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Abstract
Purpose Intravascular ultrasound (IVUS) imaging is crucial for planning and performing percutaneous coronary interven-
tions. Automatic segmentation of lumen and vessel wall in IVUS images can thus help streamlining the clinical workflow.
State-of-the-art results in image segmentation are achieved with data-driven methods like convolutional neural networks
(CNNs). These need large amounts of training data to perform sufficiently well but medical image datasets are often rather
small. A possibility to overcome this problem is exploiting alternative network architectures like capsule networks.
Methods We systematically investigated different capsule network architecture variants and optimized the performance on
IVUS image segmentation. We then compared our capsule network with corresponding CNNs under varying amounts of
training images and network parameters.
Results Contrary to previous works, our capsule network performs best when doubling the number of capsule types after
each downsampling stage, analogous to typical increase rates of feature maps in CNNs. Maximum improvements compared
to the baseline CNNs are 20.6% in terms of the Dice coefficient and 87.2% in terms of the average Hausdorff distance.
Conclusion Capsule networks are promising candidates when it comes to segmentation of small IVUS image datasets. We
therefore assume that this also holds for ultrasound images in general. A reasonable next step would be the investigation of
capsule networks for few- or even single-shot learning tasks.

Keywords Deep learning · Capsule networks · Intravascular ultrasound · Small datasets · Image segmentation

Introduction

Intravascular ultrasound (IVUS) is a commonlyused imaging
modality worldwide. Via IVUS experienced, physicians can
assess vessel morphologies and thereby estimate important
shape parameters like lumen diameter, vessel wall thick-
ness or plaque burden. This effectively improves treatment
planning and thus the success of percutaneous coronary inter-
ventions [21].

In order to derive vessel shape parameters from IVUS,
physicians have to manually delineate the respective struc-
tures in multiple images. This procedure is rather time-
consuming, and the results depend strongly on the physi-
cians’ experience. Automatic segmentation of lumen and
vesselwall can streamline the derivation ofmeaningful vessel
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parameters and therefore improve the efficiency of respective
clinical workflows.

Automatic segmentation of lumen and vesselwall via non-
data-drivenmethods has been studied before [1,13,14,23,27].
Many of these approaches rely on active contour models,
level sets, gradient-based techniques or thresholding. For
example, in [27], the authors propose a fuzzy clustering
approach with superpixels for reducing the influence of
speckle noise, followed by a level set evolution algorithm
with a new edge indicator. Reviews regarding IVUS seg-
mentation approaches can be found in [1,13]. Data-driven
methods include support vector machines, random forests or
convolutional neural networks (CNNs). The authors of [4],
e.g., combine an ensemble support vector machine pixel-
wise classifier with a deformable model to extract lumen and
media-adventitia borders. Approaches using CNNs mainly
rely on encoder–decoder architectures like U-Net [20] and
report state-of-the-art results for segmentation of lumen and
vessel wall [7,15,17,19,28,29,31]. However, CNNs depend
heavily on the size of the underlying dataset as well as the
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quality of the corresponding annotations. To ensure high
quality, annotations have to be created by trained experts
in a time-consuming process which generally leads to rather
small datasets in the medical domain. Therefore, it is essen-
tial to developmethods which also performwell and robustly
on small datasets.

Possible directions to achieve this are incorporating
domain knowledge into the CNN [2] or exploiting new
sophisticated network architectures. Such a rather novel net-
work architecture is the capsule network [9,22]. Capsules
are neurons grouped into tensors, like vectors or matrices,
which correspond to entities and their respective properties
(e.g., pose, texture, deformation, etc.) present in the image.
These capsules form the basic network elements instead of
single neurons as in the case of CNNs. An iterative routing
algorithm couples child capsules to parent capsules which
thus form a part-whole relationship. The overall network can
therefore be interpreted as some kind of parse tree.

Recent experimental studies showed that capsule net-
works can outperformCNNswhen dealingwith small natural
image datasets [11,12,30]. We study whether this also holds
for small ultrasound image datasets. We consider the task of
segmenting lumen and vessel wall in IVUS images. So far,
capsule networks have been applied to X-ray as well as com-
puted tomography image segmentation. Ultrasound images
differ a lot from the former modalities regarding texture and
noise structure (speckle). Therefore, we assume that the cap-
sule network architecture has to be tuned in order to achieve
sufficient segmentation performance on ultrasound images.
Our contribution is twofold. First, we present an optimized
capsule network for IVUS image segmentation. Second, we
provide a detailed analysis of capsule networks and a state-
of-the-art CNN with respect to the amount of training data
available.

Material andmethods

Dataset

For this study, we used a publicly available IVUS segmenta-
tion dataset consisting of 435 annotated IVUS frames with a
size of 384×384 pixels obtained from ten different patients
[1]. The images were acquired in a gated fashion with a
20MHz phased array transducer and annotated by clinical
experts by delineating the lumen border and the external elas-
tic membrane as the transition betweenmedia and adventitia.
The contours were transformed into pixel masks comprising
three classes: lumen, vessel wall (as the union of intima and
media) as well as background (adventitia and surrounding
tissue). See Fig. 3 for exemplary images with corresponding
segmentation contours (yellow dashed lines).

In addition, we used another IVUS dataset also provided
by [1]. This dataset comprises 77 images from 22 patients
with a size of 512×512 pixels. The images were acquired
with a rotational transducer and a frequencyof 40MHz.Anal-
ogous to the other dataset, the annotations delineate lumen
border and external elastic membrane. However, these are
much less visible compared to the 20MHz dataset and thus
generally harder to detect (see Fig. 4).

Capsule networks

Capsules have been developed in order to integrate parse
tree-like child–parent relationships into neural networks.
Capsules are groups of multiple neurons and can have dif-
ferent forms like vectors [22] or matrices [10]. The general
idea is that an active capsule represents a specific entity
present in the image, whereas the activities of the corre-
sponding neurons encode its properties like pose, texture
or deformation. Capsules in subsequent layers are coupled
via an iterative routing process which ensures a part-whole
tree structure throughout the network. This means that cap-
sules ui in layer L (child capsules) with a strong coupling
to specific capsules v j in layer L + 1 (parent capsules) can
be interpreted as parts of entities represented by the respec-
tive parent capsules. To perform the routing procedure, child
capsules are transformed into the parent capsules’ feature
space via transformation matricesWi j which are learned via
backpropagation.

Since each image entity is associated with a capsule,
the activation of a capsule is independent of the entity’s
pose. Therefore, capsule layers are—at least heuristically—
equivariant [10]. Not only in the case of translations, as
CNNs, but also for more complex transformations like rota-
tions or reflections. This could be a reason why capsule
networks can outperform CNNs when trained with small
datasets as shown in [11,12,30].

Considering the case of capsules with vector outputs, the
transformation of child capsule output vectors ui into the
parent capsules’ feature space can be written as

û j |i = Wi j ui .

The transformed child capsule output vectors û j |i are lin-
early combined with weights ci j , which are derived from the
dynamic routing process in every forward pass (see [22] for
details):

s j =
∑

i

ci j û j |i .
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Finally, the parent capsule outputs v j are computed via the
squash activation function:

v j = squash(s j ) = ‖s j‖2
1 + ‖s j‖2

s j
‖s j‖ .

By learning a reverse-encoding of object properties, cap-
sule networks provide improved generalizability to unseen
transformations and viewpoint changes while requiring less
training data than CNNs when performing pose prediction
[10]. Furthermore, the preservationof spatial part-whole rela-
tionships can better represent constraints regarding anatomi-
cal information which could be quite beneficial for semantic
segmentation tasks [22].

The first attempt of using capsule networks for image seg-
mentation was SegCaps [16]. SegCaps introduced locally
constrained dynamic routing, which restricts the set of child
capsules routed to a specific parent capsule to a relatively
small window of size 5×5, analogous to the convolutional
kernel size in CNNs. We refer to this type of layer as convo-
lutional capsule layer. Furthermore, SegCaps makes use of
shared transformation matrices for capsules inside these spe-
cific windows. The basic architecture follows a U-Net-like
structure incorporating downsampling and upsampling via
strided routing windows and skip connections between the
encoding and decoding path. The numbers of capsule types—
as an analogue to feature maps in CNNs—after each level of
the encoding path are {1,4,8,8}.We refer to this expression as
the shape of the network, because the decoding path usually
exhibits the same structure but vice versa.

In contrast to SegCaps, Matwo-CapsNet [3] consists of
capsules represented as matrices as proposed by Hinton et
al. [10]. Matwo-CapsNet extends the idea of a 4×4 capsule
pose matrix by introducing an additional 5×5 appearance
matrix and a dual routing algorithm combining the informa-
tion from both matrices. The term pose matrix should not
indicate that this matrix has specific properties which hold
for pose matrices in robotics and navigation. Like SegCaps,
Matwo-CapsNet exhibits a U-Net-like architecture with con-
volutional capsule layers and a shape of {5,5,6,7}, whereas
the decoding path has six capsule types instead of five.

The forward propagation in Matwo-CapsNet works basi-
cally the same as when using vector capsules. Pose matrices
Pi and appearance matrices Ai of layer L are transformed
via transformation matrices WP

i j and WA
i j :

P̂ j |i = Pi WP
i j Â j |i = (Ai + bi j )WA

i j ,

where bi j denotes learnable biases. The transformedmatrices
P̂ j |i and Â j |i are linearly combined with weights ci j which

are the same for both types of matrices.

P̃ j =
∑

i

ci j P̂ j |i Ã j =
∑

i

ci j Â j |i

The weights are derived from the dual routing procedure
(see [3] for details). The output matrices of layer L + 1 are
then calculated by applying the nonlinear activation functions
Psquash and squash.

P j = Psquash(P̃ j ) = P̃ j

max(abs(P̃ j ))
,

A j = squash(Ã j ) = ‖Ã j‖2
1 + ‖Ã j‖2

Ã j

‖Ã j‖
.

Capsule networks offer the possibility of incorporating a
regularization by performing a reconstruction of the input
image from the network’s last capsule layer. In the case
of classification, this can be accomplished by feeding the
active capsule from the classification layer into a decoder
network [22]. In the case of binary segmentation, SegCaps
masks out all capsules of the last network layer which do not
belong to the target class and feeds the remaining capsules
into a decoder consisting of three 1×1 convolutional lay-
ers. Matwo-CapsNet waives the idea of a regularization via
reconstruction.

Optimization of the capsule network architecture

Preliminary experiments with the SegCaps architecture [16]
revealed severeweaknesses.As alsoobserved in [3], SegCaps
was not able to produce reasonable results when used for
multi-class segmentation.We thus forewent investigating this
architecture any further and completely focused on Matwo-
CapsNet.

So far, the performance of Matwo-CapsNet has only been
demonstrated for chest X-ray as well as computed tomog-
raphy images. These modalities are very different from
ultrasound in terms of texture and noise structure. Ultrasound
images are typically governed by speckle noise which tends
to make borders between different tissues rather unclear and
harder to detect. Furthermore, parts of the images are often
obscured by shadow artifacts leading to a local reduction
of information. We can thus assume that Matwo-CapsNet’s
hyperparameters have to be tuned in order to optimize the
network structure toward IVUS image segmentation. This
procedure was performed on the 20MHz dataset.

As alreadymentioned in the previous section the following
structural parameters play an important role in Matwo-
CapsNet and have been investigated regarding their impact
on the IVUS segmentation results:
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– Treatment of the pose matrix
– Routing type and number of routing iterations
– Performing a reconstruction regularization
– Window size of locally constrained routing
– Pose matrix shape
– Appearance matrix shape
– Number of capsule types throughout the network

Comparison between capsule network and U-Net
Res

We compared our tuned capsule network with a state-of-
the-art encoder–decoder CNN similar to the U-Net [20] but
built with residual blocks [8] analogous to [18]. We call it
U-Net Res throughout this work. Both the baseline CNN
and the capsule network had an equal number of parameters.
We chose a U-Net-like baseline CNN due to two reasons.
First, previous work reports state-of-the-art results using
encoder-decoder CNNs [7,15,17,19,28,29,31]. Second, the
capsule network also features an encoder–decoder structure
which makes both networks more comparable. We further-
more studied how both networks behave when the number of
parameters is reduced. Small networks with less parameters
are of great importance when it comes to running these on
embedded systems or mobile devices [6], because here the
amount of available memory is usually rather limited.

We used the 20MHz dataset and training set sizes of 250,
150 and only 50 training images and investigatedwhich of the
networks were able to cope better with smaller datasets. Net-
works which generally perform better on such small datasets
are advantageous for medical image datasets, particularly
for few-shot learning tasks [26]. In addition, we evaluated
our approach on the 40MHz dataset in order to investigate
whether the capsule architecture optimized for the 20MHz
dataset could readily be used for slightly different data.

Training and evaluation

Preliminary experiments showed that Matwo-CapsNet per-
formed best with the spread loss, which was introduced
specifically for capsule networks [22]. The U-Net Res on the
other hand performed best with the generalized Dice loss,
a state-of-the-art loss function for medical image segmenta-
tion [24]. We therefore used the spread loss for all capsule
networks and the generalized Dice loss for all U-Net Res.

We carried out fivefold cross-validation (CV) for all exper-
iments in order to get meaningful statistics. We investigated
three different training set sizes of the 20MHz dataset:

1. 250 training images: every CV-fold comprised 50 images
of a single patient, resulting in five different patients in

the training set. The remaining 185 images of the dataset,
again from five different patients, were used for testing.

2. 150 training images: same as (1) but with only 30 images
per patient in the CV-folds. Same test set as (1).

3. 50 training images: only data of a single patient divided
intoCV-folds of ten images. This settingmakes it difficult
for networks to generalize to the unseen test data because
the validation sets highly correlate with the training sets.
Same test set as (1) and (2).

A detailed overview of the CV schemes is depicted in Fig. 1.
All images were resized to 256×256 pixels and augmented
by random rotations and flips on-the-fly during training. As
evaluation metrics we chose the Dice coefficient as a mea-
sure of overlap and the average Hausdorff distance [5] as
a measure of edge alignment between the predicted and
ground-truth segmentation masks. The average Hausdorff
distance between two sets A and B is defined as

dave
H = max

{
mean
a∈A

min
b∈B d(a, b), mean

b∈B min
a∈A

d(a, b)

}

with the Euclidean distance d(·, ·). Due to the mean oper-
ations, dave

H is less sensitive to outliers [5,25] which makes
comparing segmentation pixel masks more meaningful than
using the ordinary Hausdorff distance. The average Haus-
dorff distance is therefore quite similar to the average
symmetric surface distancewhich computes themean instead
of the max of both directed distances. For completeness and
comparability to previous work, we do also report the ordi-
nary Hausdorff distance.

All networks were trained with the Adam optimizer. Via
preliminary grid-searching, we found a learning rate of � =
1e− 3 to be optimal for the Matwo-CapsNet, whereas it was
� = 2e − 4 for the U-Net Res. We trained every network for
200 epochs and validated after every epoch with the valida-
tion set by computing Dice coefficients. After training, the
model which performed best on the validation set was chosen
to be evaluated with the test set.

Additionally, we evaluated our approach on the 40MHz
dataset. Due to its small size of 77 images, we only evaluated
a single training set size. We performed fivefold cross-
validation with ten images per fold and 27 images in the
test set. All other settings were the same as above.

Results and discussion

Optimization of the capsule network architecture

Grid-searching all possible architecture hyperparameterswas
not feasible regarding temporal and computing resources.We
thus used a partially greedy approach starting with a set of
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a b

Fig. 1 Overviewof the usedCVschemes and the distribution of patients
among the individual sets. a CV scheme for scenarios one (250 training
images) and two (150 training images). Scenario two only uses 60% of

images from every patient. b CV scheme for scenario three (50 training
images). All images in the training and validation sets originate solely
from patient six

Table 1 Segmentation performances as a function of different treatments of the pose (or pose transformation) matrix

Pose matrix treatment Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

Normalized transf. w/coord. add. 66.27 ± 2.77 90.50 ± 1.34 2.73 ± 0.08 1.27 ± 0.86

Normalized w/ coord. add. 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

Normalized w/o coord. add. 69.98 ± 2.69 90.15 ± 0.88 3.11 ± 0.85 1.38 ± 0.50

No modifications 68.3 ± 2.07 89.31 ± 0.74 3.06 ± 0.59 1.64 ± 0.55

Bold values indicate best results

Table 2 Segmentation
performances as a function of
different routing algorithms
performed with three routing
iterations

Routing algorithm Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

Dynamic routing 73.14 ± 1.23 90.89 ± 0.78 2.13 ± 0.43 0.96 ± 0.44

Dual routing 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

Bold values indicate best results

Table 3 Segmentation
performances as a function of
different numbers of routing
iterations performed with dual
routing

# Iterations Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

1 55.06 ± 1.60 86.23 ± 0.79 6.13 ± 0.84 2.89 ± 0.25

2 76.36 ± 0.77 91.71 ± 1.07 1.73 ± 0.17 0.70 ± 0.32

3 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

4 74.48 ± 2.61 91.49 ± 1.27 1.95 ± 0.14 0.89 ± 0.59

5 67.77 ± 3.78 90.18 ± 1.57 2.29 ± 0.44 1.10 ± 0.44

Bold values indicate best results

parameters used in the original Matwo-CapsNet paper [3].
However, we changed the numbers of capsule types in the
encoding path (network shape) from {5,5,6,7} to {3,5,7,9}
and used two convolutional capsule layers per level. The
order of the numbers of capsule types in the decoding path is
vice versa. The initial shape of the pose matrix was 4×4,
whereas the appearance matrix had a shape of 5×5. If
improvements were found, thesewere integrated into the net-
work. Exceptions are mentioned in the text. For the sake of
clarity, we used only the average Hausdorff distance mea-
sured in pixels as the basis for evaluation in this section, in
addition to the Dice coefficient.

First, we investigated how different treatments of the pose
matrix affected the segmentation performance. Originally,
Hinton et al. [10] did not normalize the pose matrix but

proposed to add scaled coordinates to the last matrix col-
umn relative to the center of the capsule’s receptive field.
Bonheur et al. [3] introduced the idea of normalizing every
column of the pose transformation matrix such that these
have unit length. We compared this method with three other
ones: normalizing the pose matrix with subsequent addition
of scaled coordinates, normalizing the pose matrix without
adding scaled coordinates and no manipulation at all. The
corresponding results are given in Table 1. We can see that
the approach of normalizing the pose matrix with subsequent
scaled coordinate addition led to the best segmentation per-
formance by far.

We then investigated how the results were affected by
using either dual routing or dynamic routing as well as the
number of routing iterations. Tables 2 and 3 show that using

123



1248 International Journal of Computer Assisted Radiology and Surgery (2021) 16:1243–1254

Table 4 Segmentation
performances as a function of
different approaches to adding a
reconstruction regularization.
The underlying network shape
was {3,5,7,9}

Reconstruction Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

Without 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

From all classes 77.62 ± 1.39 92.23 ± 1.39 1.60 ± 0.28 0.71 ± 0.37

From pos. classes 76.37 ± 2.10 92.52 ± 1.05 1.65 ± 0.15 0.82 ± 0.67

From lowest level 76.60 ± 1.56 92.49 ± 0.78 1.60 ± 0.26 0.77 ± 0.60

Bold values indicate best results

Table 5 Segmentation
performances as a function of
different pose matrix sizes
obtained with a network of
shape {3,5,7,9} and an
appearance matrix with shape
5×5

Pose matrix shape Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

2 × 2 37.82 ± 29.02 58.19 ± 24.43 24.12 ± 26.14 26.67 ± 31.33

3 × 3 75.71 ± 1.84 91.33 ± 2.07 1.73 ± 0.23 0.79 ± 0.60

4 × 4 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

5 × 5 77.16 ± 1.44 92.76 ± 0.65 1.71 ± 0.24 0.76 ± 0.52

Bold values indicate best results

Table 6 Segmentation
performances as a function of
different appearance matrix
sizes obtained with a network of
shape {3,5,7,9} and a pose
matrix with shape 4×4

Appearance matrix shape Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

2 × 2 75.60 ± 1.87 91.22 ± 1.45 1.67 ± 0.06 0.81 ± 0.44

3 × 3 76.94 ± 1.24 92.45 ± 1.14 1.75 ± 0.40 0.82 ± 0.60

4 × 4 76.65 ± 0.52 92.64 ± 0.69 1.59 ± 0.18 0.64 ± 0.43

5 × 5 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

6 × 6 76.07 ± 1.62 92.18 ± 1.25 1.78 ± 0.19 0.62 ± 0.14

Bold values indicate best results

Table 7 Segmentation
performances as a function of
network depth and the number
of capsule types per level

Network shape Dice coefficient Ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

{3,4,5,6} 75.63 ± 2.20 91.94 ± 0.29 1.80 ± 0.19 0.66 ± 0.12

{3,4,5,6,7} 76.39 ± 1.23 92.94 ± 0.42 1.56 ± 0.26 0.43 ± 0.06

{3,5,7,9} 79.11 ± 1.15 93.52 ± 1.05 1.37 ± 0.24 0.66 ± 0.70

{3,5,7,9,11} 78.97 ± 0.67 93.33 ± 0.60 1.30 ± 0.20 0.46 ± 0.13

{3,6,12} 74.38 ± 2.10 90.54 ± 1.05 1.73 ± 0.19 1.14 ± 0.46

{3,6,12,24} 79.98 ± 0.73 92.99 ± 0.82 1.32 ± 0.25 0.51 ± 0.26

{3,6,12,24,48} 81.16 ± 1.88 94.59 ± 0.38 1.02 ± 0.30 037 ± 0.70

Bold values indicate best results

dual routing with three routing iterations performed best.
This means that treating appearance and pose features sep-
arately is also beneficial for IVUS segmentation. Increasing
the number of routing iterations to values higher than three
leads to a decrease in segmentation performance, a tendency
also shown in [10] for classification.Due to the larger number
of routing iterations, the capacity of the network increases,
which eventually leads to overfitting.

The resulting segmentation performancewhen using three
different approaches for reconstruction as a regularization
method is shown in Table 4. First, the reconstruction was

performed from the capsules belonging to all classes of
the last layer. Second, only the capsules from the positive
classes of the last layer were used. And third, the cap-
sules of the lowest network level were used. We found no
performance improvement through adding a reconstruction
regularization. Additionally, incorporating a reconstruction
heavily increased training time and VRAM load. We there-
fore refrained from using a reconstruction just like Bonheur
et al. [3].

We then investigateddifferent sizes of the pose and appear-
ance matrix. Tables 5 and 6 show the corresponding results.
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Table 8 Segmentation
performances as a function of
different window sizes for
locally constrained routing
obtained with a network of
shape {3,6,12,24}

Window size Dice coefficient ave. Hausdorff distance [px]

Vessel wall Lumen Vessel wall Lumen

3 × 3 77.25 ± 1.03 92.42 ± 1.34 1.63 ± 0.13 0.80 ± 0.58

5 × 5 79.78 ± 2.03 94.40 ± 0.40 1.27 ± 0.41 0.38 ± 0.26

7 × 7 80.46 ± 1.48 93.40 ± 0.95 1.24 ± 0.22 0.44 ± 0.16

Bold values indicate best results

Fig. 2 Sketch of the optimized capsule network architecture. The ordi-
nary convolutional layer is colored gray. Convolutional capsule layers
(with downsampling/upsampling) are colored green (blue/red). The dig-
its indicate window size as well as the number of capsule types (feature

maps) after convolutional capsule layers (convolutional layers). The
last layer computes the Frobenius norm of pose matrix and appearance
matrix and multiplies both resulting values for each capsule (i.e., pixel)
and all three segmentation classes

Table 9 Segmentation
performances of capsule
networks and baseline U-Net
Res for different sizes of the
20MHz dataset measured by
Dice coefficient

# Images # Params Network Dice coefficient

Vessel wall Lumen

50 32k CapsNet 71.05 ± 2.25 90.63 ± 1.06

U-Net Res 59.42 ± 5.98 78.60 ± 9.20

102k CapsNet 72.00 ± 2.71 91.73 ± 0.79

U-Net Res 61.31 ± 4.77 76.07 ± 5.23

420k CapsNet 73.99 ± 1.55 91.58 ± 0.78

U-Net Res 68.71 ± 2.09 87.04 ± 2.45

150 32k CapsNet 77.17 ± 0.92 93.00 ± 0.40

U-Net Res 73.17 ± 1.55 90.28 ± 1.33

102k CapsNet 78.74 ± 1.02 93.22 ± 1.01

U-Net Res 75.12 ± 1.83 90.58 ± 0.95

420k CapsNet 79.07 ± 1.40 93.84 ± 0.33

U-Net Res 78.92 ± 1.48 93.38 ± 0.83

250 32k CapsNet 79.11 ± 1.15 93.52 ± 1.05

U-Net Res 75.79 ± 2.11 92.07 ± 2.86

102k CapsNet 79.98 ± 0.73 92.99 ± 0.82

U-Net Res 76.67 ± 2.26 92.24 ± 1.21

420k CapsNet 81.16 ± 1.88 94.59 ± 0.38

U-Net Res 80.15 ± 1.35 94.21 ± 0.76

Bold values indicate best results
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Table 10 Segmentation
performances of capsule
networks and baseline U-Net
Res for different sizes of the
20MHz dataset measured by
ordinary and average Hausdorff
distance

# Images # Params Network Hausdorff distance [mm] Ave. Hausdorff dist. [mm]

Vessel wall Lumen Vessel wall Lumen

50 32 k CapsNet .521 ± .059 .355 ± .040 .060 ± .009 .022 ± .003

U-Net Res .825 ± .116 .629 ± .123 .158 ± .059 .097 ± .050

102 k CapsNet .570 ± .042 .353 ± .056 .062 ± .010 .016 ± .003

U-Net Res .953 ± .164 .633 ± .090 .203 ± .060 .126 ± .045

420 k CapsNet .419 ± .040 .297 ± .020 .046 ± .005 .017 ± .002

U-Net Res .627 ± .084 .378 ± .055 .086 ± .019 .053 ± .020

150 32 k CapsNet .393 ± .033 .252 ± .026 .036 ± .003 .013 ± .002

U-Net Res .592 ± .082 .427 ± .087 .066 ± .007 .032 ± .010

102 k CapsNet .406 ± .049 .261 ± .015 .036 ± .008 .014 ± .003

U-Net Res .518 ± .076 .365 ± .079 .055 ± .013 .028 ± .007

420 k CapsNet .352 ± .035 .243 ± .038 .035 ± .004 .013 ± .005

U-Net Res .416 ± .139 .265 ± .067 .038 ± .010 .015 ± .011

250 32 k CapsNet .470 ± .067 .273 ± .091 .036 ± .006 .017 ± .016

U - Net Res .625 ± .174 .507 ± .233 .060 ± .019 .049 ± .064

102 k CapsNet .394 ± .072 .234 ± .038 .033 ± .010 .010 ± .006

U-Net Res .643 ± .175 .342 ± .095 .065 ± .030 .028 ± .019

420 k CapsNet .313 ± .052 .207 ± .048 .027 ± .007 .010 ± .006

U-Net Res .353 ± .063 .196 ± .033 .031 ± .005 .008 ± .002

Bold values indicate best results

Using a pose matrix with shape 4×4 and an appearance
matrix with shape 5×5 led to the best results. Interestingly,
the performance dropswhen choosing the largermatrix sizes.

Regarding the underlying encoder–decoder architecture,
we investigated how different network depths (and thus dif-
ferent numbers of downsamplings) affect the segmentation
performance. Furthermore, we compared different alterna-
tives for increasing the number of capsule types in the
encoding path by either adding a fixed number of capsule
types or doubling these in each level. The approaches in
[3,16] are non-doubling (likely due to limitations of compu-
tational resources) but Table 7 shows that doubling is rather
beneficial when performed along with increasing the depth
to five levels.

The window size for locally constrained routing is an
important hyperparameter because it drastically affects the
number of weights and the size of the capsules’ receptive
fields. Table 8 depicts the segmentation performances with
different window sizes. Due to limitations with respect to
computational resources, we were not able to apply win-
dow sizes of 7×7 to networks with shape {3,6,12,24,48}.
We therefore used a network with shape {3,6,12,24} for this
comparison.We do not see clear improvements when switch-
ing from 5 × 5 to 7 × 7 windows. We therefore stuck to a
window size of 5 × 5 for further experiments which is the
same as in [3,16].

The structural parameters of Matwo-CapsNet which led
to the best segmentation performance are as follows:

– Normalizing pose matrix and adding scaled coordinates
– Dual routing with three iterations
– No reconstruction
– Routing window size: 5×5
– Pose matrix shape: 4×4
– Appearance matrix shape: 5×5
– Network shape: {3, 6, 12, 24, 48}

The resulting architecture differs from theoriginalMatwo-
CapsNet architecture proposed in [3]. The major differences
are the treatment of the pose matrix (normalizing the
pose matrix instead of the pose transformation matrix), the
increased network depth of five levels and the doubling of
capsule types at each level leading to 48 capsule types at the
lowest level. Making the network deeper while only adding a
fixed amount of capsule types per level increased the perfor-
mance substantially less or even led to performance drops.
Figure 2 depicts a sketch of the optimized capsule network
architecture.
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Fig. 3 Comparison of
exemplary segmentation results
between capsule networks and
CNNs for the 20MHz dataset.
Shown are predictions of large
networks with 420k parameters
and small networks with 32k
parameters. Ground truth
annotations of lumen border and
external elastic membrane are
depicted with yellow dashed
lines. The predicted contours
with red and green solid lines,
respectively

Comparison between capsule network and U-Net
Res

The resulting segmentation performances on the 20MHz
dataset are given in Tables 9 and 10. One can clearly see
the tendency of the capsule network to outperform the U-
Net Res when the training sets get smaller as well as when
the network sizes decrease.We can thus deduce that develop-
ing part-whole relationships in capsule networks is beneficial
for the segmentation of ultrasound images when dealing with
data scarcity or small networks.

For vesselwall segmentationwith 250 training images, the
relative improvement regarding the Dice coefficient is 1.3%
in the case of networkswith 420k parameters and increases to

Table 11 Segmentation performances of capsule networks and baseline
U-Net Res on the 40MHz dataset measured by Dice coefficient

# Params Network Dice coefficient

Vessel wall Lumen

32k CapsNet 66.57 ± 2.17 88.85 ± 0.84

U-Net Res 58.89 ± 0.44 86.90 ± 0.70

102k CapsNet 67.99 ± 1.88 88.50 ± 0.53

U-Net Res 61.64 ± 1.60 85.42 ± 0.68

420k CapsNet 73.09 ± 1.54 90.84 ± 0.68

U-Net Res 70.26 ± 2.00 90.57 ± 0.36

Bold values indicate best results
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Table 12 Segmentation
performances of capsule
networks and baseline U-Net
Res on the 40MHz dataset
measured by ordinary and
average Hausdorff distance

# Params Network Hausdorff distance [mm] Ave. Hausdorff dist. [mm]

Vessel wall Lumen Vessel wall Lumen

32k CapsNet 1.115 ± .073 .632 ± .047 .121 ± .009 .034 ± .003

U-Net Res 1.599 ± .177 .995 ± .047 .198 ± .019 .065 ± .008

102k CapsNet .874 ± .097 .514 ± .096 .087 ± .008 .025 ± .005

U-Net Res 1.286 ± .106 1.652 ± .110 .162 ± .018 .078 ± .026

420k CapsNet .857 ± .063 .463 ± .048 .085 ± .006 .022 ± .006

U-Net Res .996 ± .139 .522 ± .065 .097 ± .017 .028 ± .006

Bold values indicate best results

Fig. 4 Comparison of
exemplary segmentation results
between capsule networks and
CNNs for the 40MHz dataset.
Shown are predictions of large
networks with 420k parameters
and small networks with 32k
parameters. Ground truth
annotations of lumen border and
external elastic membrane are
depicted with yellow dashed
lines. The predicted contours
with red and green solid lines,
respectively

4.5% for networks with 32k parameters. The corresponding
improvements of the average Hausdorff distance are 12.8%
and 46.1%. When using 50 training images, the improve-
ments of the Dice score are 4.6% for networks with 420k
parameters and 19.6% for networks with 32k parameters.
The corresponding average Hausdorff distances improve by
26.5% and 61.9%.

Furthermore,we see that the performance drops of the cap-
sule networks, when decreasing the number of parameters,
are substantially smaller compared to the baseline CNNs.
In the case of the vessel wall, the Dice scores drop about
− 2.4% vs. − 5.8% for networks trained with 250 images
and − 1.2% vs. − 15.6% for networks trained with 50
images.

Figure 3 shows exemplary segmentation results for the
cases of 250 and 50 training images. It can be seen that the
capsule networks are able to complete the vessel wall shape
in shadowed regions quite well (see, e.g., Fig. 3 columns 1,

3 and 4), whereas the CNNs fail to do so. Additionally, the
predictions of the capsule networks always exhibit a closed
vessel wall shape which completely surrounds the lumen.
This is not always the case for the CNN predictions (see Fig.
3 columns 2, 3 and 5). Hence, we can assume that the capsule
network learned some kind of shape representation of vessel
walls and is able to interpolate missing grayvalue gradient
information.

In addition, we provide segmentation results for the
40MHz dataset in Tables 11 and 12. The picture is generally
the same as for the 20MHz dataset. Exemplary segmentation
results are depicted in Fig. 4. It can be seen that the capsule
network is capable of inferring vessel borders in shadowed
regions, as was the case for 20MHz images. Furthermore,
the decrease in performance when reducing the number of
network parameters is substantially smaller compared to the
baseline CNN. All in all, this shows that the capsule network
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architecture optimized for the 20MHz dataset can be readily
used for the 40MHz dataset.

The major drawback of the capsule network is the long
training time compared to the U-Net Res. The largest cap-
sule network needed approximately 16 h training time for
five-fold cross-validation, whereas training the correspond-
ing U-Net Res only took roughly 45 min. Also the required
amount of graphics memory differed largely. The largest U-
Net Res model needed about 3.5GB of VRAM, whereas the
largest capsule network occupied about 20GB. All experi-
ments were performed on an NVIDIA Titan RTX GPU with
24GB of VRAM. The main reason for this large difference
is the iterative routing process. This also affects the infer-
ence time which was more than 30 times longer than the
corresponding CNN inference time (e.g., 100ms vs. 3ms for
networks with 420k parameters).

Nevertheless, in the case of IVUS, image segmentation
capsule networks turned out to be quite performant on small
datasets, even with a rather small network size of 32k param-
eters. This makes capsule networks promising candidates for
few-shot learning tasks like patient adaptation or detection
of diseases with small prevalence as well as for applications
on mobile devices.

Conclusion

We systematically optimized a capsule network architecture
for segmentation of intravascular ultrasound (IVUS) images.
The approach of doubling the number of capsule types at
each downsampling level analogous to typical CNN archi-
tectures turned out to be quite beneficial. We showed that
our capsule network performs particularly well on a small
dataset compared to a corresponding U-Net Res. We thus
assume that capsule networks are promising candidates for
ultrasound image segmentation in general when dealing with
data scarcity. This could make capsule networks suitable for
few- or even single-shot learning tasks as well as applications
for mobile devices. Further research should focus on tackling
such tasks with capsule networks.
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