
Chapter 12
Boundary Value Problems and Boundary
Value Spaces

This chapter is devoted to the study of inhomogeneous boundary value problems.
For this, we shall reformulate the boundary value problem again into a form which
fits within the general framework of evolutionary equations. In order to have an
idea of the type of boundary values which make sense to study, we start off with a
section that deals with the boundary values of functions in the domain of the gradient
operator defined on a half-space in R

d (for d = 1 we have L2(R
d−1) = K).

12.1 The Boundary Values of H 1(Rd−1 × R>0)

In this section we let � := R
d−1×R>0 and f ∈ H 1(�); our aim is to make sense of

the function R
d−1 � qx �→ f (qx, 0). Note that this makes no sense if we only assume

f ∈ L2(�) since R
d−1 × {0} = ∂� is a set of (d-dimensional) Lebesgue-measure

zero. However, if we assume f to be weakly differentiable, something more can be
said and the boundary values can be defined by means of a continuous extension of
the so-called trace map. In order to properly formulate this, we need the following
density result.

Theorem 12.1.1 The set D := {
φ : � → K ; ∃ψ ∈ C∞

c (Rd ) : ψ|� = φ
}
is dense

in the space H 1(�).

We will need a density result for H 1(Rd) first.

Lemma 12.1.2 C∞
c (Rd) is dense in H 1(Rd ).

Proof Let f ∈ H 1(Rd). We first show that f can be approximated by functions
with compact support. For this let φ ∈ C∞

c (Rd) with the properties 0 � φ � 1,
φ = 1 on B (0, 1/2) and φ = 0 on R \ B (0, 1). For all k ∈ N we put φk :=
φ(·/k) and fk := φkf ∈ L2(R

d). Then fk has support contained in B [0, k]. The
dominated convergence theorem implies that fk → f in L2(R

d ) as k → ∞. Next,
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let ψ ∈ C∞
c (Rd)d and compute for all k ∈ N

−〈fk, div ψ〉 = − 〈φkf, div ψ〉 = − 〈f, φk div ψ〉 = − 〈f, div (φkψ) − (grad φk) · ψ〉
= − 〈f, div (φkψ)〉 + 〈f grad φk,ψ〉

=
〈
(grad f )φk + 1

k
f (grad φ)(·/k),ψ

〉
,

which shows that fk ∈ dom(grad) = H 1(Rd) and

grad fk = (grad f )φk + 1

k
f (grad φ) (·/k).

From this expression of grad fk we observe grad fk → grad f in L2(R
d)d by

dominated convergence. Hence, fk → f in dom(grad) = H 1(Rd).
To conclude the proof of this lemma it suffices to revisit Exercise 3.2. For this, let

(ψk)k in C∞
c (Rd) be a δ-sequence. Then, by Exercise 3.2, we infer ψk ∗ f → f in

L2(R
d) as k → ∞ and hence, by Exercise 12.1, it follows also that grad (ψk ∗ f ) =

ψk ∗ grad f → grad f (note the component-wise definition of the convolution). A
combination of the first part of this proof together with an estimate for the support
of the convolution (see again Exercise 3.2) yields the assertion. ��
Proof of Theorem 12.1.1 Let f ∈ H 1(�). The approximation of f by functions in
D is done in two steps. First, we shift f in the negative ed -direction to avoid the
boundary, and then we convolve the shifted f to obtain smooth approximants in D.

Let f̃ ∈ L2(R
d) be the extension of f by zero. Put ed := (δjd)j∈{1,...d}, the d-th

unit vector. Then for all τ > 0 we have � + τed ⊆ � and, thus by Exercise 12.2,
we deduce fτ := f̃ (· + τed)|� → f in H 1(�) as τ → 0. Thus, it suffices to
approximate fτ for τ > 0.

Let τ > 0 and let (ψk)k in C∞
c (Rd ) be a δ-sequence. Then ψk ∗ f̃ (· + τed) ∈

H 1(Rd), by Exercise 12.1. Define fk,τ := (
ψk ∗ f̃ (· + τed)

)|�. Then we obtain
that fk,τ → fτ in H 1(�) as k → ∞. Indeed, the only thing left to prove is that
grad fk,τ → grad fτ in L2(�)d as k → ∞. For this, we denote by g the extension
of grad f by 0. Since g ∈ L2(R

d)d it suffices to show that grad fk,τ = ψk ∗ gτ on
� for all large enough k ∈ N, where gτ = g(· + τed). Let k > 1

τ
. Then for all

x ∈ � and y ∈ spt ψk ⊆ [−1/k, 1/k]d we infer x − y + τed ∈ �. In particular,
f (·−y+τed) ∈ H 1(�) and grad f (·−y+τed) = g(·−y+τed). Take η ∈ C∞

c (�)d

and compute

− 〈
fk,τ , div η

〉
L2(�)

= −
∫

�

∫

Rd

ψk(x − y)f̃ (y + τed)∗ dy div η(x) dx

= −
∫

�

∫

Rd

ψk(y)f̃ (x − y + τed)∗ dy div η(x) dx

= −
∫

�

∫

[−1/k,1/k]d
ψk(y)f (x − y + τed)∗ dy div η(x) dx
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= −
∫

[−1/k,1/k]d
ψk(y) 〈f (· − y + τed), div η〉L2(�) dy

=
∫

[−1/k,1/k]d
ψk(y) 〈g(· − y + τed), η〉L2(�)d dy

= 〈ψk ∗ gτ , η〉L2(�)d .

As ψk ∗ f̃ (· + τed) ∈ H 1(Rd ), we conclude the proof using Lemma 12.1.2. ��
With these preparations at hand, we can define the boundary trace of H 1(�).

Theorem 12.1.3 The operator

γ : D ⊆ H 1(�) → L2(R
d−1)

f �→ (
R

d−1 � qx �→ f (qx, 0)
)

is continuous, densely defined and, thus, admits a unique continuous extension to
H 1(�) again denoted by γ . Moreover, we have

‖γf ‖L2(Rd−1) �
(
2 ‖f ‖L2(�) ‖grad f ‖L2(�)d

) 1
2 � ‖f ‖H 1(�) (f ∈ H 1(�)).

Proof Note that γ is densely defined by Theorem 12.1.1. Let f ∈ C∞
c (Rd) and

qx ∈ R
d−1. Let R > 0 be such that spt f ⊆ B (0, R). Then

∫

Rd−1

∣∣f (qx, 0)
∣∣2 dqx = −

∫

Rd−1

∫ R

0
∂d

∣∣f (qx, x̂)
∣∣2 dx̂ dqx

= −
∫

�

(
f (x)∗∂df (x) + ∂df ∗(x)f (x)

)
dx

� 2 ‖f ‖L2(�) ‖grad f ‖L2(�)d .

The remaining inequality follows from 2ab � a2 + b2 for all a, b ∈ R. ��
Except for one spatial dimension, where the boundary trace can be obtained by

point evaluation, the boundary trace γ does not map onto the whole of L2(R
d−1).

Hence, in order to define the space of all possible boundary values for a function in
H 1 one uses a quotient construction: we set

H 1/2(Rd−1) :=
{
γf ; f ∈ H 1(�)

}

and endow H 1/2(Rd−1) with the norm

‖γf ‖H 1/2(Rd−1) := inf
{
‖g‖H 1(�) ; g ∈ H 1(�), γg = γf

}
.
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It is not difficult to see that H 1/2(Rd−1) is unitarily equivalent to (ker γ )⊥, where the
orthogonal complement is computed with respect to the scalar product in H 1(�).
Thus, H 1/2(Rd−1) is a Hilbert space.

Remark 12.1.4 The norm defined on the space H 1/2(Rd−1) given above is not the
standard norm defined on this space. Indeed, following [72, Section 2.3.8] the usual
norm is given by

(
‖u‖2

L2(Rd−1)
+

∫

Rd−1

∫

Rd−1

|u(x) − u(y)|2
|x − y|d dx dy

)1/2

for u ∈ H 1/2(Rd−1). However, this norm turns out to be equivalent to the norm
given above, see e.g. [115, Section 4].

As the notation of this space suggests, it can also be defined as an interpolation
space between H 1(Rd−1) and L2(R

d−1), see [60, Theorem 15.1].

12.2 The Boundary Values of H(div,Rd−1 ×R>0)

Let � := R
d−1×R>0. There is also a space of corresponding boundary traces for the

divergence operator. Similarly to the boundary values for the domain of the gradient
operator, H 1(�), the construction of the boundary trace for H(div)-vector fields
rests on a density result. The proof can be done along the lines of Theorem 12.1.1
and will be addressed in Exercise 12.3.

Theorem 12.2.1 Dd is dense in H(div,�), where D is defined as in Theo-
rem 12.1.1.

Equipped with this result, we can describe all possible boundary values of
H(div,�). It will turn out that vector fields in H(div,�) have a well-defined
normal trace, which for � = R

d−1 × R>0 is just the negative of the last coordinate
of the vector field.

Theorem 12.2.2 The operator

γn : Dd ⊆ H(div,�) →
(
H 1/2(Rd−1)

)′ =: H−1/2(Rd−1)

q �→ (
R

d−1 � qx �→ −qd(qx, 0)
)
,

is densely defined, continuous with norm bounded by 1 and has dense range. Thus
γn admits a unique extension to H(div,�) again denoted by γn. Here, −qd is the
negative of the d-th component of q pointing into the outward normal direction of
� and −qd is identified with the linear functional

H 1/2(Rd ) � γf �→ 〈−qd(·, 0), γf 〉L2(Rd−1) .
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Moreover, for all f ∈ dom(grad) and q ∈ dom(div) we have

〈div q, f 〉 + 〈q, grad f 〉 = (γnq)(γf ). (12.1)

Proof Let f ∈ D and q ∈ Dd . Then integration by parts yields

〈div q, f 〉 + 〈q, grad f 〉 =
∫

�

div(q∗f ) =
∫

Rd−1

〈
q∗(qx, 0)f (qx, 0),−ed

〉
dqx

= −
∫

Rd−1
γ q∗

dγf = 〈γnq, γf 〉L2(Rd−1) = (γnq)(γf ).

Hence,

∣∣〈γnq, γf 〉L2(Rd−1)

∣∣ � ‖q‖H(div) ‖f ‖H 1 .

Since D is dense in H 1(�), the inequality remains true for all f ∈ H 1(�). Thus,

∣
∣〈γnq, γf 〉L2(Rd−1)

∣
∣ � ‖q‖H(div) ‖f ‖H 1 (f ∈ H 1(�)).

Computing the infimum over all g ∈ H 1(�) with γg = γf, we deduce

∣
∣〈γnq, γf 〉L2(R

d−1)

∣
∣ � ‖q‖H(div) ‖γf ‖H 1/2(Rd−1) (f ∈ H 1(�)).

Therefore γnq ∈ H−1/2(Rd−1) and ‖γnq‖H−1/2 � ‖q‖H(div), which shows
continuity of γn. It is left to show that γn has dense range. For this, take γf ∈
H 1/2(Rd−1) for some f ∈ H 1(�) such that

〈γng, γf 〉L2(Rd−1) = 0

for all g ∈ Dd . Next, take g̃ ∈ C∞
c (Rd−1) and ψ ∈ C∞

c (R) with ψ(0) = 1. Then
we set g : � � (qx, x̂) �→ −ed g̃(qx)ψ(̂x) ∈ Dd and note that γng = g̃. Hence

〈γf, g̃〉L2(R
d−1) = 0 (g̃ ∈ C∞

c (Rd−1)).

Thus, γf = 0, which implies that the range of γn is dense, as H−1/2(Rd−1) is a
Hilbert space. The remaining formula (12.1) follows by continuously extending both
the left- and right-hand side of the integration by parts formula from the beginning
of the proof. Note that for this, we have used both Theorems 12.1.1 and 12.2.1. ��
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Corollary 12.2.3 Let f ∈ H 1(�), q ∈ H(div,�). Then f ∈ dom(grad0) if and
only if γf = 0, and q ∈ dom(div0) if and only if γnq = 0.

Proof We only show the statement for q . The proof for f is analogous. If q ∈
dom(div0), then there exists a sequence (ψn)n in C∞

c (�)d such that ψn → q in
H(div,�) as n → ∞. Thus, by continuity of γn, we infer 0 = γnψn → γnq .
Assume on the other hand that q ∈ dom(div) with γnq = 0. Using (12.1), we obtain
for all f ∈ dom(grad)

〈div q, f 〉 + 〈q, grad f 〉 = 0.

This equality implies that q ∈ dom(grad∗) = dom(div0), which shows the
remaining assertion. ��
The remaining part of this section is devoted to showing that the continuous
extension of γn maps onto H−1/2(Rd−1). For this we require the following
observation, which will also be needed later on.

Proposition 12.2.4 Let U ⊆ R
d be open. Then

H0(div, U)⊥H(div,U) =
{
q ∈ H(div, U) ; div q ∈ H 1(U), q = grad div q

}
.

Proof Let q ∈ H(div, U). Then q ∈ H0(div, U)⊥H(div,U) if and only if for all r ∈
H0(div, U) we have

0 = 〈r, q〉H(div,U) = 〈r, q〉L2(U)d + 〈div r, div q〉L2(U)

= 〈r, q〉L2(U)d + 〈div0 r, div q〉L2(U) .

The latter, in turn, is equivalent to div q ∈ dom(div∗
0) = dom(grad) = H 1(U) and

− grad div q = div∗
0 div q = −q . ��

Theorem 12.2.5 γn maps onto H−1/2(Rd−1). In particular, we have

‖q‖H(div,�) � ‖γnq‖H−1/2(Rd−1)

for all q ∈ H0(div,�)⊥H(div,�) .

Proof By Theorem 12.2.2 it suffices to show that γn has closed range. For this, it
suffices to show that there exists c > 0 such that

‖q‖H(div,�) � c ‖γnq‖H−1/2(Rd−1)

for all q ∈ ker(γn)
⊥H(div,�) . By Corollary 12.2.3, we obtain ker(γn) = H0(div,�).

Hence, by Proposition 12.2.4, we deduce that q ∈ ker(γn)
⊥H(div,�) if and only if

q ∈ dom(grad div) and q = grad div q . So, assume that q ∈ dom(grad div) with
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q = grad div q . Then (12.1) applied to q ∈ dom(div) and f = div q ∈ dom(grad)

yields

(γnq)(γ div q) = 〈div q, div q〉 + 〈q, grad div q〉 = 〈div q, div q〉 + 〈q, q〉
= ‖q‖2

H(div,�) ,

where we used grad div q = q . Hence

‖q‖2
H(div,�) � ‖γ div q‖H 1/2 ‖γnq‖H−1/2 � ‖div q‖H 1(�) ‖γnq‖H−1/2

= ‖q‖H(div,�) ‖γnq‖H−1/2

where we again used that grad div q = q . This yields the assertion. ��

12.3 Inhomogeneous Boundary Value Problems

Let � := R
d−1 × R>0. With the notion of traces we now have a tool at hand that

allows us to formulate inhomogeneous boundary value problems. Here we focus on
the scalar wave type equation for given Neumann data g̃ ∈ H−1/2(Rd−1). We shall
address other boundary value problems in the exercises. Let M : dom(M) ⊆ C →
L

(
L2(�) × L2(�)d

)
be a material law with sb (M) < ν0 for some ν0 ∈ R. We

assume that M satisfies the positive definiteness condition in Theorem 6.2.1; that is,
we assume there exists c > 0 such that for all z ∈ CRe�ν0 we have Re zM(z) � c.
For ν � ν0 we want to solve

⎧
⎪⎪⎨

⎪⎪⎩

(

∂t,νM(∂t,ν) +
(

0 div

grad 0

))(
v

q

)

=
(

0

0

)

on �,

γnq(t, ·) = g̃ on ∂� for all t > 0.

Let us reformulate this problem. Let φ ∈ C∞(R) such that 0 � φ � 1 with φ = 1
on [0,∞) and φ = 0 on (−∞,−1]. We define the function

g := (
t �→ φ(t)g̃ ∈ H−1/2(Rd−1)

) ∈
⋂

ν>0

L2,ν(R; H−1/2(Rd−1))

and consider
⎧
⎪⎪⎨

⎪⎪⎩

(

∂t,νM(∂t,ν) +
(

0 div

grad 0

))(
v

q

)

=
(

0

0

)

on �,

γnq(t) = g(t) for all t > 0.

(12.2)

instead.
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Theorem 12.3.1 Let ν � max{ν0, 0}, ν �= 0. Then (12.2) admits a unique solution

(v, q) ∈ H 1
ν

(
R; dom

((
0 div

grad 0

) ))
.

Proof We start with the existence part. By Theorem 12.2.5, we find G̃ ∈ H(div,�)

such that γnG̃ = g̃; set G := φ(·)G̃ ∈ H 3
ν (R; H(div,�)). Consider the following

evolutionary equation

(

∂t,νM(∂t,ν) +
(

0 div0

grad 0

))(
u

r

)
= ∂t,νM(∂t,ν)

(
0

−G

)
+

(− div G

0

)
.

Note that the right-hand side is in H 2
ν (R; L2(�) × L2(�)d). By Theorem 6.2.1, we

obtain

(
u

r

)
=

(

∂t,νM(∂t,ν) +
(

0 div0

grad 0

))−1 (
∂t,νM(∂t,ν)

(
0

−G

)
+

(− div G

0

))

∈ H 1
ν (R; L2(�) × L2(�)d) ∩ L2,ν

(
R; dom

((
0 div

grad 0

)))
.

Indeed, since the solution operator commutes with ∂t,ν and the right-hand side lies

in H 2
ν , it even follows that

(
u

r

)
∈ H 2

ν (R; L2(�) × L2(�)d). From the equality

(
∂t,νM(∂t,ν) +

(
0 div0

grad 0

)) (
u

r

)
= ∂t,νM(∂t,ν)

(
0

−G

)
+

(− div G

0

)

it follows that

((
0 div0

grad 0

) )(
u

r

)
∈ H 1

ν (R; L2(�) × L2(�)d).

Hence,

(
u

r

)
∈

(
1 +

(
0 div0

grad 0

) )−1[H 1
ν (R; L2(�) × L2(�)d ]

⊆ H 1
ν

(
R; dom

((
0 div0

grad 0

)))
,
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where the resolvent is well-defined since

(
0 div0

grad 0

)
is skew-selfadjoint. Also, we

deduce that

(
∂t,νM(∂t,ν) +

(
0 div

grad 0

))(
u

r + G

)
=

(
0
0

)
.

Since r ∈ H 1
ν (R; dom(div0)), by Corollary 12.2.3 and Theorem 4.1.2 we obtain

γn ((r + G)(t)) = γnG(t) = g(t) (t ∈ R).

Hence, (u, r + G) solves (12.2).
Next we address the uniqueness result. For this we note that a straightforward

computation shows

(
v

q − G

)

=
⎛

⎝∂t,νM(∂t,ν) +
(

0 div0

grad 0

)⎞

⎠

−1 (

∂t,νM(∂t,ν )

(
0

−G

)

+
(

− div G

0

))

,

which coincides with the formula for (u, r + G). ��
The upshot of the rationale exemplified in the proof is that inhomogeneous boundary
value problems can be reduced to an evolutionary equation of the standard form
with non-vanishing right-hand side. The treatment of inhomogeneous Dirichlet data
works along similar lines.

12.4 Abstract Boundary Data Spaces

Of course inhomogeneous boundary value problems can be addressed for other
domains � than the half-space R

d−1 × R>0. Classically, some more specific
properties need to be imposed on the description of the boundary ∂�. In this section,
however, we deviate from the classical perspective in as much as we like to consider
arbitrary open sets � ⊆ R

d . For this we introduce

BD(div) = {q ∈ H(div,�) ; div q ∈ dom(grad), grad div q = q} ,

BD(grad) =
{
u ∈ H 1(�) ; grad u ∈ dom(div), div grad u = u

}
.

By Proposition 12.2.4 and Exercise 6.7, these spaces are closed subspaces of
H(div,�) and H 1(�), respectively, and therefore Hilbert spaces. Indeed,

BD(div) = H0(div,�)⊥H(div,�)
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and

BD(grad) = H 1
0 (�)

⊥
H1(�) .

Now, we are in a position to solve inhomogeneous boundary value problems, where
the trace mappings γ and γn are replaced by the canonical orthogonal projections
πBD(grad) and πBD(div) respectively; see Exercise 12.4. We devote the rest of this
section to describe the relationship between the classical trace spaces introduced
before and the BD-spaces. In the perspective outlined here, there is not much of a
difference between Neumann boundary values and Dirichlet boundary values. The
next result is an incarnation of this.

Proposition 12.4.1 We have

grad[BD(grad)] ⊆ BD(div) and div[BD(div)] ⊆ BD(grad).

Moreover, the mappings

gradBD : BD(grad) → BD(div),

u �→ grad u

and

divBD : BD(div) → BD(grad),

q �→ div q

are unitary, and grad∗
BD = divBD.

Proof Let φ ∈ BD(grad). Then grad φ ∈ H(div,�) and div grad φ = φ. This
implies div grad φ ∈ dom(grad) and grad div grad φ = grad φ, which yields
grad φ ∈ BD(div). Thus, gradBD is defined everywhere; interchanging the roles of
grad and div, we obtain divBD is also defined everywhere. We infer divBD gradBD =
1BD(grad) and gradBD divBD = 1BD(div) and thus gradBD is bijective with grad−1

BD =
divBD. It remains to show that gradBD preserves the norm. For this we compute

〈
gradBD φ, gradBD φ

〉
BD(div)

= 〈grad φ, grad φ〉H(div)

= 〈grad φ, grad φ〉L2(�)d + 〈div grad φ, div grad φ〉L2(�)

= 〈grad φ, grad φ〉L2(�)d + 〈φ, φ〉L2(�)

= 〈φ, φ〉dom(grad) = 〈φ, φ〉BD(grad) ,

which implies that gradBD is unitary. Hence, divBD = grad−1
BD = grad∗

BD. ��
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It is also possible to show an ‘integration by parts’ formula analogous to (12.1) for
the abstract situation:

Proposition 12.4.2 Let u ∈ H 1(�) and q ∈ H(div,�). Then

〈div q, u〉L2(�) + 〈q, grad u〉L2(�)d = 〈
divBD πBD(div)q, πBD(grad)u

〉
BD(grad)

= 〈
πBD(div)q, gradBD πBD(grad)u

〉
BD(div) .

Proof We decompose u = u0 + u1 and q = q0 + q1 with u0 ∈ H 1
0 (�), q0 ∈

H0(div,�), u1 = πBD(grad)u and q1 = πBD(div)q . Then we obtain

〈div q, u〉L2(�) + 〈q, grad u〉L2(�)d

= 〈div0 q0, u〉L2(�) + 〈div q1, u〉L2(�) + 〈q0, grad u〉L2(�)d + 〈q1, grad u〉L2(�)d

= 〈q0, − grad u〉L2(�)d + 〈div q1, u〉L2(�) + 〈q0, grad u〉L2(�)d + 〈q1, grad u〉L2(�)d

= 〈div q1, u0〉L2(�) + 〈div q1, u1〉L2(�) + 〈q1, grad u0〉L2(�)d + 〈q1, grad u1〉L2(�)d

= 〈
q1, − grad0 u0

〉
L2(�)d

+ 〈div q1, u1〉L2(�) + 〈
q1, grad0 u0

〉
L2(�)d

+ 〈q1, grad u1〉L2(�)d

= 〈div q1, u1〉L2(�) + 〈q1, grad u1〉L2(�)d

= 〈div q1, u1〉L2(�) + 〈grad div q1, grad u1〉L2(�)d = 〈div q1, u1〉BD(grad) .

The remaining equality follows from div∗
BD = gradBD by Proposition 12.4.1. ��

In view of Proposition 12.4.2 the proper replacement of γn appears to be
divBD πBD(div) instead of just πBD(div). Next, we show the equivalence of the trace
spaces for the half-space and the abstract ones introduced in this section.

Theorem 12.4.3 Let � := R
d−1 × R>0. Then γ |BD(grad) : BD(grad) →

H 1/2(Rd−1) and γn|BD(div) : BD(div) → H−1/2(Rd−1) are unitary mappings.

Proof We begin with γn. We have shown in Theorem 12.2.2 that γn|BD(div)

is continuous and in Theorem 12.2.5 it has been shown that (γn|BD(div))
−1 is

continuous. Also the two norm inequalities have been established.
The injectivity of γ |BD(grad) follows from ker γ = H 1

0 (�) by Corollary 12.2.3.
All that remains simply relies upon recalling that H 1/2(Rd−1) is isomorphic to
(ker γ )⊥ with the orthogonal complement computed in H 1(�). ��

12.5 Robin Boundary Conditions

The classical Robin boundary conditions involve both traces, the Dirichlet trace γ

and the Neumann trace γn. To motivate things, let us again have a look at the case
� = R

d−1 × R>0. We consider the boundary condition for given q ∈ H(div,�)
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and u ∈ H 1(�)

γnq + iγ u = 0,

in the sense that

(γnq)(v) = 〈−iγ u, v〉L2(Rd−1) (v ∈ H 1/2(Rd−1)).

Note that this is an implicit regularity statement as γnq ∈ H−1/2(Rd−1) is
representable as an L2(R

d−1) function. The next result asserts that an evolutionary

equation with a spatial operator of the type

(
0 div

grad 0

)
with the above Robin

boundary condition fits into the setting rendered by Theorem 6.2.1. In other words:

Theorem 12.5.1 Let � = R
d−1 × R>0. Then the operator A : dom(A) ⊆

L2(�)d+1 → L2(�)d+1 with A ⊆
(

0 div
grad 0

)
with domain

dom(A) =
{
(u, q) ∈ H 1(�) × H(div,�) ; γnq + iγ u = 0

}

is skew-selfadjoint.

Proof Let (u, q), (v, r) ∈ H 1(�) × H(div,�). Then, by (12.1) we obtain

〈(
0 div

grad 0

) (
u

q

)
,

(
v

r

)〉
+

〈(
u

q

)
,

(
0 div

grad 0

) (
v

r

)〉

= 〈div q, v〉 + 〈grad u, r〉 + 〈u, div r〉 + 〈q, grad v〉 = (γnq)(γ v) + ((γnr)(γ u))∗

If, in addition, (u, q) ∈ dom(A), we obtain

〈
A

(
u

q

)
,

(
v

r

)〉
+

〈(
u

q

)
,

(
0 div

grad 0

) (
v

r

)〉

= (γnq)(γ v) + ((γnr)(γ u))∗ = 〈−iγ u, γ v〉L2(Rd−1) + ((γnr)(γ u))∗

= 〈γ u, iγ v〉L2(Rd−1) + ((γnr)(γ u))∗ = ((iγ v + γnr)(γ u))∗.

Since for every u ∈ D, we find q ∈ Dd such that (u, q) ∈ dom(A),

γ [D] ⊆ {γ u ; ∃q ∈ H(div,�) : (u, q) ∈ dom(A)} .

Thus, the set on the right-hand side is dense in H 1/2(Rd−1). This in turn implies
that (v, r) ∈ dom(A∗) if and only if iγ v + γnr = 0, and in this case we have
A∗(v, r) = −A(v, r). This implies that A is skew-selfadjoint. ��
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Remark 12.5.2 The factor i in front of γ u is chosen as a mere convenience in order
to render the corresponding operator A in Theorem 12.5.1 skew-selfadjoint. It is
also possible to choose β ∈ L(H 1/2(∂�)) with − Re β � 0 instead of i. Then one
obtains for all U ∈ dom(A) and V ∈ dom(A∗) the estimates Re 〈U,AU〉 � 0
and Re 〈V,A∗V 〉 � 0. Appealing to Remark 6.3.3, it can be shown that the
corresponding evolutionary equation

(∂t,νM(∂t,ν) + A)U = F

for a suitable material law M as in Theorem 6.2.1 is well-posed.

Next, one could argue that in the case of arbitrary �, the condition

iπBD(grad)u + divBD πBD(div)q = 0 (12.3)

amounts to a generalisation of the Robin boundary condition just considered.
However, this is not true as the following proposition shows.

Proposition 12.5.3 Let u ∈ H 1(�), and q ∈ H(div,�). Moreover, we set
κ : BD(grad) → L2(R

d−1) with κv = γ v for v ∈ BD(grad). Then γnq + iγ u = 0
if and only if

divBD πBD(div)q + iκ∗κπBD(grad)u = 0.

Proof We first observe that κπBD(grad)w = γw for each w ∈ H 1(�).
Assume now that γnq + iγ u = 0 and let v ∈ BD(grad). Then we compute, using
Proposition 12.4.2 and (12.1)

〈
iκ∗κπBD(grad)u, v

〉
BD(grad) = 〈

iκπBD(grad)u, κv
〉
L2(Rd−1)

= 〈iγ u, γ v〉L2(Rd−1)

= −(γnq)(γ v) = 〈− div q, v〉L2(�) + 〈−q, grad v〉L2(�)d

= 〈− divBD πBD(div)q, v
〉
BD(grad) ,

which proves one of the asserted implications.
Assume that divBD πBD(div)q + iκ∗κπBD(grad)u = 0 and let v ∈ H 1/2(Rd−1).

We take w ∈ H 1(�) with γw = v and compute

(γnq)(v) = 〈div q,w〉L2(�) + 〈q, grad w〉L2(�)d

= 〈
divBD πBD(div)q, πBD(grad)w

〉
BD(grad)

= 〈−iκ∗κπBD(grad)u, πBD(grad)w
〉
BD(grad)

= 〈−iκπBD(grad)u, κπBD(grad)w
〉
L2(Rd−1)

= 〈−iγ u, v〉L2(Rd−1) ,
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which shows the remaining implication. ��

12.6 Comments

The concept of abstract trace spaces has been introduced in [86] in order to study a
multi-dimensional analogue for port-Hamiltonian systems. Also concerning differ-
ential equations at the boundary (so-called impedance type boundary conditions),
the concept of abstract boundary value spaces has been employed, see [91].

A comparison between abstract and classical trace spaces has been provided
in [37, 115] particularly concerning H−1/2(Rd−1). A good introduction for trace
mappings for more complicated geometries can be found e.g. in [5]. The trace
operator can also be suitably established for H(curl,�)-regular vector fields given
that � is a so-called Lipschitz domain, see [18].

Exercises

Exercise 12.1 Let φ ∈ C∞
c (Rd), f ∈ L2(R

d ). Show that

φ ∗ f : x �→
∫

Rd

φ(x − y)f (y) dy

belongs to H 1(Rd ) and that grad (φ ∗ f ) = (grad φ) ∗ f . If, in addition, f ∈
H 1(Rd) = dom(grad), then grad(φ ∗ f ) = φ ∗ grad f , where the convolution
is always taken component wise.

Exercise 12.2 Let � ⊆ R
d be open. Let f ∈ L2(�) and denote by f̃ ∈ L2(R

d )

the extension of f by zero. Let v ∈ R
d , τ > 0 and define fτ := f̃ (· + τv)|�.

(a) Show that fτ → f in L2(�) as τ → 0.
(b) Let now f ∈ H 1(�) and � + τv ⊆ � for all τ > 0. Show that fτ → f in

H 1(�) as τ → 0.

Exercise 12.3 Prove Theorem 12.2.1.

Exercise 12.4 Let � ⊆ R
d be open, M : dom(M) ⊆ C → L

(
L2(�) × L2(�)d

)

with sb (M) < ν0 for some ν0 ∈ R, c > 0 such that for all z ∈ CRe�ν0 we have
Re zM(z) � c, ν � max{ν0, 0} and ν �= 0. Show that there exists a unique

(
v

q

)
∈ H 1

ν

(
R; dom

((
0 div

grad 0

) ))
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satisfying

⎧
⎪⎪⎨

⎪⎪⎩

(

∂t,νM(∂t,ν) +
(

0 div

grad 0

))(
v

q

)

=
(

0

0

)

on �,

πBD(grad)v(t) = φ(t)f for all t ∈ R,

for some bounded φ ∈ C∞(R) with inf spt φ > −∞ and f ∈ BD(grad).

Exercise 12.5 Let � = R
d−1 × R>0. Show that there exists a continuous linear

operator E : H 1(�) → H 1(Rd) such that E(φ)|� = φ for each φ ∈ H 1(�).

Exercise 12.6 (Korn’s Second Inequality) Let � = R
d−1 × R>0. Using Exer-

cise 12.5 show that there exists c > 0 such that for all φ ∈ H 1(�)d we have

‖φ‖H 1(�)d � c
(‖φ‖L2(�)d + ‖Grad φ‖L2(�)d×d

)
.

Thus, describe the space of boundary values of dom(Grad).
Hint: Prove a corresponding result for � = R

d first after having shown that
C∞

c (Rd)d forms a dense subset of both H 1(�)d and dom(Grad).

Exercise 12.7 Let � ⊆ R
3 be open. Compute BD(curl) := H0(curl,�)⊥H(curl,�)

and show that curl : BD(curl) → BD(curl) is well-defined, unitary and skew-
selfadjoint.
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