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Abstract

This paper surveys numerical methods for general sparse nonlinear eigenvalue
problems with special emphasis on iterative projection methods like Jacobi–
Davidson, Arnoldi or rational Krylov methods. We briefly sketch a new ap-
proach to structure preserving projection methods, but we do not review the
rich literature on polynomial eigenproblems which take advantage of a lineariza-
tion of the problem.
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1 Introduction

In this paper we consider the nonlinear eigenvalue problem

(1) T (λ)x = 0

where T (λ) ∈ C
n×n is a family of matrices depending on a parameter λ ∈ D, and

D ⊂ C is an open set. As in the linear case, λ ∈ D is called an eigenvalue of problem
(1) if equation (1) has a nontrivial solution x 6= 0. Then x is called an eigenvector
corresponding to λ.

A wide variety of applications requires the solution of a nonlinear eigenvalue
problem. Quadratic problems

(2) T (λ) := λ2M + λC + K

arise in the dynamic analysis of structures such as damped vibrations of structures
having a finite number of degrees of freedom [15], [42] (where the stiffness matrix K
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and the mass matrix M are symmetric and positive (semi-)definite, and the damping
matrix is general), or vibrations of spinning structures yielding conservative gyro-
scopic systems [12], [31] (where K = KT and M = MT are positive (semi-)definite,
and C = −CT is skew–symmetric), the study of corner singularities in anisotropic
elastic materials [1], [2] (where K = KT , M = MT , C = −CT , M is positive definite
and K is negative definite), constrained least squares problems [14], and control of
linear mechanical systems with a quadratic cost functional [38] (where M and K are
Hamiltonian matrices and C is skew–Hamiltonian). [55] surveys quadratic eigenvalue
problems, its many applications, its mathematical properties, and some numerical
solution techniques.

Polynomial eigenvalues

(3) T (λ)x =

k
∑

j=0

λjAjx = 0

of higher degree than two arise when discretizing a linear eigenproblem by dynamic
elements [42], [57], [58] or by least squares elements [44], [45] (i.e. if one uses ansatz
functions in a Rayleigh–Ritz approach which depend polynomially on the eigenpa-
rameter).

Rational eigenproblems

(4) T (λ)x = −Kx + λMx +

p
∑

j=1

λ

σj − λ
Cjx = 0

where K = KT and M = MT are positive definite and Cj = CT
j are matrices of

small rank govern free vibration of plates with elastically attached masses [35], [54],
[62] and vibrations of fluid solid structures [10], [41], [64]. A similar problem

(5) T (λ)x = −Kx + λMx + λ2
p

∑

j=1

1

ωj − λ
Cjx = 0

arises when a generalized linear eigenproblem is condensed exactly [40], [56]. Both
problems only have real eigenvalues which can be characterized as minmax values of
a Rayleigh functional [62].

A rational eigenproblem is obtained as well for the free vibrations of a structure
if one uses a viscoelastic constitutive relation to describe the behaviour of a material
[18], [19]. A finite element model obtains the form

(6) T (ω) :=
(

ω2M + K −
k

∑

j=1

1

1 + bjω
∆Kj

)

x = 0

where the stiffness and mass matrices K and M are positive definite, k denotes the
number of regions with different relaxation parameters bj , and ∆Kj is an assemblage
of element stiffness matrices over the region with the distinct relaxation constants.
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Finally, a more general dependence on the eigenparameter appears in dynamic
element methods when using non–polynomial ansatz functions [42] or in the stability
analysis of vibrating systems under state delay feedback control [22], [23].

Most of the examples mentioned above are large and sparse, and typically only a
small number of eigenvalues are of interest. Numerical methods have to exploit the
sparseness fully to be efficient in storage and computing time.

For linear sparse eigenproblems T (λ) = λB−A very efficient methods are iterative
projection methods (Lanczos method, Arnoldi method, Jacobi–Davidson method,
e.g.), where approximations to the wanted eigenvalues and eigenvectors are obtained
from projections of the eigenproblem to subspaces of small dimension which are
expanded in the course of the algorithm. Essentially two types of methods are in
use: methods which project the problem to a sequence of Krylov spaces like the
Lanczos or the Arnoldi method [4], and methods which aim at a specific eigenpair
expanding a search space by a direction which has a high approximation potential
for the eigenvector under consideration like the Jacobi–Davidson method [4] or the
Riccati method [8].

The Krylov subspace approaches take advantage of the linear structure of the
underlying problem and construct an approximate incomplete Schur factorization (or
incomplete spectral decomposition in the Hermitean case) from which they derive
approximations to some of the extreme eigenvalues and corresponding eigenvectors,
whereas the second type aims at the wanted eigenvalues one after the other using
the Schur decomposition only to prevent the method from converging to eigenpairs
which have been obtained already in a previous step.

For general nonlinear eigenproblems a normal form like the Schur factorization
does not exist. Therefore, generalizations of Krylov subspace methods can be applied
only to nonlinear problems if they are equivalent to a linear eigenproblem. It is well
known that every polynomial eigenproblem can be linearized in several ways [15],
[32], one of them being the straightforward manner which results in an eigenproblem
for a block Frobenius matrix. However, applying a Krylov subspace method to a
linearization always increases the dimension of the problem by the factor k (the
degree of the polynomial), and secondly symmetry properties which the original
system may have in general are destroyed by a linearization.

In many applications the polynomial eigenproblem has some structure that should
be reflected in its linearization, and should be exploited in its numerical solution for
efficiency, stability and accuracy reasons. Bauchau [5] applied a two–sided Lanc-
zos process (introduced in [7] for quadratic eigenproblems) to a symmetric/skew–
symmetric linearization of a gyroscopic system thus preserving the property that the
eigenvalues appear as purely imaginary pairs and avoiding complex arithmetic. More
generally, Mehrmann and Watkins considered polynomial eigenproblems the spec-
trum of which have Hamiltonian structure, i.e. its eigenvalues appear in quadruples
{λ, λ,−λ,−λ} or in real or purely imaginary pairs {λ,−λ} [1], [2], [38]. They studied
a linearization that transforms the problem into a Hamiltonian/skew–Hamiltonian
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pencil for which they developed a structure preserving skew–Hamiltonian, isotropic,
implicitly restarted shift–and–invert Arnoldi algorithm called SHIRA [37].

Li and Ye [34] proposed a generalization of the Arnoldi method to the monic
quadratic matrix polynomial λ2I − λA − B which does not take advantage of a lin-
earization. Reducing the matrices A and B simultaneously to generalized Hessenberg
matrices Hk = QH

k AQk and Kk = QH
k BQk by a sequence of orthogonal matrices Qk

they derive at quadratic pencils θ2I − θHk −Kk of much smaller dimension the Ritz
pairs of which approximate eigenpairs of the original pencil. In [20] they generalized
this approach to polynomial eigenproblems [20]. Bai [3] suggested for the monic
quadratic pencil a projection to a generalized Krylov space which is spanned by
mixed powers of the matrices A and B

For general nonlinear eigenproblems Ruhe [47], [48],[50] generalized the rational
Krylov approach for linear eigenproblems [49] by nesting the linearization of problem
(1) by Lagrangean interpolation and the solution of the resulting linear eigenproblem
by Arnoldi’s method, where the Regula falsi iteration and the Arnoldi recursion are
knit together. The name is a little misleading since no Krylov space is constructed
but the method can be interpreted as a projection method where the search spaces
are expanded by directions with high approximation potential for the eigenvector
wanted next, namely by the vector obtained by some residual inverse iteration [28].
This method has the drawback, that potential symmetry properties of the underlying
problem are destroyed which is not the case for the Arnoldi method in [59], [60], [61]
which expands the search space by a different residual inverse iteration (again no
Krylov space appears; the name is chosen because the method reduces to the shift–
and–invert Arnoldi method if applied to a linear eigenproblem). Expanding the
search space by an approximate inverse iteration one arrives at a Jacobi–Davidson
method which was introduced by Sleijpen, Booten, Fokkema and van der Vorst [51]
for polynomials and in [6] and [63] for general nonlinear eigenproblems.

In this paper we review the iterative projection methods for general (i.e. not
necessarily polynomial) sparse nonlinear eigenproblems which generalize the Jacobi–
Davidson approach for linear problems in the sense that the search space in every
step is expanded by a vector with high approximation potential for the eigenvector
wanted next. Although we have in mind sparse eigenproblems Section 2 summarizes
methods for dense nonlinear eigenproblems which are needed in the iterative pro-
jection methods of Jacobi–Davidson, Arnoldi and rational Krylov type presented in
Section 3. The paper closes with some numerical examples in Section 4 demonstrat-
ing the efficiency of the methods.

2 Methods for dense nonlinear eigenproblems

In this section we review methods for dense nonlinear eigenproblems. Typically, they
require several factorizations of varying matrices to approximate one eigenvalue, and
therefore, they are not appropriate for large and sparse problems. However, they

4



are needed within projection methods for sparse problems to solve the nonlinear
projected problems of small dimension.

2.1 Solver of the characteristic equation

Clearly λ is an eigenvalue of the nonlinear problem, if and only if it is a root of the
characteristic equation

(7) detT (λ) = 0.

Kublanovskaya [29], [30] proposed a method to solve (7) taking advantage of the QR
decomposition. Let

(8) T (λ)P (λ) = Q(λ)R(λ)

be the QR factorization of T (λ) where P (λ) is a permutation matrix which is chosen
such that the diagonal elements rjj(λ) of R(λ) are decreasing in magnitude, i.e.
|r11(λ)| ≥ |r22(λ)| ≥ · · · ≥ |rnn(λ)|. Then λ solves equation (7) if and only if

(9) f(λ) := rnn(λ) = 0.

Applying Newton’s method to this equation one obtains the following iteration
method

(10) λk+1 = λk −
1

eH
n Q(λk)HT ′(λk)P (λk)R(λk)−1en

.

for approximations to an eigenvalue of problem (7), where en denotes the unit vector
having a one in its last component. Approximations to left and right eigenvectors
can be obtained from

yk = Q(λk)en and xk = P (λk)R(λk)
−1en.

Kublanovskaya’s proof assumed that the elements Q(λ) and R(λ) in the factor-
ization (7) are analytic which in general is not true, and it was assumed that the
diagonal elements of Q′(λ)HQ(λ) are zero which can only be shown to be purely imag-
inary. Jain and Singhal [25] pointed out that in spite of these errors in the derivation
Kublanovskaya’s algorithm does work and provides quadratic convergence. More-
over, they modified the method in [25] and [26]. A similar approach was presented
by Yang [69] who derived a representation of Newton’s method for the characteristic
equation (7) using the LU factorization of T (λ).
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2.2 Inverse iteration

For linear eigenproblems Ax = λx it is well known that inverse iteration is equivalent
to Newton’s method applied to the nonlinear system

(

Ax − λx
vHx − 1

)

= 0

where v ∈ C
n is chosen suitably. Correspondingly for the nonlinear problem we

obtain from

(11) F (x, λ) :=

(

T (λ)x
vHx − 1

)

= 0

by one step of Newton’s method

(12)

(

T (λk) T ′(λk)xk

vH 0

) (

xk+1 − xk

λk+1 − λk

)

= −

(

T (λk)xk

vHxk − 1

)

.

The first component yields

(13) xk+1 = −(λk+1 − λk)T (λk)
−1T ′(λk)xk,

i.e. the direction of the new approximation to an eigenvector is

uk+1 := T (λk)
−1T ′(λk)xk.

Assuming that xk is already normalized by vHxk = 1 the second component of (12)
reads vHxk+1 = vHxk, and multiplying equation (13) by vH yields

λk+1 = λk −
vHxk

vHuk+1
.

Hence, for nonlinear eigenproblems inverse iteration obtains the form given in Algo-
rithm 1.

Algorithm 1 Inverse iteration

1: Start with λ0, x0 such that vHx0 = 1
2: for k = 0, 1, 2, . . . until convergence do

3: solve T (λk)uk+1 = T ′(λk)xk for uk+1

4: λk+1 = λk − (vHxk)/(vHuk+1)
5: normalize xk+1 = uk+1/vHuk+1

6: end for

Inverse iteration has the following convergence properties.
THEOREM 1

Let λ be an eigenvalue of T (·) with corresponding eigenvector x such that vHx = 1.
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Assume that T ′(λ) is nonsingular and that 0 is an algebraically simple eigenvalue of
T ′(λ)−1T (λ). Then Algorithm 1 converges locally and quadratically to (x, λ).

Proof: Since Algorithm 1 was derived from Newton’s method it suffices to prove
that the Jacobian matrix F ′(x, λ) is nonsingular. Let

(14) F ′(x, λ)

(

z
µ

)

=

(

T (λ) T ′(λ)
vH 0

) (

z
µ

)

= 0.

If µ = 0 then it follows from the the first component T (λ)z = 0. Hence, z = αx for
some α ∈ C, and 0 = vHz = αvHx = α yields z = 0.

If µ 6= 0 then the first component reads T (λ)z = −µT ′(λ)x. Multiplying by
T (λ)−1 yields T (λ)−1T ′(λ)z = −µx 6= 0, from which we obtain

(T (λ)−1T ′(λ))2z = −µT (λ)−1T ′(λ)x = 0,

contradicting the fact that 0 is assumed to be an algebraically simple eigenvalue of
T (λ)−1T ′(λ). ¤

Clearly the normalization condition can be modified in each step arriving at
Algorithm 2.

Algorithm 2 Inverse iteration (modified)

1: Start with λ0, x0 such that vH
0 x0 = 1

2: for k = 0, 1, 2, . . . until convergence do

3: solve T (λk)uk+1 = T ′(λk)xk for uk+1

4: λk+1 = λk − (vH
k xk)/(vH

k uk+1)
5: normalize xk+1 = uk+1/vH

k+1uk+1

6: end for

Ruhe [46] suggested to use vk = T (λk)
Hyk where yk is an approximation to a left

eigenvector. Then the update for λ becomes

λk+1 = λk −
yH

k T (λk)xk

yH
k T ′(λk)xk

,

which is the Rayleigh functional for general nonlinear eigenproblems proposed by
Lancaster [32], and which can be interpreted as one Newton step for solving the
equation fk(λ) := yH

k T (λ)xk = 0.

For linear Hermitean eigenproblems one receives even cubic convergence if λk is
updated by the Rayleigh quotient. The same holds true (cf. Rothe [44]) for symmetric
nonlinear eigenproblems having a Rayleigh functional p (cf. Subsection 2.5) if we
replace statement 4. in Algorithm 2 by λk+1 = p(uk+1), where p(uk+1) denotes the
real root of uH

k+1T (λ)uk+1 = 0 closest to λk.
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2.3 Residual inverse iteration

For linear eigenproblems inverse iteration can be replaced by a simplified version
xk+1 = (A−σI)−1xk with fixed σ converging to an eigenvector corresponding to the
eigenvalue of A next to σ. The convergence is only linear but the method has the
advantage that only one factorization of the matrix A − σI is necessary.

In contrast to the linear case replacing step 3: in Algorithm 1 by xk+1 =
T (σ)−1T ′(λk)x

k with a fixed shift σ results in misconvergence. It is easily seen
that this iteration converges to an eigenpair of the linear problem T (σ)x = γT ′(λ̃)x
(γ 6= 0 and λ̃ depending on the normalization condition) from which we can not
recover an eigenpair of the nonlinear problem (1).

A remedy against this wrong convergence was proposed by Neumaier [39]. As-
sume that T (λ) is twice continuously differentiable. Then for the increment in Al-
gorithm 1 it holds

dx = xk − xk+1 = xk + (λk+1 − λk)uk+1

= xk + (λk+1 − λk)T (λk)
−1T ′(λk)xk

= T (λk)
−1(T (λk) + (λk+1 − λk)T

′(λk))xk

= T (λk)
−1T (λk+1)xk + O(|λk+1 − λk|

2).

Neglecting the second order term one gets

xk+1 = xk − T (λk)
−1T (λk+1)xk.

The advantage of this approach is that replacing λk by a fixed shift σ does not
generate misconvergence.

To update the approximation to an eigenvalue λ̂ Neumaier suggested λk+1 =
p(xk) if T (λ) is a family of Hermitean matrices and λ̂ is real, and the solution λk+1

of the equation
vHT (σ)−1T (λ)xk = 0

which is closest to λ̂ in the general case. For a fixed vector v and σ close to λ̂
the vector y = T (σ)−Hv can be considered as an approximate left eigenvector, and
applying one Newton step to yHT (λ)xk = 0 results again in the general Rayleigh
functional of Lancaster.

The residual inverse iteration method in Algorithm 3 has the following conver-
gence properties which were proved by Neumaier [39].
THEOREM 2

Let T (λ) be twice continuously differentiable, λ̂ be a simple zero of det T (λ) = 0, and
let x̂ be an eigenvector normalized by vH x̂ = 1. Then the residual inverse iteration
converges for all σ sufficiently close to λ̂, and it holds

‖xk+1 − x̂‖

‖xk − x̂‖
= O(|σ − λ̂|) and |λk+1 − λk| = O(‖xk − x̂‖q),
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Algorithm 3 Residual inverse iteration

1: Let v be a normalization vector and start with an approximations σ and x1 to
an eigenvalue and corresponding eigenvector of (1) such that vHx1 = 1

2: for k = 1, 2, . . . until convergence do

3: solve vHT (σ)−1T (λk+1)xℓ = 0 for λk+1

or set λk+1 = p(xk) is T (λ) is Hermitean
4: compute the residual rk = T (λk+1)xk

5: solve T (σ)dk = rk for dk

6: set zk+1 = xk − dk

7: normalize xk+1 = zk+1/vHzk+1

8: end for

where q = 2 if T (λ) is Hermitean, λ̂ is real, and λk+1 = p(xk) in step 3:, and q = 1
otherwise.

2.4 Successive linear approximations

A first order approximation of problem (1) is

(15) T (λ)x ≈ (T (µ̃) − θT ′(µ̃))x = 0, θ = µ̃ − λ.

This suggests the method of successive linear problems in Algorithm 4 which was
introduced by Ruhe [46], and which converges quadratically.

Algorithm 4 Method of successive linear problems

1: Start with an approximation λ1 to an eigenvalue of (1)
2: for k = 1, 2, . . . until convergence do

3: solve the linear eigenproblem T (λk)u = θT ′(λk)u
4: choose an eigenvalue θ smallest in modulus
5: λk+1 = λk − θ
6: end for

THEOREM 3

Let T be twice continuously differentiable, and let λ̂ be an eigenvalue of problem
(1) such that T ′(λ̂) is nonsingular and 0 is an algebraically simple eigenvalue of
T ′(λ̂)−1T (λ̂). Then the method of successive linear problems converges quadratically
to λ̂.

Proof: Let x̂ be an eigenvector corresponding to λ̂, and let v ∈ C
n such that

vH x̂ = 1. Let U(λ̂) be a neighbourhood of λ̂, and Φ : C
n × C × U(λ̂) → C

n+1 be
defined by

Φ(x, θ, λ) :=

(

T (λ)x − θT ′(λ)x
vHx − 1

)

9



Then Φ(x̂, 0, λ̂) = 0, and the matrix

∂

∂(x, θ)
Φ(x̂, 0, λ̂) =

(

T (λ̂) −T ′(λ̂)x̂
vH 0

)

is nonsingular, which was already proved in Theorem 1.
By the implicit function theorem Φ(x, θ, λ) = 0 defines differentiable functions

x : U(λ̂) → C
n and θ : U(λ̂) → C on a neighbourhood of λ̂ again denoted by U(λ̂)

such that
Φ(x(λ), θ(λ), λ) = 0 for every λ ∈ U(λ̂).

With this functions the method of successive linear problems can be rewritten as the
fixed point iteration λn+1 = φ(λn) := λn − θ(λn), which converges quadratically if
φ′(λ̂) = 0.

From the implicit function theorem it follows

d

dλ

(

x
θ

)

(λ̂) = −
∂

∂(x, θ)
Φ(x̂, 0, λ̂)−1 ∂

∂λ
Φ(x̂, 0, λ̂)

= −

(

T (λ̂) −T ′(λ̂)x̂
vH 0

)−1 (

T ′(λ̂)x̂
0

)

which yields θ′(λ̂) = 1, and therefore φ′(λ̂) = 0. ¤

2.5 Safeguarded iteration

The numerical methods of the preceding subsections apply to general nonlinear eigen-
problems, although for Hermitean problems and real eigenvalues inverse iteration and
residual inverse iteration converge faster if the eigenvalue approximations are up-
dated using the Rayleigh functional. In this subsection we consider the safeguarded
iteration which applies only to Hermitean problems allowing a variational characteri-
zation of their eigenvalues [11], [43], [16], [17], [66], [65]. The method was introduced
by Werner [68] for overdamped problems, and was studied by Werner and the author
[67] for the nonoverdamped case.

Let J ⊂ R be an open interval which may be unbounded, and assume that T (λ) ∈
C

n×n is a family of Hermitean matrices the elements of which are differentiable. We
assume that for every x ∈ C

n \ {0} the real equation

(16) f(λ, x) := xHT (λ)x = 0

has at most one solution λ ∈ J . Then equation (16) defines a functional p on some
subset D ⊂ C

n which obviously generalizes the Rayleigh quotient for linear pencils
T (λ) = λB−A, and which we call the Rayleigh functional of the nonlinear eigenvalue
problem (1). We further assume that

(17) xHT ′(p(x))x > 0 for every x ∈ D
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generalizing the definiteness requirement for linear pencils. By the implicit function
theorem D is an open set, and differentiating the identity xHT (p(x))x = 0 one
obtains, that the eigenvectors of (1) are stationary points of p.

Under the conditions above we proved in [66] a minmax principle for the nonlin-
ear eigenproblem (1) if the eigenvalues are enumerated appropriately. λ ∈ J is an
eigenvalue of (1) if and only if µ = 0 is an eigenvalue of the matrix T (λ), and by
Poincaré’s maxmin principle there exists m ∈ N such that

0 = max
dim V =m

min
x∈V, x 6=0

xHT (λ)x

‖x‖2
.

Then we assign this m to λ as its number and call λ an m-th eigenvalue of problem
(1).

With this enumeration it holds (cf. [66]) that for every m ∈ {1, . . . , n} problem
(1) has at most one m-th eigenvalue in J , which can be characterized by

(18) λm = min
dim V =m,D∩V 6=∅

sup
v∈D∩V

p(v).

Conversely, if

(19) λm := inf
dim V =m,D∩V 6=∅

sup
v∈D∩V

p(v) ∈ J,

then λm is an m-th eigenvalue of (1), and the characterization (18) holds. The min-
imum is attained by the invariant subspace of T (λm) corresponding to its m largest
eigenvalues, and the supremum is attained by any eigenvector of T (λm) correspond-
ing to µ = 0.

To prove this characterization we took advantage of the following relation

(20) λ







>
=
<







λm ⇔ µm(λ) := max
dim V =m

min
x∈V, x 6=0

xHT (λ)x

‖x‖2







>
=
<







0.

The enumeration of eigenvalues and the fact that the eigenvectors of (1) are the
stationary vectors of the Rayleigh functional suggests the method in Algorithm 5
called safeguarded iteration for computing the m–th eigenvalue.

Algorithm 5 Safeguarded iteration

1: Start with an approximation σ1 to the m-th eigenvalue of (1)
2: for k = 1, 2, . . . until convergence do

3: determine an eigenvector xk corresponding to the m-largest eigenvalue of T (σk)
4: solve xH

k T (σk+1)xk = 0 for σk+1

5: end for
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The following theorem contains the approximation properties of the safeguarded
iteration. It was already proved in [67] but because this technical report is not easily
available we repeat its proof here.
THEOREM 4

(i) If λ1 := infx∈D p(x) ∈ J and x1 ∈ D then the safeguarded iteration converges
globally to λ1.

(ii) If λm ∈ J is a m-th eigenvalue of (1) which is simple then the safeguarded
iteration converges locally and quadratically to λm.

(iii) Let T (λ) be twice continuously differentiable, and assume that T ′(λ) is positive
definite for λ ∈ J . If xk in step 3: of Algorithm 5 is chosen to be an eigenvec-
tor corresponding to the m largest eigenvalue of the generalized eigenproblem
T (σk)x = µT ′(σk)x then the convergence is even cubic.

Proof: (i): Assume that xk−1 ∈ D. Then σk = p(xk−1) ≥ λ1, and (20) yields

(21) µ1(σk) = max
x 6=0

xHT (σk)x

xT x
=

xH
k T (σk)xk

xH
k xk

≥ 0.

Suppose that xk 6∈ D. Then it follows from (21) that xH
k T (λ)xk > 0 for every λ ∈ J .

Let x̃ ∈ D be an eigenvector of T corresponding to λ1. Then we get from (17)
x̃HT (λ)x̃ < 0 for every λ ∈ J , λ < λ1. Hence for fixed λ ∈ J , λ < λ1

q(t) := (x̃ + t(xk − x̃))HT (λ)(x̃ + t(xk − x̃)) = 0

has a solution t̃ ∈ (0, 1), i.e. w := x̃+ t̃(xk− x̃) ∈ D and p(w) = λ < λ1 contradicting
(18).

The monotonicity of {σk} follows directly from the definition of σk+1, (21) and
(17). Let σ̂ := limk→∞ σk and let {xkj

} be a convergent subsequence of {xk},
xkj

→ x̂ 6= 0.
Then by the continuity of T (λ)

0 = xH
kj

T (σkj+1)xkj
→ x̂HT (σ̂)x̂,

i.e. x̂ ∈ D and p(x̂) = σ̂, and we get from the continuous dependence of µ1(σ) on σ

T (σ̂)x̂ = lim
j→∞

T (σkj
)xkj

= lim
j→∞

µ1(σkj
)xkj

= µ1(σ̂)x̂.

Multiplying this equation by x̂H yields µ1(σ̂) = 0, and hence σ̂ = λ1.
(ii): If λm is a simple eigenvalue of T then it is an easy consequence of the

implicit function theorem that for |λ − λm| small enough the function λ → x(λ) is
defined and continuously differentiable, where x(λ) denotes the suitably normalized
eigenvector of T (λ) corresponding to the m-largest eigenvalue. Because D is an open
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set, h(λ) := p(x(λ)) is defined in a neighbourhood of λm, and since the eigenvalues
of T are the stationary values of p, we get

h′(λm) = p′(x(λm))x′(λm)) = 0.

This proves the quadratic convergence of σk = h(σk−1) to λm.

(iii): Let T ′(λ) be positive definite and denote by µ(λ) the m-largest eigenvalue of
the generalized eigenproblem T (λ)x = µT ′(λ)x and by x(λ) a corresponding eigen-
vector which is suitably normalized such that x(·) is continuous. If λm is an m-th
eigenvalue of T (·) then µ(λm) = 0, and differentiating T (λ)x(λ) = µ(λ)T ′(λ)x(λ)
yields

T ′(λm)x(λm) + T (λm)x′(λm) = µ′(λm)T ′(λm)x(λm).

Multiplying by x(λm)H from the left we get µ′(λm) = 1, and therefore

(22) T (λm)x′(λm) = 0.

If we define h analogously to part (ii) by h(λ) = p(x(λ)) then as before h′(λm) = 0,
and from

h′′(λm) = −2
x′(λm)HT (p(x(λm)))x′(λm)

x(λm)HT ′(p(x(λm)))x(λm)

and (22) it follows h′′(λm) = 0, i.e. the safeguarded iteration converges cubically. ¤

3 Iterative projection methods

For sparse linear eigenvalue problems

(23) Ax = λx

iterative projection methods like the Lanczos, Arnoldi, rational Krylov or Jacobi–
Davidson method are very efficient. Here the dimension of the eigenproblem is
reduced by projecting it to a subspace of much smaller dimension, and handling
the reduced problem by a fast technique for dense problems. The subspaces are
expanded in the course of the algorithm in an iterative way with the aim that some
of the eigenvalues of the reduced matrix become good approximations of some of the
wanted eigenvalues of the given large matrix.

Two types of iterative projection methods are in use: methods which expand the
subspaces independently of the eigenpair of the projected problem and which use
Krylov subspaces of A or (A − σI)−1 for some shift σ like the Arnoldi method or
Lanczos method or rational Krylov method, and methods which aim at a particular
eigenpair and choose the expansion q such that it has a high approximation potential
for a wanted eigenvector like the Jacobi–Davidson method or Riccati methods.

13



The Arnoldi method (and other Krylov subspace methods have similar proper-
ties) projects problem (23) onto the Krylov space

Kk(A, v1) = span{v1, Av1, A
2v1, . . . , A

k−1v1}

where v1 is an initial vector. It produces an orthogonal basis Vk of Kk(A, v1) such
that the projected matrix is upper Hessenberg (which we now denote by Hk) such
that

(24) AVk = VkHk + fke
T
k

where ek ∈ R
k is the k-th unit vector having a 1 in its last component, and fk is

orthogonal to the columns of Vk, i.e. V H
k fk = 0. (24) demonstrates that V H

k AVk = Hk

is the orthogonal projection of A to Kk(A, v1).
If (y, θ) is an eigenpair of the projected problem, and x = Vky is the corresponding

approximation to an eigenvector of the original problem (23) (which is called a Ritz
vector corresponding to θ), then it holds for the residuum

r := Ax − θx = AVky − θVky = VkHky − θVky + fke
H
k y = (eT

k y)fk.

Hence, one obtains an error indicator ‖r‖ = |eT
k y| · ‖fk‖ for the eigenpair approxima-

tion (x, θ) without computing the Ritz vector x. If A is Hermitean then this is even
an error bound.

The Arnoldi method (together with its shifted and inverted and its restarted
variants) is a standard solver for sparse linear eigenproblems. A detailed discussion
is contained in [4]. Software implementing the (implicitly restarted) Arnoldi method
is available in the package ARPACK [33] and the MATLAB command eigs.

The Arnoldi method converges to the extreme eigenvalues first. If one is interested
in eigenvalues in the interior of the spectrum (eigenvalues close to a given shift σ, e.g.)
one has to apply the Arnoldi method to a shifted and inverted matrix (A − σI)−1,
i.e. one has to determine a factorization of A−σI which may be prohibitive for very
large problems.

A remedy against this disadvantage is the Jacobi–Davidson method introduced
by Sleijpen and van der Vorst [53]. Let (x, θ) be an approximation to an eigenpair
obtained by a projection method with subspace V . We assume that

(25) ‖x‖ = 1, θ = xHAx, r := Ax − θx ⊥ x.

Then the most desirable orthogonal correction z solves the equation

(26) A(x + z) = λ(x + z), z ⊥ x.

As z ⊥ x the operator A can be restricted to the subspace orthogonal to x yielding
Ã := (I − xxH)A(I − xxH), and from θ = xHAx it follows

A = Ã + AxxH + xxHA − θxxH .

14



Hence, we obtain from (26) and Ãz = 0

(27) (Ã − λI)z = −r + (λ − θ − xHAz)x.

Since both, the left hand side and r are orthogonal to x, the factor λ − θ − xHAz
must vanish, and therefore the correction z has to satisfy (Ã−λI)z = −r. Because λ
is unknown it is replaced by its approximation θ, and we end up with the correction
equation

(28) (I − xxH)(A − θI)(I − xxH)z = −r.

It can be shown that the expanded space [V, z] for the Jacobi–Davidson method con-
tains the direction u = (A−θI)−1x which is obtained by one step of inverse iteration
[52]. One therefore can expect similar approximation properties, i.e. quadratic or
even cubic convergence, if the problem is Hermitean.

Obviously, the Jacobi–Davidson method is aiming at a particular eigenpair (close
to the shift θ). If one is interested in more than one eigenvalue one has to use deflation
based on the Schur decomposition of the matrix A (cf. [13]).

As in the shift-and-invert Arnoldi method we have to solve a large linear sys-
tem. However, numerical experiments demonstrate that problem (28) does not have
to be solved exactly, but only approximately to maintain fast convergence. Nor-
mally only a small number of steps of a preconditioned Krylov subspace method
are sufficient to obtain a good expansion z for the subspace V in the iterative pro-
jection method. Implementation details of the Jacobi–Davidson method for various
types of linear eigenvalue problems can be found in [4]. Implementations in FOR-
TRAN and MATLAB can be downloaded from the home page of Gerhard Sleijpen
(http://www.math.ruu.nl/people/sleijpen).

Deriving the correction equation in the Jacobi–Davidson method one only uses
the fact in (27) that (Ã−θI)z and r are orthogonal to x. One does not take advantage
of the equation λ−θ−xHAz = 0. Brandts [8], [9] also took into account this equation,
and developed the Riccati method which improves the Jacobi–Davidson method.

In the following we discuss generalizations of iterative projection methods to non-
linear eigenproblems. There are many papers on Arnoldi’s method for polynomial
and in particular quadratic eigenvalue problems taking advantage of their equiva-
lence to linear eigenproblems of higher dimension, which will not be considered here.
We will only briefly sketch in Subsection 3.1 a new and interesting approach by
Mehrmann and Watkins who introduced a structure preserving Arnoldi methods for
Hamiltonian eigenproblems. Further structure preserving projection methods for the
special case of a conservative gyroscopic problem are contained [21], [36] and [55].
In Subsections 3.2 – 3.4 we concentrate on iterative projection methods for general
nonlinear eigenproblems.
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3.1 Polynomial eigenproblems

In this section we consider polynomial eigenproblems

(29) P (λ)x =
k

∑

j=0

λjAjx = 0

where Aj ∈ C
n×n are given matrices. It is well known that problem (29) can be

linearized, i.e. can be replaced by an equivalent linear eigenproblem. For instance
the following linearization follows the same lines as the well known way replacing a
k:th order linear system of differential equations by a first order system:

(30) Ay = λBy

where

A =

















−Ak−1 −Ak−2 . . . −A1 −A0

I
. . .

. . .

I

















,

B =















Ak

I
. . .

I
I















, and y =















λk−1x
λk−2x

...
λx
x















.

Problem (30) can be solved by any eigensolver for sparse linear systems such as the
Arnoldi or the Jacobi–Davidson method. However, this approach bears two disad-
vantages: first, the dimension grows from n to kn, and second, symmetry properties
which the original system (29) may have in general are destroyed by the linearization.
Hence, this straightforward manner of linearization usually is not the best way to
solve the polynomial eigenproblem (29).

For polynomial eigenproblems having certain symmetry properties appropriate
linearizations and suitable projection methods preserving these symmetry properties
are useful. Quite recently Mehrmann and Watkins suggested a method of this type
for problem (29) the spectrum of which has Hamiltonian structure ([1], [2], [37], [38]).

Assume that the matrices Aj in (29) are real and alternating symmetric and
skew-symmetric, i.e. AT

j = (−1)jAj or AT
j = (−1)j+1Aj , j = 0, . . . , k, (a conservative

gyroscopic system, e.g.) then it holds

P (λ)x = 0 ⇐⇒ xT P (−λ) = 0.
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This means that the spectrum of P (λ)x = 0 has Hamiltonian symmetry, i.e. in
general the eigenvalues appear in quadruples {λ,−λ, λ̄,−λ̄} (notice that we assumed
the matrices Aj to be real), or in pairs if they are purely imaginary or real.

The following theorem the proof of which is obvious contains a linearization
of (29) which is the basis of the structure preserving approach. This linearization
without the alternating signs was already given by Lancaster [32].
THEOREM 5

P (λ)x = 0 has the same eigenvalues as the pencil A − λB where

A =



















−A0 O O O . . . O

O −A2 −A3 −A4 . . . −Ak

O A3 A4 O
O −A4 O
...

...
...

O ±Ak O O . . . O



















,

B =



















A1 A2 A3 . . . Ak−1 Ak

−A2 −A3 −A4 . . . −Ak O
A3 A4 O O
−A4 O O

...
...

...
±Ak O O . . . O O



















.

The pencil A − λB obviously is skew-symmetric/symmetric.
If the dimension of the linearized problem is even then multiplying by J :=

(

O I
−I O

)

one gets an equivalent pencil

λH1 − H2

where (JH1)
T = −JH1 (i.e. the matrix H1 is skew-Hamiltonian) and (JH2)

T = JH2

(i.e. the matrix H2 is Hamiltonian).
If H1 can be represented in product form H1 = Z1Z2 such that ZT

2 J = ±JZ1

then this pencil is equivalent to the standard eigenvalue problem

Z−1
1 H2Z

−1
2 − λI =: W − λI

in which the matrix W can be easily shown to be Hamiltonian.
Applying Arnoldi’s method to the skew-Hamiltonian matrix −W then (in exact

arithmetic) the Krylov space Kk(W, q1) is isotropic, i.e.

xT Jy = 0 for all x, y ∈ Kk(W, q1).

Therefore, to keep the Hamiltonian structure in the Arnoldi process one should not
only orthogonalize against q1, . . . , qk, but also against Jq1, . . . , Jqk.
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Moreover, for the same reason shifts have to used in pairs {σ,−σ} (if eigenvalues
are real or purely imaginary) or in quadruples {σ,−σ, σ̄,−σ̄}.

This results in the algorithm SHIRA, a structure-preserving skew-Hamiltonian,
isotropic, implicitly restarted shift-and-invert Arnoldi algorithm proposed by Mehrmann
and Watkins [37].

We do not discuss SHIRA in detail. We only consider for conservative gyroscopic
pencils the basic steps of the reduction process, and we demonstrate that doubling
the dimension in linearization does not yield larger linear systems to be solved in the
shift–and–invert steps of the method.

Applying the structure preserving linearization to the conservative gyroscopic
quadratic pencil

Q(λ) := λ2M + λG + K

where MT = M , GT = −G and KT = K yields the symmetric/skew-symmetric
pencil

(

−K O
O −M

)

− λ

(

G M
−M O

)

,

and multiplying by −J we obtain the skew-Hamiltonian/Hamiltonian pencil

(

O M
−K O

)

− λ

(

M O
G M

)

which with
(

M O
G M

)

=

(

M O
0.5G I

) (

I O
0.5G M

)

= Z1Z2

can be reduced to the skew-Hamiltonian eigenproblem

Wy :=

(

M O
0.5G I

)−1 (

O M
−K O

) (

I O
0.5G M

)−1

y = λy.

In this case the eigenvalues are purely imaginary, and therefore appear in pairs
{λ,−λ}. To preserve is structure shifts have to be used in pairs, too, and one has to
apply the isotropic Arnoldi process to

R = (W − σI)−1(W + σI)−1 = Z2(H2 − σH1)
−1Z1Z2(H2 + σH1)

−1Z1

=

(

I O
0.5G M

) (

I O
σI I

) (

O M−1

−Q(σ)−1 O

)

×

×

(

M O
G M

) (

O M−1

−Q(−σ)−1 O

) (

I O
−σI I

) (

M O
0.5G I

)

which demonstrates that although the dimension of the eigenproblem is doubled one
only has to solve linear systems the dimension of which is the original one.
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3.2 An Arnoldi type method

In the following we consider iterative projection methods for the general nonlinear
eigenproblem (1). We already pointed out that in this case the search spaces have to
be expanded by directions having a high approximation potential for the eigenvector
wanted next.

Inverse iteration converges quadratically for simple eigenvalues, and therefore is
a suitable candidate. If V is an orthonormal basis of the search space, if (λ, y) is a
solution of the projected problem

V HT (λ)V y = 0,

and if x = V y is the corresponding Ritz vector, then the expansion ṽ = T (λ)−1T ′(λ)x
would be a reasonable choice. However, in this case we would have to solve a high
dimensional linear system in every iteration step where the coefficient matrix varies.
One way out is the residual inverse iteration suggested by Neumaier [39], and given
by x̃ = x−T (σ)−1T (λ)x where σ is a fixed shift (not to far away from the eigenvalue
targeted at).

In iterative projection methods the new search direction is orthonormalized against
the previous ansatz vectors. Since the Ritz vector x is contained in the span of V
we may choose the new direction v = T (σ)−1T (λ)x as well. For the linear problem
T (λ) = A − λB this is exactly the Cayley transform with pole σ and zero λ, and
since

(A − σB)−1(A − λB) = I + (λ − σ)(A − σB)−1B

and Krylov spaces are shift-invariant the resulting projection method expanding V
by v is nothing else but the shift-and-invert Arnoldi method.

If the linear system T (σ)v = T (λ)x is too expensive to solve for v we may choose
as new direction v = MT (λ)x with M ≈ T (σ)−1, and for the linear problem we
obtain an inexact Cayley transform or a preconditioned Arnoldi method.

We therefore call the resulting iterative projection method which was studied
in [36] for quadratic eigenvalue problems and in [60] and [59] for general nonlinear
eigenproblems nonlinear Arnoldi method. We stress the fact that differently from
the linear case no Krylov space is determined in the course of the algorithm.

Since we are interested in all eigenvalues in some region and since the speed of
convergence is expected to depend crucially on |σ − λ| it will be advisable to change
the shift or more generally the preconditioner M in the course of the algorithm if
the convergence to the current eigenvalue becomes too slow. So actually we obtain
a method which generalizes the rational Krylov method for linear problems in [49],
and the name nonlinear rational Krylov method would be appropriate, too. However,
since Ruhe [50] already introduced a rational Krylov method for nonlinear problems
which differs from our method quite a bit we prefer the name nonlinear Arnoli
method. We will summarize the rational Krylov method in Subsection 3.4 and
comment on the differences of Ruhe’s and our approach there.
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Algorithm 6 Nonlinear Arnoldi Method

1: start with an initial pole σ and an initial basis V , V HV = I;
2: determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: k = 1
4: while m ≤ number of wanted eigenvalues do

5: compute appropriate eigenvalue µ and corresponding eigenvector y of the pro-
jected problem TV (µ)y := V HT (µ)V y = 0.

6: determine Ritz vector u = V y and residual rk = T (µ)u
7: if ‖rk‖/‖u‖ < ǫ then

8: PRINT λm = µ, xm = u,
9: if m == number of wanted eigenvalues then

10: STOP
11: end if

12: m = m + 1
13: if (k > 1) & (‖rk−1‖/‖rk‖ > tol) then

14: choose new pole σ
15: determine new preconditioner M ≈ T (σ)−1

16: end if

17: restart if necessary
18: choose approximations µ and u to next eigenvalue and eigenvector
19: determine residual r = T (µ)u
20: k = 0
21: end if

22: v = Mr
23: v = v − V V Hv ,ṽ = v/‖v‖, V = [V, ṽ]
24: reorthogonalize if necessary
25: update projected problem TV (µ) = V HT (µ)V
26: k = k + 1
27: end while
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A template for the preconditioned Arnoldi method for nonlinear eigenvalue prob-
lems with restarts and varying preconditioner is contained in Algorithm 6. In the
following we comment on some of its steps.

1: Here preinformation such as known approximate eigenvectors of problem (1)
or eigenvectors of contiguous problems can be introduced into the algorithm.

If no information on eigenvectors is at hand, and we are interested in eigen-
values close to the parameter σ ∈ D, one can choose an initial vector at ran-
dom, execute a few Arnoldi steps for the linear eigenproblem T (σ)u = θu or
T (σ)u = θT ′(σ)u, and choose V by orthogonalizing eigenvectors corresponding
to small eigenvalues in modulus. Starting with a random vector without this
preprocessing usually will yield a value µ in step 5: which is far away from σ
and will avert convergence.

For the rational eigenvalue problem (4) governing free vibrations of a plate
with attached masses or a fluid–solid structure we discussed the choice of the
initial space in [62]

2: In our numerical examples we used the LU factorization of T (σ) if this could be
determined inexpensively and otherwise an incomplete LU factorization, but
every other preconditioner is fine.

3: k counts the number of iterations for fixed m. This is only needed to mea-
sure the speed of convergence and to decide whether a new preconditioner is
recommended in condition 13:

4: Every other stopping criterion can replace the requirement to determine m
eigenvalues.

5: Since the dimension of the projected problems are usually small they can be
solved by any method for dense nonlinear eigenvalue problems discussed in
Section 2.

A crucial point in iterative projection methods for general nonlinear eigen-
value problems when approximating more than one eigenvalue is to inhibit the
method to converge to the same eigenvalue repeatedly. For linear eigenvalue
problems this is no problem. Krylov subspace solvers construct an orthogo-
nal basis of the ansatz space not aiming at a particular eigenvalue, and one
gets approximations to extreme eigenvalues without replication (at least if re-
orthogonalization is employed). If several eigenvalues are computed by the
Jacobi–Davidson method then one determines an incomplete Schur factoriza-
tion thus preventing the method from approaching an eigenvalue which was
already obtained previously (cf. [13]). For nonlinear problems a similar normal
form does not exist.
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If T (λ) is a family of real symmetric or Hermitean matrices and D is a real
interval such that the eigenvalues are maxmin values of a Rayleigh functional
then the projected problems inherit this property. The eigenvalues can be
determined one after the other by safeguarded iteration, and approximating
the m-th eigenvalue usually enough information about the next eigenvector is
gathered to compute the (m + 1)-th eigenvalue safely. This approach which
was discussed in [60] (and in [6] for the nonlinear Jacobi–Davidson method)
has the advantage that it is most unlikely that the method converges to an
eigenvalue that has already been found previously.

Similarly, in the general case one can order the eigenvalues by their distance to a
fixed parameter σ0, and approximate them one after the other by the method of
successive linear problems. If already m−1 eigenvalues of (1) closest to σ0 have
been determined, and µ0 is an approximation to the eigenvalue wanted next,
we iteratively perform the following three steps until convergence: we solve the
linear eigenproblem V HT (µℓ)V y = θvHT ′(µℓ)V y, choose the eigenvalue θ̂ such
that |σ0−(µℓ−θ̂)| is m-smallest among the eigenvalues θ, and set µℓ+1 = µℓ−θ̂.

A disadvantage of this method is the fact that consecutive eigenvalues λm−1 and
λm usually will not be close to each other, and therefore, a preconditioner which
was adequate for one eigenvalue can yield slow convergence of the iterative
solver for the next eigenvalue. Hence, this method should be used only if a
small number of eigenvalues close to a parameter is wanted.

Quite often the nonlinear eigenvalue problem under consideration is a (small)
perturbation of a linear eigenvalue problem. In (6) we considered a rational
eigenproblem governing the free vibrations of a structure using a viscoelas-
tic constitutive relation to describe the behaviour of the material. It is well
known that often the eigenmodes of the damped and the undamped problem
do not differ very much although the eigenvalues do. Therefore, it is reason-
able to determine an eigenvector y of the undamped and projected problem
(ω2V HMV − V HKV )y = 0 corresponding to the m-smallest eigenvalue ω2

m,
determine an approximate eigenvalue ω̃ of the nonlinear projected problem
from the complex equation yHV HT (ω)V y = 0 or eHV HT (σ)−1T (ω)V y = 0,
and correct it by one of the methods in Section 2.

13: Corresponding to Theorem 2 the residual inverse iteration with fixed pole σ
converges linearly, and the contraction rate satisfies O(|σ−λm|). We therefore
update the preconditioner if the convergence measured by the quotient of the
last two residual norms has become too slow.

In our numerical examples it happened that the condition in step 7: was fulfilled
in the first step after having increased m. In this case the quotient of the last
two residual norms does not say anything about the speed of convergence, and
we do not update the preconditioner.
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14: The new pole should not be chosen to close to an eigenvalue of T (·) because
this would hamper the construction of the preconditioner. A general strategy
cannot be given, but the proper way to choose a new pole depends on the
problem under consideration and on the method in step 5: for solving the
projected problem.

17: As the subspaces expand in the course of the algorithm the increasing storage
or the computational cost for solving the projected eigenvalue problems may
make it necessary to restart the algorithm and purge some of the basis vectors.
Since a restart destroys information on the eigenvectors and particularly on
the one the method is just aiming at we restart only if an eigenvector has just
converged.

Since some of the solvers of the nonlinear projected eigenproblems in 5: take
advantage of some enumeration of the eigenvalues it is natural to keep the
eigenvectors that have been converged in the course of the algorithm. Oth-
erwise this enumeration would be perturbed. We therefore continue with an
orthonormal basis of Xm := span{x1, . . . , xm}. If an approximation to an
eigenvector wanted next is obtained cheaply (cf. 18:) we add it to Xm.

18: Some of the eigensolvers discussed in Section 2 can be used to get approxima-
tions to the eigenvector and eigenvalue wanted next. In this case we continue
with these approximations. If no information on the next eigenvalue and eigen-
vector can be gained cheaply we continue with the current approximations.

23: v is orthogonalized with respect to the current search space V by classical
Gram–Schmidt. It may be replaced by modified Gram–Schmidt for stability
reasons. Notice, however, that the classical Gram-Schmidt procedure is able to
use BLAS3, and thus can be faster than classical Gram–Schmidt by a better
use of cache.

24: If in statement 23: the norm of v is reduced in the (classical or modified)
Gram–Schmidt process by more than a modest factor κ, say κ = 0.25, then it
is appropriate to repeat the Gram–Schmidt method once.

25: Often problem (1) has the form T (λ) =
∑N

j=1 fj(λ)Cj with differentiable com-

plex functions fj and fixed matrices Cj ∈ C
n×n. Then the projected problem

has the form

TVk
(λ) =

N
∑

j=1

fj(λ)V H
k CjVk =:

N
∑

j=1

fj(λ)Cj,k,

and the matrices Cj,k can be updated according to

Cj,k =

(

Cj,k−1 V H
k−1Cj ṽ

ṽHCjVk−1 ṽHCj ṽ

)

.
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3.3 A Jacobi–Davidson type method

Given a search space V , a solution (λ, y) of the corresponding projected problem, and
the Ritz vector x = V y in the last subsection we approximated the expansion of V
by the direction v = T (λ)−1T ′(λ)x of inverse iteration by residual inverse iteration.
A different way to avoid the solution of a large linear system in every iteration step
is the Jacobi–Davidson approach.

A natural generalization of the Jacobi–Davidson method for linear eigenproblems
which was already suggested in [51] for polynomial eigenvalue problems and which
was studied in [63] and [6] for general nonlinear eigenproblems is the following one:
Suppose that the columns of V ⊂ C

n form an orthonormal basis of the current search
space, and let (x, θ) be a Ritz pair of (1) with respect to V , i.e.

(31) V HT (θ)V y = 0, x = V y.

Then we consider the correction equation

(32)

(

I −
pxH

xHp

)

T (θ)

(

I −
xxH

xHx

)

z = −r, z ⊥ x

where p := T ′(θ)x and r := T (θ)x. Restricting T (θ) in the correction equation
to an operator from x⊥ to (T ′(θ)x)⊥ again guarantees that the direction of inverse
iteration is contained in the subsequent search space. This can be seen as follows.

Equation (32) can be rewritten as

T (θ)z − αp = −r

where α has to be chosen such that z ⊥ x. Solving for z we obtain

z = −x + αT (θ)−1p = −x + αT (θ)−1T ′(θ)x,

and x = V y yields z̃ := T (θ)−1T ′(θ)x ∈ span[V, z].

Hence, as in the linear case the new search space span[V, z] contains the vector
obtained by one step of inverse iteration with shift θ and initial vector x, and again we
may expect quadratic or even cubic convergence of the resulting iterative projection
method, if the correction equation (32) is solved exactly.

As in the linear case the correction equation is solved only approximately by a
few steps of a Krylov solver with an appropriate preconditioner.

In the correction equation (32) the operator T (θ) is restricted to map the subspace
x⊥ to (T ′(θ)x)⊥. Hence, if K ≈ T (θ) is a preconditioner of T (θ) then a preconditioner
for an iterative solver of (32) should be modified correspondingly to

K̃ := (I −
pxH

xHp
)K(I −

xxH

xHx
).
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With left-preconditioning equation (32) becomes

(33) K̃−1T̃ (θ)z = −K̃−1r, z ⊥ x.

where

T̃ (θ) := (I −
pxH

xHp
)T (θ)(I −

xxH

xHx
).

We apply a Krylov solver to equation (33) with initial guess z = 0. For the linear case
this was already discussed in [53], and the transfer to equation (33) is straightforward.

Since the operator K̃−1T̃ (θ) maps the space x⊥ into itself, and since the initial
guess z = 0 is an element of x⊥, all iterates are contained in this space, and therefore
in each step we have to perform one matrix-vector product

(34) y = K̃−1T̃ (θ)v

for some v ∈ x⊥. To this end we first multiply v by T̃ (θ) which yields

ỹ = (I −
pxH

xHp
)T (θ)v = T (θ)v −

xHT (θ)v

xHp
p,

and then we solve
K̃y = ỹ, y ⊥ x.

This equation can be rewritten as

Ky − αp = ỹ,

where α is determined from the condition y ⊥ x. Thus, we finally obtain

(35) y = K−1ỹ −
xHK−1ỹ

xHK−1p
K−1p

which demonstrates that taking into account the projectors in the preconditioner,
i.e. using K̃ instead of K, raises the cost of the preconditioned Krylov solver only
slightly. To initialize one has to solve the linear system Kp̃ = p and to determine
the scalar product α := xH p̃ = xHK−1p. These computations have to be executed
just once. Afterwards in each iteration step one has to solve only one linear system
Kw = ỹ for w, one has to compute the scalar product β := xHw = xHK−1ũ, and to
perform one axpy y = w − (β/α)ỹ to expand the Krylov space of K̃−1T̃ (θ).

A template for the Jacobi–Davidson method for the nonlinear eigenvalue problem
(1) is given in Algorithm 7. The comments on the nonlinear Arnoldi in subsection 3.1
apply to this method, too. However, for the approximate solution of the correction
equation we do not have a convergence result like Theorem 2 for the residual inverse
iteration, and therefore the rule for updating the preconditioner in Algorithm 6 does
not make sense here.
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We solved the correction equation (32) by a few steps of preconditioned GMRES
where we kept the preconditioner for a couple of eigenvalues. We terminated the
solver of (32) in the k-th outer iteration for the m-th eigenvalue if the residual was
reduced by at least τk = 2−k, and we allowed at most 10 steps of the solver. If the
required accuracy τk was not met after at most 5 iteration steps we updated the
preconditioner. However, we allowed at most one update for every eigenvalue λm.

Algorithm 7 Nonlinear Jacobi–Davidson method

1: Start with an initial basis V , V HV = I; m = 1
2: determine preconditioner K ≈ T (σ)−1, σ close to first wanted eigenvalue
3: while m ≤ number of wanted eigenvalues do

4: compute approximation to m-th wanted eigenvalue λm and corresponding
eigenvector xm of projected problem V HT (λ)V x = 0

5: determine Ritz vector u = V xm and residual r = T (λm)u
6: if ‖r‖/‖u‖ < ǫ then

7: PRINT approximate eigenpair (λm, u); increase m = m + 1;
8: reduce search space V if necessary
9: choose approximation (λm, u) to next eigenpair

10: compute residual r = T (λm)u;
11: end if

12: Find approximate solution of correction equation

(36) (I −
T ′(λm)uuH

uHT ′(λm)u
)T (σ)(I −

uuH

uHu
)t = −r

(by preconditioned Krylov solver, e.g.)
13: orthogonalize t = t − V V Ht, v = t/‖t‖, and expand subspace V = [V, v]
14: determine new preconditioner K ≈ T (λm)−1 if necessary
15: update projected problem
16: end while

Hwang, Lin and Mehrmann [24] considered a gyroscopic eigenproblem

(λ2M + λ(G + εD) + K)x = 0

where K = KT , M = MT , G = −GT and εD represents the damping of the
system. Since the damping is assumed to be small they suggested to determine
eigenpairs (λj , xj) of the conservative gyroscopic problem (λ2M + λG + K)x = 0 in
the wanted region by the structure preserving method SHIRA from Subsection 3.1,
and to improve these approximation by the Jacobi–Davidson method for the original
quadratic problem.
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3.4 Rational Krylov method

In [47], [48], [50] Ruhe generalized the rational Krylov approach for linear eigen-
problems [49] to sparse nonlinear eigenvalue problems by nesting the linearization of
problem (1) by Regula falsi and the solution of the resulting linear eigenproblem by
Arnoldi’s method, where the Regula falsi iteration and the Arnoldi recursion are knit
together. Similarly as in the rational Krylov process a sequence Vk of subspaces of
C

n is constructed, and at the same time Hessenberg matrices Hk are updated which
approximate the projection of T (σ)−1T (λk) to Vk. Here σ denotes a shift and λk an
approximation to the wanted eigenvalue of (1). Then a Ritz vector of Hk correspond-
ing to an eigenvalue of small modulus approximates an eigenvector of the nonlinear
problem from which a (hopefully) improved eigenvalue approximation of problem (1)
is obtained. Hence, in this approach the two numerical subtasks reducing the large
dimension to a much smaller one and solving a nonlinear eigenproblem which are
solved separately in the Arnoldi and the Jacobi–Davidson methods in Subsections
3.2 and 3.3 are attacked simultaneously. Following Ruhe’s ideas this method was
applied in [19] and [18] to the rational eigenvalue problem (6) governing damped
vibrations of a structure.

Linearizing the nonlinear family T (λ) by Lagrange interpolation between two
points µ and σ one gets

(37) T (λ) =
λ − µ

σ − µ
T (σ) +

λ − σ

µ − σ
T (µ) + higher order terms.

Keeping σ fixed for several steps, iterating on µ, neglecting the remainder in the
Lagrange interpolation, and multiplying by T (σ)−1 from the right one obtains

(38) T (σ)−1T (λj−1)w = θw with θ =
λj − λj−1

λj − σ

predicting a singularity at

(39) λj = λj−1 +
θ

1 − θ
(λj−1 − σ).

If the dimension n of problem (1) is small then this linear eigenproblem can be used
to approximate an eigenvalue of the nonlinear problem, and choosing the smallest
eigenvalue of (38) in modulus for every j one can expect convergence to an eigenvalue
close to the initial approximation λ1.

For large and sparse matrices Ruhe suggested to combine the linearization (38)
with a linear Arnoldi process. Assume that the method has performed j steps,
yielding approximations λ1, . . . , λj to an eigenvalue, orthonormal vectors v1, . . . , vj ,
and an upper Hessenberg matrix Hj,j−1 ∈ C

j×(j−1) such that the Arnoldi recursion

(40) T (σ)−1T (λj−1)Vj−1 = VjHj,j−1,
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is fulfilled (at least approximately), where Vj = [v1, . . . , vj ].
Updating the matrix Hj,j−1 according to the linear theory yields

(41) H̃j+1,j =

(

Hj,j−1 kj

0 ‖r⊥‖

)

where kj = V H
j rj , rj = T (λj)vj , and r⊥ = rj−VjV

H
j vj which due to the nonlinearity

of T (·) violates the next Arnoldi relation

T (σ)−1T (λj)Vj = Vj+1H̃j+1,j , vj+1 = v⊥/‖v⊥‖.

To satisfy it at least approximately Ruhe took advantage of Lagrangean interpolation

A(λj) ≈
λj − σ

λj−1 − σ
A(λj−1) −

λj − λj−1

λj−1 − σ
I =

1

1 − θ
A(λj−1) −

θ

1 − θ
I,

where A(λ) := T (σ)−1T (λ), and updated H according to

(42) Hj+1,j =

(

1
1−θ

Hj,j−1 −
θ

1−θ
Ij,j−1 kj

0 ‖r⊥‖

)

arriving at a first version of the rational Krylov method in Algorithm 8.

Algorithm 8 Rational Krylov method; preliminary version

1: Start with initial vector v1 with ‖v1‖ = 1, and initial λ1 and σ
2: r = T (σ)−1T (λ1)v1

3: for j = 1, 2, . . . until convergence do

4: orthogonalize hj = V Hr, r⊥ = r − V hj , hj+1,j = ‖r⊥‖
5: θ = min eig Hj,j with corresponding eigenvector s
6: λj+1 = λj + θ

1−θ
(λj − σ)

7: Hj+1,j = 1
1−θ

Hj+1,j −
θ

1−θ
Ij+1,j

8: vj+1 = r⊥/‖r⊥‖
9: r = T (σ)−1T (λj+1)vj+1

10: end for

Since the method turned out to be inefficient Ruhe [50] suggested to modify λ,
H and s in an inner iteration until the residual r = T (σ)−1T (λ)Vjs is enforced to be
orthogonal to Vj , and to expand the search space only after the inner iteration has
converged.

If Hj,j has already been updated according to step 7: then Hj,js = 0, and with

kj = V H
j T (σ)−1T (λ)Vjs = V H

j r

we have approximately

T (σ)−1T (λ)Vj

[

Ij−1 s̃
0 sj

]

= Vj [Hj,j−1 , kj ] + reT
j
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where s̃ is the leading j − 1 vector of s. Multiplying by the inverse of the matrix in
brackets from the right and by V H

j from the left one gets the new Hessenberg matrix

Ĥj,j = [Hj,j−1 , kj ]

[

Ij−1 −s−1
j s̃

0 s−1
j

]

= [Hj,j−1 , −s−1
j Hj,j−1s̃ + s−1

j kj ],

and Hj,j−1s̃ + sjhs = 0 finally yields that the last column of Hj,j has to be replaced
by hj + s−1

j kj . Thereafter λ and H have to be updated according to steps 5: – 7: of
Algorithm 8, and these steps have to be repeated until (hopefully) the residual has
become orthogonal to the search space Vj . The final version of the rational Krylov
method including the inner iteration is contained in Algorithm 9

Algorithm 9 Rational Krylov method; final version

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ ; set j = 1
2: set hj = 0j ; s = ej ; x = vj ;
3: compute r = T (σ)−1T (λ)x and kj = V H

j r
4: while ‖kj‖ >ResTol do

5: orthogonalize r = r − V H
j kj

6: set hj = hj + kjs
−1
j

7: θ = min eig Hj,j with corresponding eigenvector s
8: x = Vjs
9: update λ = λ + θ

1−θ
(λ − σ)

10: update Hj,j = 1
1−θ

Hj,j −
1

1−θ
I

11: compute r = T (σ)−1T (λ)x and kj = V H
j r

12: end while

13: compute hj+1,j = ‖r‖
14: if |hj+1,jsj | >EigTol then

15: vj+1 = r/hj+1,j ; j = j + 1; GOTO 2:
16: end if

17: Accept eigenvalue λi = λ and eigenvector xi = x
18: If more eigenvalues wanted, choose next θ and s, and GOTO 8:

Ruhe motivated the inner iteration and the requirement to make sure that the
residual is orthogonal to the search space only by analogy to the linear case where
it is satisfied automatically not being aware that the inner iteration is nothing else
but a solver of the projected problem

(43) V H
j T (σ)−1T (λ)Vjs = 0.

Hence, although motivated in a completely different way the rational Krylov method
is an iterative projection method where the nonlinear eigenproblem T (σ)−1T (λ)x = 0
is projected to a search space V , and V is expanded by (the orthogonal complement
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Algorithm 10 Rational Krylov method, an iterative projection method

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ
2: for j = 1, 2, . . . until convergence do

3: solve projected eigenproblem V HT (σ)−1T (λ)V s = 0 for (λ, s)
by inner iteration

4: compute Ritz vector x = V s and residual r = T (σ)−1T (λ)x
5: orthogonalize r = r − V V Hr
6: expand searchspace V = [V , r/‖r‖]
7: end for

of) the residual r = T (σ)−1T (λ)V s of the Ritz pair (with respect to V ), and one
ends up with Algorithm 10.

The following observations are at hand: the inner iteration in step 3: can be
replaced by any dense solver of Section 2, and numerical examples demonstrate [28]
that the method can be accelerated considerably this way. But on the other hand, the
solvers in Section 2 need the explicit form of the projected problem whereas the inner
iteration of Ruhe only needs a procedure that yields the vector T (σ)−1T (λ)x for a
given x. A disadvantage of the rational Krylov method is that symmetry properties
which the original problem may have are destroyed if the projected problem (43) is
considered instead of V H

j T (λ)Vjs = 0 in the Arnoldi method or the Jacobi–Davidson
algorithm.

4 Numerical examples

To test the methods we consider two types of problems, a finite element model
of free vibrations of a fluid–solid structure, which is symmetric having a Rayleigh
functional such that the projected problems can be solved by safeguarded iteration,
and a rational eigenproblem governing damped vibrations of a structure which has
non–real eigenvalues.

4.1 Vibrations of a fluid–solid structure

We consider a mathematical model which describes the problem governing free vibra-
tions of a tube bundle immersed in a slightly compressible fluid under the following
simplifying assumptions: The tubes are assumed to be rigid, assembled in paral-
lel inside the fluid, and elastically mounted in such a way that they can vibrate
transversally, but they can not move in the direction perpendicular to their sections.
The fluid is assumed to be contained in a cavity which is infinitely long, and each
tube is supported by an independent system of springs (which simulates the specific
elasticity of each tube). Due to these assumptions, three-dimensional effects are ne-
glected, and so the problem can be studied in any transversal section of the cavity.
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Fig. 1: Time consumption and convergence history for Arnoldi

Considering small vibrations of the fluid (and the tubes) around the state of rest, it
can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [41], [10]).
Let Ω ⊂ R

2 (the section of the cavity) be an open bounded set with locally Lipschitz
continuous boundary Γ. We assume that there exists a family Ωj 6= ∅, j = 1, . . . , p,
(the sections of the tubes) of simply connected open sets such that Ω̄j ⊂ Ω for every
j, Ω̄j ∩ Ω̄i = ∅ for j 6= i, and each Ωj has a locally Lipschitz continuous boundary Γj .
With these notations we set Ω0 := Ω \

⋃p
j=1 Ωj . Then the boundary of Ω0 consists

of p + 1 connected components which are Γ and Γj , j = 1, . . . , p.

We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)
2} the standard Sobolev

space equipped with the usual scalar product. Then the eigenfrequencies and the
eigenmodes of the fluid-solid structure are governed by the following variational
eigenvalue problem (cf. [41], [10])

Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

(44) c2

∫

Ω0

∇u · ∇v dx = λ

∫

Ω0

uv dx +

p
∑

j=1

λρ0

kj − λmj

∫

Γj

un ds ·

∫

Γj

vn ds.

Here u is the potential of the velocity of the fluid, c denotes the speed of sound in
the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant of
the spring system supporting tube j, mj is the mass per unit length of the tube j,
and n is the outward unit normal on the boundary of Ω0.

We consider the rational eigenvalue problem (44) where Ω is the rectangle (0, 8)×
(0, 4), and the sections of the tubes are (2, 2.2) × (1, 1.2), (5.8, 6.2) × (1.8, 2.2) and
(5.8, 6) × (2.8, 3). We assume that all constants in problem (44) are equal to 1.
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Discretizing problem (44) by linear Lagrangean elements one gets a rational ma-
trix eigenvalue problem

(45) T (λ)x := −Ax + λBx +
λ

1 − λ
Cx = 0

where C collects the contributions of all tubes. A, B, and C are symmetric matrices,
A and C are positive semidefinite, and B is positive definite. In our example the
dimension is n = 22654.

Problem (45) has 11 eigenvalues λ1 ≤ · · · ≤ λ11 in the interval J1 = (0, 1) (cf.
[35]), and a large number of eigenvalues greater than 1, 10 of which are contained in
the interval (1, 4).

We determined approximations to the eigenvalues in [0, 1) by the Arnoldi method
(Algorithm 6), the Jacobi–Davidson method (Algorithm7), where in both cases the
projected nonlinear eigenproblems where solved by safeguarded iteration, and by the
rational Krylov method (Algorithm 10) where the projected rational eigenproblems
were solved linearizing the equivalent quadratic eigenproblem (1−λ)V T T (λ)V y = 0.
All three methods were able to find all 11 eigenvalues. The original rational Krylov
method (Algorithm 9) as implemented by Jarlebring [27] turned out to depend very
sensitively on the initial pole σ and the initial approximation to an eigenvalue, and
were able to find at most 8 eigenvalues in the interval [0, 1).

The experiments were run under MATLAB 6.5 on an Intel Centrino M processor
with 1.7 GHz and 1 GB RAM. Figures 1 to 3 show the time consumption and the
convergence history of the three methods where in every case the initial pole was
chosen to be σ = 0.1, and the iteration was terminated if the residual was less than
10−6. In all plots plus signs indicate found eigenvalues, and circles mark changes of
the pole σ. The dashed lines indicate the pole in use.

Table 1 summarizes the properties of the iterative projection methods under
consideration as applied to the symmetric nonlinear eigenproblem governing the free
vibrations of the fluid–solid structure.

Method Iter. LU fact. CPU [s] nlin.sol. [s]

Arnoldi 34 2 14.93 0.13
Jacobi–Davidson 37 3 112.84 0.15
rational Krylov 40 2 70.80 0.22

intervall (1, 4)

Arnoldi 36 2 17.35 0.17
Jacobi–Davidson 37 5 125.87 0.23

Tabel 1: Fluid–solid structure

Enumerating the eigenvalues according to Subsection 2.5 the smallest eigenvalue
in the interval (1, 4) turns out to be a 6:th eigenvalue. Starting the Arnoldi method
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Fig. 2: Time consumption and convergence history for Jacobi–Davidson
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Fig. 3: Time consumption and convergence history for rational Krylov
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Fig. 4: Time consumption and convergence history for Arnoldi; Interval (1, 4)

and the Jacobi–Davidson method with the invariant subspace of the linear eigen-
problem (cf. [62])

(

A +
λ

λ − 1
C

)

x = µBx, λ = 1 + ε, ε > 0,

corresponding to the 6 largest eigenvalues, both methods were able to find all eigen-
values of problem (44) in the interval (1, 4). The time consumption and the con-
vergence histories are contained in Figures 4 and 5. The rational Krylov method
destroys the symmetry of the problem, and the enumeration of Subsection 2.5 does
not apply. Neither the implementation of Jarlebring nor the modification in Algo-
rithm 10 was able to find more than one or two eigenvalues in the interval (1, 4).

4.2 Damped vibrations of a structure

As a second example we consider the the free vibrations of a solid

Ω := {(x, y, z) : x2/9 + y2/4 + z2 ≤ 1, x ≥ 0, z ≥ 0},

which is fixed at the boundary surfaces {(x, y, z) ∈ Ω : x = 0, z = 0}. Assuming a
density ρ = 7800, a Young’s modulus E = 2.1 ∗ 1011 and a Poisson rate ν = 0.3, and
including nonproportional damping using the constitutive law of a standard linear
viscoelastic solid with parameters ∆ν = 0.27, ∆E = 0.5 ∗ 1011 and a relaxation con-
stant b = 10−4, the finite element method with linear Lagrangean elements generated
a rational eigenproblem

(46) T (ω) :=
(

ω2M + K −
1

1 + bω
∆K

)

x = 0
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Fig. 5: Time consumpt. and conv. history for Jacobi–Davidson; Interval (1, 4)

of dimension 10704.

For symmetry reasons we determined only eigenvalues with negative imaginary
part, and we computed 30 of them one after another with decreasing imaginary part.
The nonlinear projected eigenproblems (after multiplying by 1 + bω) were solved by
linearization, and the iteration was terminated if the norm of the residual was less
than 10−6.

The Arnoldi method without restarts needed 144 iteration steps, and a CPU
time of 707.0 seconds to find all 30 eigenvalues with maximal negative imaginary
part (i.e. the average number of iteration steps to determine an eigenvalue is less
than 5). With a tolerance of tol = 2 ∗ 10−1 in step 13: of Algorithm 6 no update of
the preconditioner was necessary.

The dominant share of the CPU time, namely 469.9 seconds was consumed by
the solver of the projected nonlinear eigenproblems. Figure 6 displays the develop-
ment of the time consumption of the entire iteration and the share of the nonlinear
eigensolver. It demonstrates the necessity of restarts since the superlinear time con-
sumption is mainly caused by the eigensolver.

We restarted the Arnoldi process if the dimension of the search space exceeded
50 with an orthogonal basis of the space spanned by the already determined eigen-
vectors. The method needed 3 restarts, and again all 30 eigenvalues with maximal
negative imaginary part were found by the Arnoldi method requiring 139 iterations,
and 4 updates of the preconditioner. The total CPU time was 199.6 seconds. Solv-
ing the projected eigenproblems and updating the preconditioners required 25.0 and
30.8 seconds, respectively. Figure 7 demonstrates the time consumption for this
experiment.

Obviously, immediately after a restart the speed of convergence is slowed down.
On the other hand this delay yields an update of the preconditioner accelerating the
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convergence, such that the total number of iteration steps is reduced from 144 to
139.

The Jacobi–Davidson method and the rational Krylov method according to Algo-
rithm 10 are much slower than the Arnoldi method, but they show similar behaviour:
without restart a substantial share of the total CPU time is consumed by the solver
of the projected nonlinear eigenproblems, and both methods can be accelerated by
restarts. Details about these methods are contained in Table 2. The rational Krylov
method with inner iteration converges for this problem, although it is very slow. To
determine the 30 wanted eigenvalues 366 iterations are necessary requiring 2248.5
seconds.

Method Iter. LU fact. CPU [s] nlin.sol. [s]

Arnoldi 144 2 707.0 469.9
Arnoldi, restarted 139 5 199.6 25.0
Jacobi–Davidson 111 9 1050.5 161.2
Jacobi–Davidson, restarted 109 12 914.4 18.9
rational Krylov 147 3 1107.1 465.3
rational Krylov, restarted 147 4 647.8 28.5

Tabel 2: Damped vibrations of a structure
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[54] S. I. Solov’ëv. Eigenvibrations of a plate with elastically attached loads. Preprint
SFB393/03-06, Sonderforschungsbereich 393 an der Technischen Universität
Chemnitz, Technische Universität, D-09107 Chemnitz, Germany, 2003. Avail-
able at http://www.tu-chemnitz.de/sfb393/Files/PS/sfb03-06.ps.gz.

[55] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Re-

view, 43:235 – 286, 2001.

[56] H. Voss. An error bound for eigenvalue analysis by nodal condensation. In J. Al-
brecht, L. Collatz, and W. Velte, editors, Numerical Treatment of Eigenvalue

Problems, Vol. 3, volume 69 of International Series on Numerical Mathematics,
pages 205–214, Basel, 1984. Birkhäuser.
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