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ABSTRACT
A numerical study of a semi-circular twin-hull section under heave oscillation is presented. Two
different time domain simulation methods were used: Firstly, a boundary element method based
on potential theory which incorporates fully nonlinear free surface boundary conditions by using
a mixed Eulerian Lagrangian scheme. Secondly, a finite volume method in combination with a
volume of fluid scheme for capturing the free surface. In order to evaluate the effects of viscosity,
simulations with the finite volume method were carried out using inviscid as well as viscous
flow assumptions. Hydrodynamic mass and damping coefficients were derived from first order
Fourier coefficients and validated against results from linear theory and experiments. A detailed
comparison of nonlinear results from both simulation methods was carried out in vicinity of
the piston-mode resonance frequency and a very good agreement was found. The phase angles
corresponding to the Fourier coefficients varied strongly with frequency, which went along with
a phase shift of the fluid motion in the gap. Influence of viscosity on the flow was found to be
present but had relatively low impact on the hydrodynamic forces.

1. Introduction
Many applications in the field of naval and ocean engineering are arranged in such a way, that vertical gaps occur

within a floating structure or between adjacent structures. Examples for such arrangements are multi-hull ships, moon-
pools, side-by-side arrangement of vessels, multi-body offshore structures or ships in a terminal. Violent resonant fluid
motion can occur within the gap of such an arrangement leading to heavy loads and potentially harming the safety of
the operation. Different modes of resonance are possible depending on exciting frequency and gap size. In particular
for narrow gap sizes the so-called piston-mode resonance, also known as Helmholtz or pumping mode resonance, has
an pronounced effect on the hydrodynamic forces.

One of the earliest studies on that phenomena was conducted by Ohkusu (1969), who considered a pair of circular
cylinders that were forced to heave harmonically on the free surface. Experimental results for the radiated wave height
at a certain distance to the cylinders were compared with results from linearised potential theory using an extension of
the solution procedure by Ursell (1949). A similar theoretical approach was used byWang andWahab (1971) who also
carried out force measurements in a set of experiments using pairs of semi-circular cylinders. Hydrodynamic mass
and damping coefficients were found to vary strongly close to resonance frequency with negative values for the added
mass and damping coefficients close to zero.

Most of past investigations utilised frequency domainmethods based on potential theorywith linearised free surface
boundary conditions to analyse the flow phenomena in gaps. A series of publications was devoted to the occurrence of
so-called trapped wave modes (e.g. McIver (1996) and McIver et al. (2003)). For certain multi hull shapes no waves
are radiated to infinity, which affects existence and uniqueness of solutions to the linear frequency-domain radiation
problem. Molin (2001) developed a simplified formula for the piston-mode frequency of rectangular cylinders by
treating the fluid in the gap like a rigid body. Also, for rectangular cylinders Yeung and Seah (2007) analysed free
surface shapes and force coefficients at different resonant modes using a semi-analytical approach. A study by Faltinsen
et al. (2007) showed that the free-surface elevation from linear theory inside a 2D moonpool at piston-mode resonance
deviates significantly from experimental measurements. The authors suspected that free-surface nonlinearities were
the main reason for these deviations. Porter and Evans (2011) as well as McIver and Porter (2016) established a wide-
spacing approximation to derive hydrodynamic coefficients of an arbitrary shaped cylinder next to a wall in terms of
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similar quantities for a single cylinder without a wall. A mathematical analysis regarding the sign of the added mass
coefficients of two dimensional floating bodies, including twin-hulls, was conducted by McIver and McIver (2016).

As indicated by Faltinsen et al. (2007) nonlinear free surface effects may have an important effect on the hydro-
dynamic characteristics of a twin-hull. A possible way to account for these effects in the scope of potential flow is
to utilize a boundary element method (BEM) with fully nonlinear free-surface boundary conditions and track the free
surface in time domain using a mixed Eulerian Lagrangian (MEL) scheme. This method was applied to the radiation
problem of twin-cylinders with rectangular and triangular cross sections byMaiti and Sen (2001). Significant influence
of higher order force components were found especially for small water depth. However, the piston-mode phenomenon
was not explicitly examined. Kristiansen and Faltinsen (2010) used a BEM/MEL approach to examine the motion of
a rectangular ship section in a terminal when excited by an incoming wave. They implemented a vortex sheet tracking
method to account for flow separation at the sharp edges of the body and found a significantly better agreement with
experimental measurements compared to results without this technique. Li and Zhang (2016) proposed an alternative
way to determine the resonance frequency of a twin-hull with a BEM/MEL technique. They simulated the gravity
driven flow after an initial disturbance and evaluated dominant frequencies in the free surface elevation by means of a
Fourier transformation.

While potential flow based methods usually offer relatively low computational costs, their main deficiency is that
they rely on inviscid flow assumptions. Field based methods like the finite volume method (FVM) are able to solve the
Navier-Stokes equations in a given fluid domain and thus include effects of viscosity in the simulation. In the context
of piston mode resonance the most prominent effect of viscosity, which has been identified by past researches, is flow
separation at the bilge keels. For instance, the work by Kristiansen and Faltinsen (2012) indicates that for the heave
radiation problem of a box-shaped twin-hull even linearised free surface conditions may be sufficiently accurate as
long as it is accounted for the vortex shedding at the bodies’ edges. Based on a finite volume method (FVM) they
propose a domain decomposition into a viscous regime around the edges and a potential flow domain everywhere else,
including the free surface in the gap. Another example is Ananthakrishnan (2015) who simulated heave oscillations of a
rectangular twin-hull with a finite differencemethod (FDM) incorporating viscous as well as inviscid flow assumptions.
Pronounced differences between the respective results were evident in case of piston-mode resonance. The influence
of viscosity motivated researchers to introduce empirical damping terms in the free surface boundary conditions of
potential flow methods to increase their applicability for 3D side-by-side offloading scenarios (Zhao et al., 2018).

The three previously mentioned publications focussed on box-shaped twin-hull sections which are characterised
by vertical side walls and sharp corners at the bilge. Moradi et al. (2015) studied different inlet configurations using a
FVMwith viscous flow assumptions. They found that replacing the sharp corners with rounded ones lead to significant
higher resonant wave heights in the gap due to a reduction of vortex generation at the inlet. These findings rise the
question if a potential flow based boundary element method can be a valid alternative to the FVM for the study of
multi-hull ships with well rounded hull forms when only little influence of flow separation is expected.

The heave radiation problem of circular or semi-circular cylinder sections, which has been studied previously by
several authors e.g. Ohkusu (1969), Wang and Wahab (1971), Lee et al. (1971) and Nordenstrøm et al. (1971), can be
seen as a representation of such a case. A recent numerical parameter study on this case was conducted by Bonfiglio
and Brizzolara (2018) using a viscous flow solver based on the FVM. They showed that the hydrodynamic coefficients
as well as the wave elevation inside the gap at resonance depend nonlineary on the heave amplitude. Their results
indicate that viscosity may have an important effect at very high heave amplitudes. However, no study was found
so far that quantifies the influence of viscosity on the hydrodynamic forces and shows the effects on the free surface
elevation in the gap. This would be of particular interest at low to moderate motion amplitudes, which mark a typical
scope of application for seakeeping analyses of multi-hull ships.

Aim of the present study was to validate the BEM/MEL approach for the case of a heaving semi-circular twin-hull
section with a focus on piston mode resonance. Added mass and damping coefficients were compared to experimental
results as well as results from linear theory by Wang and Wahab (1971). In order to verify the prediction quality
of higher order forces, additional simulations with a FVM were conducted in the frequency range where resonant
behaviour was observed. Simulations with the FVMwere carried out using inviscid as well as viscous flow assumptions
respectively to show the effects of viscosity. Besides the nonlinear hydrodynamic forces, the free surface elevation as
well as the pressure distribution resulting from the different computational approaches were compared to each other.
All simulations were carried out at a single hull distance and two different motion amplitudes.

The paper is structured as follows: At first, the geometrical properties of the problem are sketched and the applied
motion is explained in conjunction with the evaluation method for the force coefficients. Next the characteristics
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of the two computational methods are outlined in one section respectively, including the numerical setup and grid
convergence studies. This is followed by the presentation and discussion of the results. Finally, the findings of the
study are summarised in the conclusion.

2. Problem Definition
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Figure 1: Sketch of the right half of the symmetric twin-hull at initial conditions including the cylinder radius a, the
distance of the cylinder axes to symmetry plane b as well as the horizontal y-axis and the vertical z-axis of the coordinate
system.

The examined problem is sketched in Figure 1. Two cylinders of infinite length with semi-circular cross sections
of radius a and vertical walls above the circular part are considered. The cylinder axes are located in a distance 2b
away from each other. The origin of the coordinate system is located in the symmetry plane between the cylinders on
a level with the undisturbed free water surface. For the present study a hull distance of b = 1.5a was chosen which
corresponds to the narrowest gap size that was examined experimentally by Wang and Wahab (1971).

Initially the cylinders are floating in calm water at a draft equal to their radius, i.e. the vertical position of the
cylinder axes is zcyl = 0. At time t = 0 they are forced into harmonic heave oscillations with circular frequency !:

zcyl(t) = −za(t) ⋅ sin(!t), (1)

with za(t) =

⎧

⎪

⎨

⎪

⎩

0 if t < 0,
zA
2

(

sin
(

!t
2 −

�
2

)

+ 1
)

if 0 ≥ t < T ,

zA otherwise.
(2)

During the first period T = 2�
! the instantaneous motion amplitude za(t) gradually increases according to a sine

function of half the frequency until it reaches a constant value of zA. The advantage of this formulation, opposed to a
linear ramp for example, is that position, velocity and acceleration increase in a continuously differentiable way. This
in turn avoids discontinuities in the hydrodynamic force.

Besides the free surface elevation in the gap, the vertical hydrodynamic force F on the body is the main subject
of interest. For a comparison with the hydrodynamic mass and damping coefficients presented by Wang and Wahab
(1971) extracts from the time dependent results are transformed into Fourier series using the formulation:

F (t) = F0 +
∞
∑

k=1
Fk sin

(

k!t +  k
)

. (3)

Thus, the hydrodynamic force F (t) is split up into a mean value F0 and a sum of harmonic oscillations. The oscillations
are defined as sine functions with frequency k!, amplitude Fk and phase  k with k referring to an integer value whichspecifies the order of the respective component. Considering the definition of the motion (2), a phase angle of  1 = �means that the first order force F1 is in phase with the displacement zcyl. Thus, it acts in the opposite direction as
the acceleration and behaves like an inertial force. A phase angle of  1 = �∕2 corresponds to a force that acts in
the opposite direction as the current velocity and therefore has a damping effect. The added mass A and the damping
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coefficient B can be calculated from:
A =

−F1 cos( 1)
!2zA

, (4)

B =
F1 sin( 1)
!zA

. (5)

Due to symmetry of geometry andmotion it is sufficient to model only one cylinder with the computational methods
and apply corresponding boundary conditions on the symmetry plane. In case that there are no shear forces, the problem
described above is equivalent to a single cylinder heaving next to a vertical wall. Furthermore, the problem can be
scaled to any dimension without effecting the results. For viscous simulations the same scale as in the experiments of
a = 0.1524m is applied.

3. Boundary Element Method
3.1. Method description

The presented boundary element method is an improved version of the potential flow solver that was used by Haase
et al. (2015) in the context of 2D+t analyses of planning hulls and is based on the approach presented by Greco (2001)
and Sun (2007). More recently it was applied by Simonis et al. (2020) in a 2D+t based seakeeping analysis of a
semi-displacement hull. In the following, the method’s basic features are outlined.

In the context of potential theory the flow is assumed to be incompressible and irrotational. As a consequence,
viscosity is neglected and the velocity field q may be expressed as the gradient of a potential �:

q = ∇� (6)
Conservation of mass for an incompressible fluid leads to the Laplace equation, which in the case of a two dimensional
domain can be written as:

)2�
)y2

+
)2�
)z2

= 0. (7)

Based on Green’s second identity a generalised solution of the Laplace equation for a point x(y, z) inside the fluid
domain can be found in terms of the values for � and )�

)n on the boundary S of the domain:

�(x)�(x) = ∫S

(

� )
)n
ln r −

)�
)n
ln r

)

dS (8)

The angle � describes the angular extent of an arc which has an infinitesimal radius, it’s center at the position of x
and is entirely within the fluid domain, i.e. it is � = 2� if x is located fully inside the fluid domain and � = � if x lies
on a sufficiently smooth boundary. The expression )∕)n denotes a derivative in the direction of the two-dimensional
normal vector nyj + nzk on the boundary. The distance between the point x and a point on the boundary is referred to
as r.

The boundary is subdivided in several parts: The free surface, which is described by the coordinates yFS and
zFS , the body, the symmetry plane and the outer boundaries. Following conditions are imposed on the respective
boundaries:

D�
Dt =

1
2

(

)�
)y

)2
+ 1
2

(

)�
)z

)2
− g zFS , (9)

DyFS
Dt =

)�
)y

, DzFSDt =
)�
)z

(10)
at the free surface with g referring to the gravitational acceleration,

)�
)n

=
)zcyl
)t

nz (11)
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on the hull and
)�
)n

= 0 (12)
on the symmetry plane and on the outer boundaries.

The free surface boundary conditions (9) and (10) are used to compute the development of the free surface shape as
well as the value for � on the free surface in time via numerical integration. The required values on the right hand side
of the equations are obtained by numerically solving a boundary value problem with respect to � using a discretised
version of the integral equation (8). For this purpose, as well as for tracking the free surface shape in time, the domain
boundary is divided into a finite number of straight-line elements.

The instantaneous values for � are imposed at the nodes of the free surface elements whereas )�∕)n is prescribed
at the nodes of the other elements. A linear distribution of � and )�∕)n is assumed inbetween the nodes of each
element. The solution of the integration according to equation (8) over such an element is known analytically in terms
of the nodal values (see e.g. Greco (2001)). Thus, equation (8) can be expressed as the sum of the known solutions for
all elements. Formulating such a discretised integral equation for each node respectively yields an equations system
that is used to determine the unknown nodal values.

Subsequently, the velocities )�∕)y and )�∕)y, which are needed to evaluate the right hand sides of equations (9)
and (10), can be computed. The free surface boundary conditions are integratedwith respect to time using a fourth order
Runge-Kutta scheme. A new free surface shape is obtained by moving the free surface nodes accordingly. Regridding
algorithms are applied to compensate for numerical inaccuracies and increase the robustness of the method.

As the boundary conditions are not linearised with respect to the potential � and evaluated at the actual instan-
taneous position of the free surface and the hull, large deformations of the free surface can be simulated. Because
equations (9) and (10) are substantial time derivatives, the nodes on the free surface are considered as fluid particles in
the solution process described above. Since the boundary value problem for � is solved in the Eulerian frame and the
free surface is treated in a Lagrangian sense at the same time, the procedure is called MEL-approach (mixed Eulerian
Lagrangian) and was used by Longuet-Higgins and Cokelet (1976) for the first time to predict the shape of steep water
waves.

The pressure p on the hull surface is calculated using the Bernoulli equation for unsteady potential flow

p − p0 = −�

(

)�
)t
+ 1
2

(

)�
)y

)2
+ 1
2

(

)�
)z

)2
+ gz

)

, (13)

with � referring to the fluid density and p0 to the reference pressure at z = 0 when the fluid is at rest. The dynamic
pressure pd is obtained by excluding the hydrostatic pressure �gz:

pd = p − p0 + �gz. (14)
The dynamic force F in equation (3) is obtained by integrating the dynamic pressure over the body surface. The local
time derivative of the potential at a grid node with velocity ẋp is computed from

)�
)t
=
d�
dt

− ẋp ⋅ ∇�, (15)
where the total time derivative d�∕dt is approximated from the potential at the current and at the last time step with
finite differences.

In order to avoid reflections of the radiated waves from the outer boundary, a numerical damping zone is introduced
by modifying the dynamic free surface boundary condition inbetween a position ydmp and the boundary at ybnd :

D�
Dt =

1
2

(

)�
)y

)2
+ 1
2

(

)�
)z

)2
− gz − �(y)

)�
)n
. (16)

The absorption coefficient � is gradually increased over the distance lrmp and then kept constant:

�(y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for y ≤ ydmp,

�0

(

−2
(

y−ydmp
lrmp

)3
+ 3

(

y−ydmp
lrmp

)2
)

for ydmp < y ≤ ydmp + lrmp,

�0 for ydmp + lrmp < y.
(17)
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Table 1
Parameters used for the automated grid generation for the BEM and their dependency on the radiated wavelength �.

Parameter Expression Meaning

sbdy,max
�a
60

Maximum element size on the body

sfs
�
60

Target element size on the free surface

sfs,max
�
10

Maximum element size on the free surface

ydmp 3� + a + b Y-coordinate of start of damping zone (see (17))
lrmp 2� Length over which the absorption factor is increased (see (17))
ybnd 100� + a + b Y-coordinate of right boundary

zbnd 100� + 2a Z-coordinate of lower boundary

Following the recommendation of Sun (2007) a value of �0 = 0.3
√

ga is chosen. The values for ydmp, ybnd and lrmpare given in Table 1 in terms of the radiated wavelength � and further explained in the following section.
3.2. Numerical setup
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Figure 2: Dynamic force amplitudes of single heaving cylinders calculated with the BEM at different mesh configurations.
Results are related to the amplitude of the finest discretisation within each plot.

As indicated in section 3.1 only the domain boundaries need to be discretised for the BEM. The grid resolution
required on the free surface as well as the positions of the right and lower domain boundaries and the damping zone
mainly depend on the radiated wave length. Since a broad range of oscillation frequencies shall be considered, an
automated grid generation process has been established that uses the radiated wave length � as a scale. The wave
length is calculated from the oscillation frequency with the dispersion relation for deep water:

� =
2�g
!2

. (18)
The parameters used to determine the grid generation process are summarised in Table 1. All parameters except

of sbdy,max are expressed in terms of the wave length. The discretisation process distinguishes between low frequency
cases (sbdy,max ≤ sfs) and high frequency cases (sbdy,max > sfs). In low frequency cases the element size on the
body is determined by sbdy,max. On the free surface the same element size is kept in the vicinity of the body up to a
distance equal to the gap size. From there, the element size gradually increases with the distance from the body. The
growth factor is defined such that the element size reaches sfs,max when the damping factor has reached its maximum
(y = ydmp + lrmp). The same growth factor is kept up to the right boundary which leads to very large element sizes
and allows for a large domain size. Reflections, which would normally occur if the element size grows too large, are
suppressed by the damping zone.

In high frequency cases the element size on the body is determined by sfs. On the free surface the same element
size is kept up to the border of the damping zone at ydmp. Then, the element size is increased in the same manner as in
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low frequency cases. The reason for the distinction in low and high frequency cases is the need to maintain a similar
element size on the body and the free surface next to it. For low frequencies the element size determined from sfs,maxbecomes too large for a proper discretisation of the body geometry. At higher frequencies however, the element size
determined by sbdy,max is too large to capture the flow details.

Convergence studies regarding the spatial and temporal discretisation were carried out on the basis of heave simu-
lations of a single cylinder. These studies were used to define the expressions indicated in Table 1. Exemplary results
for the behaviour of the force amplitudes using different mesh configurations are presented in Figure 2.

Following the explanations above, the maximum element size on the body sbdy,max = �a∕60 was chosen on the
basis of a low frequency case. Although a target element size on the free surface of sfs = �∕40 seems sufficiently
accurate for the single cylinder at high frequency oscillations, the value was decreased to sfs = �∕60 in order to accountfor the strong fluid motion in case of piston-mode resonance. To avoid any influence from the lower and right boundary,
they were located at large distances of about 100� away from the body. These large domain sizes become affordable
due to the growth of the element sizes with increasing distance from the body. The temporal discretisation was set to
200 timesteps per period when the motion amplitude was zA = a∕24. When the motion amplitude was zA = a∕12,
800 timesteps per period were used to account for the higher flow velocities in the gap and ensure numerical stability.

4. Finite Volume Method
4.1. Method description

For the presented study the commercial simulation software Star-CCM+ was used. The software incorporates a
finite volumemethod to solve for pressure and velocities in a given fluid domain. Free surface effects can be captured by
means of the volume of fluid technique. The fundamental characteristics of the approach are outlined in the following.

The finite volume method requires a subdivision of the whole fluid domain into several discrete control volumes
(cells). Conservation equations are formulated for each control volume in integral form. The values of interest are
stored at the cell centres or the cell faces and as each equation depends on the nodal values of neighbouring cells, a
solvable equation system is formed.

For the problem at hand incompressible flow is assumed. The governing equations are the conservation of mass
∇ ⋅ q = 0 (19)

and momentum

�
(

)q
)t
+ q ⋅ ∇q

)

= −∇�gz − ∇p + �∇2q. (20)

For the viscous simulations a laminar boundary layer is assumed. If inviscid flow assumptions are made, the viscosity �
is set equal to zero. A segregated flowmodel is invokedwhich solves for pressure and velocity by linking themomentum
and continuity equations with a predictor corrector approach. This involves a colocated variable arrangement and an
implicit unsteady solution scheme.

Both phases, water and air, are included in the fluid domain and the free surface is captured using the volume
of fluid technique. This means that the local material properties (�,�) are treated as a blend of the values for water
(�w,�w) and air (�a,�a) and are expressed in terms of the volume fraction of water c:

� = c�w + (1 − c)�a, (21)
� = c�w + (1 − c)�a. (22)

The volume fraction on the other hand is determined by solving an additional transport equation:
)c
)t
+ ∇ ⋅ (cq) = 0. (23)

The dynamic pressure pd is obtained from the pressure p by subtracting the hydrostatic pressure as specified in
equation (14). The dynamic force F in equation (3) is calculated by integrating pd over the wetted part of the body
surface and adding the shear forces in case viscous flow assumption were made.
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Figure 3: Overview of the mesh used for the FVM simulations (left) and details of the refinements around the body
(middle) and in the gap (right).
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4.2. Numerical setup
An unstructured mesh was used for the finite volume simulations consisting mainly of hexahedral cells. Local

refinements were applied in vicinity of the free surface, the body and in the gap (see Figure 3). To account for the
two-dimensional flow, only one layer of cells was used with respect to the x-direction and symmetry conditions were
imposed to the forward and backward boundary. Velocity inlet conditionswere applied at the upper and lower boundary.
As in the potential flow simulations a symmetry condition was used on the left boundary. On the right a pressure
outlet condition was employed. Additionally, a damping zone was defined starting at a distance of 20a from the right
boundary. The total extent of the domain was 81.92a in y-direction and in z-direction underneath the undisturbed free
surface. Above the free surface it was 40.96a. The heave motion (2) was applied to the whole grid.

Four meshes with different numbers of cells were generated and convergence of the hydrodynamic force was
checked on the basis of inviscid simulations at piston mode resonance (! = 0.82

√

g∕a) with a motion amplitude
of zA = a∕24. The meshing algorithm is controlled via a base size parameter, which corresponds to the target edge
length of the cells around the body. The value was a∕200 for mesh configuration A and was consecutively doubled up
to a∕25 for mesh D. The overall cell counts were 137,433 for mesh A, 41,417 for mesh B, 16,537 for mesh C and 8,388
for mesh D. The number of time steps per period were 4,000 for mesh A, 2,000 for mesh B, 1,000 for mesh C and 500
for mesh D. An illustration of mesh A and the refinements next to the body can be found in Figure 3. It should be noted
that the grid was not fully optimised and the number of cells could possibly be further reduced without effecting the
quality of the results.

On the left hand side of Figure 4 the time history of the hydrodynamic force calculated with mesh configuration
A is shown. It is evident that the force amplitude reaches a nearly constant value after approximately 30 periods. The
right hand side of Figure 4 shows a comparison of the results for the vertical hydrodynamic force using the different
meshes. It is noted that the forces obtained with mesh C already agree fairly well with the results from the finest
mesh A, while the coarsest mesh D is clearly inappropriate. By comparison of the flow fields it was observed that
some details of the flow, e.g. breaking waves, could not be captured with the coarser meshes. Therefore, mesh A was
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BEM, FVM using inviscid flow assumptions (FVM invisc) and FVM using viscous flow assumptions (FVM visc) with
zA = a∕24 compared to experimental (exp) as well as theoretical (lin) results by Wang and Wahab (1971).
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Figure 6: Time history of dynamic heave force over one period calculated with BEM, FVM using inviscid flow assumptions
(FVM invisc) and FVM using viscous flow assumptions (FVM visc) with ! = 0.77

√

g∕a, zA = a∕24 (left) and zA = a∕12
(right).

chosen for all further studies with motion amplitude zA = a∕24. A slightly modified version with increased height
of the refinement zone in the gap was used for the simulations with zA = a∕12 to account for the higher free surface
elevation amplitudes.

5. Results and Discussion
All simulations were carried out for the motion amplitudes zA = a∕24 and zA = a∕12, a hull distance of b = 1.5a

and lasted over 51 periods. A total of 18 frequencies from ! = 0.25
√

g∕a to ! = 1.75
√

g∕a was examined with
the BEM. Additionally, the frequencies ! = 0.77√g∕a, ! = 0.82√g∕a and ! = 0.88√g∕a were simulated with the
FVM using viscous and inviscid flow assumptions respectively. For each simulation, the resulting hydrodynamic heave
force F (t) inbetween t∕T = 40.25 and t∕T = 50.25 was transformed into a Fourier series as specified in equation (3).
First order Fourier coefficients were compared to experimental data and linear theory in form of hydrodynamic mass
and damping. Detailed comparison between the respective simulation approaches were based on the first three orders
of Fourier coefficients. Additionally, the free surface elevation at characteristic time instants and respective pressure
distributions on the body were taken into account to discuss deviations between the numerical approaches.

The comparison of hydrodynamic mass and damping coefficients with experimental and theoretical results from
Wang and Wahab (1971) is given in Figure 5. The motion amplitude in the simulations was zA = a∕24 which is
the same value as in the experiments. The strong variation of the hydrodynamic coefficients around ! ≈ 0.8

√

g∕a
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(FVM invisc) and FVM using viscous flow assumptions (FVM visc) with ! = 0.88
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corresponds to the piston mode resonance phenomena. Very good agreement between the nonlinear computations and
the experimental results is found in that area, whereas the linear method seems to overpredict the peak values. At
frequencies without resonant fluid motion the BEM results agree very well with linear theory. Deviations from the
experimental values occur at lower frequencies. The experimental results show a strong scattering in that range, which
according to Wang and Wahab (1971) could be due to structural oscillations of the end boards.

The cases that were simulated with the FVM represent characteristic marks with regard to the variation of added
mass and damping in Figure 5. The added mass coefficient becomes rapidly negative inbetween ! = 0.77√g∕a and
! = 0.82

√

g∕a, while the latter marks the minimum value at the same time. The damping coefficient reaches zero
at ! ≈ 0.88

√

g∕a. Figures 6 - 8 illustrate time histories of the dynamic heave force at these frequencies over one
period for zA = a∕24 and zA = a∕12 respectively. Except for the case with ! = 0.77

√

g∕a and zA = a∕24, all
results visibly deviate from the sinusoidal course of the motion excitation. This nonlinear tendency is further stressed
when comparing the results corresponding to the lower motion amplitude to the respective curves corresponding to
the higher motion amplitude.

The agreement between the numerical approaches is generally very good. Visible differences can be identified for
zA = a∕24 at ! = 0.82√g∕a and ! = 0.88√g∕a around the peek values which are somewhat overpredicted by the
BEM compared to both FVM approaches. A visible influence of viscosity can be identified at ! = 0.77

√

g∕a and
zA = a∕12. The curves of BEM and inviscid FVM are very close together in that case, while the curve from the
viscous FVM shows a small deviation.

A comparison of the Fourier coefficients derived from the respective time histories of the dynamic force at zA =
a∕24 is shown in Figure 9 up to order k = 3. All results agree well and show the same trends with regard to frequency.
The first order force amplitude F1 increases slightly from ! = 0.77

√

g∕a to ! = 0.82√g∕a and then decreases again
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Figure 9: Force amplitudes Fk (left) and corresponding phase angles  k (right) of different order k derived via Fourier
analysis of dynamic force calculated with BEM, FVM using inviscid flow assumptions (FVM invisc) and FVM using viscous
flow assumptions (FVM visc) with zA = a∕24.

towards ! = 0.88
√

g∕a. By looking at the corresponding phase angle, the variation of added mass and damping
coefficients over frequency (Figure 5) can be retraced: At ! = 0.77√g∕a the first order phase angle  1 is between �and �∕2 which, according to equation (4), means a positive added mass coefficient. On the contrary, the phase angle
is between zero and �∕2 at ! = 0.82

√

g∕a which leads to a negative added mass coefficient. At ! = 0.88
√

g∕a it
becomes almost zero which, according to equation (5), means that the damping coefficient is almost zero as well.

Amongst the cases shown in Figure 9, the second order force amplitudes are highest at ! = 0.82√g∕a. However,
the relative contribution of the second order force to the overall force is the highest at! = 0.88√g∕a. It is interesting to
note that the second order phase angle shows an even stronger variation with frequency than the first order phase angle.
Contributions of the third order force are highest at ! = 0.82√g∕a but rather small at all three sample frequencies.

The Fourier coefficients corresponding to the motion amplitude zA = a∕12 are presented in Figure 10. By com-
parison with the results corresponding to zA = a∕24 in Figure 9, a very pronounced difference can be found regarding
the first order force amplitudes: At ! = 0.82√g∕a the nondimensional value is significantly lower at the larger motion
amplitude, while at ! = 0.77

√

g∕a it is higher. This further demonstrates the nonlinear relationship between body
motion and the forces, as doubling the motion amplitude does not result in twice the force amplitude, i.e. a constant
nondimensional value. Additionally, the significance of second order force components seems to increase with mo-
tion amplitude. A factor that might influence the behaviour of force coefficients observed here is a dependence of the
resonance frequency on the motion amplitude, which was also found by Bonfiglio and Brizzolara (2018).

The presented time histories of the dynamic forces and the corresponding Fourier coefficients demonstrate that the
three numerical approaches are all able to resolve the nonlinear characteristics of the heave radiation problem and only
minor differences between the methods can be taken from the respective plots. In order to analyse these differences in
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Figure 10: Force amplitudes Fk (left) and corresponding phase angles  k (right) of different order k derived via Fourier
analysis of dynamic force calculated with BEM, FVM using inviscid flow assumptions (FVM invisc) and FVM using viscous
flow assumptions (FVM visc) with zA = a∕12.

detail, the force components resulting from the viscous FVM were subtracted from the respective results of inviscid
FVM as well as BEM. The differences were related to the total values from the viscous FVM and are given in Table 2
for zA = a∕24 and in Table 3 for zA = a∕12.Considering that the assumptions on fluid viscosity was the only difference between the numerical setups of the
two finite volume based approaches, the values in the columns titled FVM invisc are taken as a quantitative measure
of the influence of viscosity on the force amplitudes. Amongst the analysed cases, the highest value can be found at
! = 0.77

√

g∕a and zA = a∕24 for the third order force component. However, it should be noted that the absolute
value of that force component is close to zero. Thus, it’s contribution to the overall force is very small (see Figure
9). Regarding the second order force components, a notable influence of viscosity of about 5.3% can be found at
! = 0.77

√

g∕a and zA = a∕12. The influence of viscosity on the first order force component, which arguably has the
largest impact on the overall force, is below 2.4% amongst all cases.

The force amplitudes from the BEM tend to deviate more from the viscous results than the ones from the inviscid
FVM, while the agreement generally seems to be better at the higher motion amplitude. To further evaluate possible
reason for the deviations, the free surface elevation is considered in the following.

Figures 11 and 12 show the free surface elevation in the gap at four characteristic time instants for each of the
sample frequencies. The time instant t = 41.00 T corresponds to a motion state with zcyl = 0, negative velocity
and zero acceleration of the body (see equation (2)). At t = 41.25 T the body has reached it’s minimum position
zcyl = −zA with zero velocity and positive acceleration. Accordingly, t = 41.5 T means zcyl = 0, positive velocity andzero acceleration and t = 41.75, T refers to the maximum position zcyl = zA, zero velocity and negative acceleration.

From the plots it is evident that all numerical approaches predict a phase shift between the fluid motion and the
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Figure 11: Instantaneous free surface elevation between the symmetry plane and the body at four time instants calculated
with BEM, FVM using inviscid flow assumptions (FVM invisc) and FVM using viscous flow assumptions (FVM visc) with
zA = a∕24 for each of the three sample frequencies.
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Figure 12: Instantaneous free surface elevation between the symmetry plane and the body at four time instants calculated
with BEM, FVM using inviscid flow assumptions (FVM invisc) and FVM using viscous flow assumptions (FVM visc) with
zA = a∕12 for each of the three sample frequencies.
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Figure 13: Instantaneous dynamic pressure distribution on the body at four time instants calculated with BEM, FVM
using inviscid flow assumptions (FVM invisc) and FVM using viscous flow assumptions (FVM visc) with zA = a∕24 and
! = 0.82
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Table 2
Relative deviations ΔFk of force amplitudes calculated using inviscid flow assumptions (FVM invisc, BEM) compared to
force amplitudes calculated using viscous flow assumptions at zA = a∕24 with k denoting the order of the respective
amplitude.

ΔF1 [%] ΔF2 [%] ΔF3 [%]
!
√

a∕g FVM invisc BEM FVM invisc BEM FVM invisc BEM
0.77 -0.92 -1.38 -4.70 -7.49 -9.56 -10.29
0.82 1.75 4.93 1.79 7.33 1.08 8.32
0.88 2.36 6.57 1.17 5.77 1.41 11.22

Table 3
Relative deviations ΔFk of force amplitudes calculated using inviscid flow assumptions (FVM invisc, BEM) compared to
force amplitudes calculated using viscous flow assumptions at zA = a∕24 with k denoting the order of the respective
amplitude.

ΔF1 [%] ΔF2 [%] ΔF3 [%]
!
√

a∕g FVM invisc BEM FVM invisc BEM FVM invisc BEM
0.77 2.04 2.85 5.24 5.88 1.31 4.39
0.82 0.17 2.17 -0.45 1.71 -4.01 -2.28
0.88 0.89 3.88 -0.15 1.75 -1.95 -3.86

body motion which depends on frequency. Such a dependence is in line with experimental findings on moonpools
(Faltinsen et al., 2007). As was shown before in Figures 9 and 10, the phase angles of the force components also
depend on frequency and the strong variation of hydrodynamic coefficients (Figure 5) can be retraced to the variation
of the first order phase angle using equation (4). As the free surface elevation might be seen as an indication of the
pressure inside the gap, which influences the forces on the body, it is suspected that the phase shift of the forces is
caused by the phase shift of the fluid motion inside of the gap. This would lead to the conclusion that the phase shift
of the fluid motion is a reason for the strong variation of the hydrodynamic mass and damping coefficients. Such an
explanation would fit well to the statements made by Lewandowski (1992) on the matter.
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Figure 14: Instantaneous dynamic pressure distribution on the body at four time instants calculated with BEM, FVM
using inviscid flow assumptions (FVM invisc) and FVM using viscous flow assumptions (FVM visc) with zA = a∕12 and
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Figure 15: Instantaneous volume fraction (coloured) and flow velocity relative to the body motion (arrows) resulting from
the FVM with inviscid (left) and viscous (right) flow assumptions at t = 41.50 T , ! = 0.77

√

g∕a and zA = a∕12.

The overall free surface level predicted by the different numerical approaches agrees verywell inmost cases. For the
motion amplitude of zA = a∕24 (Figure 11), the best agreement is found at ! = 0.77√g∕a and ! = 0.88√g∕awhere,
as the term piston-mode resonance implies, the free surface is nearly flat and varies its level in time. At ! = 0.82√g∕a
the level difference over one period is largest and the free surface is not entirely flat anymore. A possible reason for
this behaviour is that lateral velocities are induced when the free surface moves to a large extend along the cylindrical
part of the body, effectively widening the gap width. Notable differences regarding exact free surface shape predicted
by BEM and FVM are present at this frequency.

In order to evaluate how these differences might be connected to the deviation of force amplitudes (Table 2), the
dynamic pressure distribution on the body at the respective timesteps is given in Figure 13. It can be taken that the
different shapes at t = 41.00 T have no visible effect on the pressure distribution. However, when the differences of free
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surface elevation are located closer to body at t = 41.25 T , slight differences are evident in the pressure distribution as
well. This time instant roughly corresponds to the maximum dynamic force as shown on the left side of Figure 8. The
most significant difference in the pressure distribution can be found at t = 40.75 T . Here, the differences between the
free surface shapes is not larger than before but they occur on a level with the cylindrical part of the body. This time
instant is close to the minimum of the force which also marks the point in time where deviations between BEM and
FVM are largest (Figure 8, left).

Based on these findings, different predictions of the free surface shape are suspected to be the main cause for
deviations between BEM and FVM at zA = a∕24. A possible reason could be the much finer resolution of the free
surface in the FVM. Additionally, the regridding algorithms used with the BEM have a filtering effect and could blur
certain details of the free surface shape. As the influence of these techniques on the free surface shape is relatively
higher when the overall free surface amplitude is low, it may also give an explanation why the relative agreement
between BEM and FVM is better at higher motion amplitude (see Tables 2 and 3).

From Figure 12 it can be taken that the amplitude of fluid motion in the gap is considerably higher at zA = a∕12. An
interesting case regarding the influence of viscosity is found at ! = 0.77√g∕a. Both inviscid approaches show a very
good agreement here, while the results from the viscous FVM deviate. The respective dynamic pressure distribution
on the body for this case is shown in Figure 14. As before, the most notable difference in the pressure distribution is
found when the free surface level in the gap is lowest (t = 41.50 T ). This time instant also marks the minimum of the
dynamic force on the right side of Figure 6.

Figure 15 shows the relative velocity fields close to the intersection of free surface and body resulting from the
inviscid and viscous FVM calculations at that time instant. Beside the different level of the free surface, a vortex
formation can be observed in case of viscous flow assumptions. A fact that may favour the vortex generation is that
the body has reached it’s maximum downward velocity at that time instant while the fluid in the gap is starting to move
upward. Although a clear influence of viscosity can be observed in the flow field, the impact on the first order force
component is relatively low with 2.0% (see Table 3). The impact of viscosity on the second order force component is
somewhat more pronounced with 5.2%.

From the relatively low influence of viscosity it is concluded that the highly nonlinear relation between bodymotion
and hydrodynamic forces observed in this study are mainly induced by the free surface. This finding is in contrast to
investigations on hulls sections with rectangular shape, which often indicate that a linearised free surface representation
can be sufficiently accurate while viscosity has a strong influence (e.g. Kristiansen and Faltinsen (2012)). A likely
reason is that the relevance of vortex shedding is much more pronounced when the edges of the body are sharp (Moradi
et al., 2015). At the same time, less horizontal velocities are induced when the walls in the gap are exclusively vertical,
possibly leading to a decreased relevance of nonlinear free surface representations.

It is well possible that the relevance of viscosity for the semi-circular hull shape will be higher if the motion
amplitude is further increased. According to the results given by Bonfiglio and Brizzolara (2018), who investigated
the problem up to a motion amplitude of zA = a∕3 using a viscous FVM, the flow would also be strongly characterized
by wave breaking phenomena in this case. Although the BEM in combination with the MEL approach is capable of
capturing very steep waves, phenomena like wave breaking and air inclusions can not be accounted for. At this point
the boundary element method would reach its limit not only because it neglects viscosity, but also because the free
surface can not be tracked anymore in a physically meaningful way. Taking into consideration that the free surface
already reaches very close to the bottom of the hull in certain time instances (e.g. ! = 0.77

√

g∕a, t = 41.50 T in
Figure 12) higher motion amplitudes were regarded out of scope for this study.

Another factor that may increase the relevance of viscosity are very small hull distances (Zhao et al., 2018)). The
hull distance that was chosen in this study corresponds to the closest hull distance which was experimentally studied
by Wang and Wahab (1971). It is believed to be a realistic lower limit for practical hull distances of multi-hull ships.
For instance the ratio between gap size and draft of the catamaran examined by Lugni et al. (2004) was 1.625, whereas
in the case investigated here it was 1.0.

6. Conclusion
A numerical study on the heave radiation problem of a twin-hull section with semi-circular shape was carried out.

Three different numerical approaches were used to solve the flow problem in time-domain: A nonlinear boundary
element method, a finite volume method incorporating inviscid flow assumptions and a finite volume method incor-
porating viscous flow assumptions. Focus was laid on frequencies at which piston-like resonant flow occurred in the
Published journal article: https://doi.org/10.1016/j.oceaneng.2021.108672.
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gap between the hulls. First order force components were validated against existing experimental measurements and
compared to published results from linear potential theory. Subsequently, the forces and free surface elevation in the
gap resulting from the different numerical approaches were compared in detail at three frequencies and two motion
amplitudes respectively. Based on the results the following conclusions are drawn:

• All three approaches are able to predict valid added mass and damping coefficients for the presented problem
and show a significant improvement over linearised potential methods in that regard. The strong variation of
hydrodynamic coefficients goes along with a change of the phase shift between body motion and fluid motion
in the gap.

• The nonlinear characteristics of the dynamic force predicted by the three approaches are in very good agreement:
A significant influence of second order force components is found with the corresponding phase angle varying
strongly over frequency. Significance of higher order force components seem to increase with motion amplitude.
The free surface in the gap is considered the main cause for nonlinearity in the cases examined.

• Deviations between the dynamic force predicted by BEM and FVM are mainly associated with a different pre-
diction of the free surface elevation in vicinity to the body. Thus, an accurate representation of the free surface
shape is considered highly relevant for a numerical analysis of the problem, in particular when the free surface
is close to the bottom of the hull.

• Impact of viscosity on the dynamic forces was found to be relatively low throughout the examined cases. Vortex
shedding in vicinity of the intersection between body and free surface was found in one case which had an
impact on the pressure distribution in that time instant. However, the dynamic force amplitudes were still in
good agreement.

All in all, the study demonstrates that the nonlinear dependence of forces on body motion associated with the
radiation problem of twin-hulls with semi-circular shape at low to moderate motion amplitudes can be recovered well
using inviscid methods. Thus, the nonlinear boundary element method presented here is considered a suitable tool for
the analysis of piston mode resonance phenomena associated with bodies of rather round shape and feasible alternative
tomore elaborate tools like the finite volumemethod. Future studies may investigate the effects of viscosity for a variety
of common hull shapes. Also, motion excitation in different degrees of freedom by external waves may be considered,
preparing an application of the BEM in 2D+t based seakeeping analyses of multi-hull ships.
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