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Abstract
The paper is concerned with a node-based, gradient-driven, continuous adjoint two-phase flow procedure to optimize the 
shapes of free-floating vessels and discusses three topics. First, we aim to convey that elements of a Cahn–Hilliard formu-
lation should augment the frequently employed Volume-of-Fluid two-phase flow model to maintain dual consistency. It is 
seen that such consistency serves as the basis for a robust primal/adjoint coupling in practical applications at huge Reynolds 
and Froude numbers. The second topic covers different adjoint coupling strategies. A central aspect of the application is 
the floating position, particularly the trim and the sinkage, that interact with a variation of hydrodynamic loads induced by 
the shape updates. Other topics addressed refer to the required level of density coupling and a more straightforward—yet 
non-frozen—adjoint treatment of turbulence. The third part discusses the computation of a descent direction within a node-
based environment. We will illustrate means to deform both the volume mesh and the hull shape simultaneously and at the 
same time obey technical constraints on the vessel’s displacement and its extensions. The Hilbert-space approach provides 
smooth shape updates using the established coding infrastructure of a computational fluid dynamics algorithm and provides 
access to managing additional technical constraints. Verification and validation follow from a submerged 2D cylinder case. 
The application includes a full-scale offshore supply vessel at Re = 3 × 10

8 and Fn = 0.37 . Results illustrate that the fully 
parallel procedure can automatically reduce the drag of an already pre-optimized shape by 9–13% within ≈ O(10,000-30,000) 
CPUh depending on the considered couplings and floatation aspects.

Keywords  Continuous adjoint two-phase flow · Hull optimization · Dual consistency · Floating vessel · Node-based shape 
optimization

1  Introduction

International shipping is responsible for transporting around 
90% of the global trade. The dominant role of shipping is 
attributable to the low-fuel consumption per tonne-km of 
transported cargo. However, the mere magnitude of the 

many ten thousand operating vessels puts environmental 
and economic aspects of shipping into the focus of regula-
tory provisions. The seaborne pollution and approximately 
50% of the direct operating costs for shipping are related to 
fuel consumption, which in turn is governed by the vessel’s 
resistance. Therefore, reducing the hydrodynamic drag, even 
by a few per mille, is highly appreciated from commercial 
and environmental perspectives. The endeavor for shorten-
ing development cycle times shifts the center of interest 
towards simulation-based approaches.

Marine engineering two-phase flow simulations mainly 
refer to Volume-of-Fluid (VoF) methods, cf. Hirt and Nich-
ols (1981), which reconstruct the free surface from an indi-
cator function that quantifies the volume concentration of 
the participating phases. The popularity of VoF methods 
is due to the simplicity of a shared kinematics approach, 
the inherently conservative formulation, and the capabil-
ity to predict merging and rupturing of free surfaces. When 
attention is directed to the simulation-driven optimization of 
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non-parameterized industrial shapes, gradient-based local 
optimization procedures using adjoint formulations are per-
haps the most efficient approach to complement the simula-
tion process by an optimization component. The efficiency 
benefits of the adjoint method increase with the number of 
degrees of freedom, and the procedure requires an estab-
lished reference/initial design. Both aspects apply to the 
optimization of industrial shapes.

Industrial applications of adjoint methods to optimize 
fluid dynamic shapes have reached an impressive level 
of maturity for single-phase flows, cf. Othmer (2014) or 
Papoutsis-Kiachagias and Giannakoglou (2016). However, 
adjoint applications to marine engineering two-phase flows 
remain in their infancy. Significant challenges refer to the 
substantial Reynolds number turbulent flow and the immis-
cible two-phase flow characteristics that feature a discon-
tinuous property change across the interface. Moreover, 
the dynamic floatation alters the drag, which interacts with 
the shape modification. In addition, hull shape updates are 
usually constraint to a sufficient level of smoothness and 
must conserve the vessel’s displacement. Therefore, only 
a few applications were previously published for adjoint 
optimizations in marine engineering two-phase flows, cf. 
Palacios et al. (2012), Springer and Urban (2015), Kröger 
et al. (2018) and He et al. (2019).

The adjoint analysis aims at the efficient computation of 
derivative information for an integral objective functional 
with respect to (w.r.t) a general control function, cf. Giles 
and Pierce (1997), Giles and Pierce (2000), Kröger et al. 
(2018), Papoutsis-Kiachagias et al. (2019). Two competing 
methods, known as the continuous and the discrete adjoint 
approach, are widely employed, cf. Peter and Dwight (2010). 
In continuous space, the dual or adjoint flow state can be 
interpreted as a co-state that follows from the primal flow 
model. However, the formulation of boundary conditions 
and the choice of an appropriate discretization of the under-
lying Partial Differential Equation (PDE) system is not 
intuitively obvious in a continuous adjoint framework. The 
situation gets more delicate for complex flow models with 
possibly non-differentiable expressions and larger PDE-
systems featuring an augmented level of non-linearities. 
Related marine engineering examples refer to the afore-
mentioned discontinuous property changes and the many 
inter-parameter couplings between the momentum/continu-
ity equations on the one hand and the equation governing 
the indicator function on the other hand. Another frequently 
debated topic is the adjoint treatment of turbulence usually 
modeled by transport equations in a Reynolds-averaged 
Navier-Stokes (RANS) framework. Practical solutions found 
in the literature often suggest the neglect of adjoint variables 
and are frequently labeled “incomplete” or “frozen” adjoint 
strategies, such as the “frozen turbulence” or the “frozen 
free surface” approach, e.g. Soto et al. (2004), Dwight and 

Brézillon (2006), Martinelli and Jameson (2007), Othmer 
(2008), Stück (2012), Marta and Shankaran (2013) and 
Kröger et al. (2018)

Without a doubt, frozen adjoint strategies impair the com-
puted sensitivity derivative and, at the same time, grossly 
simplify its calculation. The degree of derivative uncertainty 
is, however, debatable, cf. Zymaris et al. (2010), Hartmann 
et  al. (2011), Marta and Shankaran (2013), Papoutsis-
Kiachagias et al. (2015), Kavvadias et al. (2015), Manservisi 
and Menghini (2016a, b). To assure consistent and synchro-
nized primal and dual development states, discrete adjoint 
approaches based upon automatic differentiation were sug-
gested by, e.g., Nielsen et al. (2004, 2010) or Nielsen and 
Diskin (2013), Burghardt et al. (2022). The approach passes 
over the adjoint PDE and directly bridges a discrete line-
arized primal system into a consistent dual system, cf. Giles 
and Pierce (1997, 2000) or Vassberg and Jameson (2006a, 
b).

Despite the various merits and drawbacks of the discrete 
vs. the continuous adjoint method, the authors believe that 
the latter offers significant cost benefits for large-scale paral-
lel implementations. Moreover, it is unique for its invaluable 
contribution to a physical understanding, i.e., the challenges 
mentioned above often disclose the weaknesses of the flow 
model. Nonetheless, considering the full range of inter-
parameter couplings of a consistent framework can hamper 
the robustness and efficiency, mainly if a sequential or partly 
sequential algorithm is employed, while accuracy implica-
tions of a frozen turbulent two-phase adjoint approach are 
not well understood.

Therefore, the present contribution scrutinizes selected 
continuous adjoint formulations using a conventional pres-
sure-based, sequential finite-volume algorithm, see Ferziger 
and Peric (2012), for optimizing the shape of free-floating 
ships. Attention is restricted to a two-phase flow RANS pro-
cedure using an SST k–ω model coupled to a motion mod-
eler. A CAD-free shape update is used under restrictions of 
the length and the hull’s displacement. Novel aspects refer 
to the adjoint two-phase flow approach and the application 
to high Reynolds number free-floating full-scale configura-
tions using a simplified algebraic adjoint turbulence treat-
ment. Moreover, we present a novel strategy to preserve the 
displacement and restrict the length within a volume-based 
identification of the descent direction. The employed formu-
lation aims to balance accuracy opportunities and efficiency 
weaknesses using “improved frozen” approaches that retain 
the algorithmic benefits and preserve the predictive realism 
in practical marine flows.

The remainder is organized as follows: Sect. 2 is con-
cerned with the derivation of the mathematical model. Sec-
tion 3 outlines our approach to adjust the floatation and to 
simultaneously update the mesh and the shape under the 
aegis of geometric constraints. Subsequently, the numerical 
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method and the optimization procedure are briefly outlined 
in Sect. 4. Section 5 is devoted to the validation for 2D flow 
around a submerged cylinder. Section 6 scrutinizes the per-
formance of the optimizer for a total drag objective applied 
to an offshore supply vessel at full scale. Section 7 provides 
conclusions and outlines future research. The publication 
employs Einstein’s summation convention for lower-case 
Latin subscripts. Vectors and tensors are defined with refer-
ence to Cartesian spatial coordinates, e.g., xk , and the spatial 
derivative vector refers to ∇k.

2 � Mathematical model

2.1 � Two‑phase model

The paper deals with the flow of two immiscible, inert flu-
ids (a, b) featuring constant bulk densities ( �a, �b ) and bulk 
viscosities ( �a,�b ). Fluid a is referred to as foreground fluid 
and fluid b as background fluid. In the present study, the 
foreground fluid typically refers to air and the background 
fluid to water. Both fluids are assumed to share the kine-
matic field along the route of the VoF-approach suggested 
by Hirt and Nichols (1981). The spatial distribution of the 
fluids is described by an Eulerian concentration field, where 
c = ca = Va∕V denotes the volume concentration of the fore-
ground fluid, and the volume fraction occupied by the back-
ground fluid refers to cb = Vb∕V = (V − Va)∕V = (1 − c).

2.1.1 � Concentration transport

The material properties of immiscible and inert fluids are 
invariable. The (foreground) fluid concentration of a VoF 
model, therefore, follows from a simple Lagrangian trans-
port equation, i.e. dca∕dt(= −dcb∕dt) = dc∕dt = 0 , which is 
translated into an Eulerian formulation prior to its discretiza-
tion. More elaborate diffuse interface methods exist, which 
are frequently labeled Cahn–Hilliard (CH) models, cf. Cahn 
and Hilliard (1958), Lowengrub and Truskinovsky (1998), 
Jacqmin (1999), Abels et al. (2012). CH models replace the 
sharp interface with a thin layer where the fluids exchange 
mass fluxes. They are distinguished by mass or volume con-
servative strategies and essentially augment the Lagrangian 
concentration transport equation by a velocity-divergence 
term and a non-linear, diffusive right-hand side of order four, 
which is zero outside the interface region, cf. Ding et al. 
(2007) and Kühl et al. (2021a)

where M(c) refers to a mobility parameter of dimension 
[m4/(N s)] and �(c, �2c∕�x2

k
 ) denotes a chemical potential 

(1)

dc

dt
=

�
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[
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��

�xk

]
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�vk
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→
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�t
+

� vkc
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[
M

��
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,

of dimension [Pa]. Following (Kühl et al. 2021a), the present 
study employs a mass conservative strategy together with an 
appropriate choice of M and a frequently used “double-well 
potential” which yields

The ratio C2[N]∕C1[Pa] ∼ �2
c
 scales with the square of the 

interface thickness, and C1 ⋅M [m2
∕s] ∼ �c describes a non-

linear apparent viscosity �c = 2C1 ⋅M(6c2 − 6c + 1) . Eval-
uating the last term of ∇k� in (2) requires sufficient grid 
resolution, in other words, the term can be neglected when 
the interface is under-resolved, which is the case in marine 
engineering simulations. As illustrated in Fig. 1, �c vanishes 
at c = (0.5 ±

√
3∕6) and is negative over approximately 58% 

of the inner transition regime, where it supports the phase 
separation process.

Though the non-zero RHS of (1) of order O(∇kk(∇iic)) 
appears to increase the complexity, it is beneficial for vari-
ous reasons, cf. Kühl et al. (2021a): It naturally includes 
surface tension effects, supports the use of stability-pre-
serving, upwind-biased convective approximations, and 
facilitates consistent yet numerically robust primal/adjoint 
formulations. The latter is particularly relevant for the pre-
sent study and also holds if the third derivative term in (2) 
is not considered.

2.1.2 � Equation of state

An equation of state (EoS) m(c) extracts the local flow prop-
erties from the concentration field and the bulk properties, 
viz.

where �Δ = �a − �b , �Δ
= �a − �b mark the respective bulk 

property differences. Though this is not necessary, the paper 
assigns m�

= m� . Provisions on the EoS considered in this 
study aim to exclude non-physical, unbounded density states 
by means of m ∈ [0, 1] and to recover the single-phase limit 
states, i.e. m(c = 1[0]) = 1[0] , cf. Kühl et al. (2021a) and 
Kühl (2021). The simplest conceivable EoS m(1) corresponds 
to a bounded linear interpolation between the limit states. 
A more advanced nonlinear alternative m(2) follows the rule 
of a hyperbolic tangent and employs a user-specified non-
dimensional transition parameter �m

(2)
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Since the hyperbolic EoS complies with the limit states only 
asymptotically, an upper bound for the transition parameter 
is estimated by �m ≤ 0.3 to limit the error w.r.t. the limit 
states below 0.1%. Typical values for the transition param-
eter refer to 0.25 ≤ �m ≤ 0.35.

In combination with a CH-formulation, the hyperbolic 
EoS offers a decisive advantage for constructing a consistent 
continuous primal/adjoint two-phase flow model dedicated 
to shape optimization, which closely resembles the tradi-
tional VoF framework. The benefit follows mainly from the 
employed continuous adjoint framework and applies to aca-
demic studies featuring grid-resolved interface physics and, 
even more importantly, engineering simulations with under-
resolved interface physics. Introducing the EoS (3) into the 
mass conservative continuity equation yields an expression 
for the divergence of the velocity field that is essentially 
governed by (4) even for a diffuse interface scheme

Here �a = −�b represent the mass transfer rates into phases 
a and b. Mass conservative CH formulations yield non-
solenoidal velocity fields unless f � vanishes, cf. Kühl et al. 

(4)
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(2021a). This in turn suggests to employ the hyperbolic EoS 
which can compress the non-solenoidal regime to a small 
layer controlled by �m.

2.2 � Primal governing equations

The governing fluid dynamic equations refer to the momen-
tum and continuity equation for the mixture as well as a 
transport equation for the volume concentration of the fore-
ground phase, that need to be solved for the pressure p, the 
velocity vi, and the concentration c, viz.

The unit coordinates and the strain rate tensor are denoted by 
�ik and Sik . The framework supports laminar and Reynolds-
averaged (modeled) turbulent flows (RANS). In the latter 
case, vi and peff correspond to Reynolds-averaged proper-
ties and peff is additionally augmented by a turbulent kinetic 
energy (k) term, i.e. 2�k∕3 . Along with the Boussinesq 
hypothesis, the dynamic viscosity �eff

= � + �t of turbulent 
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(a) (b)

Fig. 1   Double well potential: a normalized fourth-order polynomial b as well as its first three (normalized) derivatives and b the evolution of the 
normalized apparent viscosity with indicated roots
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flows consists of a molecular and a turbulent contribution 
( �t ), and the system is closed using a two-equation turbu-
lence model to determine �t and k. Details of the turbu-
lence modeling practice are omitted to save space and can 
be found in textbooks, e.g., Wilcox (1998).

Contributions arising from the two-phase model are noted 
in the respective final positions of Eqs. (6)–(8). The PDE 
system agrees with the classical VoF framework for a van-
ishing mobility M → 0 . A divergence-free velocity field (6) 
is often highly appreciated and also reduces the differentia-
tion efforts during the subsequent derivation of a continu-
ous adjoint formulation. Using the nonlinear material model 
m(2) in (4), f � approximately vanishes due to �m∕�c → 0 for 
sufficiently small values of �m . Note that a Heavyside EoS 
refers to �m → 0 which returns �m∕�c → ∞ at c = 0.5 in 
Eq. (5) and would thus require a regularization. Moreover, 
vanishing �m-values are prone to generate artificial stair-
case effects in the employed Finite-Volume approximation. 
Therefore, typical values for the transition length refer to 
0.5 ≤ �m ≤ 0.8 . Whilst f � → 0 for c ≠ 0.5 yields the neglect 
of net diffusion fluxes in (6) and surface tension effects in 
(8), it leaves a diffusive term within the concentration equa-
tion (7). The latter arises from the first part of the chemical 
potential � , cf. Eq. (2), and yields a consistent—therefore 
robust—adjoint two-phase formulation. Such under-resolved 
CH-VoF methods consistently employ f � → 0 to simplify 
the primal PDE system, and serve as the basis of our adjoint 
two-phase flow derivation, viz.

T h e  n o n l i n e a r  a p p a r e n t  v i s c o s i t y  r e a d s 
�c = M�2b∕�c2 = 2C1 M(6 c2 − 6 c + 1) , cf. Sect.  2.1.1. 
As indicated by Fig. 1 (left), it follows from a double-well 
potential b = (c − 1)2c2 to be minimized in a phase separa-
tion process. Depending on the concentration value c, the 
last term in (10) acts locally diffusive ( �c ≥ 0 ) or compres-
sive ( 𝜈c < 0 ), cf. Fig. 1 right. This underlines the compres-
sive character of the CH-VoF approach. The primal two-
phase flow model is closed by assigning the product C1M 
to a spatially constant value that is guided by the numerical 
diffusion of the primal convective concentration transport as 
suggested by Kühl et al. (2021a).
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Boundary conditions to close the PDE system 
(9)–(11) are listed in Table 1. Constant values of the pres-
sure gradient typically follow from a piezometric effec-
tive pressure definition, viz. peff → p + � xk gk and thus 
�peff∕�xi → �p∕�xi + � gi. In all cases, inlet, symmetry and 
slip-wall boundaries are perpendicular to the gravity vector 
and no hydrostatic boundary contributions occur.

2.3 � Adjoint governing equations

The adjoint PDE system depends on an underlying integral 
objective functional, viz.

that either acts in parts of the domain ( ΩO ⊆ Ω ) or along 
boundary segments ( ΓO ⊆ Γ ). Both integrands in (12) can 
depend on the field quantities of the primal system (9)–(11). 
The objectives used in this paper read

The volume objective minimizes the deviation from a target 
concentration value ct , e.g. aiming at calm water elevation. 
The surface objective addresses the fluid force projected in 
a spatial direction ri , e.g. the fluid flow induced drag. The 
cost functional (12) is augmented by the primal PDE system 
(9)–(11) which yields the following Lagrangian

In (14) p̂, ĉ and v̂i refer to adjoint pressure, adjoint concen-
tration and adjoint velocity components, respectively. The 
units of adjoint pressure and adjoint concentration are equal [
p̂
]
= [ĉ] = [J] 1∕m3 . The unit of the adjoint velocity reads [

v̂i
]
= [J] 1∕(N s) . Demanding first-order optimality condi-

tions yields 𝛿𝜙̂,𝜙,uL = 0 (Kühl et al. (2019, 2021d)), where 
𝜙̂ ∈ [p̂, ĉ, v̂i] and � ∈ [p, c, vi] denote to the adjoint and pri-
mal variables and u refers to the control, i.e., the normal dis-
placement of discrete surface-element’s centroids for shape 

(12)J = ∫
ΩO

jΩ dΩ + ∫
ΓO

jΓ dΓ,

(13)jΩ =
1

2

[
c − ct

]2
and jΓ =

[
p�

ij
− 2�S

ij

]
njri.

(14)L = J + ∫ ∫
[
p̂ Rp + ĉ Rc

+ v̂i R
vi
]
dΩ dt.

Table 1   Boundary conditions for the primal equations, where ti [ ni ] 
refer to the local boundary tangential [normal] vector

Boundary type vi p c

Inlet vi = vin
i

�p

�n
= 0 c = cin

Outlet �vi

�n
= 0 p = � gk xk

�c

�n
= 0

Symmetry vi ni = 0 , � vi
� n

ti
�p

�n
= 0

�c

�n
= 0

Wall (slip) vi ni = 0 , � vi
� n

ti
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= 0

�c
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= 0

Wall (no-slip) vi = vw
i
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�n
= � gk nk

�c

�n
= 0
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optimization purposes. The optimality conditions yield three 
sets of constraints. The first part ( 𝛿𝜙̂L = 0 ) reproduces the 
PDE system (9)–(11). The second part ( ��L = 0 ) yields the 
adjoint field equations, viz.

that are supplemented by boundary integrals

The third part (�uL = 0) provides the sensitivity that guides 
the shape update.

All derivatives of material properties enter the adjoint 
concentration equation with the individual differences of the 
bulk properties �Δ and �Δ , which are multiplied by the deriv-
ative �m∕�c of the EoS. The linear EoS m(1) offers a constant 
unit derivative �m∕�c = 1 , and its non-linear alternative 
reveals an intensified local contribution along the interfacial 
region that weakens noticeably towards the bulk phases. For 
a vanishing thickness parameter �m , the hyperbolic tangent 
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− v̂i 2 Sik nk 𝜇

Δ 𝜕m

𝜕c

]

−
𝜕 𝛿c

𝜕 n

[
ĉ 𝜈c

]
dΓ dt

!

= 0 ∀ 𝛿c

(20)

𝛿viL = ∫
ΓO

𝜕 jΓ

𝜕 vi
𝛿vi dΓ

+ ∫ ∫ 𝛿vi
[
vk 𝜌 v̂i nk + 2𝜇effŜik nk − p̂ ni

]

− 𝛿Sik
[
2𝜇eff v̂i nk

]
dΓdt

!

= 0 ∀ 𝛿vi.

in (4) turns into a Heaviside function, and the adjoint system 
experiences an abrupt (Dirac) impulse along the interface 
based on the EoS related source terms in (16). However, the 
integral impact does not change and exactly matches that 
of a linear approach, cf. Kühl (2021). Such thought experi-
ments reveal the vulnerability of the discrete framework: 
The adjoint system conceptually pushes the phase transition 
below the grid resolution in practical applications. Hence, 
in adjoint mode we consequently apply a linear EoS, i.e. the 
use of �m∕�c = 1 in (15)–(20), in order not to compromise 
the numerical robustness. Comparing the primal and the 
adjoint PDE systems, a few additional advection and cross-
coupling terms occur in the adjoint PDE system. Above all, 
the adjoint concentration equation contains significantly 
more terms that scale with the two fluids’ bulk density or 
bulk viscosity difference. The last term of (16) is of particu-
lar importance since this additional diffusivity bridges the 
gap between an adjoint sharp vs. an under-resolved diffusive 
interface formulation. We would like to point out that the 
differentiation of the apparent viscosity �c was deliberately 
suppressed. This would yield an additional contribution to 
the adjoint concentrations equation, which is proportional to 
∼ (2c − 1)�c∕�xk and is thus confined to two small regions 
along the phase transition regime which are separated in 
the vicinity of the interface, i.e., at c = 0.5 . Moreover, the 
treatment of the adjoint apparent viscosity 𝜈ĉ is also simpli-
fied and assigned to a spatially constant, positive and thus 
stability-promoting value that follows from the bulk phase, 
i.e. 𝜈ĉ = 2MC1 , cf. Fig. 1 right. Boundary conditions to close 
the adjoint PDE system (15)–(17) aim at neutralizing the 
boundary integrals (18)–(20) and are listed in Table 2.

2.3.1 � Adjoint turbulence treatment

The adjoint turbulence treatment follows from the sugges-
tion published in Kühl et al. (2021c). Owing to the strong 
influence of the primal and adjoint near wall flows on the 
shape sensitivities (21), this publication suggests to analyze 
the near-wall boundary layer flow composed by the viscous 
sub-layer and the logarithmic layer, and subsequently apply 
the findings on the whole flow field.

The central idea is, that the near wall boundary layer tur-
bulence could be described by an algebraic mixing length 
model. Although the actually employed turbulence model 
might use transport equations to compute the turbulent 
viscosity �t , e.g. for the evolution of the turbulent kinetic 
energy k and a specific kinetic energy dissipation rate ω, 
the resulting turbulent viscosity, e.g. �t

∼ k∕� , should agree 
with its counterpart obtained from a mixing length hypoth-
esis in zero pressure gradient boundary layers. Bearing in 
mind that the turbulent viscosity is the essential informa-
tion passed from the turbulence model to the primal flow, 
one could try to differentiate the mixing-length-based 
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momentum equations and analyze the resulting adjoint 
momentum equation. The analysis reveals that the adjoint 
momentum equation basically reflects a diffusion term with 
doubled turbulent viscosity, i.e., for a simple unidirectional 
shear u(y) with y being the wall normal coordinate & wall 
distance, the relation between the primal and the adjoint 
diffusion reads

Here, û refers to the adjoint of u. The differentiation of 
mixing-length-based momentum equations simply results 
in doubling the turbulent viscosity in the adjoint momen-
tum equations due to the non-linearity of the primal dif-
fusion term. Mind that � = 2 is consistent in the viscous 
sub-layer and the logarithmic region of a boundary layer. At 
the same time, it can only be hypothesized that the consist-
ency improves compared to the classical frozen turbulence 
approach for other flows. Since shape optimization for resist-
ance problems is by definition interested in the near-wall 
flow, a consistent adjoint near-wall formulation should be 
particularly relevant. Moreover, the robustness of the adjoint 
numerical procedure benefits from an augmented viscosity.

2.3.2 � Adjoint sensitivity

If all respective optimality conditions are satisfied, sen-
sitivity information is obtained from the final optimality 
condition in terms of a derivative of the Lagrangian in the 
direction of the control, i.e. �uL . The latter gives rise to the 
desired shape sensitivity derivative s, which follows from 
(� vi∕� n) ni = 0 and reads

Primal ∶
𝜕

𝜕 y

[(
𝜇 + 𝜌(𝜅y)2

𝜕u

𝜕 y

)
𝜕u

𝜕 y

]

→ adjoint ∶
𝜕

𝜕 y

[(
𝜇 + 2𝜌(𝜅y)2

𝜕u

𝜕 y

)
𝜕û

𝜕 y

]
,

with 𝜇t
= 𝜌(𝜅y)2

𝜕u

𝜕 y
.

where only the normal (n) gradient of the tangential (t) pri-
mal and adjoint velocity is considered in line with a local 
Couette-flow assumption that stems from the primal solver 
and assumes negligible wall curvature.

2.3.3 � Interpretation of primal vs. dual time horizon

Being primarily concerned with the drag reduction of ships 
cruising in calm water, the present research focuses on 
steady-state problems. Therefore, the primal and adjoint 
solutions are advanced in pseudo-time and converged to a 
steady-state. To this end, all adjoint time steps are solely 
linearized around the final (steady-state) primal flow solu-
tion. A pseudo-transient procedure also influences the iden-
tification of the floatation position outlined in Sect. 3 which 
does not need to consider inertia effects of the rigid body 
mechanics.

3 � Shape and grid update

Both the adjustment of the floatation and the shape modi-
fication suggested by the optimizer employ the same tem-
plate to update the numerical grid along the lines of a mesh 
morphing procedure to facilitate a restart from the previous 
design. In both cases, the grid update procedure is driven by 
the spatial change of the discretized vessel geometry.

3.1 � Modeling of floatation

The paper considers an adjustment of the trim and sink-
age during the integration to steady-state, using a rigid 
body motion model (Luo-Theilen and Rung (2017)) that 
is restricted to two degrees of freedom herein. Due to the 
pseudo-transient approach, inertia aspects are irrelevant for 
the final floatation, and a hydrostatic approach to adjust the 
floatation can be pursued, cf. Yang and Löhner (2002). The 
floating position is initialized in its hydrostatic rest position 
in this simplified approach. This rest position is associated 
with an initial displacement V ini and supplemented by cent-
ers of gravity xg

k
 and rotation xr

k
 . The initial displacement 

corresponds to the gravity neutralizing buoyancy force and 
is associated with the vessel’s carrying capacity. The latter 
is conserved during the optimization in the present study, cf. 
Sect. 3.4. Once the flow develops, the related forces deviate 
from the initial or the previous iteration—possibly due to 
a modified shape—and the floatation is corrected. To this 

(21)
𝛿uL = −∫ ∫

ΓD

(𝜇 + 𝛽 𝜇t
)
𝜕 vi

𝜕 n

[
−
𝜕 v̂i

𝜕 n

]
dΓdt

→ s = −(𝜇 + 𝛽 𝜇t
)
𝜕 vt

𝜕 n

[
𝜕 v̂t

𝜕 n

]
,

Table 2   Boundary conditions for the adjoint equations, where ti [ ni ] 
refer to the local boundary tangential [normal] vector

Boundary type v̂i p̂ ĉ

Inlet v̂i = 0 𝜕 p̂

𝜕 n
= 0 ĉ = 0

Outlet 𝜕 v̂i

𝜕 n
= 0 p̂ = [vk � v̂i + �effŜik nk] ni ĉ = 0

Symmetry v̂i ni = 0 , 
𝜕 v̂i

𝜕 n
ti = 0

𝜕 p̂

𝜕 n
= 0

𝜕 ĉ

𝜕 n
= 0

Wall (slip) v̂i ni = 0 , 
𝜕 v̂i

𝜕 n
ti = 0

𝜕 p̂

𝜕 n
= 0

𝜕 ĉ

𝜕 n
= 0

Wall (no-slip, 
Γ ⊄ Γ

O)
v̂i = 0 𝜕 p̂

𝜕 n
= 0

𝜕 ĉ

𝜕 n
= 0

wall (no-slip, 
Γ ⊂ Γ

O)
v̂i = −ri

𝜕 p̂

𝜕 n
= 0

𝜕 ĉ

𝜕n
= 0
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end, the surface grid of the hull, which refers to the interior 
boundary of the discrete domain, is rigidly displaced and 
rotated. In contrast, all exterior boundaries remain unmoved, 
as outlined in Sect. 3.2.

For the sake of simplicity, we assume the gravitation 
and heave force to act in the negative x3 (vertical) direc-
tion. Consequently, the trim moment is associated with the 
pitch-down positive x2 (span) rotation, perpendicular to the 
cruise direction ( x1 ) and the gravity vector gk . An estima-
tion of the required trim (pitch rotation) and sinkage (verti-
cal motion) correction w.r.t. the initial hydrostatic floatation 
follows from the actual trim moment MT and the net heave 
force FH , viz.

where Aw and Iw represent the water-plane area and its 
moment of inertia around the rotating axis in the present 
floating position. The respective net heave force and trim 
moment values follow the flow-induced forces along the wet-
ted boundaries ΓH augmented by gravity forces, viz.

where fi =
[
2�eff Sik − peff �ik

]
nk and vbulk

k
 represent the sur-

face specific fluid forces and the bulk velocity, respectively. 
Here �ijk refers to the Levi–Civita–Symbol used to compute 
an outer vector product. Once the flow field and the forces 
on the hull converge, the deviation from the hydrostatic 
floatation is evaluated according to Eq. (22). Subsequently, 
under-relaxed corrections are superimposed by means of a 
displacement vector dH

i
 along each interior boundary surface 

element

where Ri2 refers to the entries of a rotation matrix around 
the trim axis. Robust convergence was experienced for 
0.2 ≤ �H ≤ 0.6.

Mind that the Lagrangian (14) could be augmented by 
residual versions of the floatation model (23) and (24) to 
implicitly account for the influence of the floatation on the 
control using entries of the floatation to the adjoint PDE 
system (15)–(17). As the floatation updates are, however, 
usually fairly small and simulations only aim at steady state 
floatation, we do not consider this approach.

(22)ΔS3[m] = −
FH

�b |gk|Aw
and ΔT2[

◦

] =
MT

�b |gk| Iw
.

(23)FH
=

gi

|gk|
[
∫
ΓH

fi dΓ + V ini �b gi

]
and

(24)

MT
=

�ijk gj v
bulk

k

|�ijk gj vbulkk
|
[
∫
ΓH

�ilm
[
xl − xr

l

]
fm dΓ + V ini �b�ilm

[
x
g

l
− xr

l

]
gm

]
,

(25)dH
i
=
[
ΔS3 �i3 + ΔT2 Ri2

]
�H,

3.2 � Mesh deformation procedure

The interior boundary displacement and the fixed exterior 
boundaries serve as Dirichlet conditions for a mesh mor-
phing routine which updates the interior cell centers from a 
Central-Differencing-Scheme (CDS)-based Finite-Volume 
(FV) approximation of a Laplace equation

In the present study, the diffusivity field �d refers to the 
inverse (non zero) distance to the nearest wall, which avoids 
a grid distortion in the vicinity of the hull. A subsequent 
deformation of the cell vertices follows from an averaged 
interpolation of all vertex-adjacent centers NP(V), viz.

After updating the grid vertices and Control Volumes (CV) 
centers, the geometric quantities are recalculated for each 
CV. Equations (26) and (27) are employed to update the 
volume grid in response to the change of the discrete hull, 
which in turn can alter on the basis of either the floating 
body motion ( di = dH

i
 , Sect. 3.1) or the computed sensitivi-

ties s of the optimization ( di ∼ s ni , cf. Sect. 3.3) that enter 
the mesh deformation approach through the boundary condi-
tions. Different approaches to define the diffusivity field �d 
are conceivable, though we do consistently use an inverse 
distance-based approach in this study. Since the grid topol-
ogy remains unaltered, the CFD simulation is continued 
from the previous result on the ”new” mesh.

Sections 3.3 and 3.4 outline the computation of a con-
straint compatible, cell center gradient field gi derived from 
the adjoint sensitivities. Using a step size �d this is trans-
lated into an optimization-based relocation of cell centers 
and subsequently fed into (27).

3.3 � Node‑based shape gradient approximation

Non-parameterized, node-based shape optimizations dis-
close localized influences on optimal shapes down to the 
range of the discrete surface elements of the CFD grid. 
However, the strategy also suffers from a few well-known 
weaknesses. For example, the raw sensitivities provide com-
prehensive information on the normal deformation but lack 
any information on the associated tangential node motion, 
and the sensitivities are not necessarily smooth. These defi-
ciencies yield rough/noisy shape updates, cf. Stück and 
Rung (2011), Kröger and Rung (2016), and lead to distorted 
near-wall meshes, which in turn hamper the preservation of 

(26)

�

�xk

[
�d

�di

�xk

]
= 0 in Ω with

{
di = dH

i
on Γ ∩ Γ

H

di = 0 on Γ
.

(27)dV
i
=

1

NP(V)

NP(V)∑
P=1

[
dP
i
+

� dP
i

� xk

(
xV
k
− xP

k

)]
.
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numerical accuracy during the optimization procedure, e.g. 
Stavropoulou et al. (2014) and Bletzinger (2014).

The adjoint shape derivatives are usually regularized to 
obtain smooth meaningful technical shape updates. Differ-
ent regularization strategies to determine the shape gradient 
exist, which can be distinguished by the surface- or vol-
ume-based habitat of the shape gradient. The most promi-
nent example refers to a surface-based formulation using 
the Laplace-Beltrami (LB) metric, as initially proposed by 
Jameson and Vassberg (2000) and Vassberg and Jameson 
(2006a, b) in terms of an implicit, continuous smoothing 
operator based on an extended definition of the inner prod-
uct, frequently labeled Sobolev-gradient. More recently, 
a volume-based Steklov-Poincaré (SP) metric was sug-
gested as an alternative, e.g. Schulz and Siebenborn (2016), 
Haubner et al. (2021), which offers algorithmic and proce-
dural benefits and shares features with the traction method 
introduced by Azegami and Wu (1996) and Azegami and 
Takeuchi (2006).

3.3.1 � Steklov‑Poincaré metric

The SP approach refers to a novel strategy on an industrial 
level that employs an elliptic volume-based formulation 
where smoothed results are subsequently projected on the 
boundary. The procedure essentially combines the 2D shape 
update with the 3D mesh update using the local flow sensi-
tivities from Eq. (21) of all design boundary patches of the 
computational mesh. The algorithm exclusively operates in 
the fluid domain and is thus compatible with the CFD solver 
environment. Re-using standard high-performance-comput-
ing capable solver routines (assembling, solving, etc.) rep-
resents a major benefit of the SP procedure which refers to a 
standard Laplace-PDE to compute a gradient vector field gi

The gradient field gi is controlled by Neumann conditions 
that employ the raw sensitivity derivatives s. No boundary-
based operations are necessary and modifications of the 
boundary conditions (28) support an intuitive introduction of 
additional geometry-related engineering constraints. Exam-
ples refer to fixed intersection lines along a symmetry plane 
via gi ni = 0 and (� gi∕� n)ti = 0 on ΓSymm , or the realiza-
tion of a mandatory flat ship transom obtained by gi ni = 0 . 
The SP approach involves only a single user-defined param-
eter, i.e. the diffusivity �g , which refers to the inverse (non 
zero) distance to the nearest wall in the present study, cf. 
Sect. 3.2. The method is the starting point for more sophisti-
cated p-Laplacian descent strategies that employ a nonlinear 

(28)

�

�xk

�
�g

�gi

�xk

�
= 0 in Ω with

⎧⎪⎨⎪⎩

� gi

� n
= s ni on Γ ∩ Γ

D

gi ni = 0,
� gi

� n
ti = 0 on Γ

Symm

gi = 0 on Γ

.

diffusivity, e.g. �g
= [(� gi∕� xk)(� gi∕� xk)]

(p−2)∕2 , cf. Müller 
et al. (2021) and Deckelnick et al. (2021).

The SP approach is the preferred approach of this paper. 
A step in the steepest descent direction is performed once 
the field gi is computed from (28) and subsequently sub-
jected to further technical constraints, cf. Sect. 4.1.

3.4 � Geometrical constraints

The discussion of additional geometrical constraints is 
divided into local and global (integral) criteria.

3.4.1 � Local constraints

Local constraints restrict the motion of the shape in Euclid-
ean space. For example, marine engineering examples typi-
cally refer to a maximum length, a maximum width, or a 
plane transom stern. Various strategies are conceivable to 
meet local constraints. Superficially, all constraints can be 
incorporated on equation level to determine the field gradi-
ent, e.g. (28). However, this essentially resembles a sub-opti-
mization problem and—for performance reasons—requires 
the availability of a suitable procedure, i.e., a Newton-type 
solver. Alternatively, augmented Lagrangian methods may 
be used, which relax the geometrical constraints by intro-
ducing additional Lagrangian multipliers, cf. Allaire et al. 
(2004, 2021), Andreani et  al. (2008), and Müller et  al. 
(2021). The latter serve as additional process parameters 
and usually result in more optimization cycles, especially 
if several geometrical constraints should be considered 
simultaneously.

The present procedure augments the flow sensitivity to 
comply with local constraints, is modularizable, and intui-
tive to use. By reference to an exemplary geometric inequal-
ity that constrains the maximum control-coordinate ũi in xi
-direction, the optimization problem is augmented

and the sensitivity of the shape w.r.t. the flow s ni is assumed 
to be available. As long as the shape remains below the 
upper bound ui − ũi ≤ 0 , the constraint is inherently fulfilled. 
However, if the shape moves beyond the boundary, an addi-
tional compensating geometric sensitivity su

i
 is added to the 

flow sensitivity, viz.

Compliance of dimensions and scaling of the geometric con-
straint is ensured by appropriate choices of the constant �u . 
A natural choice of the scaling refers to the inverse step size 
of the employed steepest descent approach, i.e., �u = 1∕�d . 

(29)
min J(𝜑(ui), ui) s.t. R𝜑

(𝜑(ui)) = 0 and ui − ũi ≤ 0,

(30)

s ni → s ni + 𝛽u su
i

with su
i
=

{
0 ∶ ui − ũi ≤ 0

ũi − ui ∶ ui − ũi > 0
.
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This constraint management strategy can be considered as 
implicit (the constraint is applied before a descent direction 
is computed) and does not lead to oscillations of the cost 
functional for the applications within this paper.

3.4.2 � Global constraints

Global constraints require the preservation of integral quan-
tities such as, e.g., the hydrostatic water displacement, a 
maximum wetted surface, or a fixed center of gravity. The 
displacement is particularly important in this work since 
drag optimizations often tend to eliminate the wetted sur-
face and the hull.

Implicit SP procedures directly employ a field equation 
(28) using the sensitivity derivatives as Neumann condi-
tions. This suggests solving an analog, volume-based sub-
problem to preserve global constraints, e.g., plane transom 
surfaces or fixed mainframes, viz.

The approach shares ideas of a sub-optimization problem 
that aims minimizing the squared integral of the deformation 
flux through the wetted part of the shape constraint by the SP 
field gradient equation (28), viz. JΓ,D =

[∫
ΓW gi ni dΓ

]2 . Fol-
lowing the numerical solution of (31) along the lines of (28), 
a superposition of the gi and g̃i fields yields a displaced-fluid 
conservative volume-based shape gradient, viz.

After a final scaling of the deformation field with a negative 
step size di → −�dgi , the cell centered deformation field is 
used to adjust the grid vertices from (27).

Some differences between the proposed SP approach and 
classical LB strategies from Vassberg and Jameson (2006a), 
Bletzinger (2014) and Kröger and Rung (2016) are discussed 
in the following.

The SP-approach inheres a challenge when the entire 
geometry is released for design: Due to the lack of Dirichlet 
conditions along the design boundary, the optimized geom-
etry is free to perform a rigid-body motion type of defor-
mation, e.g. gradually translate out of the domain. Hence, 
such SP-based strategies typically require to suppress such 
deformations and to fix the barycenter coordinates using 
additional constraints, cf. Schulz and Siebenborn (2016) and 
Müller et al. (2021). On the contrary, LB approaches operate 

(31)

�
�xk

[

�g �g̃i
�xk

]

= 0 in Ω

with

⎧

⎪

⎨

⎪

⎩

� g̃i
� n

= ni on Γ ∩ ΓD

g̃i ni = 0, � g̃i
� n

ti = 0 on ΓSymm

g̃i = 0 on Γ.

(32)gi → gi + 𝛽g g̃i with 𝛽g = −
∫
ΓW gi ni gΓ

∫
ΓW g̃i ni dΓ

.

with Dirichlet values obtained from smoothed, volume-pre-
serving sensitivities, and the optimized geometry doesn’t 
perform undesired rigid body deformations, cf. Kröger and 
Rung (2016).

The habitat of the LB approach is a curved surface in 
space. Imposing constraints in the LB context is there-
fore rather inconvenient in a CFD environment. Moreo-
ver, updates of the field/volume mesh are not seamlessly 
obtained in parallel with the geometry update as in the SP 
approach. Since most geometries of practical relevance are 
not entirely accessible for design changes, they naturally 
feature Dirichlet conditions. The SP approach is therefore 
preferred for the 3D applications in Sect. 6, where hull parts 
above the water line as well as the transom are not com-
pletely free for design.

However, the validation studies in Sect. 5 employ the LB 
metric as the whole geometry is free for design.

4 � Numerical procedure

The numerical procedure utilizes a FV approximation, dedi-
cated to Single Instruction Multiple Data (SIMD) imple-
mentations on a distributed-memory parallel CPU machine. 
Algorithms employed by the inhouse procedure FresCo+ are 
described in Rung et al. (2009) and Yakubov et al. (2013). 
They ground on the integral form of a generic Eulerian 
transport equation for a scalar field �(xk, t) exposed to the 
influence of a possibly non-linear source term S� in addition 
to a modeled (non-linear) gradient diffusion Γ∗ in a control 
volume V bounded by the Surface S(V), viz.

The procedure uses the strong conservation form and 
employs a cell-centered, co-located storage arrangement for 
all transport properties. The spatial discretization employs 
unstructured grids based on arbitrary polyhedral cells, which 
connect to a face-based data structure. Various turbulence-
closure models are available w.r.t. statistical (RANS) or 
scale-resolving (LES, DES) approaches. The numerical 
integration refers to the mid-point rule, diffusive fluxes are 
determined from second-order central differencing, and 
convective fluxes employ higher-order upwind biased inter-
polation formulae, e.g. Quadratic Upstream Interpolation 
for Convective Kinematics (QUICK) and High Resolution 
Interface Capturing Scheme (HRIC). Jacobi preconditioned 
Krylov-subspace solvers are used to solve the equation sys-
tems, and the global flow field is iterated to convergence 
using a pressure-correction scheme. Procedures are parallel-
ized using a domain decomposition method and the Message 
Passing Interface (MPI) communication protocol.

(33)
∫V

[
��

�t
− S�

]
dV + ∮S(V)

dSi

[
vi� − (Γ + Γ

∗
)
��

�xi

]
= 0.
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4.1 � Optimization procedure

After all engineering constraints are incorporated, either 
locally on sensitivity level or globally within the shape 
gradient computation, a descent procedure is employed to 
minimize the cost functional. For this purpose, the volume-
based representation of the shape gradient is multiplied by a 
sufficiently small step size di → −�d di [ di = −�d gi ] for the 
SP [LB] metric that (a) ensures compliance of dimensions 
between the LB or SP-based shape gradient and (b) serves 
as an optimization step in the direction of steepest descent. 
The step size remains constant over the optimization process 
and is frequently estimated based on a maximum initial dis-
placement, i.e. �d

= dmax
∕max(di, gi) . Typical values for this 

maximum displacement refer to 1∕104 ≤ dmax
∕L ≤ 1∕103 , 

where L denotes to a reference length of the underlying 
geometry, e.g. the ship length. Subsequent deformation of 

the cell vertices follows from an averaged interpolation of 
all vertex-adjacent centers NP(V) in line with Eq. (27). After 
updating the grid, geometric quantities are recalculated for 
each CV. Topological relationships remain unaltered, and 
the simulation is continued by a restart from the previous 
optimization step to evaluate the new objective functional 
value. Due to the employed steepest descent approach and 
comparably small step sizes, field solutions of two consecu-
tive shapes are usually nearby. Compared to a simulation 
from scratch, a speedup in total computational time of about 
an order of magnitude is realistic for this papers’ applica-
tions. The optimization loop is terminated if a maximum 
number of optimization cycles NO is reached or if the rela-
tive cost functional decrease w.r.t. the initial shape falls 
below �J[%] during an optimization step, cf. Alg. 1.

Algorithm 1: Schematic representation of the employed gradient descent procedure, where NO, dmax,
εJ, and J ini denote the maximum optimization iteration, a user-defined maximum deformation, the
objective convergence criterion, and the initial (nopt = 1) cost functional value, respectively.

define: dmax, NO and εJ

nopt = 1
while (nopt ≤ NO) do

approximate primal two-phase system, cf. (9)-(11)
evaluate cost functional J
if (nopt > 1) and (J − J ini)/J ini · 100 ≤ εJ) then

terminate
else

approximate adjoint two-phase system, cf. (15)-(17)
compute shape (sensitivity) derivative w.r.t. the fluid flow s, cf. (21)
employ local geometric constraint(s) and manipulate shape derivative, e.g. (30)
approximate shape gradient (28)
employ global geometric constraint(s) and manipulate the shape gradient (31)
define: di = −αd gi
perform a domain (shape) update (27)

nopt → nopt + 1
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5 � Validation

This section assesses the credibility of the adjoint two-phase 
flow sensitivities against the results of a Finite Difference 
(FD) approach. Additionally, influences of the adjoint two-
phase flow couplings are investigated. The considered exam-
ple refers to the laminar flow around a two-dimensional 
submerged circular cylinder at fixed floatation and involves 
volume- and surface-based cost functionals. This helps to 
consider two-phase flow effects in isolation. Aspects of 
the employed adjoint turbulence treatment are discussed in 
Kühl et al. (2021c). Hence, the considered adjoint two-phase 
system refers to Eqs. (15)–(17) with � = 0 (laminar) and 
�m∕�c = 1.

As illustrated in Fig. 2a, the origin of the cylinder is 
positioned two and a half diameters D underneath an initial 
calm-water free surface. The employed two-dimensional 
domain features a length and height of 60D and 30D , where 
the inlet and bottom boundaries are located 20.5 diameters 
away from the cylinder’s origin. At the inlet, a homogeneous 
unidirectional (horizontal) bulk flow vi = v1�i1 is imposed 
for both phases in conjunction with a calm water concen-
tration distribution. Slip walls are used along the top and 
bottom boundaries, and a hydrostatic pressure boundary is 
employed along the outlet. The grid is stretched in the longi-
tudinal direction ( x1 ) towards the outlet to suppress the outlet 
wave field and comply with the outlet condition.

The study is performed at ReD = v1D∕�
b
= 20 and 

Fn = v1∕
√
G 2D = 0.75 , based on the gravitational accel-

eration G, the inflow velocity v1 and the kinematic viscosity 

of the water �b . The expected dimensionless wave length 
reads � = �∕D = 2� Fn

2
= 3.534 . To ensure the independ-

ence of the objective functional value w.r.t. spatial discre-
tization, a grid study was conducted prior to the optimiza-
tion study. Part of the utilized structured numerical grid is 
displayed in Fig. 2b. It consists of approximately 215 000 
control volumes where the cylinder shape is discretized 
with 500 surface elements along the circumference. The 
non-dimensional wall-normal distance of the first grid layer 
reads y+ ≈ 0.01 and the refined grid in the free surface 
region employs isotropic spacing with Δx1 = Δx2 ≈ �∕100 . 
Convective primal [adjoint] momentum fluxes are approxi-
mated using the QUICK [QDICK] scheme, cf. Stück and 
Rung (2013). The approximation of the concentration equa-
tion has been outlined in Kühl et al. (2021a, b) where tradi-
tional VoF approaches follow from a compressive primal/
hybridized continuous-discrete adjoint HRIC scheme and 
compressiveness of a CH-VoF is achieved through inherent 
phase separation capabilities outlined in Sect. 2.1.1. Using 
an Euler implicit approach, the simulations are advanced to 
a steady state in pseudo-time.

5.1 � Local validation

Three exemplary objectives are used to validate the adjoint 
two-phase model against FD results at selected posi-
tions along the circumference of the cylinder. Results are 
reported for two boundary-based force objectives into the 
direction ri = [

√
(2),

√
2]T∕2 (drift) and ri = [1, 0]T (drag), 

and a volumetric target-concentration objective with a 

Fig. 2   Illustration of the submerged 2D laminar cylinder validation 
case ( ReD = 20, Fn = 0.75 ): a schematic drawing of the initial config-
uration including the upper half of the cylinder ui (red) investigated in 

Sect. 5.1, and b structured-grid portion in the vicinity of the cylinder. 
(Color figure online)



Adjoint node‑based shape optimization of free‑floating vessels﻿	

1 3

Page 13 of 24    247 

habitat along ΩO
= [−5D,D] × [25D, 5D] . The credibility 

of the validation effort is ensured by verifying the linear-
ity of the FD-analysis using three perturbation magnitudes 
�∕D ∈ [10−2, 10−5, 10−6] . The control is restricted to the 
upper half of the cylinder (cf. Fig 2a), for which FD results 
are extracted at 21 discrete positions. To this end, 42 addi-
tional simulations were performed to obtain second-order 
accurate central differences.

A comparison of the sensitivities predicted by the adjoint 
(lines) and the FD (symbols) approaches is depicted in Fig. 3 
for the force objectives (left) and the concentration objective 
(center) using �∕D = 10−5 . As indicated by these figures, 
the adjoint sensitivities agree almost perfectly with the FD 
results. The linearity of the FD answer is demonstrated in 
Fig. 3 (right), which refers to the local sensitivities for the 
drift objective at an exemplary surface position x1∕D = 1∕4 . 

Table 3   Investigated adjoint source term configurations for the sub-
merged cylinder validation case ( ReD = 20 , Fn = 0.75 ), where ’-’ 
indicates a neglect of the respective contribution

S
𝜑̂

v̂k
𝜕 vk

𝜕 xi
𝜌Δ v̂i vk

𝜕 vi

𝜕 xk
2𝜇Δ

Sik
𝜕 v̂i

𝜕 xk

𝜌Δv̂i gi

Label ATC​ Convective term Reynolds term Froude term

A1 – – – –
A2 – x x x
A3 x – – –
A4 x – x x
A5 x x – x
A6 x x x –
A7 – x – –
A8 – – x –
A9 – – – x

Fig. 3   Submerged cylinder validation case ( ReD = 20 , Fn = 0.75 ): 
Continuous as well as discrete finite-difference (FD, �∕D = 10−5)-
based sensitivity derivative along the upper cylinder side for (left) a 
drag ( ri = [1, 0]T ) and drift ( ri = [

√
(2),

√
2]T∕2 ) functional, (center) 

the target concentration objective ( ΩO
= [−5D,D] × [25D, 5D] ) 

as well as (right) three exemplary finite (force functional) system 
answers at x1∕D = 1∕4

Fig. 4   Submerged cylinder validation case ( ReD = 20 , Fn = 0.75 ): Continuous sensitivity derivative along the upper cylinder side using a drag 
functional ( ri = [1, 0]T ) for different adjoint systems A1-A9, cf. Table 3
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Mind that the drift force objective deliberately promotes 
an interaction between the adjoint velocity and the gravity 
vector through the third RHS-term in (16) near the wall, 
where the boundary condition requires v̂i = −ri and therefore 
v̂i gi ≠ 0.

To analyze the sensitivity influence, especially from the 
individual contributions of the concentration equation (16) 
via selective term combinations, nine additional adjoint 
studies were performed, cf. Table 3. Formulations A1-A3 
neglect either all four source terms (A1), only the adjoint 
transposed convection (ATC) term due to the nonlinear 
momentum convection (A2), or all coupling terms induced 
by the differentiation of the material properties (A3), respec-
tively. The deficit of neglecting different property-change 
sources in combination with the ATC term is investigated in 
A4–A6. The benefit of the individual source terms related to 
the change of the properties is in the focus of A7–A9.

Results are displayed in Figs. 4 and 5 for the drag force 
and the inverse concentration objective, respectively. Com-
paring A2 with A1 and A3 for the drag objective (Fig. 4, 
left) reveals that ignoring convective, Reynolds, and Froude 
terms yields sign errors disregarding the ATC choice, which 
might be considered critical for gradient-based optimization. 
Significantly more pronounced sign errors are also observed 
for the concentration objective (Fig. 5, left) in conjunction 
with A1 and A3. The influence of the ATC term w.r.t. the 
total resistance objective resembles an overall sound influ-
ence while maintaining the qualitative characteristics. In 
line with the flat plate boundary-layer study from Kühl et al. 
(2021d), an amplification of the shape derivative is obtained 
in its most sensitive region if the ATC term is neglected, 
which in turn can be treated based on reduced step sizes 
within a steepest descent optimization procedure. The situa-
tion becomes more crucial in the case of the inverse concen-
tration objective. Already the neglect of the ATC term (A2) 
shifts the roots of the shape derivative. The manipulation of 

the sensitivity is significantly increased by neglecting the 
adjoint concentration sources (A3).

A more detailed insight into the influence of the adjoint 
concentration sources is obtained by freezing selected terms 
(A4–A6). The resulting shape sensitivities are depicted in 
the central figures. The sensitivity deviations from the con-
sistent formulation appear to be most significant when the 
contributions due to a variation of the density are neglected 
as only A5 reveals no sign errors. The variation of the 
Froude term seems to have the most extensive influence 
since A5 outperforms A4, which in turn improves on the 
results of A6. While a quantitative shift is observed for the 
surface-based functional, the deviations w.r.t. the volume-
based cost functional are noticeably increased. Mind also the 
respective sign errors revealed by the center graph of Fig. 5.

Finally, configurations A4–A6 are reversed by neglecting 
all except one source in A7–A9, cf. right graphs of Figs. 4 
and 5. Considering only the Froude term (A9) underlines 
its major relevance by driving the shape sensitivity of the 
inverse concentration objective comparably close to the con-
sistent result or towards the results of A2. Moreover, all but 
the solution for A9 render critical sign errors.

5.2 � Global validation

Results presented in Sect. 5.1 demonstrate a fair agreement 
between adjoint-based sensitivities and FD results, provided 
that a consistent formulation is employed. On the other hand, 
manipulations based on the neglect of adjoint coupling terms 
reveal both qualitative and quantitative influences on the 
sensitivities. The below reported global validation compares 
the convergence of (J − Jini)∕Jini for different adjoint sys-
tems. To this end, consistency influences on a complete opti-
mization are assessed for ten formulations using either the 
consistent approach or one of the cases mentioned in Table 3 
(A1-A9). The displacement of the cylinder was conserved 

Fig. 5   Submerged cylinder validation case ( ReD = 20 , Fn = 0.75 ): Continuous sensitivity derivative along the upper cylinder side using an 
inverse concentration objective ( ΩO = [−5D,D] × [25D, 5D] ) for different adjoint systems A1-A9, cf. Table 3
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during the optimization, and a constant maximum displace-
ment dmax

= D∕50 was used to advance the shape. Mind 
that the entire geometry of the cylinder is subjected to the 
optimization.

Displayed results refer to the evolution of the normal-
ized drag and the concentration objective as a function of 
the design candidate nopt . Figure 6 reveals that the various 
adjoint formulations return similar final drag values. The 
optimization gain w.r.t. drag is maximized if the fully con-
sistent adjoint formulation is employed. However, neglect-
ing all four adjoint source terms (A1) decreases the gain 
by ≈ 1% only. The difference mostly arises within the last 
20-30% of the optimization, and the initial reduction of the 
cost functional is often similar. Exceptions refer to results 
for A3 and A6, which both neglect the Froude term and 
underpin its relevance. When attention is directed to results 
obtained for the concentration-based objective depicted in 

Fig. 6   Submerged cylinder validation case ( ReD = 20 , Fn = 0.75 ): convergence of the drag objective ( ri = [1, 0]T ) for different adjoint systems 
A1-A9, cf. Table 3

Fig. 7   Submerged cylinder validation case ( ReD = 20 , Fn = 0.75 ): Convergence of the inverse concentration objective 
( ΩO

= [−5D,D] × [25D, 5D] ) for different adjoint systems A1–A9, cf. Table 3

Fig. 8   Perspective 3D representation of the initial Offshore Supply 
Vessel (OSV). Mind that the geometry used by the numerical studies 
employs a simplified deck model, cf. Fig. 9
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Fig. 7, a more pronounced sensitivity to the formulation is 
observed. All adjoint systems that neglect the Froude term 
(A1-A2, A6-A8) perform a step into an ascent direction, and 
the optimization algorithm terminates. Moreover, the influ-
ence of the variation of the molecular viscosity (A5) appears 
to have a negligible impact.

Although the transfer of the results to turbulent marine 
engineering flows should be handled with caution, the 
validation results are indicative, particularly regarding the 
Froude term’s importance.

6 � Application

The application study refers to an Offshore Supply Ves-
sel (OSV, Fig. 8) in full-scale (FS). While such vessels 
frequently cruise at large speeds, their hull length is often 
small. Therefore an OSV typically operates at large Froude 

numbers ( Fn > 0.3 ) and experiences large wave resistances 
based on, e.g., breaking waves. Minor modifications of the 
wave pattern might change the drag and substantially trig-
ger a change of the floatation position. Thus the OSV case 
represents a challenging example for the present adjoint two-
phase optimization framework under free floatation. Moreo-
ver, such vessels typically feature geometric constraints that 
affect the quality of the constraint management method, the 
related descent strategy, and the capabilities of the mesh 
deformation procedure.

We define the Reynolds and Froude numbers by refer-
ence to the length LO of the OSV, the cruising speed v1 , 
the magnitude of the gravity vector G and the kinematic 
water viscosity �b . The investigated FS configuration yields 
Re = v1L

O
∕�b = 2.81 ⋅ 108 , Fn = v1∕

√
GLO = 0.37 . Geo-

metrical constraints considered in the present application 
refer to (a) the conservation of a plane transom that allows 
tangential-only deformation, (b) the preservation of the 

Fig. 9   a Schematic drawing of the initial configuration and b detail of the unstructured grid around the stern indicating the free surface behind 
the full scale Offshore Supply Vessel (OSV)

Fig. 10   Top view on the numer-
ical grid in the calm water plane 
of the Offshore Supply Vessel
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hydrostatic displacement, and (c) the adherence to a maxi-
mum length LO as well as a maximum permissible hydro-
static draught. The initial OSV consists of a hull, transom, 
bulkwark, and deck, as conceptually sketched in Fig. 8. The 
analysis is concerned with the steady-state in calm water 
conditions.

As depicted in Fig. 9, the origin of the Cartesian coordi-
nate system is located below the transom stern of the initial 
configuration, and the free surface is initialized in the x1 − x2 
plane at x3∕LO = 1∕16.

The simulation domain has a length, height and width of 
8 LO , 6 LO and 4 LO , where the outlet [bottom] boundaries 
are located four [two] OSV-lengths away from the origin. A 
dimensionless wave length of �FS = �∕LO = 2� Fn

2
= 0.852 

is expected and the total drag of the OSV should be mini-
mized, viz. ri = −�i 1 in (13). The utilized unstructured 
numerical grid around the transom is displayed in Fig. 9b 
and consists of approximately 3 ⋅ 106 control volumes. Due 
to symmetry, only half of the geometry is modeled in lateral 
( x2 ) direction. The fully turbulent simulations employ a wall-
function-based k–ω SST model of Menter (1994) together 
with a non-dimensional wall-normal distance of y+ ≈ 50 for 
the first grid layer adjacent to the hull. The horizontal reso-
lution of the free surface region is refined within a Kelvin-
wedge to capture the wave field generated by the vessel, cf. 
Fig. 10. The free surface resolution employs approximately 
Δx1∕� = Δx2∕� = 1∕50 cells in the horizontal directions 
and Δx3∕� = 1∕500 cells in the vertical direction. Convec-
tive primal [adjoint] fluxes are again approximated using 
the QUICK [QDICK] scheme, cf. Stück and Rung (2013). 
Only the respective approximation of the concentration 
equation follows again a different approach, cf. Sect. 5 and 
Kühl et al. (2021a, b). Simulations are advanced to a steady 
state in pseudo time at Courant numbers of Co ≤ 0.4 using 
an Euler implicit approach. At the inlet, a homogeneous 

unidirectional (horizontal) bulk flow vi = v1�i1 is imposed 
for both phases in conjunction with a calm water concentra-
tion distribution. Slip walls are used along the top, bottom, 
and lateral boundaries, and a hydrostatic pressure boundary 
is employed along with the outlet. Similar to the validation 
study, the grid is stretched towards the outlet to suppress 
the outlet wave field and comply with the outlet condition. 
The boundary conditions are supplemented by a symmetry 
condition along the midship plane.

Figure 11 displays results obtained for the computation 
of the initial geometry, i.e., the development of the normal-
ized drag (left), normalized heave force FH and trim moment 
MT (center), as well as the non-dimensional sinkage SO∕LO 
and pitch positions TO by reference to the initial hydro-
static floatation (right). As indicated by the evolution of the 
drag, the floatation is adjusted once every 5000-time steps, 
and the final floating position is found after approximately 
nTS = 40,000 steps.

All optimizations allow a tangential deformation of the 
lateral symmetry plane while maintaining the initial main 
dimensions of the OSV. Starting from the initial dynamic 
floating position, two sets of optimizations are performed, 
each using three different consistency levels for the con-
sidered adjoint PDE system. The first triplet neglects the 

Fig. 11   Dynamic floating position and related forces for the initial 
OSV at full scale ( ReL = 2.81 × 108 , Fn = 0.37 ); (Left) Non-dimen-
sional drag coefficient ( p∞ = 0.5 �b v2

1
 ), (center) non-dimensional lift 

and moment coefficient and (right) resulting dimensionless sinkage 
and trim angle over the number of time steps

Table 4   Measured computational effort in CPUh ( nopt ⋅ twc ⋅ nCPU ) for 
all six optimization studies, where twc refers to the mean wall clock 
time per optimization step and nCPU denotes the number of employed 
CPU cores

Experiment E1 [h] E2 [h] E3 [h]

Free Float. 19.568 19.136 33.454
Fixed Float. 10.880 12.864 26.265
Ratio 1.798 1.487 1.273
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floatation adjustment and requires a smaller number of steps 
nTS to converge the cost functional in pseudo time. The sec-
ond triplet adjusts the floatation, which results in approxi-
mately twice the computational effort, cf. Table 4. The 
respective three adjoint systems are summarized as follows: 

E1	 Experiment 1 neglects both adjoint concentration contri-
butions and adjoint turbulence effects within the adjoint 
momentum equation, i.e. � = 1 and ĉ∇ic → 0 in (17). 
The approach resembles a complete frozen concentra-
tion and a frozen turbulence approach, and no need 
arises to maintain a compressive adjoint concentration 
transport. The adjoint solution process is iterated in a 
steady-state manner which drastically reduces the com-
putational time of the adjoint solver.

E2	 The second experiment extends E1 only to improve the 
influence of adjoint turbulence effects, i.e. � = 2 and 
ĉ∇ic → 0 in (17). Therefore, E2 is more consistent w.r.t. 
adjoint turbulence but still corresponds to a frozen con-
centration approach, again allowing for a steady adjoint 
approximation.

E3	 The third experiment maximizes the consistency of the 
adjoint system within the scope of this paper. Hence, the 
adjoint concentration transport is also coupled with the 
adjoint momentum balance, i.e. � = 2 and ĉ∇ic ≠ 0 in 
(17). Mind that this noticeably increases the computa-
tional effort, cf. Table 4.

To ensure a fair comparison, all optimizations use dif-
ferent step sizes, which are scaled so that each first shape 
update has a maximum displacement of two per mil of the 
vessels length, i.e. dmax

= 2LO∕1000 in Alg. 1.

Results of the optimizations are shown in Fig. 12 for tri-
plet without (left) and with (center) floatation adjustment. 
All optimizations converge after 20-35 gradient steps while 
ensuring the prescribed geometrical constraints. In line 
with the results of the global validation study reported in 
Sect. 5.2, a clear trend towards a stronger cost functional 
decrease (J − Jini)∕Jini is observed for the more consistent 
formulations. While the resistance reduction observed in E1 
is single digit ( ≈ 9% ) in both cases, already the algebraic 
turbulence model (E2) offers an improved drag reduction of 
about 2-3% w.r.t. E1. The largest decrease is obtained with 
the consistent approach E3, which provides an additional 1% 
drag reduction for the free floating vessel and even 3% for 
the fixed floatation case in comparison to E2. The additional 
optimization gain justifies the more cost intensive adjoint 
simulation which refers, to O(20,000) [ O(30,000)] CPUh for 
the fixed [free] floating E3 case compared to O(10,000) [ O
(20,000)] CPUh for the respective E1 scenario, cf. Table 4. 
The E3 optimization with a fixed floating position provides 
the largest drag reduction of about 13.5%. Changes of the 
normalized hydrodynamic floatation for the E3 configura-
tion with floatation adaption are given in the right graph of 
Fig. 12. The ship trims forward, but sinkage and—interest-
ingly—displacement also increase.

After the optimization studies, the respective optimal 
shapes were re-computed from scratch while being free to 
adjust their floating position. This effort aims to assess (a) 
the credibility of the deformation procedure for the triplet 
that was optimized with an adjustment of the floating posi-
tion and (b) the uncertainties introduced by neglecting the 
adjustment of the floating position during a shape optimiza-
tion. Non-dimensional drag values obtained from these sim-
ulations are indicated by the horizontal lines in Fig. 12. As 
indicated in the center graph, the results of the re-computed 

Fig. 12   Drag optimization of an Offshore Supply Vessel (OSV) at full 
scale ( ReL = 2.81 × 108 , Fn = 0.37 ): Convergences of the optimiza-
tion for three different adjoint PDE systems (E1-E3) using fixed trim 
and sinkage (left) and adaptive trim and sinkage (center). Horizon-

tal lines indicate the total resistance obtained with trim and sinkage 
adjustment after re-simulating the final design from scratch. Right) 
Relative hydrostatic data for the most consistent (E3) optimization 
from the center figure
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optimized geometries are in fair agreement with the final 
results of the optimization study with an adjustment of the 
floating position. As expected, the re-computed drag results 
deviate from their respective companion results when the 
floating position is fixed during the optimization. In two 
cases (E2, E3) the gain decreases and in one case (E1) the 
result even improves, cf. Fig. 12 (left). Though the related 
drag modifications are limited, reliable predictions only fol-
low optimizations that account for floatation, cf. below.

Figures 13, 14 and 15 display the optimized hull shapes 
using frame, water and buttock lines. The observed drag 
reductions follow from significant changes in the hull 
shapes. Figure 13 presents frames (top), water lines (mid-
dle), and buttocks (bottom) of the initial and the optimized 
geometry (E3) with the adaption of trim and sinkage. Above 
all, the S-twist is reduced, the displacement and thickness in 
the bow area are decreased, and the stern is raised.

Fig. 13   Drag optimization of an Offshore Supply Vessel (OSV) at 
full scale ( ReL = 2.81 × 108, Fn = 0.37 ) with adjustment of floating 
position: Normalized (Top) frames, (center) waterlines and (bottom) 

buttocks for the initial (black) and optimized (blue, dashed) geometry. 
(Color figure online)
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A comparison of optimized shapes obtained when adjust-
ing the floatation is shown in Fig. 14 for the three consist-
ency levels E1 (black), E2 (orange, dotted), and E3 (blue, 
dashed). Qualitatively, the shape changes are similar, but 
quantitative differences are most pronounced for case E3, 
particularly in the stern regime.

Figure 15 compares the optimized geometries obtained 
from the two E3 configurations (fixed vs. adaptive floata-
tion). The geometries reveal substantial differences 
regarding the bow and the stern region, with much more 
pronounced S-shaped outer water lines and a rear-shift 
of the displacement for the fixed floating position geom-
etry. While this indicates discrepant descent directions, 

Fig. 14   Drag optimization of an Offshore Supply Vessel (OSV) at 
full scale ( ReL = 2.81 × 108 , Fn = 0.37 ): Comparison of optimized 
normalized (Top) frames, (center) waterlines and (bottom) buttocks 

using different consistency levels, i.e. E1 (black), E2 (orange, dotted), 
and E3 (blue,dashed). (Color figure online)
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the differences—notably the surprisingly positive results 
returned by optimizing for a fixed floating position—might 
raise concerns about step size influences.

Therefore a supplementary study on step size influ-
ences was performed for a smaller scale configuration, i.e. 
ReMS

= 8.92 × 106 , FnMS
= 0.32 . Three different maximum 

initial deformations, i.e. dmax
= LO∕1000 , dmax

= 2LO∕1000 , 
dmax

= 4LO∕1000 , were investigated in combination with 
configuration E3. Results of this study are shown in Fig. 16. 

The left graph depicts results obtained from a fixed floating 
optimization and the center graph refers to optimizations 
with an adjusted floating position. The figure reveals that 
the step size has no influence on the optimization result. 
However, in conjunction with a fixed position, the opti-
mization gain drops significantly once the final design is 
released to find its floating position, cf. horizontal lines in 
Fig. 16. The sensitive interplay between shape modification 
and floatation can be anticipated from the right graph of the 

Fig. 15   Drag optimization of an Offshore Supply Vessel (OSV) at 
full scale ( ReL = 2.81 × 108 , Fn = 0.37 ): Normalized (Top) frames, 
(center) waterlines and (bottom) buttocks for the most consistent (E3) 

optimized shapes with (blue, dashed) and without (black) floatation 
adjustment during the optimization
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figure. Therein, the free surface, including a breaking bow 
wave, is compared for two design candidates, i.e., nopt = 17 
and nopt = 20 . A decreased breaking wave amplitude arises 
during these three optimization steps. This reveals a strong 
nonlinearity in the design space and significantly influences 
the floatation—which has been neglected in this particular 
study—and finally yields a substantial trend reversal of the 
optimization.

As illustrated, the differences experienced from chang-
ing the floating position of a hull optimized in a fixed posi-
tion can be fairly detrimental. Hence, adjusting the floating 
position is highly recommended to secure the optimization 
efforts and reduce uncertainties.

7 � Conclusion

The paper reports a node-based continuous adjoint two-
phase flow procedure to optimize hull shapes of free-floating 
vessels. To this end, three topics were addressed that refer 
to: (1) An adequate two-phase flow model, (2) the relevance 
of floatation and consistency within the optimization frame-
work, and (3) appropriate descent direction computations 
that obey local and global technical constraints.

It is seen that elements of a CH model should augment 
frequently employed VoF two-phase flow models to facilitate 
dual consistency. With attention being restricted to industrial 
flow simulations that do not resolve the interface physics, i.e. 
in the discrete sharp interface limit, related modifications 
are lucid and result in a nonlinear diffusion supplement to 
the primal/adjoint concentration transport. The authors are 
convinced that this is crucial for a robust primal/adjoint cou-
pling in marine engineering applications, particularly when 
attention is devoted to full-scale optimizations at large Reyn-
olds and Froude numbers.

The paper supports the endeavor for adjoint consistency. 
An algebraic augmentation of the adjoint eddy viscosity—
which was recently suggested by reference to log-law phys-
ics—returns noticeable benefits with around 2% increased 
drag reduction for the optimal configuration. More impor-
tantly, the concentration contribution to the adjoint momen-
tum equation should be considered to expose the full poten-
tial of the adjoint optimization. Furthermore, all density 
variation terms of the adjoint concentration equation must 
be considered to secure a gradient descent.

Load variations—induced by the shape update—alter the 
vessel’s floatation, particularly the trim and sinkage, which 
in turn yield modified loads. To mitigate the related uncer-
tainties, adjusting the floating position during the optimi-
zation is highly recommended. The present study suggests 
that a “frozen adjoint floatation” approach is sufficient for 
steady-state resistance optimizations.

The Steklov–Poincaré metric offers an efficient gradient 
computation strategy that intensively re-uses the established 
coding infrastructure of a CFD algorithm. Its merits refer 
to the simultaneous update of the volume and the surface 
mesh of the optimized shape. Furthermore, the procedure 
can easily be customized to obey local and global technical 
constraints on the vessel’s displacement, extensions, and fur-
ther design demands such as, e.g., a plane transom.
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