

JOI: https://doi.org/10.15480/882.4561

Kerstin Vater, M.Sc. **Dr.-Ing. Merten Stender Research Associate** Head of Machine Learning **Dynamics**

Towards neural network-based numerical

friction models

Hamburg University of Technology

1

Hamburg University of Technology

Prof. Norbert Hoffmann

Head of the Dynamics Group

Hamburg University of Technology

DOI: https://doi.org/10.15480/882.4561

2 Aachen, August 18, 2022 GAMM 2022 Dynamics Group, Hamburg University of Technology

Motivation

- Frictional contact behavior is hard to describe
- Large variety of parameters (velocity, pressure, temperature, humidity, load history,...)
- Difficult to represent contact behavior in numerical simulations properly
- Analytical models often highly simplified
- Data-driven approaches open up new opportunities

Proceeding

- I. Setup of a transient 2-D plane-stress Finite Element model
- II. Training and validation data generation
- III. Selection of a neural network for regression
- IV. Network training and performance assessment
- V. Neural network model deployment within FE simulation

Slender cantilever beam obeying Euler-Bernoulli beam theory

Slender cantilever beam obeying Euler-Bernoulli beam theory

- Slender cantilever beam obeying Euler-Bernoulli beam theory
- Frictional contact with moving belt induces stick-slip vibration at the free end

- Slender cantilever beam obeying Euler-Bernoulli beam theory
- Frictional contact with moving belt induces stick-slip vibration at the free end
- Kinetic friction force estimated by neural network model

Proceeding

Mesh convergence study

- Static Finite Element analysis of a 2-D plane-stress problem
- Triangular mesh of quadratic Finite Elements
- Cantilever beam subjected to a point load at the free end

Mesh convergence study

- Static Finite Element analysis of a 2-D plane-stress problem
- Triangular mesh of quadratic Finite Elements
- Cantilever beam subjected to a point load at the free end
- Comparison with Euler-Bernoulli beam theory:

Mesh convergence study

- Triangular mesh of quadratic Finite Elements
- Cantilever beam subjected to a point load at the free end
- Comparison with Euler-Bernoulli beam theory:

DOI: https://doi.org/10.15480/882.4561

DOI: https:/

Proceeding

 F_n

- I. Setup of a transient 2-D plane-stress Finite Element model
- **II.** Training and validation data generation
- III. Selection of a neural network for regression
- IV. Network training and performance assessment
- V. Neural network model deployment within FE simulation

X

L

, Ι, ρ, Ε

DOI: https://doi.org/10.15480/882.4561

17

Friction data sampling and partitioning

Exponential-type friction model:

 $\mu(v_s) = \mu_k + (\mu_s - \mu_k) \mathrm{e}^{-\alpha |v_s|}$

 $F_f(v_s) = \operatorname{sgn}(v_s) \times \mu(v_s) \times F_n$

Friction data sampling and partitioning

K. Vater, M. Stender, N. Hoffmann

DYNAMICS GROUP

DOI: https://doi.org/10.15480/882.4561

Proceeding

- I. Setup of a transient 2-D plane-stress Finite Element model
- II. Training and validation data generation
- **III.** Selection of a neural network for regression
- IV. Network training and performance assessment
- V. Neural network model deployment within FE simulation

ORCID iD: https://orcid.org/0000-0002-4893-3083

Neural network selection

- Feedforward, fully connected neural network for regression
- Hyperparameter optimization studies

ORCID iD: https://orcid.org/0000-0002-4893-3083

DOI: https://doi.org/10.15480/882.4561

Neural network selection

Proceeding

- I. Setup of a transient 2-D plane-stress Finite Element model
- II. Training and validation data generation
- III. Selection of a neural network for regression
- **IV.** Network training and performance assessment
- V. Neural network model deployment within FE simulation

ORCID iD: https://orcid.org/0000-0002-4893-3083

Neural network training and performance

- Limited-memory BFGS optimization algorithm
- Minimizing MSE loss function

rnet = fitrnet(dataTrain, "Ff", ...
"ValidationData", dataTest, ...
"Activations", "tanh", ...
"Lambda", 0.004, ...
"LayerSizes", [100 100 100], ...
"Standardize", true, ...
"StoreHistory", true, ...
"Verbose", true);

Neural network training and performance

- Limited-memory BFGS optimization algorithm
- Minimizing MSE loss function

Training data		
Min. value	-52.4010	
Median	27.9940	
Max. value	52.5140	
Training		
Test MSE	4.5217	
R-squared	0.9974	
5-fold cross-validation		
Max. loss	9.0095	
Mean loss	5.8957	
Std. deviation	3.1606	
Validation RMSE	2.4281	

Regression neural network friction model

Good overall performance

26 Aachen, August 18, 2022

Regression neural network friction model

Predicted Test Set Response 60 40 Predicted friction force 20 0 20 -40 Predicted True -60 -20 60 -60 -40 20 40 0 True friction force

DYNAMICS GROUP

ORCID iD: https://orcid.org/0000-0002-4893-3083

Dynamics Group, Hamburg University of Technology

K. Vater, M. Stender, N. Hoffmann

- Good overall performance
- Discontinuity hard to capture by NN regression model

28 Aachen, August 18, 2022

F_f [N

K. Vater, M. Stender, N. Hoffmann

Regression neural network friction model

- Good overall performance
- Discontinuity hard to capture by NN regression model
- Jump at the origin is smoothed out
- Threshold value for sliding velocity ε mitigates this problem

-0.04

-0.06

60

40

20

0

-20

-40

-60

F_f [N

-0.02

DYNAMICS GROUP

- I. Setup of a transient 2-D plane-stress Finite Element model
- II. Training and validation data generation
- III. Selection of a neural network for regression
- IV. Network training and performance assessment
- V. Neural network model deployment within FE simulation

Cantilever beam Finite Element analysis

Cantilever beam Finite Element analysis

Cantilever beam Finite Element analysis

- Find better hyperparameters or network architectures
- Introduce physics awareness in the ML model
- Incorporate more features in the friction model
- Leverage data from real measurements

Plug and play!

Plug and play!

https://github.com/TUHH-DYN/ NeuralNetworkFrictionModel_FEA

DOI: https://doi.org/10.15480/882.4561

Thank you!

Kerstin Vater, M.Sc.

Machine Learning Dynamics Group (M-14) Hamburg University of Technology Am Schwarzenberg-Campus 1 21073 Hamburg, Germany

E-mail: kerstin.vater@tuhh.de URL: http://www.tuhh.de/dyn Phone.: +49 (0)40 42878 2993

Parameter values

\sim
20
00
\frown
\sim
\mathcal{O}
11
~~
(1)
0
~
00
∇
- É
\frown
1
\cap
\simeq
0
Ō
\sim
\frown
\leq
\bigcirc
\cup
\frown
\leq
-
\odot
s
$\overline{}$
$\overline{\circ}$
0
d.0
id.o
cid.ol
rcid.ol
rcid.o
orcid.ol
/orcid.ol
//orcid.ol
://orcid.ol
s://orcid.o
os://orcid.ol
ps://orcid.ol
ttps://orcid.oi
https://orcid.ol
https://orcid.oi
https://orcid.ol
: https://orcid.oi
D: https://orcid.oi
D: https://orcid.oi
iD: https://orcid.oi
) iD: https://orcid.ol
D iD: https://orcid.ol
ID iD: https://orcid.oi
ID iD: https://orcid.ol
CID iD: https://orcid.oi
CID iD: https://orcid.ol
RCID iD: https://orcid.ol
RCID iD: https://orcid.ol
ORCID iD: https://orcid.ol

Cantilever beam mo	del		Computational parameters	
Beam length	L	2 m	Damping	β
Cross-sectional area	Α	0.01 m ²	Threshold for sliding velocity	ε
Moment of intertia	Ι	$\frac{1}{12} \times 10^{-6} \text{ m}^4$	(Outer) time step size	dt
Mass density	ρ	$1000 \frac{\text{kg}}{\text{m}^3}$	Abs. solver tolerence	
Young's modulus	Ε	$2 \times 10^{11} \frac{\mathrm{N}}{\mathrm{m}^2}$	Rel. solver tolerance	
Belt velocity	v_b	$0.02 \frac{m}{s}$		
Axial load	F_n	100 N		

Friction data sampling and partitioning

