Chapter 12 )
Boundary Value Problems and Boundary  @uix
Value Spaces

This chapter is devoted to the study of inhomogeneous boundary value problems.
For this, we shall reformulate the boundary value problem again into a form which
fits within the general framework of evolutionary equations. In order to have an
idea of the type of boundary values which make sense to study, we start off with a
section that deals with the boundary values of functions in the domain of the gradient
operator defined on a half-space in R4 (ford = 1 we have Lr(R~1) = K).

12.1 The Boundary Values of H LRrd-1 R.o)

In this section we let = R9~1 x R.pand f € HI(Q); our aim is to make sense of
the function R?~! 5 ¥ > f(¥, 0). Note that this makes no sense if we only assume
f € L2(L2) since RI-1 % {0} = 02 is a set of (d-dimensional) Lebesgue-measure
zero. However, if we assume f to be weakly differentiable, something more can be
said and the boundary values can be defined by means of a continuous extension of
the so-called trace map. In order to properly formulate this, we need the following
density result.

Theorem 12.1.1 The set D = {d): Q- K; Iy e CSO(R“'): Vg = ¢} is dense
in the space HY(Q).

We will need a density result for H L(RY) first.
Lemma 12.1.2 CX(RY) is dense in H'(RY).

Proof Let f € H'(R?). We first show that f can be approximated by functions
with compact support. For this let ¢ € C° (R?) with the properties 0 < ¢ < 1,
¢ = 1on B(0,1/2) and ¢ = Oon R\ B (0, 1). For all k € N we put ¢y =
¢(-/k) and fi == ¢rf € Lr(RY). Then f; has support contained in B [0, k]. The
dominated convergence theorem implies that f; — f in Lo(R?) as k — oo. Next,
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lety € C° (R4) and compute for all k € N

— (fr. divy) = — (@i f.divy) = — (f, e divy) = — (f. div (¢ep) — (grad éx) - )
— (f. div (¢ ) + (f grad o, ¥)

1
= <(grad e + kf(graddﬂ(-/k), 1/f>,
which shows that f; € dom(grad) = H I(R4) and

1
grad fi = (grad )i+ f (grad ) (-/ ).

From this expression of grad f; we observe grad fy — grad f in Ly(R%)¢ by
dominated convergence. Hence, fy — f in dom(grad) = H L(RY).

To conclude the proof of this lemma it suffices to revisit Exercise 3.2. For this, let
(Yi)k in C° (R9) be a 8-sequence. Then, by Exercise 3.2, we infer ¥ % f — f in
L>(R%) as k — oo and hence, by Exercise 12.1, it follows also that grad (y * f) =
Vi * grad f — grad f (note the component-wise definition of the convolution). A
combination of the first part of this proof together with an estimate for the support
of the convolution (see again Exercise 3.2) yields the assertion. O

Proof of Theorem 12.1.1 Let f € H'(2). The approximation of f by functions in
D is done in two steps. First, we shift f in the negative e4-direction to avoid the
boundary, and then we convolve the shifted f to obtain smooth approximants in D.

Let f € Lz(Rd) be the extension of f by zero. Put ey := (8;4) je(1,...q}> the d-th
unit vector. Then for all T > 0 we have Q + ey € 2 and, thus by Exercise 12.2,
we deduce f; = f(- + teg)lg — fin HY(Q) as T — 0. Thus, it suffices to
approximate f; for r > 0.

Let T > 0 and let (Y); in C“(Rd) be a §-sequence. Then Y * f( + tey) €
H'(RY), by Exercise 12.1. Define fi . = (wk * f( + red))lg Then we obtain
that fi; — f; in H'(Q) as k — oo. Indeed, the only thing left to prove is that
grad fy - — grad f; in Lz(Q)d as k — oo. For this, we denote by g the extension
of grad f by 0. Since g € Lr(R?)? it suffices to show that grad Jk.r = Yk * gz on
Q for all large enough k € N, where g = g(- 4+ teg). Let k > i Then for all
x e Qandy € sptyy S [—1/k, 1/k)? we infer x — y + teq € Q. In particular,
f(—y+rtes) € H(Q)and grad f(-—y+7eq) = g(-—y+Teq). Take n € C°(Q)¢
and compute

—(fr,z. div '7>L2(Q) =- /Q /]Rd Yr(x — y) f(y + teq)* dy divn(x) dx
~ / / Ui (v) f(x — y + Teq)* dy divn(x) dx
Q JR4

_/ \/[ 1/k 1//{]‘1 1)Z/.k(y)'f(x_ydl—.L—ed)*dydlvr](.x)Cl.X,'
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. / Ve (FC — 3 + Tea). divnp, g dy
[—1/k,1/ kY

= /[ _—— Vi (y) (g — y + Tea), N g dy

= (Y * gr, 77>L2(Q)d .

As Py * f(- + teg) € H'(RY), we conclude the proof using Lemma 12.1.2. |
With these preparations at hand, we can define the boundary trace of H!(2).

Theorem 12.1.3 The operator

y:DC H(Q) > LRI
[ R s ¥ f(F,0)

is continuous, densely defined and, thus, admits a unique continuous extension to
H'(Q) again denoted by y. Moreover, we have

|
Iy fllL,me-1y < (2 1, ||gradf||L2(Q)d)2 SIfllgve (f € HI(Q))-

Proof Note that y is densely defined by Theorem 12.1.1. Let f € CZ° R4) and
¥ € R~ Let R > 0 be such that spt f C B (0, R). Then

R
/ |G, 0)| d¥ = —/ / 3 | f(F, | dxd¥
Rd-1 Rd-1 Jo
= _/Q (f()*8a f(x) + 9 f*(x) f(x)) dx
S 21 Ly llgrad fliz, ) -

The remaining inequality follows from 2ab < a® 4 b? forall a, b € R. O

Except for one spatial dimension, where the boundary trace can be obtained by
point evaluation, the boundary trace ¥ does not map onto the whole of L, (RY™1).
Hence, in order to define the space of all possible boundary values for a function in
H' one uses a quotient construction: we set

HP®RITY = {yrs fe H' @)
and endow H!/2 (Rd_l) with the norm

Iy f vy = inf gl ey : 8 € H' (), vg = v
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It is not difficult to see that H'/2(R4~1) is unitarily equivalent to (ker y)J', where the
orthogonal complement is computed with respect to the scalar product in H!(2).
Thus, H/2(R4~1) is a Hilbert space.

Remark 12.1.4 The norm defined on the space H'/2(R¢~1) given above is not the
standard norm defined on this space. Indeed, following [72, Section 2.3.8] the usual
norm is given by

1/2
2 |u(x) — u(y)|?
dxd
(”””Lz(R‘”>+/Rm /R oy T

foru € H' 2(R“’*l). However, this norm turns out to be equivalent to the norm
given above, see e.g. [115, Section 4].

As the notation of this space suggests, it can also be defined as an interpolation
space between HI(R‘I’I) and LZ(R‘I’I), see [60, Theorem 15.1].

12.2 The Boundary Values of H (div, RA=1 x R_ )

Let Q := R4~ xR. (. There is also a space of corresponding boundary traces for the
divergence operator. Similarly to the boundary values for the domain of the gradient
operator, H 1(), the construction of the boundary trace for H (div)-vector fields
rests on a density result. The proof can be done along the lines of Theorem 12.1.1
and will be addressed in Exercise 12.3.

Theorem 12.2.1 D? is dense in H(div, Q), where D is defined as in Theo-
rem 12.1.1.

Equipped with this result, we can describe all possible boundary values of
H (div, 2). It will turn out that vector fields in H (div, 2) have a well-defined
normal trace, which for Q2 = RI-1 R. ¢ is just the negative of the last coordinate
of the vector field.

Theorem 12.2.2 The operator
/
vo: D4 C H(div, Q) — (Hl/z(Rd’l)) — H~2®R
g R s ¥ > —qu(F, 0)),

is densely defined, continuous with norm bounded by 1 and has dense range. Thus
vn admits a unique extension to H (div, Q) again denoted by y,. Here, —q is the
negative of the d-th component of q pointing into the outward normal direction of
Q and —qq is identified with the linear functional

H'P®R) 5 yf > (=qaC, 00, ) 1, a1y -
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Moreover, for all f € dom(grad) and g € dom(div) we have

(divg, )+ (g, grad f) = (mq) (v f)- (12.1)

Proof Let f € D and g € D“. Then integration by parts yields

d—1

Wivg, f)+ (g, grad f) = fQ divig* f) = /R (q* (7. 0) £ (. 0), —eg) d¥

== /I;dfl J/C];lk)/f = (¥n4q, yf)Lz(Rd*I) = (mqe)[).
Hence,

|0, ¥ Lyra-1y | < Nq gy 1 gt -
Since D is dense in H' (), the inequality remains true for all f € H 1(Q). Thus,
| V) 1y ity < gl 1f g (F € H' ().
Computing the infimum over all g € H'(Q) with yg = yf, we deduce
|ma V) iy | < 1l 17F ey, (F € HY(Q)).
Therefore yog € H'/2(R?™Y) and [yagllz-12 < 1191l gaivy» Which shows
continuity of y,. It is left to show that y, has dense range. For this, take yf €
H'2(R4=1) for some f € H'(2) such that
("8 Y/ wa-1y =0

for all g € D?. Next, take § € C(RY!) and ¢ € C®(R) with (0) = 1. Then
weset g: Q3 (X,X) = —e g(X)¥(¥) € D? and note that y,¢ = 3. Hence

Vf D rmi-n =0 (FeCO®RIT).

Thus, yf = 0, which implies that the range of y, is dense, as H~1/?(R?~1) is a
Hilbert space. The remaining formula (12.1) follows by continuously extending both
the left- and right-hand side of the integration by parts formula from the beginning
of the proof. Note that for this, we have used both Theorems 12.1.1 and 12.2.1. O
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Corollary 12.2.3 Let f € H'(Q), ¢ € H(div, Q). Then f e dom(grady) if and
onlyifyf =0, and g € dom(divy) if and only if ynqg = 0.

Proof We only show the statement for g. The proof for f is analogous. If ¢ €
dom(divp), then there exists a sequence (¥,), in C° (2)? such that ¥, — ¢ in
H(div, 2) as n — oo. Thus, by continuity of y,, we infer 0 = yp¥, — wgq.
Assume on the other hand that ¢ € dom(div) with y,g = 0. Using (12.1), we obtain
for all f € dom(grad)

(divg, f) + (g, grad f) = 0.

This equality implies that ¢ € dom(grad®*) = dom(divp), which shows the
remaining assertion. O

The remaining part of this section is devoted to showing that the continuous
extension of y, maps onto H~'/2(R4~1). For this we require the following
observation, which will also be needed later on.

Proposition 12.2.4 Let U C R? be open. Then
Ho(div, U)LHavo) — {q € H(div,U); divg € H'\(U), g = graddivq] .

Proof Let g € H(div, U). Then ¢ € Ho(div, U)*#w@iv.0) if and only if for all r €
Hy(div, U) we have
0={r,q)aivuy = 9,y + {divr,divg), )

=(r,q) L,y + (divor,divg) @) -

The latter, in turn, is equivalent to divg € dom(divj) = dom(grad) = H 1(U) and
—graddivg = divjdivg = —q. ]

Theorem 12.2.5 y, maps onto H'/2(R4=Y. In particular, we have

g1 i aiv.o) < gl g-1/2Ra-1y

forall g € Ho(div, Q)Hiv.e),
Proof By Theorem 12.2.2 it suffices to show that y;, has closed range. For this, it
suffices to show that there exists ¢ > 0 such that

91l aiv,2) < € Ivngllg-12Ra-1y

for all g € ker(y,)H@v.2) By Corollary 12.2.3, we obtain ker(y,) = Hp(div, 2).
Hence, by Proposition 12.2.4, we deduce that ¢ € ker(y,)~#@.9 if and only if
q € dom(graddiv) and ¢ = graddivg. So, assume that ¢ € dom(graddiv) with
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q = graddivg. Then (12.1) applied to ¢ € dom(div) and f = divg € dom(grad)
yields

(ynq)(y divg) = (divg, divg) + (g, graddivg) = (divg, divg) + (¢, q)
= llg 117 giv. ) -

where we used graddivg = g. Hence

113 aiv.y < Iy divallgz Ivagllg-12 < Idivgll g o) llvng -1
= 191l aiv.2) 1¥agllg-112

where we again used that grad divg = ¢. This yields the assertion. O

12.3 Inhomogeneous Boundary Value Problems

Let Q = R?~! x R. (. With the notion of traces we now have a tool at hand that
allows us to formulate inhomogeneous boundary value problems. Here we focus on
the scalar wave type equation for given Neumann data g € H~'/2(R?~1). We shall
address other boundary value problems in the exercises. Let M : dom(M) € C —
L(LZ(Q) X Lz(Q)d) be a material law with s, (M) < vg for some vy € R. We
assume that M satisfies the positive definiteness condition in Theorem 6.2.1; that is,
we assume there exists ¢ > 0 such that for all z € Cre>, we have RezM (z) > c.
For v > vy we want to solve

(o (22)()-() =
grad 0 q 0

g, ) =2 on 9 forall 7 > 0.

Let us reformulate this problem. Let ¢ € C*°(R) such that 0 < ¢ < 1 with¢p =1
on [0, 00) and ¢ = 0 on (—o00, —1]. We define the function

g=(1r¢WF e H'PRI™) e (| Lo @®; HV2RITY)

v>0

and consider

(o (22)()-() =
grad 0 q 0 (12.2)

Ynq (1) = g(1) forall r > 0.

instead.
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Theorem 12.3.1 Let v > max{vg, 0}, v # 0. Then (12.2) admits a unique solution
0 div
1 .
(v,q) € H| (R, dom ( (grad . ) ))

Proof We start with the existence part. By Theorem 12.2.5, we find G € H(div, Q)
such that ,G = g; set G == ¢ (- )G e H 3(IR H (div, 2)). Consider the following
evolutionary equation

0 divg uy 0 —divG
(at,vM(at,v) + <grad 0 )) <r> = 0y, M (0,0) (—G) + < 0 ) .

Note that the right-hand side is in HV2 (R; Ly (£2) x LZ(Q)‘I). By Theorem 6.2.1, we
obtain

-1
uy 0 divg 0 —divG
(r) = (at,vM(at,v) + (grad 0 )) (at,vM(at,v) (—G) + ( 0 ))

e H'(R; Ly(2) x Ly N L., (R; dom ( (gid d(i)v> ))

Indeed, since the solution operator commutes with 9; , and the right-hand side lies

in H2 it even follows that < ) € HZ(R L2(2) x La(2)?). From the equality

0 divg u\ 0 —divG
<8t,vM(8t,v) + (grad 0 )) (r) = 0,y M (0;,)) (—G) + ( 0 )

it follows that

0 divg
(<grad 0 ))( ) € Hy (R; La(RQ) x La(Q)%).

Hence,

: —1
(”r‘) e(1+ <gr0a ; d‘OVO)) [H!(R: Ly(Q) x Ly(@)"]

LACTEI())!
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divg
grad 0

0 div u 0
s (L) 10)- ()

Since r € HVl (R; dom(divy)), by Corollary 12.2.3 and Theorem 4.1.2 we obtain

where the resolvent is well-defined since < ) is skew-selfadjoint. Also, we

deduce that

Ya((r+G)(0) =mG@) =g@) (¢ €R).

Hence, (1, r + G) solves (12.2).
Next we address the uniqueness result. For this we note that a straightforward
computation shows

1

v _ 0 divg ) 0 —divG
(q B G) = | 0,y M(9,,) + (grad 0 ) (al,vM(al,v) (—G) + ( 0 )) ,

which coincides with the formula for (u, r + G). |

The upshot of the rationale exemplified in the proof is that inhomogeneous boundary
value problems can be reduced to an evolutionary equation of the standard form
with non-vanishing right-hand side. The treatment of inhomogeneous Dirichlet data
works along similar lines.

12.4 Abstract Boundary Data Spaces

Of course inhomogeneous boundary value problems can be addressed for other
domains Q than the half-space R?~! x R.. Classically, some more specific
properties need to be imposed on the description of the boundary 9€2. In this section,
however, we deviate from the classical perspective in as much as we like to consider
arbitrary open sets 2 C R¢. For this we introduce

BD(div) = {¢ € H(div, 2); divg € dom(grad), graddivg = ¢},

BD(grad) = [u € HI(Q); gradu € dom(div), divgradu = u} .

By Proposition 12.2.4 and Exercise 6.7, these spaces are closed subspaces of
H(div, Q) and H 1(Q), respectively, and therefore Hilbert spaces. Indeed,

BD(div) = Hy(div, Q)J-H(div,Q)
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and
1 L1
BD(grad) = H (2)" 1 ®,

Now, we are in a position to solve inhomogeneous boundary value problems, where
the trace mappings y and y;, are replaced by the canonical orthogonal projections
TTBD(grad) and 7pp(div) respectively; see Exercise 12.4. We devote the rest of this
section to describe the relationship between the classical trace spaces introduced
before and the BD-spaces. In the perspective outlined here, there is not much of a
difference between Neumann boundary values and Dirichlet boundary values. The
next result is an incarnation of this.

Proposition 12.4.1 We have
grad[BD(grad)] € BD(div) and div[BD(div)] € BD(grad).
Moreover, the mappings

gradgp : BD(grad) — BD(div),

u +— gradu
and

divgp : BD(div) — BD(grad),
q — divg

are unitary, and grad, = divpp.

Proof Let ¢ € BD(grad). Then grad¢ € H(div, 2) and divgrad¢ = ¢. This
implies divgrad¢ € dom(grad) and graddivgrad¢ = grad¢, which yields
grad¢ € BD(div). Thus, gradgp, is defined everywhere; interchanging the roles of
grad and div, we obtain divpp is also defined everywhere. We infer divgp gradBIP =

1BD(grad) and gradgp, divep = 1gpdiv) and thus gradgp, is bijective with gradyy =
divpp. It remains to show that gradg, preserves the norm. For this we compute

<gradBD ¢s gradBD ¢>BD(div) = (gradd), grad¢>H(div)
= (grad ¢, grad @), ()¢ + (divgrad ¢, divgrad @), , )
= (grad ¢, grad ¢>L2(Q)d + (9, ¢>L2(Q)

= (@, ®)dom(erad) = (@+ @)BD(grad) »

which implies that gradgp is unitary. Hence, divgp = gradgll) = gradgy,. O
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It is also possible to show an ‘integration by parts’ formula analogous to (12.1) for
the abstract situation:

Proposition 12.4.2 Let u € H'(Q) and g € H(div, Q). Then

(divg, u)y, @) + (g, grad M>L2(Q)d = <diVBD TBD(div)9 » ﬂBD(grad)”>BD(grad)

= (mBDWiv ¢, gradgp ”BD(grad)”>BD(div) :

Proof We decompose u = ug + uj and ¢ = go + g1 with ug € HOI(Q), qo €
Hy(div, 2), u1 = 7BD(grady# and g1 = mBD(div)¢- Then we obtain

(divg, u)p, @) + (g, grad M)LZ(Q)J

= (divo qo, u) 1, () + (div g1, u) 1, (@) + {(qo, grad u) , @ye + (q1, gradu), )a

= {(qo, —gradu) (e + (divqr, u), @) + (qo, gradu) ., oy + (g1, gradu) (o

= (divqi, uo)p, (@) + (divqr, ui)r, @) + (g1, graduo) p, (@) + (g1, gradur) (@)

= <q1’ - grad() MO>L2(Q)d + (divql’ ul)Lz(Q) + <q1’ grado MO>L2(Q)d + <91, gradul>L2(Q)d
= {divgi, u1)p, (@) + (g1, gradui), gy

= <d1V q1, Ml)Lz(Q) —+ (graddiv q1, gradul)Lz(Q)d = <d1Vq1, ul)BD(grad) .

The remaining equality follows from divj;, = gradgp by Proposition 12.4.1. O

In view of Proposition 12.4.2 the proper replacement of y, appears to be
divep 7BD(div) instead of just mpp(divy. Next, we show the equivalence of the trace
spaces for the half-space and the abstract ones introduced in this section.

Theorem 12.4.3 Let Q@ = RI7! x R.g. Then ¥ |BD(grad) - BD(grad) —
H'2(RIY and ¥n|BD(iv) : BD(div) — H~Y2(R=Y) are unitary mappings.

Proof We begin with y,. We have shown in Theorem 12.2.2 that y4|ppdiv)
is continuous and in Theorem 12.2.5 it has been shown that (yn|BD(diV))’1 is
continuous. Also the two norm inequalities have been established.

The injectivity of y|Bp(grad) follows from kery = HO1 (2) by Corollary 12.2.3.
All that remains simply relies upon recalling that H'/2(R?~1) is isomorphic to
(ker )+ with the orthogonal complement computed in H' (). O

12.5 Robin Boundary Conditions

The classical Robin boundary conditions involve both traces, the Dirichlet trace y
and the Neumann trace y;,. To motivate things, let us again have a look at the case
Q = RI-1 x R~ . We consider the boundary condition for given g € H (div, 2)
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andu € H(Q)
¥aq +iyu =0,
in the sense that
(@) (V) = (—iyu, v) @1y (e HPPRITY).
Note that this is an implicit regularity statement as y,g € H~'/2RI™1) is
representable as an L(R¢~1) function. The next result asserts that an evolutionary
0 le) with the above Robin

grad 0
boundary condition fits into the setting rendered by Theorem 6.2.1. In other words:

Theorem 12.5.1 Let @ = RI™! x R.. Then the operator A: dom(A) C

Ly(Q)4+ > Ly()4+! with A C ( 0 dlv) with domain
grad 0

equation with a spatial operator of the type (

dom(A) = !(u, g) € H'(Q) x H(div, Q) ; yaq + iyu = 0}

is skew-selfadjoint.

Proof Let (u, q), (v, r) € H() x H(div, Q). Then, by (12.1) we obtain

((ema 0 () O (a5 C))
grad 0 / \g/) \r qg) \grad 0 /] \r
= (divg, v) + (gradu, r) + (u, divr) + (g, gradv) = (yaq) (yv) + ((ar) (yu))*

If, in addition, (u, g) € dom(A), we obtain

) OE) (aD) C))
= (q) (yv) + ((rar) (yu))* = (=iyu, yv) p,ga-1) + ((rar) (yu))*
= (yu,iyv) a1y + ((ar) (yu))* = ((iyv + yar) (yu))*.
Since for every u € D, we find g € D4 such that (1, g) € dom(A),
y[D] C {yu; 3q € H(div, Q): (u,q) € dom(A)}.
Thus, the set on the right-hand side is dense in H'/2(R?~1). This in turn implies

that (v,r) € dom(A*) if and only if iyv + ypr = 0, and in this case we have
A*(v,r) = —A(v, r). This implies that A is skew-selfadjoint. |
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Remark 12.5.2 The factor i in front of yu is chosen as a mere convenience in order
to render the corresponding operator A in Theorem 12.5.1 skew-selfadjoint. It is
also possible to choose § € L(H'2(3Q)) with —Re 8 > 0 instead of i. Then one
obtains for all U € dom(A) and V € dom(A*) the estimates Re (U, AU) > 0
and Re (V, A*V) > 0. Appealing to Remark 6.3.3, it can be shown that the
corresponding evolutionary equation

(0 wM(0r,v) + AU = F

for a suitable material law M as in Theorem 6.2.1 is well-posed.

Next, one could argue that in the case of arbitrary €2, the condition

ITBD(grad) + divBD TBD(div)q = 0 (12.3)

amounts to a generalisation of the Robin boundary condition just considered.
However, this is not true as the following proposition shows.

Proposition 12.5.3 Let u € HY(RQ), and ¢ € H(div, Q). Moreover, we set
k : BD(grad) — Lr(R4=YY with kv = yv forv € BD(grad). Then ynq +iyu =0
if and only if

divep 7TBD(div)q + ik K TBD(gradyt = 0.

Proof We first observe that k TBp(gradyw = yw for each w € H' ().
Assume now that ypg + iyu = 0 and let v € BD(grad). Then we compute, using
Proposition 12.4.2 and (12.1)

(uc K TTBD(grad) U v)BD(grad) (IKJTBD(grad)I/l KU>L LJ(RA-1y = = (iyu, )/U)LZ(Rd )
= —(nq)(yv) =(—=divg, v) @) + {(—¢, gradv), )

= (_ diVBD 7TBD(div)¢]7 v)BD(grad) )

which proves one of the asserted implications.
Assume that divgp TBD(div)q + iK*KﬂBD(gmd)u = 0andletv € Hl/z(Rd_l).
We take w € H'(€2) with yw = v and compute

(vng)(v) = (divg, w)p,q) + (¢, grad w), )

= (diVBD 7TBD(div)¢ » TBD(grad) w)BD(grad)

( iK KT[BD(grad) U, TBD(grad) w>BD(grad)
( 1KTL’BD(grad) U, KTTBD(grad) w>L2(Rd*1)

= (—iyu, U)Lz(Rd—l) ,
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which shows the remaining implication. O

12.6 Comments

The concept of abstract trace spaces has been introduced in [86] in order to study a
multi-dimensional analogue for port-Hamiltonian systems. Also concerning differ-
ential equations at the boundary (so-called impedance type boundary conditions),
the concept of abstract boundary value spaces has been employed, see [91].

A comparison between abstract and classical trace spaces has been provided
in [37, 115] particularly concerning H~'/2(R¢~1). A good introduction for trace
mappings for more complicated geometries can be found e.g. in [5]. The trace
operator can also be suitably established for H (curl, €2)-regular vector fields given
that €2 is a so-called Lipschitz domain, see [18].

Exercises

Exercise 12.1 Let ¢ € CP(RY), f € Ly(RY). Show that
¢xfrxr / ¢(x —y)f(y)dy
R4

belongs to H I(R?) and that grad (¢ x f) = (grad¢) % f. If, in addition, f €
H' (R = dom(grad), then grad(¢ * f) = ¢ * grad f, where the convolution
is always taken component wise.

Exercise 12.2 Let Q € R? be open. Let f € L(£2) and denote by f € Ly(RY)
the extension of f by zero. Let v € R, ¢ > 0 and define f; == f(- + tv)]|q.

(a) Show that f; — fin Lo(2) ast — O.
(b) Letnow f € H'(Q) and Q + v C Q forall ¢ > 0. Show that f; — f in
H'(Q)ast — 0.

Exercise 12.3 Prove Theorem 12.2.1.

Exercise 12.4 Let @ € R be open, M: dom(M) € C — L(L2(R) x La()?)
with sp (M) < vp for some vy € R, ¢ > 0 such that for all z € Cgrexy, We have
RezM(z) = ¢, v > max{vg, 0} and v # 0. Show that there exists a unique

(o) < s (®aom (o 5))
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e (L2)E)-() =
grad 0 q 0

TBD(erad) V() = @ (2) f forallt e R,

satisfying

for some bounded ¢ € C*°(R) with infspt¢ > —oo and f € BD(grad).

Exercise 12.5 Let @ = RY-1 x R.o. Show that there exists a continuous linear
operator E: H'(Q) — H'(R?) such that E(¢)|q = ¢ foreach ¢ € H'(Q).

Exercise 12.6 (Korn’s Second Inequality) Let Q = RI-1 x Roy. Using Exer-
cise 12.5 show that there exists ¢ > 0 such that for all ¢ € H'(2)? we have

||¢||H1(Q)d <c (||¢||L2(Q)d + ||Grad¢||L2(Q)dxd) .

Thus, describe the space of boundary values of dom(Grad).
Hint: Prove a corresponding result for @ = R first after having shown that
c (Rd)d forms a dense subset of both H'(€2)? and dom(Grad).

Exercise 12.7 Let © € R3 be open. Compute BD(curl) := Hy(curl, Q)LH )
and show that curl: BD(curl) — BD(curl) is well-defined, unitary and skew-
selfadjoint.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	12 Boundary Value Problems and Boundary Value Spaces
	12.1 The Boundary Values of Functions in the Domain of the Gradient
	12.2 The Boundary Values of Functions in the Domain of the Divergence
	12.3 Inhomogeneous Boundary Value Problems
	12.4 Abstract Boundary Data Spaces
	12.5 Robin Boundary Conditions
	12.6 Comments
	Exercises
	References


