stresses. The distribution is simi-
lar in both simulations. The stresses of Sa7p2 indicate the longer contact area (see figure
4.20 (b)).

In figure 4.21 the folds and buckling fields of final collapse are already illustrated.
The figures show that not only the outer shell of the vessel fails. The above described
failure modes are also found in the inner shell plating of the side and bilge structure. The
double bottom is lifted up between the bulkheads. The predominant kind of damage is
elasto-plastic buckles. Furthermore it becomes clear that the rigid ground has a higher
supporting effect onto the double bottom between the bulkheads than the soft ground.
Both bulkheads are already in contact with the ground in simulation Ha7p2, whereas in
Sa7p2 only the fore bulkhead b2 is in contact. The height of the plastic neutral axis is
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close to stringer s3, comparable to figure 4.12.

(a) Cargo hold Ha7p2 Sa7p2

(b) Outer shell

Figure 4.20.: Sa7p2 and Ha7p2: longitudinal stresses for 1 m of surface drawdown.

If the water level is reduced by 5 m the modelled double bottom lies on the ground.
The hogging bending moment is increased and a significant curvature of the hull can be
seen. The curvature of Ha7p2 is smaller than in Sa7p2. A fold in both bulkheads of
Sa7p2 can be seen. The folds continue inclined from the stringer of the bilge plating to
the height of stringer s2. In the bulkhead plating we again find isotropic buckling as a
buckle between each stiffener. The bulkheads of Ha7p2 do not have such a fold and only
have a few buckles. Compared to the rigid bank calculation the buckles are spread more
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globally in case Sa7p2. The maximum stresses in both cases are higher than ±500 N/mm2

in the box girder and in the outer shell at the connection of bilge and double bottom.

(a) Cargo hold Ha7p2 Sa7p2

(b) Outer shell

Figure 4.21.: Sa7p2 and Ha7p2: longitudinal stresses for 3 m of surface drawdown.
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(a) Cargo hold Ha7p2 Sa7p2

(b) Outer shell

Figure 4.22.: Sa7p2 and Ha7p2: longitudinal stresses for 5 m of surface drawdown.

4.5.4. Influence of ground

Ground parameters

One calculation is performed with a stiffer sandbank (SGa7p2). The shear modulus is
simply considered to be constant over the height of the soft ground. The moment case
SGa7p2 is compared to Sa7p2 and Ha7p2 in figure 4.23.
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Figure 4.23.: Sa7p2, Ha7p2 and SGa7p2: bending moment Mh at 147 m AP.

The curve of SGa7p2 is qualitatively equal to Ha7p2 for 0 to 3 m of receding tide.
The ultimate strength of SGa7p2 lies between Sa7p2 and Ha7p2 and is reached with 3 m
of water level reduction.
The collapse of SGa7p2 is shown in the appendix in figure B.7. It resembles Sa7p2:
one transverse fold in the double bottom next to bulkhead b1, one buckling field between
floor fl1 and fl2 and one transverse fold. Only the fold of the side structure is between
the web girder fl1 and fl2 and the second longitudinal fold is continuous on the other side
of the transverse girder in the bilge plating. The maximum displacement of SGa7p2 in
z-direction at 147 m AP is 0.23 m less than that of Sa7p2.

Ground geometry

Three other ground geometries are calculated as given in table 4.2. Their moments are
given in figure 4.24 together with Sa7p2. Their final collapse modes appear in appendix
B.5.2. In all cases the ultimate strength is reached with 3 m of receding tide. The bigger
the initial contact area or the smaller the slope angle the higher the maximum moments of
cross section 147 m AP.

Sa15p2 has the lowest ultimate hull girder strength and the most severe failure. In
this case the double bottom fractures over its complete breadth between floor fl1 and the
bulkhead floor b1 (see figure B.8) so that the moment falls below the value of 1 m of water
level reduction at the end of the simulation.
The curves of simulation Sa7p22 and Sa7p22w10 are qualitatively the same. The smaller
breadth of the sandbank results in a 10% smaller ultimate strength. The final collapse
mode of both simulations is different. In Sa7p22 there is one transverse fold that is lo-
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Figure 4.24.: Sa7p2, Sa15p2, Sa7p22 and Sa7p22w10: bending moment Mh at 147 m AP.

cated in front of bulkhead b1 and continues from the centre line to the bilge into the side
structure until stringer s2. On the other side of the cargo hold beside bulkhead b2 there is
a single fold in the bilge structure (see figure B.9). The longitudinal fold is again beside
the longitudinal girder close to the bilge. In contrast, in case Sa7p22w10 two continuous
longitudinal folds are found on each side of the longitudinal girder which is the closest
to the the sandbank edge (refer to figure B.10). Furthermore, Sa7p22w10 has only one
transverse fold from the longitudinal girder just mentioned until stringer s2.

4.6. Analysing the Fowairet stranding incident

In the introduction (chapter 1) the stranding incident of the container vessel Fowairet is
already described. This incident is compared to the above introduced method to analyse its
applicability to real scenarios. The listed information had to be reconstructed or assumed
with the help of photographs or the internet:

• ship: main dimensions, construction, load case, changed buoyancy

• ground: geometry, parameters, position relative to ship, tidal range

The following subsection reveals that the vessel Postpanmax, for which all information is
known, is comparable to the Fowairet. Modern container vessels have a similar construc-
tion, especially in the midship section.
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4.6.1. Specifics of the Fowairet
The dimensions the Fowairet are given in table 4.11 and compared to the Postpanmax.
After the accident the fractured midship section was removed. Figure 4.25 shows the
sliced Fowairet in the dock before the new midship section is floated into position. The
photograph is overlaid with a suitable construction drawing of a main frame. When com-
pared to the main frame construction drawing of the Postpanmax in figure 4.3 it is clear
that they are similar. The differences result from their different height. Examining the
outer shell damage at the starboard side and the bottom shell damage of the Fowairet,
given in the first row of figures 4.26 and 4.27, one can identify missing construction de-
tails.
The Fowairet was on its way to the Port of Antwerp, probably travelling with load case
arrival. The draught before the incident was reconstructed to be equivalent to the draught
for the arrival load case of the Postpanmax.

Table 4.11.: Dimensions of the Fowairet and the Postpanmax.

Fowairet Postpanmax

length Loa [m] 276.50 294.10
length Lpp [m] 259.90 285.60
breadth B [m] 32.20 40.00
height D [m] 21.20 24.20
scant. draught Tscant [m] 12.50 13.50
speed v [kN] 24.00 24.00

Figure 4.25.: Main frame of the Fowairet.

4.6.2. Specifics of the incident
Loaded with 1952 TEU, the Fowairet grounded in the Western Scheldt close to Walso-
orden vis-á-vie to Hansweert one hour after high tide. The observed spring tidal range
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at Hansweert is 5 m and in Antwerp as high as 5.85 m (see van Rijn [78]). The salvage
operation took two days. During the third flood tide after the accident the vessel was re-
floated.
The river bed of the Scheldt consists of sand (see among others European Union [16]).
The vessel stranded at the midship section. The photographs show that the plateau must
have been short compared to the ship’s length.

4.6.3. Comparing the damage of the Fowairet to Sa7p2
The Fowairet stranding incident is compared to Sa7p2. As described above, most as-
sumptions made for Sa7p2 are similar to the accident.
In figures 4.26 and 4.27 the damage to the Fowairet (the first row) is compared to the
damage of Sa7p2 after 5 m of surface drawdown (second row). The damage pictures of
Sa7p2 have the same colours as Fowairet. The construction below the shell is given with
red lines. The numbers refer to the constructional elements, already given in table 4.10.
The spacing of web frames/floor, (bottom) longitudinal frames and the bulkhead length
can be identified from the photograph and are given in table 4.12. The cargo hold length
between two bulkheads is identical for both vessels due to normed container sizes. The
spacing between the aft (left) bulkhead and the next two web frames is 3250 mm each for
Postpanmax. The following two frame spacings are 3050 mm long.

Table 4.12.: Spacing of the Fowairet and the Postpanmax.

number Fowairet Postpanmax

web frame/floor spacing [mm] 2 3150 3250/3050
longitudinal frame spacing [mm] 3 860 970
cargo hold length [m] - 126000 126000
bulkhead length [mm] 1 1500 1850

The side pictures of the Fowairet and Sa7p2 show similar buckles of the outer shell.
Both show the isotropic buckling and the main fold. The Fowairet folds directly at the
middle web frame of the cargo hold and Sa7p2 has its fold between web frames (fl1
and fl2). The fold of Sa7p2 has the same distance from the aft bulkhead as the fold of
the Fowairet due to the different frame spacing. In addition, both deep folds end at the
stringer (4/s2) and have at their ends an immense deformation of the outer shell.
The main fold of the bottom shell plating can be identified very well in both damage pic-
tures of figure 4.27. The outer shell plasticises and deforms inward. The fold is close to
the bulkhead floor and extends with a slope into the bilge plating by crossing one floor.
The bilge structure has in both cases the most severe failure. The bilge plating of Fowairet
totally plasticises (see right corner of damage picture). It is known from accident reports
that the shell fractured. Although it is not visible at the picture the shell plating of the
Fowairet probably fractured in the area of the bilge because in the bilge plating of Sa7p2
elements are deleted. Furthermore, in both cases there are orthotropic buckles between
the longitudinal girders.
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Figure 4.26.: Fowairet vs. Sa7p2: deformation of starboard outer shell.
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Figure 4.27.: Fowairet vs. Sa7p2: deformation of bottom shell.
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Figure 4.28 shows the Fowairet during the incident with its overall bending. The ves-
sel is still stranded on the sandbank and the structure has already failed. On the right hand
side the FE model from simulation Sa7p2 is overlaid to show the similarities of the hull
bending in the damaged section.

Figure 4.28.: Fowairet vs. Sa7p2: bending of hull.

The FE simulation Sa7p2 reproduces the damage to the container vessel Fowairet.
The other results of Sa7p2, described above, should be valid for the incident of Fowairet.

4.7. Results of the bow and the stern scenarios
The results for stranding in the bow (250 m AP) and the stern region (65 m AP) are again
described for geometry a7p2.

4.7.1. Stranding at the bow section
The damage to the structure is mainly attributable to the indentation of the ground, namely
the shear forces. In contrast to stranding in the midship section the external bending mo-
ments at the edges of the modelled cargo hold section are very small. The bending moment
at 250 m AP is more than 10 times smaller than for the midship scenario. Furthermore
the bow section is a relatively stiff section.
The curves of the bending moment at 250 m AP and the shear forces at 239 and 261 m AP,
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are given in figures 4.29 and 4.30 together with the results of case A1. The cross section
at 239 and 261 m AP lie beside the bulkheads (see figure 4.31).
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Figure 4.29.: Sa7p2 bow and Ha7p2 bow: bending moment Mh at 250 m AP.
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Figure 4.30.: Sa7p2 bow and Ha7p2 bow: shear forces Qh at 239 and 261 m AP.

The moment curves for Ha7p2 bow and Sa7p2 bow are comparable. Sa7p2 bow
can bear higher moments and forces and therefore the hard ground is the conservative
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estimation. In simulation Ha7p2 bow the curve declines after 4 m of receding tide. The
moments at 1 m of surface drawdown differ again due to different contact lengths. Up to
3.8 m of receding water Sa7p2 bow has the longer contact area length than Ha7p2 bow
and from 3.8 m onward this reverses. The effect is reflected by the shear forces (see figure
4.30). If the water level is reduced by 5 m the contact lengths are: 33 m for case Sa7p2
bow and 35.5 m for case Ha7p2 bow.

(a) Cargo hold Ha7p2 Sa7p2

(b) Outer shell

Figure 4.31.: Sa7p2 bow and Ha7p2 bow: longitudinal stresses for 5 m of surface draw-
down.

The first elements fail at 1.5 m for Ha7p2 bow and the yield stresses are reached at 2
m of water level reduction. For Sa7p2 bow the elements start to fail and the yield stresses
are not exceeded until the receding tide reaches 2.9 m. Only internal structural elements
of Sa7p2 bow fail, whereas the outer shell of Ha7p2 bow already ruptures at 3.1 m of
receding tide.
In both simulations high stresses and strains are found in the double bottom only at the
contact (see figure 4.31). In case Sa7p2 bow the high stresses are spread wider. But most
parts of the model have stresses below the yield strength and an influence of the external
bending moment cannot be found.
The figures of the final collapse given in appendix B.6.1 show again that the damage to
Ha7p2 bow is more severe than to that Sa7p2 bow. In case Ha7p2 bow there is one deep
longitudinal fold through the model around the longitudinal stiffener of the bilge that is
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directly at the transition from vertical to horizontal plating. At the fold the outer plating
fractures. In Sa7p2 bow the damage is spread more globally. There are three shorter
longitudinal folds in the area of the bilge. The deepest and longest one develops at the
same position as for Ha7p2 bow.
The bending mode of the complete vessel changes from hogging into sagging because the
vessel trims to the stern and produces a buoyancy over-plus at the stern.

The different ground geometries have the same influence on the ultimate hull girder
strength as for the midship scenario. The vessel survives the stranding scenario Sa7p22
bow without any damage and reaches the moments and shear forces forecast by the beam
theory, whereby case Sa15p2 bow can sustain the smallest forces and moments and it
has the most severe damage out of the soft ground variation. The double bottom tears
open directly at the fore bulkhead and the three transverse folds described for Sa7p2 bow
deepen. The final collapse of Sa15p2 bow is also given in appendix B.6.1.
Further details concerning the damage mode and the damage description of each case are
documented in Steimer [76].

4.7.2. Stranding at the stern section

If the vessel strands at 65 m AP the structure does not sustain severe damage. The small
deformations of the structure are caused by the indentation of the ground. Again the ex-
ternal bending moments at the edges of the modelled cargo hold section are very small
and the aft body construction is the stiffest section of the vessel. In addition, the stern
section can bear high shear forces due to its closed rooms in the machinery room.
The shear forces at cross sections 58 and 74 m AP are somewhat smaller than for case
A1 corresponding to the different contact length and are given in figure 4.33. Figure 4.32
shows the moments Sa7p2 stern, Ha7p2 stern and case A1 at cross section 65 m AP.
Ha7p2 stern reaches its ultimate strength for 4 m of receding tide, whereas Sa7p2 stern
could bear even higher forces up to a tidal range of 5 m.
The longitudinal stress distribution for a surface drawdown of 5 m in figure 4.34 reflects
the different capacities. Sa7p2 stern reaches only at the contact area stresses higher than
the yield stresses. In Ha7p2 stern the high stresses and strains are found in more parts
of the vessel. Via the stresses at the coaming in both cases a minimal influence of the
bending moment is recognised. Only in calculation Ha7p2 stern some elements of the
internal structure are deleted.

The figures of the final collapse given in appendix B.6.2 show that the damage to
Sa7p2 stern is insignificant. In case Ha7p2 stern there is one main longitudinal isotropic
buckling field through the model. It is located at the longitudinal bulkhead to which the
brackets are connected. The brackets also buckle (see figure 4.34 (a)).

The different ground geometries have a very small influence on the ultimate hull girder
strength. The vessel survives the stranding scenario Sa7p22 stern without any damage
and even in case Sa15p2 stern the final damage is less than Ha7p2 stern (given addition-
ally in appendix B.6.2).
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Figure 4.32.: Sa7p2 stern and Ha7p2 stern: bending moment Mh at 65 m AP.
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Figure 4.33.: Sa7p2 stern and Ha7p2 stern: shear forces Qh at 58 and 74 m AP.

A detailed discussion of stranding at 65 m AP can be found in Meier [42].
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(a) Cargo hold Ha7p2 Sa7p2

(b) Outer shell

Figure 4.34.: Sa7p2 stern and Ha7p2 stern: longitudinal stresses for 5 m of surface draw-
down.

4.8. Relation of moment and shear force in the
midship, bow and stern scenarios

The relation of moment to shear forces is compared for all six a7p2-cases (Ha7p2 stern,
Sa7p2 stern, Ha7p2, Sa7p2, Ha7p2 bow and Sa7p2 bow) according to section 4.5.1.
The bending moments and shear force jumps for 5 m of surface drawdown are scaled by
those of case A1, e.g. for case Sa7p2: MSa7p2/Mcase A1 at 147 m AP as already given in
figure 4.15.
Figure 4.35 gives one point for each of the six cases. The normalised moments are plot-
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ted over the normalised shear force jumps. The figure shows that the ability to absorb
both external moment and shear force influences the degree of damage. The smaller the
normalised moment and shear force the greater is the degree of damage. The stern sce-
nario shows the least damage followed by the bow and the midship scenario (stern < bow
< midship). The degree of damage cannot be concluded from the height of the external
forces and moments. Ordering the scenarios by the height of the forces/moment results in
bow < stern < midship. When stranding amidships the structure has to sustain by far the
highest moments and shear forces.
The moments and shear forces are related. But the ability to absorb the moment is deci-
sive for the degree of damage. The points of the more severe cases Ha7p2 stern, Sa7p2
and Ha7p2 bow reach smaller Ma7p2/Mcase A1 and higher QSa7p2/Qcase A1 than the cases
with less damage.
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Figure 4.35.: Ha7p2 stern, Sa7p2 stern, Ha7p2, Sa7p2, Ha7p2 bow and Sa7p2 bow: nor-
malised moments and shear forces at 147 m AP.

4.9. Discussion
The midship stranding scenario is the worst-case scenario. The maximum global bending
moment is very high and the maximum shear force is at the same position as the maximum
bending moment in the middle of the cargo hold. The ultimate strength and the damage
mode of the structure depend on the soil characteristics and the ground geometry. Similar-
ities in all presented midship scenarios are the main transverse fold/fracture in the double
bottom and side structure as well as at least one longitudinal fold in the bilge structure.
The transverse folds are mainly due to the bending moment whereas the isotropic buckles
in the side structure and the compression of the bilge structure (longitudinal folds) are
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caused by shear forces. After 1 m of surface drawdown the models are outside the ideal
elastic material range. In the plastic range it is valid that the longer the contact area is
the higher the moments that can be absorbed by the structure. No significant cargo forces
decrease the influence of the contact forces. The interaction of the contact forces with the
hogging bending moment affects the longitudinal resistance of the hull. In all presented
cases the ship structure reaches its ultimate hull capacity and collapses. The ultimate
bending moments are all below the averaged UHGS value of 1.18E+07 kNm predicted by
classification societies (see table 2.8 in section 2.8). Thus during stranding amidship the
structure collapses clearly before the class permissible capacity is reached. In the post-
collapse stage all variational calculations are completely in contact with the ground.
The rigid ground is not a conservative border for soil characteristics. The soft ground
simulations reaches earlier and lower values for the ultimate strength and results in more
severe damage.
The bending moment curve given over the surface drawdown for different soft ground
geometries can be estimated if one simulation is solved because the curves are qualita-
tively equal. The larger the ground plateau and the smaller the slope angle the higher the
ultimate strength, whereby the detailed failure mode is different in each case.
The FE simulation Sa7p2 has almost the same damage in the side and bottom structure as
the container vessel Fowairet. The other results of Sa7p2 should be valid for the incident
of Fowairet.

Stranding in the bow results in the second highest degree of damage. The damage is
almost exclusively caused by the shear forces. For the stern scenario the damage is more
or less insignificant. For the bow and stern scenarios the rigid ground is a conservative
border. The effects of different ground geometries on the hull capacity and the collapse
mode are comparable to the midship scenario. Calculating stranding in the stern sec-
tion gives only a little more information than the estimation with the pure beam model,
whereas stranding in the bow region results in an unexpected early failure of the outer
shell plating. The degree of collapse cannot be concluded from the height of the external
forces and moments.

Comparing the three stranding positions by normalising the absorbed moments and
shear forces it becomes clear that the smaller the normalised moments and shear forces
the greater the degree of damage, whereby the ability to absorb the global moments is
more decisive with regard to the degree of collapse. The more severe case of each po-
sition reaches smaller normalised moments but higher normalised shear forces than the
case with less damage.

4.10. Conclusion

In this chapter a simulation method is introduced for calculating stranding scenarios. Un-
til now there are no methods to calculate stranding incidents with respect to all important
factors. The method is based on the physics and mechanics of the phenomenon. The
damage process is realistically simulated and the method is applicable to all ship types,
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ground geometries and many soil characteristics. The method can simulate real stranding
incidents with very satisfactory results.
Neither the ship nor the ground nor the external forces are simplified. All referenced
works simplify at least one of the three factors. The method is based on true loading
conditions that are gained from hydrostatic calculations. The chosen ship is completely
modelled and the ground is simulated with a well-known ground model. For the purpose
of stranding simulations the Mohr-Coulomb model is sufficient.
The verification of the ship and ground model shows that the method gives reasonable
results. The advantage of the method is that the local and global damage of the structure
can be examined as a function of the soil characteristics, ground geometry, the position of
stranding and the ebb tide. It is also possible to simulate multiple tide cycles. The method
is very insusceptible to modifications and robust so that modifications or even simplifica-
tions to achieve, e.g. a faster calculation time, do not cause a significant loss in the quality
of the results.
The presented scenarios underline the importance of research on the field of stranding.
Most scenarios end in global damage to the structure. The degree of damage and the dam-
age mode depend on the ground geometry and the soil characteristics. It is necessary to
model the ground with a sand material model because the hull girder is not always less
prone to hull collapse if set onto a soft bank. To improve accident prevention measures,
the ground cannot be simplified to be rigid.
Furthermore, it is shown that real incidents can be calculated with very good confor-
mance. The damage caused by the stranding of the Fowairet is reproduced by applying
the method even though not many data are known.

Depending on the stranding position the bending moments and shear forces have a
different influence not only on the damage but also on the hull capacity. In the following
chapter a special focus is placed on the influence of the shear forces. A simplified method
is presented to find moment-shear force interaction curves. Those curves are compared to
the results of stranding scenarios to verify the influence of the shear force on the ultimate
hull girder strength at different cross sections.
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5. Ultimate load calculation

The influence of the shear force on the ultimate bending moment for diverse cross sections
under extreme loading conditions is achieved by simplified finite-element calculations.
Moment-shear force interaction curves are gained to predict the reserve of the ultimate
capacity under combined loading.

A pure bending moment experiment of a box girder is recalculated with the FE method.
When the results of the FE method are adequately similar to those of the experiment the
shear force is introduced into the model. In this way the procedure used in the FE method
is verified and a realistic moment-shear force interaction curve can be found.
The box girder, which represents a very simplified single-hull tanker ship, is replaced by
an open box girder. The open box girder is a major simplification of the midship section
of Postpanmax. Its moment-shear force interaction curves are compared to two formulas
known from the literature.
Then the simplifications are further reduced and moment-shear force interaction curves
for the three slightly simplified cross sections- stern, midship, bow- already known from
chapter 4, are given. The cross sections consist of all main structural elements.

In the next step the ultimate hull girder strength of the simplified, fully modelled cross
sections and of classification societies are compared. The determined interaction curves
are opposed to those of the equivalent fully modelled cross sections. Finally, the influence
of true loading conditions (during stranding) is analysed and compared to the fictive load
cases.

5.1. Recalculation of box girder experiments
Three specimens (number 31, 22 and 23) of the experiment described in section 2.4.2, are
recalculated with the FE method to validate the computational procedure. The geometry
of the specimens and the setup are rebuilt. In the following three specimens of the experi-
ment and their results are referred to as specimen 31, 22 or specimen 23 whereas the FE
results are referred to as model 31, 22 or model 23.

All models are built with the fully integrated shell element (type 16) and the material
model described in section 4 is built without a failure criterion. The yield stress is constant
over the entire model and corresponds to the yield stresses measured in the experiment
(table 2.10). This applies for all models presented in this chapter.
The geometry of the three models is given in section 2.4.2. The boundary conditions
are applied at the nodes of the lower flange of the HEB structure (European wide flange
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beams). In each calculation time step of 0.1 s a displacement of 0.3 mm is brought into
the model. The total displacement is 30 mm at each side.

5.1.1. Model 31, 22 and 23 under pure bending moment
All models collapse because of buckling in the top plate. The resulting deformation and
the ultimate strength depend on the material model, the element size, the time step size,
the pre-deformation and the initial stress.
The material model is given by the experiment. The element size is optimised in respect of
the computing time and the results. The pre-deformation and the time step size are varied
for model 31 to find the sensitivity of the results and to save modelling and computational
time. These calculations reveal that it is also necessary to introduce initial stress to get
satisfactory agreement with the experimental results.

Model 31

Pre-deformation and time step size
Model 31 is calculated with three different pre-deformation conditions of the top plate: no
deformation, a circular pre-deformation and the original pre-deformation given in the pa-
per (Reckling et al. [59]). Figure 5.1 shows the pre-deformation and the end-deformation
measured close to the ultimate bending moment and the division of the top plate into five
areas for the upcoming discussion.

Figure 5.1.: Specimen 31: pre- and end-deformation in [mm] (Reckling et al. [59]).

In all three cases the buckling picture after reaching the ultimate strength as well as
the ultimate strength itself differ. The following figures 5.2 (a), (b) and (c) show the dis-
placement in z-direction in [mm] of the top when the ultimate strength is reached. The
colour scale is fitted to the top plate and the node with the maximum displacement is also
shown.
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If no pre-deformation is applied buckles establish between all stiffeners in the middle of
the top plate (see figure 5.2 (a)). Whereas area 2 and 4 buckle in positive, the areas 1, 3
and 5 deform in negative z-direction. The maximal displacement is at node number 2 in
area 3 that lies in the symmetry plane.
For the circular pre-deformation one buckle between each stiffener develops as shown
in figure 5.2 (b). They are located at the edge of the circular pre-deformation. Now the
deepest buckle is in area 4 with a displacement at node 4159. The outer areas (1 and 5)
deform in positive z-direction.
The deformation of the model with the original pre-deformation, given in figure 5.2 (c), is
similar to this with the circular pre-deformation. The position of the buckles can be dis-
tinguished by the different geometry of the pre-deformation. The maximal buckle occurs
in area 3. In contrast to the model with the circular pre-deformation only area 1 buckles
in positive z-direction.
The collapse mode of the model with the original pre-deformation is more similar to the
experiment, although the buckles between the stiffeners develop on the left side of the
pre-deformation in the experiment.

(a) no pre-deformation (b) circular pre-deformation (c) original pre-deformation

Figure 5.2.: Model 31: end-deformation with different pre-deformations.

Figure 5.3 plots the bending moment Mh of the model measured at the middle cross
section x = 0 m over the displacement f at x = 0 m; y = 0 m.
The gradient of all curves is the same until the ultimate bending moment is reached. But
the gradient of the moment-displacement curve for the experiment is different. The high-
est moment is reached by the model without any pre-deformation and the lowest by the
calculation with the circular pre-deformation. The ultimate strength of the model with the
original pre-deformations lies in between. It is 1.38% higher than the moment measured
in the experiment, whereas the one of the calculation with the circular pre-deformation
almost has the same height (see also table 2.10).
All curves have a jump because the buckles deepen suddenly, from one to the next time
step. But using a smaller time step cannot significantly reduce the sudden decline. The
buckling picture and bending moment are similar and only the computational time in-
creases. For the moment- shear force interaction the maximum bending moment and
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shear force are needed. The post-buckling phenomenon is not considered here. Thus for
all following simulations the time step size is not changed.
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Figure 5.3.: No, circular and original pre-deformation: moment-displacement curves.

Initial stresses
The gradient of the moment-displacement curves in figure 5.3 are identical to the gra-
dient of the ideal case. In the ideal case the material model is ideal elastic and no pre-
deformation is applied. The moment-displacement curve in the ideal case is similar to the
curve of the hypothetical girder until the girder starts to plasticise.
As stated by Reckling et al. [59] the manufacturing-related initial stresses are partly re-
duced by the stress relief heat treatment so that a smaller gradient is seen in the moment-
displacement curves. To gain satisfactory results the model with the original pre-defor-
mation is also calculated with initial stresses.
Initial stresses at the stiffeners close to the yield stress are introduced in x-direction by
pre-loading the stiffeners of the top plate with temperature. There is no closed analyt-
ical solution to calculate the initial stresses due to temperature introduction for compli-
cated geometries as existing (see Radaj [57]). The procedure is simple and fast (see also
Lehmann [34]). After the temperature solution the displacement is applied onto the model
as described above.

In figure 5.4 four moment-displacement curves are plotted: ideal 31 for ideal case,
specimen 31 for experiment, model 31 for original pre-deformation given in figure 5.3
and model 31 with initial stress. The gradient of the model with initial stresses is very
close to the gradient of specimen 31. The course of the moments is not identical but the
maximum moment is exactly the same (231.7 kNm).
The deformation of the experiment is overlaid on the results of model 31 with initial
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stress in figure 5.5. The buckling picture shows a good conformance with the results of
the experiment. The particular buckles are on the left side of the pre-deformation and the
deepest deformation also occurs in area 3.
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Figure 5.4.: Model 31 and specimen 31: moment-displacement curves.

Figure 5.5.: Model 31 with initial stresses and specimen 31: end-deformation.

The FE results are satisfactorily equal to those of the experiment. The FE model is
thus validated by reality and further calculations give reasonable results. There is no dif-
ference for the relation of moment and shear force if simulated with or without initial
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stress (see Paik et al. [51]). To save computational effort the initial stresses are not ap-
plied in the following calculations.

Model 22 and 23

Model 22 and model 23 are calculated with the original pre-deformation and without ini-
tial stress. The moment-displacement curves of all three models are given in figure 5.6.
The cross section of model 22 and model 23 are equal and stiffer than model 31. Model
22 is shorter than model 23 and model 31. The effect of different cross sections and
lengths between the bulkheads can be re-found in the height of moment-displacement
curves. The stiffest model (model 22) reaches the highest maximal moment. The de-
crease of the moment curves are much smoother for model 22 and model 23 than for
model 31. The collapse of the top plate does not occur so suddenly, which can also be
seen in the buckling pictures. Model 22 and model 23 are stiffer than model 31 and
therefore the total collapse takes more time. The curves of specimen 22 and specimen 23
do not decrease. All curves gained by FEM decrease after they reach the ultimate bending
moment. The maximum bending moment of model 22 is 3.4% higher than in the experi-
ment. And model 23 reaches 2.17% less of the experimental ultimate moment. Model 22
and model 23 also have a different gradient of the moment-displacement curves.
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Figure 5.6.: Model 31, 22 and 23: moment-displacement curves.

The differences between specimen 22 and specimen 23 to model 22 and model 23
are comparable to those between specimen 31 and model 31.
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5.2. Moment-shear force interaction of box girders
To introduce the shear force two additional load cases are used. The pure bending load
case of the experiment is called ’lc 1’. In ’lc 2’ only one force is acting, whereas in ’lc 3’
the second force operates in the opposite direction. Figure 5.7 shows the relation between
the bending moment and the shear force and table 5.1 gives the relative size of force P2
for all presented cases.

(a) lc 1 (b) lc 2 (c) lc 3

Figure 5.7.: Load cases 1-3.

Table 5.1.: Load cases.

lc force P2 comment

1 1 · P1 pure bending
1a 1/2 · P1
2 0 · P1
3 -1 · P1 pure shear force
3a -1/2 · P1

Model 31

Figure 5.8 gives the moment-displacement curves for each load case. The associated shear
forces are plotted in figure 5.9. In both figures the evaluation points for the moment-shear
force interaction curves are marked. At the displacement where cases 1, 1a and 2 reach
the maximum moment the equivalent shear force is read out. In cases 3 and 3a the maxi-
mum shear force determines the evaluation points.
The maximum bending moments and shear forces are normalised via two different ap-
proaches. On the one hand they are normalised by their analytical plastic limit values
given in equations (5.1), whereas σF is the yield stress, Wpl is the plastic section modulus
and As is the effective shear area built of the side shells. The plastic shear stress τpl is
given among others by Reckling [58] or Petersen [56].
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Mpl = σF ·Wpl (5.1)

Qpl = τpl · As with τpl =
σF√
3

(5.2)
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Figure 5.8.: Model 31: moments of of load cases 1, 1a, 2, 3, 3a.
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On the other hand, the ultimate capacity of the girder under pure bending moment
MV u and pure shear force QV u is calculated by the formulas of Paik et al. [51], given in
section 2.4.2 and called ’P-M’. The following figure 5.10 gives three moment-shear force
interaction curves. The two continuous lines are based on the evaluation points of figure
5.8 and 5.9. They are normalised either by their plastic limit Mpl and Qpl (black) or by
MV u and QV u (grey). The third line is the result of equation (2.14) (P-M equation) for
the combined loading. It starts and ends with 1 because it is normalised by its own values
MV u and QV u. Additional variations of lc 1 are calculated to get sampling points between
lc 1a and 2. Those additional cases lie exactly on the connection line between lc 1a and 2,
which is why they are disregarded.
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Figure 5.10.: Model 31: moment-shear force interaction curve.

The formula for shear force QV u of Paik et al. [51] result in the same value as for FE
lc 3. The ultimate bending moment MV u is slightly smaller than in lc 1. Equation (2.14)
does not give adequate results for the combined load case of bending moment and shear
force. The area under the curve is also larger resulting in an overestimation of the capacity.

Model 22 and 23

The moment-shear force interaction curves for model 22 and model 23 are given in fig-
ure 5.11 together with model 31. All examination points of the load cases are normalised
by their plastic limit Mpl and Qpl. In addition the points of MV u/Mpl and QV u/Qpl for
model 22 (P-M 22) and model 23 (P-M 23) are plotted.
Model 22 has the highest moment-shear force interaction curve and model 31 the lowest.
The curve of model 23 again lies in between the two other models (compare figure 5.6).
If more stiffeners are used in the side, bottom and top plate, higher normalised forces
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and moments can be carried by the structure. The stiffer the cross section the higher is
the moment-shear force interaction curve although the values are normalised by their ge-
ometric specifics. The curves of model 22 and model 23 are qualitatively similar but
the numeric quantity values are different due to unequal model lengths. Not only diverse
cross sections lead to a different moment-shear force interaction but also different lengths
of the models.
In load case 1 all values are close together and lie below the plastic limit moment. The
ultimate capacity of the girder is not equal to the full plastic capacity due to the pre-
deformation and the post buckling behaviour.
Whereas all values of Qlc 3/Qpl are higher than the plastic limit. Apparently the shear
force is not only carried by the side shell as given in equation (5.1).
The formulas of Paik et al. [51] cannot appropriately predict the ultimate capacity espe-
cially for loading with pure shear force. Therefore, upcoming curves are normalised with
their plastic limit values.
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Figure 5.11.: Model 22, 23 and 31: moment-shear force interaction curve.

5.3. Moment-shear force interaction of simplified
cross sections

The interaction curves of the box girder (model 31) is compared to curves of an open box
girder and the simplified midship section of the vessel Postpanmax.
The tanker vessel-like cross section from the experiments of Reckling et al. [59] is re-
placed by a major simplification of the Postpanmax midship section (open box). Minor
modifications at the connection of HEB-400 and subcarrier are needed and the model is
turned so that hogging bending arises. The rest of the experimental setup is identical to
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that described above. The new cross section is shown in appendix C.1. The load cases of
table 5.1 are applied to achieve the interaction curves.
For the open box girder it is better to apply external moments instead of node displace-
ments. So for the following analyses of different cross sections the loading is introduced
into the models via moments instead of displacements (see Janele [27]). The size of the
external moments is chosen to achieve identical combinations of moment and shear force
in the examination plane as given in figure 5.7 and table 5.1. They are applied at the par-
ticular height of the neutral axis at one master node. The master node is connected to the
model’s end via constrained equations so that the cross section ends remain planar. The
HEB beam and the subcarriers are disregarded since they are only needed for the intro-
duction of displacement. The open box girder is also calculated with the new setup and
identical interaction curves are achieved as for the first setup.
The midship section and later the bow as well as the stern section are simplified cross sec-
tions (called simple mid CS, simple bow CS and simple stern CS). The dimensions are
as built, all main structural elements and the frame shape are taken from the construction
drawings of Postpanmax. The longitudinal stiffeners and the manholes are not modelled.
In all three cases the model extends over three complete cargo holds. The frame shape
does not change over the model’s length. The simplified cross sections of the FE calcula-
tions are also given in appendix C.1.
All interaction curves are gained according to the procedure presented in section 5.2. The
average calculation time for all models is 4 minutes on a common PC. Additionally at the
examination point the longitudinal stress distribution and the buckling mode is analysed
to guarantee the correctness. A detailed analysis is given in Janele [27].
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Figure 5.12.: Midship sections: moment-shear force interaction curve.

In figure 5.12 the interaction curves of model 31, the open box and simple mid
CS are given. Furthermore, MV u/Mpl, QV u/Qpl and the dimensionless section modu-
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lus SM ′/SM0 given in equation (2.5) which is plotted for the open box girder. For the
simplified midship section QV u/Qpl cannot be calculated. The simplified cross section
has no longitudinal stiffeners and the longest plate field is between stringer s2 and s3.
This results in b′ = 8730 mm needed for equation (2.9a) and in a negative square in equa-
tion (2.11).
Both the formulas of Paik et al. [51] and the equation of Wang [79] do not yield in reli-
able results. One time they fit and then they lie alongside the FE results. The formulas/
equation are not useful for calculating the ultimate capacity under combined loading.
The curves of the closed (model 31) and open box do not differ much. A closed cross
section has a better shear flow and thus model 31 can sustain higher shear forces. The
open box on the other hand can absorb a higher bending moment because of a stiffer
double bottom and side structure.
The differences between the open box girder and the simplified midship section are mainly
due to the very diverse slenderness ratios β given in equation (2.9a). Due to the experi-
mental sizes the plate thickness are comparable large. The slenderness ratios of a bottom
shell plate in the open box girder and of the equivalent plate in the (simplified) cross sec-
tions are given in table 5.2. In addition the form factor of all three cross sections is listed.

Table 5.2.: Different midship sections: slenderness ratio and form factor.

open box simple mid CS mid CS

β 1.10 4.40 1.54
α 1.60 1.91 1.26
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Figure 5.13.: Simple midship, bow and stern cross sections: moment-shear force interac-
tion curve.
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In figure 5.13 the moment-shear force interaction curves of the three simplified cross
sections are plotted. The stern cross section has the best ability to absorb high moments
and shear forces. The stern cross section has a very stiff double bottom structure to com-
pensate the weight from the main engine which results in a higher compressive resistance
of the compression flange. The maximal shear force is almost the same as the perfectly
plastic shear force Qpl due to the closed structure with two longitudinal bulkheads.
The curve of the bow section agrees with the curve of the midship section and lies slightly
below it. The shear force can be compensated a little bit better than the pure bending mo-
ment. The step-wise closed side structure enables better shear flow, whereas the bottom
structure is less stiff than the midship section.

In table 5.3 the area A, shear area As and the normalised ultimate capacities of each
cross section are summarised. The normalised ultimate bending moment Mlc 1/Mpl and
the normalised ultimate shear force Qlc 3/Qpl can be given as a function of the cross
section area. The moments lie on a straight line and the shear forces have a small bend at
the midship sampling point (see figure 5.14).

Table 5.3.: Area of simplified cross sections.

cross section A [m2] As [m2] Mlc 1/Mpl [-] Qlc 3/Qpl [-]

stern 6.24 2.03 0.74 0.96
midship 4.60 2.25 0.63 0.85
bow 3.56 1.79 0.57 0.84
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Figure 5.14.: Dependancy of ultimate capacity on cross section area.

If the ultimate bending moment Mlc 1 is known the ultimate shear force Qlc 1 can be
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estimated and vice versa (see equation (5.3)). In equation (5.3) the ultimate bending mo-
ment Mlc 1 and shear force Qlc 3 are now referred to as Mu and Qu for universal use. The
ultimate values Mu respectively Qu are achieved when the cross section is only loaded
with a bending moment respectively shear force.

Qu =

(
Mu

Mpl
+ 0.2

)
·Qpl (5.3)

Once the ultimate capacity under pure bending and shear force is known the values
for combined loading can be estimated via a modification of equation (2.14):

(
M

Mu

)c1

+

(
Q

Qu

)c2

= 1 (5.4)

The values of the coefficient in equation (2.14) are proposed to be set to c3 = 2 and c4
= 5. It is shown in figure 5.10 that those coefficients are not useful for the cross sections
but they can be fitted to the particular curves. If, for example, the coefficients are set to
c3 = c1 = 1.67, c4 = c2 = 2 and the maximal moment/ shear force of the FE calculations
with the simple midship section are taken, reliable results are gained. Figure 5.15 shows
a good conformance of both curves. The new coefficients also provide acceptable results
for the simple bow section but for the stern section other coefficients are needed. There-
fore, the coefficients c1 and c2 depend on the location of the cross section and are given
for a container vessel in table 5.4. Cross sections that lie between the aft and the engine
room front bulkhead, have a different construction and need other coefficients in equation
(5.4).
Equation (2.14) may give a reliable moment-shear force interaction curve if the coeffi-
cients are adjusted, but the ultimate capacity for the load case pure bending or pure shear
force of a cross section should not or in some cases cannot be calculated with the formulas
given in the same publication (Paik et al. [51]).

Table 5.4.: Coefficient for equation (5.4).

location of cross section c1 c2

aft engine room bulkhead 1.67 2.00
fore engine room bulkhead 4.35 1.00

According to figure 5.14 it is only necessary to calculate one ultimate bending mo-
ment or shear force for one cross section cs1. The values for another cross section cs2
can be calculated by equation (5.5). Equation (5.5) gives a conservative estimation of the
ultimate shear force.

Mu cs2 =

(
Mu cs1

Mpl cs1
+ tan(α)

)
·Mpl cs2 with α = 35.31◦ (5.5)
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Figure 5.15.: Simple midship section: moment-shear force interaction curve.

5.4. Comparing UHGS of simplified sections,
stranding scenario and classification rules

The ultimate hull girder strength of the vessel Postpanmax under combined loading is
given in this work via different methods. The UHGS for pure bending is calculated with
classification rules that mainly use Smith’s method (see chapter 2). With two more simple
FE calculations of the models used for the calculation of stranding scenarios in chapter 4
as well as with their results, moment-shear force interaction curves can be gained. Conse-
quently the interaction curves of the simplified cross sections can be compared to curves
of the same but not simplified cross sections in real loading conditions.

The shell part of the FE models (midship, bow and stern) of chapter 4 are also loaded
with a pure bending moment. Secondly, the rigid ground is pressed into each model that
is fixed at its ends so that a very small bending moment appears. Additional examination
points for the interaction curve are taken from each conservative scenario with the ground
geometry a7p2. The examination points are normalised by their plastic limit values.

The UHGS of the midship cross section, shown in figure 4.3, is determined accord-
ing to different classification rules (see subsection 2.4.1). In table 2.8 MU,hog is given
for hogging condition in pure bending and the averaged value is MU,hog = 1.18E7 kNm.
The rules of Germanischer Lloyd are taken for comparison because the complete vessel
Postpanmax is implemented in POSEIDON. The UHGS calculated with POSEIDON is
slightly higher (1.19E7 kNm) than the averaged value. The moments MU,hog of the three
cross sections are also normalised with the plastic limit values.
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In figure 5.16 the interaction curve of the simplified midship cross section is compared
to MU,hog/Mpl (GL mid CS) and the interaction curve gained with the fully modelled FE
midship section called ’mid CS with eq. (5.4)’. The two black points at the ends of
curve ’mid CS with eq. (5.4)’ are the result of the additional FE calculation (pure bending
moment and rigid ground pushed into fixed model). The curve is then assessed with the
equation (5.4).
The UHGS predicted by the classification societies cannot be reached. MU,hog/Mpl is
more than 20% higher than the maximal bending moment of ’mid CS’. If the lowest
value of MU,hog in table 2.8, received with the rules of DNV, is taken for comparison,
MU,hog/Mpl is only 6% higher. The disadvantages and the simplifications of Smith’s
method are already described in section 2.4 and are the reason for the differences. Es-
pecially the dependency on the accuracy of the average stress-average stain relationship is
essential. The finite element method is the most accurate method for progressive collapse
analysis and is accepted of all classification societies as evidence of the UHGS.
Furthermore, the curve ’mid CS with eq. (5.4)’ lies below the curve generated with the
simple midship section. Although the simplified cross section has no longitudinal stiffen-
ers it is not less stiff because they are also considered in the value Mpl. But the disregard
of the manholes leads to a stiffer section for case simple mid CS.
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Figure 5.16.: Moment-shear force interaction curve of midship sections.

Figure 5.16 illustrates the influence of the high shear forces on the ultimate strength
during stranding. The point of ’Sa7p2’ (black triangles) are examination points taken from
the collapse state of stranding scenario Sa7p2. The other points also lie on that line and
are therefore not given. The curve ’Sa7p2 with eq. (5.4)’ is assessed via equation (5.5)
and modified equation (5.4) and is the final interaction curve for the midship section. It is
a conservative interaction curve because one value is higher. MSa7p2/Mpl is 10% smaller
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than Mmid CS/Mpl and 17% smaller than Msimple mid CS/Mpl.

For the bow and stern section equal results as for the midship section are found. In
appendix C.2 the graphs for bow and stern section are given. Only the final interaction
curve together with the simple CS curve and the value of the classification society is plot-
ted. The percentage differences to the GL value is different. But the final curves have the
same difference to the simple CS curves as in the midship section.

5.5. Discussion

If the pre-deformation is modelled as exactly as possible the resulting buckling mode is
not automatically the same as in the experiment. Neither for the FE calculation nor for
the experiment is it possible to predict the collapse mode of the girder due to the pre-
deformation. The introduction of initial stress results in an identical maximum bending
moment, a similar gradient of the moment-displacement curve and an equal buckling
mode. The results of the calculation with the original pre-deformation and initial stress
are satisfactorily equal to those of the experiment and further calculation with the addi-
tional shear force gives reasonable results.

Various load cases give the supporting points for the moment-shear force interaction
curve. For three different box girders, one open box girder and three simplified cross
sections of the vessel Postpanmax an interaction curve is gained. Comparison to the liter-
ature reveals that the curves are reliable. Not only different cross section but also different
length of the models lead to a different moment-shear force interaction. For the open box
girder a similar interaction curve is assessed. The curve of the open box girder is much
higher than the one calculated with the equivalent simplified midship cross section be-
cause of very different slenderness ratios.

The interaction curves of the simplified cross section can be ordered starting with the
maximum curve: stern, midship and bow. Their stiffness degrees and sectional areas have
the same order. With the linear dependency of section area to ultimate strength and of
ultimate moment to ultimate shear force a relation between the ultimate values can be
found. Furthermore, the coefficients of an equation already referenced in literature are
modified. Thereby different coefficients are needed for the stern section than for the rest
of the ship due to its different construction. The proposed equations are not applied to
other vessels. The tanker ship-like cross section (box girder) gives similar results to the
container ship-like cross section (open box) suggesting that the procedure should be valid
for other vessels, too.

The comparison of the simple sections to the equivalent fully modelled cross section
shows that the cut outs decrease the stiffness of the section and thus the ultimate strength.
In contrast to the fictive load cases, the true loading of the structure during stranding
reduces the ultimate strength by 10%.
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5.6. Conclusion
The described procedure to gain the moment-shear force interaction curve for a cross sec-
tion is simple and validated. For any cross section of a ship a curve can be calculated
using the presented procedure and the influence of the shear force on the ultimate hull
girder strength during stranding can be evaluated.
The two proposed equations can be used to gain interaction curves for any cross section
whereby only one ultimate value (moment or shear force) is needed. This value should be
calculated with FE methods. The formulas from the literature do not give reliable results
and the UHGS determined with classification rules overestimates the maximum bending
moment.
A significant simplification of a vessels’ cross section is only recommended for the calcu-
lation of moment-shear force interaction curves if equal plate slenderness ratios are used.
When simplified cross sections are used the interaction curves should be corrected by 20%
to obtain a conservative estimation. Thereby are 10% for the differences of simplified and
non-simplified cross section and 10% for the difference of fictive and real combined load-
ing conditions. The shear force reduces the ultimate hull girder strength during stranding
by 10% in all ship sections.
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6. Conclusions

This work contributes to the design of vessels against accidental load. The ideas and pro-
cedures presented here can form a basis for further work to build ships with an improved
safety performance.
The thesis reports on different methods developed to assess the structural response of
ships to stranding incidents. The stranding process can be divided into two stages. The
first stage begins with the initial contact, includes the sliding phase and ends in the fi-
nal stranding position. The vessel does not suffer important damage during this stage.
The process can be simulated independently using existing kinetic models. In the second
stage the vessel is subjected to tidal actions. The structural damage and the integrity of
the stranded vessel has to be solved. The second stage is investigated in the present work.
During stranding a vessel comes to rest upon a soft seabed and can be subjected to the
tide. If the water recedes, the hydrostatic forces change significantly. They depend on the
water level and the trim, which result from the new equilibrium position. The maximum
shear force is at the same position as the maximal change or sometimes at the maximum
of the bending moment. The interaction of the contact force with the hogging bending
moment affects the longitudinal resistance of the hull. If the ultimate hull girder strength
is reached, global damage occurs.
All of the proposed methods have been exemplarily applied to a Postpanmax container
vessel.

First a simple method based on the ideal-elastic beam theory is given for calculating
the bending moment, the shear force and the heel angle during stranding, whereby flood-
ing of tanks can be taken into account (see chapter 3). The new equilibrium position is
determined on the basis of the real ship form. The correct hydrostatic forces, as a function
of water level and stranding position, are used to determine the moments and forces due
to stranding. The method is not limited to a specific ship type or load case and compari-
son with existing formulas showed that the method gives reasonable results. The critical
combinations of grounding point/area, surface drawdown and load case (with or without
flooding) that lead to an exceedance of the class permissible moment and shear force can
be calculated.
A combinational optimisation is solved and implemented with a user interface for an easy
and accurate representation of the results. All critical combinations can be determined at
once even for parameters that lie in between calculated stranding incidents. It is possi-
ble to superimpose the critical cases and weight the influence of bending moment versus
shear force.
Diverse standing scenarios are calculated with the Postpanmax vessel. Of all calculations
stranding incidents amidship result in the highest bending moments and shear forces. The
overstepping of the permissible moment and shear force is always close to the contact
point. Considering the shear force, almost all positions of grounding are critical for 5
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m of receding tide. Considering only the bending moment, midship stranding positions
are critical. The highest exceedance of permissible moment and shear force occurs for
stranding in the bow and stern region and is due to the shear forces.

To get information about local and global damage, the influence of the ground and the
point of total collapse of the structure, a simulation procedure based on the finite element
method is introduced. Neither the ship nor the ground nor the external forces are sim-
plified. The method is based on true loading conditions that are gained from the simple
method presented in chapter 3. The chosen ship is completely modelled and the ground
is simulated with a well-known ground model. For the purpose of stranding simulations
the Mohr-Coulomb model is sufficient. The local and global damage of the structure can
be examined as a function of the soil characteristics, the ground geometry, the position
of stranding and the ebb tide. The simulation method is applicable to all ship types and
ground geometries and to many soil characteristics. It is very insusceptible to modifica-
tions and is robust. The verification of the ship and ground model shows that reasonable
results are achieved.
Most calculated scenarios end in global damage to the structure and a fractured outer hull.
The degree of damage, the damage mode and the ultimate strength depend on the ground
geometry and the soil characteristics. It is necessary to model the ground with a sand
material model because the hull girder is not always less prone to hull collapse if set onto
a soft bank.
The midship stranding scenario is the worst-case scenario and the main findings are:

• In all calculated midship scenarios the main transverse fold/fracture in the dou-
ble bottom and side structure is mainly due to the bending moment, whereas the
isotropic buckles in the side structure and the compression of the bilge structure
(longitudinal folds) are caused by shear forces.

• In the plastic range it is valid that the longer the contact area is the higher the
moments that can be absorbed by the structure.

• During stranding amidship the structure does not reach the class permissible ulti-
mate hull girder strength.

• A rigid ground is not a conservative border for soil characteristics.

• The bending moment curves for different soft ground geometries can be estimated
if one simulation is solved. The larger the initial ground plateau and the smaller the
slope angle the higher the ultimate strength, whereby the detailed failure mode is
different in each case.

Stranding in the bow results in the second highest degree of damage. The damage
is almost exclusively caused by the shear forces. For the stern scenario the damage is
insignificant. For the bow and stern scenarios the rigid ground is a conservative border.
Calculating stranding in the stern section gives only a little more information than the
estimation with the simple method, whereas stranding in the bow region results in an
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unexpected early failure of the outer shell plating. The degree of collapse cannot be con-
cluded from the height of the external forces and moments by the simple method (chapter
3).
Furthermore, it is shown that real incidents can be recalculated with very good confor-
mance. The damage caused by the stranding of the Fowairet is reproduced by applying
the simulation method.

The bending moments and shear forces have a different influence not only on the dam-
age but also on the hull capacity. A procedure and the resultant equations are given to gain
moment-shear force interaction curves. Those curves are based on the true and combined
loading conditions during stranding. For any cross section of a ship a curve can be cal-
culated and the influence of the shear force on the ultimate hull girder strength during
stranding can be evaluated. The procedure is validated by experiments and compared to
the literature.
Different cross sections lead to different moment-shear force interactions. The curves of
the cross sections can be ordered starting with the maximum curve (stern, midship and
bow) in the same order as their stiffness degrees and their sectional area. With the lin-
ear dependency of section area to ultimate strength and of ultimate moment to ultimate
shear force a relation between the ultimate values can be found. The proposed equations
can be used to gain interaction curves for any cross section whereby only one ultimate
value (moment or shear force) is needed. This value should be calculated with FE meth-
ods. The formulas from the literature do not give reliable results and the ultimate strength
determined with classification rules overestimates the maximum bending moment. Fur-
thermore, the coefficients of an equation already referenced in literature are modified.
Thereby different coefficients are needed for the stern section of a container vessel than
for the rest of the ship.
The comparison of the simple sections to the equivalent fully modelled cross sections
shows that the cut outs decrease the stiffness of the section and thus the ultimate strength.
In contrast to the fictive load cases, the true loading of the structure during stranding
reduces the ultimate strength by 10%.
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A. Parameter Study

A.1. Optimisation method

Figure A.1.: Flow chart of function M_interpol.

Figure A.2.: Flow chart of function M_diff_interpol.
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Figure A.3.: Flow chart of function G0_interpol.

Figure A.4.: Flow chart of function CritMax_x_fAP_xcont.
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Figure A.5.: Flow chart of function Crit_Interval_xcont.
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Figure A.6.: GUI for optimisation method.
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A.2. Stranding case B1 and C1
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Figure A.7.: Load case B: weight distribution, shear force and still water bending moment.
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Figure A.8.: Load case C: weight distribution, shear force and still water bending moment.
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Figure A.9.: Case B1: bending moments and shear forces due to stranding at 145 m AP.
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Figure A.10.: Case C1: bending moments and shear forces due to stranding at 145 m AP.
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A.3. Stranding case A1f
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Figure A.11.: Case A1 vs. A1f: weight distribution.
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B. Simulation of stranding
scenarios

B.1. Moment of inertia
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Figure B.1.: Moment of inertia Iy of the Panmax and FE model.
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B.2. Construction drawings

Figure B.2.: Construction drawing of bow section.
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Figure B.3.: Construction drawing of machinery room.

B.3. Oedometer test
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Figure B.4.: Stress-strain diagram of oedometer test.



140 Appendix B. Simulation of stranding scenarios

B.4. Shear force of Ha7p2 and Sa7p2 at 146, 147
and 148 m AP
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Figure B.5.: Sa7p2: shear force Qh at 146, 147 and 148 m.
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Figure B.6.: Ha7p2: shear force at 146, 147 and 148 m.
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B.5. Influence of ground

B.5.1. Ground parameters

Figure B.7.: SGa7p2: deformation at 5 m of surface drawdown.

B.5.2. Ground geometries

Figure B.8.: Sa15p2: deformation at 5 m of surface drawdown.
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Figure B.9.: Sa7p22: deformation at 5 m of surface drawdown.

Figure B.10.: Sa7p22w10: deformation at 5 m of surface drawdown.
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B.6. Results of bow and stern scenarios

B.6.1. Bow

Figure B.11.: Ha7p2 bow: deformation at 5 m of surface drawdown.

Figure B.12.: Sa7p2 bow: deformation at 5 m of surface drawdown.

Figure B.13.: Sa15p2 bow: deformation at 5 m of surface drawdown.
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B.6.2. Stern

Figure B.14.: Ha7p2 stern: deformation at 5 m of surface drawdown.

Figure B.15.: Sa7p2 stern: deformation at 5 m of surface drawdown.

Figure B.16.: Sa15p2 stern: deformation at 5 m of surface drawdown.
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C. Ultimate load calculation

C.1. Cross sections

Figure C.1.: Cross section of open box girder.

Figure C.2.: Cross section of simplified midship section.
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Figure C.3.: Cross section of simplified bow section.

Figure C.4.: Cross section of simplified stern section.
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C.2. Moment-shear force interaction of bow and
stern sections
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Figure C.5.: Bow section: moment-shear force interaction curve.
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Figure C.6.: Stern sections: moment-shear force interaction curve.




