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Abstract 2

Abstract

A method for simulating large amplitude ship motions in a seaway in six degrees of

freedom is presented. Rigid body motion equations suitable for large motion ampli-

tudes are derived. The simulation model takes into account all significant forces

acting on a ship. Froude-Krilov forces and moments are calculated using the actual

waterline along the hull. Hydrodynamic radiation and diffraction forces are calculated

using higher-order differential equations relating the relative motion between the

water and the ship sections to the section forces. The hydrodynamic coefficients

are calculated using a linearised method, but at every time step the values corre-

sponding to the instantaneous submerged shape of the ship are used. Other than in

linearised calculations the coefficients of the equations of motion are independent of

frequency. Thus the simulation of non-linear ship motions in irregular seas is possi-

ble. Also included in the simulation model are propeller and rudder forces, autopilot

and propeller action and control, as weil as forces due to wind, longitudinal and

transverse resistance, and non-linear roll damping.

Eine Methode zur Simulation von Schiffsbewegungen großer Amplitude im Seegang in

sechs Freiheitsgraden wird präsentiert. Starrkörper-Bewegungsgleichungen, die für

große Bewegungsampituden geeignet sind, werden hergeleitet. Das Simulations modell

berücksichtigt alle signifikanten Kräfte, die auf das Schiff wirken. Die Froude-Kri-

lov-Kräfte werden für die tatsächliche Wasserlinie entlang des Schiffs körpers be-

rechnet. Die hydrodynamischen Radiations- und Diffraktionskräfte werden mit Diffe-

rentialgleichungen höherer Ordnung berechn~t, die die Relativbewegung zwischen dem

Wasser und den Schiffsquerschnitten in Beziehung zu den Spantkräften setzen. Die

hydrodynamischen Koeffizienten werden mit einer linearisierten Methode berechnet,

aber in jedem Zeitschritt werden die Werte für die aktuelle getauchte Schiffsform

benutzt. Anders als in linearisierten Berechnungen sind die Koeffizienten der Bewe-

gungsgleichungen unabhängig von der Frequenz. Daher ist die Simulation von nichtli-

nearen Schiffsbewegungen in unregelmäßigem Seegang möglich. Im Simulationsmodell

sind auch Propeller- und Ruderkräfte, Regler für Kurs und Propellerdrehzahl sowie

Windkräfte, Längs- und Querwiderstand und nichtlineare Rolldämpfung enthalten.
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Introduction 5

The motion of ships in a seaway has always been of
tects. The rolling motion is of particular importance
with the problem of safety against capsizing.
One of the first theoretical approaches in this respect is undoubtedly Froude's clas-
sical paper "On the Rolling of Ships" [6]. Captain Krilov went a signifjcant step for-
ward in his paper "A General Theory of the Oscillations of a Ship on Waves" [15],
where he presents a calculation method for predicting rigid body motions in 6 de-
grees of freedom. Both Froude and Krilov use the assumption that the waves are
not disturbed by the ship's presence, nowadays referred to as the "Froude-Krilov
Hypothesis" .
With the presentation of the Strip Theory by Korvin-Kroukovsky [14] a major break-
through in the history of seakeeping prediction methods was achieved. Many enhan-
cements of the Strip Theory have been made by various authors [9, 19, 22] and it
can be said that the strip method today is the basic tool for seekeeping predictions.
Being a linear method the strip theory obviously has its limitations. While the pre-
diction of heave and pitch is very good, the results for the highly nonlinear pheno-
menon of the rolling motion are very poor.
Important work in the fjeld of rolling was done by Grim [8], who proved that roll
resonance can appear in longitudinal waves. Various authors [1, 13, 17, 18] have
used the equation of motion for the uncoupled rolling motion in conjunction with
stochastic methods to establish stability criteria for ships rolling in irregular seas.
Normally, though, rolling is coupled to some extent with all other motions, particu-
larly with sway and yaw, and this has to be considered in a prediction method.
Apart from theoretical approaches there were also experimental investigations into
the stability of ships in irregular seas. A large series of model experiments was
done in the HSVA to investigate the stability of modern container ships [4, 5].
Another comprehensive test program was carried out by SSPA in Göteborg for
stern trawlers [10].
With the modern computer technology now available hitherto unthinkable methods
can now be employed, since a vast amount of numerical calculations does present
less of a problem. One such method is the simulation of ship motions in a seaway.
Mathematically a simulation consists of the time domain solution of a set of differ-
ential equations describing the behaviour of the ship in response to its environment.
Kröger [16] uses a combination of linear and non-linear methods for simulating ship
motions. He uses strip theory results for the heave, pitch, sway, and yaw motion in
conjunction with a non-linear equation of motion for rolling. Included in this equation
are linear and quadratic damping coefficients, a non-linear, time-dependent righting
moment, and external moments due to the waves. Because of the linearized calcu-
lation this method cannot simulate broaching in following waves and gene rally under-
estimates the yaw-motion.
A different approach for predicting non-linear ship motions in large amplitudes waves

is taken by Fujino and Yoon [7]. They use, what can be called a non-linear extension

of the strip method, for the simulation of motions in five degrees of freedom, name-

Iy heave, pitch, sway, yaw, and roll. The sectional hydrodynamic coefficients are cal-

culated with a linearized method (for small amplitude motions), but at every time-

great interest to naval archi-
since it is directly connected
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step the coefficients corresponding to the instantaneous submerged portion of the

section are used. Thus the nonlinearity in the hydrodynamic forces stems from the

time-variation of the ship's submerged part. The hydrostatic and Froude-Krilov for-

ces are calculated exactly by integrating the water pressure over the instantaneous
submerged portion of the vessel's hull. In the linear strip method the response for

irregular seas is obtained by using the superposition of responses for regular waves

of different frequencies. With non-linear system response this is not possible. Since

the hydrodynamic coefficients used by Fujino and Yoon vary with frequency, their

method can only be applied to regular waves (where a single motion frequency

prevaiisL

In this paper a method for the simulation of large amplitude (nonlinear) ship motions

in all six degrees of freedom is presented. In the simulation model presented he re

all significant forces acting on a ship in a seaway are included. The Froude-Krilov
forces are calculated using the ac tu al waterline along the hull. In a way similar to

Fujino's method, the hydrodynamic coefficients for two-dimensional flow within

transverse section planes are calculated using a linearised method, but at every time
step the values corresponding to the instantaneous submerged shape of the ship

are used. For the calculation of radiation and diffraction forces a higher order dif-

ferential equation is used to take account of the memory effects of the free water

surface. Other than in linearised calculations the coefficients of the equations of

motion are independent of frequency. which makes the simulation of large amplitude

ship motions in irregular waves possible. Non-linear phenomena such as large angle
rolling and broaching in following waves can be simulated.
The paper is based on [23]. which was a preliminary study for this project. [23]
presents a number of concepts and suggests methods for implementing them with-
out going into much detail. In this paper the concepts from [23] are worked out in
detail. However, extensive changes of so me of the methods proposed in [23] were
found to be necessary. The equations of motion had to be changed in order to
separate terms depending on acceleration from other terms, thus making a solution
possible. The determination of the section waterlines needed for the calculation of
both the Froude-Krilov and the radiation and diffraction forces is completely differ-
ent from the method suggested in [23]. For the calculation of the radiation and dif-
fraction forces a higher order differential equation is used as given in [23]. Howev-
er, in [23] no method for solving this equation is given. Such a method, together
with ways of testing the numerical stability of the higher order differential equation
and calculating it's coefficients were developed from scratch. The methods for calcu-
lating the rudder. propeller and wind forces are worked out in detail in this paper,
while [23] just references the literature.
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2.1 Symbols

Vectors are denoted by lowercase underlined letters (e.g. '~"). Vectors in the earth
coordinate system either have an index ~ (e.g. "Q!;") or are denoted by lowercase
greek letters. Vectors in the ship coordinate system have no index. Matrices are
written as uppercase letters. Scalars are denoted by lowercase letters which are
not underlined. The index G indicates that a quantity refers to the centre of gravity
of the ship (e.g. "KG"). Dots on top of a symbol denote a time derivative.

2.2 Coordlnate Systems

Two coordinate systems will be used. One is fixed to the earth and shall henceforth
be called "earth coordinate system". Its origin lies in a distance equal to the
draught of the ship below the still water surface. Its axes are called ~. 11 and C. ~
points horizontally in the direction of the mean ship's heading. 11 points horizontally
to starboard. C points vertically downward. The second coordinate system is fixed

to the ship and shall be called "ship coordinate system". Its origin is located at the
keel amidships. The axes are x. y, and z. The x-axis is parallel to the keel and
points towards the bow. The y-axis is at right angles to x and parallel to the ship's
decks, pointing to starboard. z is at right angles to both x and y, pointing down-
ward.

j

I

Trx
z

2.3 Coordlnate Transformations

Consider a point

(2.1)

in the earth coordinate system. The same point in the ship coordinate system may
be called

(2.2)

land Kare related by the equation

= T.x +1=
- .20

(2.3)
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.5.0 is the position of the origin of the ship coordinate system in the earth coordi-
nate system. T is a transformation matrix representing the rotation of the ship
relative to the earth coordinate system. T can be derived from the concatentation
of transformations for rotations about each of the three coordinate axes. To make
this transformation unequivocal the order of succession of the rotations must be
specified. It is as folIows:

Rotation about the ~-axis
Rotation about the T)-axis
Rotation about the C-axis

through the angle ep
through the angle .&
through the angle ttJ

Rotation about the ~-axis. through an angle ep. is achieved by the following trans-
formation:

.~ o
-s~ep

]
.~

cosep
(2.4)cosep

sinep

The rotation angle ep is measured clockwise when looking from the origin in the
direction of the positive ~-axis. For the ship a positive rotation angle ep or angle of
heel means a deeper immersion of the starboard side in the water.
Rotation about the T)-axis through an angle .& is given by:

'I: = T . x
2 - =

[

c~s.&

-sin.&

o Sin.&

]
1 0 .~
o cos.&

(2.5)

A positive angle .& (trim) leads to a deeper immersion of the stern of the ship.
Rotation about the C-axis through an angle ttJ is given by:

r = T3
. ~ =

[

costtJ -sinttJ

sintlJ costlJ

o 0
(2.6)

A positive angle tlJ (yaw) for the ship means a course deviation to starboard. Conca-
tenation of these three transformations is achieved by the product of the transfor-
mation matrices. Thus the single transformation matrix T for a combination of all
three rotations can be derived:

T = T. T .T
3 2 1 =

[

COStlJcos.&

sintlJcos.&

-sin.&

-coseps intlJ+s inepcostlJs in.&

cosepcostlJ+s ineps intlJs in.&

sinepcos.&

sinepsintlJ+cosepcostlJsin.&

]
-s inepcostlJ+cosepsintlJs in.&

coscpcos.&

(2.1)

simplified ways:

= (2.8)

As can be shown easily the inverse of the transformation matrix is equal to the
transposed transformation matrix:

(2.9)



1 = o .(~ - ~)+ 10- _0

where 0 is defined as

[0
-wC

W"]0 = Wc 0 -w1;
-w w 0TI 1;

2 Conventions. Definitions and Basic E uations 9

2.4 Velocities

The velocity is the time derivative of the position vector:
. at
1 = at

The velocity relative to the earth coordinate system of a point 2$.fixed to the ship is

(2.10)

. . .
.i = T'2$. + 5.0 (2.11)

The angular velocity is defined as:

w =

(~n
(2.12)

The components of this vector are the angular velocities about the axes of the

earth coordinate system. From this definition folIows:

(2.13)

The vector product in this equation can alternatively be written using a matrix mul-

tiplication:

(2.14)

(2.15)

According to (2.3) the expression (1 - 10) in (2.14) can be replaced by T. 2$.:

1 = 0 .T .2$. + 10 (2.16)

Comparing this equation with (2.11> one obtains:

T = O.T (2.17)

Using this equation the numerical integration of T is possible (using a method for

the integration of a system of ordinary differential equations. e.g. Runge-Kutta), if

starting values for T and the time history of ware known. Compared with the time
integration of the angles cp. &. and 41 this has the advantage that T need not be

calculated from these angles at every time step. It may. however. lead to the ac-
cumulation of numerical errors in T. making it equivocal. Therefore T is corrected

every 30 time steps (the angles are calculated from T. then T is recalculated from
(2.7) using these anglesL



QI; = j. J.~ dm + io . f dm
ship shlp

From this folIows:

QI; = (T . X + ~). m-G -0

3 E uations of Motion 10

For the purpose of simulating ship motions in a seaway the
be a rigid body. The influence of elastic deformations of the
is considered to be small and will therefore be neglected.

ship can be thought to
ship hull on its motions

For calculating the accelerations in all 6 degrees of freedom a system of six scalar
equations will be set up.
According to Newton's law the time derivative of the momentum QI; is equal to the
force in the earth coordinate system:

b = f = T'i-I; ~ (3.1)

T is the transformation matrix, i is the force. QI; and i are vectors with 3 ele-
ments each. The momentum is defined as the integral over the velocity of every
mass element dm of the ship:

QI; = f i dm
ship

(3.2)

With (2.3) this can be written as:

(3.3)

(3.4)

~ is the vector specifying the position of the centre of gravity, 10 is the transla-

tion velocity, m is the ship's mass.
Next follow the equivalent equations for rotation. The moment around the centre of
gravity %1; is equal to the time derivative of the angular momentum bGI; (also with
respect to the centre of gravity):

(3.5)

The moment around the coordinate centre is:

(3.6)

QI; can be expressed in terms of the moment in the ship coordinate system Q by
QI; = T. Q. Thus:

d = T. d-GI; - (T'x )xi!:-G ~
(3.7)

From this follows an equation for the time derivative of the angular momentum:
. .
h = T. d - (T . x ) x b
-GI; - .Q(3-1;

According to [23] the angular momentum can be expressed by

-1
~I; = T. IG' T . 1!!

(3.8)

(3.9)
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.
%1; =

1 = F1
.i!~ + 12

Q = - 01 .i!~ + Q2
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1G is the matrix of the moments of inertia relative to the cent re of ,gravity of the
ship. defined as:

-I Gxy

1Gy

-1Gyz

<3.10)

with

1Gx = f [(y - YG)2 + (z - zG)2]dm
ship

(3.11)

1Gxy = f (x - xG).(y - YG)dm
ship

(3.12)

The other matrix elements are defined accordingly.

The equations for the momentum (3.4) and the angular momentum (3.9) derivated
by time are:

w. ..
(T'~ + ~'m (3.13)

Cr'1 'T-1 + T'1 .i-1).w + T'1 .T-1.w (3.14)
G G - G -

Combining (3.1) with <3.13) and (3.8) with (3.14) one obtains:
.. ..

(T'x + 1= )'m = T.f-G ~ - (3.15)

. -1 . -1 -1(T.1.T + T'1 .T ),w + T'1 .T 'wG G - G -
.. ..

= T'Q - (T'~)x (T.KG + 5.o)'m (3.16)

This is a system C)f 2 vector equations or 6 scalar equations for calculating the

accelerations in the six degrees of freedom. Since the force 1 and the moment Q

depend on the accelerations of the ship, this system of equations can not be solved

as it stands. Force and moment are split up into terms depending on accelerations

and others which do not depend on accelerations.

(3.17)

(3.18)

In these equations F1 and 01 are 3x6-matrices, which are still to be determined. .Jd~
is a combination of the translational and rotational acceleration vectors:

(3.19)

12 and Q2 are those parts of the force and moment, which da not depend on any
accelerations.
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The express ions for 1 and .ct (Equ. 3.17 and 3.18) can be substituted into (3.15) and
(3.16):

.. ..
(T.~ + ~)'m = T. (-F,.!!~ + 12)

er. I .T-1 + T. I .r-1 ). W + T. I .T-1 i> =G G - G -

(3.20)

.. ..
T'(-D1!!~+.ct2) - (T'~)x(T'~+~o)'m (3.21)

This set of equations of motion is used in the simulation. It includes all coupling and
gyroscopic terms. The forces 12 and moments .ct2 can be arbitrary functions of ti-
me, velocity, and position of the vessel. Only the forces and moments depending on
the accelerations are presupposed to be linear functions of the accelerations.

.. .
The second time derivative of the transformation matrix, T, follows from T = O' T:

T
.

" 2= O.T + O.T = O.T + 0 .T (3.22)
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The force due to the ship's weight in the ship coordinate system is:

(4.1)

m is the ship's mass, 9 is the gravitational acceleration, 13 is the lower row vec-
tor of the transformation matrix T (ref. equ. 2.8J.
The moment due to the ship's weight is:

Q,., = x x f~ -g (4.2)

where ~G is the position of the ship's centre of gravity in the ship coordinate
system.
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5.1 Introductlon

Froude-Krilov-Forces are those forces which would act upon a ship, if the waves
were not disturbed by the ship's presence.

5.2 Representation of the Seaway

The seaway is represented by a sum of sine waves according to the following
formula:

C (~,TJ,t) = -d + I:C' cos(w.'t - k '~'COs[.1. + k.'TJ'sin[.1 + EJS J1 J J J J j J

es is the height of the water surface at the position (~,TJ) and the time t. d is the
ship's mean draught. CJ is the amplitude of component wave j, Wj is the circular
frequency, [.1j is the wave direction (00 for waves from aft, 90° for waves from
starboard). Ej is the phase angle. kj is the wave number wf/g.

(5.1)

5.3 Corrected Waterllne

The Froude-Krilov-Forces will not be calculated using the actual pressure distribu-
tion on the ship's hull. Instead the hydrostatic pressure distribtion up to a corrected

waterline is used. To further simplify the calculation. this corrected waterline is
approximated by a straight line in the section planes.

actual

corrected
. . . .

I- .
. . . .-:.~.~ -

-~."-.~..::.:::.::.:

:.:_~<.:"
~ .. -....

I
I

I

I
I

I

I
I

I

'"
..~~.~roxlmated

Figure 5-1: Actual. corrected and approximated waterlines at a section

Instead of integrating the pressure over the hull surface. one can now use simple

hydrostatic calculations for the determination of the section force and moment.
The corrected height of the water surface is determined from an equation like (5.1>
with wave amplitudes Cj replaced by reduced amplitudes Cj1:

(5.2)
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Since the pressure variation on the bottom of the section is of intere~t here. Z1 is
taken as the instantaneous draught of the respective section (this iso of course. not
known beforehand, but can be approximated very weil by the value from the pre-
vious time step).

The corrected waterline is to be approximated by a straight line in the section pla-
ne. The height of this straight line at the centre of the section waterline can be
calculated by introducing an approximation factor rj1 into the equation for the wave
height:

r (1=1) t) = -d + ~ [
'r 'cos (w.t - k .J:'COSII + k . 1)'sinrr + E )

"'S1 ",. . j
L. j1 j1 j j '" t"j j t"j j

Similarly the inclinations of the water surface in ~- and 1)-direction at the centre of
the section waterline which are to be used for determining the slope of the straight

line are calculated using a factor rj2:

~~
= r S,.rj2'kj'cosV-j'sin(wj.t kj'~'cosV-j + kj'1),sinV-j + Ej) (5.4)

~ = -L r . r . k . sin V-
. sin (w.t - kj '~'cosV- j + kj '1)'sinV- j + EJ (5.5)

()1) j j1 j2 j j j J

(5.3)

The calculation of the factors rj1 and rj2 is described in appendix

factors the slope in the section planes (x = consU is given with
while the slope in the x-direction is given with less accuracy.

B. With these
good accuracy

5.4 Immersion of a section

For the approximation of the waterline in the seetion planes correction factors rj1
and rj2 were introduced. These depend on the half breadth of the waterline band
are only valid if wave height and inclination are determined at the midpoint of the
section waterline x . band x are of course unknown at the start of the calcula--rn -rn
tion. Therefore an iterative process is necessary which starts with the values from
the previous time step. At the first time step the values for the equilibrium position
of the ship in still water are used.
The point Km is transformed to the earth coordinate system. yielding 5-1 = (~1.1)1,C1).
At the position given by ~1 and 1)1 the height of the water surface Cs and the incli-
nations of the waterline in ~- and 1)-direction. dCI ()~ and dCI ()1). are calculated using
values for the correction factors rj1 and rj2 based on band Km from the previous
time step.
An equation of the plane through the point b = (~1.1)1'Cs) with the inclinations ()CI d~
and dCI ()1) (Iater also referred to as the waterplane) is:

l p1 = l 2 + 1 1
.
(

0

)
+ 1

2 '

(
1

)a~a~ a':d~
(5.6)

Here 11 and '2 are parameters specifying different points on the plane.



Xs x2 - '[1'v1x Xs - x2 .~'[2 = = '[1
v2x v2x v2x

or alternatively

Xs x2 - '[1'v?~ Xs - x2 .!:a...'[1 = = '[1
v1x v1x v1x
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The line of intersection between this plane and the section plane can then be cal-
culated. This line is considered the new section waterline. There is, of course, an
error involved in calculating the waterline in this way. This error depends on the dis-
tance of the point k from the section plane. The larger this distance, the larger is
the error. The distance is a function of the pitch angle. When the pitch angle is
zero the distance and the error are also zero.
An equation for the section plane in the ship coordinate system is:

~ps = (5.7)

Since the equation of the
stem, it is appropriate to
system.

line of intersection is required in the ship coordinate sy-
convert the equation of the waterplane to this coordinate

~p1
-1= T .<lP1 - .5.0)

= T-1 . (~ _
~ )_2 _0

(5.8)

~p1

{

0

)

-1
'[ . T 12

oC/oT)

(5.9)

This can be simplified by introducing new vectors K2' .Y.1'and .Y.2.

(5.10)

The condition for the intersection is Xp1 = x ,from which folIows:ps

= + (5.11)

Here v1x and v2x are the x-components of .Y.1and .Y.2 respectively. From this equa-

tion folIows:

(5.12)

(5.13)

Obviously the first of these equations cannot be used, if v2x is zero, and the se-
cond one cannot be used, if v1x is zero. So if either v1x or v2x is zero, the ap-
propriate equation must be used. If both v1x and v2x are zero, there is no solution,
that is to say there is no intersection, which means that both planes are parallel.
The equation of the intersecting line (for v2x :; 0) is:

~i = ~2 + (5.14)

or

x.-I + '[. (V -~. v )1 -1 v -22x
(5.15)
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which can be written in a simplified way as:

(5.16)

The equivalent equations for v1x :t: 0 are:

= + (x" - x? _
t .~ ) +~i ~2 v1x 2 v1x

t2°..'!..2

= _x2 +
Xs - x2. v + t 0(V - '!2x. v )~I V -1 2 -2 V -11x 1x

(5.17)

(5.18)

(5.19 )

In the section coordinate system y-z this line can be expressed by

(5.20)

This parameter equation can be converted to

z = '!:.k.y + (z - '!:.koy )
V3y 3 v3y 3

The points of intersection of this line and the section contour can now be calcula-
ted. From these one can obtain new values for the waterline breadth and the posi-
tion of the midpoint. calculate new values of rj1 and rj2. and restart the iteration.
This iterative process must be carried on until the improvement in each step falls
below a given limit.
The computation time needed to calculate the points of intersection of waterline and
section contour can be reduced. if a simplified section contour is used. For ordinary
ship sections sufficient accuracy may be achieved by using a simple box shape for
approximating the section contour. It must be emphasized that such an approxima-
tion does not affect the calculation of the immersed area and righting moment. It is
only used for finding appropriate correction factors rj1 and rj2 and the height and
slope of the waterline. The section area and righting moment are then calculated
for the real section.
For reasons of computational effidency the actual calculation of the immersed area
and righting moment is not done during the simulation. Instead these values are
calculated in advance for a number of draughts and inclinations of the waterline for
every ship section and stored in computer memory. During the simulation the actual
values are interpolated from this table.
The procedure outlined in this section leaves room for improvement. There are
inaccuracies in the determination of the slope of the water surface in the ship's
longitudinal direction and in the calculation of the section waterline for large pitch
angles. The latter point could be remedied by extending the iteration process in
such a way. that the point k came to lie in the section plane. However. since this

whole method appears rather lengthy and complicated. it might not be a bad idea to
discard it altogether and to calculate the Froude-Krilov forces exactly. even if this
meant an increase in the required computation time.

(5.21)
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5.5 Ship's Wave Profile

The wave profile due to the ship's forward speed is calculated using a formula gi-
yen in [4] for a ship moving in still water:

2
~ 4 ( 1- 2.F - 2x!1 ) 2 ( 2 )- = 0.442. F . COS 2 - (0.082 + 0.025.x!D 'F n

.cos 41t(x!D
L n 2.F n

(5.22)

The height of this wave profile is added to the wave height of the seaway to obtain

the total wave height at the ship's sections. Although this formula is only valid for a
ship moving in still water and doesn't appear to give correct results for Froude

numbers above 0.35 it is used here. because of its simplicity. More accurate meth-

ods would be out of place here. because they would waste too much computation
time.

5.6 Force and Moment

For the calculation of the force and moment vectors the angle A between the per-
pendicular on the waterplane and the x-axis is required. The unit vector perpendi-

cular to the waterplane is given by:

/1 + (*)2 + (*)2 (~~~~~)
n-p = (5.23)

The vector in the direction of the x-axis is equal to the first column vector 14 of
the transformation matrix. The cosine of the angle between IIp and 14 is given by
the scalar product

cos A = t .n =-4 -p
-( t11.%t + t21.~ + t31)

11 + (*)2 + (~)2
(5.24)

The force and moment vectors can then be integrated over the ship's length 1 (acc.

to [23]).

(5.25)

(5.26)

The immersed area a and the area moment m around the x-axis of the sectionss. 5
are interpolated from a table of previously calculated values for the instantaneous

depth of immersion and angle of the waterline cp1'
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6.1 Introductlon

Radiation forces result from the motion of the ship in calm water (radiation of
waves). Diffraction forces are caused by the disturbance of the waves due to the
ship, with the ship imagined not to move in the earth system except for a constant

forward speed. 80th forces can in good approximation be calculated jointly as func-
tions of the relative motion between the ship and the undisturbed waves.

6.2 Frequency Domaln Representatlon

Let us first look at the two-dimensional flow around a partly submerged ship's
section. In this case the pressure distribution can be determined by potential theory,
the flow being represented by a distribution of time periodic sources and sinks.
The relative motion between ship and water in the transverse and vertical directions
and the relative section rotation are combined in a vector u :-x

(

relative motion of the section keel point (x,O,O) in y-direction

)
.!dx = relative motion of the keel point in z-direction

relative rotation around the x-axis

(6.1)

A vector ix is used to represent the section force and moment, which result from
the pressure along the section contour.

(

section force in y-direction

)
f = section force in z-direction-x

section moment around the x-axis

(6.2)

In the frequency domain .!dx can be represented as
A

cillations with the complex amplitudes .!dm and the
[23J):

a sum of different regular os-

circular frequencies wm (from

u-x (6.3)

The force can be represented in a similar way:

f-x (6.4)

A

According to [23J the complex amplitudes im can be expressed by the added mass
matrix M and the damping matrix N:

= [ w2 .M(w ) - iw .N(w )J.um m m m -m (6.5)
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6.3 Time Domain Representation

We want to determine the added mass and damping as functions of the actual time-

dependant immersion of a section and of the motion frequency. M and N will be

calculated for small amplitude motions, but in every instant the values for the actual

immersion of the section will be used. Therefore M and N are nonlinear functions
of the immersion and of the motion frequency.

The frequency-domain equations cannot be used for a time-domain simulation of

nonlinear motions since the superposition principle cannot be applied. Instead a high-

er order differential equation is used for describing the relationsship between motion

and force (an approach also used by Schmiechen [20] and Jefferys [12]):

~ A. .u
(j)

= ~ 8
.f(k) (6.6)L.. J -x L.. k-xj=O k=O

Here (j) and (k) denote the jth and kth time derivative respectively. Aj and 8j are
real 3x3-matrices depending on the immersed shape of the section, but not on
frequency. They have to be chosen in such a way, that (6.6) represents the same

relationsship as (6.3) to (6.6), Substituting (6.3) and (6.4) into (6.6) one obtains:

f A(~Re[Qm.(jwm)j .elWmtJ = I8k.YRe[Im.(jwm)k.elwmtJ (6.7)
j=O m=1 k=O m=1

A
Replacing .Ln by (6.5) and rearranging the equation results in:

mm .j
IRe{eiWmt(tA(jwm)k)<~m} =

m=1 j=o

(6.8)

This equation is valid for all times t, if the following equation holds for all frequen-

cies wm:

~A..(jw)1 = [ ~8 .(jw )k
J
.[ w2.M(w )-iw .N(w )

J (6.9)L..J m L..k m m m m m
j=o k=O

Since this is a homogeneous equation, one of the matrices A and 8 can be chosen

freely. Therefore 8kk is set equal to the unit matrix E.
For wm going towards infinity the factor [wm .M(wm) - iWm.N(wm)] will become

-wm.Moo (Moo is the added mass for infinite frequencyL In this case the left and
right hand sides of the equation can only be equal, if jj = kk+2.

For wm = 0 the right hand side of the equation equals zero. The left hand side can
only be zero, if Ao = 0 (3x3-zero-matrix).

If both sides of the equation are divided by iWm and wm = 0, then A1 must be
equal to the zero-matrix.

After renaming the indices (6.6) and (6.9) can be written as:

~ A .u
(k+2)

k -x
k=O

kk

= "8.f
(k)

k -x
k=O

(6.10)
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Here the equals-sign (=) is replaced by an approximately-equals-sign (~) since

equality of both sides of this equation cannot be achieved using a finite number of
coefficients A and B. A method for determining the A and B from (6.11) is given in
appendix C.

6.4 Three-Dimenslonal Flow

The flow around a moving ship iso of course. three-dimensional. Therefore (6.10) has
to be modified to include the effect of the ship's forward motion. This is done in
analogy to the strip method. The time derivatives are replaced by the differential
operator O. defined as:

- 0 0o - - - v .-ot x ox

This is an approximation which has been used with good results in strip theory.
(6.10) thus becomes:

(6.12)

The matrices Ak and Bk are included in the differentiation in analogy with the strip
method. where the added mass and damping are also differentiated. A modification
of this equation is necessary in the event of flow separation. This is treated in
section 6.6.

Matrices Ak and Bk will be calculated for a number of sections and for different
depths of immersion and an gles of inclination. Ouring t!1e simulation they are deter-
mined for the instantaneous draught and slope of the waterline.
Matrices A and B cannot. however. be interpolated from the table of values calcu-
lated in advance. because in (6.11) a matrix inversion is performed. Therefore in-
terpolation can lead to large errors. unless the interpolation method is specifica/ly
adapted to this problem. Even if an interpolation leading to minor errors is used.
the resulting matrices A and B may have such properties. that the simulation would
become unstable. Since the stability test (described in section 6.7) requires too
much computation time. it cannot be performed during the simulation. To avoid these
difficulties matrices A and Bare taken from the previously calculated table for val-
ues of draught and inclination angle next to the actual values. This method has the
additional advantage that the computation time needed for establishing the A- and B-
values is much lower than for any interpolation process.

6.5 SoIvlng the Higher Order Differential Equatlon

Equation (6.12) is integrated substantia/ly kk times:

~
kk

0 k+1-L(A . Ü )
k -x

k=

kk
= ~ Ok-L(B .f )

k -x
k=

(6.13)

Here a negative subscript denotes a substantial integration. which is the opposite of
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a substantial derivative 0 = (al at-v'aI ax). The equation can also be written in the

following way:

kk-2 kk-1
"" O

k+1-L (A . u
. ) A ' O(A ' ) = "" O

k-L (8 . f ) + 8
,
fk -x + L-1'.!Jx + L'.!Jx L... k -x L -x

k=O k=O
(6.14)

With 8kk = E the following expression for fx can be derived:

kk-2 kk-1

~ O
k+1-kk

A
'

U
. ) - "" O

k-kk
8 ' f ) A ' O(A ' )

k -x L... k + k k -,..!Jx + k k ' .!Jx
k= k=O-x

(6.15)f =-x

For kk = 3 this is equal to:

-3 -2 -1
fx = -0 (Bo'f) + 0 (Ao'.!dx- 81'i) + 0 (A1'.!dx- 82'i) +

(6.16)

The right hand side terms in the first line of this equation are combined to a

state vector ~1

(6.17)

The derivative of ~1 is:

-2 -1
o ~1 = -0 (Bo' f) + 0 (Ao'.!dx - 81' i) + (A1'.!dx - 82' i) (6.18)

A second state vector ~2 is introduced, yielding:

o ~1 = ~2 + A,..!dx- 82 'ix (6.19)

In turn, the derivative of ~2 is:

-1
0~2 = -0 (Bo'i) + (Ao'.!dx- 81'ix) (6.20)

Using a third state vector ~3 this can be written as:

o ~2 = ~3 + Ao'.!dx - 81' ix (6.21)

The derivative of ~3 is:

(6.22)

Thus the higher order differential equation is transformed into several first order

differential equations in the differential operator O. For the purpose of using an

ordinary time integration method to solve these equations the time derivatives of the

state vectors are required. They are:

:t ~1 = ~2
+ A,-.!dx - 82'ix + v

:x ~1 (6.23)

(6.24)

(6.25)

The time integration of these equations is executed by a fourth order Runge-Kutta



This leads to the following expression for f :-x
,

v'~(A 'ü)f = .§., + A 'ü + Akk '1!.x + Akk' 1!x-x kk-1 -x <1X kk-x

f =-x

f =-xa

f =-xr
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method. The derivatives in x-direction are calculated numerically.

For arbitrary kk equation 6.17 becomes

Ix = .§.1 + Akk-, '1!.x + D (Akk '1!.)

The last term in this equation can also be written as

(
%t

v <1<1x)(Akk '1!.) = a<1t(Akk '1!.) - v
<1~ (Akk '1!.x)

(6.26)

(6.27)

(6.28)

In this equation Ix is a function of 1!.x' that is the relative velocity in the ship
coordinate system. For the calculation of the accelerations in the earth coordinate

system a transformation is necessary. This is achieved by the following equation:

1!x = W(x) '1!.1; - .!dorb (6.29)

.!dorb is the orbital velocity of the waves in the earth coordinate system (the calcu-

appendix D). W(x) is the followinglation of the orbital velocity is described in

transformation matrix (taken from [23]):

[

t'2 t22 t32 (t32t2,- t22t3,)x
W(x) = t'3 t23 t33 (t33t2,- t23t3,)x

o 0 0 t"

(t'2t3'- t32t,,)x

(t'3t3'- t33t,,)x

t2,

From (6.29) folIows:

u-x = (6.31)

With (6.31) Ix can be written as a function of the acceleration 1!1; in the earth

coordinate system:

Ix = .§., + Akk-'1!.x + Akk '1!.x + Akk' (W(x) '1!.1;+ W(X) . 1!1; - 1!Orb) +

- v'~(A 'ü)
<1X kk-x

(6.32)

Ix is split up into one part Ixa' depending on the acceleration 1!1;' and the rest Ixr'

f + f-xa -xr
(6.33)

(6.34)

.§.1 + Akk-1'1!.x + Äkk '1!.x + Akk' (W(x) '1!.1; - 1!Orb) +

v . ~(A 'Ü)
<1X kk-x

(6.35)



[~] = f(V(X) .Ix) dx
1

V(X) is a transformation matrix defined as folIows:

0 0 0
1 0 0
0 1 0V(X) = 0 0 1
0 -x 0
x 0 0
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Section forces Ix are integrated over the ship's length 1 to obtain the total radiati-

on and diffraction forces:

(6.36)

(6.37)

Using equation (6.33) the radiation and diffraction forces can be written as:

f(V(X) . ixa )dx + f(V(x). ixr )dx

1 1

(6.38)

In this equation the forces are split up as in equations (3.17) and (3.18), Defining

Vf as a matrix containing the first three rows of V. and Vd containing the last

three rows of V. expressions for F1. D1. 12, and ..Q.2can be derived.

f(Vf' Äkk' W(x))dx

1
= (6.39)

D1 = f(Vd(X)'Äkk,W(X))dX
1

(6.40)

(6.41)

g2 = f(Vd(X)'ixr)dX + gother
1

fother and gother are the sum of all other forces and moments.

(6.42)

6.6 Special Treatment cf the Case of Aow Separation

When flow separation occurs (6.12) must be modified. Let us first consider the
sway and yaw motion. We assume that flow separation occurs at the trailing edge
of the hull at the position xT (for usual ships this is the point where the keel rises.

in front of the propeller). For the strip around xT the derivatives in x-direction 0/ ax
for sway in (6.12) are set equal to zero. Furthermore the radiation and diffraction
forces and moments in y-direction are also set equal to zero for all seetions aft of

xr
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Flow separation also occurs at an immersed transom. Therefore the derivatives olox for

heaving in (6.12) are set equal to zero at the transom.
When a ship section, especially a section with a flat bottom, enters the water there
is an impact. This doesn't occur when the section is heaving out of the water. In
this case the time derivatives for heaving in (6.12) must be set to zero.
All other cases of flow separation are neglected.

6.7 Stability of the Differential Equations

To obtain a stable simulation the complete set of differential equations used for the
simulation must be stable. In particular, the set of differential equations used for
the calculation of the radiation and diffraction forces must be stable. Oue to the
large number of these equations and their varying coefficients it seems impossible

to test the stability of the set of differential equations as a whole. If one regards
the special case of a barge-like ship with constant cross sections, a necessary
stability criterion can be formulated. The simulation must be stable for every shape
of immersed section area the matrices A and Bare calculated for. This means
every set of matrices A and B for all the different immersions of the ship sections
must be tested for s tability. This is no theoretically sufficient criterion for the
stability of the simulation, but as experience with the simulation program has
shown, it is adequate for practical purposes.
The method for testing the stability of a set of matrices A and B folIows.
The differential equation

kk

L Dk+1 (Ak Yx) =
k=O

can for kk = 3 and Ak and Bk being constant be written as

2 3
Fu = Bo'ix + B,.Oix + B2'0 ix + E.O ix (6.43)

Here Fu is a function of derivatives of Yx and B3 is set equal to the unit matrix E.
The equation can be transformed into a system of first order differential equations
as folIows:

-B1
o
E

(6.44)

or OF = F +u c F

The homogeneous equation OF = C' F is stable, if all eigenvalues of C have negative

real parts.

A similar approach leads to the equation:

F = A O
.

A 0
2.

A 0
3.

A 0
4.

f 0 .!dx +
1 .!dx + 2 .!dx

+
3 .!dx

(6.45)

where Ff is a function of ix and its derivatives. This equation can also be trans-



formed into several first order differential eqations:

[03U

] [

-1 -1 -A-1.A

]

[03
U

]

-A .A -A .A
o 02 ~:

3 2 3 1 3 0 -x
= Ff + E 0 o . 02ü (6.46)-x

o .!dx 0 E o Oü-x

or DU = Ff + G U

f = T ..
-m .t .~la 11 -4

~With this F1 is changed to

f(Vf'ixa)dX ['"
t21 t31 0 0

~l
F1 = - m' 0 0 0 0 011

1 0 0 0 0 0
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The homogeneous equation
real parts.
So for every set
culated and their

DU = G. U is stable, if all eigenvalues of G have negative

of matrices A and B the eigenvalues of C and G have to be cal-
real parts checked to be negative.

6.8 Force due to longitudinal Acceleratlon

The force due to acceleration of the ship in the x-direction is calculated from the
product of the added mass m11 and the acceleration.

m11 is determined by the following empirical formula (from [21J):

(6.47)

T0 include this force in the equations of
the acceleration in the earth coordinate
ship coordinate system:

motion, it must be written as a function of
system of. for instance. the origin of the

(6.48)

(6.49)
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The matrices A and B used for the calculation of the radiation and diffraction for-
ces contain only part of the total roll damping. Therefore an additional roll damping
moment must be added to the forces and moments acting on the ship. It is deter-
mined by the following formula:

(7.1)

cp is the time derivative of the roll angle (equivalent to (.)1;)'

bL is a linear. bQ is a quadratic roll damping coefficient. They are functions of the
ship speed and are determined for the natural roll period (they can. for example. be
derived from data given in [3]). They should include all roll damping components
except for the damping due to wave generation and due to the lift effect caused by

the ship's speed. These components are included in the calculation of the radiation
and diffraction forces.
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A choice between two methods for calculating the longitudinal resistance is given in
the simulation program. The first one uses a resistance coefficient cR and an ex-
ponent p to calculate the resistance according to the formula

(8.1)

If this formula seems inadequate. the resistance can be interpolated for the instan-
taneous speed from a given table of resistance values versus ship speed. The resi-
stance force is assumed to cause no moment around the coordinate centre.
The speed of the ship in the x-direction can be calculated from:

T .
v = t . ~x 4 -0

(8.2)
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R '

The trans verse resistance force iT and moment QT of the ship can be calculated
according to the following formula (from [23]):

(
iT

) = f-V{X).2-.v 'Iv "e (X)'d'
(

~~i~:
)

dX
QT 2 t t 0 d/2

1

V{x) is the transformation matrix, defined in (6.29), p the density of the sea water,

Co (x) the drag coefficient of the respeetive section for transverse flow, d the

draught, Cf>the angle of heel.
vt is the transverse velocity of the respective ship section relative to the water in
the TJ1-direction, i.e. at right angles to the x-axis and parallel to the mean water
surface. It is calculated as folIows.
The velocity in the earth coordinate syst~m of a section point is calculated accor-
ding to equation (2.10), yielding velocities ~ and ~. With the course angle tV the ve-

locity in the TJ1-direction can be determined from

(9.1)

TJ1 = -~'sintV + ~'CoStV (9.2)

If the components of the orbital velocity in ~- and TJ-direction are called ~rb and

~Orb respectively, the transverse velocity vt of a ship section ean be written as

(9.3)

The orbital velocities are calculated at the section eentroid, which can be approxi-
mated by the point (x, 0, z1-d/2), with z1 = mean section area / mean waterline
breadth.
The transverse resistance defined in this way does not include the transverse lift
force and its moment which are proportional to the product of longitudinal and
transverse relative velocity . This lift is included in the end effects of the radiation
and diffraction forces.

1)

TJ
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10.1 Force

The propeller force is calculated acording to the formula:

(

p' n2.
d: . kT' (1 - t»

)
f = 0-p

o
(10.1)

with:

P = density of sea water
n = number of revolutions per time of the propeller

dp = propeller diameter
k,- = thrust coefficient
t = thrust deduction fraction

The propeller force is assumed to be acting in the x-direction. As with its counter-
part, the resistance, no moment around the coordinate centre is taken into account.

The thrust coefficient kT and the torque coefficient kQ used below are calculated
from a polynomial representation of the Wageningen B-series, depending on the
number of blades, blade area ratio, pitch and instantaneous advance coefficient of
the propeller. The advance coefficient is defined as:

= ~ (10.2)
n'd p

vp is the x-component of the relative speed of the water with respect to the pro-
peiler. It is calculated taking into account the wake fraction and the x-component of
the orbital velocity :

vp = vx'(1 - w) - vOrbx (10.3)

Vx is the ship's forward speed On x-direction, equ. 8.2), w is the wake fraction,

vOrbx is the x-component of the orbital velocity at the propeller (the calculation of
the orbital velocity is treated in appendix 0). w is assumed to be constant.
If there is more than one propeller, the propeller force has to be multiplied by the
number of propellers. All propellers are assumed to have equal properties.

10.2 Revolutions

The number of revolutions of the propeller is determined by
the differential equation of the propulsion plant (from [23]):

2 5
-n'n .d .k + d (n)' 1)

t' p 0 pr' w

2.7t . J
.
pr

numerical integration of

n = (10.4)

torque coefficient of propeller ace. to Wageningen B-series
torque of the propulsion plant as a function of the number of revolutions
efficiency of shafting arrangement
polar moment of inertia of the propulsion unit including propeller based on
the number of revolutions of the propeller



11 Rudder Forces and Rudder An le 31

1

The calculation of the rudder forces is done as decribed in [24]. Additionally the
changing immersion of the rudder in the seaway as weil as the orbital velocity at
the rudder is taken into account.

11.1 Forces in Ideal Fluid

Cu' the lift coefficient per angle of attack (valid for small angles of attack), is cal-
culated according to the lifting line method described in [24]. In this calculation the
extent of the propeller slipstream and the different flow velocities inside and outside
of the slipstream are taken into account. From these flow velocities a mean rudder
advance velocity in the x-direction vm is derived. Thus a ratio vam of propeller
advance velocity va by mean rudder advance velocity vm can be determined:

vam = V Iva m
(11.1)

CL1 and vam are calculated in advance for a number of differing values of rudder
immersion and propeller advance velocity. During the simulation their actual values
are interpolated for the instantaneous rudder immersion and propeller advance velo-
city. The actual mean rudder advance velocity um is then given by:

-v
u =--2-m vam

(11.2)

where vp is the actual propeller advance velocity as given in (10.3), um is positive
in the forward direction, so it is normally negative.

The me an flow direction at the rudder relative to the x-axis is calculated acc. to
equ. 75 from [24] which is modified to include the y-component of the orbital velo-
city:

E =
c..>z'(xT - xR + c/2)

um

VOrby (11.3)

c..>zis the rotational velocity of the ship around the z-axis (relative to the earth
coordinate system), xT is the position of the trailing edge of the ship's hull, xR is
the position of the lift centre of the rudder, and c is the mean chord length of the
rudder. VOrby is the y-component of the orbital velocity calculated at the point
(xR+c/2,O,zR)' with zR being the z-coordinate of the lift centre of the rudder. It is
approximated by the z-coordinate corresponding to half the (verticaD length of the
immersed part of the rudder. c..>zis given by:

T
I.' = t .

c..>z -6 -1; (11.4)

With the rudder angle S (positive, if the rudder is turned to port) the effective an-
gle of attack of the rudder is:

<X = r-S+E (11.5)
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r is the ratio between the lift of a flapped rudder with front part assumed to be in
the undisturbed flow direction and the lift of an all-movable rudder. This means that
r = 1 for an all-movable rudder; for rudders with a tail flap r is greater than 1; for
rudders with a fixed front part the following equation (equ. 72 from [24]) can be
used:

r = (1 + a).b

1 + a. b
(11.6 )

b is the ratio of movable area by total area. A is the aspect ratio of the rudder
(defined as (rudder height)2 divided by rudder areaL In the simulation a constant
value for r is used.
The lift coefficient of the rudder in ideal fluid is:

CL = Cu. sinex (11.7)

The coefficient of induced drag is:
2

CL
Co = 1C.A (11.8 )

Lift and drag are:

2= cL. p/2 . Um . aR (11.9)

d (11.10)

aR is the immersed rudder area. p is the density of the water.
Force and moment in ideal fluid are:

(11.11)

(11.12)

aH is the relative increase of the lift and 6xL is the forward shift of the cent re of
lift due to the hull in front of the rudder. Approximate formulae for calculating the-
se values are given in [24]. aH and 6xL are calculated in advance for a number of
immersions of the rudder and interpolated during the simulation.

11.2 Additional Force in Real Auid

An additional force is present in real fluid. If v is the flow velocity in y-direction aty
the rudder relative to the ship. then the flow velocity perpendicular to the rudder
plane and in starboard direction is:

Vq = -u .sin S + v .cos Sm y
(11.13)



v can be calculated from:y

T .
+ 5.0 - YOrbl;)v = t . (T. x

y -5 -r
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(11.14)

where ~r = (xR,O'ZR) and YOrbl; is the orbital velocity vector at this point.

The resulting force perpendicular to the rudder plane is:

= 2..v 'Iv "C 'a2 q q OR R (11.15)

COR is the drag coefficient of the rudder in transverse flow. In the simulation a

constant value is used for all rudder immersions.

11.3 Total Rudder Forces

The total rudder forces and moments in the ship coordinate system are:

(

-f rr 'sin8

)
IR = fRi + f rr 'cos8

o
(11.16)

QR = QRi +

(

-ZR"fo'COS8

)XR' f rr
.cos 8

(11.17)

11.4 Rudder Angle. Auto Pilot

The rudder angle is determined by the following differential equation, which is used
to simulate an auto-pilot:

(11.18)

8 is the rudder angle, tli is the yaw angle, tlic is the course to be steered. The
characteristics of the auto-pilot are determined by the constants c" c2' and c3.
The choice of these constants depends on the manceuvring characteristics of the
ship and the environmental conditions (seaway, wind, etcJ.
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J2 Wincl.Forces

Wind Forces are calculated according to Wagner [25].
The wind force is given by:

f =-w
(

c .a

)

PL 2
x(Ax) x

-.v. c'a2 rw Y L
o

(12.1)

The moment due to the wind is given by:

d =-w
(

c.h

)

PL 2 K Lm
-.v .a' 0
2 rw L

cN . Loa

(12.2)

In these equations the following symbols were used:

aL

ax

cx(Ax)

cy

cK

cN

PL
Vrw
Loa

hLm

area of the lateral projection of the ship above the waterline
projected area of the ship above the waterline as seen from forward
coefficient for the longitudinal force based on ax
coefficient for the transverse force
coefficient for the rolling moment
coefficient for the yaw moment
density of air
wind velocity relative to the ship
overall length of the ship

aLl Loa

The coefficients c depend on the shape of the ship above the water surface and
are functions of the angle of attack Ew. They can be determined by wind tunnel
experiments or taken from [25J for similar ship shapes.
The relative wind velocity vrw is the result of the vector addition of the negative
forward speed of the ship Vs and the wind velocity vw.
For a heeled ship the force in y-direction and the moments around the x- and z-
axis must be modified. If the ship is heeling towards the side the wind is coming
from. no modification is made. If it is heeling in the other direction. the force and
moments are multiplied by the factor

3
0.25 + 0.75. (cos cp) (12.3)

given in [21]. cp is the heel angle.

During the course of the development of the simulation method presented in this
paper a new. much more refined method for calculating wind forces has been pub-
lished [2J. which may be used in the future to replace the procedure described here.
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1

The following components of the forces and moments acting on the ship are consi-

dered in the simulation model:

Forces due to the ship's weight

Froude-Krilov-Forces

f d-g' -g

4,~

Radiation and diffraction Forces

Additional Roll Damping Moment QRD

~R

1T, QT

ip

~, QR

Longitudinal resis tance

Transverse resistance

Propeller force

Rudder forces

Wind forces

Those force and moment components which are functions of the accelerations must

be treated seperately from all other forces as shown in equations 3.9 and 3.10. Of

the forces listed above, the radiation and diffraction forces have components, which

are functions of the acceleration. They are included in the matrices F1 and D1 given

in chapter 6.

All other forces and

to form the vectors

moments d th are--0 er

moments do not depend on any accelerations and can be added

12 and Q2 given in (6.41) and (6.42), The forces fatner and

expressed by the following sums:

f-ether

Other forces acting on the ship can be easily included in these equations, as long

as they are independent of accelerations.
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Re

For the comparison with the strip method simulations were done in head waves of
different wave lengths for a container ship (ship A, which was also used in capsi-
zing model experiments in the HSVA; the particulars of the ship are given in ap-
pendix E)' Since the strip method is a linear method, small wave amplitudes W.1m}
had to be chosen for the comparison to exc/ude non-linear effects in the simulation.
The simulations were terminated when the ship's oscillations had become stable for
several periods. Figure 14-1 shows an example of the results of such a simulation
run (motions plotted over time). In the simulation program numbers are represented
with an accuracy of seven digits. Due to this limited accuracy the wave angle is not
exactly equal to the number 7L This leads to the very small motions for yaw, roll,
and sway shown in figure 14-1.
Transfer functions for heave and pitch were calculated from the motion amplitudes.
The transfer function for heave is defined as

y -
C -

Cmax and Cmin are the maximum and minimum heave motion respectively, CA is the
wave amplitude.

The transfer function for pitch is defined as

y =.&

,crmax and ,crmin are the maximum and minimum pitch angle respectively, k is the
wave number.

Figures 14-2 to 14-5 show a comparison of the transfer
pitch for ship A at two different forward speeds with the
theory. Agreement is very good.
Simulations were also done for larger wave amplitudes. Figures 14-6 and 14-7 show
a comparison of transfer functions for wave amplitudes 0.1m and 3.0m. A signifi-
cant difference due to non-linear effects can be seen in the frequency range from
0.4s -1 to 0.6s -1 (corresponding to ratios of wave length by ship length of 2.85 to
1.27)

functions for heave and

results obtained by strip
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Figure 14-1: Simulation in regular head wave, amplitude 0.1m, eirc. freq. 0.6s -', ship

speed 9m/ s
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15.1 Introduction

In the years 1982 to 1986 an investigation into the intact stability of container ships
was made in the HSVA [4, 5]. For this purpose four container ship models named
A to 0 were tested in regular and irregular waves. The experiments in regular
waves were performed for one metacentric height only, but with different static
heeling moments. The tests in irregular waves were done for different metacentric
heights to find limiting GM values for safety against capsizing.
To assess the applicability of the simulation method presented in this paper for
capsizing investigations, simulations were done for model A and compared with the
experimental results of the HSVA [5]. The particulars of ship Aare listed in
appendix E.

15.2 Tests In Regular Waves

15.2.1 Model Tests

The HSVA tests with model A in regular waves were performed for the following
condition of the ship:

Draught
GM
Natural period of roll

8.2 m
1.5 m
14.2 s

The wave length was equal to the ship's length (135 m) and the wave height was
9 m (ratio of wave length by wave height: 15), wave direction was from aft. Test

. 0 0 0 0runs were done for statlc heel angles of 5, 6.9 , 7.8 , and 10.0 to starboard.
Figure 15-1, which was taken from [5], shows the maximum roll angles as functions
of the mean ship speed. Triangles indicate a capsizing. lines connecting a symbol
and a triangle indicate a capsizing that occurred after a longer nearly stable phase.
Two symbols connected by a line indicate cases, where alternating small and large
roll amplitudes were observed.

15.2.2 Simulation

Simulation runs were done for the same conditions for static heel angles of 50 and
7.80. These angles were achieved by shifting the centre of gravity by an appropriate

amount in y-direction (table 15-1). In each case a simulation run was done in still
water to check the resulting heel angle.



Heel angle YG. ° in mIn

5.0 0.131

7.8 0.212
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Table 15-1

Table 15-2

8.37 m

1098000 tm
2

17275 t

-1.22 m

1.025 tlm3

In the model experiments the rudder of the ship was replaced by a rudder of near-
Iy double the area to improve course stability. As in the experiments keeping the

ship on course was very difficult in the simulation. Therefore the effectiveness of

the rudder was doubled by multiplying the rudder forces and moments by two. A
large number of simulation test runs were required for establishing suitable con-

stants for the auto-pilot. Even so it was impossible to keep the ship on course at
low forward speeds, which is due to the waning effectiveness of the rudder. There-

fore only results for high ship speeds between Fn = 0.22 and 0.263 can be given
here.

As ean be seen in the simulation results, roll angles tended to be small as long as
yaw angles could be kept small. Larger yaw angles lead to larger roll angles, which

in turn caused inereasing yaw moments due to the resulting asymmetry of the sub-

merged part of the hull.

15.2.3 Statie Heel Angle 5°

Figures 15-2 and 15-3 show simulation results for a statie heel angle of 5° using

different eoeffieients for the autopilot. In Figure 15-2 the mean ship speed is ap-

proximately 9 m/s (Fn = 0.247), the mean roll amplitudes are about 8° to starboard

and 2° to port. The maximum roll angle is 12.6°.
In Figure 15-3 the mean speed is approximately 8.5 m/s (Fn = 0.234). The mean

roll amplitudes are 10.8° to starboard and 2° to 'port. The maximum roll angle is
14.1°. In the time range from 500s onwards every three periods there are smaller

amplitudes of approximately 7°.

In eomparison the roll amplitudes in the

and 12.1° for Fn = 0.263 (Figure 15-1),

results shown in figure 15-3.

model experiments alternated between 7.8°
This agrees quite weil with the simulation
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15.2.4 Static Heel Angle 7.8°

Figures 15-4 to 15-6 show simulation results for a static heel angle of 7.8° to

starboard using different auto-pilot constants. In each case a capsize to starboard

occurred when the ship could not be held on course and yawed to port. As long as

the yaw angles were smalI. roll amplitudes were in the range of 15° to 20° with

°peaks of about 28 . The mean forward speed was between 8 m/s (Fn = 0.22) and

10.3 m/s (Fn = 0.28).

As can be seen in figure 15-1 the ship also capsized in the model tests for speeds
greater than Fn = 0.22. The capsizes occurred after a long nearly stable phase

with roll amplitudes of 30° to 32° (for Fn < 0.29), This is a behaviour similiar to

that in the simulation although the roll amplitudes are larger.

Figure 15-1: Maximum roll angles as a function of the mean speed for 4 static heel

angles (experiments in regular waves. from [5]).
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15.3 Tests In Irregular Waves

15.3.1 Model Tests

The HSV A model tests in irregular seas were performed for three draughts and

various metacentric heights in following and beam seas. The seaway had a modal

period of 13.1s and a significant wave height of 14.6m. Figure 15-7 (taken from [5])
shows the spectrum of the model seaway compared to the JONSWAP-spectrum.
The model seaway was. of course, long crested, since short crested seaways can-

not be created in the HSV A tank.

Due to the limited length of the tank the test runs could not be very long. A pos-
sibly very improbable event as capsizing might not occur during tests in a seaway

closely modelled to reality. Therefore a very severe seaway was chosen. Additionally

the test runs were done only in particularly high wave groups. A static heeling mo-

ment of 8740kNm was exerted on the model to simulate stationary wind pressure.

Gusts were simulated by increasing the heeling moment to 16460kNm in 8.5s and
then decreasing it to 8740kNm again.

The aim of the tests was to find a value for the metacentric height GMo. above

which the ship could be regarded as safe against capsizing. For the draught of

8.2m this limiting value was found to be GMo = 1.70m, although it is suggested in
[5] that this value may still be too smalI.

For an angle of encounter of 0° (directly from aft) 5 test runs were done for

GMo=1.21m with no capsize, 6 test runs were done for GMo=1.43m and a capsize
occured in one of these, 14 test runs were done for GMo=1.71m with no capsize.

A short description of the tests for GMo=1.71m is cited here (translated from [5]):

"At this relatively large initial stability (GMo= 1.71mD very large heeling angles oc-
curred, when the model was moving in waves of high energy, in conjunction with a

large course deviation C..). The heel became particularly large in a case, where in
high waves a course deviation of about 10° was levelled off by contrary rudder ac-

tion C..). In some waves the model was pushed along by a wave crest coming up

from aft. In these cases the occuring heel angles were relatively small « 10°)."

The tests with GMo=1.43m are described as follows (translated from [5]):

"Of a total of 6 runs the model could be kept in the region of highest, breaking
waves. Here very large roll and yaw motions with partly extremely large heeling an-

gles occured. The model was in very large danger of capsizing and in one case

capsized to port (with apreset wind heeling to port)."

15.3.2 Simulation

A different approach than that used in the model experiments was used für the si-
mulation. Since the waves and the ship motion could not be observed during the si-
mulation, the ship could not be directed into the particularly high wave groups.

Simulation runs were done for a draught of 8.2m in a seaway with the same
spectrum as used in the model experiments. 3 representations of the seaway using

component waves with random phase angles were chosen (see appendix F for de-
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tailsL The same static heeling moment (8740 kNm) to the starboard side as in the
model experiments was used for simulating wind pressure. Wind gusts were not
simulated. Simulations were done for GMo values of 1.43m, 1.71m, 1.85m, and
2.14m. Average ship speeds were between 9 and 11m/s.

The simulation results are given in figures 15-7 to 15-18. For GMo=1.43m and wave
set 2 (fig. 15-8), GMo=1.71 and wave set 2 (fig. 15-11), GMo=1.85m and wave set 1
and 2 (fig. 15-13, 15-14), and GMo=2.14m and wave set 1 (fig. 15-16) the simulation
failed. This means the program terminated abnormally due to impossible internal da-
ta (for instance in fig. 15-11 it can be seen that the ship is lifted completely out of
the waterLThere are two possible reasons for this. The starting values for some of
the simulation variables, especially the state variables used for calculating the radia-
tion and diffraction forces, were chosen arbitrarily. Therefore a certain simulation
time is needed for the influence of these initial values to die out. This time depends
largely on the motion damping. Since the damping for the rolling motion isn't large,
a long time is needed for the rolling motion to stabilize itself. Another reason could
lie in the selection of the wave components for the irregular seaway. It may be
possible that the waves of highest energy have a frequency causing instant roll
resonance and capsizing.
In the cases of GMo=1.43m and wave sets 1 and 2 (fig. 15-7, 15-8), GMo=1.71m
and wave set 3 (fig. 15-12), GMo=2.14m and wave set 3 (fig. 15-18) capsizes oc-
curred. Except for one case (GMo=1.43m, wave set 1) the capsizes were always
coupled with a large course deviation.
The ship didn't capsize in the preset simulation time in the cases of GMo=1.71m and
wave set 1, GMo=1.8Sm and wave set 3, GMo=2.14m and wave set 2. Here the yaw
angles were very low.
Generally the ship's behaviour in the simulation is weil described by the citations
from [5] for the model experiments. However, according to the model experiments
the ship shouldn't have capsized in any of the simulation runs for metacentric
heights greater than 1.7m. The difference may be due to the higher ship speeds
used in the simulation or it may have something to do with the larger inability to
keep course observed in the simulation. This may make the ship more prone to
broaching to, causing the ship to capsize as a result. There are a number of pos-
sible reasons for this. The constants for the autopilot may have been chosen unfa-
vourably. It mayaiso be considered a general weakness that they are constant for
the whole simulation run and cannot be adapted or adapt themselves to the actual
conditions. It is also generally questionable whether any kind of auto-pilot can be
used to good effect in extreme sea states, particularly in following waves where the
rudder effectiveness is very low.
Another possible reason for the greater course deviations in the simulation can lie
in the selection of the drag coefficients for the transverse resistance (due to lack
of data they were set to 1.0 for all sectionsL
The longitudinal motion also appears problematic. The changes in the forward speed
seem to be very large, which made the adjustment of the speed very difficult.
Unfortunately the variations in speed cannot be compared with the experiments since
such data are not given in the report on the model tests [5].
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16 Conclusions 63

A method for the simulation of large amplitude ship motions in six degrees of free-
dom has been presented which includes all of the major forces acting on a ship.
The comparison with model experiments in regular following waves shows a similar
behaviour of the ship in the simulation. The maximum roll angles encountered in the
simulation and the capsizing events agree fairly weil with the experiments. As in the
experiments, where a rudder of nearly the double the size of the original was used
(tests in regular waves only), the inability of the ship to keep course presented a
problem. The simulation of ship motions in following seas with low forward speeds
could not be conducted under proper conditions, because the ship could not be held
on course. This is a kind of behaviour which cannot possibly be treated with linear
methods.
The comparison with model experiments in irregular following seas shows disagree-
ment concerning the limiting value for the metacentric height at the border between
safe and unsafe against capsizing. Although the general behaviour of the ship appears
similar to that in the experiments, capsizes occured with metacentric heights weil
above the limiting value found in the experiments. Capsizes were almost every time
linked with a large course deviation or even broaching to. Again this is a behaviour
which cannot be simulated using linear methods.
There is still room for improvements of this simulation method. Some deficiencies in
the calculation of the Froude-Krilov forces, which were allowed for on account of
computational efficiency could be remedied by calculating these forces exactly from
the pressure distribution on the ship's hull. The increase in the required computation
time will in the future be offset by increases in the speed of computers anyway.
Methods for establishing input data such as the drag coefficients of the ship sections
for trans verse flow are required. Further investigation is needed into the problem of
steering in following seas and the selection of suitable constants for the auto-pilot.
If simulations are being done for large wave amplitudes the ship should not be ex-
posed to the full force of the waves right from the start. Instead the simulation
should start with low wave heights, which should then be increased slowly. In this
way it should be possible to eliminate problems due to errors in the initial values
for the simulation variables.
The effort required for generating the necessary input data for the simulation pro-
gram, particularly for calculating the hydrodynamic coefficient matrices A and B in-
troduced in chapter 6, is very large. The computation time needed for the actual
simulation is also very large. This method is therefore unsuitable for every day use
in, for instance, a design office. It can be used, though, for systematic research
into the behaviour of ships in extreme sea states, where the faster linear or partly
linear methods (such as [16]) fail to give correct results.
The method can be easily extended to include additional forces and moments. It can
also be extended without too much effort for establishing loads on the ship struc-
ture, such as the longitudinal bending moments and shear forces.
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kJ1 = kj'sin(tLj + tIJ).

is used for calculating the correction factars rj1 and rJ2.

rj1 =
sin (~1 -x,)

kJfX1

rJ2 =
3

3' (sin(kj1.x1) - kj,'x1'cos(kjfX1»)
(kj1-X1)
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Appendix 8: Approximation of the Waterline

The waterline at a section is approximated by a straight line using the method des-

cribed in [23].

A harmonic function of the form

(8.1)

is approximated by a straight line in the interval

of least squares. If the equation of the straight
the following integral must be minimised:

Ix I :s: x1 according to the method
line is given by y = a + bx. then

This integral has aminimum. if the constants a and b are chosen in the following

way:

sin (k.x,)
a = f(O).

k'x 1
(8.2)

b = d
df (x=O). 3

3
'(sin(k.x1) - k-x,cos(k-x1»)

x (k'x1)
(8.3)

For approximating the waterline in a section plane the component of the wave

number in the section plane. which is given by

(8.4)

(8.5)

(8.6)

rj1 is used for calculating the wave height at the midpoint of the section waterline
according to (5.3>' rj2 is used for calculating the inclination of the water surface in

~- and T)-direction according to (5.4) and (5.5) at the midpoint of the section wa-
terline.
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~pendix C: Calculating Matrices A and B

For calculating the radiation and diffraction forces a method is required for deter-
mining the matrices A and 8 introduced in chapter 6.
Matrices A and 8 are the coefficients of a ratio-of-polynomials used to approximate
added mass and damping in the frequency domain:

[
kk k

J
-1 kk k

L8k.(jw) 'LAk.(jw) ~ -M(w)+~'N(w)
k=O k=O

(C .1)

A number of discrete frequencies is used for calculating A and 8. The added mass
and damping matrices are normalized using a normalization matrix TN:

(C.2)

(C.3)

n is the number of fre quencies. m.. and n.. are com ponents of the added massw IIn IIn

and damping matrix for frequency n respectively.
(c.n is thus transformed to:

[
kk kJ-1 kk k

TN' L 8k' (iwn) . L Ak' (iwn) . TN
k=O k=O

Since TN is a diagonal matrix this equation can also be written as:

~ T .( -M(w) + 1..N(w ) ) 'TN n W n N
(CA)

[
kk kJ-1 kk kL 8k'(iwn) . L TN.Ak'TN.(iwn)

k=O k=O

Transformed matrices ANk can be introduced. defined as ANk = TN.Ak.T N' The

difference between both sides of the equation is then given by the matrix 0:

~ T .( -M(w ) + 1.. N w ) ) .T
N n W n N

(C.5)

[
kk k J-1 kk k (

.
)o = "B. Ow ) . "A .Ow) - T . -M(w ) + -L. N(w) .Tn L... k n L... Nk n N n W n N

k=O k=O
(C.6)

To obtain the best approximation of added mass and
res of all elements of this difference matrix for all
sed:

damping the sum of the squa-
frequencies has to be minimi-

LLLID.. ,2 ~ min.
n i j IJn

(C.7)

Here n is an index for the frequency. i and j are indices for the matrix elements.

The minimisation is performed using an optimisation procedure published in [11]
(Fortran subroutine EXTREM).
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The results of the minimisation are the matrices ANk and Bk' The matrices Ak are

obtained from the ANk by the inverse of the normalization:

(C.8)

The number of unknowns in the optimisation can be reduced, if the boundary condi-
tions for infinite frequency are observed. For infinite frequency the damping is zero,
and the added mass asymptotically approaches a value we shall term Mco. From
(C.1) the following equations can be derived for infinite frequency:

(C.9)

(C.10)

As stated in chapter 6 Bkk is set equal to the unit matrix, which leads to:

(C.11)

Akk-1 can be calculated from (C.10), if Bkk-1 is known. Therefore only Ao to

Akk-2 and Ba to Bkk-1 need be calculated in the optimisation program. A further
reduction of the number of unknowns is achieved by reducing the B-matrices to di-
agonal matrices. The results prove that nontheless a very good approximation of the
added mass and damping can be achieved with kk as low as 2.
An example of such an approximation using kk = 2 is shown in figure C-1. The ad-
ded mass and damping matrix elements are plotted as a function of the circular
frequency w. The drawn out lines represent the values calculated from potential
theory. The asterisks mark the values obtained from the left hand side of (C.1).
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Figure C-1: Comparison between added mass and damping fr ship section calculated
by potential theory (drawn out lines) and approximated using A and 8

coefficients (Xs). for kk = 2. HM is the added mass. HN is the dam-
ping. the numbers represent the indexes of the matrix elements



aj = W.' t - k(~'cost!J + k '1J'sint!
J J J

b.
-k . (I;+d)

= W( rJ1. C(e J
J

d<I>
= uOrbl; = - L:>.' cos t!. . cos a.

~J J J J

d<I> = = L: b.' sint!.. cosaJd1) uOrb11 j J J

d<I> = = - ~b(Sinaj
C5C uOrbl;

-1 .
(0.10).!!Orbx = T ..!!orbl;

.!!Orbx = T-1 .Ü Orbl;
(0.11)
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The velocity potential <I>of the seaway at the point (~,1J,C) is given by:

~ -k . (I;+d)
<I> =)' . C..e J . sin (w..t - k,'~'cost!. + kJ'1J'sint! J'>T kJ J J J J

Let us introduce the following abbreviations:

(0.1>

(0.2)

(0.3)

For the calculation of the orbital velocities the correction factor rj1 for the waterli-
ne, which is used in the calculation of the Froude-Krilov forces (appendix S), is also

used.
The orbital velocities are the derivatives of the velocity potential <I>in the respective
directions:

(004)

(0.5)

(0.6)

The orbital accelerations are the time derivatives of the orbital velocities:

"W.' b.' cost!.' sina.
j J J J J

(0.7)

= - ~w,'b,'sint!,'sina.
J

J J J J

= - L: w. . b . cos a.. J J J
J

These velocities and accelerations are given in the earth coordinate system. If they
are required in the ship coordinate system, they can be transformed according to
the following formulae:

(0.8)

(0.9)

Angular orbital velocity and acceleration

An effective angular orbital velocity for a ship's section is calculated approximately
from the orbital velocities at 4 points as indicated in the following drawing.
The draught d is a mean draught, given by section area divided by mean section
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breadth b. The angular orbital velocity follows from applying the torque exerted by
each velocity vector:

=
. .

uoz1 - uoz2 + uoy1

b + d
(0.12)

The angular orbital acceleration is calculated similarly, substituting velocities by
accelerations .

i (x,O,-d)

(x,-b/2,-d/2) x,b/2,-d/2)

(x,O,O)

uoy2 y

z



Main Partlculars

Length b.p. 135.0 m
Breadth 23.0 m
Depth 10.7 m
Draught 8.2 m
Displacement 17190

3
m

Fn BL BQ
in kNms in kNms

2

0.0 7889 191150

0.1 11833 293843

0.2 29364 227568
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Simulation Data

Moments of inertia

[

1098000 0 0

1

o 19800000 0
o 0 20250000

Ship's mass: m = 17275 t

Longitudinal centre of gravity: -1.22m forward of amidships

Number of sections for hydrostatic and hydrodynamic data: 11

Draughts for hydrostatic data: from -3.0m to 13.0m in steps of tOm
Inclination angles for hydrostatic data: from 0° to 90° in steps of 5°

Draughts for A- and B-matrices: from -5.0m to 17.0m in steps of 2.0m
Inclination angles for A- and B-matrices: from 0° to 90° in steps of 10°

Resistance data: CR = 2.0. Exponent = 2.5

Roll damping coefficients

Drag coefficients for transverse resistance: 1.0 for all sections



Immersion 2.6m

Rudder area: 6.83m
2

0.0009095aH:

.6xL: 0.4283 A: 2.15

v . 0.30 cu: 0.4945 va/vm: 0.0300a.
v . 2.1 cu: 0.5585 v Iv . 0.1610a' a m.
va: 3.9 cu: 0.6205 v Iv . 0.2858a m.
V . 5.7 cu: 0.6833 v Iv . 0.4186a' a m'
V . 7.5 cu: 0.7600 v Iv . 0.5822a. a m.
V . 9.3 cu: 0.8719 va/vm: 0.7902a'
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Propeller and Propulsion Data

Number of propellers: 1
Propeller diameter: 5.6m
blade area ratio: 0.7
Pitch: 4.9m
Number of blades: 4
Thrust deduction fraction:
Wake fraction:
Mechanical efficiency:
Moment of inertia of prop.:
Propeller position

0.192
0.287
0.99
10000tm 2

(-64.7, 0.0, 3.2) m

Rudder Data

Trailing edge at
Lift centre at
Chord length
r

-58.7m
-67.5m

3.85m
1.0
1.0

Immersion Um
2

Rudder area: 1.89m aH:

.6xL: 0.0863 A:

va: 0.3 cu: 0.3142

va: 2.1 cu: 0.3142

va: 3.9 cu: 0.3142

va: 5.7 cu: 0.1077

va: 7.5 cu: 0.1635

va: 9.3 cu: 0.2329

0.0001624

0.62

v Iv .
a m'

V Iv :a m
va/vm

va/vm:

va/vm:

va/vm:

0.9991

0.9991

0.9991

0.2736

0.4022

0.6252



Immersion 4.1m

Rudder area: 11.8m
2

0.002176aH:

6XL: 0.9212 A: 3.65

v . 0.30 cu: 1.0427 va/vm: 0.0355a'
v . 2.1 cu: 1.1077 v Iv . 0.1872a' a m'
va: 3.9 cu: 1.1592 v Iv : 0.3278a m
V . 5.7 cu: 1.2102 v Iv . 0.4 770a' a m'
V . 7.5 cu: 1.3249 V Iv . 0.6506a' a m'
V . 9.3 cu: 1.4381 V Iv . 0.8399a' a m'

Immersion 5.6m

Rudder area: 16.1m
2

0.004015aH:

6XL: 1.5118 A: 5.14

va: 0.30 cu: 2.1520 v Iv . 0.0536a m'
V . 2.1 cu: 2.1993 V Iv . 0.2800a' a m'
V . 3.9 cu: 2.1944 V Iv . 0.4691a' a m'
va: 5.7 cu: 2.1470 va/vm: 0.6387

v . 7.5 cu: 2.1034 V Iv . 0.7896a' a m'
V . 9.3 cu: 1.9570 va/vm: 0.8602a'

Immersion 7.1m

Rudder area: 21.0m
2

0.006187aH:
6XL: 2.1709 A: 6.62

va: 0.30 cu: 2.3702 va/vm: 0.0617

v . 2.1 cu: 2.5337 v Iv . 0.3165a' a m'
V . 3.9 cu: 2.5857 V Iv . 0.5187a' a m'
V . 5.7 cu: 2.5626 v Iv . 0.6878a' a m'
V . 7.5 cu: 2.5155 V Iv . 0.8263a' a m'
V . 9.3 cu: 2.4630 v Iv : 0.9350a' a m
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ndix F: Wave Data for the Irre ular Seawa

From the spectrum for the irregular seaway 1 as given in [4] wave components

were derived. The frequency range from 0.28 to 1.03 s -1 was subdivided into as

many strips of equal width as wave components were required. The frequency of

each wave component was chosen randomly from within the range of the respective
strip. The wave amplitude was calculated from the value of the spectrum at the

middle of the strip. The phase angle was chosen randomly between 0° and 360°.
Using this procedure three sets of wave components were created, differing in the

phase angles and slightly in the frequencies of the components. These wave sets 1

to 3 represent almost identical spectra, but lead to different time functions of the
wave height.

Wave set 1, 41 components:
amplitude in m c.freq. in l/s

0.1628 0.2825

0.2940 0.2950

0.3634 0.3160
0.4376 0.3369

0.5498 0.3579

0.6556 0.3630
0.8729 0.3832

1.4218 0.4159

1.6748 0.4207
1.8117 0.4521

1.9421 0.4628

1.9393 0.4858
1.7771 0.5026

1.5338 0.5254

1.2925 0.5340
1.1055 0.5497

0.9344 0.5641

0.7772 0.5963

0.6438 0.6099

0.5832 0.6332

0.5573 0.6488
0.5072 0.6612
0.4469 0.6845

0.3894 0.7080
0.3464 0.7251

0.3193 0.7327
0.2999 0.7529

0.2870 0.7694

0.27844 0.7834

0.2718 0.8064
0.2641 0.8295

0.2526 0.8488

0.2400 0.8580

dir. in °
0.0000

0.0000
0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

0.0000
0.0000

0.0000
0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

0.0000
0.0000

0.0000
0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

phase in °
139.1993

139.2833
277.7288

1.5268

105.0516

167.6532

163.9607

303.6905

29.7418
327.5439

182.4863

253.3185

75.1445

53.5735

109.1977

6.3801

19.8214

104.0591
122.4161

250.4734

262.3804
3.7504

220.0011
131.3089

192.3354

234.0651

243.9604

286.6945

48.4652

170.8224

152.5591

188.0197

144.6733
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amplitude in m

0.2278

0.2161

0.2048

0.1941
0.1838

0.1750

0.1706
0.1721

c.freq. in 1/s

0.8912

0.9109

0.9249

0.9395

0.9565
0.9733

0.9880

1.0129

dir. in
0

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

0.0000

phase in
0

49.4779

179.9288

229.2396

343.3470

117.8578

163.1773

283.3600
136.2169

Spectrum of this seaway (S = energy density):

. 2
In m s

o
o 0.2 0.4 0.6 0.8

Circular Frequency in 1Is

1.0

Wave height at the position (0,0) in m:

10.0

5.0

0.0

-5.0

-10.0

50.0 100.0 150.0

Time in 1/s
200.0 250.0
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Wave set 2. 40 components:
amplitude in m c.freq. in 1/s

0.1671 0.2785
0.3010 0.2956
0.3719 0.3086
0.4514 0.3407
0.5685 0.3473
0.6844 0.3805
0.9382 0.3874
1.5140 0.4015
1.7286 0.4353
1.8690 0.4552
1.9849 0.4660
1.9282 0.4849
1.7279 0.4974
1.4645 0.5302
1.2380 0.5381
1.0503 0.5651
0.8788 0.5757
0.7205 0.5912
0.6153 0.6112
0.5773 0.6267
0.5419 0.6527
0.4809 0.6769
0.4187 0.6856
0.3658 0.7134
0.3329 0.7277
0.3099 0.7566
0.2943 0.7702
0.2843 0.7773
0.2771 0.7996
0.2697 0.8241
0.2588 0.8403
0.2457 0.8563
0.2330 0.8850
0.2207 0.9050
0.2089 0.9257
0.1977 0.9400
0.1870 0.9603
0.1776 0.9787
0.1728 0.9916
0.1742 1.0135

dir. in
0

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

phase in 0

164.8327
134.4273

348.2379

201.6348

82.9857

195.2616

124.0261
200.4755

295.1887

257.4261
53.6826

45.2567

245.3378
339.0447

82.4645

226.5475

206.2036

181.6276

285.2457

121.2328

32.7907

202.8057

193.6261
148.9981

323.1967

356.5648
170.5412

36.3131

226.9720
140.9801

152.3712
27.9169

180.9792

113.4506

78.5506
5.8020

212.7520

233.4331

208.6772

115.6985
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Wave set 3, 40 components:

amplitude in m c.freq. in 1/s

0.1671 0.2795

0.3010 0.2910

0.3719 0.3185

0.4514 0.3425

0.5685 0.3492

0.6844 0.3777

0.9382 0.3872

1.5140 0.4050

1.7286 0.4266

1.8690 0.4551
1.9849 0.4751

1.9282 0.4782

1.7279 0.5076

1.4645 0.5279

1.2380 0.5367

1.0503 0.5689
0.8788 0.5770

0.7205 0.6002

0.6153 0.6175

0.5773 0.6451
0.5419 0.6527

0.4809 0.6711
0.4187 0.6867

0.3658 0.7152

0.3329 0.7353
0.3099 0.7391

0.2943 0.7682

0.2843 0.7852

0.2771 0.8119

0.2697 0.8327

0.2588 0.8468
0.2457 0.8604

0.2330 0.8787
0.2207 0.8998

0.2089 0.9215
0.1977 0.9376

0.1870 0.9611
0.1776 0.9678

0.1728 0.9842

0.1742 1.0048

dir. in
0

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000
0.0000

0.0000

0.0000
0.0000

0.0000

0.0000
0.0000

0.0000

0.0000
0.0000

0.0000

0.0000

0.0000
0.0000

0.0000

0.0000 1

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
0.0000

0.0000
0.0000

0.0000

0.0000

78

phase in 0

181.4274

127.1203

280.7242

309.4725

50.8714

31.8905

219.9876

263.8507

47.4880

209.2207

154.7561

308.3178

325.3074
341.6464

166.3196

122.1906
353.4064

93.1363

290.5067
137.8984

166.7676

219.3267

182.2936

254.9679

64.6386
145.2557
1,07.9142

61.5071

96.3916

290.5974

24.4689

203.1902

34.8826

142.3969
347.0343
219.7414

57.3111
355.3040

83.2723

48.9199




