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Abstract

Chest X-ray (CXR) imaging is the most common examination type in a radiology de-

partment, today. Automatic disease classification can assist the radiologists to reduce

workload and to improve the quality of patient care. Medical image analysis has un-

dergone a paradigm shift over the last decade, which is largely due to the tremendous

success of convolutional neural networks (CNNs) that achieve superhuman perfor-

mance in many image classification, segmentation, and quantification tasks. CNNs

are being applied to CXR images, but the high spatial resolution, the lack of large

datasets with reliable ground truth, and the large variety of diseases are significant re-

search challenges when moving towards application in the clinical environment. No-

tably, these challenges motivate the novel contributions made throughout this thesis.

Systematic evaluation and analysis of four major design decision for CNNs were per-

formed: loss functions, weight initialization, network architectures, and non-image

feature integration. To leverage the information such as age, gender, and view posi-

tion, a novel architecture integrating this information, as well as the learned image

representation, was proposed and resulted in state-of-the-art results for the ChestX-

ray14 dataset. Furthermore, two advanced image preprocessing techniques were in-

vestigated to improve the performance of CNNs: bone suppression—an algorithm

to artificially remove the rib cage from CXRs—and automatic lung field cropping—a

method to increase the input resolution for CNNs. Both methods combined slightly in-

creased the average results for the OpenI dataset. Finally, a framework is developed to

investigate whether CNNs for smart worklist prioritization can optimize the radiology

workflow and reduce report turnaround times (RTAT) for critical findings in CXRs.

The simulations demonstrate that urgency prioritization with CNNs can reduce the

average RTAT for critical findings such as pneumothorax by a factor of two. In con-

clusion, improvements to specific design decision such as the network architecture,

image preprocessing, and training with small datasets for CXR analysis were made.

The results were used to demonstrate a significant reduction in the average RTAT for

critical findings, which can substantially improve the quality of patient care.
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1 Introduction

In the United Kingdom, the Care Quality Commission has recently reported that—over

the preceding 12 months—a total of 26,345 chest X-rays (CXRs) and 2,167 abdomen X-

rays have not been formally reviewed by a trained expert radiologist at Queen Alexandra

Hospital alone. As a result, three patients with lung cancer have suffered significant

harm because their chest X-rays were not properly assessed [Care Quality Commission,

2017].

As a diagnostic tool, medical imaging is one of the most revolutionary advances in

medicine in recent decades. By providing a visual representation of the inside of the

human body, medical imaging helps radiologists make earlier and more accurate diag-

noses. Thus, diseases can be treated more effectively to improve the quality of patient

care. Throughout the years, medical imaging has improved in terms of measurement

speed, spatial resolution, and contrast. Having this useful tool results in the need for

sufficient capacity to have expert radiologists assess the relevant data. We already

have situations where there is insufficient capacity to have all X-ray images reviewed

by radiologists [Care Quality Commission, 2017; Royal College of Radiologists, 2018].
With the increasing amount of data generated by various medical imaging modalities

[Kesner et al., 2018] and the growing world population [United Nations DESA, 2019],
it is expected that the demand for expert reading capacity will increase. Among the

imaging modalities available in radiology departments, plain radiography is the most

common, while chest X-rays are the most frequent examination type [Bundesamt für

Strahlenschutz, 2020; NHS England, 2020].

Automatic image analysis tools allow radiologists to significantly reduce their work-

load and increase the quality of patient care. Earlier methods often combined hand-

crafted feature representation and classifiers. Unfortunately, developing methods

for the feature extraction requires enormous domain expertise and is often a time-

consuming process. However, deep learning potentially changes such requirements.
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1 Introduction

In the year 2012, Krizhevsky et al. [2012] presented AlexNet—a convolutional neural

network—for image classification in computer vision and won the ImageNet challenge

by a large margin. This was possible due to the increased computing power (i.e., the

parallel computing of graphical processing units (GPUs)) and the enormous amount of

available data. Such success helped revive neural networks as a method of machine

learning, which is a subfield of artificial intelligence (AI). In computer vision, deep

learning has already proven its ability to analyze images with superhuman accuracy

[He et al., 2016; Simonyan et al., 2015; Szegedy et al., 2014; Tan et al., 2019]. The

field of medical image analysis is now intensely exploring deep learning.

The following paragraphs outline the structure of this thesis and provide an overview

of each chapter and its contributions. Chapters 2 to 4 summarize the background

information and important literature. Then, Chapters 4 through 7 present the research

conducted for this thesis. Finally, Chapter 8 concludes this thesis with a summary and

outlook for the future.

Chapter 2 briefly introduces medical imaging and its automated analysis. Thereafter,

a comprehensive review of chest X-ray analysis with deep learning is presented. As

one of the most important enablers of rapid progress in deep learning, open source

datasets such as ChestX-ray14 [Wang et al., 2017] and OpenI [Demner-Fushman et

al., 2016] are discussed. This is followed by a discussion of the challenges posed by

noisy annotation generated by natural language processing (NLP) as well as high-

resolution chest X-ray data. Finally, we examine the clinical application of chest X-ray

classification in the context of current challenges.

Chapter 3 outlines the historical motivation and chronological progression of neural

networks. Their basic element—an artificial neuron—is explained, and different types

of activation functions are discussed. Subsequently, the principles of a feed-forward

neural network and the differences between classification vs. regression tasks are ex-

plained. To calculate the optimal weight parameter changes—and as an updated rule

for neural networks—Rumelhart et al. [1986] proposed back-propagation. Finally, this

chapter explains how gradient descent is used as an optimization technique for neural

networks and outlines significant improvements to this method for the optimization

of neural networks.

Chapter 4 describes the major changes to standard feed-forward neural networks

that led to deep neural networks and their successful application to high-dimensional

2



signals—especially in image processing. The basic understanding of convolutional

neural networks as hierarchical feature extractors and the application to high-

dimensional images are explained. To achieve this, important building blocks of state-

of-the-art network architectures (e.g., convolutional, pooling, and normalization lay-

ers) are presented. Optimization with gradient descent bears the risk of gradients ex-

ploding and vanishing when naively stacking layers in a very deep network. Gradient

vanishing is addressed by residual connections and densely connected architectures—

both of which allow the stacking of additional layers. Such advanced models typically

have millions of parameters to train; therefore, they can easily overfit to the training

data. For this reason, data augmentation is often used to artificially enlarge datasets.

This also helps to improve the generalizability of a neural network because the model

becomes invariant to affine transformations. After training a model, it is important to

assess its generalization capability and performance. First, different resampling meth-

ods (e.g., k-fold cross-validation or Monte Carlo subsampling) can split a dataset into

training-testing subsets, which facilitates generalization assessment. Second, evalua-

tion metrics such as the receiver operating curve and precision-recall curve are used

to quantify model performance in disease classification.

Chapter 5 provides insight into different training approaches and their applications

to chest X-ray disease classification. Building on prior work in this domain, transfer

learning is considered with and without fine-tuning and the training of a dedicated

X-ray network from scratch. Due to the high spatial resolution of X-ray data, we pro-

pose an adapted ResNet-50 architecture with a larger input size and demonstrate its

superior performance when compared to other models [Baltruschat et al., 2019c].
Since radiologists usually include much more information than merely a chest X-ray

for their diagnoses, the model architecture is further changed and a novel model is

introduced to include non-image features that facilitate patient information acquisi-

tion. Finally, the limitations of the ChestX-ray14 dataset are highlighted by analyzing

the model with Grad-CAM. These findings motivate the contributions of the following

chapters.

Chapter 6 deals with the normalization of chest X-ray data to train on a small dataset

(i.e., with only a few thousand samples)—the OpenI dataset [Demner-Fushman et al.,

2016]. In addition, the effect of increased input data resolution for neural networks is

investigated. Manually-labeled datasets typically have a small sample size—although

the OpenI dataset is one of the largest (3,125 images)—which complicates the train-

ing of deep neural networks from scratch. As a first preprocessing method, lung field

3



1 Introduction

cropping based on segmentation and bounding box calculation is proposed. This step

greatly reduces variation in the appearance of chest X-rays and increases their reso-

lution as an input image, as the factor of downscaling is also reduced. The second

method is bone suppression, which can be used to reduce information superposition

by removing the bone structure from a chest X-ray. Notably, both methods contribute

to improving disease classification performance [Baltruschat et al., 2019e]. Moreover,

this chapter outlines the process of annotation generation by expert radiologists for

chest X-rays as well as problems related to inter-observer variability [Ittrich et al.,

2018; Steinmeister et al., 2019].

Chapter 7 presents the translation of disease classification with deep learning into a

specific clinical application. After chest X-rays are acquired, they are usually sorted

into a worklist. Depending on the workflow in each radiology department, this work-

list is sorted by acquisition time or manual priority labels and, to a large extent, ra-

diologists process their worklist items sequentially. Therefore, the worklist is only

processed according to the first-in-fist-out principle. A state-of-the-art classification

algorithm for chest X-ray diseases can automatically assign priority labels, which can

greatly improve worklist sorting. This chapter presents a novel simulation framework

for modeling a clinical workday, which highlights the effects of an automatically priori-

tized worklist. The framework uses empirical data from the University Medical Center

Hamburg-Eppendorf and can simulate a clinical workday, which includes the chest X-

ray generation process, the automatic disease classification of chest X-rays, and the

time needed for final report generation by a radiologist [Baltruschat et al., 2020b].
Notably, the improved methods proposed in Chapters 5 and 6 for the classification of

chest X-ray diseases are used.

Chapter 8 concludes the thesis and its main contributions. It also presents new ques-

tions that have arisen from this thesis.
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2 Motivation and challenges of
lung disease classification

This chapter reviews the current challenges, limitations, and potential of lung disease

classification for clinical applications. It begins with a brief introduction to the general

concepts of medical imaging and medical image analysis. Conventional radiographic

imaging is then explained in relation to chest X-ray. The important factors leading to a

paradigm shift in automated image analysis are then outlined. Relevant literature and

open source datasets for chest X-ray disease analysis are also presented.

Medical imaging refers to the generation of (two- or three-dimensional) images that

non-invasively visualize organs and structures within the human body. As one of the

major milestones in 20th-century medical progress, medical imaging has made a fun-

damental contribution to improving our understanding of human anatomy, physiol-

ogy, and disease patterns. The evaluation of medical images provides clinicians with

an objective basis for the diagnosis of diseases, which has significantly improved the

treatment of patients [Heinrich, 2013].

Several medical imaging modalities exist, which can be divided based on two charac-

teristics: projection imaging methods and sectional (tomographic) imaging methods.

Projection imaging methods generally have a low cost per examination and a rapid

acquisition time. Since only one image is required per examination, image recon-

struction is computationally easy to handle. However, projection imaging only pro-

duces two-dimensional images. On the other hand, tomographic imaging methods

can reconstruct volumetric three-dimensional images, but at the expense of solving a

complex mathematical problem and a longer image acquisition time. The algorithms

for reconstruction generally have high computational complexity since several mea-

surements are combined. Second, the methods can be divided into non-ionizing and

ionizing radiation methods. Magnetic resonance imaging, ultrasound, and magnetic

5



2 Motivation and challenges of lung disease classification

particle imaging use non-ionizing radiation for image acquisition, which is considered

harmless to patients. In contrast, the ionizing radiation employed by conventional

radiography (also called X-ray), computed tomography (CT), and positron emission

tomography (PET) can cause cell mutation. Nevertheless, advantages such as high

spatial resolution, bone structure contrast, and metabolic process visualization by X-

ray, CT, and PET, respectively, outweigh the risks. This thesis focuses solely on the

projection X-ray images of radiography systems, which represent the most common

form of imaging in everyday clinical practice. Notably, Section 2.1 provides a more

detailed introduction to this imaging modality.

Deriving clinically useful information for the detection, diagnosis, and treatment of

diseases from such images is the main task of radiology. Radiology also includes surgi-

cal intervention (e.g., stent placement), where real-time imaging is used to guide radi-

ologists through blood vessels, arteries, and organs to the target internal structures of

the body. Increased computational resources and the establishment of medical imag-

ing as a fundamental diagnostic tool have resulted in the emergence of medical image

analysis. The goal of medical image analysis is the development of techniques that

provide radiologists with relevant information derived from images. These techniques

facilitate reproducible, quantitative, and objective assessments of medical scans. Med-

ical image analysis is a useful tool for experts, who typically judge images qualitatively

and subjectively.

Medical image analysis can be roughly divided in three major areas.

Image classification: Assigning the correct class of a set of categories to a new

image is the process of image classification. In medical imaging, classifying whether

or not a pathology is present represents an important task.

Image registration: Aligning two (or more) images to achieve the anatomical

correspondence is the process of image registration. In medical imaging, CT and PET

can visualize anatomical structures and metabolic information, respectively. To dis-

play both scans in an overlay, image registration is required to align both scans.

Image segmentation: Delineating different structures in an image is the pro-

cess of image segmentation. In medical imaging, the segmentation of different or-

gans, pathologies, or tissue classes is often of great interest. This is useful for further

processing, such as measuring the size or describing the shape or texture of organs in

medical image.

Medical image analysis has undergone a paradigm shift over the last decade, which is
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2.1 Conventional radiography imaging

largely due to the tremendous success of deep learning methods that achieve super-

human performance in many tasks. This thesis focuses on the automated analysis of

chest X-ray with deep learning. Section 2.2 presents a brief introduction to medical

image analysis and provides a comprehensive literature review on chest X-ray analysis.

Additionally, Section 2.4 outlines the main methodological challenges for automated

chest X-ray analysis with deep learning and its potential clinical applications, which

motivate the novel contributions of the present thesis. Chapters 3 and 4 introduce

the concept of artificial neural networks for image processing, while Chapters 5 to 7

discuss these methods in greater detail.

2.1 Conventional radiography imaging

In 1895, Wilhelm Röntgen discovered X-rays and was the first to take a two-

dimensional X-ray image of a human body part (see Figure 2.1 (a)). This discovery

started a new era in medical imaging, which has rapidly evolved into the most common

examination type today [Bundesamt für Strahlenschutz, 2020; NHS England, 2020].
Conventional radiography is a two-dimensional projection imaging technique that in-

volves projecting an object onto a detector. The X-ray tube generates X-radiation,

which passes through objects. The intensity of X-radiation is scattered or attenuated

depending on the different densities and attenuation coefficients of materials (i.e.,

bones, tissues, and fluids).

Today, most radiography systems use a digital X-ray detector to convert X-radiation

into an image. A typical detector has an active image area of 34.48 cm × 42.12 cm,

and the resulting image has a matrix size of 2330 × 2846pixels and a bit depth of

14 bits [Philips Healthcare, 2020]. Digital detectors can be separated into direct and

indirect radiation conversion groups, while the latter is more common. A digital detec-

tor with direct conversion directly converts the absorbed X-rays into electric current.

In contrast, indirect conversion uses a scintillator layer to convert the X-radiation into

light. Photodiodes then capture the light for the final conversion into an electric cur-

rent. Digital X-ray images are usually displayed as inverted, where a high signal (i.e.,

low X- radiation absorption) appears black and a low signal (i.e., high X-radiation

absorption) appears white (see Figure 2.1 (b)).

Compared to other imaging techniques, the benefits of conventional radiogra-
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2 Motivation and challenges of lung disease classification

(a) One of the first X-rays (b) Modern medical X-ray

Figure 2.1: One of the first X-rays by Wilhelm Röntgen of Anna Bertha Ludwig’s hand [Im-
age source: http://www.zeno.org/nid/20001894587; public domain] (a) and
a modern medical X-ray (acquired after an accident) of Ivo Matteo Baltruschat’s
hand, captured by a Philips DigitalDiagnost (b).
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2.1 Conventional radiography imaging

phy include its rapid examination time, high spatial resolution (commonly up to

3.4 linepairs/mm [Philips Healthcare, 2020]), relative lack of artifacts (e.g., motion or

reconstruction artifacts), and low cost per image. Additionally, intensive care units can

use mobile radiography systems to acquire X-ray images without the need to move pa-

tients. The large variety of applications for different body parts and pathologies make

conventional radiography the most impotent imaging modalities in medicine. A more

detailed introduction to medical imaging is presented in [Van Metter et al., 2000],
which also provides a good overview of the physics of different imaging modalities.

Chest X-ray: Daffner [1999] called the chest X-ray a “mirror of health and dis-

ease”. Twenty-one years later, chest X-ray is the most common examination type in

radiology departments [Bundesamt für Strahlenschutz, 2020; NHS England, 2020]
and the statement of Daffner [1999] remains true. In [Brant et al., 2007; Lange et al.,

2007], and [Darby et al., 2012], the fundamentals of chest X-ray interpretation and

diseases are presented. The following provides a short introduction to frequently used

terminology in chest radiography as well as an overview of the anatomical structure

in a chest X-ray.

Chest X-rays are commonly named based on how the radiation beam passes through

the patient. They can be roughly divided into three projection types: posteroanterior

(PA), lateral, and anteroposterior (AP). PA and lateral are the basic examinations of

the thorax (see Figures 2.2 (a) and 2.2 (b), respectively). For a PA examination, the

patient stands upright, positions the front (anterior) of his chest against the detector,

and places his hands on his hips or the handles of the device. Thus, the radiation beam

passes through the back (posterior) to the anterior portion of the patient’s chest. A

lateral examination is made while the patient stands with his left side against the

detector and arms raised [Lange et al., 2007]. AP examinations are typically used for

patients who cannot stand or are bedridden. In contrast to PA, the patient positions

his posterior chest against the detector (i.e., the radiation beam passes through the

anterior to the posterior portion of the patient’s chest). This positioning leads to a

magnification of internal structures in the X-ray image since the distance between

organs and the detector increases.

In a standard PA and lateral chest X-rays (see Figure 2.2 (a) and 2.2 (b), respectively),

readers can typically observe the trachea, clavicles, scapulae, ribs, heart, diaphragm,

and vertebrae forming the spine. Both X-rays shown in Figure 2.2 are of the same
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(b) Lateral chest X-ray

Figure 2.2: Typical examination type in which two corresponding X-ray images of the chest
are taken from one patient. (a) shows the frontal PA chest X-ray and (b) the
lateral chest X-ray. In both X-rays, one can see anatomical structures: (1) tra-
chea, (2) clavicle, (3) scapulae, (4) ribs, (5) heart, (6) diaphragm, and (7)
vertebrae forming the spine. Example images are taken from the OpenI dataset
[Demner-Fushman et al., 2016]

healthy patient. Notably, lung diseases can significantly alter the appearance of a

chest X-ray.

The nature of chest X-ray images—being a projection imaging modality—makes them

very difficult to interpret. This is largely due to the overlapping of anatomical struc-

ture and diseases. Another problem can be the distinction between visually similar

diseases or diseased and healthy structures (i.e., infiltration and normal blood vessel

structure within the lungs). After learning the basics of chest X-ray analysis, radiol-

ogists typically improve their understanding of chest X-rays and diagnostic skills by

viewing a large number of X-rays. Over many years, radiologists learn what the chest

X-ray of a healthy patient looks like and compare each new patient with this memo-

rized representation. This is a subjective process that often leads to large interobserver

and intraobserver differences when radiologists diagnose chest X-rays [Albaum et al.,

1996; Johnson et al., 2010]. Chapter 5 discusses the appearance of common chest

X-ray diseases such as pneumothorax or pleural effusion. Based on the effort to create

a multi-reader annotated dataset, Sections 2.4.2 and 6.2 discuss the problems of inter-

and intraobserver differences.
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2.2 Medical image analysis

2.2 Medical image analysis

Due to its high clinical impact and remaining challenges, medical image analysis has

become a broad and active area of research in recent decades. Notably, Beutel et al.

[2000] provide an introduction to medical image analysis. Moreover, van Ginneken

et al. [2001] and van Ginneken et al. [2001] present a comprehensive review of chest

X-ray analysis that includes rule-based methodological approaches. However, since

these reviews do not cover the most recent methodological changes to deep learning,

this section of the thesis provides an overview of recent deep learning methods for

chest X-ray analysis.

The literature review is limited to the period from January 2017 to December 2019.

Two websites were used to find suitable literature: Arxiv Sanity Pre-server (http:

//www.arxiv-sanity.com) and Google Scholar (https://scholar.google.com). The fol-

lowing terms were used to search for suitable literature: “X-ray”, “chest”, “lung”, “deep

learning”, and “neural network”.

For the literature summarized in Tables 2.1 and 2.2, chest X-ray analysis with deep

learning can be divided into four main areas: classification, localization, segmenta-

tion, and report generation. Additionally, NLP with neural networks is attracting in-

creasing interest among researchers. NLP offers the possibility to use old reports for

chest X-ray analysis by converting them into labels. The existing labels can then be

used for the supervised learning (see Section 3.2) of a neural network. Table 2.1 only

summarizes work on disease classification, while Table 2.2 groups work presenting

methods for other chest X-ray analysis areas. The following paragraphs discuss the

tables and then highlight some important work related to this thesis.

For the literature summarized in Table 2.1 and 2.2, chest X-ray analysis with deep

learning can be spitted in four main areas: classification, localization, segmentation,

and report generation. Additionally, NLP with neural networks is becoming increas-

ingly interesting for researchers. NLP offers the possibility to use old reports for a

chest X-ray analysis by converting the report into labels. The existing labels can then

be used for supervised learning (see Section 3.5) of a neural network. Table 2.1 only

summarizes work on disease classification, while Table 2.2 groups work presenting

methods for other chest X-ray analysis areas. First, the tables are discussed, and then

some important works for this thesis are highlighted.
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2 Motivation and challenges of lung disease classification

Table 2.1: The research papers shown in this table are sorted by their year of pub-

lication in descending order. Despite other datasets being released earlier, the ChestX-

ray14 dataset is used for training in most of these works. This could be due to older

open source datasets having one or two orders of magnitude fewer images (see 2.3

and Table 2.3). Moreover, nearly half of the 19 papers used some form of internal data

to either train their network or obtain a clean test dataset. In terms of neural network

architecture, most used either ResNet [He et al., 2015a] or DenseNet [Huang et al.,

2017]. Notably, both of these architectures have among the most powerful classifica-

tion networks for the ImageNet challenge [Russakovsky et al., 2014]. Furthermore,

only two papers employed the older VGG-19 [Simonyan et al., 2015] architecture.

Additionally, 10 of the 19 papers used a model pre-trained on ImageNet.

Table 2.2: This table presents papers on disease classification as well as localiza-

tion, segmentation, report generation, and NLP. The table is sorted according to tasks

in the same order as the previous enumeration to better group the papers. Compared

to Table 2.1, 9 of the 20 papers present methods for classification; however, they usu-

ally combine their methods with a second task such as localization, segmentation, or

report generation. Only three of these nine papers use the ChestX-ray14 dataset, even

though they report a classification method. The total number of papers on segmenta-

tion, localization, and report generation are eight, seven, and five, respectively, which

suggests that all tasks are of similar interest. Among the papers featured in this table,

ResNet is the most commonly used neural network architecture, while VGG and the

DenseNet are only used twice and once, respectively. Furthermore, 5 of the 20 papers

used a model pre-trained on ImageNet.

Important works: Bar et al. [2015] proposed the use of a convolutional neural net-

work trained on natural images as a feature extractor since medical data with annota-

tion were rare at that time. Combining the extracted image features with well-known

descriptors such as GIST [Oliva et al., 2001] or bag-of-visual-words (BoVW) [Csurka

et al., 2004] has slightly increased model performance when compared to using each

feature descriptor on its own.

With the release of the large dataset ChestX-ray14 in 2017, the classification of dis-

eases in X-ray images has gained a lot of attention among researchers. Rajpurkar et

al. [2017] have reported that a DenseNet-121 architecture—with no substantial archi-
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2.2 Medical image analysis

tectural changes—pre-trained on ImageNet and fine-tuned to ChestX-ray14 can detect

pneumonia with a higher F1 score than radiologists. To support this claim, they have

compared their method with four radiologists of different experience levels. Further-

more, they have presented results for 13 other pathological findings, which are part

of ChestX-ray14 (see Section 5.1). Here, they have reported the commonly used area

under the receiver operation curve (AUROC) and achieved superior performance for

all 14 findings when compared to two initial works using the same data.

Since the F1 score is the harmonic mean of precision and recall, it changes when the

prevalence changes. Unfortunately, their presented materials and results are incom-

plete, which makes it difficult to verify the F1 results. Since Rajpurkar et al. [2017]
have not reported the recall or precision, it is impossible to tell where the differences

between the results originate from. Moreover, they have not reported the prevalence

of their test data set.

The output of neural networks are typically continues numbers, and Rajpurkar et al.

[2017] must use a threshold value to binarize the neural network output (see Sec-

tion 3.1). Rajpurkar et al. [2017] have reported neither the threshold value nor the

precision-recall curve for their neural networks. Chapter 5 discusses these results

in greater detail and presents a novel and superior architecture that includes meta-

information.

Kim et al. [2018] have presented an approach to reduce the problem of catastrophic

forgetting when a neural network is trained sequentially. After the deployment of a

neural network, it is often unfeasible to retrain the neural network from scratch when

new data becomes available. Hence, neural networks are trained sequentially. To

preserve the knowledge gained from training on old data, Kim et al. [2018] added a

reconstruction loss to the standard training loss, thereby forcing the latent space to

be informative about earlier training stages. Furthermore, they have shown that their

method works for both natural images and chest X-ray disease classification.
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Table 2.1: Overview of recent literature on chest X-ray for disease classification with deep learning. The results of each paper are not presented
because they often cannot be compared to each other. Instead, this table provides information about the dataset, neural network
architecture, and some additional notes for deep learning experts. In the architecture columns, we encoded the number of layers by
using a specific symbol for each neural network. The “ResNet” column uses “x” for 50, “o” for 101, and “#” for 18 layers. In the
“DenseNet” column, “x” means 121 layers. An “x” in the “Pretrained” column indicates that the model was pretrained on ImageNet.
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Additional notes

[Bar et al., 2015] 443 x Shallow CNN; combining CNN features with GIST and BoVW; three classes
[Rajpurkar et al., 2017] x 400 x x
[Yao et al., 2017] x x RNN for modeling multi-label dependencies
[Ypsilantis et al., 2017] 100k x x Encoder with RAM
[Zech et al., 2018] x x 42k x Generalization across hospitals
[Ge et al., 2018] x x # x x Two networks; three losses: MSM-loss for label interdependency; bilinear pooling

-> fine-grained; CE-loss
[Yan et al., 2018] x x x SE block (from scratch) + 1x1 conv. before final max-min pooling
[Guendel et al., 2018] x x x x High-resolution input + class. of loc. label
[Guan et al., 2018] x x x Global/Local-net: CAM to generate “weakly” location -> crop image to this area

for local; concatenation global/local features
[Laserson et al., 2018] 959k x Two networks: concatenation lat. + frontal img. features
[Santeramo et al., 2018] 337k x Inception-v3 + RNN for longitudinal detection
[Rubin et al., 2018] x x Two networks: concatenation lat. + frontal img. features
[Putha et al., 2018] 2300k Company paper without technical information
[Kim et al., 2018] 10.5k Continual Learning
[Wang et al., 2019] x o x Grad-CAM attention
[Calli et al., 2019] x 15k x x Free rejection of out-of-distribution samples
[Baltruschat et al., 2019c] x x x Architecture including meta-data
[Bertrand et al., 2019] x x Comparison of frontal and lat. classification
[Baltruschat et al., 2019e] x x 3125 x Advanced preprocessing
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Table 2.2: Overview of recent literature for chest X-ray analysis with deep learning methods. This table provides information about the specific
tasks addressed in the paper as well as the dataset, neural network architecture, and some additional notes. In the architecture
columns, we encoded the number of layers by using a symbol for each neural network. The “ResNet” column uses “x” for 50, “o” for
101, and “#” for 18 layers. In the “DenseNet” column, “x” means 121 layers. An “x” in the “Pretrained” column indicates that the
model was pretrained on ImageNet.
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Additional notes

[Gooßen et al., 2019b] x x x 1003 Comparison study of MIL, class. and seg.
[Tang et al., 2018] x x x x Fine-tuning by severity sorted batches and binary class. + CAM attention
[Yao et al., 2018] x x x U-Net (adapted) + saliency map generation (weak supervision)
[Islam et al., 2017] x x x x x x x x x Loc. by black square occlusion
[Pesce et al., 2019] x x 305k o 1x1 conv. attention feedback (loc.) vs. + RAMAF (loc.)
[Imran et al., 2019] x x x x x APPAU-Net: Generator for seg. and discriminator for class.
[Mahapatra et al., 2018] x x x x 400 # x cGAN data augmentation
[Wang et al., 2018] x x x x 900 x x RNN with multi-level saliency attention
[Shin et al., 2016] x x x GoogLeNet + RNN for context generation
[Datta et al., 2020] x x Short review of papers working with OpenI; NLP with spatial role labeling
[Cai et al., 2018] x x x Multi-scale aggregation at the end; combining AT with KP
[Xing et al., 2019] x x Pix2Pix-GAN for data augmentation; only augmenting non-disease area
[Chen et al., 2018] x x x v x U-Net; CycleGan + semantic-aware loss for domain adaption
[Hwang et al., 2017] x x x U-Net with atrous conv.; Two-stage training: 1. rough segmentation 2.

Concat. original img. + rough segmentation
[Nishio et al., 2019] x x x 65 U-Net hyperparameter optimization for lung seg.
[Novikov et al., 2018] x x InvertedNet with ELU (U-Net variation)
[Dong et al., 2018] x x 221 # GAN for seg.
[Gasimova, 2019] x x x x RNN for report generation
[Harzig et al., 2019] x x o Two RNNs for normal and abnormal
[Liu et al., 2019] x x x x RNN + RNN combined with reinforcement learning

15
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2.3 Open source chest X-ray datasets

In contrast to rule-based methodological approaches based on predefined features

or classical machine learning methods, the performance of deep learning algorithms

scales with data [Sun et al., 2017]. With ongoing research efforts and an increas-

ing amount of medical data being generated daily, more data should be available for

research and clinical application development. Today, open datasets are one of the

main factors influencing the rapid progress of research in medical image analysis with

deep learning. Hence, we provide a summary of the available chest X-ray datasets

in Table 2.3 and also present a list of supplementary annotations to these datasets in

Table 2.4.

The first two publicly available chest X-ray datasets were published in 2000: the “JSRT”

dataset from Shiraishi et al. [2000] and the “PLCO-Lung” dataset from Team PLCO

Project et al. [2000]. Notably, Shiraishi et al. [2000] have released a small dataset

with 247 images for lung nodule classification. The chest X-rays are digitalized film

images and have an image size of 2048 × 2048pixels with a 12-bit gray level. The

PLCO-Lung dataset is relatively large (236,000 images from 70,000 patients) and has

detailed annotation (i.e., location descriptions and the total count for each pathology)

for 13 pathologies. The images are provided as TIFF files with an image size of 2500×
2100 pixels and a 16-bit gray level.

Shortly after this release, Jaeger et al. [2014] provided another two open datasets

for tuberculosis (TB) classification. The “Montgomery County” (MC) dataset includes

138 frontal chest X-rays. The images are provided as PNG files, have a 12-bit gray

level, and an image size of 4020× 4892 or 4892× 4020pixels. Besides the TB label,

segmentation masks for the left/right lung are also provided. The second dataset,

“Shenzhen”, contains 662 frontal chest X-rays. While these images are also PNG files

with a 12-bit gray level, they have an image size of approximately 3000×3000 pixels.

Furthermore, the Shenzhen dataset only contains labels for TB and no segmentation

masks.

In 2016, a new dataset known as “OpenI” was released by Demner-Fushman et al.

[2016]—the first dataset to include frontal and corresponding lateral chest X-rays.

The OpenI dataset includes 7,702 images from 3,851 patients and their correspond-

ing reports. The images are provided in the standard data DICOM format with no

preprocessing. In addition to the reports, annotation labels for image retrieval are
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provided based on the Medical Subject Headings (MeSH) vocabulary. Shortly there-

after, the popular “ChestX-ray14” dataset was released by Wang et al. [2017]. At this

time, the ChestX-ray14 dataset was one of the largest datasets, with 112,120 images

from 30,805 patients. In this dataset, Wang et al. [2017] provide 14 labels, which

were automatically generated by applying NLP to the reports. The images are prepro-

cessed to obtain an image size of 1024×1024 pixels and have an 8-bit gray level. The

file format is PNG.

In 2019, three more datasets known as “CheXpert”, “PadChest”, and “MIMIC-CXR-

JPG” were released by Irvin et al. [2019], Bustos et al. [2020], and Johnson et al.

[2019], respectively. CheXpert and MIMIC-CXR-JPG have the same 14 labels and sim-

ilar NLP methods were used to generate them. In comparison to ChestX-ray14, MIMIC-

CXR-JPG and CheXpert provide a binary label for each finding—“present” (i.e., 1) or

“not present” (i.e., 0)—and also include “uncertain/ambiguous language” (i.e., -1)

and “missing” (i.e., no mention of the label in the report). Furthermore, all three data

sets have nine labels in common. CheXpert includes 224,316 frontal and lateral im-

ages from 65,240 patients. The images are preprocessed by a histogram equalization

and converted to JPG files with an 8-bit gray level. The image size is unchanged by

the preprocessing. The MIMIC-CXR-JPG dataset contains 377,110 images from 64,586

patients with frontal and lateral chest X-rays. Johnson et al. [2019] have used a pre-

processing method similar to that of CheXpert. Hence, the images are converted to

8-bit gray level JPG files without altering the original image size. Additionally, the Pad-

Chest dataset comprises 160,868 frontal and lateral chest X-rays from 67,625 patients.

In contrast to the other datasets, the reports for PadChest were released—instead of

only automatically generated labels. The present thesis utilizes the ChestX-ray14 and

OpenI datasets. At the time of writing, ChestX-ray14 was the largest available dataset

with images selected from the daily routine; therefore, it provides a good basis for

the experiments performed in this work. On the other hand, the OpenI dataset (the

third largest) is the only one to provide images in DICOM format, which facilitates

the use of its own preprocessing steps. Furthermore, the OpenI dataset also provides

chest X-rays in two projections: frontal and lateral. Both datasets are discussed in

Sections 5.1 and 6.2.

Supplementary annotations have been published for some of the presented open

source datasets, which are shown in Table 2.4. Several years after the publication

of the JSRT dataset, van Ginneken et al. [2006] provided segmentation masks for

the lungs, heart, and clavicles across the entire dataset—known as “Segmentation in
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Chest Radiographs” (SCR). Two major competitions have been based on the ChestX-

ray14 dataset and provided specific annotations for their tasks. First, the Radiology

Society of North America (RSNA) hosted a pneumonia detection competition and re-

leased over 30,000 additional annotations with labels and bounding boxes [RSNA,

2020]. Second, the Society for Imaging Informatics in Medicine (SIIM) and the Amer-

ican College of Radiology (ACR) hosted a pneumothorax segmentation competition

in 2019 [SIIM, 2019]. They provided pixel-level pneumothorax segmentation masks

for 12,047 images.

Since many researchers have pointed out that noisy labels generated by NLP can have a

serious impact on the training and testing of neural networks, Majkowska et al. [2020]
released 4,376 images from the ChestX-ray14 dataset with annotations by three expert

radiologists. However, the original 14 classes were not used for their annotation;

instead, only four classes were used: pneumothorax, nodule/mass, airspace opacity,

and fracture.

Chapter 5 discusses the problems with NLP-generated labels, especially those related

to pneumothorax. To create clean labels with minimal noise as the gold standard,

two expert radiologists from the University Medical Center Hamburg-Eppendorf have

reannotated the entire OpenI dataset. Section 6.2 discusses the annotation process

and presents the results.
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Table 2.3: Overview of open source datasets. We include information about the number of patients and images as well as the types of projection
and labeling. For the column “Class.”, “x” indicates manual labeling, while “o” means natural language processing-generated labels.

Name
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l
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Se
g.

Pr
ep

ro
c.

Additional notes

[Shiraishi et al., 2000] JSRT 247 247 x x Nodule

[Team PLCO Project et al., 2000] PLCO-Lung 70,632 236,447 x x 13 classes, loc. description + count

[Jaeger et al., 2014] MC 138 138 x x x Lung mask; tuberculosis

[Jaeger et al., 2014] Shenzhen 662 662 x x Tuberculosis

[Demner-Fushman et al., 2016] OpenI 3,851 7,702 x x x Eeports; MeSH labels

[Wang et al., 2017] ChestX-ray14 30,805 112,120 x o x x 14 classes, bboxs only for small subset

[Irvin et al., 2019] CheXpert 65,240 224,316 x x o x 14 classes, uncertainty label

[Bustos et al., 2020] PadChest 67,625 160,868 x x x Reports

[Johnson et al., 2019] MIMIC-CXR-JPG 64,586 377,110 x x o x 14 classes

Table 2.4: Overview of supplements for open source datasets.

Supplement Name
Pa

ti
en

s

Im
ag

es
C

la
ss

.
B

bo
x.

Se
g. Additional notes

[van Ginneken et al., 2006] JSRT SCR 247 247 x Lung, heart, clavicles

[RSNA, 2020] ChestX-ray14 RSNA-Pneu 26,684 26,684 x x Pneumonia; 30,227 bbox. annotation

[SIIM, 2019] ChestX-ray14 SIIM-PTX 5,688 12,047 x x Pneumothorax

[Majkowska et al., 2020] ChestX-ray14 Google-CXR14 1,695 4,376 x Pneumothorax, nodule/mass, airspace opacity, fracture; Three expert radiologists

Inhouse OpenI UKE-OpenI 3,125 6,250 x Eight classes; two expert radiologists; frontal and lateral images
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2 Motivation and challenges of lung disease classification

2.4 Challenges of lung disease classification

The following subsections discuss challenges for lung disease classification with deep

learning as well as issues related to its translation into clinical applications. Although

the first research on chest X-ray analysis began in the 1960s [Becker et al., 1964],
the automatic analysis of chest X-ray images remains a complex problem that has not

yet been solved. The supervised training of deep neural networks for lung disease

classification has three main problems: mismatch between the small input size of the

neural network and the large image size of chest X-rays (i.e., high spatial resolution),

the lack of large-scale, annotated, and reliable ground truth data, and the wide variety

of diagnoses.

2.4.1 High spatial resolution of image data

Spatial resolution defines the ability of an imaging system to visualize two adjacent

structures as distinct from each other. Notably, low spatial resolution can lead to a

visual blurring of the image. To measure the resolution of an imaging system, the line

spread function and modulation transfer function are used. For the line spread func-

tion, a thin line (or slit) of a known spatial size is imaged. Thereafter, the blur degree

of this line can be measured as the full width at half maximum. The same measured

slit can also be used to calculate the modulation transfer function by calculating the

absolute values of the Fourier transformation [Sawant et al., 2007].

Modern chest X-rays today typically have an image size of 2000 pixels to 3000 pixels

to the square [Philips Healthcare, 2020] due to their high spatial resolution of 3.4 line

pairs/mm and an active image area of 34 cm to 42 cm to the square. This image area

is required to fully image the chest, while the high spatial resolution is required by

radiologists to distinguish the small details of various lung pathologies [Huda et al.,

2015]. For example, a pneumothorax is one of the most critical findings on a chest

X-ray and typically requires immediate clinical intervention. Its visual appearance is

subtle because the edge of the pleura appears as merely a thin line in a high-resolution

X-ray image. Figure 2.3 (a) presents a high-resolution chest X-ray image with the full

image size of 2828×2320pixels, while Figure 2.3 (b) presents a 10x magnification of

two highlighted image areas (i.e., blue and red boxes). The yellow arrows point to the
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2.4 Challenges of lung disease classification

pleura edge, indicating that pneumothorax is present in this example image. Without

a high spatial resolution, this edge would be blurred and not visible.

The input size of common convolutional neural networks for image classification in

computer vision is approximately 224 pixels to 299 pixels to the square [He et al.,

2015a]. To correct the discrepancy between the original image size and the input

size, the original image is often downscaled to the input size via bilinear interpolation

[Bar et al., 2015; Rajpurkar et al., 2017; Yao et al., 2017]. Such downscaling reduces

the spatial resolution and can severely compromise the visibility of important image

features (e.g., the pleura edge). Figure 2.3 (c) demonstrates the severe effects of such

downscaling. The chest X-ray in Figure 2.3 (a) is downscaled by bilinear interpolation

from 2828× 2320 pixels to 256× 256 pixels (i.e., reducing the width and height by a

factor of 11 and 9, respectively). Figure 2.3 (d) presents the same image areas shown

in Figure 2.3 (b), but after downscaling. The edge of the pleura is no longer visible,

thus making it significantly more difficult to detect the pneumothorax.

To address this problem, a specially adapted ResNet with increased input size is pre-

sented in Section 5.2.3. Furthermore, in Section 6.1.2, lung field cropping is proposed

as a method to increase the spatial resolution of the input image for the neural net-

work.

2.4.2 Annotation of clinical data

The performance of deep learning methods remains strongly limited by the availability

of reliable annotations in the medical domain [Greenspan et al., 2016]. While anno-

tations by individual radiologists from a dataset are desirable, this is time-consuming,

costly, and complicated. Moreover, while crowdsourced annotation is common in the

computer vision domain, it is not possible to overcome the lack of annotation by using

the same method for most medical problems. This method can be used in computer

vision because it is easy for adults to recognize objects such as a table, house, or car.

However, in the medical field, it is not typically possible for individuals to recognize

signs of various diseases in a chest X-ray without possessing a lengthy medical educa-

tion.

For chest X-rays, another challenge arises when labels for the supervised training of a

neural network are created by radiologists. As explained in Section 2.1, a chest X-ray
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2 Motivation and challenges of lung disease classification

(a) (b)

(c) (d)

Figure 2.3: Comparison of a high- and low-resolution chest X-ray based on a pneumoth-
orax. (a) shows the original chest X-ray in the full image size of 2828 ×
2320pixels. In (b), two areas of (a) are shown, magnified by a factor of ten.
The yellow arrows point to the edge of the pleura, which indicates the pneu-
mothorax. For comparison, (c) shows (a) downscaled by bilinear interpolation
to an image size of 256× 256pixels. (d) shows the same magnified areas as
(b) and the pleura edge is no longer visible. The example image was taken
from the OpenI dataset [Demner-Fushman et al., 2016] (ID: 3378).

is a projection image. This implies that three-dimensional information is projected

onto two dimensions. Such projections invariably involve the loss of information that

cannot be recovered. This information loss also complicates image interpretation for

trained radiologists. Moreover, the supervised training of neural networks for clas-

sification requires discrete labels (see Section 3.3), such as “pathology present” or

“pathology not present”. For a radiologist that normally uses descriptive text, it is dif-

ficult to make such final decisions. Notably, such decisions often heavily depend on the

radiologist. For example, cardiomegaly (i.e., enlarged heart) is defined by the ratio of
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2.4 Challenges of lung disease classification

the horizontal width of the heart to the maximum width of the lung area. If this ratio

is above 0.5, the patient has cardiomegaly. While this seems to be a good criterion

for defining the presence of cardiomegaly, it has certain problems that remain unac-

counted for. For example, this ratio is highly dependent on the amount of inhalation

or the examination type (e.g., AP or PA). Considering this additional information can

lead to different results between radiologists since it is often not a binary classification

task for them. The interpretation of conventional radiographs (e.g., chest X-rays) is

strongly affected by the individual experience and education of the radiologist, which

leads to measurable inter- or even intra-rater variability among radiologists [Albaum

et al., 1996; Bloomfield et al., 1999; Hopstaken et al., 2004; Johnson et al., 2010;

Neuman et al., 2012; Novack et al., 2006; Tudor et al., 1997].

Annotations for public datasets are often obtained by automated report analysis us-

ing NLP. Although NLP methods have steadily improved over the last decade, they

continue to struggle with the complexity of free-text radiology reports and their inter-

institutional transferability remains questionable [Collobert et al., 2011; Hripcsak et

al., 2002; Hripcsak et al., 1998].

Wang et al. [2017] have released one of the first very large open-source datasets with

frontal chest X-rays. Notably, they present a method to improve NLP for label extrac-

tion from free-text radiology reports. Nevertheless, they also report a label noise of

approximately 10% for each of the 14 findings, which implies that at least 10 % of

the images have a false label (i.e., one or more labels are wrong in a single image).

As demonstrated in our experiments (see Section 55.3) and mentioned by Oakden-

Rayner [2017], applying the supervised training of neural networks with these NLP-

generated labels presents another major problem, especially for the critical finding

“pneumothorax”. Most pneumothorax cases in the ChestX-ray14 dataset are already

treated, meaning there is a chest tube in the image. Without addressing this problem,

a neural network will use this tube as the main feature for classification since the tube

is much easier to recognize than the pneumothorax.

Section 6.2 presents a set of new annotations for the public OpenI dataset generated

by two expert radiologists of the University Medical Center Hamburg-Eppendorf. This

enables a real performance evaluation of our methods (i.e., testing methods on reliable

labels without noise) and also allows the identification of any biases in the dataset.

Unfortunately, manually labeled datasets often have a small sample size due to the

enormous effort involved. In Chapter 6, a solution based on pretraining a model
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2 Motivation and challenges of lung disease classification

on the noisy—but very large—ChestX-ray14 dataset and fine-tuning it on normalized

images is used. The image normalization is performed by lung field cropping and bone

suppression (see Section 6.1) [Baltruschat et al., 2019e].

2.4.3 Abnormal findings in chest X-rays

MacMahon et al. [1991] have evaluated the frequency of abnormal findings in chest

X-rays. For this purpose, they have defined 10 main abnormal findings and 30 subcat-

egories but did not consider the degree of manifestation. Table 2.5 shows the defined

finding categories, while Table 2.6 presents the results of the frequency analysis.

Two challenges for image processing arise from this. First, the large variety of findings

makes it nearly impossible to develop an automatic image analysis that classifies most

findings based on handcrafted features. This explains why researchers often only con-

centrate on abnormal individual findings when using handcrafted feature extraction

methods. Section 2.4.4 discusses the resulting implications for a clinical applications.

With deep learning, researchers no longer need to focus on individual findings because

feature engineering is now obsolete.

Furthermore, the training of neural networks for the medical field is complicated be-

cause most abnormal findings have a low prevalence. The results of MacMahon et al.

[1991] (see Table 2.6) indicate that only five abnormal findings have a prevalence

greater than 10 %. A similar problem was identified by two expert radiologists from

the University Medical Center Hamburg-Eppendorf while creating the new annota-

tions for the OpenI dataset shown in Section 6.2. This problem of an imbalanced

dataset is often addressed by oversampling the minority classes or by employing a

weighted binary cross-entropy loss function. Section 5.2.1 explores various weighting

methods for the loss function to deal with this problem.

2.4.4 Translation into clinical applications

While the goal of most research in the field of chest X-ray analysis is translation into

clinical applications, only a few software solutions are currently available for auto-

matic chest X-ray analysis. The problems with clinical applications for lung disease
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2.4 Challenges of lung disease classification

Table 2.5: Overview of abnormal findings in chest X-rays for classification [MacMahon et
al., 1991].

Cardiovascular Pleura Mediastinum

Cardiac size/contour Scarring Masses
Cardiac calcification Effusion Air collections
Pulmonary vessels Masses Shift/contour
Aorta Pneumothorax Tracheal deviation

Hila Bones Diaphragm

Masses Ribs Abnormal contour/elevation
Vascular Spine
Calcified nodes Other

Lung Hardware Extrathoracic

Nodules Catheters
Masses Endotracheal/tracheostomy tubes Other
Calcified granulomas Drainage catheters and tubes
Infiltrate Prosthetic valves
Linear atelectasis/scar Pacemakers
Bullae

Table 2.6: Abnormal finding distribution in chest X-rays [MacMahon et al., 1991].

Frequency
ranking

Finding Count % of all images
(N = 1089)

% of all abnormal
(N = 877)

1. Pulmonary infiltrates 482 44% 55%
2. I. V. catheters 291 27% 33%
3. Heart size/contour 239 22% 27%
4. Endotracheal/tracheostomy tubes 193 18% 22%
5. Pleural effusions 130 12% 12%
6. Linear atelectasis/scar 86 8% 10%
7. Drainage catheters and tubes 78 7% 9%
8. Pulmonary vascularity 77 7% 9%
9. Pleural scarring 69 6% 8%
10. Rib lesions 65 6% 7%
11. Mediastinal masses 56 5% 6%
12. Diaphragm 44 4% 5%
13. Calcified granulomas 43 4% 5%
14. Pneumothorax 42 4% 5%
15. Lung nodules 40 4% 5%
16. Extrathoracic abnormalities 36 3% 4%
17. Lung masses 17 2% 2%
18. Calcified nodes 13 1% 1%
19. Mediastinal shift/contour 13 1% 1%
20. Cardiac pacemakers 12 1% 1%
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classification primarily arise from a combination of the challenges discussed in the

previous sections, the current clinical situation, and regulatory questions.

Since chest X-ray is the most common type of examination in a radiology department

[Bundesamt für Strahlenschutz, 2020; NHS England, 2020], the growing workload

in radiology and decreasing revenue indicate the need for software support. While

fully automated chest X-ray analysis—where a radiologist only has to cross-check the

results—is the ultimate goal, there are many other clinical applications.

At present, most research (e.g., all 39 papers presented in Section 2.2) concentrates on

only a subset of all diseases in chest X-rays since there is no public dataset available

(see Section 2.3) to train a neural network for all diseases. However, the research

presented in the literature review can be used for useful clinical applications other

than fully automated chest X-ray analysis. First, the detection of all normal chest X-

rays (i.e., no abnormal finding on the chest X-ray) can greatly reduce the workload

in a radiology department. The results of Section7.2.1 show that approximately 30 %

of all chest X-rays at the University Medical Center Hamburg-Eppendorf are normal.

Hence, such software could reduce the workload by approximately 30 %.

Additionally, a system with only a subset of all diseases could be used to automatically

pre-fill radiological reports [Laserson et al., 2018]. However, the issue with such pre-

filling is that radiologists must read it and look for additional findings. Furthermore,

the classification of chest X-ray diseases can also be used to develop a worklist prior-

itization system for a radiology department. This application could use classification

results to sort patients according to the urgency of their condition (e.g., a patient with

a pneumothorax requires urgent medical assistance or he may suffer significant harm).

For most of these applications, it remains questionable whether the current training

datasetmyColorMainAand especially the test datasetmyColorMainAis sufficiently la-

beled to determine the performance of an automated image analysis system.

Chapter 7 presents the first known simulation framework to model a clinical workday

and show significant improvements to smart worklist ordering using a convolutional

neural network. This clinical application is evaluated in the context of various operat-

ing points of the classification algorithm. Notably, the simulation shows a significant

problem with imperfect classification since false-negative predictions result in signifi-

cantly longer reporting times for some patients (i.e., the images are sorted to the end
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2.4 Challenges of lung disease classification

of the worklist). Hence, Chapter 7 presents the use of a novel thresholding of the

maximum waiting time to address this problem.
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3 Artificial neural networks

This chapter introduces some core concepts related to artificial neural networks and pro-

vides a brief overview of their history. First, the basic theory of an artificial neuron and its

biological analogue are explained. Notably, the combination of multiple artificial neurons

results in an artificial neural network. Section 3.1 introduces a common artificial net-

work type known as a feed-forward neural network. Then, Sections 3.5 and 3.6 introduce

back-propagation and optimization methods for artificial neural networks, respectively.

Finally, Section 3.8 discusses the various activation functions of an artificial neuron.

The human brain is a massive biological neural network in which over 86 billion bi-

ological neurons form a complex, nonlinear, parallel computer [Keller et al., 2016].
The neuron is the basic signal unit of our brain structure, while the simplification

of a neuron into a mathematical model forms the foundation for building an artifi-

cial neural network (see Section 3.1). Figure 3.1 (a) illustrates a biological neuron

and Figure 3.1 (b) presents an artificial neuron. Biological neurons receive signals

through synapses located at dendrites. Based on synaptic strength wi, the input signal

x i is multiplicatively weighted. The dendrites pass the weighted input signal wi x i to

the cell body, where all signals are summed. The cell body fires a signal (i.e., activa-

tion function f ) if the sum reaches a specific threshold, which can be shifted by a bias.

This output signal y is distributed by the axon and splits into multiple branches that

are connected to the input of other neurons. In short, this behavior is modeled by an

artificial neuron and can be expressed by the following formula:

y = f (a) = f

�
I∑

i=1

wi x i + b

�
(3.1)

where is i is the running index over the total number of input signals I , a is the artificial

neuron’s output before an activation function f (see Section 3.8) is employed, and b

is the bias. Artificial neural network theory is based on the notion that the parameters

wi and b are trainable and control the influence that one artificial neuron has over
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Figure 3.1: Illustrations of a biological neuron (a) [Image source: [Wikimedia Commons,
2018]] and an artificial neuron (b) [Image based on [Karpathy, 2014]]. The
artificial model was inspired by the biological neuron.

other artificial neurons. Hereafter, the terms “neuron” and “neural network” always

refer to the artificial model.

3.1 Feed-forward neural network

A feed-forward neural network is a radically simplified representation of the brain

structure. It consists of connected artificial neurons and can be represented in a

weighted directed graph (see Figure 3.2). As shown by McCulloch et al. [1943] and

Minsky et al. [1969], only the connection of multiple artificial neurons in a neural net-

work can solve any logical function (see Section 3.4). Later, Cybenko [1989] proved

that neural networks are also a universal function approximator.
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Figure 3.2: A feed-forward neural network with two hidden layers. The input and output
layers have two neurons, while each hidden layer has three neurons.

Each node shown in Figure 3.2 represents an artificial neuron, while the arrows indi-

cate the connections between them. As previously noted, each neuron has a weight

wl
i, j, where l ∈ {1,2, . . . , L} is the l-th layer in a network with L layers, i ∈ {1, 2, . . . , I}

is the i-th neuron of layer (l − 1) with I neurons, and j ∈ {1, 2, . . . , J} is the i-th

neuron of layer l with J neurons. Hence, the pair i, j is the connection between the

i-th neuron of layer (l − 1) and the j-th neuron of layer l. Neurons are arranged

layer-wise and those of the same layer share no connections. Neurons of the input

layer (x IN
1 , x IN

2 , . . . , x IN
m )
> = xIN with xIN ∈ Rm only pass information into the network

and perform no computations. The output neurons ( ŷ1, ŷ2, . . . , ŷn)> = ŷ with ŷ ∈ Rn

rarely have a nonlinear activation function. The layers between input and output lay-

ers are called hidden layers. The total number of neurons in the hidden layers and the

number of layers are known as the width and depth of a neural network, respectively

[Goodfellow et al., 2016]. One can express the layers of a neural network using ma-

trix vector notation. First, the weights of each neuron can be combined into a vector

(wl
1, j, wl

2, j, . . . , wl
I , j)
> =wl

j with wl
j ∈ RI . Thereafter, we can combine the weights of all

j neurons of the l-th layer into a single weight matrix Wl with Wl ∈ RI×J . We can do

the same for the bias of each neuron and combine them into a vector bl with bl ∈ RJ .

For simplicity, the bias vector can be merged into the weight matrix by extending the

input vector x to a layer with a 1 and adding bl as an additional column to Wl . Hence,

xl = (x1, x2, . . . , x I , 1)> and Wl have the dimensions Wl ∈ RI×(J+1). To calculate the

output of the l-layer, we use matrix vector multiplication and apply the vector func-

tion g(al) = ( f (al
1), f (al

2), . . . , f (al
j))
>,g : RJ → RJ , where f is the activation function.

Hence, the output of the l-layer is g(a) = g(Wlxl).
Therefore, all weights can be combined into matrices W1,W2, . . . ,WL layer by layer.
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3 Artificial neural networks

Hereafter, θ stands for all parameters of a neural network. The output ŷ is calculated

as follows:

ŷ=WL · g(. . .g(W2(g(W1x))) . . .) . (3.2)

The example presented in Figure 3.2 shows fully-connected layers (also known as

dense layers) where each neuron in a layer receives an input from all neurons of the

previous layer. In a feed-forward network, the input information passes through the

hidden layers to the output layer and no loops are permitted in between. The number

of hidden layers (i.e., the depth) and the sizes of the hidden layers (i.e., the width) are

hyperparameters of the network. All parameters that are not optimized during training

are hyperparameters and must be manually selected.

3.2 Learning types

The learning of neural networks can be divided into four methods: supervised, semi-

supervised, unsupervised, and reinforcement learning. This thesis only employs super-

vised learning, which is explained in greater detail in the following section. Compre-

hensive introductions to semi-supervised, unsupervised, and reinforcement learning

are provided in [Goodfellow et al., 2016] and [Burkov, 2019].

In supervised learning, the dataset contains N sample-label pairs (xi, yi), i ∈
{1,2, . . . , N}. Each sample xi ∈ RD is a vector with xi = (x

(1)
i , x (2)i , . . . , x (D)i ), where

each entry x( j) describes the sample in some manner. For example, in image analysis,

each sample xi can be an image, while the values describe the intensity value of each

pixel. The label yi can be a real number or an element of a set of classes {1,2, . . . , k},
or a vector. The type of label depends on the problem at hand. For instance, if the

samples are images of a single-digit number and the problem is number classification,

then the set of classes is K = {0,1, . . . , 9} and each label yi ∈ K is one of those num-

bers. In Figure 3.3 (a), multiple samples of the MNIST (Modified National Institute

of Standards and Technology) dataset [Deng, 2012; LeCun et al., 1995] are com-

bined into one image to illustrate some examples of xi. The MNIST dataset contains

handwritten digits with the appropriate label describing the number included in the

sample.

The aim of a supervised learning algorithm is to use the sample-label pairs to train a
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(a)
Input sample

x1

x2

y1

Neural network

5

Output result
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(b)

Figure 3.3: The sample-label pairs (b) of the MNIST dataset [Deng, 2012; LeCun et al.,
1995] can be used in supervised learning to train a neural network. Based on
the dataset (b), the neural networks learn to classify images of handwritten
digits (a).

neural network so that the model can solve a specific task. Training means that the

weights θ are tuned to map the input xi to the output yi. In the MNIST example,

the model learns to classify images of handwritten digits (see Figure 3.3 (b)). Ad-

ditional information about the training (also known as optimization) is provided in

Sections 3.5 and 3.6.

3.3 Classification vs. regression problems

While neural networks can be used to solve many types of tasks, this thesis mainly

focuses on classification and regression problems.

Classification describes the task of determining which class of k classes an input xi

belongs to. To solve this task, the neural network is optimized (see Section 3.6) to

approximate a function fNN : RD → R. The trained model then uses fNN (xi) = ŷ to

assign a number to each input example xi. For example, the number ŷ (a probability)

is used to derive the class (note that the terms “class”, “category” and “label” are used

interchangeably).

When the number of classes k is two, it represents a binary classification problem (e.g.,

“healthy” or “sick”). When the number of classes k is three or more, it represents a

multiclass classification problem. This should not be confused with multilabel clas-

sification. In binary or multiclass classification, only a single class is assigned to the

input xi; however, for multilabel classification, more than one class can be assigned to
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the input xi by a function fNN : RD → Rm. In this thesis, only multilabel classification

problems are explored.

While regression is similar to classification, with regression a real value is assigned

to an input instead of a discrete label. Therefore, a neural network is optimized to

approximate a function fNN : RD → R and the output is the direct final result. For

example, we investigate the regression task of predicting the age of a patient based on

their chest X-ray image in Chapter 5. The next section briefly summarizes the history

of artificial neural networks to provide a better understanding of where they began

and how they evolved.

3.4 Artificial neural network as a computational
tool

The origins of using artificial neural networks as a computational tool began as early as

the 1940s, when Warren McCulloch and Walter Pitts published the first paper [McCul-

loch et al., 1943] on the possible functioning of artificial neurons. These researchers

showed that single-layer artificial neural networks can solve problems that are linearly

separable [McCulloch et al., 1943]. In the 1950s, the Mark 1 Perceptron machine (see

Figure 3.4) was the first successful hardware implementation of the perceptron—an

artificial neuron with a step function as the activation function—algorithm [Rosen-

blatt, 1962]. Notably, it was a single-layer neural network. Rosenblatt and his col-

leagues demonstrated that it was possible to correctly recognize the letters of the al-

phabet. The input image was 20× 20pixels in size and the activation function was a

step function (see Section 3.8), as per Equation 3.1.

In 1960, Widrow invented ADALINE: Adaptive linear neuron [Widrow, 1960]. Instead

of using the output of the activation function for weight adjustment as Rosenblatt had

done, Widrow used the weighted summation of the inputs for error calculation. The

advantage was that the derivative of the input error could be calculated with respect to

each weight to determine the optimal weights by minimizing the error. This was pos-

sible because Widrow did not employ an activation function. Later, Widrow and Hoff

presented MADALINE: Multiple adaptive linear neurons [Widrow et al., 1960]. This

was the first stacked multilayer perceptron network. MADALINE is a fully-connected,

feed-forward neural network that consists of three stacked layers.
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f (x) =





1 if
I∑

i=1

wi x i > 0

0 otherwise

(3.3)

d

Figure 3.4: The Mark 1 Perceptron
machine was the first suc-
cessful hardware imple-
mentation of the percep-
tron algorithm.

Equation 3.1: Rosenblatt’s Perceptron
with x as the input vec-
tor and w as adjustable
weights.

As with many so-called “perceptron networks”, the problem was that the network was

unable to solve complex problems without a nonlinear activation function. In 1969,

Minsky and Papert published the book “Perceptrons” [Minsky et al., 1969], which

addressed the perceptron’s limitations. For example, a single perceptron could not

approximate the Exclusive-OR logic function. For this reason, it was concluded that

only a multilayer perceptron network could learn arbitrary logical functions and that

it was not possible to train a network using Rosenblatt’s learning algorithm [Minsky

et al., 1969].

Unfortunately, despite showing early promise, artificial neural networks lost popular-

ity until their resurgence in the 1980s, when David Rumelhart, Geoffrey Hinton, and

Ronald Williams demonstrated that training a multilayer neural network with back-

propagation (see Section 3.5) was possible [Rumelhart et al., 1986]. This achievement

rekindled research efforts into artificial neural networks and brought many new re-

searchers to the field.

In the next section, back-propagation and optimization (see Section 3.6) are pre-

sented. Then, different activation functions (see Section 3.8) are introduced as im-

portant components for neural network training.
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3.5 Back-propagation

Back-propagation [Rumelhart et al., 1986] was a breakthrough in training neural net-

works. Prior to its development, it was a huge effort to train the weights of the hidden

layers in a neural network. Before discussing back-propagation, it is important to

consider the theory behind training neural networks. In supervised learning, a given

training set X = {(x1, y1), (x2, y2), . . . , (xP , yP)} contains P pairs of input vectors and

target scalars. For a specific set of parameters θ and the input xi, the neural network

produces the output ŷi. The training process attempts to minimize a certain error E

between the model output ŷi and the target yk by optimizing the parameters θ . To

calculate the error E, one uses a loss function L. For example, the squared error

E = L( ŷ , y, ) = ( ŷ − y)2 (3.4)

is commonly employed for regression tasks, while the cross-entropy error

E = L( ŷ , y) = y log( ŷ) + (1− y) log(1− ŷ) (3.5)

is often used for classification problems. Notably, we typically calculate the average

error over all training sample-label pairs P and thus have a sum minimization problem

E = 1
P

∑P
i=1 L( ŷi, yi) . The influence of changing a single parameter wl

i, j on the error

E is measured by the partial derivative
∂ E
∂ wl

i, j

. Thus, the gradient of the error function

∇E becomes the vector of partial derivatives with respect to all parameters θ :

∇E = (
∂ E
∂ w1

1,1

,
∂ E
∂ w1

1,2

,
∂ E
∂ w1

2,1

,
∂ E
∂ w2

1,1

, . . . ,
∂ E
∂ wl

i, j

) with ∇E ∈ RI J L . (3.6)

The gradient is used by the optimization algorithm to minimize the error, which is

explained in Section 3.6.

Back-propagation entails calculating the partial derivatives of the error function by

applying the chain rule
∂ E
∂ wl

i, j

=
∂ E
∂ sl

j

∂ sl
j

∂ wl
i, j

(3.7)
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with sl
j being the output of the j-th neuron in the l-th layer:

sl
j = f (al

j) = f (Wlsl−1) = f (
I∑

i=1

wi, js
l−1
i ) . (3.8)

To compute the partial derivative
∂ sl

j

∂ wl
i, j

, the chain rule is used again:

∂ sl
j

∂ wl
i, j

=
∂ sl

j

∂ al
j

∂ al
j

∂ wl
i, j

= f ’(al
j)s

l−1
j . (3.9)

The partial derivative
∂ E
∂ sl

j

is the influence of the neuron sl
j on the error E. Two distinct

cases arise from this method. First, the neuron sl
j is an output neuron sL

j . Thus, the

partial derivative can be directly calculated:

∂ E
∂ sL

j

=
∂ E
∂ ŷ

. (3.10)

For example, if the square error is used as the loss function, then:

∂ E
∂ sL

j

=
∂ E
∂ ŷ
=
∂

∂ ŷ
( ŷ − y)2 = 2( ŷ − y) . (3.11)

Secondly, if sl
j is not an output neuron, the partial derivative is calculated as follows:

∂ E
∂ sl

j

=
L∑

b=l+1

I∑
i=1

∂ E
∂ sb

i

∂ sb
i

∂ sl
j

=
L∑

b=l+1

I∑
i=1

∂ E
∂ sb

i

∂ sb
i

∂ ab
i

∂ ab
i

∂ sl
j

=
L∑

b=l+1

I∑
i=1

∂ E
∂ sb

j

f ′(ab
i )w

b
i, j (3.12)

where b represents the count of all subsequent neurons of layer l. To solve Equa-

tion (3.12), the partial derivative
∂ E
∂ sb

j

of all previous neurons sb
j must be known.

This can be computed by starting the calculation at the output neurons and propa-

gating the information backward toward the input neurons (hence the term “back-

propagation”).
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3.6 Optimization

Optimization is the process of minimizing the error E by tuning the parameters θ .

The most common optimization method in deep learning is the gradient descent

algorithm—a first-order iterative method to find the local or global minimum [Cauchy,

1847; Curry, 1944]. A simple gradient descent algorithm updates the parameters θ

via a step in the opposite direction of the error function gradient ∇E:

θ ← θ −η∇E = θ −η1
P

P∑
i=1

∇L( ŷi, yi) (3.13)

where η is the learning rate. Here, the update is calculated on the entire training

set X, which is also known as batch gradient descent. If η is sufficiently small, it is

guaranteed that batch gradient descent converges to a local—but not necessarily to

the global—minimum for a non-convex error function, and the global minimum for a

convex error function [Goodfellow et al., 2016]. The calculation time required for a

single iteration step (i.e., a single parameter update) can be long for very large datasets

because the sum of all gradients is calculated. Thus, if the training set increases by

m, the computational cost also increases with O(m). This calculation time should not

be confused with the number of iterations required to converge to a sufficiently small

error.

Data-wise, stochastic gradient descent (SGD) [Kiefer et al., 1952; Robbins et al., 1951]
is the opposite of batch gradient descent and performs a weight update for each train-

ing example (xi, yi) as follows:

θ ← θ −η · ∇L( ŷi, yi) . (3.14)

When compared to batch gradient descent, SGD does not easily converge to a local or

global minimum and typically requires more update steps than batch gradient descent

[Goodfellow et al., 2016]. Nevertheless, the cost of a single update does not increase

with training set size m, which implies that the computational cost of a single update

step is only O(1). This is especially important in the case of big data. If m increases

near infinity, we can argue that SGD converges to the best possible error without using

all training data at a computational cost of O(1) for a single update [Goodfellow et al.,

2016].

Notably, there exists a hybrid version of gradient descent that combines the advantages
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of both methods. Known as Mini-batch gradient descent, this version performs the

parameter update on a small subset of the training set. At each step, a random mini-

batch of examples B = {(x1, t1), . . . , (xO, yO)} is sampled from the training set X . The

gradient is then estimated, and the parameters are updated as follows:

θ ← θ −η 1
O
∇

O∑
i=1

L( ŷi, yi) . (3.15)

where n is the size of the subset (i.e., also known as mini-batch size). This results in

a more stable convergence to a local or global minimum because the variance of the

updates is reduced [Goodfellow et al., 2016]. Similar to SGD, if the training set size

m grows, the computational cost per update step is O(1) with respect to m.

Optimization methods are an ongoing topic of research. In addition to basic mini-

batch gradient descent, there are many other approaches. In this thesis, only adaptive

moment estimation (ADAM) [Kingma et al., 2015] is explained since, at the time of

writing, this is often a good algorithm choice [Schmidt et al., 2020]. Notably, ADAM

is used for our experiments in Chapters 5, 6, and 7. In [Ruder, 2016; Schmidt et al.,

2020], a comprehensive overview and benchmark of other algorithms is provided.

Adaptive moment estimation

ADAM [Kingma et al., 2015] adapts the learning rate for each parameter at every up-

date step by employing the first and second momentum of the gradients. Momentum

helps the algorithm converge faster because it accumulates the weight updates using

a moving average [Qian, 1999]. Thus, updates in the same direction as prior updates

are preferred. ADAM updates the parameters using the following formula:

θ ← θ −η m̂up
v̂u + ε

(3.16)

where ε is a small constant value to prevent a division by zero, m̂u is the bias-corrected

first momentum, and v̂u is the bias-corrected second momentum. First, we define the

first momentum mu and second momentum vu:

mu = β1mu−1 + (1− β1)gu (3.17)

vu = β2vu−1 + (1− β2)g
2
u (3.18)
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where gu is the gradient ∇E, g2
u is the elementwise square of gu � gu, β1,β2 ∈ [0,1)

are hyperparameters, and u represents the current update step. Notably, the hyperpa-

rameters control the exponential decay of the moving average.

Since the vectors m0,v0 are initialized with zero, a bias correction of mu and vu must

be applied:

m̂u =
mu

1− βu
1

(3.19)

v̂u =
vu

1− βu
2

. (3.20)

Kingma et al. [2015] suggested a default value of 0.9 for β1, 0.999 for β2, and 10−8

for ε. ADAM combines the advantages of AdaGrad [Duchi et al., 2010] and RMSProp

[Tieleman et al., 2012], which are very popular optimization algorithms [Kingma et

al., 2015; Ruder, 2016].

3.7 Generalization assessment of neural networks

Generalization error relates to the prediction capability of the neural network on inde-

pendent test data (i.e., new data that was not seen before). To evaluate the generaliza-

tion error, the dataset must be split prior to starting the training. The best approach

is to randomly split the dataset into three parts: training, validation, and test data

[Hastie et al., 2005]. For example, Figure 3.5 illustrates a split of 50% for training,

25% for validation, and 25% for testing.

Train Validation Test

Total dataset

Figure 3.5: The dataset of size N is randomly split into three subsets: training, validation,
and test data. The parameters are learned on the training set, while hyperpa-
rameter tuning is performed on the validation set. Finally, the generalization
performance is measured on the test set.

Stratified sampling preserves the proportion of classes in each subset as compared to
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the original dataset. If the dataset classes are balanced, each subset contains balanced

classes—which means the problem of training with imbalanced data does not arise.

For example, a dataset contains nA samples of class A and nB samples of class B. The

ratio of class A to class B is r = nA
nB

. If the dataset is split as in Figure 3.5, each set

contains approximately the ratio r [Kohavi et al., 1995].

As explained in Section 3, neural networks have many learnable parameters (i.e., pa-

rameters changed during optimization) and hyperparameters (i.e., selected manually

before starting the optimization). Both types of parameters can and are optimized.

The training data is first used to learn the parameters of the neural network; there-

after, the error rate is measured on the validation set. To achieve the optimal error

rate, hyperparameters are manually tuned on the validation set. This setup ensures

the possibility to measure the generalization error of the neural network on an inde-

pendent test set [Hastie et al., 2005]. If hyperparameter tuning were performed on

test data, the model would overfit to the test data and lose generalization capability

[Hastie et al., 2005].

3.7.1 Under- and overfitting

Two common problems can arise when a neural network model is trained to approxi-

mate fNN by reducing the training error E: underfitting and overfitting.

Underfitting refers to a problem that occurs when neural network model cannot solve

the desired task because the complexity of the neural network is not sufficient for the

problem. This means that the training error and test error (i.e., generalization error)

are always high, and neither of them converge toward a small error. To counteract

this problem, one typically increases the number of parameters of the neural network,

which is often considered equivalent to an increase in model complexity [Goodfellow

et al., 2016].

On the other hand, overfitting implies that the neural network can solve the desired

task for the training data sufficiently well with a small error; however, the error for test

data (i.e., data not yet seen) is also very large. Here, the neural network’s degree of

freedom to adapt to the training data is too high (i.e., the neural network’s complexity

is too high). Both problems are closely related to dataset size. If we keep the model

complexity unchanged (i.e., do not change the number of parameters or add regu-
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3 Artificial neural networks

larization techniques) and reduce the amount of training data, the model will likely

overfit to this reduced training set. However, if we substantially increase the amount

of training data, the model will most likely underfit the data.

Figure 3.6 presents an exemplary illustration of this problem and the trade-offs one

must make. Normally, we aim to find a solution where both the training and testing

error are low. At the top of Figure 3.6, three examples of regression models are shown.

In all examples, the regression model, training examples, and true function are shown

as a red line, red circles, and blue line, respectively. First, a linear regression model

is shown that cannot fit the training samples because the complexity (i.e., degree of

freedom) of the model is too small. Second, a regression model with a polynomial

degree of 4 can fit the true function almost perfectly with low training and testing

error. Finally, the complexity of the final polynomial regression model is too high and

it overfits the training data with low training error and high testing error.

The generalization error typically contains two types of error: bias and variance. Bias

represents the difference between the average prediction of the neural network and

the correct value we are attempting to predict [Goodfellow et al., 2016]. High bias

neural networks tend to pay little attention to the training data and oversimplify the

problem (see Figure 3.6).

Variance refers to the variability of the prediction for a given data point or a value

that tells us the spread of the data [Goodfellow et al., 2016]. High variance neural

networks pay close attention to training data and do not generalize to data they have

not seen before. Thus, we must always make a trade-off between minimizing bias and

variance [Hastie et al., 2005; Kohavi et al., 1995].

3.7.2 Sampling methods for dataset splitting

Where the size of the data set is limited, a more sophisticated sampling method is re-

quired for generalization error. This is because splitting a small dataset into three parts

most likely results in too little training data for optimizing a neural network. Several

resampling methods exist that can be used to overcome this problem. These meth-

ods split the dataset into training-testing partitions several times. A neural network is

trained and tested for each partition and the error rates are averaged. This provides an

estimate of the generalization error of the neural network. The most common meth-
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Figure 3.6: Illustration of under- and overfitting. In the upper part of this figure, three
examples of regression models (red lines) are shown. Below that, the corre-
sponding errors of the regression models are shown. Each of the three exam-
ples show the fitted regression model, true function (blue lines), and training
samples (red circles). When the model complexity is too low for the training
data and the model cannot be fitted to the data (i.e., first example at the top;
the linear regression model failed to fit the true function of the training data),
underfitting has occurred. The other end of the spectrum is overfitting, where
the model can fit the training data almost perfectly because the model com-
plexity is sufficiently large. At the top right, an example of such overfitting
with a polynomial regression model is shown. (Image source: [Fortmann-Roe,
2012] and [scikit-learn, 2020])
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ods are K-fold cross-validation and random subsampling (also known as Monte Carlo

cross-validation). Both methods are explained in the following subsection.

3.7.2.1 K -fold cross-validation

In K-fold cross-validation, the dataset of size N is randomly split into K subsets, also

known as folds. Those subsets have roughly the same size and are mutually exclusive.

An illustration of a K = 5 split is presented in Figure 3.7. The k-th fold (k = 4 in

Figure 3.7) is used to measure the error rate, while the other K − 1 folds are used

for training. This is repeated for k = {1, 2, . . . , K} and the K error rates are averaged

to estimate the generalization error. Parameter K ∈ [2, N] controls the bias-variance

trade-off [Molinaro et al., 2005]. A small K results in less training data and thus high

bias with low variance. As K becomes larger (to a maximum of K = N), the variance

increases while the bias decreases. Many studies suggest that favorable choices of K

(i.e., 5 or 10) result in acceptable trade-offs between bias and variance [Hastie et al.,

2005; Kohavi et al., 1995].

1

Train

2

Train

3

Train

4

Validation

5

Train

Total dataset

Figure 3.7: Illustration of data splitting using K-fold cross-validation. In this example, the
dataset is randomly split into five subsets. The 4th fold is used to measure the
error rate, while the other folds are used for training. This is repeated for each
subset. The generalization performance can thus be measured without a test
set.

3.7.2.2 Random subsampling

Random subsampling splits the dataset into a training and validation set and is of-

ten repeated several times I to measure the generalization error. The training set

contains nt = N p samples, whereas the validation set contains nv = N − nt sam-

ples. The parameter p ∈ (0,1) regulates the bias-variance trade-off. Each repetition a
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new training-validation partition is randomly sampled without replacement from the

dataset, and the error rate of the the validation set is measured. All error rates are

averaged to estimate the generalization error. For example, a split of p = 2
3 and I = 3

is presented in Figure 3.8. A large value for the parameter p leads to lower bias and

higher variance. In the literature, a p of 2
3 is recommended as an acceptable trade-off

[Molinaro et al., 2005; Xu et al., 2004].

First subsampling

Second subsampling

Third subsampling

Validation data

Total dataset

Figure 3.8: Illustration of data splitting using the random subsampling approach which is
repeated several times I . The total dataset contains N samples. The training
set, with a size of nt = N p, is randomly sampled without replacement from
the total dataset. The remaining data nv = N − nt are used for validation, i.e.,
p = 2

3 and I = 3. The validation data are show in blue.

3.8 Activation function

The activation function is an important part of artificial neural networks. However,

there are some limitations to this function when we want to solve complex problems

using an artificial neural network. If the activation function is linear, it is not possible

to approximate nonlinear functions with an artificial neural network. A well-known

and simple example of this is the XOR function [Minsky et al., 1969]. If we think

of the XOR problem as a classification problem in which we aim to separate “0” and

“1”, then it becomes clear that they are not linearly separable (i.e., no single line can

separate the “0” and “1”) (see Figure 3.9 (a)). However, a two-layer neural network

with a nonlinear activation function (e.g., the step function) can find a transformation

of the original space (a) into the feature space (b). By using a nonlinear activation
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(a) Original space

0 1
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h1

h2

(b) Transformed space

Figure 3.9: Illustration of the XOR problem. (a) shows the results of the XOR function,
where the bold numbers indicate the resulting value for the two inputs x1 and
x2. Since we cannot separate the numbers with a single line, the XOR problem
is not linearly separable. A two-layer neural network with a nonlinear activa-
tion function can transform the XOR problem to become linearly separable, as
shown in (b) [Goodfellow et al., 2016]. In (b), both “1”s are mapped to the
same point (1, 0).

function, the capacity of the model (i.e., the number of functions a neural network can

approximate) increases [Goodfellow et al., 2016]. Since many real-world problems

are nonlinear, it is common to use a nonlinear activation function. Furthermore, the

activation function must be almost everywhere differentiable since the optimization

algorithm requires the derivatives of the activation function (see Sections 3.5 and 3.6).

In the very beginning of neural networks (see Section 3.4), the step function was com-

monly used as an activation function. With the introduction of SGD as optimization

method, it was necessary to find alternatives for the step function since the derivative

is always zero. In the 1980s, the fist alternatives were the sigmoid

σ(a) =
1

1+ e−a
(3.21)

or hyperbolic tangent

tanh(a) =
ea − e−a

e−a + e−a
(3.22)

functions. An illustration of these functions is presented in Figure 3.10. For the sig-

moid activation function, large values of a are mapped to one and small values to

zero. While this is a good approximation of a biological neuron’s activation rate, the

saturation at one and zero leads to the vanishing gradient problem in artificial neural

networks [Srivastava et al., 2015]. If a neuron is in the saturation area, it has a gra-
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(b) Hyperbolic tangent

Figure 3.10: Plot of two traditional activation functions: sigmoid and hyperbolic tangent

dient of nearly zero. If a neuron’s gradient approaches zero, its weights are no longer

updated during back-propagation (see Section 3.5). Furthermore, the gradients in

a multilayer neural network are multiplied during back-propagation, which can also

increase the gradient vanishing problem.

For this reason, non-saturated activation functions are commonly used. One very pop-

ular activation function is the rectified linear unit (ReLU) [Nair et al., 2010]:

f (a) =





a if a > 0

0 if a ≤ 0
. (3.23)

Krizhevsky et al. [2012] reported that the optimization of a four-layer convolutional

neural network with ReLU activation functions converges six times faster when com-

pared to the same network with tanh activation functions. The time required for the

optimization (also known as training) process of neural networks is typically one of

many problems. Krizhevsky et al. [2012] noted that even with the improvement of

neural networks, their final training took five to six days.

Additionally, the ReLU function can be implemented through a simple thresholding

and does not require expensive operations such as exponentials. However, a neuron

can “die” when training a neural network, which implies that it becomes inactive for

all inputs. As illustrated in Figure 3.11 (a), the negative side of the ReLU function has

a gradient of zero. If every input of the neuron is negative, the neuron is considered

“dead” because the gradient flow is zero. This leads to a sparse representation of the

neural network, which is somewhat useful since it reduces calculation complexity and
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Figure 3.11: Plot of two modern activation functions: the rectified linear unit (ReLU) func-
tion [Nair et al., 2010] (a) and the parametric ReLU [He et al., 2015b] with
β = 0.2 (b).

helps to reduce the problem of overfitting for complex models [Glorot et al., 2011].

To counter the dying neuron problem, leaky [Maas et al., 2013] and parametric ReLU

[He et al., 2015b] functions were proposed. Both can be expressed with the following

function:

f (a) =max(0, a) + βmin(0, a) =





a if a > 0

0 if βa ≤ 0
. (3.24)

While leaky ReLU has a constant small positive slope β in the negative area, parametric

ReLU (PReLU) has a learnable argument β for the slope in the negative area. Thus,

β is optimized during the training of the neural network to find the optimal value for

β . Maas et al. [2013] investigated different constant slopes for leaky ReLU and found

that β = 0.01 led to the fastest convergence for model training. In [Xu et al., 2015], it

was shown that parametric ReLU can perform better for large datasets when compared

to ReLU and leaky ReLU; however, it is prone to overfitting for small datasets. In this

work, the ReLU activation function was primarily used due to its simplicity and good

performance. However, finding the optimal activation function remains an active area

of research. In [Rasamoelina et al., 2020], a short review of advanced methods like

Swish [Ramachandran et al., 2017] and Mish [Misra, 2019] is provided.
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In this chapter, we present important enablers for training multilayer neural networks—

also known as deep neural networks—and explain some state-of-the-art concepts related

to improving neural networks. First, the concept of convolutional neural networks, which

are specifically designed for image processing, is described. Thereafter, the concept of batch

normalization is explained. In Section 4.5, residual (also known as shortcut) connections

are presented, which help to solve the vanishing gradient problem for very deep neural

networks. The supervised training of modern deep neural networks requires a lot of data.

Thus, data augmentation methods are commonly employed to artificially increase the

dataset and create a model invariant to feature changes (see Section 4.6).

In the last decade, tremendous improvements have been made in applying neural net-

works to computer vision tasks such as image classification, image generation, and

object detection. This was possible because certain fundamental changes to the tradi-

tional neural network have been proposed. In the following section, we explain and

highlight the most important changes for this thesis.

4.1 Convolutional neural networks

In Section 3.1, we introduced the concept of fully-connected layers. Image process-

ing often deals with high dimensional input data (e.g., a chest X-ray can have an

image size of 2330× 2846pixels). If only fully-connected layers are used, the num-

ber of parameters grows rapidly and becomes extremely high, making optimization

very computationally intensive or even impossible. For this reason, new layer types

were introduced to reduce the number of parameters. In image processing, we can

reduce the number of parameters by incorporating prior knowledge about the strong

local correlation of neighboring pixels into the layer structure. Hence, neurons are
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Figure 4.1: Hierarchical feature extraction of a convolutional neural network. The bottom
row presents the feature visualization of a convolutional network trained on
the ImageNet dataset [Russakovsky et al., 2014]. The top row illustrates the
layers of a convolutional neural network. [Image source: [Zeiler et al., 2014]]

only connected to a small local area of the input and are no longer not connected to

all other input neurons. As a result, convolutional layers (see Section 4.2) were in-

troduced and replaced most fully-connected layers in neural networks [LeCun et al.,

1989]; hence the name convolutional neural network. At the time of writing, these

networks are often built by stacking convolutional layers, pooling layers (see Section

4.3), batch normalization layers (see Section 4.4), and a final fully-connected layer.

In the following section, we briefly explain how convolutional neural networks extract

information from an image and also discuss the different layer types.

In a convolutional neural network, information is extracted hierarchically [Zeiler et

al., 2014]. The first layers extract simple features such as edges or color blobs. Deeper

layers extract feature combinations from previous layers based on the linear combi-

nation of previously extracted features. In the final convolutional layers, high-level

features are extracted from the image. Figure 4.1 presents a hierarchical feature ex-

traction. The top row illustrates a convolutional neural network with multiple layers.

Each layer extracts some low-level features, which are shown underneath. For ex-

ample, the first layers extract color blobs and edges, while the middle layers extract

combinations such as circles. Thereafter, certain objects are extracted that are hope-

fully linearly separable by a classifier (i.e., the final fully-connected layer).
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4.2 Convolutional layer

The convolutional layer is motivated by the fact that, in an image, the information

of each pixel has a strong local correlation to neighboring pixels (e.g., edges are an

important feature formed by local correlations). Since features can be present in sev-

eral areas of an image, a filter needs to slide over the complete input data to extract

them. The local correlations are utilized by convolving a small filter K with the in-

put data. The filter often has a symmetric kernel size of k × k. Although the layer is

called a convolutional layer, the cross-correlation is typically calculated because this

helps to omit kernel flipping. For a two-dimensional input matrix I and filter K, the

two-dimensional cross-correlation is calculated as follows:

C(i, j) = (I ?K)(i, j) =
k∑

m=1

k∑
n=1

Ii+m, j+nKm,n . (4.1)

Notably we calculate a valid cross-correlation. This means that the calculation area is

constrained to pixels (i, j), where the filter K ∈ Rk×k is fully within the input matrix

I ∈ Rp×q. Let h = bk/2c, where b·c is the integer division. Thus, we can define the

calculation area with i ∈ {h, h+1, . . . , p−h} and j ∈ {h, h+1, . . . , q−h}. The parameters

of the filters are learned during training of the neural network.

In the following section, we explain a so-called two-dimensional convolutional layer

and provide an illustration of this layer in Figure 4.2. The feature map Fl ∈ Rwl×hl×dl is

the output of the l-th convolutional layer with width wl , height hl , and depth dl . While

the width wl and height hl depend on the size of the input map Fl−1, the depth dl is

the number of filters a convolutional layer can learn during optimization. Moreover,

the depth dl is a hyperparameter that is often defined before training. Let v and a

be the run indexes over the depth dl and dl−1, respectively. Thus, we can extend the

equation (4.1) for a three-dimensional case:

Fl(i, j, v) =
dl−1∑
a=1

k∑
m=1

k∑
n=1

Fl−1
i+m, j+n,aK l

v,m,n,a (4.2)

where Fl−1 and Kl
v are now three-dimensional with Fl−1 ∈ Rwl−1×hl−1×dl−1 and Kl

v ∈
Rk×k×dl−1 , respectively.

In comparison to the fully-connected layers, it is easier to consider that the neurons

are structured in a matrix and not as a vector. The total number of neurons N in a
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l − 1-th layer
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Fl

l-th layer
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Figure 4.2: Illustration of a convolutional layer with stride sl = 2 and padding pl = 1. The
color emphasizes the difference between each tensor.

convolutional layer equals the size of the feature map; therefore, N = wlhl dl . Two key

components are required to realize the convolution in a neural network and reduce

the number of parameters: local receptive field and weight sharing.

Local receptive field: Each neuron of the l-th convolutional layer is only con-

nected to local area Rl
i, j,v in the l −1-th layer with the size kl × kl × dl−1, where dl−1 is

the depth of the input layer to the convolutional layer. This local area or local recep-

tive field describes the size of the region in the input that contributed to the feature

calculation. As such, each local receptive field can learn its own filter Kl
i, j,v with the

same size as Rl
i, j,v. The displacement of each local receptive field in a convolutional

layer is defined by the stride sl ∈ N∗.
Without weight sharing (which is explained next), each of the N neurons would have

kl kl dl−1+1 parameters, while the convolutional layer would have N(kl kl dl−1+1) pa-

rameters in total. Notably, one parameter is added due to the bias b of each neuron.

Weight sharing: Since the same feature can appear at multiple locations, the con-

cept of weight sharing was proposed. This makes it unnecessary to learn the same fea-

ture extractor multiple times and reduces the parameters significantly. Weight sharing

implies that all neurons belonging to the same slice v have the same filter Kl
v. There-

fore, the depth dl controls how many filters can be learned. This reduces the total pa-

rameters of the convolutional layer by wlhl; hence, the layer only has dl(kl kl dl−1+ 1)
parameters. In Figure 4.3, we provide a simple example of a convolutional layer with

stride sl = 2 and kernel size kl = 2, Kl ∈ K2×2×1. To calculate the final results, we use

the cross-correlation in Equation 4.1 and add the bias b. For example, in the top row
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Figure 4.3: Example of a valid cross-correlation calculation with stride sl = 2 and without
zero-padding. Only the first two steps are shown. First, the filter K l (size:
2 × 2) is applied to the top left area of the l − 1-th layer (i.e., the light red
area). Thereafter, the bias bl is added and the result is the top left pixel of the
l-th layer (i.e., the light red pixel). Then, the filter is shifted by the stride sl
to the right and the same calculation is performed again. This calculation is
shown as the light green area and pixels.

of Figure 4.3, we calculate the result for the first cell as follows:

Fl(1,1) = (Fl−1 ?Kl)(1,1) + bl = (3 · 2) + (6 · 4) + (−4 · 1) + (−7 · 1) + 8= 27 .

The local receptive field must be fully connected to the input. Thus, the size of feature

map Fl can be calculated by:

hl = (hl−1 − kl)/sl + 1 (4.3)

wl = (wl−1 − kl)/sl + 1 . (4.4)

This would always reduce the size of the input tensor by at least kl + 1. Therefore,

padding was introduced. Padding artificially increases the size of the l −1-th layer by
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Figure 4.4: Example of a valid cross-correlation calculation with zero-padding pl = 1 and
stride sl = 2. The zeros with a light green background are added because of
the zero-padding.

adding a border around the input tensor. The size of the border is defined by pl ∈ N
and the added border typically contains only zeros. Hence, padding is also known as

zero-padding. In Figure 4.4, we illustrate zero-padding with padding pl = 1 and stride

sl = 2 for an example matrix. The width and height are then calculated as follows:

hl = (hl−1 + 2pl − kl)/sl + 1 (4.5)

wl = (wl−1 + 2pl − kl)/sl + 1 . (4.6)
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4.3 Pooling layer

The pooling layers are used to reduce the spatial dimensions and are defined by three

aspects: a specific operation applied to the filter area, the filter size kl × kl , and the

stride sl . The most common operations are maximum and average pooling. While

maximum pooling [Zhou et al., 1988] (max-pooling) calculates the maximum of the

filter area, average pooling calculates the average of the filter area. Average pooling is

often used as the last layer to reduce the spatial dimensions before the fully-connected

layer is employed. Usually, only the dimensions width and height are reduced—but

not the depth of the input tensor. An illustration of max-pooling with filter size kl = 2

and stride sl = 2 is shown in Figure 4.5.

Pooling layers help a model become invariant for small translations of the input; how-

ever, the spatial meaning of a pixel is lost [Goodfellow et al., 2016]. In this context,

invariant means that most output values of the pooling layer do not change if the input

is shifted (i.e., translated) by a small amount.

In the past, pooling layers were integrated into neural networks many times because

they are an efficient way to reduce the total parameters. This acts as a regularization

method and can counter overfitting on small datasets [Krizhevsky et al., 2012]. Due

to increased computing power and data availability, Springenberg et al. [2014] sug-

gests that pooling layers should be replaced by convolutional layers or omitted. For

example, the convolutional neural networks in our experiments only contain two or

three pooling layers.

Without this regularization method to counteract overfitting, other methods such as

batch normalization [Ioffe et al., 2015], dropout [Srivastava et al., 2014], data aug-

mentation [Krizhevsky et al., 2012], and weight decay [Krogh et al., 1992] are cur-

rently used (and often required for a small dataset). Good overviews and explana-

tions of common regularization methods can be found in [Kukačka et al., 2017] and

[Goodfellow et al., 2016]. Since only batch normalization and data augmentation

were employed in this thesis, these methods are explained in more detail in Section

4.4 and 4.6.
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Figure 4.5: Illustration of a pooling layer example. The input layer (size: 4 × 4 × 1) is
max-pooled with filter size kl = 2 and stride sl = 2 into an output layer of size
2× 2× 1.

4.4 Batch normalization

Batch normalization counters several problems that arise when training deep neural

networks. First, it accelerates the training processes by a substantial margin due to

improved convergence properties [Ioffe et al., 2015]. Secondly, it allows higher learn-

ing rates and a less careful weight initialization [Ioffe et al., 2015]. Thirdly, it can

act as a regularization and reduce the need for dropout [Goodfellow et al., 2016].
Currently, several normalization methods are available [Ba et al., 2016; Miyato et al.,

2018; Salimans et al., 2016; Ulyanov et al., 2016; Wu et al., 2018]. Since we use

batch normalization in this thesis, it is explained in the this section.

Ioffe et al. [2015] identified internal covariate shift as a problem for slow convergence.

In neural networks, the inputs of internal layers are affected by the parameters of all

previous layers. A small adjustment to parameters in the beginning becomes amplified

as the networks become deeper. If the parameters change due to training, the distri-

bution of the layer input also changes. The layer must be adapted and coordinated to

this change, which is known as an internal covariate shift.
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An internal covariate shift can be reduced by normalizing the activation of a layer

by making it have a mean of zero and a unit variance. Consider a layer with a d-

dimensional activation vector s = (s1, . . . , sd) and a mini-batch size of m being used

for gradient descent. In this case, each input has d activations. We can arrange this

in the activation matrix S ∈ Rm×d , where the row represents the samples of the mini-

batch m and the columns are the corresponding activations sd . The values of S are

normalized by column (i.e., the d-dimension are independent) as follows

Ŝi, j =
Si, j −µ j

σ j
(4.7)

where µ j and σ j are the mean and standard deviation for each column, respectively.

Mean and variance are computed over the mini-batch by

µ j =
1
m

m∑
i=1

Si, j (4.8)

σ j =

√√√
ε+

1
m

m∑
i=1

(Si, j −µ j)2 (4.9)

A simple normalization can reduce the representation power of a neural network. For

example, a normalized input to a sigmoid nonlinearity would constrain the function

to the linear area. Therefore, two additional parameters are used to apply a linear

transformation:

Ŝt
i, j = γ jŜi, j + β j (4.10)

where γ j and β j are parameters of the neural network that are optimized during gra-

dient descent. This allows the neural network to restore the original activation by

driving γ j to σ j and β j to µ j.

4.5 Residual connections

The findings of Eldan et al. [2016] show that deeper neural networks are desir-

able since they can better approximate functions. Based on the findings of He et al.

[2015a], it can be argued that when compared to a shallow network, a deeper network

should have the same or better error for the same test set. However, naive stacking

of layers (i.e., adding more layers to a neural network) does not usually help the op-

timization method find a solution with a lower error. Therefore, residual connections
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Figure 4.6: Illustration of a residual connection, which is the shortcut from x to the sum
F(x) + x (i.e., the identity connection).

(also known as skip connections) were proposed by He et al. [2015a] to deal with

this problem. At the time of writing, deep neural networks with residual connections

represent state-of-the-art networks for many tasks.

He et al. [2015a] concluded that the optimizer often faces difficulties in finding a favor-

able solution with a small error for deep neural networks. As a result, He et al. [2015a]
introduced residual connections to ease the optimization process for very deep neural

networks. Figure 4.6 illustrates the basic concept of a residual connection.

A residual connection is often implemented in deep neural networks by adding con-

nections that act as a shortcut over one or more stacked layers and forward the identity

x to the output of the stacked layers. Let H(x) be the desired mapping. Instead of driv-

ing F(x) to H(x), we can reformulate the problem so that F(x) := H(x) − x fits the

residual mapping. Thus, the desired mapping H(x) is F(x) + x. This is realized by

the shortcut connection (as seen in Figure 4.6 (a)) and is motivated by the fact that

it might be more difficult for deeper layers to learn an identity mapping than to drive

F(x) to zero [He et al., 2016].

A bottleneck architecture was also proposed to reduce computation complexity in

terms of floating-point operations (FLOPs) since complexity does not scale well by

adding more layers to a neural network. For example, training a 200-layer ResNet with

bottleneck architecture on ImageNet takes approximately three weeks on eight graph-

ics processing units (GPUs) and would not otherwise be possible [He et al., 2016]. In

a bottleneck architecture, a block of two convolutional layers is replaced with three

convolutional layers. While this may seem counterintuitive at first due to the addi-

tional convolutional layer, it has a major impact on computational complexity. The

convolutional layers perform the following three steps.
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3 × 3, 64

3 × 3, 64

ReLU

ReLU

64-d

(a) Original.
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Figure 4.7: Comparison of the standard residual connection design with the bottleneck de-
sign. The bottleneck has a four times greater input dimension when compared
to the standard design. However, the time complexity is the same for both
designs.

First, a convolutional layer with a filter size of 1×1×dl is employed to reduce the depth

dimension of the input [Lin et al., 2013]. As explained in Section 4.2, the convolu-

tional layer can reduce the depth dimension dl−1 of the input map Fl−1 ∈ Rml−1×nl−1×dl−1

to dl by having only dl filters. This is illustrated in Figure 4.7 (b), where the input

map with dl−1 = 256 is reduced to dl = 64. Secondly, the time-consuming 3× 3× dl

convolution is only calculated on the reduced dimensions dl . Finally, the last convolu-

tional layer restores the depth dimension dl−1 by also performing again a 1× 1× dl−1

convolution. The depth dimension dl−1 is restored via the same method used to reduce

the depth dimension in the first layer; however, the number of filters is now greater

than the input depth.

For the example, in Figure 4.7, the number of parameters are 73.728 and 69.632 for

the old and bottleneck design, respectively. While both have similar complexity in

terms of FLOPs, the bottleneck design calculates with an input that has a four times

greater depth dimension.

4.6 Data augmentation

Data augmentation can be used to artificially increase the size of a dataset. The train-

ing process requires numerous images to counter overfitting. Since labeled data is

often rare (particularly in medical image processing), one must use data augmenta-

tion. Common data augmentation methods include intensity and geometric transfor-
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mation. Since we only apply geometric transformations to our data in this thesis, they

are explained in the following section.

A medical X-ray image f is a gray-value image that assigns an intensity value f (x) ∈
[a, b] ⊂ R to a point x ∈ Ω ⊂ R2. The bit depth of an image defines a and b. For exam-

ple, most raw X-ray images have the data type unsigned short with 16-bit; therefore,

a = 0 and b = 216 − 1. In short, the image is defined by

f : Ω ⊂ R2→ [a, b] ⊂ R (4.11)

and Ω is a domain representing the connected open subset of a finite-dimensional

vector space.

Furthermore, the transformed image f̂ is given by

f̂ : Ω→ [a, b],x 7→ f (T (x)) (4.12)

with a geometric transformation T : Ω→ Ω.

4.6.1 Rotation

A transformation T rot
θ

: R2→ R2 with

T rot
θ
(x) = Rθx=

�
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

��
x1

x2

�
(4.13)

and θ ∈ [0,2π) is called a rotation. As an example, we rotate the images by

θ = {90◦, 180◦, 270◦} around the center of the image. Figure 4.8 presents these three

rotations on a chest X-ray image.

4.6.2 Reflection

A reflection T ref
l : R2 → R2 about the line l having a counterclockwise angle θ with

respect to the x-axis is given by

T ref
l (x) = Rlx=

�
cos(2θ ) sin(2θ )
sin(2θ ) − cos(2θ )

��
x1

x2

�
. (4.14)
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(a) Original. (b) First. (c) Second. (d) Third.

Figure 4.8: The image (a) is rotated for data augmentation in 90◦ steps. Thus, (b) is a
rotation by 90◦, (c) is a rotation by 180◦ and (d) is a rotation by 270◦.

(a) Original. (b) Horizontal flip.

Figure 4.9: Illustration of a reflection for data augmentation. The original image is on the
left, while the horizontally flipped (i.e., reflection about the y-axis) image is
on the right.

For a geometric transformation, the line l can be the y-axis; therefore, θ = 90◦. Hence,

Equation (4.14) is simplified by using θ and results in the following:

T ref
l (x) = Rlx=

�
−1 0

0 1

��
x1

x2

�
=

�
−x1

x2

�
. (4.15)

Figure 4.9 shows an example of the reflection transformation in Equation 4.15.

4.6.3 Random cropping

Another data augmentation method involves the random cropping of an input image,

which acts like a regularization and increases the dataset by a large factor. Random

cropping means that patches with a size w′× h′ are randomly taken from the original

image size w× h. While the positions of the patches are random, the patch normally

does not exceed the image boundaries [Zheng et al., 2016]. To calculate the position

of a patch, two random numbers woff, hoff (i.e., defining the top left position of the
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(a) (b) (c) (d)

Figure 4.10: The image (a) is randomly cropped three times to illustrate the effect of ran-
dom cropping. (b) - (c) show the results of the random cropping of (a).

patch) are sampled from the integer intervals

[0, wmax,off] = {x ∈ N |0≤ x ≤ wmax,off} and

[0, hmax,off] = {x ∈ N |0≤ x ≤ hmax,off}

where wmax,off = w−w′ and hmax,off = h− h′.

The input layer of a neural network often has specific dimensions (i.e., the spatial size

of the input layer). For example, ResNet [He et al., 2015a] and VGGNet [Simonyan

et al., 2015] have input dimensions of w′ × h′ = 224 × 224 and random cropping

is performed on images (often downscaled by bilinear interpolation) with the size

w× h = 256× 256. Thus, we can calculate the interval boundaries wmax,off = 256−
224 = 32 = hmax,off. An example of this method is shown in Figure 4.10. Here, the

chest X-ray (a) is randomly cropped three times (b)-(d).
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5 Chest X-ray disease
classification with
convolutional neural networks

This chapter aims to investigate the possible applications of deep learning for chest X-ray

classification. Standard network architectures are examined and two new architectures

that consider the specifics of chest X-ray data are proposed. First, the size of the input

images processed by the convolutional neural network is doubled to address the prob-

lem of information loss during downscaling. Secondly, a new network architecture is

presented that mimics the workflow of a radiologist by incorporating additional feature

information, including the age and gender of the patient and the view position of image

acquisition.

Most of the methods and results described in this chapter have been published by Baltr-

uschat et al. [2018b, 2019c].

In computer vision, deep learning has already shown its power for image classification

with superhuman accuracy [He et al., 2016; Krizhevsky et al., 2012; Simonyan et al.,

2015; Szegedy et al., 2014]. Additionally, the medical image processing field is in-

tensely exploring deep learning. However, one major problem in the medical domain

is the availability of large datasets with reliable ground truth annotation. Therefore,

transfer learning approaches—as proposed by Bar et al. [2015]—were often consid-

ered as a means to overcome such problems.

In 2017, two chest X-ray datasets became available: the OpenI dataset released by

Demner-Fushman et al. [2016] and the ChestX-ray14 dataset from the National In-

stitutes of Health Clinical Center [Wang et al., 2017]. Due to its size, the ChestX-

ray14 dataset—consisting of 112,120 frontal chest X-ray images from 30,805 unique

patients—attracted considerable attention in the deep learning community. Triggered
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by the work of Wang et al. [2017] using convolutional neural networks from the com-

puter vision domain, several research groups have begun to address the application

of convolutional neural networks for chest X-ray disease classification. Notably, Yao et

al. [2017] presented a combination of convolutional neural networks and a recurrent

neural network to exploit label dependencies. They used a DenseNet [Huang et al.,

2017] model as a convolutional neural network backbone, which was adapted and

trained entirely on X-ray data. Li et al. [2017] presented a framework for pathology

classification and localization using convolutional neural networks. More recently, Ra-

jpurkar et al. [2017] proposed a transfer learning approach by fine-tuning a DenseNet-

121 [Huang et al., 2017] on the ChestX-ray14 dataset, which improved the state-of-

the-art AUROC results for multilabel disease classification.

Unfortunately, a faithful comparison of approaches remains difficult. Most reported

results were obtained with different experimental setups. This includes (among oth-

ers) the employed network architecture, loss function, and data augmentation. Ad-

ditionally, differing dataset splits were used and only Li et al. [2017] reported five-

fold cross-validated results. In contrast to these results, the experiments (see Sec-

tion 5.3) demonstrate that the performance of a network depends significantly on the

selected split. To achieve a fair comparison, Wang et al. [2017] published an official

split a few months after their initial release of the ChestX-ray14 dataset. Yao et al.

[2018] and Guendel et al. [2018] reported results for the official split, while Guendel

et al. [2018] achieved state-of-the-art results in all 14 classes with a location-aware

DenseNet-121.

To provide more detailed insights into the effects of distinct design decisions for deep

learning, a systematic evaluation using a five-time subsampling scheme is performed.

Four major topics are empirically analyzed:

1. Loss functions such as binary cross-entropy (BCE), class-weighted BCE, and

positive/negative-weighted BCE (see Section 5.2.1)

2. Weight initialization, pre-training and transfer learning (see Section 5.2.2)

3. Network architectures such as ResNet-50 with large input sizes (see Sec-

tion 5.2.3)

4. Non-image features such as age, gender, and view position (see Section 5.2.4)
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5.1 ChestX-ray14 dataset

(a) “no finding” (b) “cardiomegaly” (c) “pneumothorax” (d) “pneumothorax”

Figure 5.1: Four examples of the ChestX-ray14 dataset. ChestX-ray14 consists of 112,120
frontal chest X-rays from 30,805 patients. All images were labeled with up to
14 pathologies or “no finding”. Under each image (a) to (c), we show the label.
The dataset does not only include acute findings, as per the pneumothorax in
Figure (c), but also treated patients with a drain as “pneumothorax” (d).

Prior work on ChestX-ray14 has been limited to the analysis of image data. However,

radiologists employ a broad range of additional features during diagnosis in clinical

practice. To leverage the complete information of the dataset (i.e., age, gender, and

view position), a novel architecture integrating this information—in addition to the

learned image representation—is proposed in Section 5.2.4.

5.1 ChestX-ray14 dataset

To train and evaluate the approaches for multilabel pathology classification, the entire

corpus of ChestX-ray14 is employed. Figure 5.1 illustrates four selected examples from

ChestX-ray14. In total, the dataset contains 112,120 frontal chest X-rays from 30,805

patients. The dataset contains only preprocessed images and not the original DICOM

images. Wang et al. [2017] performed a simple preprocessing based on the encoded

display settings, while the pixel depth was reduced to 8-bit. Additionally, each image

was resized to 1024× 1024 pixels without preserving the aspect ratio.

In Tables 5.1 and Table 5.2 as well as Figure 5.2, the distribution of each class and

statistics for non-image information are shown. The prevalence of individual patholo-

gies was generally low and varied between 0.2% and 17.74 % (see Table 5.1).The

distribution of patient gender and view position was quite even, with a ratio of 1.3

and 1.5, respectively (see Table 5.2). In Figure 5.2, the histogram shows the distribu-
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5 Chest X-ray disease classification with convolutional neural networks

Table 5.1: Summary of disease distribution in the ChestX-ray14 dataset. For each disease,
the total number of “true” and “false” (i.e., whether the disease is present or
not) and their prevalence are given. The last row shows the number of “true”
and “false” items for the implicit label “No Findings”

Pathology True False Prevalence [%]
N = 112, 120

Cardiomegaly 2,776 109,344 2.48
Emphysema 2,516 109,604 2.24
Edema 2,303 109,817 2.05
Hernia 227 111, 893 0.20
Pneumothorax 5,302 106,818 4.73
Effusion 13,317 98,803 11.88
Mass 5,782 106,338 5.16
Fibrosis 1,686 110,434 1.50
Atelectasis 11,559 100,561 10.31
Consolidation 4,667 107,453 4.16
Pleural thickening 3,385 108,735 3.02
Nodule 6,331 105,789 5.65
Pneumonia 1,431 110,689 1.28
Infiltration 19,894 92,226 17.74

No findings 60, 412 51,700 53.89

tion of patient age in ChestX-ray14. The average patient age was 46.87 years, with a

standard deviation of 16.60 years.

5.2 Method

In the following sections, pathology classification is cast as a multilabel classification

problem. All images X = {x1, . . . ,xN},xi ∈ X were associated with a ground truth

label vector yi, while we sought a classification function f : X → Y that minimizes

a specific loss function L using N training sample-label pairs (xi,yi), i = {1, . . . , N}.
Here, the label for each image was encoded as binary vector y ∈ {0,1}M = Y (with M

labels). As presented in Section 5.1, ChestX-ray14 usually had 14 labels per image.

For the experiments in this thesis, the implicit label “No finding”, which means that

all other classes are not present in the image, was encoded as an explicit additional

label. Hence, the total number of labels in the following experiments is M = 15.
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5.2 Method

Table 5.2: Distribution of patient gender and view position in the ChestX-ray14 dataset.
For patien gender, the total count of female and male is show and, for view
position, the total count of posterior-anterior (PA) and anterior-posterior (AP)
is given. In the third column, the ratio between the first and second columns
was calculated.

Female Male Ratio

Patient gender 63,340 48,780 1.30

PA AP Ratio

View position 67,310 44,810 1.50
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Figure 5.2: Distribution of patient age in the ChestX-ray14 dataset. Each bin covers a width
of two years. The average patient age was 46.87 years, with a standard devi-
ation of 16.60 years.
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5 Chest X-ray disease classification with convolutional neural networks

Previous work on the ChestX-ray14 dataset primarily concentrated on ResNet-50 [He

et al., 2015a] and DenseNet-121 [Huang et al., 2017] architectures. Due to the excel-

lent performance of ResNet-50 in computer vision [He et al., 2015a], this architecture

was chosen for the experiments. The original ResNet-50 was trained on ImageNet

[Krizhevsky et al., 2012] to classify 1000 classes. To adapt the network to the new

task of multilabel pathology classification, the final fully-connected layer of the origi-

nal architecture was replaced with a new fully-connected layer. The outputs matched

the number of labels M and a sigmoid activation function for the multilabel problem

was added (see Table 5.3).

5.2.1 Loss function exploration

Initially, the effect of different weightings for the BCE as a loss function was investi-

gated. The baseline was the class-averaged BCE, which is defined as follows:

LBCE(y, f (x)) =
1
M

M∑
m=1

H[ym, f (xm)] (5.1)

with H[y, f (x)] = −y log f (x)− (1− y) log(1− f (x)).

Next—and similar to [Wang et al., 2017]—a positive/negative balancing was used to

counteract the imbalanced distribution of “1”s (i.e., positive) and “0”s (i.e., negative).

While Wang et al. [2017] defined two weighting factors based on the training batch,

the αP , αN was calculated with respect to the whole training set in the present study.

Hence, the positive/negative weighted loss function LPN-BCE is defined as:

LPN-BCE(y, f (x)) = αP

M∑
m=1

−ym log f (xm) +αN

M∑
m=1

−(1− ym) log(1− f (xm)) (5.2)

where αP is |P|+|N ||P| and αN is |P|+|N ||N | . |P| and |N | are the total number of “1”s and “0”s

in the training set, respectively.

Finally, a class-weighted balancing was explored that resembles an oversampling of

minority classes. In multiclass classification, it proved to be superior to the unweighted
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Table 5.3: Architecture of the original, off-the-shelf, and fine-tuned ResNet-50. In the ex-
periments, the ResNet-50 architecture was used. This table presents the differ-
ences between the original architecture and the new one (i.e., off-the-shelf and
fine-tuned ResNet-50). If there was no difference from the original network, the
word “same” is written in the table. The violet and bold text emphasizes which
parts of the network were changed for our application. All layers employed au-
tomatic padding (i.e., depending on kernel size) to keep spatial size consistent.
The conv3_0, conv4_0, and conv5_0 layers perform a down-sampling of the
spatial size with a stride of 2.

Layer name Output size Original 50-layer Off-the-shelf Fine-tuned

conv1 112× 112 7× 7, 64-d, stride 2 Same Fine-tuned
pooling1 56× 56 3× 3, 64-d, max pool, stride 2 Same Same

conv2_x 56× 56




1× 1, 64-d, stride 1
3× 3, 64-d, stride 1

1× 1, 256-d, stride 1


× 3 Same Fine-tuned

conv3_0 28× 28




1× 1, 128-d, stride 2
3× 3, 128-d, stride 1
1× 1, 512-d, stride 1


 Same Fine-tuned

conv3_x 28× 28




1× 1, 128-d, stride 1
3× 3, 128-d, stride 1
1× 1, 512-d, stride 1


× 3 Same Fine-tuned

conv4_0 14× 14




1× 1, 256-d, stride 2
3× 3, 256-d, stride 1

1× 1, 1024-d, stride 1


 Same Fine-tuned

conv4_x 14× 14




1× 1, 256-d, stride 1
3× 3, 256-d, stride 1

1× 1, 1024-d, stride 1


× 5 Same Fine-tuned

conv5_0 7× 7




1× 1, 512-d, stride 2
3× 3, 512-d, stride 1

1× 1, 2048-d, stride 1


 Same Fine-tuned

conv5_x 7× 7




1× 1, 512-d, stride 1
3× 3, 512-d, stride 1

1× 1, 2048-d, stride 1


× 2 Same Fine-tuned

pooling2 1× 1 7× 7, 2048-d, average pool, stride 1 Same Same
fully-connected 1× 1 1000-d, FC-layer 15-d, FC-layer

loss 1× 1 1000-d, softmax 15-d, sigmoid, BCE
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5 Chest X-ray disease classification with convolutional neural networks

BCE. In the following, the class-weighted BCE LCW-BCE is defined as:

LCW-BCE(y, f (x)) =
M∑

m=1

−βm ym log f (xm)− βm(1− ym) log(1− f (xm)) (5.3)

where βm is the inverse class frequency for each class with

βm =





N
Pm

if ym = 1
N

Nm
if ym = 0

. (5.4)

Here, Pm is the total count of positives (i.e., “1”s) for class m, Nm is N − Pm, and N is

the size of the training set.

Based on the results of the loss function exploration (presented in Section 5.3), the

best performing loss function was employed in all other experiments.

5.2.2 Weight initialization and transfer learning

Two distinct initialization strategies for ResNet-50 were investigated. First, the same

scheme as described by He et al. [2016] was employed, where the network parame-

ters were initialized with random values; thus, the model was trained from scratch.

Second, the network was initialized with pretrained weights, where knowledge was

transferred from a different domain and task (also known as the transfer learning

approach). Such initialization with pretrained weights can be differentiated into off-

the-shelf (OTS) and fine-tuning (FT).

A major drawback in medical image processing with deep learning is the limited size

of datasets when compared to the computer vision domain. Hence, training a convolu-

tional neural network from scratch is often not feasible. One solution to this challenge

is transfer learning, which can be described by a domain D and a task T. Following the

notation of Pan et al. [2010], a domain D contains images X and a marginal probabil-

ity distribution P(X). A task T contains labels Y and a prediction function f (·), which

is learned from the training data. Moreover, a source domain Ds = {Xs, Ps(X s)} with

task Ts = {Ys, fs(·)} and a target domain Dt = {Xt , Pt(X t)} with task Tt = {Yt , ft(·)}
are given. The constraint to employ transfer learning is Ds 6= Dt and/or Ts 6= Tt . In
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5.2 Method

transfer learning, the knowledge gained in Ds and Ts is used to help learn a prediction

function ft(·) in Dt .

When employing an OTS approach, the pretrained network is used as a feature ex-

tractor, and only the weights of the final (classifier) layer are adapted [Razavian et al.,

2014; Yosinski et al., 2014]. In fine-tuning, one chooses to re-train one or more layers

with samples from the new domain. For both approaches, the weights of a ResNet-50

network trained on ImageNet [Russakovsky et al., 2014] are used as a starting point.

In the fine-tuning experiment, all convolutional layers were retrained as shown in

Table 5.3.

5.2.3 Architecture adaptations

In addition to the original ResNet-50 architecture, two variants were employed. First,

the number of input channels was reduced to one, which reduced the total parameters

and facilitated the training of an X-ray-specific convolutional neural network. ResNet-

50 was original designed for processing RGB images (i.e., images with three channels

for the colors red, green, and yellow) from the ImageNet dataset. Second, the input

size was increased by a factor of two (i.e., 448 × 448). A higher resolution could

be beneficial for the detection of small structures, which could be indicative of some

pathologies (e.g., masses, nodules or pneumothorax). Figure 5.3 shows the severe

effect of downscaling a chest X-ray with a pneumothorax to 256×256 pixels by bilinear

interpolation (see 5.3 (a, b)). Upon comparing it with a 480× 480pixels downscaled

version (see 5.3 (c, d)), it becomes clear that the pleura is only visible in the larger

image (c, d) and not in the smaller one (a, b).

To maintain similar model architectures, only a new max-pooling layer was added

after the first bottleneck block. This max-pooling layer had the same parameters as the

“pooling1” layer (i.e., kernel size k× k, k = 3 , stride s = 2, and zero-padding p = 1).

In Figure 5.4, the changes are illustrated at the image branch. In the following, the

postfix “-1channel” and “-large” is used to refer to the model changes.

Finally, of these three models, the best setup was further investigated by changing

the model depths.First, a shallower ResNet-38 was implemented where the number

of bottleneck blocks for conv2_x, conv3_x, and conv4_x down is reduced to two, two,
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5 Chest X-ray disease classification with convolutional neural networks

(a) (b)

(c) (d)

Figure 5.3: Comparison of a low- and medium-resolution chest X-ray based on a pneu-
mothorax. (a) shows a chest X-ray downscaled by bilinear interpolation to an
image size of 256× 256pixels. In (b), two areas of (a) are shown, magnified
by a factor of ten. The yellow arrows point to the location where the pleura
should be visible. For comparison, (c) shows the same chest X-ray downscaled
to an image size of only 480×480pixels. (d) shows the same magnified areas
shown in (b). Again, the arrows indicate the position of the pleura, which is
now visible. This example image was taken from the OpenI dataset and has
the ID: 3378.
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and three, respectively. Secondly, ResNet-101 was tested with the number of conv_3

blocks increased from 5 to 22 (when compared to ResNet-50).

5.2.4 Patient data inclusion

ChestX-ray14 contains information about patient age, gender, and view position (i.e.,

if the X-ray image is acquired posterior-anterior (PA) or anterior-posterior (AP)). How-

ever, radiologists also use information beyond the images to conclude which patholo-

gies are present or not. Notably, the view position changes the expected position of

organs in the X-ray images (i.e., PA images are horizontally flipped compared to AP).

Additionally, organs (e.g., the heart) are magnified in an AP projection since the dis-

tance to the detector is increased.

As illustrated in Figure 5.4, the image feature vector (i.e., output of the last pooling

layer with dimensions of 2024×1) was concatenated with the new non-image feature

vector (with dimensions of 3 × 1). The view position and gender were encoded as

{0,1}. The age was linearly scaled [min(Xpa), max(Xpa)] 7→ [0, 1] to avoid a bias

toward features with a large range of values. In the experiments, the suffix “-meta”

was used to refer to the model architecture with non-image features.

To determine whether the provided non-image features contained information for dis-

ease classification, an initial experiment was performed. A very simple multilayer per-

ceptron (MLP) was trained with only the three non-image feature as input. The MLP

performed the multilabel classification but with only three non-image features. The

result was a low average AUROC of 0.61 for the MLP classifier; however, this indicates

that the non-image features could help to improve classification results when provided

to the novel model architecture.

5.3 Experiments and results

For an assessment of the generalization performance, a five-time random subsampling

scheme was employed, as described in Section 3.7.2.2. Within each split, the data

were divided into 70% training, 10 % validation, and 20% testing. Since individual
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Figure 5.4: Patient data-adapted model architecture: ResNet-50-large-meta. Our architec-
ture is based on the ResNet-50 model. Due to the enlarged input size, we added
a max-pooling layer after the first three ResBlocks. Additionally, we fused im-
age features and patient features at the end of our model to incorporate patient
information.

patients had multiple follow-up acquisitions, all data from each patient were assigned

to a single subset only. This led to a large diversity in patient numbers (e.g., split two

had 5,817 patients and 22,420 images, whereas split five had 6,245 patients and the

same number of images). The average validation loss over all five random subsam-

ples was used to determine the best epoch e with the lowest error. Now, the models

of epoch e were used to calculate the final results for the test sets. All results of the

five random subsamples were then averaged. To achieve a fair comparison to other

groups, an additional evaluation was conducted. Here, the best performing architec-

ture with different depths was trained on the official split of Wang et al. [2017] (see

Section 5.3.1).

Implementation: A fixed setup was used in all experiments. To extend ChestX-

ray14, geometric data augmentation was used as described in Section 4.6. At train-

ing, patches of the image were sampled with sizes between 8% and 100% of the

image area, while the aspect ratio of the patches was evenly distributed between 3
4

and 4
3 . Additionally, horizontal flipping and random rotations between −7 ° and 7 °

were employed. For validation and testing, images were rescaled to 256 × 256 and

480× 480pixels for small and large input sizes, respectively. Thereafter, we used the

center crop as the input image. As per the work of He et al. [2016], dropout was not

employed. ADAM [Kingma et al., 2015] (see Section 3.6) was used as an optimizer

with the default parameters for β1 = 0.9 and β2 = 0.999. The learning rate η was

set to η = 0.001 and η = 0.01 for transfer learning and from scratch, respectively.

While training, the learning rate was reduced by a factor of two when the validation
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loss did not improve. Due to model architecture variations, the batch size was set

to 16 and 8 for transfer learning and from scratch, respectively, with a large input

size. The models were implemented in the Computational Network Toolkit (CNTK)

from Microsoft [Seide et al., 2016]. CNTK is a computation-graph based deep learning

framework for training and evaluating neural networks and is open-source. Moreover,

the models were trained on Nvidia GeForce GTX 1080 GPUs with 8 GB of memory. The

inference time was approximately 10 ms per image.

Loss function exploration: First, the results for the different weighting schemes

of BCE were summarized. Based on the results, the loss function with the highest

average AUROC was used for all other experiments.

Three ResNet-50-1 channels were trained from scratch without non-image features.

Then, the results presented in Table 5.4 were used to evaluate the performance of the

different loss functions. The training with LBCE achieved the highest average AUROC

value of 0.822. Compared to the two other loss functions LPN-BCE and LCW-BCE, this is an

increase of 0.49% and 4.31 %, respectively. The difference between LBCE and LPN-BCE

was only marginal, while the difference to LCW-BCE was substantial.

Wang et al. [2017] stated that they needed the LPN-BCE because the training would

otherwise be “overwhelmed with 0s and the model barely sees 1s” at training. This

was not a problem in the case of the experiment in this thesis because—other than the

most—“no finding” was explicitly used as the 15th label. Hence, many 1’s are already

in the training data. For the experiment with LCW-BCE, the label noise and strong data

augmentation (which is necessary to avoid overfitting to the training data) could have

been a problem. The large weighting (i.e., between ≈ 17 for “nodules” and ≈ 450 for

“hernia”) of positives likely causes too much false feedback since many of the labels

are incorrect during training.

Based on these results and for the sake of simplicity, LBCE was used in all of the fol-

lowing experiments.

Results of the weight initializations and architecture changes: Table 5.5

summarizes the outcomes of the evaluation. In total, eight different experimental

setups with varying weight initialization schemes and network architectures—with

and without non-image features—were evaluated. A receiver operating character-
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Table 5.4: AUROC results for the loss function experiments. The results for each pathology
of a single split are shown. For better comparison, the average AUROC over all
pathologies is also presented in the last row. Bold text emphasizes the highest
AUROC overall value. The leading 0 was omitted for convenience.

Pathology LBC E LPN−BC E LCW−BC E

Cardiomegaly .903 .900 .889
Emphysema .879 .868 .813
Edema .891 .893 .879
Hernia .895 .882 .856
Pneumothorax .855 .851 .825
Effusion .878 .873 .850
Mass .834 .833 .772
Fibrosis .801 .791 .760
Atelectasis .797 .790 .769
Consolidation .804 .802 .788
Pleural thickening .785 .784 .749
Nodule .742 .740 .678
Pneumonia .745 .742 .722
Infiltration .704 .701 .690

Average .822 .818 .788
No findings .772 .770 .755
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Table 5.5: Overview of AUROC results for all experiments. This table presents the averaged results over all five splits and the calculated standard
deviation (std) for each pathology. The experiments are divided into three categories: without and with non-image features, transfer
learning with off-the-shelf (OTS), and fine-tuned (FT) models from scratch, where “1channel” refers to the same input size as in
transfer learning but a different number of channels, while “large” implies that the input size was changed to 448×448×1. For better
comparison, the average AUROC and standard deviation over all pathologies are presented in the last row. Bold text emphasizes the
highest overall AUROC value. The leading 0 was omitted for convenience.

Without non-image features With non-image features
Pathology OTS FT 1channel large OTS FT 1channel large

Cardiomegaly .727± .018 .885± .007 .889± .005 .897± .003 .759± .014 .884± .008 .902± .004 .898± .008
Emphysema .778± .021 .892± .010 .870± .008 .883± .013 .798± .019 .894± .012 .874± .013 .891± .012
Edema .844± .006 .891± .004 .891± .006 .888± .005 .857± .005 .891± .007 .890± .006 .889± .003
Hernia .788± .014 .855± .038 .881± .042 .875± .045 .819± .025 .882± .032 .893± .044 .896± .044
Pneumothorax .773± .013 .870± .008 .857± .009 .859± .009 .791± .012 .865± .006 .854± .007 .859± .011
Effusion .794± .004 .871± .002 .876± .002 .876± .002 .806± .004 .872± .003 .876± .002 .873± .003
Mass .668± .006 .822± .010 .833± .006 .839± .009 .686± .006 .822± .010 .833± .007 .832± .003
Fibrosis .720± .009 .800± .009 .799± .008 .792± .016 .739± .008 .800± .009 .796± .005 .789± .005
Atelectasis .718± .006 .803± .007 .799± .004 .792± .007 .732± .007 .801± .006 .793± .006 .791± .004
Consolidation .743± .003 .795± .005 .806± .004 .800± .003 .753± .003 .796± .005 .804± .005 .800± .007
Pleural thickening .688± .010 .790± .007 .784± .009 .780± .011 .708± .011 .786± .011 .782± .013 .771± .013
Nodule .650± .008 .726± .009 .733± .008 .751± .013 .665± .007 .747± .006 .740± .007 .758± .014
Pneumonia .664± .027 .744± .016 .743± .015 .753± .022 .683± .023 .733± .013 .748± .015 .767± .015
Infiltration .659± .002 .699± .006 .702± .003 .702± .005 .670± .004 .702± .002 .701± .005 .700± .007

Average .730± .011 .817± .010 .819± .009 .821± .012 .748± .011 .820± .009 .820± .010 .822± .011
No findings .716± .003 .769± .005 .773± .003 .771± .004 .725± .003 .768± .004 .771± .004 .771± .003
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istic curve analysis was performed using AUROC for all pathologies, the classifier

scores were compared by Spearman’s pairwise rank correlation coefficient [Spearman,

1961], and state-of-the-art method gradient-weighted class activation mapping (Grad-

CAM) [Selvaraju et al., 2017] was employed to gain more insight into the trained con-

volutional neural networks. Grad-CAM is a method for visually assessing the model

predictions of convolutional neural networks. This method highlights important re-

gions in the input image for a specific classification result by using the gradient of the

final convolutional layer.

The results indicated high variability in the outcome with respect to the selected

dataset split. Especially for “Hernia”, which is the class with the smallest number

of positive samples, a standard deviation of up to 0.05 was observed. As a result, the

assessment of existing approaches and comparison of their performance were difficult

since prior work mainly focused on a single (random) split.

Regarding the different initialization schemes, acceptable results for OTS networks

optimized on natural images were observed. Using fine-tuning techniques, the results

were considerably improved (from 0.730 to 0.819 AUROC on average). The complete

training of the ResNet-50-1channel using chest X-rays resulted in comparable per-

formance. Only the high-resolution variant of ResNet-50-large outperformed the FT

approach by an AUROC of 0.002, on average. For smaller pathologies (e.g., nodules

and masses), improvements were observed (i.e., 0.018 and 0.006 AUROC increases,

respectively). However, for other pathologies, similar or slightly lower performance

was estimated. Finally, all experiments with an architecture including the non-image

features observed slight increases in average AUROC when compared to their counter-

parts without non-image features. The ResNet-50-large-meta (trained from scratch)

yielded the best overall performance, with an average AUROC of 0.822.

To gain better insights into why the non-image features only slightly increased the

AUROC for the fine-tuned models and those trained from scratch, the capability to

predict non-image features based on the extracted image features was investigated.

The weights of the model trained from scratch (i.e., ResNet-50-large) were used as the

initialization for three additional models. The three models (i.e., ResNet-50-large-age,

ResNet-50-large-gender, ResNet-50-large-VP) were used to predict patient age, patient

gender, and view position (VP). The same training setup as the OTS experiment was

used.
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First, the ResNet-50-large-VP model predicted the correct VP with a very high AUROC

of 0.9983±0.0002 (i.e., AP is encoded as true and PA as false). After choosing the op-

timal threshold based on the Youden index [Youden, 1950], sensitivity and specificity

were calculated as 99.3 % and 99.1 %, respectively. Secondly, ResNet-50-large-gender

also precisely predicted patient gender with a high AUROC of 0.9435± 0.0067. The

sensitivity and specificity—87.8% and 85.9%, respectively)—were also high. Finally,

to evaluate the performance of ResNet-50-large-age, the mean absolute error (MAE)

and its standard deviation are reported because age prediction is a regression task

(see Section 3.3). The model achieved an MAE of 9.13± 7.05 years. All three experi-

ments and their results indicate that the image features already encoded information

about the non-image features. This could explain why the proposed model architec-

ture with the non-image features at hand did not increase the AUROC performance

for multilable disease classification by a large margin.

Furthermore, the correlation between the predictions for individual findings was in-

vestigated. The Spearman’s rank correlation coefficient was computed for the pre-

dictions of all model pairs and averaged over the folds. The pairwise correlation co-

efficients for the models are provided in Table 5.6. Based on the degree of correla-

tion, three groups can be identified. First, the “from scratch models” (i.e., “1channel”

and “large”) without non-image features have the highest correlation of 0.93 among

each other, followed by the fine-tuned models with 0.81 and 0.80 for “1channel” and

“large”, respectively. Secondly, the OTS model surprisingly had a higher correlation

with the models trained from scratch than the fine-tuned model. Thirdly, no such cor-

relation was observed for models with non-image features, with values between 0.32

and 0.47. This indicates that models trained exclusively on X-ray data achieve not

only the highest accuracy but also the greatest consistency.

While the proposed network architecture achieved high AUROC values in all cate-

gories of the ChestX-ray14 dataset, the applicability of such technology in a clinical

environment considerably depends on the availability of data for model training and

evaluation. For the ChestX-ray14 dataset, the reported label noise [Wang et al., 2017]
and medical interpretation of the labels represent important issues. As mention by

Oakden-Rayner [2017], the class “pneumothorax” is often labeled for already treated

pneumothorax cases (i.e., a chest drain is visible in the image) in the ChestX-ray14

dataset. Grad-CAM can be used in this scenario to gain insight into whether the trained

convolutional neural network has captured drains as a main feature for “pneumotho-

rax”. Grad-CAM visualizes the areas that are most responsible for the final prediction
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Table 5.6: Spearman’s rank correlation coefficient was calculated between all model pairs
and averaged over all five splits. Our experiments are grouped into three cate-
gories. First, “Without” and “With” non-image features. Second, transfer learn-
ing with off-the-shelf (OTS) and fine-tuned (FT) models. Third, models trained
from scratch (i.e., “1channel”) have the same input size as in transfer learning
but with an altered number of channels. Notably, “large” implies that the input
dimensions were changed to 448×448×1. We identify three clusters: all mod-
els under “With”, models trained from scratch and “Without”, and the “OTS”
model.

Without With
OTS FT 1channel large OTS FT 1channel large

Without

OTS - 0.65 0.74 0.73 0.46 0.38 0.40 0.59
FT 0.65 - 0.81 0.80 0.38 0.42 0.43 0.64
1channel 0.74 0.81 - 0.93 0.41 0.43 0.47 0.71
large 0.73 0.80 0.93 - 0.40 0.43 0.47 0.71

With

OTS 0.46 0.38 0.41 0.40 - 0.32 0.33 0.39
FT 0.38 0.42 0.43 0.43 0.32 - 0.35 0.42
1channel 0.40 0.43 0.47 0.47 0.33 0.35 - 0.45
large 0.59 0.64 0.71 0.71 0.39 0.42 0.45 -

as a heatmap. In Figure 5.5, two examples of our test set are shown. First, the top row

shows a correct example where the highest activations are around the pneumothorax.

Secondly, the bottom row shows a negative example where the highest activation is

around the drain and the network falsely predicted a pneumothorax. This indicates

that the network learned not only to detect an acute pneumothorax but also the pres-

ence of chest drains. Thus, the utility of the ChestX-ray14 dataset for the development

of clinical applications remains an open issue.

5.3.1 Comparison to other approaches

In the evaluation of the experiments in this thesis, a considerable spread (i.e., the

difference between the minimum and maximum) of the results in terms of AUROC

values was observed. Next to the employed data splits, this could be attributed to the

(random) initialization of the models and the stochastic nature of the optimization

process.

When ChestX-ray14 was made publicly available, only images—with no official dataset

splitting—were released. Hence, the researcher started to train and test their proposed

methods on their own dataset splits. For the five different splits used in this thesis,
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Figure 5.5: Grad-CAM results for two example images. In the top row, the location of
the pneumothorax is marked with a yellow box. As shown in the Grad-CAM
image next to it, the model’s highest activation for the prediction is within the
correct area. The second row shows a negative example where the highest
activation, which was responsible for the final prediction of “pneumothorax”,
is at the drain. The drain is marked with yellow arrows. This indicates that
the trained convolutional neural network detects drains as a main feature for
“pneumothorax”.
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a large diversity in performance was observed. Therefore, a direct comparison to

other groups might be misleading as state-of-the-art results. For example, Rajpurkar

et al. [2017] reported state-of-the-art results for all 14 classes on their own split. In

Figure 5.6, the best performing model architecture (i.e., ResNet-50-large-meta) of the

subsampling experiments is compared to Rajpurkar et al. [2017] and other groups.

For the ResNet-50-large-meta model, the minimum and maximum AUROC over all

subsampling are plotted as error bars to illustrate the effect of random splitting.

State-of-the-art results for “effusion” and “consolidation” were achieved when directly

comparing the AUROC (i.e., averaged over five-time subsampling) to former state-of-

the-art results. However, the comparison of maximum AUROC over all subsampling

splits resulted in state-of-the-art performance for “effusion”, “pneumonia”, “consoli-

dation”, “edema”, and “hernia”. This indicates that a fair comparison between groups

without the same splitting might be inconclusive.

5.3.2 Official split and model depth

Later, Wang et al. [2017] released an official split of the ChestX-ray14 dataset. To

achieve a fair comparison to other groups, the results of this split for the best perform-

ing architecture with different depths (i.e., ResNet-38-large-meta, ResNet-50-large-

meta, and ResNet-101-large-meta) are report in Table 5.7.

The results were first compared to Wang et al. [2017] and Yao et al. [2018] because

Guendel et al. [2018] used an additional dataset—the PLCO dataset [Team PLCO

Project et al., 2000]—with 185,000 images. While ResNet-101-large-meta already has

a higher average AUROC of 0.785 and (in 12 out of 14 classes) a higher individual AU-

ROC, its performance is lower when compared to ResNet-38-large-meta and ResNet-

50-larg-meta. Reducing the number of layers increased the averaged AUROC from

0.785 to 0.795 and 0.806 for ResNet50-large-meta and ResNet38-larg-meta, respec-

tively. Hence, the results indicate that training a model with less parameters on Chest-

Xray14 is beneficial to its overall performance. Secondly, Guendel et al. [2018] re-

ported state-of-the-art results for the official split in all 14 classes with an averaged AU-

ROC of 0.807. Although ResNet-38-large-meta is trained with 185,000 fewer images,

it still achieved state-of-the-art results for “Emphysema”, “Edema”, “Hernia”, “Consol-

idation”, and “Pleural thickening” at a slightly lower average AUROC of 0.806.
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Figure 5.6: Comparison of the best model in this thesis to other groups. The pathologies
were sorted with increasing average AUROC over all groups. For model pre-
sented in this thesis, the minimum and maximum AUROC over all folds are
reported as error bar to illustrate the effect of random dataset splitting.
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Table 5.7: Overview of AUROC results for experiments on the official split. In this table, results for the best performing architecture in this thesis
with different depths (i.e., ResNet38-large-meta, ResNet50-large-meta, and ResNet101-large-meta) are presented and then compared
to other groups. The average AUROC over all pathologies is provided in the final row. Bold text emphasizes the highest overall AUROC
value.

“large-meta”
Pathology [Wang et al., 2017] [Yao et al., 2018] [Guendel et al., 2018] ResNet-38 ResNet-50 ResNet-101

Cardiomegaly 0.810 0.856 0.883 0.875 0.877 0.865
Emphysema 0.833 0.842 0.895 0.895 0.875 0.868
Edema 0.805 0.806 0.835 0.846 0.842 0.828
Hernia 0.872 0.775 0.896 0.937 0.916 0.855
Pneumothorax 0.799 0.805 0.846 0.840 0.819 0.839
Effusion 0.759 0.806 0.828 0.822 0.818 0.818
Mass 0.693 0.777 0.821 0.820 0.810 0.796
Fibrosis 0.786 0.743 0.818 0.816 0.800 0.778
Atelectasis 0.700 0.733 0.767 0.763 0.755 0.747
Consolidation 0.703 0.711 0.745 0.749 0.742 0.734
Pleural thickening 0.684 0.724 0.761 0.763 0.742 0.739
Nodule 0.669 0.724 0.758 0.747 0.736 0.738
Pneumonia 0.658 0.684 0.731 0.714 0.703 0.694
Infiltration 0.661 0.673 0.709 0.694 0.694 0.686

Average 0.745 0.761 0.807 0.806 0.795 0.785
No findings - - - 0.727 0.725 0.720
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5.4 Discussion

The optimized ResNet-38-large-meta architecture achieved state-of-the-art results in

5 out of 14 classes when compared to Guendel et al. [2018] (who achieved state-of-

the-art results in all 14 classes on the official split). Notably, even higher scores are

reported for other classes in the literature (e.g., [Rajpurkar et al., 2017]). However,

a comparison of the different convolutional neural network methods with respect to

their performance is inherently difficult since most evaluations have been performed

on individual (random) dataset splittings. Substantial variability in the results was ob-

served when different splits were considered. This was especially apparent for “Her-

nia”, the class with the fewest samples in the dataset (see also Figure 5.6).

While the obtained results suggest that the training of deep neural networks in the

medical domain is a viable option as more and more public datasets become avail-

able, the practical use of deep learning in clinical practice remains an open issue. For

the ChestX-ray14 datasets, the rather high label noise of 10 % [Wang et al., 2017]
makes the assessment of the true network performance difficult. Therefore, a clean

test set without label noise is required for clinical impact evaluation. In addition to

the presence of treated findings, Oakden-Rayner [2017] noted that the quality of (au-

tomatically generated) labels and their precise medical interpretation may be limiting

factors. The Grad-CAM results in this thesis support Oakden-Rayner [2017] concerns

regarding the “pneumothorax” label. A neural network trained solely on ChestX-ray14

would also respond to cases with a chest drain. However, in a clinical setting (i.e., for

the detection of critical findings), the focus would be on the reliable identification of

acute cases of pneumothorax. A solution to this problem might be to first remove

all images with a chest drain that are simultaneously labeled as “pneumothorax” and

then train on this clean dataset only.

5.5 Summary

This chapter presents a systematic evaluation of different approaches and model

changes for multilabel chest X-ray disease classification using convolutional neural

networks. While satisfactory results were obtained with neural networks optimized

on the ImageNet dataset, the best overall results were reported for the proposed model
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architecture incorporating non-image data (i.e., view position, patient age, and gen-

der) and trained exclusively with chest X-rays.

First, common approaches for deep learning when working on a small- to medium-

sized dataset were investigated (i.e., transfer learning). Thereafter, it was shown that

the novel model architecture with large input size and non-image feature incorpo-

ration is superior to the baseline and other groups. Next, Grad-CAM was employed

to investigate the trained models for the pathology “pneumothorax”. Notably, it was

found that the model uses medical tubes as a strong feature for classification, which

makes its application for some clinical use cases questionable.

The next chapter deals with the problem of labels generated by natural language pro-

cessing and also presents advanced preprocessing techniques that support the training

of convolutional neural networks. Moreover, the advantages of ensembles are demon-

strated by simultaneously utilizing all positive aspects of the different advanced pre-

processing techniques.
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The objective of this chapter is to provide novel insights into two important areas when

working with chest X-ray data: advanced preprocessing of chest X-ray images and retro-

spective labeling of chest X-ray datasets.

First, two preprocessing methods are proposed—bone suppression and lung field

cropping—to improve the AUROC results of a convolutional neural network for multilabel

classification. The contribution is a novel ensemble that uses the various information

available through advanced preprocessing. Secondly, the retrospective labeling of a chest

X-ray dataset by several radiologists is a complicated and time-consuming process. This

chapter highlights and discusses some problems that arise during the process of retrospec-

tive labeling. For the experiment, multiple radiologists attempted to create retrospective

labels with minimal noise for the OpenI dataset (with 3,125 images). As a result, one of

the largest sets of manual annotations for a publicly available dataset was created.

Most of the methods and results described in this chapter have been published by Bal-

truschat et al. [2019a], Baltruschat et al. [2019d, 2019e], Baltruschat et al. [2019f],
Grass et al. [2019], Ittrich et al. [2018], Steinmeister et al. [2019].

Recent developments in pathology classification have mainly focused on specific as-

pects of deep learning (e.g., novel network architectures). Early on, Shin et al. [2016]
demonstrated that a convolutional neural network combined with a recurrent part

can be applied for image captioning in chest X-rays. The increased availability of

annotated chest X-ray datasets such as ChestX-ray14 [Wang et al., 2017] helped to ac-

celerate progress in the field of pathology classification, detection, and localization.

In this rapidly evolving field, Li et al. [2017] presented a unified network architec-

ture for pathology classification and localization, in which only limited annotation is

required for localization. Moreover, Cai et al. [2018] proposed an attention mining
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method for disease localization that works without localization annotation. Addition-

ally, Wang et al. [2018] presented a classification and reporting method that involves

leveraging radiologist reports in addition to images. Putha et al. [2018] demonstrated

the effect of a very large dataset (with 1.2 million images) on pathology classification

with convolutional neural networks.

In this context, only very simple preprocessing steps have been employed. Using pre-

processing methods can reduce variation in image appearance, which facilitates a good

approximation of the mapping function (i.e., low generalization error) by training a

neural network. Notably, a sufficiently large dataset with m→∞ can make prepro-

cessing obsolete since the additional data helps neural networks become invariant to

variations in image appearance.

Motivated by prior work in the computer vision domain, preprocessing steps predom-

inantly include intensity normalization as well as a rescaling of images to a model’s

input size. However, several methods have been developed in recent years to support

radiologists in the diagnostic process. Two well-known techniques include bone sup-

pression and lung field segmentation [von Berg et al., 2016; von Berg et al., 2015].
Bone suppression artificially removes the rib cage to facilitate the detection of small

pathologies, while lung field segmentation can be used to standardize image appear-

ance. The benefits of such image processing methods for various diseases have been

shown in multiple studies [Li et al., 2012]. However, an obvious question arises: do

bone suppression and lung field segmentation have the same beneficial effect on dis-

ease classification with convolutional neural networks?

One of the largest publicly available datasets—Chest X-ray14 [Wang et al., 2017] (as

discussed in Sections 2.3 and 5.1)—is limited due to it consisting of down-sampled

8-bit PNG-images and having labels created by natural language processing. As stated

by Wang et al. [2017], the generated labels are noisy (i.e., some of the generated la-

bels are false) due to the natural language processing involved. Training convolutional

neural network models on mid-sized datasets with noisy labels can degrade general-

ization performance. Furthermore, a final performance evaluation with noisy labeled

data has an upper bound, depending on the noise.

To address these shortcomings, the OpenI dataset [Demner-Fushman et al., 2016]
was used in this chapter. Moreover, two expert radiologists created labels via man-

ual annotation. This technique has two beneficial properties: the reduction of errors
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stemming from an NLP-based analysis and avoiding misreadings by including multiple

readers. The OpenI dataset contains 3,996 DICOM images all from different patients

and already provides some manually generated labels. Unfortunately, these labels

were created for image retrieval and not for the development of computer-aided de-

tection systems. Therefore, to obtain a DICOM image dataset with appropriate anno-

tations for supervised training, two radiologists from the radiology department of the

University Medical Center Hamburg-Eppendorf annotated the entire OpenI dataset.

After initial consultation with the radiologists, the eight most important (i.e., for the

University Medical Center Hamburg-Eppendorf) findings were annotated: pleural ef-

fusion, infiltrate, congestion, atelectasis, pneumothorax, cardiomegaly, mass/nodule

(grouped together for the sake of simplicity), and foreign object.

In summary, this chapter evaluates the effect of advanced image preprocessing meth-

ods on training CNNs with a small dataset and on disease classification with CNNs.

The effects of three methods are empirically analyzed:

1. Bone suppression (Section 6.1.1)

2. Lung field cropping (Section 6.1.2)

3. Ensembles with and without preprocessed trained models (Section 6.1.3)

In a methodologically comparable way to [Gordienko et al., 2018], the preprocessing

methods are applied in three different scenarios: processing each image with bone

suppression, cropping the images to segmented lung fields, and combining both pro-

cessing steps. However, lung field segmentation was used to crop the images to the

important area, whereas Gordienko et al. [2018] kept the image size equal and only

set regions not belonging to the lung fields to zero. The hypothesis is that cropping

increases convolutional neural network performance because it increases the effective

spatial resolution of input images since the downscaling factor is smaller. Downscal-

ing is required to reduce the original image size to the input size of the convolutional

neural network. Furthermore, a novel ensemble architecture is proposed to leverage

the complementary information of the different processed images, similar to a radiol-

ogist’s workflow.
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6.1 Method

Following the method and training setup in Chapter 5 [Baltruschat et al., 2019c], a

ResNet-50 architecture with a larger input size of 448×448pixels was used in the fol-

lowing experiments. The network was first pretrained on ChestX-ray14 before a final

fine-tuning was performed on OpenI. Compared to existing network architectures and

training strategies, the obtained model achieved the highest average AUROC value in

the previous experiments (see Section 5.4). Due to the focus on eight specific patholo-

gies, the last fully-connected layer of the converged model was replaced with a new

fully-connected layer with eight outputs and a sigmoid activation function. Further-

more, fine-tuning was used to adapt the model to the new image domain and task.

6.1.1 Bone suppression

In a reported reader study [von Berg et al., 2015], the AUROC for the detection and lo-

calization of lung nodules increased for experienced human readers when using bone

suppression images. Thus, deep learning with convolutional neural networks may also

potentially benefit from suppressing a certain normal anatomy, which is tested in this

thesis.

In the original OpenI images, the bones (i.e., ribs and clavicles) overlapping with the

lung field are suppressed using the method presented by von Berg et al. [2016]. The

goal was to generate Isoft by Isoft = I − Ibone and to preserve the remaining details

that were originally overlaid with the bones. The basic idea of this method is that we

can take advantage of the fact that the original image I is a projected image (i.e., a

superposition of several signals). This implies that I can be defined as I = Ibone+ Isoft,

where Ibone is the bone structure in the image and Isoft is the soft tissue.

The method of von Berg et al. [2016] uses five main steps to determine Ibone from

the original image I so that Isoft can be calculated. First, an ST transformation TC :

(x , y) 7→ (s, t) is employed on I , which makes the contour of the ribs and clavicles

appear as a straight line in ST space. Secondly, the partial derivative with respect to s

of the transformed image IST = TC(I) is calculated as follows:

I ′ST =
∂ IST

∂ s
. (6.1)
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Since the bone edge is orientated orthogonal to s in the ST space, it substantially

contributes to I ′ST, whereas any structure not orthogonal to s is suppressed. In the third

step, a non-rotated anisotropic Gaussian filter Gσs ,σt
(s, t) is used to further suppress

non-bone structures. This filter is given by:

Gσs ,σt
(s, t) =

1
2πσsσt

exp

�
−1

2
(

s2

σ2
s

+
t2

σ2
t
)

�
(6.2)

where σs and σt are the standard deviations that determine the size of the ellipsoid.

Then, convolving the filter with the partial derivative I ′ST results in:

IG
ST = I ′ST ∗ Gσs ,σt

. (6.3)

Since main steps to extract bone information from the original images are complete,

one can invert the partial derivative and the ST transform. Thus, the fourth step

involves the calculation of the integral:

IR
ST(s, t) = IST(s0, t) +

∫ s

s0

IG
ST(s, t)ds . (6.4)

Finally, the processed and integrated image IR
ST(s, t) is transformed back into the im-

age space by the inverse ST transformation T−1
c . Since earlier processing steps may

introduce artifacts like negative pixel values, the final image is clipped by zero using

a max operation:

Ibone =max(0, T−1
c (I

R
ST)) . (6.5)

Figure 6.1 shows an example of a soft tissue image Isoft being generated by subtracting

the bone structure Ibone from the original image I .

6.1.2 Lung field segmentation and cropping

Lung field cropping has two beneficial aspects. First, it reduces the amount of infor-

mation loss due to downscaling via bilinear interpolation, which can be helpful for

diseases with small appearances. Secondly, it also acts as a geometric normalization

and can thus help in training a neural network using a small dataset.

Notably, segmentation of the lung field was first required. Then, the original images
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(a) Original image (b) Bone structure (c) Soft tissue image

Figure 6.1: The bone suppression method [von Berg et al., 2016] removes the bone struc-
ture (b) from the original image (a) by subtraction. The result is a soft tissue
image (c) without bones.

could be cropped to the lung fields. To segment the lung fields (see Figure 6.2 (b)), a

foveal convolutional neural network [Brosch et al., 2018] was used.

This neural network combined local information gained from high-resolution images

with context from lower resolution images. This was done by directly providing mul-

tiple images with different resolution scales as input to the model. For lung field

segmentation, an architecture with four inputs of different resolution levels was used

[Sital et al., 2020]. Hence, each original image was processed by creating four im-

ages with different resolutions. The input to each resolution level was then processed

by a feature extraction path, where each path was composed of three blocks. A sin-

gle block was constructed by a convolutional layer, batch normalization layer, and an

activation function [Brosch et al., 2018]. The outputs of all feature extraction paths

were then combined in a single upsampling path [Brosch et al., 2018]. Starting with

the lowest resolution output, the extracted features were processed through an addi-

tional block and then upsampled to the image size of the next feature extraction path.

At the second-lowest resolution level, the extracted features were concatenated with

the upsampled output of the layer before it [Sital et al., 2020]. This was repeated for

each resolution level. For the last level, only a final convolutional layer with a soft-

max activation function was used to produce a segmentation probability map [Brosch

et al., 2018]. The network was trained by semi-automatically annotated lung fields

and then applied to the OpenI images.

After the initial lung field segmentation, post-processing steps were used to determine

the final cropping area. First, all connected regions with eight connectivity pixels
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(a) Original image (b) Lung fields (c) Bounding box

(d) Safety area (e) Final croppend image (f) Combination

Figure 6.2: Overview of the lung field cropping method. The original chest X-ray image (a)
was processed by a foveal convolutional neural network to generate the lung
field segmentation (b). (c) presents the calculated bounding box around the
two largest connected regions in the color violet. In (d), the blue area empha-
sizes the safety area of the bounding box due to errors in the segmentation
mask. (e) shows the final cropped image and (f) presents the combination of
bone suppression and lung field cropping.

were identified. Since the two largest regions are most likely the left and right lungs,

an initial bounding box around these two regions was calculated (see Figure 6.2 (c)).

Thereafter, a small safety border of 100pixels was added to the initial bounding box at

the top, left, and right. To the bottom of the bounding box, a larger border of 200 pixels

was added (see Figure 6.2 (d)). As a preprocessing step, each image was cropped to

its individual bounding box (see Figure 6.2 (e)). In this thesis, the combination of

bone suppression and lung field cropping was also considered (see Figure 6.2 (f)).
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6.1.3 Ensemble with advanced preprocessed images

In many applications, combining different predictors can lead to improved classifica-

tion results, which is known as ensemble generation [Hansen et al., 1990; Krogh et al.,

1995]. Ensembling can be done in several ways and with any number of predictors.

To determine whether the combination of several predictors could improve results,

the Pearson correlation coefficient can be used. Ensembling predictors with a high

correlation coefficient is unlikely to greatly improve results when compared to predic-

tors with lower correlations. Methods for ensemble generation (i.e., combining the

predictions of multiple predictors) include averaging, majority voting, and machine

learning algorithms such as support vector machines.

This thesis focuses on using the averaging approach to limit the complexity of the

experimental setup because the dataset used for the experiment is small. Since an en-

semble approach will typically outperform an individual model, the individual models

are not directly compared to an ensemble. Instead, the ensemble (EN-preprocessed,

shown in Figure 6.3) was compared to another ensemble (EN-normal) built with four

models trained on images without advanced preprocessing. The EN-preprocessed en-

semble was built from models trained on the three different preprocessed images and

the original images. This ensemble method could use all of the information available

from different image types. Figure 6.3 presents an overview of our ensemble method,

in which we combined four models that were trained on our four differently prepro-

cessed input images.

6.2 OpenI dataset

The OpenI dataset contains 3,996 studies with DICOM images [Demner-Fushman et

al., 2016]. In the first step, a revised dataset was created by removing studies with

no associated images or labels (i.e., reference annotation). Next, studies that lacked

either frontal or lateral acquisition were removed. Thus, the final dataset consisted of

3,125 studies.
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Average
Final multi-label

classification
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Original data
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Figure 6.3: Ensemble method used to combine advanced preprocessed images. Four
ResNet50-large models were trained on different image data: original, soft tis-
sue, lung field cropped (LFC), and bone suppressed (BS) with LFC. Each model
predicted the score for five cropped images (i.e., center and all four corners)
in the test set Ntest with eight classes. Thereafter, the predicted scores from all
models were averaged to obtain the final multilabel classification result.
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6 Advanced preprocessing for convolutional neural networks

Figure 6.4: Web-based annotation tool for eight representative classes (i.e., pleural
effusion, pneumothorax, infiltrate, congestion, atelectasis, cardiomegaly,
mass/nodule, and foreign body). Radiologists had to actively indicate the pres-
ence of a finding with a “Yes”, “No”, or “Unknown” decision. For consensus
building, labeling discrepancies between annotations from both radiologists
were later highlighted as “mismatch” in the first column.

6.2.1 Annotation process

Two expert radiologists from the radiology department of the University Medical Cen-

ter Hamburg-Eppendorf—radiologist1 and radiologist2, with 3 and 18 years of ex-

perience, respectively—reviewed all 3,125 cases. For the annotation process, the

frontal and lateral CXRs were used by the radiologists. Annotations contained eight

representative classes, which were considered to be most relevant in clinical prac-

tice: pleural effusion, infiltrate, congestion, atelectasis, pneumothorax, cardiomegaly,

mass/nodule, and foreign object (i.e., all artificial objects like peacemaker, tubes

or markers). Less frequent pathologies (e.g., pneumomediastinum or pneumoperi-

toneum) were not included in the annotation, which could potentially lead to severe

complications. Reading was performed on a diagnostic workstation, while the radiolo-

gists were required to actively indicate the presence of a pathology in the implemented

web-based annotation tool (see Figure 6.4).

As discussed in Section 2.4.2, high inter-rater variability is often observed in chest

X-ray diagnosis and is especially high for the annotation process. Therefore, all ex-

aminations with labeling discrepancies between the two radiologists were jointly re-

evaluated by both radiologists to establish a final consensus annotation for the ground
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Table 6.1: Summary of the statistical distribution of all eight classes for the reannotated
OpenI dataset.

Finding True False Prevalence [%]
N = 3,125

Pleural effusion 147 2,978 4.7
Infiltrate 152 2,973 4.9
Congestion 170 2,955 5.4
Atelectasis 212 2,913 6.8
Pneumothorax 11 3,114 0.4
Cardiomegaly 529 2,596 16.9
Mass/nodule 447 2,678 14.3
Foreign object 1,121 2,004 35.9

No findings 1,345 1,780 43.0

truth. Table 6.1 presents the distribution of each finding. As is common in the medical

domain, most of the classes have a low prevalence. All findings except pneumothorax

have more than 100 positive cases, whereas the finding pneumothorax has only 11

positive cases. The standard supervised training of a neural network with 11 cases is

not possible. Therefore, the final evaluation (see Section 6.3) reports the results for

pneumothorax only for completeness but does not discuss them.

6.2.2 Inter-observer variability

We evaluated the inter-rater reliability by using Cohen’s kappa coefficient (κ) to de-

termine the overall agreement between the two radiologists for each binary outcome

(i.e., the presence or absence of pneumothorax), while “unknown” labels were ex-

cluded from analysis. The interpretation of kappa statistics was performed according

to the benchmarks proposed by Landis et al. [1977] to classify the strength of agree-

ment: poor (< 0.00), slight (0.00 to 0.20), fair (0.21 to 0.40), moderate (0.41 to

0.60), substantial (0.61 to 0.80), and almost perfect (0.81 to 1.00).

The analysis of inter-rater reliability revealed a substantial agreement between both

radiologists for foreign object (κ = 0.72) and pleural effusion (κ = 0.64), a moder-

ate agreement for pneumothorax (κ = 0.55), mass/nodule (κ = 0.54), and infiltrate

(κ= 0.52), a fair agreement for congestion (κ= 0.28) and atelectasis (κ= 0.28), and

a slight to fair agreement for cardiomegaly (κ= 0.20) (see Table 6.2). The confusion

97
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Table 6.2: Inter-rater reliability between two radiologists from the radiology department
of the University Medical Center Hamburg-Eppendorf evaluating the OpenI
dataset (3,125 pairs of frontal and lateral chest X-rays) using Cohen’s kappa
coefficient (κ) and interpretation according to Landis et al. [1977].

Finding κ Agreement

Foreign object 0.72 Substantial
Pleural effusion 0.64 Substantial
Pneumothorax 0.55 Moderate
Mass/nodule 0.54 Moderate
Infiltrate 0.52 Moderate
Congestion 0.28 Fair
Atelectasis 0.28 Fair
Cardiomegaly 0.20 Slight/fair

matrix (see Figure 6.5) suggests that the less experienced radiologist (radiologist1) in-

dicated the presence of pleural effusion (n= 238 vs. 130), infiltrate (n= 175 vs. 66),

congestion (n= 493 vs. 130) and atelectasis (n= 239 vs. 127) significantly more of-

ten, whereas the more experienced radiologist (radiologist2) indicated cardiomegaly

(n = 94 vs. 219) significantly more often for the same dataset. For mass/nodule,

infiltrate, congestion, atelectasis, and pleural effusion, radiologist1 chose the label

“unknown” more often than radiologist2.

6.3 Experiments and results

In this section, the experimental setup is described and the results are presented. For

an assessment of the generalization performance (as discussed in Section 3.7), a five-

time subsampling from the entire OpenI dataset was used. Each time, the dataset was

split into 70 % training (Ntrain = 2,188) and 30 % testing (Ntest = 937). The average

error over all five random subsamples was calculated to estimate the optimal point for

generalization. Finally, the results were calculated for each split on the test set and

then averaged.

Implementation: DICOM images in the OpenI dataset have a 16-bit depth intensity

range. To emphasize the anatomy of interest and to convert the images to 8-bit depth,

a clipping to the interval [a, b] with additional linear intensity transformation T :
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Figure 6.5: Confusion matrices of the annotation results for radiologist1 (3 years of expe-
rience) vs. Radiologist2 (18 years of experience). Both radiologists annotated
the OpenI dataset (3,125 pairs of frontal and lateral chest X-ray) with respect
to eight pathologies and used three different labels to indicate the presence of
a finding: Yes, No or Unknown (Unk).

[a, b]→ [c, d]was applied to each image:

T (x) = (d − c)
x − a
b− a

+ c (6.6)

where x = (x1, . . . , xn)> and [c, d] = [0,255] are the image and the output interval,

respectively. For each image, the clipping interval [a, b]was determined by generating

a mask containing only pixels of the anatomical structure. This means that the direct

radiation area and shutter area were not considered for determining the interval. The

histogram was calculated while only considering the pixels in the mask. Here, the 1st

and 99th percentiles were used for a and b, respectively.

Following the experimental setup presented in Chapter 5, an adapted ResNet-50 tai-

lored to the chest X-ray domain was used. After replacing the fully-connected layer,

the model was fine-tuned using the OpenI dataset. For training, a similar data aug-

mentation to that presented in [Szegedy et al., 2014] was used. First, various patches

were sampled with sizes between 80% and 100% of the image area. The patch aspect

ratio was distributed evenly between 3
4 and 4

3 . Additionally, each image was randomly

horizontal flipped and randomly rotated between −7 ° and 7 °. At testing, images were

resized to 480 × 480 pixels and the average prediction of five cropped patches (i.e.,

99



6 Advanced preprocessing for convolutional neural networks

center and all four corners) was used for the evaluation. In all experiments, ADAM

[Kingma et al., 2015] was used as an optimizer with default parameters for β1 = 0.9

and β2 = 0.999. The learning rate η was set to η = 0.005 and a batch size of 15

was used. While training, the learning rate was reduced by a factor of two if the

validation loss did not improve. BCE was employed as loss functions. In the initial

experiments with different loss functions to handle class imbalance, no performance

difference was observed between standard BCE and class-weighted BCE (see Chap-

ter 5). The models were implemented in CNTK [Seide et al., 2016]—an open-source

deep learning toolkit—and trained on two Nvidia GeForce GTX 1080Ti GPUs with 11

GB of memory.

Six different experiments based on our proposed image preprocessing (see Sec-

tions 6.1.1 and 6.1.2) were performed. First, four models were trained using different

training data: original images (i.e., no advanced preprocessing employed), bone sup-

pressed images, lung cropped images, or images combining both preprocessing steps.

Secondly, two ensembles were built: “EN-normal” and “EN-preprocessed”. EN-normal

was built upon four models trained similarly with original images but with different

initializations as a baseline ensemble. EN-preprocessed was built with the three pre-

processed trained models (i.e., bone suppressed, lung field cropped, and combined

image trained) and one model trained with original images.

Results: Table 6.3 summarizes the outcome of the evaluation. To compare the ex-

periments to each other, AUROC was calculated. The AUROC results are averaged over

all five resamplings and presented with the standard deviation. For the ensemble ex-

periment, the Pearson correlation coefficients between each model used for EN-normal

and EN-preprocessed were calculated.

First, the experiments with different preprocessed images were compared based on

their performance using AUROC results. In all experiments, five out of seven relevant

classes had a high AUROC (over 0.9). Two of those five classes, “pleural effusion” and

“cardiomegaly” had an AUROC over 0.95. Only the classes “mass/nodule” and “for-

eign object” had an AUROC below 0.9. Upon comparing the results of a model using

bone suppression to the normal trained model, the AUROC for “foreign object” in-

creased substantially from 0.795±0.015 to 0.815±0.013 with respect to the reported

standard deviation. In all classes, the model trained with lung cropping had a higher

AUROC and often a reduced standard deviation when compared to the baseline. How-
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Table 6.3: Overview of AUROC results for all experiments. In this table, the averaged results over all five splits and the calculated standard
deviation for each finding are presented. Furthermore, the average (AVG) AUROC over all findings is shown. The models were
trained with four different input images. They were first trained with normal images, then with bone suppressed “BS” images, lung
field cropped images “LFC”, and a combination of bone suppressed and lung field cropped images “BS+LFC”. Additionally, an ensemble
with models trained on normal images “EN-normal” as well as an ensemble with the models trained on preprocessed images “EN-
preprocessed” were created. Bold text emphasizes the highest overall AUROC value. The leading 0 was omitted for convenience.
ÆPneumothorax was excluded due to its low positive count.

Finding Normal BS LFC BS+LFC EN-normal EN-preprocessed

Pleural effusion .951± .008 .948± .009 .955± .007 .955± .009 .960± .004 .957± .007
Infiltrate .936± .012 .938± .012 .939± .007 .936± .014 .944± .010 .943± .011
Congestion .937± .013 .932± .015 .941± .014 .938± .014 .941± .012 .946± .013
Atelectasis .905± .020 .907± .016 .917± .017 .913± .020 .905± .020 .923± .016
Cardiomegaly .952± .006 .950± .006 .953± .005 .952± .003 .955± .004 .959± .003
Mass/nodule .764± .016 .766± .016 .821± .020 .840± .011 .769± .014 .837± .014
Foreign object .795± .015 .815± .013 .808± .013 .805± .015 .811± .018 .821± .015
Pneumothorax .731± .134 .789± .104 .813± .132 .794± .128 .736± .163 .792± .142

AVG Æ .891± .013 .894± .012 .905± .012 .906± .012 .898± .012 .912± .011
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6 Advanced preprocessing for convolutional neural networks

(a) “Normal trained” (b) “Preprocessed trained”

Figure 6.6: Pearson correlation coefficients for normal trained models (a) and models
trained with preprocessed images (b). The correlation between normal models
was already high, except for the model “Normal-2”, which seemed to converge
to a different optimum. The models trained with preprocessed images have a
lower correlation (approximately 92 %). This indicates that an ensemble of the
models shown in (b) can have a greater impact on classification performance.

ever, the AUROC only increased substantially (from 0.766± 0.016 to 0.821± 0.020)

for the class “mass”. The increased spatial resolution for lung cropped images most

likely helps the model to better detect small masses. This is consistent with the ob-

servations of radiologists, who reported that there are more small masses/nodules

than large ones in the OpenI dataset. Combining both preprocessing steps resulted in

the highest AUROC for “mass” and increased the AUROC by 9.95 %. No substantial

changes for the other classes were observed.

In Figure 6.6, the Pearson correlation coefficients between the individual models for

the two ensembles are reported. As expected, models for EN-normal were already

highly correlated (i.e., values around 98 %)—except for the model “Normal-2”, which

seemed to converge to a different optimum. Upon comparing the Pearson correlation

coefficients of the models for EN-preprocessed with the models for EN-normal, the

coefficients are lower (approximately 92 %).
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6.4 Discussion

The degree of agreement between both radiologists in the experiment differed based

on the specific pathology. While the less experienced radiologist (radiologist1) rated

more examinations as pathological for all seven classes apart from “cardiomegaly”,

the more experienced radiologist (radiologist2) more often indicated “cardiomegaly”.

For every pathology, both radiologists seemed to decide according to their own inner

threshold. Nevertheless, in contrast to other publications, we achieved reasonable

inter-observer reliability (between fair and substantial) for all classes. For example,

Neuman et al. [2012] discovered only slight inter-observer reliability (κ = 0.14) be-

tween radiologists in detecting interstitial infiltrate in pediatric chest X-rays.

To minimize inter-observer variability, radiologists must be well instructed and clear

cutoffs for every pathology must be defined for a “yes” or “no” decision before start-

ing with an annotation. Thus, breaking down a complex radiology report into eight

binary classes is a main limitation of the experiment in this thesis, especially since

this procedure does not resemble a realistic clinical workflow and could be influenced

by the concentration and motivation of the reader. Furthermore, open datasets do

not commonly include clinical background information regarding the specific patient

or the patient collective in general, thereby complicating image interpretation when

compared to clinical reality [Berbaum et al., 1985; Potchen et al., 1979]. In particular,

the spectrum of disease varies widely by geographic region, socioeconomic status, and

ethnicity.

A solution for future studies to address the problem of disagreement between radiol-

ogists could involve the implementation of an annotation tool where the radiologist is

not forced to perform binary reporting but can indicate a probability of the presence

of a finding. For simplicity, this could be implemented with a slide controller in the

web-based annotation tool. Such probabilities could then be used to directly train a

neural network, or an attempt could be made to first normalize the probability distri-

bution of each radiologist. Normalization can help if one of the radiologists always

rates higher than the others.

The Pearson correlation results for the EN-preprocessed ensembles indicate that build-

ing an ensemble from those four models can impact AUROC results. This hypothesis

was verified by the AUROC results presented in Table 6.3. EN-preprocessed ensembles

considerably increase the AUROC for “cardiomegaly”, “foreign object”, and “atelecta-
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sis” with respect to the reported standard deviation, whereas EN-normal ensembles

do not. However, EN-normal has the highest—but only slightly higher—AUROC for

“pleural effusion” and “infiltrate”. In four out of seven classes, EN-preprocessed yields

the best AUROC results and has the highest average AUROC of .912 ± .011. How-

ever, its lower AUROC for “mass/nodule” when compared to the “BS+LFC” model

indicates that the simple prediction averaging was not optimal. This is because the

other three models in the ensemble have higher prediction confidence than the single

model. A more advanced method to calculate the final prediction could help to solve

this problem. This method could involve an additional neural network trained to find

the optimal combination for the predictions of the four models.

6.5 Summary

In this chapter, the effects of two advanced preprocessing methods—bone suppression

and lung field cropping—for multilabel disease classification in chest X-rays have been

investigated. Notably, the superior performance of models trained on preprocessed

images has been highlighted through a systematic evaluation. The best performance

was achieved by an ensemble architecture leveraging all the information from the dif-

ferent advanced preprocessing methods. Moreover, substantial AUROC improvement

for specific classes (e.g., “foreign object” and “cardiomegaly”) has been achieved.

The next chapter introduces worklist prioritization for chest X-rays as a potential clin-

ical application. For the first time, a unified framework to simulate a clinical workday

in a radiology department is presented. The framework is implemented with empir-

ical data from the radiology department of the University Medical Center Hamburg-

Eppendorf (UKE) and used to demonstrate the significant impact of smart worklist

ordering on report turnaround time (RTAT). The sorting is based on urgency levels

determined by the predictions of a state-of-the-art convolutional neural network.
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This chapter aims to evaluate whether smart worklist prioritization by a deep learning-

based sorting can optimize the radiology workflow and reduce RTATs for critical findings

in chest X-rays.

A simulation framework was developed to model the current workflow in a radiology de-

partment by incorporating hospital-specific chest X-ray generation rates, reporting rates,

and pathology distributions. Using this data, a standard worklist processing known as

first-in, first-out (FIFO) was simulated and then compared to a worklist prioritization

based on urgency. Examination prioritization was performed by a convolutional neu-

ral network that classified eight different pathological findings ranked in descending or-

der of urgency: pneumothorax, pleural effusion, infiltrate, congestion, atelectasis, car-

diomegaly, mass, and foreign object. Furthermore, a method to counteract the effect of

false negative predictions by the convolutional neural network was proposed and inves-

tigated, resulting in a dangerously long RTAT since chest X-rays are sorted to the end of

the worklist. The simulations demonstrate that smart worklist prioritization can reduce

the average RTAT for critical findings in chest X-ray while maintaining a small maximum

RTAT as per FIFO ordering.

Most of the methods and results described in this chapter have been published by Baltr-

uschat et al. [2020a], Baltruschat et al. [2020b], Steinmeister et al. [2020].

Growing radiologic workload, a shortage of medical experts, and declining revenues

often lead to potentially dangerous backlogs of unreported examinations, especially

in publicly funded health care systems [Beardmore et al., 2016; Care Quality Com-

mission, 2017; Royal College of Radiologists, 2018]. With the increasing demand for

radiological imaging, the continuous acceleration of image acquisition, and the ex-

pansion of teleradiological care, radiologists are now working under increasing time

pressure that cannot be relieved by improving radiology information system (RIS),
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picture archiving and communication system (PACS) integration, or the use of speech

recognition software [Reiner, 2013]. As reported by Beardmore et al. [2016], the av-

erage RTAT for plain X-rays in the United Kingdom is approximately 34 hours, while

74 % have an RTAT of less than 24 hours.

The delayed communication of critical findings to the referring physician bears the

risk of delayed clinical intervention and impairs the outcome of medical treatment

[Berlin, 2001; Hanna et al., 2005; Singh et al., 2007; The Joint Commission, 2020],
especially in cases requiring immediate action (e.g., tension pneumothorax or mis-

placed catheters). For this reason, The Joint Commission defined the timely reporting

of critical diagnostic results as an important goal for patient safety [The Joint Com-

mission, 2020].

Many institutions process their examination worklists following the FIFO principle.

However, the urgency information provided by the ordering physician is often incom-

plete or presented as an ambiguous and ill-defined priority level, such as “critical”,

“ASAP” (as soon as possible), or “STAT” (short turnaround time) [Rachh et al., 2018;

Wesp, 2006]. A recent study related to portable chest radiographs reported that 38 %

of all STAT exams were not clinically urged [Gaskin et al., 2016].

While rule-based approaches that assign cases to specific worklists (e.g., emergency

department or subspecialty) can help to optimize the overall workflow, they cannot

take imaging findings into account. Furthermore, prioritization by radiographers after

acquisition of a CXR has not found any application in clinical routines.

Deep learning methods such as convolutional neural networks offer promising options

to streamline the clinical workflow. Automated disease classification systems based on

convolutional neural networks can enable the real-time prioritization of worklists and

reduce the RTAT [Ondategui-Parra et al., 2004] for critical findings by up to 60 %,

which was demonstrated for head and neck CTs [Yaniv et al., 2018]. For chest X-ray

examinations, a potential benefit of real-time triaging by convolutional neural net-

works has been reported in [Annarumma et al., 2019]; however, this study primarily

focused on the development of a deep learning system without a real clinical simula-

tion and does not present maximum RTAT values for critical findings.

The benefits of smart worklist prioritization need to be discussed not only based on

the average RTAT but also in terms of the maximum RTAT. One problem with using
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deep learning methods for smart worklist prioritization is that critical findings may be

“overlooked” by the system (i.e., the false negative rate (FNR) of the prediction model

is not zero). The higher the FNR, the more likely it is that individual examinations

with critical findings will be sorted to the end of the worklist, which could increase

the risk of delayed treatment.

In this chapter, we simulate multiple smart chest X-ray worklist prioritization methods

for chest X-rays in a realistic clinical setting by using empirical data from the University

Medical Center Hamburg-Eppendorf. We develop a realistic simulation framework

and evaluate whether machine learning can reduce RTAT for critical findings by using

smart worklist prioritization instead of the standard FIFO sorting. Furthermore, we

propose a thresholding method for maximum waiting time to reduce the effect of false

negative predictions by the neural network.

7.1 Method

Based on the work presented in Chapter 5 [Baltruschat et al., 2019c], a tailored

ResNet-50 architecture with a larger input size of 448×448 pixels was used. Further-

more, each chest X-ray was preprocessed using two methods (i.e., lung field cropping

and bone suppression). As shown in Chapter 6, the highest average AUROC value was

achieved by combining both methods in an ensemble [Baltruschat et al., 2019e]. The

neural network was pretrained on the publicly available ChestX-ray14 dataset [Wang

et al., 2017] and, after replacing the last fully-connected layer of the converged neu-

ral network, it was fine-tuned on the open-source OpenI dataset [Demner-Fushman

et al., 2016]. As presented in Section 6.2, two expert radiologists—with 5 and 19

years of experience in chest X-ray reporting—from the UKE radiology department an-

notated a revised OpenI dataset (containing 3125 chest X-rays) regarding eight find-

ings: pneumothorax, congestion, pleural effusion, infiltrate, atelectasis, cardiomegaly,

mass/nodule, foreign object.

Due to the importance of pneumothorax detection and the low number n = 11 of

cases with “pneumothorax” in the OpenI dataset, the specifically adapted ResNet-50

of Gooßen et al. [2019b] was used and trained on a dedicated in-house dataset for

pneumothorax detection. Notably, both datasets include different degrees of clini-

cal manifestation for each finding. Therefore, the final neural network included two
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Figure 7.1: Receiver operating characteristic curves of the neural network for all eight find-
ings.

separate convolutional neural networks, both of which obtained the highest average

AUROC value (Figure 7.1) in previous experiments when compared to different net-

work architectures.

The average inference time per image was approximately 21ms when using an Nvidia

GeForce GTX 1080 GPU and 351ms with an Intel Xeon E5-2620 v4 8-core CPU. Both

options add a negligible overhead to the reporting process.

7.1.1 Pathology triage

For triage, a ranking—reflecting the urgency for clinical action—of the pathologies was

defined by two experienced radiologists. Since our annotations did not include differ-

ent degrees of pathology manifestation, only the presence of pathology was considered

for the prioritization. Furthermore, the impacts of different pathology combinations

were not considered.

The following eight pathological findings were ranked in descending order of urgency:

pneumothorax, pleural effusion, infiltrate, congestion, atelectasis, cardiomegaly,

mass/nodule, and foreign object. Notably, this ranking only reflects the most rele-

vant findings in the clinical routine, as defined by the two experienced radiologists.
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Figure 7.2: Workflow simulation overview. A conventional radiography system constantly
generates chest X-rays. For each chest X-ray, between zero and eight findings
were assigned. Chest X-rays were either sorted into the worklist chronologi-
cally (i.e., FIFO) or according to their urgency based on the predictions of a
convolutional neural network (i.e., PRIO). Finally, worklists were processed by
a virtual radiologist.

7.1.2 Workflow simulation

To evaluate the clinical effect of a chest X-ray worklist rearrangement by smart order-

ing under realistic conditions, the current workflow in the radiology department of the

UKE was analyzed. Thereafter, the empirical data were transferred into a computer

simulation (see Figure 7.2).

A framework consisting of four main parts was designed to perform the simulation.

The first part is a discrete probability distribution of how often chest X-rays are gen-

erated pCXR : ΩCXR 7→ [0, 1], where ΩCXR is the sample space. The second part is the

department-specific disease prevalence for eight findings to assign labels to the chest

X-rays. The third part is the sensitivity and specificity for all eight findings of a state-

of-the-art convolutional neural network to classify each chest X-ray. The fourth part is

a second discrete probability distribution of how rapidly a radiologist finalizes a chest

X-ray report preport : Ωreport 7→ [0,1], where Ωreport is the sample space.
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7 Simulation of chest X-ray worklist prioritization

Now, the four main parts were used to model the clinical workload throughout the

day using two asynchronous processes. One process (i.e., simulating the chest X-ray

machines in the radiology department) generated new examinations that filled up the

worklist after a specific time. The second process (i.e., simulating the reporting of a

radiologist) took the top entry of the worklist and required a specific amount of time

to complete the processing. To add information about the pathologies, each generated

examination was assigned between zero and eight pathologies based on the a-priority

probabilities from the pathology prevalence.

To describe the two discrete probability distributions, the sample space Ω was needed.

Both sample spaces ΩCXR and Ωreport were determined by monitoring the chest X-

ray acquisition and reporting process of N samples. First, the sample space ΩCXR =
{d2, . . . , dN} , d ∈ R≥0, where d is the difference between the acquisition time stamps

tacq of two consecutive chest X-rays:

dl = t l
acq − t l−1

acq , l ∈ {2, . . . , N} . (7.1)

ΩCXR includes all effects, such as the different patient frequencies during day and night

(see Figure 7.3).

Second, the same method was used for Ωreport, except the reporting times treport of two

subsequent chest X-rays were used to approximate the reporting speed of a radiologist

r. Hence, Ωreport = {r2, . . . , rN} , r ∈ R≥0 with

rl = t l
report − t l−1

report , r ∈ {2, . . . , N} . (7.2)

Ωreport includes the raw reporting speed for a chest X-ray as well as factors such as

breaks or interruptions due to phone calls (see Figure 7.4).

As previously explained, this setup models a FIFO reporting scenario and is similar to

the current clinical workflow used in the radiology department of the UKE. For the

smart worklist prioritization, we included the neural network directly after the chest

X-ray generation. For each chest X-ray, the neural network predicts whether a finding

is present or not before it is sorted into the worklist.

By automatically predicting the presence of all eight pathological findings, a level of

urgency could be assigned according to the urgency order defined by two the expert

radiologists (see Section 7.1.1). Depending on the estimated urgency level, images
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Figure 7.3: Discrete distribution of chest X-ray generation speed. The x-axis shows the
time in 24-hour format, while the y-axis shows the calculated time deltas. The
histogram (in the x- and y- directions) is shown in green.
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Figure 7.4: Discrete distribution of chest X-ray reporting times by radiologists. The x-axis
shows the time in 24-hour format, while the y-axis presents the calculated
time deltas between two chest X-ray reports. The histogram (in the x- and y-
directions) is shown in green.
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were inserted into an existing worklist while considering images with a similar or

higher urgency level. The rearranged worklist was processed by the same modeled

reporting process used in the FIFO scenario.

To counteract the problem of false negative predictions (i.e., sorting positive exam-

inations to the end of the worklist), the maximum waiting time was restricted to a

specific limit. If an examination on the worklist had a waiting time longer than the

maximum waiting time, it was assigned with the highest urgency level and moved to

the top of the worklist. While this should help to reduce the problem caused by false

negative predictions (i.e., dangerously long maximum RTATs), it should also be coun-

terproductive to the original goal of reducing the average RTAT for critical findings.

7.2 Experiments and results

All methods were tested using a Monte Carlo simulation over 11,000 days with 24

hours of clinical routine, covering the generation of approximately 1,000,000 chest X-

rays. Furthermore, the worklist was completely finalized to zero once every 24 hours

in all simulations. In our evaluation, we compared the average and maximum RTATs

of the simulations.

7.2.1 Pathology distribution

The analysis of pathology distribution at the UKE was performed by manually anno-

tating (i.e., expert radiologist) 600 chest X-ray reports from two weeks—one from

August 2016 and one from February 2019. Both weeks were randomly selected and

used to approximate the pathology distribution. The chest X-rays included all study

types and degrees of disease manifestation.

Since the stationary patient collective was from a hospital of maximum care (i.e., a

larger institution with more than 1000 beds), the proportion of chest X-rays with-

out pathological findings was only 31 %. The prevalence of the most critical finding,

“pneumothorax”, was 3.8 %. The results for pathology distributions are presented in

Table 7.1.
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Table 7.1: Finding prevalence in chest X-rays at the University Medical Center Hamburg-
Eppendorf (approximation by 600 samples from August 2016 and February
2019). The table is ordered by finding urgency, as defined by two expert ra-
diologists.

Finding Total count Prevalence [%]
N = 600

Pneumothorax 23 3.8
Congestion 124 20.7
Pleural effusion 236 39.3
Infiltrate 100 16.7
Atelectasis 124 20.7
Cardiomegaly 117 19.5
Mass/nodule 38 6.3
Foreign object 298 49.7
Normal 186 31.0

7.2.2 Chest X-ray generation and reporting time analysis

The metadata of 1,408 examinations—including all types of chest X-ray studies—

were used to determine a discrete distribution of chest X-ray generation and radi-

ologist reporting speed. The examinations were from two randomly selected and

non-consecutive weeks from Monday 00:00 AM until Sunday 00:00 AM. To model

the acquisition process, the creation timestamps of two consecutive chest X-rays were

used to calculate the delta between their creation. The same method was employed

for reporting speed. Here, the report finalization timestamp was used to determine

the delta between two chest X-rays. Thereafter, all deltas greater than 2 h 30 min were

removed to ensure that outliers were only found in the discrete distribution of chest

X-ray generation and not in the discrete distribution of reporting speed. Such out-

liers exist because no examination may be acquired over a long period of time (> 2h

30 min).

7.2.3 Hospital’s report turnaround time analysis

The average RTAT for a chest X-ray—measured over two randomly selected and non-

consecutive weeks (1,408 examinations)—was 80 min with a range between 1 min

and 1041min. Assuming that a chest X-ray report by an experienced radiologist will

only take several minutes, this range for reporting times can be explained by different
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7 Simulation of chest X-ray worklist prioritization

external influences, such as night shifts, change of shifts, working breaks, or back-

logs.

7.2.4 Operation point selection

Before the convolutional neural network (trained for multilabel classification) can be

used for smart worklist ordering, an operating point must be defined. A threshold for

every pathology must be selected to derive a binary classification (i.e., the finding is

present or not) from the continuous response of a convolutional neural network (see

Section 3.3). This corresponds to the selection of an operation point on the ROC curve.

While an exhaustive evaluation of different threshold combinations for all pathologies

is computationally prohibitive, the focus of this thesis was on pneumothorax only (the

most critical finding in this setting). Here, the average RTAT was estimated for dif-

ferent operating points by sampling the ROC curve at different false positive rates

(FPRs).

As shown in Figure 7.5, higher FPRs reduce the effect of smart worklist prioritization to

almost zero (i.e., almost all examinations are rated as urgent). Also, the other extreme

(i.e., low FPR) has no effect if nearly all images are rated as non-urgent. Figure 7.5

also shows that the optimal operation point to reduce the average RTAT is at an FPR

of 0.05.

For the optimal operation point at FPR = 0.05, the corresponding true positive, false

negative, and true negative rates are shown in Table 7.2. Table 7.2 also shows that

the optimal operation point to reduce the average RTAT still has a moderate FNR

of approximately 0.20 for most findings. The higher the FNR, the more likely it is

that individual examinations with critical findings will be sorted to the end of the

worklist. Hence, a second operation point was selected with a low FNR of 0.05 to

determine whether this can help to reduce the maximum RTAT. Table 7.2 presents the

corresponding false positive, true negative, and true positive rates.
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Figure 7.5: Investigation of different operation points for the neural network. To find the
optimal operation point to reduce the average report turnaround time (RTAT)
for critical findings, multiple simulations were run with false positive rates
between 0 and 1.

Table 7.2: Different operation points for the convolutional neural network. The first col-
umn shows the true positive rate (TPR), false negative rate (FNR), and true
negative rate (TNR) for the optimal operation point (having a false positive
rate (FPR) of 0.05) with the best average report turnaround time (RTAT) reduc-
tion. The second column shows the operation point for a low FNR of 0.05 (i.e.,
reducing the likelihood of dangerously long RTATs for critical findings).

FPR = 0.05 FNR = 0.05
Finding TPR FNR TNR TPR FPR TNR

Pneumothorax 0.82 0.18 0.95 0.95 0.20 0.80
Congestion 0.71 0.29 0.95 0.95 0.24 0.76
Pleural effusion 0.86 0.14 0.95 0.95 0.21 0.79
Infiltrate 0.75 0.25 0.95 0.95 0.27 0.73
Atelectasis 0.61 0.39 0.95 0.95 0.39 0.61
Cardiomegaly 0.75 0.25 0.95 0.95 0.18 0.82
Mass/nodule 0.51 0.49 0.95 0.95 0.72 0.28
Foreign Object 0.51 0.49 0.95 0.95 0.78 0.22
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7.2.5 Workflow simulations

Figure 7.6 summarizes the effects of all four simulations (i.e., FIFO, Prio-lowFNR, Prio-

lowFPR, and Prio-MAXwaiting) on RTAT. For the simulations Prio-lowFPR and Prio-

MAXwaiting, the optimal operation point (as shown in Table 7.2) to reduce average

RTAT was used.

The average RTAT for critical findings was significantly reduced in the Prio-lowFPR

simulation when compared to the FIFO simulation (e.g., pneumothorax: 37.5 min vs.

80.1 min, congestion: 46.6 min vs. 80.5 min, pleural effusion: 51.3 min vs. 80.5 min).

As expected, increased average RTAT was only reported for normal examinations, with

a significant increase from 80.2 min to 117.3 min. However, the maximum RTAT in

the Prio-lowFPR simulation also increased compared to the FIFO simulation for all

eight findings (e.g., pneumothorax: 1297 min vs. 890 min) since some examinations

were predicted as false negatives and sorted to the end of the worklist. Notably, the

low FNR of 0.05 in Prio-lowFNR did not help to reduce the maximum RTAT (e.g.,

pneumothorax: 1293 min vs. 1178 min).

In the Prio-MAXwaiting simulation, the false negative prediction problem was coun-

tered by using a maximum waiting time. As a result, the maximum RTAT was reduced

for most findings (e.g., pneumothorax from 1297 min to 979 min). Notably, the aver-

age RTAT was only slightly higher than the Prio-lowFPR simulation (e.g., pneumotho-

rax: 38.5 min vs. 37.5 min).

Finally, the last simulation was the upper limit for a smart worklist prioritization by

virtually employing a perfect classification algorithm (Perfect) with a true positive and

true negative rate of 1. Table 7.3 presents comparisons with the other four simulations.

For pneumothorax, the Prio-MAXwaiting average RTAT was only 8.3 min slower than

the Perfect-simulation, while FIFO was 49.8 min slower.

Statistical analysis The predictive performance of the convolutional neural net-

work was assessed by using the AUROC. The AUROC results shown in Figure 7.1 were

averaged over five-time random subsamples.

Welch’s t-test was used to assess the significance of the smart worklist prioritization.

First, a null distribution was simulated for the RTAT, where examinations were sorted
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Figure 7.6: Report turnaround times (RTAT) for all eight pathological findings and for nor-
mal examinations on the basis of four different simulations: FIFO (green),
Prio-lowFNR (yellow), Prio-lowFPR (purple), and Prio-MAXwaiting (red) with
a maximum waiting time (light purple). Green triangles mark the average
RTAT, while vertical lines mark the median RTAT. The maximum RTAT for each
simulation and finding is shown on the right side.

based on the FIFO principle (i.e., random order). Secondly, an alternative distribu-

tion with worklist prioritization was simulated. Both distributions were then used

to determine whether the average RTAT for each finding had changed significantly

by calculating the p-value via Welch’s t-test. Each distribution was simulated with a

sample size of 1,000,000 examinations and the significant level was set to 0.05. For

all findings except “foreign object”, we calculated a p < 0.0001. This result supports

the existence of a significant change to the average RTAT when smart workflow prior-

itization is used.
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Table 7.3: Comparison of all four simulations (i.e., FIFO, Prio-lowFNR, Prio-lowFPR, and
Prio-MAXwaiting) with a perfect classification algorithm simulation (i.e., Per-
fect). The table is ordered by finding urgency and the results are presented in
the style (avg / max) [minutes] for each simulation.

Finding FIFO Prio-lowFNR Prio-lowFPR Prio-MAXwaiting Perfect

Pneumothorax 80.1 / 890 36.7 / 1293 37.5 / 1297 38.5 / 979 30.3 / 320
Congestion 80.5 / 916 50.3 / 1877 46.6 / 1813 47.8 / 1357 35.2 / 510
Pleural effusion 80.5 / 932 63.5 / 2120 51.3 / 1818 53.2 / 1357 45.4 / 1016
Infiltrate 80.3 / 916 67.9 / 2120 55.8 / 1919 58.0 / 1279 49.8 / 1110
Atelectasis 80.4 / 906 70.1 / 1751 59.0 / 1818 61.1 / 1357 51.4 / 1361
Cardiomegaly 80.5 / 932 70.4 / 1745 58.7 / 1816 60.8 / 1357 52.2 / 1332
Mass/nodule 81.0 / 902 71.3 / 1729 61.3 / 1722 63.4 / 1320 52.8 / 1301
Foreign object 80.4 / 930 80.5 / 2094 80.4 / 2052 80.3 / 1357 80.7 / 2053
Normal 80.2 / 940 101.8 / 2094 117.3 / 2093 114.4 / 1412 131.5 / 2087

7.3 Discussion

The clinical workflow simulation demonstrated that a significant reduction in average

RTAT for critical findings in chest X-rays can be achieved by a smart worklist priori-

tization using neural networks. Furthermore, it was shown that the problem of false

negative predictions by a convolutional neural network can be significantly reduced

by introducing a maximum waiting time.

This was proven in a realistic clinical scenario since all simulations were based

on representative retrospective data from the University Medical Center Hamburg-

Eppendorf. By extracting discrete distributions of chest X-ray acquisition rate as well

as radiologist reporting speed, the temporal sequence of a working day could be pre-

cisely recreated.

As in other application areas, an important question related to what error rates we

can ethically and legally tolerate before convolutional neural networks can be applied

to patient care. Here, the legal requirements are likely to be lower and the ethical ac-

ceptability higher than for systems with automatic diagnosis. With intelligent worklist

ordering, the final diagnosis for all exams is still made by a radiologist and all exams

are thus seen by a radiologist.

For smart worklist prioritization, the simulations have shown that average RTAT can

easily be reduced at the expense of individual cases that are classified as false negatives

and thus reported much later than the current FIFO principle. While it was question-
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able whether this overall improvement outweighed the risk of delayed reporting for

individual cases, the Prio-MAXwaiting simulation showed that the definition of a max-

imum waiting time—after which all examinations are assigned the highest priority—

solves this problem. For the most critical finding (i.e., pneumothorax), maximum

RTAT was reduced to the current standard while preserving the significant reduction

of average RTAT.

The comparison in Table 7.3 shows that state-of-the-art convolutional neural networks

can nearly reach the upper limit of a smart worklist prioritization for the average RTAT.

On the other hand, for the maximum RTAT, it again reveals the problem of false nega-

tive predictions. Ideally, a perfect classification algorithm could reduce the maximum

RTAT to 320 min for pneumothorax, which is a substantial improvement over the stan-

dard maximum of 890 min.

The predictions of this neural network could not only be used for smart worklist order-

ing but also for second reader or guidance applications. The second reader application

could directly compare the diagnostic results from a radiologist with the prediction of

the neural network. If a difference is detected, the system could provide instant feed-

back to the radiologist, who must resolve the difference before he can finalize the

report. The opposite of this is represented by the guidance application. In this appli-

cation, the predictions of the neural network could be presented to a radiologist as

additional information for examinations. Notably, both applications carry the risk of

radiologists becoming inert and always relying on the predictions of the neural net-

work.

In addition to the use of a convolutional neural network possibly improving the diag-

nostic workflow, it should be noted that only the timely and reliable communication

of any discovered findings by a radiologist to a referring clinician ensures that patients

receive the clinical treatment they require.

Unlike previous publications [Gaskin et al., 2016], the present study included inpa-

tients as well as outpatients. This is because the daily reporting routine at the Univer-

sity Medical Center Hamburg-Eppendorf involves all chest X-rays being sorted into a

single worklist. Furthermore, substantially shorter (compared to published data from

the United Kingdom) backlogs of unreported examinations were observed.

In healthcare systems where patients and referring physicians wait for days or even
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weeks for reports—or have limited access to expert radiologists—the benefits of

smart worklist prioritization could obviously be greater than in countries with a well-

developed health system. The longer the reporting backlogs, the more likely it is that

referring physicians will attempt to rule out critical findings in chest X-rays them-

selves. This poses the risks of subtle findings with potentially large clinical impacts

(e.g., pneumothorax) being overlooked or important discoveries by radiologists being

postponed for a negligently long time.

One limitation of the present study is that the OpenI dataset that the convolutional

neural network was trained on mainly included outpatients, which contrasts with

the predominantly stationary patient collective of the hospital. Therefore, the per-

formance of the algorithm, which is already strong compared to other publications

[Baltruschat et al., 2019c], cannot be directly transferred to the hospital-specific pa-

tient collective and will most likely decrease. However, it is important to note that

the priority-based scheduling algorithm developed in this work is generic and can use

any convolutional neural network that classifies chest X-ray pathologies. If the convo-

lutional neural network classifier is improved, the scheduling algorithm will directly

benefit.

7.4 Summary

Overall, the application of smart worklist prioritization by a convolutional neural net-

work shows great potential to optimize clinical workflows and can significantly im-

prove patient safety in the future. The clinical workflow simulations suggest that

triaging tools should be customized based on local clinical circumstances and needs.

In the future, it will be important to include more pathologies and different degrees of

manifestation to further improve the benefits of smart worklist prioritization. While

this study only focused on the eight most common findings in a chest X-ray at a univer-

sity hospital and ranked them accordingly, severe atelectasis (for example) can place

patients´ health at greater risk than a small pleural effusion.
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This thesis has presented several improvements for multilabel disease classification in

chest X-rays using deep learning. Chapter 2 laid the cornerstones for our proposed

changes, Chapters 3 and 4 described the general methodology of neural networks,

Chapter 5 presented new changes to the model architecture, Chapter 6 proposed ad-

vanced preprocessing to assist model training and discussed our annotation for the

OpenI dataset, and Chapter 7 translated the findings into a clinical application and

showed the significant impact that a neural network for chest X-ray analysis can have

on smart worklist ordering.

In this thesis, four types of problems were addressed by employing convolutional neu-

ral networks to classify chest X-ray diseases, and several major contributions to this

field were made. In Chapter 5, it was shown that the novel model architecture—which

incorporates non-image features such as gender, age, and VP and has a larger input

size—is superior to other architectures without such modifications. By analyzing the

converged models with Grad-CAM, it was found that the models trained only with

noisy labels learned false image features for classification. For example, the model

sometimes used a medical tube to classify a pneumothorax. These findings motivated

the introduction of annotations with minimal noise to the OpenI dataset [Demner-

Fushman et al., 2016] in Chapter 6. In total, 3,125 chest X-rays were annotated by

two radiologists. This dataset was used to demonstrate the beneficial effects of two

advanced preprocessing methods for deep learning and determine how to leverage all

of the relevant information simultaneously. Bone suppression and lung field cropping

substantially increased the classification results and assisted the model training by

normalizing the appearance of chest X-rays. Furthermore, the ensemble—combining

models trained on different preprocessed image types—achieved the highest over-

all AUROC. Finally, the gap between research and clinical applications was closed in
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Chapter 7. Notably, an important possible application for deep learning algorithms

was identified: worklist prioritization based on urgency levels. To highlight the im-

pact of deep learning algorithms for worklist prioritization, a novel simulation frame-

work was developed to simulate a clinical workday based on empirical data from a

radiology department. In a concluding experiment, it was shown that current deep

learning algorithms can reduce the average RTAT for critical findings almost by a factor

of two.

8.1 Future perspective

Throughout this thesis, three research directions were identified that have great po-

tential to improve the contributions presented in this thesis. Two methodological ex-

tensions to improve disease classification in the radiological field were also explained,

while another clinical application that could have a significant positive impact on re-

ducing workload in a radiology department was also presented.

8.1.1 Multitask learning

It has been shown that multitask learning can have multiple positive effects for indi-

vidual tasks that are related to each other [Ruder, 2017]. As shown and discussed

in Section 5.3, global labels for supervised training can be problematic for the clas-

sification of chest X-ray diseases, especially when training is performed with labels

generated by natural language processing (usually the only labels available for chest

X-ray images). To overcome the problem of false feature learning by global labels,

multitask learning can help to focus the attention of models by also learning the aux-

iliary task of disease segmentation or detection.

It can be beneficial for neural network models to learn the representation of anatomi-

cal structures using a segmentation task. Guendel et al. [2019]was the first to present

results related to this idea by combining lung and heart segmentation with disease

classification. Segmentation can force a model to learn a representation using the

anatomical structure of a chest X-ray image—similar to a radiologist, who also learned

the anatomy of the human thorax before diagnosing chest X-rays. While Guendel et
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al. [2019] only used heart and lung segmentation mask, other anatomical structures

(e.g., the ribs, clavicles, scapulae, and diaphragm) could also be very important to

further improve the results.

As a second extension, the lateral view of a chest X-ray (the frontal and lateral view are

often available) can easily be integrated into such a multitask learning framework. For

example, the lateral view can be very important for pleural effusion classification.

8.1.2 Decomposition of a chest X-ray into pseudo-CT

The interpretation of two-dimensional medical projection images is a notoriously chal-

lenging task for radiologists since a two-dimensional projection image is a linear super-

position of contributions from different depth layers of the imaged anatomical struc-

ture. On the other hand, two-dimensional medical projection images are—beyond

their diagnostic value—omnipresent and widely used due to their low radiation dose,

simplicity of acquisition, and low cost. Therefore, providing assistance and guidance

to radiologists in the interpretation of images is a crucial ingredient for improving

clinical workflows.

As described in [Baltruschat et al., 2018a], radiologists must mentally disassemble

two-dimensional projection images to detect anomalies or perform quantitative analy-

ses. In other words, an important step in the image analysis workflow involves the sep-

aration of the visible two-dimensional projection image into its different constituents

(i.e., anatomical structures at different depths). This task involves the identification

of structures and subtraction of these structures for subsequent analyses. For exam-

ple, in the context of nodule detection in X-ray imaging, radiologists must consider

that the appearance of a nodule in an image could be influenced by the ribs, spine,

vasculature, and other anatomical structures. Particular aspects of this task have al-

ready been partially automated by technologies such as automatic rib cage removal

algorithms, which require a fair amount of manual work and engineering to produce

a clinically acceptable result. There is currently no general-purpose method available

that allows the automation of this task.

While some initial work for this problem was performed by Albarqouni et al. [2017],
Li et al. [2019], it remains an open question whether the use of a second view (e.g.,

the lateral view) can improve the decomposition of a chest X-ray into a pseudo-CT
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by using a neural network. At present, one project is investigating whether such ad-

ditional information helps to reconstruct a complete pseudo-CT image and whether

this pseudo-CT could help radiologists. Furthermore, such pseudo-CT could also be

beneficial for disease classification with a convolutional neural network.

8.1.3 Malposition detection of central venous catheters in
chest X-rays

While generic disease classification or triaging has received tremendous attention, it

is notoriously challenging (as discussed in Sections 2.4.3 and 2.4.4). On the other

hand, it is common to have a specific clinical question for a chest X-ray, which requires

an assessment of the image that extends beyond simple classification. For example,

the insertion of a central venous catheter is notoriously difficult and could result in a

pneumothorax.

Notably, Pikwer et al. [2008] reported that the incidence of central venous catheter

malposition ranges from 3.6 % to 14 %. Therefore, after most central venous catheter

insertions, a chest X-ray is taken to verify that catheters are correctly positioned and

determine whether or not a pneumothorax is present. At the University Medical Cen-

ter Hamburg-Eppendorf, this medical question currently accounts for 20 % of all chest

X-ray images. While some initial work [Yi et al., 2020] has dealt with the segmenta-

tion or detection of catheters in chest X-rays, no studies have dealt with the clinical

application of malposition detection to date.

To address this open problem, I began to create a dataset with global classification

labels and segmentation masks for central venous catheters as well as the lung, heart,

and clavicles. Figure 8.1 presents initial segmentation masks without a pneumoth-

orax segmentation. The additional anatomical structure was annotated because the

anatomical landmarks (e.g., the carina and heart) can be used in the algorithm to

determine the correct position of the catheter tip. The segmentation of the anatomi-

cal structure and the catheters can be performed using a fully convolutional network

with a decoder [Long et al., 2015]. An alternative to catheter segmentation could also

involve pathfinding via reinforcement learning [Sartoretti et al., 2019; Song et al.,

2018].
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(a) Original image (b) Segmentation overlay

Figure 8.1: Example image from the central venous catheter dataset. The original im-
age (a) is shown on the left and the corresponding segmentation makes (c)
are shown as an overlay on the right. The color blue indicates the heart, while
green indicates the lungs, cyan represents the clavicles, and brown highlights
the catheter.
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review for publication.

Some material from the other domains like magnetic partical imaging has been omit-

ted because it does not thematically fit into this thesis. In particular, the approach

to learn a matrix completion method from complex-valued system matrices to reduce

calibration time in magnetic partical imaging [Baltruschat et al., 2020c] is not in-
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