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TO THE SPIRIT OF MY FATHER





Contents

Abstract ix

Acknowledgments xi

1 Introduction 1

1.1 Classification of Spatially Interconnected Systems (SIS) . . . . . . . . . . 2

1.1.1 Time- and Space-Invariant Interconnected Systems (LTSI) . . . . . 3

1.1.2 Time- and Space-Varying Interconnected Systems (LTSV) . . . . . 3

1.2 Reduced System Architectures and Problem Formulation . . . . . . . . . . 4

1.3 Motivation, Relevant Work and Thesis Contribution . . . . . . . . . . . . . 5

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Spatially Interconnected Systems Formal Framework 11

2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Spatially Interconnected Systems . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Temporal- and Spatial-Invariant (LTSI) System . . . . . . . . . . . 13

2.2.2 Temporal- and Spatial-Varying (LTSV) System . . . . . . . . . . . 15

2.3 Reduced Model Representations . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Reduced Order LTSI System . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Reduced Complexity LTSV System defined as LPV/LFT Form . . . 19

2.4 Relationship Between Error System and Controlled System Configurations 21

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Model Order Reduction for LTSI Systems 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Balanced Realisation and Balanced Truncation . . . . . . . . . . . . . . . . 30

v



vi CONTENTS

3.3.1 Balanced Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Model Order Reduction with Guaranteed Error Bound . . . . . . . . . . . 35

3.5 Application to An Actuated Beam . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Application to The Experimental Beam . . . . . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Model Order Reduction for LTSV Systems 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Balanced Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Improved Error Bound Model Order Reduction Problem . . . . . . . . . . 52

4.5 Application to an Actuated Beam . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Joint Dynamic and Scheduling Order Reduction 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Joint Order Reduction Based on BalancedTruncation . . . . . . . . . . . . 64

5.3 Joint Order Reduction Using PDGs . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Application to an Actuated Beam . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion 77

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Lyapunov Stability for Non-Causal Systems 83

B Proof of Theorem 3.3 85

C The Equivalence Between (5.11) and (5.7) 89

D State-space Models of Actuated Beam 91

D.1 Spatially Invariant System . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D.2 Spatially Varying System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

E Auxiliary Results 93



E.1 Bilinear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

E.2 Elimination Lemma [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95

List of Symbols and Abbreviations 103

List of Publications 107





Abstract

In contrast to lumped dynamical systems, which are defined with respect to the tempo-
ral variable only, spatially interconnected systems are defined with respect to temporal
as well as spatial variables (spatio-temporal models). Spatially interconnected systems
are obtained by applying a spatial discretization to Partial Differential Equations, such
that the resulting system is represented as a spatial interconnection of subsystems. The
discretization is usually induced by an array of actuator-sensor pairs. An important fea-
ture of spatially interconnected systems is that they are causal with respect to time, but
non-causal with respect to space.
In practice, after the discretization the complexity of the resulting system often ren-
ders the associated analysis and synthesis problems intractable. Therefore, constructing
reduced-complexity models without losing the characteristic features of the original model
is of high practical importance. Standard model reduction methods do not preserve the
structure of the system, while here the spatial interconnection structure of the system
must be preserved in the reduced model.
Spatially interconnected systems can be distinguished into time and space invariant, and
time and space varying systems.

This thesis studies and proposes methods for solving the reduction problem for both pa-
rameter invariant and parameter varying systems, where different kinds of complexities for
such systems are considered. A trade-off between model accuracy and model complexity
is considered when solving the reduction problem. The work is based on representing the
system in Linear Fractional Transformation (LFT) form with respect to shift operators.
A model order reduction method based on balanced truncation for parameter-invariant
interconnected systems is proposed via solving a pair of LMIs with non-convex rank con-
straint, which helps in constructing improved solutions (generalized Gramians). Methods
to solve the latter non-convex condition are proposed as well. The balanced truncation
is done by transforming the generalized Gramians via a balancing transformation con-
structed for non-causal systems.
In addition, the proposed model reduction method is extended to parameter-varying in-
terconnected systems, which are varying with respect to time and space via scheduling
parameters. A practical difficulty is that the reduction problem needs to be applied to
all scheduling parameter variations. A method is proposed here to simplify the problem,
such that the reduction problem is applied to the parameter-invariant part of the system
after ”pulling out” the time and space varying parameters. The method is based on the
application of the full block S-procedure.
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A joint model and scheduling order reduction method is proposed via transforming and
truncating the LFT multipliers as well as the generalized Gramians. The reduction is
performed using either constant generalized Gramians or parameter-dependent general-
ized Gramians with bounded rate of parameter variation. The reduction procedure with
parameter-dependent generalized Gramians is done by reducing the scheduling order (the
number of scheduling parameters) first, and then the state order (the number of states)
of the system. In the case of constant generalized Gramians, the scheduling order and
the state order are simultaneously reduced. A comparison between the use of constant
generalized Gramians and parameter-dependent ones shows that the latter case improves
the accuracy and reduces the conservatism.
For all above cases, error bounds (defined in terms of the induced L2-norm, between the
original systems and the reduced ones) are proved. The proposed methods take into con-
sideration the non-causality of the system’s spatial dynamics.
In addition, the proposed methods preserve the spatial structure as well as the stability
in the reduced model provided the original system is stable.

Theoretical results are illustrated on an experimentally identified model of an actuated
beam.
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Chapter 1

Introduction

The use of large sensor-actor arrays for controlling physical variables distributed over
spatially extended structures, made possible by recent technological advances, has created
an interest in efficient and distributed control schemes for such arrays. When the dynamics
of such systems are governed by partial differential equations (PDE’s), a useful model can
be obtained from a spatial discretisation induced by the distribution of sensors and actors,
where when the systems are governed by PDEs, then due to spatial continuum, the system
is modeled as infinite-dimensional [2] (in which case semigroup theory [3] is utilized). In [4]
and [2] methods were proposed which avoid the need for spatial discretization and provide
a reduction of an infinite dimensional problem to a problem in which only matrices of finite
dimensions are involved. However, based on [5], in this thesis a spatial discretization
is applied to PDE’s such that the model is a spatial interconnection of a number of
subsystems [5]. Each subsystem has its own sensing and actuation capability; such systems
are known as spatially interconnected systems (SIS). Spatially interconnected systems
arise in several applications, such as Micro-Electro-Mechanical Systems (MEMS) arrays,
vibrating cables [6], smart mechanical structures [7], etc. Such systems, unlike lumped
systems, depend on time and space; the states of the system are defined with respect
to temporal and spatial variables, so that we refer to such systems as multidimensional
(MD) systems.

Since these systems are approximated by a discretization, one obtains high-order models.
In [5], a framework was proposed to reduce the analysis and synthesis of the system to
the size of a single subsystem. However, even when the model of a subsystem is simple,
the interaction between neighboring subsystems leads to complex dynamics when viewed
as a whole, which can make it difficult to design and analyse distributed control schemes.
It may still turn out (and this problem is encountered in practical applications) that the
subsystem models need to be reduced in order to render the synthesis problem tractable.

Usually, it is difficult to deal with high-order models; after designing a controller the order
of the controller is equal to (or greater than) the order of the system. Furthermore, inter-
connected systems have a complexity due to their interconnection structure. Therefore,
the generation of reduced-order models is of practical interest. This thesis addresses the
complexity of SIS under two different aspects: the complexity of the dynamic order

1



2 1.1. Classification of Spatially Interconnected Systems (SIS)

of the system (i.e. number of states), and the complexity of the scheduling order for
spatial LPV systems i.e., the order of the scheduling parameters of the systems.

There is a trade off between model complexity and model accuracy/performance. This
thesis provides new methods that reduce the complexity of SIS without losing the signif-
icant properties (such as the interconnection structure and the stability) of the original
system.

This chapter presents an overview of the thesis, together with the objective, motivation
and main contributions.

1.1 Classification of Spatially Interconnected Sys-

tems (SIS)

As mentioned, approximate models for systems governed by PDE’s are often sought
through spatial-discretization induced by the distribution of sensor-actor pairs, such that
the resulting spatially distributed systems are represented as a spatial interconnection of
subsystems exchanging information with neighbors via interconnection signals [5]. For a
single-spatial dimension, a spatially interconnected system is shown in Fig. 1.1

· · ·· · ·

Figure 1.1: Part of a spatially interconnected model

As an example to such systems, consider an actuated flexible structure (an aluminum
beam of length 4.8 m defined in a single-spatial dimension as shown in Fig 1.2) which has
been constructed in [8]. The beam is equipped with 16 piezoelectric actuator-sensor pairs
distributed along its length such that the distances between any two pairs are identical.
The beam is accordingly discretized into 16 identical subsystems in order to define a spa-
tially interconnected system similar to Fig. 1.1, such that each subsystem is equipped
with its local actuator-sensor (input/output) pair. This beam example will be used to
validate the performance of results in this thesis.

An important feature of such systems is that they are non-causal with respect to space, but
causal with respect to time (where in contrast to the temporal variable which propagates
only into the future, the spatial variable propagates both left and right). The system
dynamics may (or may not) vary over temporal and/or spatial translations. Accordingly
the system is classified as follows.
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Figure 1.2: Aluminium beam actuated with collocated piezo actuators and sensors.

1.1.1 Time- and Space-Invariant Interconnected Systems (LTSI)

For systems with time- and space-invariant dynamic properties and evenly distributed
sensors and actuators (the distance between any two pairs are identical), the model takes
the form of a spatial interconnection of identical subsystems (Fig. 1.1), where each sub-
system is modelled as an linear time invariant (LTI) system that has its own sensing and
actuation capability [5].

1.1.2 Time- and Space-Varying Interconnected Systems (LTSV)

In practical application, the subsystems of SIS are often varying due to their physical
properties or due to boundary effects, such that the subsystems are nonidentical, i.e.
the dynamics of each subsystem are varying with respect to time/space variables. If the
variation of the system properties with respect to time and space can be expressed in terms
of suitable scheduling parameters (such that each subsystem is varying with respect to
time and space via scheduling parameters), then we can represent the system as temporal-
and spatial LPV systems, which is a direct extension of the concept of lumped (temporal)
LPV systems, see e.g. [9]. Therefore, the systems considered in the previous section are
extended now to parameter-varying interconnected systems [10], [11]. For example, if
one considers unevenly distributed sensors and actuators (the distance between any two
pairs are nonidentical) in Fig.1.2, then the beam has nonidentical subsystems (”spatial
variation”).

Keeping the scheduling parameters inside the subsystems leads to difficulties in analysis
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and synthesis problems. Note that it is possible to capture different properties of sub-
systems via an LPV representation and still have analysis problem with a complexity
that is independent of the number of the subsystems (as considered in LTSI systems).
For that reason, we pull out (from each subsystem) the scheduling parameters into local
uncertainty blocks, such that the system is represented by LTSI subsystems (identical
subsystems) each connected to its local time- and space-varying uncertainty block defined
in Linear Fractional Transformation (LFT) form. We refer to such model representations
as LPV/LFT systems [12].

1.2 Reduced System Architectures and Problem For-

mulation

Model reduction for SIS requires structure preserving methods, i.e. the reduced systems
should have the same structure as the original ones, such that the spatial interconnection
is preserved. Therefore, the question arises: How can we reduce systems that are defined
as an interconnection of subsystems without losing the interconnection structure? This
thesis will answer that question: the reduced versions of LTSI (LTSV) systems are LTSI
(LTSV) systems as well. The reduced versions of SIS have the following structure.

• LTSI: reduced LTSI systems (defined in Section 1.1) have the same structure as the
original systems, depicted in Fig. 1.1.

• LTSV: reduced LTSV systems are defined as spatial interconnections of reduced
LTSI (identical) subsystems each connected to its local uncertainty blocks. For this
class we consider two reduction dimensions as follows.

– Dynamic Order Reduction (i.e. reducing the number of states): The reduced
systems are defined as a spatial interconnection of reduced subsystems con-
nected to the same uncertainty blocks as the original subsystems (i.e. the
same number of scheduling parameters).

Note that the complexity of the LTSV systems has two dimensions: the com-
plexity caused by the state order (i.e. dynamic order) of the system and the
scheduling parameter order. Therefore, a joint order reduction is considered:

– Joint Dynamic and Scheduling Order Reduction: The reduced systems are
defined as a spatial interconnection of reduced subsystems connected to re-
duced uncertainty blocks (i.e. reduced number of scheduling parameters and
of states).

The reduction problem in this thesis is formulated as follows: given the original system,
find a reduced complexity system that closely approximates the original one, such that
the distance in the sense of the induced L2-norm between the original system and the
reduced one is minimized.
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1.3 Motivation, Relevant Work and Thesis Contri-

bution

In system identification, if the aim is to achieve an accurate approximation, the order of the
system should be high, which leads to computational complexity for controller synthesis.
Furthermore, after implementing the controller design, the obtained controller has the
same order as the original system (as experimentally shown in [8] for distributed systems).
Reducing the state order (i.e. dynamic order) of the system leads to a simplification in
computational complexity of controller implementation. When a system is parameter-
varying, the dependence on scheduling parameters will increase the complexity of the
system further; therefore, it would be desirable to reduce the scheduling order as well.

When a system is defined as an interconnection of subsystems, as in the case of Spatially
Interconnected Systems, the interconnection signals are defined as spatial states inside
each subsystem. Even when the model of a subsystem is simple, the interaction between
neighboring subsystems leads to complex dynamics. The framework proposed in [5] makes
it possible to reduce the analysis and synthesis problem for such interconnected systems to
the size of a single subsystem. However, it may still turn out that the subsystem models
need to be reduced.

According to the above discussion, it is desirable to find a low-complexity system that
retains the main features of the original system. Model Order Reduction (MOR) tech-
niques receive considerable interest, see e.g., [13], [14], [15] and [16], also [17] for a class
of interconnected systems.

Spatially interconnected systems form a class of distributed systems. One could also con-
sider such systems as large scale systems (lifted systems) [8]. Various techniques have been
proposed to reduce large scale systems, e.g. [16] which proposes an approach of reducing
systems without employing a transformation, also [13] which presents a combination of
SVD- and Krylov-based reduction.
A variety of approaches to model order reduction for 1-D (lumped-parameter) parameter-
invariant systems has been proposed in the literature, for example, optimal Hankel norm
approximation model reduction with error bound between the original system and the
reduced one [18], state residualization model reduction [19], Proper Orthogonal Decom-
position (POD) which approximates the Gramians of the system [20], and the Krylov
subspace model reduction [21]. Note that the Krylov subspace (or moment match) ap-
proach does not guarantee stability of the reduced models and no a priori error bound
can be determined.

Arguably, the most popular method for model order reduction is balanced truncation,
where a high-order system is approximated by a lower order system, that captures the
significant properties of the original one, with a priori upper error bound, by removing
states which have little influence both in terms of controllability and observability. Fur-
ther, the reduction preserves the stablility of the system. Balanced truncation for LTI
systems was first proposed in [22], [23], where the technique was based on solving a pair
of Lyapunov equations, these solutions usually known as controllability and observability
Gramians, which help in determining hard observable/controllable modes (which to be
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truncated ). An improved ”tighter” error bound can be derived by considering Lyapunov
inequalities instead of equations [24], because in the former case infinitely many solutions
can be obtained such that one can search for improved ones. For a survey of balanced
model reduction for 1-D (lumped) systems see e.g. [25] and references therein. Balanced
truncation may guarantee a lower error bound in some cases, e.g. [26] which considers a
class of systems. See [27] for further different model order reduction approaches.

For 1-D (lumped) systems, the above techniques were extended to 1-D Linear Time-
Varying (LTV) and Linear Parameter-Varying (LPV) systems, respectively, e.g. [28], [29],
[30], [31], [32], [33], [34] and references therein, and for nonlinear systems [35] in which a
comparison between balanced truncation and POD model reduction was presented. Also,
model reduction with application to a nuclear power plant has been given in [36]. In [37]
a model reduction for LPV systems was proposed using the extended balanced truncation
approach. In addition, model reduction for structured and distributed models based on
coprime factorization and frequency-weighted model reduction were presented in [38]. In
[1] a technique for model order reduction of polytopic systems was given, and model
reduction problem for LPV and uncertain systems based on coprime factorization was
discussed in [39].

The model order reduction problem for 1-D (lumped) LPV/LFT systems has been studied
in [40] using algebraic Riccati inequalities. Model order reduction for uncertain systems
was discussed in [41]; in the latter two references conservative diagonal scaling matrices
are considered.

Since the complexity of 1-D LPV systems depends on both the state order of the system
and the number of scheduling parameters, joint state and scheduling order reduction
methods for 1-D (lumped-parameter) LPV systems are proposed [42], [43] and [44].

The extension of 1-D model reduction results to multidimensional systems (with temporal
and spatial dimensions) is based on an LFT representation of the model with differential
and/or shift operators in the ∆-block. Representing the model in this form makes it
possible to employ results on model reduction for uncertain systems. Results presented
in [45], [46], [47], [48] provide conditions for exact reducibility of nonminimal uncer-
tain/multidimensional systems, represented in LFT form with structured Gramians1. A
necessary and sufficient condition for exact reducibility is the existence of a singular,
structured positive semidefinite solution to either one of a pair of nonstrict Lyapunov
inequalities, together with a coupling condition. In [49, 50] results on model reduction for
uncertain systems are presented. A minimal realization based on the Hankel matrix has
been discussed in [51] for a class of multidimensional systems.

Different model reduction approaches for the so called Roesser Form [52] (which is a
causal 2-D system) have been discussed in the literature, see e.g. [53], [54] in which
quasi-Gramians have been used; the method does not guarantee stability preservation,
see also [55]. In [56, 57] the relationship between the controller synthesis problem and the
model order reduction problem for spatially interconnected systems was pointed out. It is
however not possible to directly solve a controller synthesis problem to obtain a reduced

1Exact reduction here refers to the reduction of a state space model to a minimal realization, i.e. the
removal of uncontrollable or unobservable modes.
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model. In addition, the problem of model order reduction in [57] is not solvable as a
convex optimization problem, which considerably limits its practical value. Moreover, in
[57, 56], and [58] only the causal (i.e. temporal) part of the system is considered when
minimizing the rank of the Gramians; the practically important issue of reducing the
model of the spatial dynamics is not addressed.

In [59] the model order reduction problem for spatially-varying but temporally-invariant
systems was proposed by considering not a single subsystem but the overall ”lifted sys-
tem”. The sequentially semi-separable matrix structure was used to represent the whole
system as a 1-dimensional system. The approach suffers from the fact that the size of
the problem is that of the overall system, which may be intractable when the number of
subsystems is large.
It is worth pointing out that there is a fundamental difference between approaches that
have been proposed recently, such as [60], [61] and [62] on one hand, and the approach in
[5] on which the present work is based. Both approaches aim at reducing the complexity
of analysing large-scale networks of dynamic systems. But while the former one considers
the network as a finite entity and tries to reduce the size of analysis problems by either
diagonalising the interconnection matrix or by exploiting its sparsity, the latter approach
relies on a regular grid structure of the network and utilises spatial shift operators, which
leads to a different framework for solving analysis (and synthesis) problems, and achieves
a complexity that is independent of the size of the network.

The goal of this thesis is to generate reduced complexity spatially interconnected systems
(in more than one dimension) for the two classes of LTSI and LTSV systems, which pre-
serve the significant properties and behave similar to the original systems. Such significant
properties are represented by

• Spatial structure

• Stability

• Non-causality.

The contributions of this thesis are briefly described as follows.

LTSI systems: In this thesis, the work in [57], [56] and [58] on parameter-invariant
multidimensional systems is extended in the following sense.

– We show how balanced truncation with a guaranteed error bound can be ap-
plied to non-causal systems, thus allowing to reduce the spatial dynamics as
well as the temporal dynamic, where noncausal Gramians are considered in
this work.

– In order to reduce a model while ensuring a small error bound, we present
a two-stage approach. The idea of the proposed approach is to balance the
system as a first step. Following this, the result of the balanced truncation is
used to initialize the next step, which utilizes the machinery of controller design
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for SIS, and minimizes the rank of the Gramians and the error bound further.
Then a trade-off is performed between error bound and a rank constraint, while
maintaining small generalized singular values2.

– Furthermore, we turn the results of [57] and [58] into practical tools, by extend-
ing them into the continuous domain. For systems with non-causal (spatial)
dimensions, the reduction problem cannot be solved as a convex LMI problem
when a discrete representation of the spatial dynamics is used. This difficulty
is also encountered in the controller synthesis problem for such systems, see [5].
This is illustrated in this thesis with the application to a practical problem:
model reduction for an actuated beam shown in Fig. 1.2.

– We improve the error bound for the reduced model by using efficient methods
for solving the problem based on a log-det and cone complementarity approach,
[63], [64]. In addition, using these approaches will guarantee singular solutions
to either or both Lyapunov inequalities (meaning the system is exactly re-
ducible) and will thus help to establish the minimality of the system.

LTSV systems: Again, taking the multidimensional aspect and the non-causality
issue of the SIS into account, the contribution of the thesis in the case of LTSV
systems is as follows.

– Model reduction of LTSV systems is based on a spatio-temporal LPV represen-
tation in LFT form. From reduction of lumped LPV systems it is known that
this requires gridding of the parameter space, see e.g., [34] and [30]. Here we
simplify the analysis problem via applying the full block S-procedure, which
has the advantage of reducing the infinite dimensional problem into a finite
one.

– Reducing both the state order as well as the scheduling order leads to further
simplification. In addition, using parameter-dependent Gramians (rather than
parameter-invariant ones) with the application of the FBSP gives an improved
result and reduces the conservatism further.

1.4 Thesis Overview

The thesis is scheduled as follows.

Chapter 2: Spatially Interconnected Systems Formal Framework

This chapter introduces all preliminaries and definitions that are used through out
the thesis. The spatially interconnected systems framework is defined together with
a reduced version (which needs to have the same structure as the original system) for
both parameter-invariant and varying systems. In addition, the chapter discusses

2The generalization of Hankel singular values [49].
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the relationship between controller design and model reduction problem for SIS,
where the machinery of controller design is utilized to generate the reduced mod-
els. Conditions for well-posedness, exponential stability and quadratic performance
are discussed for the case of spatially interconnected systems rather than lumped
systems.

Finally, the goal of the thesis is presented in this introductory chapter as well.

Chapter 3: Model Order Reduction for LTSI Systems

After presenting preliminaries, this chapter gives a technique for model order reduc-
tion of LTSI systems in two steps via applying the two-stage approach described
above. Stability as well as the spatial interconnection structure are preserved in the
reduced models while applying the reduction problem. In addition to the presen-
tation of the exponential stability LMI condition, balanced truncation is extended
such that it is applicable to LTSI systems which are non-causal with respect to
space. Minimal realization construction based on the reachability and observabil-
ity matrices is reviewed as well. The application to an actuated beam shows the
efficiency of the results.

Chapter 4: Model Order Reduction for LTSV Systems

An extension of the result of the previous chapter and its application to the actu-
ated beam, Fig. 1.2, to the case of parameter-varying (temporal- and spatial-LPV)
interconnected systems is discussed in this chapter, where the considered systems
are parameter-varying spatially interconnected systems represented as a spatial in-
terconnection of LTSI (identical) subsystems each connected to a local uncertainty
block in Linear Fractional Representation (LPV/LFT) form. A reduced state order
system is generated and defined as a spatial interconnection of reduced subsystems;
these reduced order subsystems are connected (in LFT form) to the same local
uncertainties as for the original subsystems (i.e. the same number of scheduling
parameters).

In contrast to results for 1D (lumped) systems in e.g., [34] and [30] the work here is
based on the application of the full block S-procedure which reduces the complexity
of the analysis problem.

Chapter 5: Joint Dynamic and Scheduling Order Reduction

In Chapter 4, reduced state order systems for temporal- and spatial-LPV systems are
constructed such that the reduced subsystems are connected to the same uncertainty
blocks as the original ones.

As already discussed, the complexity of LPV systems depends on both state and
scheduling order. Therefore, this chapter extends the result of the previous chapter
by proposing a method for reducing both state order (the number of states) and
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scheduling order (the number of scheduling parameters) of parameter-dependent
spatially interconnected systems, such that the resulting reduced subsystems are
connected to reduced uncertainty blocks. This allows a further simplification of
analysis and synthesis problems.

The result of this chapter is based on a balanced truncation technique which is
extended from LTSI systems (Chapter 3) to LTSV systems in Chapter 4. Here, it
is extended further to reduce the number of scheduling parameters as well. The
technique is proposed via transforming and truncating the LFT multipliers as well
as the generalized Gramians.

A comparison between constant (parameter-independent) generalized Gramians and
parameter-dependent generalized Gramians is given as well. An improved (and less
conservative) result is obtained with the latter case. Worth mentioning that the
reduction procedure with parameter-dependent generalized Gramians is done by
reducing the scheduling order first, and then the state order of the system. While
in the case of constant generalized Gramians, both the number of states as well as
of scheduling parameters are simultaneously reduced. The result is again based on
the application of the FBSP.

Chapter 6: Conclusion

Finally, Chapter 6 concludes the thesis and gives an outlook on potential future
work.



Chapter 2

Spatially Interconnected Systems
Formal Framework

This chapter reviews all basic definitions and system representations that are used in this
thesis. More precisely, the structure of the LTSI, LTSV and LPV/LFT systems are stated
with their reduced model architectures. Signal and induced norms, respectively, which are
extended in [5] to multidimensional systems are defined in this chapter. In addition, some
specific bounded operators, including shift operators, which are considered through out
the work are defined as well. The controller structure for spatially interconnected systems
is reviewed together with the relationship between the controller synthesis problem and
the model order reduction problem.

2.1 Mathematical Preliminaries

The signal and system norms which are defined for one-dimensional (1D), lumped-parameter
systems are extended in [5] to multidimensional (MD), distributed-parameter system and
to spatially interconnected systems. The work in this thesis considers the case of single-
spatial dimension interconnected systems, such that we focus on two-dimensional (spatio-
temporal) signals, e.g., x(t, s) with temporal variable t ∈ Z+ and spatial variable s ∈ Z;
both defined in discrete domain.

We define the extension of 1-D signal spaces as follows.

Definition 2.1 (L2 space, [5])
The space L2 is the set of spatio-temporal functions x : Z+ × Z → Rn that satisfy

∞∑

t=0

∞∑

s=−∞

x(t, s)Tx(t, s) < ∞, (2.1)

That is, for each fixed value t; x(t, s) is square summable over s, (as provided in Definition
2.2 below), then relaxing the time such that the double sum is considered over t and s,
defines the space L2 .

11
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The square root of the left-hand side of (2.1) is the corresponding L2-norm, and is denoted
by ‖x(t, s)‖2.

Definition 2.2 (l2 space, [5])
The space l2 is the set of square summable functions that, for fixed value t, satisfy

∞∑

s=−∞

x(t, s)Tx(t, s) < ∞, (2.2)

over s.

The square root of the left-hand side of (2.2) is the corresponding l2-norm, and is denoted
by ‖x(t, s)‖l2 .

Definition 2.3 (Induced Norm, [5])
The induced 2-norm (denoted as ‖•‖2→2) of an operator F on L2 is defined as

‖F‖2→2= sup
06=x∈L2

‖Fx‖2
‖x‖2

. (2.3)

If this norm is less than 1, then F is said to be contractive.

Next, we give the definition of the shift operators. The use of shift operators facilitates the
representation of spatially interconnected systems presented in Section 2.2. The details
will be discussed in the next section.

Definition 2.4 (Shift Operator, [5])
The forward and backward temporal shift operators are defined by

(T+x)(t, s) = x(t + 1, s), (T−x)(t, s) = x(t− 1, s).

The forward and backward spatial shift operators are defined by

(S+x)(t, s) = x(t, s+ 1), and (S−x)(t, s) = x(t, s− 1),

respectively.

Clearly, the inverse of the spatial forward shift operator is the spatial backward shift one,
and vice versa.

Linear Fractional Transformation (LFT), [65], [66]

The upper linear fractional transformation (upper LFT) with respect to ∆, is defined as

Fu(M,∆) = M21∆(I −M11∆)−1M12 +M22 (2.4)

we represent it as
Fu(M,∆) = ∆ ⋆ M

for a matrix M which is partitioned as in Fig. 2.1, and ∆ with compatible dimensions
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∆

[
M11 M12

M21 M22

]

Figure 2.1: Upper linear fractional transformation form.

2.2 Spatially Interconnected Systems

As mentioned in Chapter 1, spatially interconnected systems are comprised of intercon-
nected subsystems. The exchange of information between subsystems is represented via
spatial shift operators. The advantage of modelling distributed systems in the spatially
interconnected systems framework is that one can do analysis and control synthesis on
a single subsystem instead of a whole large and complex system, see [5]. Neighbouring
subsystems are interconnected via interconnection signals; these interconnection signals
are interpreted as spatial state variables of each subsystem, using spatial shift operators.

In the following, we present in details the classification of the spatially interconnected
systems that are mentioned briefly in Chapter 1.

2.2.1 Temporal- and Spatial-Invariant (LTSI) System

If the system is invariant with respect to temporal and spatial variables such that the
system has identical subsystems, then it is referred to time- and space-invariant (or,
parameter-invariant) system. As mentioned before, here we consider only a single spatial
dimension; such that the system is defined as an interconnection of subsystems in a
string of one spatial dimension as in Fig. 2.2, where G is defined in (2.5) later and the
interconnection signals v+, w+, v− and w− are defined using the forward/backward spatial
shift operators, see Definition 2.4.

G GG

u(t, s− 1) y(t, s− 1) u(t, s) y(t, s) u(t, s+ 1) y(t, s+ 1)

w+(t, s− 1) = v+(t, s)

v−(t, s− 1) = w−(t, s)

w+(t, s) = v+(t, s+ 1)

v−(t, s) = w−(t, s+ 1) · · ·· · ·

Figure 2.2: Part of a spatially interconnected model (LTSI).

For such distributed systems, we represent each subsystem as a state-space model with
both temporal and spatial variables. Let x(t, s) ∈ Rn1 be the temporal states, and let
v+(t, s), w+(t, s) ∈ Rn2 ; v−(t, s), w−(t, s) ∈ Rn3 , be the spatial states in positive and neg-
ative directions, respectively; u(t, s) ∈ R

nu and y(t, s) ∈ R
ny represent external input and
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measured output, respectively. Then, we define a state-space model of a single subsystem
G as (see Fig. 2.2)








x(t + 1, s)

w+(t, s)

w−(t, s)

y(t, s)







=








Att Ats
+ Ats

− Bt

Ast
+ Ass

++ Ass
+− Bs

+

Ast
− Ass

−+ Ass
−− Bs

−

Ct Cs
+ Cs

− D















x(t, s)

v+(t, s)

v−(t, s)

u(t, s)







. (2.5)

Denote the system matrix in (2.5) by

M =

[
A B
C D

]

∈ R
(n+ny)×(n+nu)

where A ∈ Rn×n, B ∈ Rn×nu and C ∈ Rny×n are partitioned according to temporal and
forward/backward spatial parts, respectively; we refer to n = (n1 + n2 + n3) as the order
of M .

Define the state vector

ξ(t, s) =
[
xT (t, s) vT+(t, s) vT−(t, s)

]T
,

and the operator ∆d as a block diagonal structure

∆d =





T− In1
0 0

0 S−In2
0

0 0 S+In3



 (2.6)

where Ini
is the ni × ni identity matrix, i = 1, 2, 3.

Then, Fig. 2.3 shows system (2.5) represented in LFT form, G = Fu(M,∆d), where
ξ̌(t, s) = ∆d

−1 ξ(t, s). So, we have

y(t, s)

∆d

ξ(t, s)ξ̌(t, s)

u(t, s)
M

Figure 2.3: Upper LFT form of (2.5).

ξ̌(t, s) = A ξ(t, s) +B u(t, s),

y(t, s) = C ξ(t, s) +D u(t, s).
(2.7)

and

G = ∆d ⋆M = C∆d(I − A∆d)
−1B +D. (2.8)
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2.2.2 Temporal- and Spatial-Varying (LTSV) System

In the previous section, we consider the conservative case of temporal- and spatial-
invariant systems. In more realistic situations, due to variation in physical properties,
the dynamic of the system can be varying with respect to temporal and spatial variables
(the latter implies that the system has non-identical subsystems). If the variation of
the system properties with respect to temporal and spatial variables can be expressed in
terms of suitable scheduling parameters, then we can represent the system as temporal-
and spatial-LPV system, which is an extension of the concept of 1-D LPV systems [9].
Here, we extend the system representation of Section 2.2.1 to a spatially interconnected
system which is varying with respect to temporal variable (time t ∈ Z+) and spatial
variable (space s ∈ Z) via scheduling parameters δ(t), ρ(s) defined as functions of time
and space, respectively1. The vector dimension of the temporal scheduling parameter δ(t)
is nδ, whereas the vector dimension of the spatial scheduling parameter ρ(s) is nρ. The
variation ranges and rates of these scheduling parameters are bounded to the compact
sets Fδ and Fρ, respectively.

Then, each subsystem G in (2.5) is extended now to







x(t + 1, s)
w+(t, s)
w−(t, s)
y(t, s)






= M(δt, ρs)







x(t, s)
v+(t, s)
v−(t, s)
u(t, s)







(2.9)

where

M(δt, ρs) =

[

A(δt, ρs) B(δt, ρs)

C(δt, ρs) D(δt, ρs)

]

=








Att(δt, ρs) Ats
+(δt, ρs) Ats

−(δt, ρs) Bt(δt, ρs)

Ast
+(δt, ρs) Ass

++(δt, ρs) Ass
+−(δt, ρs) Bs

+(δt, ρs)

Ast
−(δt, ρs) Ass

−+(δt, ρs) Ass
−−(δt, ρs) Bs

−(δt, ρs)

Ct(δt, ρs) Cs
+(δt, ρs) Cs

−(δt, ρs) D(δt, ρs)








where, A(δt, ρs) : Rnδ × Rnρ → Rn×n; B(δt, ρs) : Rnδ × Rnρ → Rn×nu; C(δt, ρs) : Rnδ ×
Rnρ → Rny×n and D(δt, ρs) : R

nδ × Rnρ → Rny×nu .

In this thesis, the spatial scheduling parameter ρ(s) is assumed known a priori and fixed,
therefore the induced norm, as defined in (2.3), is extended to LTSV systems by defining
it as (

sup
δ(t)∈Fδ

sup
06=u∈L2

‖y(t, s)‖2
‖u(t, s)‖2

)

. (2.10)

Subsystem (2.9) has a state-space model varying with respect to time and space via
scheduling parameters. Keeping these scheduling parameters inside system matrices could
render some difficulties through analysis. In this section, we redefine the system in a more
convenient way by pulling out (from each subsystem) the scheduling parameters into two

1For simplicity of presentation, sometimes we use δt and ρs instead of δ(t) and ρ(s).
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(local) uncertainty blocks, with varying parameters ∆t(t) ∈ Θt and varying parameters2

∆s(s) ∈ Θs, after scaling the variation ranges to [-1,1], such that

Θt = {∆t : diag
(

δ1(t)Int
1
, · · · , δnδ

(t)Int
nδ

)

, |δk(t)|≤ 1, k = 1, · · · , nδ}

Θs = {∆s : diag
(

ρ1(s)Ins
1
, · · · , ρnρ(s)Ins

nρ

)

, |ρk(s)|≤ 1, k = 1, · · · , nρ}.
(2.11)

where ntk and nsk denote the multiplicity of scheduling parameters δk(t) and ρk(s), respec-
tively, and nt =

∑nδ

k=1 n
t
k and ns =

∑nρ

k=1 n
s
k.

This leaves a ”nominal” LTSI system G0, shown in Fig. 2.4 (for a single subsystem)
where pt and qt ∈ Rnt

, ps and qs ∈ Rns

are the uncertainty input/output channels to the
nominal system G0 ∈ R(n+nt+ns+ny)×(n+nt+ns+nu).

qt pt

qs ps

uy
G0

∆s

∆t
G(∆t,∆s)

Figure 2.4: A single subsystem G(∆t,∆s) defined in LPV/LFT form.

Fig. 2.4 shows that each subsystem is represented as a nominal system G0 connected
with its local temporal- and spatial-varying uncertainty blocks in LFT form, [12], [67],
[8]. Note that G0 is identical for all subsystems. Accordingly, the system in Fig. 2.2 of
Section 2.2.1 is extended now to Fig 2.5.

qt(t, s− 1) pt(t, s− 1) qt(t, s) pt(t, s) qt(t, s+ 1) pt(t, s+ 1)

qs(t, s− 1) ps(t, s− 1) qs(t, s) ps(t, s) qs(t, s+ 1) ps(t, s+ 1)

u(t, s− 1) y(t, s− 1) u(t, s) y(t, s) u(t, s+ 1) y(t, s+ 1)

G0
G0 G0

∆t

∆s−1

∆t

∆s

∆t

∆s+1

· · ·· · ·

Figure 2.5: Part of LTSV model represented in LPV/LFT form.

Temporal- and spatial-LPV interconnected system in LFT representation The LFT rep-

2Time- and space-dependence of scheduling parameters are dropped sometimes for the sake of brevity,
e.g. ∆t = ∆t(t) and ∆s = ∆s(s).
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resentation of the subsystem G(∆t,∆s) in Fig. 2.4 takes the form [12, 68],

G(∆t,∆s) :














ξ̌(t, s)

qt(t, s)
qs(t, s)

y(t, s)







=












Att Ats
+ Ats

− B0,tt B0,ts B1,t

Ast
+ Ass

++ Ass
+− B0,st

+ B0,ss
+ B1,s

+

Ast
− Ass

−+ Ass
−− B0,st

− B0,ss
− B1,s

−

C0,tt C0,ts
+ C0,ts

− D00,t 0 D01,t

C0,st C0,ss
+ C0,ss

− 0 D00,s D01,s

C1,t C1,s
+ C1,s

− D10,t D10,s D11



















ξ(t, s)

pt(t, s)
ps(t, s)

u(t, s)








:=





A B0 B1

C0 D00 D01

C1 D10 D11












ξ(t, s)

pt(t, s)
ps(t, s)

u(t, s)







;

[
pt(t, s)
ps(t, s)

]

=

[
∆t

∆s

] [
qt(t, s)
qs(t, s)

]

, ∆t ∈ Θt,∆s ∈ Θs,

(2.12)
where ξ(t, s) ∈ Rn, pt(t, s), qt(t, s) ∈ Rnt

and ps(t, s), qs(t, s) ∈ Rns

.

An explicit representation of a temporal- and spatial-LPV system (as upper LFT, (2.4))
can be written as

G(∆t,∆s) = Fu

(

G0,

[
∆t

∆s

])

=

[

A(∆t,∆s) B(∆t,∆s)

C(∆t,∆s) D(∆t,∆s)

]

,∆t ∈ Θt,∆s ∈ Θs

(2.13)
where

[
A(∆t,∆s) B(∆t,∆s)
C(∆t,∆s) D(∆t,∆s)

]

=

[
A+B0 Φ C0 B1 +B0 ΦD01

C1 +D10 Φ C0 D11 +D10 ΦD01

]

, (2.14)

and Φ =

[
∆t

∆s

](

I −D00

[
∆t

∆s

])−1

.

Remark 2.1 In general, model reduction techniques for LPV systems without pulling
out the scheduling parameters into an uncertainty block leads to difficulties when solving
the reduction problem, since it requires infinitely many conditions to be solved unless it
is based on defining a grid on the admissible parameter range. Whereas, for the case of
LPV/LFT systems, there are ways to avoid this, e.g. the full block S-procedure [69] with
D-G scales [70]. This is one of the motivations for considering the LPV/LFT system
representations in this thesis.

2.3 Reduced Model Representations

In order to construct a reduced model for a spatially interconnected system without
losing the structure of the original system, the spatial interconnection structure must be
preserved while applying the reduction.
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The framework proposed in [5] allows to do analysis and control synthesis on a single
subsystem instead of considering the whole system. Therefore, the reduction problem
will be considered for a single subsystem.

In the following, we will present reduced model forms for the two classes of system repre-
sentation given in Section 2.2; LTSI and LTSV system, respectively.

Note that the reduced version of each system representation, retains the system class,
e.g., the reduced LTSI system is an LTSI system as well.

2.3.1 Reduced Order LTSI System

The reduced version of an LTSI system is an LTSI system that behaves similar to the
original model and has the same properties but with reduced complexity. The reduced
model is represented in Fig. 2.6 (the reduced version of Fig. 2.2).

Gr GrGr

u(t, s− 1) y(t, s− 1) u(t, s) y(t, s) u(t, s+ 1) y(t, s+ 1)

w+r(t, s− 1) = v+r(t, s)

v−r(t, s− 1) = w−r(t, s)

w+r(t, s) = v+r(t, s+ 1)

v−r(t, s) = w−r(t, s+ 1) · · ·· · ·

Figure 2.6: Reduced order LTSI system.

A state-space representation for each reduced subsystem Gr is defined as

[

ξ̌r(t, s)

y(t, s)

]

=








Att
r Ats

+r
Ats

−r
Bt
r

Ast
+r

Ass
++r

Ass
+−r

Bs
+r

Ast
−r

Ass
−+r

Ass
−−r

Bs
−r

Cr
t Cs

+r
Cs

−r
D








[

ξr(t, s)

u(t, s)

]

, (2.15)

where ξ̌r(t, s) = ∆−1
r ξr(t, s) such that for a reduced order nr = nr1 + nr2 + nr3 < n,

ξr(t, s) ∈ R
nr and ∆r is the reduced version of ∆d defined in (2.6), where ∆r is defined as

∆r =





T− Inr1
0 0

0 S−Inr2
0

0 0 S+Inr3



 . (2.16)

Denote the system matrix in (2.15) by

Mr =

[
Ar Br

Cr D

]

∈ R
(nr+ny)×(nr+nu).

Then the reduced subsystem (which is the reduced version of (2.8)) is given as

Gr = ∆r ⋆ Mr. (2.17)
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2.3.2 Reduced Complexity LTSV System defined as LPV/LFT

Form

As is clear from the reduced model representation (2.15) the reduced model has a reduced
number of states nr. In this section, complexity reduction is considered in two dimensions.

For the case of an LTSV system defined in Section 2.2.2, each subsystem G0 is intercon-
nected with its local uncertainty blocks ∆t ∈ Θt and ∆s ∈ Θs governing the subsystem
G(∆t,∆s) as in Fig. 2.5. The reduced version of such an LTSV system is an LTSV system
itself, but with reduced complexity. The complexity of these systems can be seen in two
dimensions: first the complexity of the state order of the system n, second the complexity
of the temporal and spatial scheduling orders (which are the dimensions of the uncertainty
channels pt, qt, ps and qs), i.e., nt and ns, see (2.12). This thesis will discuss both cases in
details.

Reduced State Order LTSV Systems

The state order is reduced by reducing the number of states (i.e., n) of the system, such
that nr = nr1

+ nr2 + nr3 < n. The reduced order system is shown in Fig. 2.7, where
each reduced nominal subsystem G0

r is connected with the same local uncertainty blocks
(∆t ∈ Θt and ∆s ∈ Θs, respectively) as for the original system.

qt(t, s− 1) pt(t, s− 1) qt(t, s) pt(t, s) qt(t, s+ 1) pt(t, s+ 1)

qs(t, s− 1) ps(t, s− 1) qs(t, s) ps(t, s) qs(t, s+ 1) ps(t, s+ 1)

u(t, s− 1) y(t, s− 1) u(t, s) y(t, s) u(t, s+ 1) y(t, s+ 1)

G0
r G0

r
G0
r

∆t
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∆t
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∆t

∆s+1

· · ·· · ·

Figure 2.7: Reduced state order.

The LFT representation of each single subsystem Gr(∆
t,∆s) is defined as

Gr(∆
t,∆s) :














ξ̌r(t, s)

qt(t, s)
qs(t, s)

y(t, s)







=






Ar B0
r B1

r

C0
r D00 D01

C0
r D10 D11













ξr(t, s)

pt(t, s)
ps(t, s)

d(t, s)







;

[
pt(t, s)
ps(t, s)

]

=

[
∆t

∆s

] [
qt(t, s)
qs(t, s)

]

, ∆t ∈ Θt,∆s ∈ Θs,

(2.18)
where ξr(t, s) ∈ R

nr , pt(t, s), qt(t, s) ∈ R
nt

and ps(t, s), qs(t, s) ∈ R
ns

.
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Such that

Gr(∆
t,∆s) = Fu

(

G0
r,

[
∆t

∆s

])

=

[
Ar(∆

t,∆s) Br(∆
t,∆s)

Cr(∆
t,∆s) D(∆t,∆s)

]

, ∆t ∈ Θt,∆s ∈ Θs,

(2.19)

where

[
Ar(∆

t,∆s) Br(∆
t,∆s)

Cr(∆
t,∆s) D(∆t,∆s)

]

=

[
Ar +B0

r Φ C0
r B1

r +B0
r ΦD01

C1
r +D10 Φ C0

r D11 +D10 ΦD01

]

,

with the same Φ as defined in (2.14).

Joint Reduced State and Scheduling Order

Clearly from (2.18) and Fig. 2.7, the system complexity is dependent on the number of
scheduling parameters (the dimensions nt and ns of the uncertainty channels) as well as
on the number of states of the system. That is, complexity is also reduced by reducing
the dimensions of the uncertainty blocks ∆t ∈ Θt and ∆s ∈ Θs.

Here we consider the joint reduction of state and scheduling order as shown in Fig. 2.8,

ts

qtr(t, s− 1) ptr(t, s− 1) qtr(t, s) ptr(t, s) qtr(t, s+ 1) ptr(t, s+ 1)

qsr(t, s− 1) psr(t, s− 1) qsr(t, s) psr(t, s) qsr(t, s+ 1) psr(t, s+ 1)

u(t, s− 1) y(t, s− 1) u(t, s) y(t, s) u(t, s+ 1) y(t, s+ 1)

G0
r G0

r
G0
r

∆t
r

∆s−1
r

∆t
r

∆s
r

∆t
r

∆s+1
r

· · ·· · ·

Figure 2.8: joint state and scheduling order reduction.

such that for a reduced state order nr = nr1 + nr2 + nrr < n (as in (2.18)) and reduced
scheduling orders ntr < nt, nsr < ns, respectively, we define the joint state and scheduling
order reduced system as

Gr(∆
t
r,∆

s
r) :














ξ̌r(t, s)

qtr(t, s)
qsr(t, s)

y(t, s)







:=






Ar B0
r B1

r

C0
r D00

r D01
r

C1
r D10

r D11













ξr(t, s)

ptr(t, s)
psr(t, s)

d(t, s)







;

[
ptr(t, s)
psr(t, s)

]

=

[
∆t
r

∆s
r

] [
qtr(t, s)
qsr(t, s)

]

, ∆t
r ∈ Θt

r ⊂ Θt,∆s
r ∈ Θs

r ⊂ Θs,

(2.20)
where ξr(t, s) ∈ R

nr , ptr(t, s), q
t
r(t, s) ∈ R

nt
r and psr(t, s), q

s
r(t, s) ∈ R

ns
r ,



Chapter 2. Spatially Interconnected Systems Formal Framework 21

such that

Gr(∆
t
r,∆

s
r) =

Fu

(

G0
r ,

[
∆t
r

∆s
r

])

=

[
Ar(∆

t
r,∆

s
r) Br(∆

t
r,∆

s
r)

Cr(∆
t
r,∆

s
r) Dr(∆

t
r,∆

s
r)

]

,∆t
r ∈ Θt

r ⊂ Θt, ∆s
r ∈ Θs

r ⊂ Θs,

(2.21)

where

[
Ar(∆

t
r,∆

s
r) Br(∆

t
r,∆

s
r)

Cr(∆
t
r,∆

s
r) Dr(∆

t
r,∆

s
r)

]

=

[
Ar +B0

r Φr C
0
r B1

r +B0
r Φr D

01
r

C1
r +D10

r Φr C
0
r D11 +D10

r Φr D
01
r

]

,

Φr =

[
∆t
r

∆s
r

](

I −D00
r

[
∆t
r

∆s
r

])−1

.

Note that in (2.19) the reduced model is represented in LFT form with the same temporal
and spatial varying parameters as for the original system, i.e. ∆t ∈ Θt and ∆s ∈ Θs still
as they are, while in (2.21) the reduced model is represented in LFT form with respect
to ∆t

r ∈ Θt
r ⊂ Θt and ∆s

r ∈ Θs
r ⊂ Θs.

The accuracy of generating the reduced models (2.15), (2.18) and (2.20) can be measured
via the induced 2-norm of the error system (the difference between the original system
and the reduced one). We search for a reduced system such that the induced 2-norm of
the error system is minimized.

Before we discuss the measure of the accuracy in the model reduction problem, we present,
in the next section the controller synthesis problem for spatially interconnected systems
and its relation to the reduced model generation. Here, we are discussing the case of
LTSI systems only. The case of LTSV systems will be discussed in Chapter 4 when model
reduction for LTSV systems is considered.

2.4 Relationship Between Error System and Controlled

System Configurations

In this section, first we recall the distributed controller construction and the closed loop
system configuration for LTSI systems. Then, we clarify the role of the controller construc-
tion problem in this context, by recalling the well known relationship between controller
synthesis and model order reduction (MOR), see e.g. [57], [71], [1], [72].

Of interest here is the design of a controller for a distributed system that inherits a
distributed structure (i.e. distributed controller) [5], [12], [10]. In contrast, a centralized
[73], [74] has disadvantages, because it has to be designed for a complex multi-input/multi-
output (MIMO) systems with many input/output channels and large system order, see
[8] for a full discussion.
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K KK

y(t, s− 1) u(t, s− 1) y(t, s) u(t, s) y(t, s+ 1) u(t, s+ 1)

w+k(t, s− 1) = v+k(t, s)

v−k(t, s− 1) = w−k(t, s)

w+k(t, s) = v+k(t, s+ 1)

v−k(t, s) = w−k(t, s+ 1) · · ·· · ·

Figure 2.9: Part of an LTSI distributed controller.

Here we consider a distributed controller, where the controller is defined as a spatial
interconnection of subsystems, as in Fig. 2.9 , [5]. The LTSI distributed controller itself
is an LTSI system, each subsystem K in Fig. 2.9 is defined as

ξ̌k(t, s)













xk(t+ 1, s)
w+k(t, s)
w−k(t, s)
u(t, s)






=

[
Ak Bk

Ck Dk

]







xk(t, s)
v+k(t, s)
v−k(t, s)
y(t, s)












ξk(t, s) (2.22)

where

Mk =

[

Ak Bk

Ck Dk

]

=








Att
k Ats

+k
Ats

−k
Bt
k

Ast
+k

Ass
++k

Ass
+−k

Bs
+k

Ast
−k

Ass
−+k

Ass
−−k

Bs
−k

Ct
k Cs

+k
Cs

−k
Dk







.

For the controller K, we represent its order by c = c1 + c2 + c3, such that ξk(t, s) ∈ R
c.

Regarding the distributed controller design and the corresponding closed loop system
configuration, we will build on the results of [8] and [5].

For

∆k =





T−Ic1
S−Ic2

S+Ic3



 ,

we define
K = ∆k ⋆ Mk. (2.23)

The resulting closed-loop system representation is depicted in Fig. 2.10, where G is the
plant and K is the controller; d and z represent the performance channels [8], [5].

Fig.2.11 shows the closed-loop configuration for each subsystem,

A state-space realization of the closed-loop (controlled) subsystem shown in Fig. 2.11 is
defined as

ξ̌cl(t, s)













xcl(t+ 1, s)
w+cl(t, s)
w−cl(t, s)

d(t, s)






=

[

Acl Bcl

Ccl Dcl

]







xcl(t, s)
v+cl(t, s)
v−cl(t, s)

z(t, s)












ξcl(t, s). (2.24)

It can be represented as
Gcl = ∆cl ⋆ Mcl, (2.25)
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· · ·
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Figure 2.10: Closed-loop configuration.
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Figure 2.11: Closed loop configuration for a single subsystem.

where a permutation has been applied to (2.24), (2.25) in order to group the temporal
and spatial variables of system and controller together, such that

Mcl =

[

Acl Bcl

Ccl Dcl

]

=








Att
cl Ats

+cl
Ats

−cl
Bt
cl

Ast
+cl

Ass
++cl

Ass
+−cl

Bs
+cl

Ast
−cl

Ass
−+cl

Ass
−−cl

Bs
−cl

Ct
cl Cs

+cl
Cs

−cl
Dcl








and

∆cl =





T−In1+c1

S−In2+c2

S+In3+c3



 .

The objective when designing the controller (2.22) is to obtain a closed-loop system (2.24)
that is

• exponentially stable

• well-posed,

• and achieves a the performance level γ > 0 such that

∞∑

t=0

∞∑

s=−∞

[
d(t, s)
z(t, s)

]T [−γI
γ−1I

] [
d(t, s)
z(t, s)

]

≤ 0. (2.26)
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These three requirements are the main objectives in system analysis. Their definitions are
given next. Furthermore, LMI conditions for the above three requirements will be given
in the next chapters when they will be needed.

Exponential stability definition of lumped systems is extended to the spatially intercon-
nected systems as follows.

Definition 2.5 (Exponential Stability, [12])
The system (2.24) is exponentially stable if given any initial condition xcl(0, s), the states
xcl(t, s) converge to zero exponentially as t → ∞ for all integer s.

While, a system is well-posed if it is physically realizable, [5]; we present the following
lemma.

Lemma 2.1 (Well-posedness, [5])
The system (2.24) is well-posed if and only if (∆ss

cl − Ass
cl ) is invertible on l2, where

∆ss
cl =

[
S+In2+c2

S−In3+c3

]

and Ass
cl =

[
Ass

++cl
Ass

+−cl

Ass
−+cl

Ass
−−cl

]

.

The third requirement is the most relevant one in the context of model reduction; it is
defined with respect to the induced 2-norm (2.3), as follows.

Definition 2.6 (Quadratic Performance, [5], [8])
The system (2.24) is said to have quadratic performance γ > 0, if γ is an upper bound
on the induced 2-norm of the closed-loop configuration in Fig. 2.11, such that for d ∈ L2

and z ∈ L2, we have
‖z‖L2

< γ ‖d‖L2
, (2.27)

which is equivalent to (2.26).

The closed-loop system is said to be contractive, if γ in (2.27) is less than 1, see Definition
2.3.

A matrix inequality condition for the closed loop system to be exponentially stable, well-
posed and to have quadratic performance or γ has been derived in [5] via the application
of the bounded real lemma; it will be presented later.

So far, we reviewed the distributed controller construction and the closed-loop system
configuration for LTSI systems, with an admissible controller that achieves the three
above objectives (well-posedness, exponential stability and performance index).

Next, we discuss the link between the controller synthesis problem and the model order
reduction (MOR) problem.
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[
G −I
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]
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Figure 2.12: Error System Configuration for a single subsystem.

The relationship between the controller synthesis problem and the MOR problem for LTSI
systems was pointed out in [57], [56], and [71].

If we augment the subsystem G (2.5) in Fig. 2.11 with specific zero and identity blocks
between channels u ∈ L2 and y ∈ L2, see Fig. 2.12, such that we define the channels
d ∈ L2 and z ∈ L2 to represent the physical inputs and outputs of the system, while the
channels u ∈ L2 and y ∈ L2 have zero and identity blocks, as





ξ̌(t, s)
z(t, s)
y(t, s)



 =






A B 0

C D −I

0 I 0










ξ(t, s)
d(t, s)
u(t, s)



 . (2.28)

Then utilizing the machinery of controller design [5] will render a reduced order model
(Fig. 2.12) rather than a controller design (Fig. 2.11). More precisely, if we close the
loop in Fig. 2.12 (in a similar way as in Fig. 2.11), then we will have (G− Gr) which is
the error system Ge defined as the difference between the original system and the reduced
one. The resulting error system Ge for each subsystem in Fig. 2.12 is defined as






ξ̌(t, s)

ξ̌r(t, s)

z(t, s)




 =

[

Ae Be

Ce De

]



ξ(t, s)
ξr(t, s)

d(t, s)



 (2.29)

Ge = ∆e ⋆ E (2.30)

where

E =

[
Ae Be

Ce De

]

=





A 0 B
0 Ar Br

C −Cr D −Dr



 and ∆e =

[
∆d

∆r

]

,

which is the difference between two LFT representations: G = ∆d ⋆ M (defined in (2.8))
and Gr = ∆r ⋆ Mr (defined in (2.17)), [65].

Similar to the closed-loop system, a permutation matrix (we refer to it by P ) should be
applied to the error system matrices E and ∆e as

[
P 0
0 I

]

E

[
P T 0
0 I

]

and P∆eP
T ; (2.31)

such that the temporal and forward- backward-spatial variables of the error system are
preserved, while

‖∆e ⋆ E‖2→2= ‖P (∆e ⋆ E) P T‖2→2.
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The performance index for the model reduction problem is the induced 2-norm of the
error system. Accordingly, γ defined in (2.26) represents the overall approximation error
of the system (see (2.3)) which should be kept small.

Therefore, the goal is:

Given G = ∆d ⋆ M with order n, find a reduced model Gr = ∆r ⋆ Mr with order nr < n,
such that

‖(∆d ⋆ M)− (∆r ⋆ Mr)‖2→2= ‖∆e ⋆ E‖2→2 is minimized. (2.32)

In other words, the error system Ge = ∆e ∗ E must satisfy the performance index given
in (2.26) for a small γ > 0.

However, it is not possible to directly solve the controller synthesis problem to obtain a
reduced model; we need to enforce some constraints on the conditions for the reduction
problem. That will be discussed in Chapter 3.

The above discussion will be taken up again when MOR for LTSI systems based on the
Bounded Real Lemma [5] is considered in Chapter 3; MOR for LTSV systems is discussed
in Chapter 4.

The expression (2.32) represents the main goal of this thesis, i.e., we seek a reduced model
such that the induced norm in (2.32) is minimized.

2.5 Summary

Spatially interconnected systems have been defined in this chapter, where two classes
of system representations (LTSI, LTSV) have been discussed, together with their cor-
responding reduced representations. Also, basic definitions and norms which are used
through out the thesis have been given in this chapter. In addition to controller construc-
tion for spatially interconnected systems such that the closed-loop system satisfies the
three objectives (Well-posed, exponential stability and performance index), the controller
synthesis problem with its relation to MOR problem has been introduced as well. The
main goal of the thesis has been presented with respect to the induced 2-norm of the error
system.



Chapter 3

Model Order Reduction for LTSI
Systems

3.1 Introduction

This chapter presents a technique for model reduction of LTSI systems. Due to the
advantages of a balanced realization, the proposed technique of this chapter is based
on balancing the system via a balanced transformation which is constructed using the
solutions of a pair of Lyapunov inequalities with specific constraints; these solutions are
structured and known as the generalized Gramians [49] which are a generalization of the
usual Gramians where the corresponding conditions to be solved are Lyapunov equations
rather than Lyapunov inequalities. The resulting balanced model is used to initialize a
second step in the model reduction problem, which utilizes the machinery of controller
design for LTSI systems, as discussed in Chapter 2. The non-causality of the system
with respect to space leads to indefinite generalized Gramians; we will take that into
account when solving the reduction problem. The proposed technique is applicable to
exponentially stable LTSI systems and preserves stability, such that the reduced LTSI
system is exponentially stable as well.

This chapter is organized as follows. Section 3.2 starts with some preliminaries and
recalls the definition of exponential stability for LTSI systems and an LMI condition,
also it defines the representation of the structured generalized Gramians, such that the
structure of the system is preserved when solving the reduction problem. Section 3.3
presents a balanced truncation model reduction for exponentially stable LTSI systems
with guaranteed error bound. An improved error bound is obtained in Section 3.4 via
utilizing the machinery of controller design for the considered system. In addition, two
methods (log-determinant [63] and a cone complementarity approach [64]) are presented
in Sections 3.3 and 3.4, respectively; these two methods are used to linearize the problem
of computing low rank generalized Gramians. The reduction technique is validated in
Section 3.5 on an experimentally identified actuated beam model [8] which is discussed
and depicted in Chapter 1, Fig 1.2. The results of this chapter are based on [66].

27
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3.2 Preliminaries

As discussed in Chapter 2, the problem addressed here is: given G = ∆d ⋆ M (2.8) with
order n = n1 + n2 + n3, find a representation Gr = ∆r ⋆ Mr with

Mr =

[
Ar Br

Cr Dr

]

(3.1)

of order nr = nr1 + nr2 + nr3 < n and

∆r =





T− Inr1
0 0

0 S−Inr2
0

0 0 S+Inr3





such that ‖ G−Gr ‖2→2 is minimised, where G−Gr is the error system defined in (2.30).

In order to preserve the temporal and forward/backward structure of the system, we need
to define a set of matrices that commute with ∆d. For system (2.7) in LFT form, we
define the set of structured matrices as follows.

Definition 3.1 The set X of structured matrices with respect to temporal and for-
ward/backward spatial components is defined as

X = {X = X∗ : X ∆d = ∆d X,X = diag (X1, X2, X3), X1 > 0} (3.2)

where X1 ∈ Cn1×n1, X2 ∈ Cn2×n2 and X3 ∈ Cn3×n3, such that the matrix X1 corresponds
to the temporal part, and X2, and X3 correspond to the forward and backward spatial
parts, respectively.

Remark 3.1 In order to be able to solve the reduction problem as LMI problem, the
model needs to be transformed from the discrete domain (temporal- and spatial-discrete)
into the continuous domain (temporal- and spatial-continuous) because non-causality pre-
vents the use of the Schur complement, a problem also known for controller synthesis, see
[5]. The identified model is defined in discrete-time and -space, so we have to apply a
bilinear transformation [5] (see Appendix E) before we can define the results of this thesis.
After a bilinear transformation, the delta block in (2.6) will be defined as

∆ =





∫
dt In1

0 0
0

∫
ds In2

0
0 0 d

ds
In3



 . (3.3)

Before defining the generalized Gramians of LTSI systems, we recall the sufficient expo-
nential [5] stability condition, which is given here as an LMI condition. This result is a
simplified version of the exponential stability condition given in [12] for temporal- and
spatial-varying interconnected systems.
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Theorem 3.1 (Exponential Stability, [12])
The LTSI system (∆∗M) is exponentially stable if there exists a matrix X ∈ X such that
[
I A∗

]
[
0 X
X 0

] [
I
A

]

< 0.

Note that not X > 0, but only X1 > 0, enforced by (3.2), is required for stability.

Definition 3.2 (Generalized Gramians, [49])
For system (2.7), we define generalised controllability and generalised observability Grami-
ans X, Y ∈ X , respectively, as matrices satisfying

AX +XA∗ +BB∗ < 0; A∗Y + Y A + C∗C < 0. (3.4)

Finally, we conclude this section by defining a minimal realisation [48] of a state-space
model of a spatially interconnected system. For this purpose, we give the definition of
the reachability matrix R and its dual version (the observability matrix O) [48], which
are based on the following block product definition.

Definition 3.3 (Block Product, [48])
Suppose P ∈ Cn×n and Q ∈ Cn×J are block partitioned as follows:

P = [P1 P2 P3], Q = [Q∗
1 Q∗

2 Q∗
3]

∗

where1 dim(Pi) = n× ni, dim(Qi) = ni × J and
∑

i ni = n, i = 1, 2, 3. Then define
the block products

β0[P,Q] = Q (3.5)

β1[P,Q] = [P1Q1 P2Q2 P3Q3] (3.6)

β2[P,Q] = β1[P, β1[P,Q]] (3.7)

βk[P,Q] = β1[P, βk−1[P,Q]]. (3.8)

Then the reachability matrix R is defined as

R =
[
β0[A,B] β1[A,B] · · · βn̂−1[A,B]

]
(3.9)

where n̂ = max ni, i = 1, 2, 3.

The dual of R is the observability matrix O, it is defined as

O =








β0
∗ [A

∗, C∗]
β1
∗ [A

∗, C∗]
...

βn̂−1
∗ [A∗, C∗]








1As mentioned before, here we are dealing with systems of one spatial dimension. Therefore, we
partition P and Q into three blocks according to the temporal and forward/backward spatial state
variables of the system.
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where βk∗ [P,Q] =
(
βk[P,Q]

)∗
.

In order to establish a relationship between minimality and the rank of the observability
and reachability matrices, respectively, a block partitioning for the latter matrices com-
patible with ∆ needs to be taken in account. Checking the rank of each block of the
reachability and observability matrices, respectively, allows to establish the minimality of
the system with respect to time and space, see [75], [48], [51] and [76].

Partition R (O) into block rows (columns), such that R =





R1

R2

R3



 and O =
[
O1 O2 O3

]
;

each block Ri has ni rows and each block Oi has ni columns, i = 1, 2, 3.

Now, we are ready to present the following.

Lemma 3.1 (Minimal Realization, [48])
A state-space model (∆ ∗ M) is said to be minimal if each block of its reachability and
observability matrices (Ri, Oi, i = 1, 2, 3) has full rank.

A relationship between the singularity of the generalized Gramians and deficiency rank
of R and/or O is given next; the following Theorem is a continuous-domain version of
results given in [48], [47].

Theorem 3.2 Given an exponentially stable spatially distributed system (∆⋆M), there
exists a lower order representation (∆m ⋆ Mm), m < n, such that ‖(∆ ⋆ M) − (∆m ⋆
Mm)‖2→2= 0, (where n − m is the number of zero-valued eigenvalues of XY ), if there
exists a singular X ∈ X satisfying

(i) AX +XA∗ +BB∗ ≤ 0

or a singular Y ∈ X satisfying

(ii) A∗Y + Y A + C∗C ≤ 0.

Furthermore, if there exists a singular X ∈ X satisfying (i), then rank(Ri) < ni, for
some or all i = 1, 2, 3, where Ri is a block of the reachability matrix. Also, if there exists
a singular Y ∈ X satisfying (ii), then rank(Oi) < ni, for some or all i = 1, 2, 3, where Oi

is a block of the observability matrix.

3.3 Balanced Realisation and Balanced Truncation

As already discussed in Chapter 1, in order to define a balanced realization, we need a
transformation that transforms the system matrices and the generalized Gramians into a
balanced realization. Such a transformation that preserves the structure of the system is
defined next.
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Definition 3.4 (Structured Transformation)
The set T of structured transformation matrices is defined as

T = {T ∈ C
n×n : ∆ T = T∆ and det T 6= 0} (3.10)

where ∆ is defined in (3.3).

The commuting condition [49] for ∆ and T in (3.10) allows to preserve the structure of
the system: if we include T and T−1 ∈ T in the structure in diagram, Figure 3.1, then
T−1∆T = T−1T∆ = ∆.

∆

M

T−1 T

Figure 3.1: Preserving the structure of the system

Now we can present a procedure for transforming a non-causal system into a balanced
realisation. Suppose there exists a block diagonal matrix T ∈ T such that Ỹ = T ∗Y T ,
X̃ = T−1XT−∗ satisfy

ÃX̃ + X̃Ã∗ + B̃B̃∗ < 0 Ã∗Ỹ + Ỹ Ã+ C̃∗C̃ < 0 (3.11)

with X̃ = Ỹ = Σ diagonal, where

[
Ã B̃

C̃ D

]

=

[
T−1

I

] [
A B
C D

] [
T

I

]

,

the transformed model (Ã, B̃, C̃, D) is balanced.
Note that the generalised singular values are preserved under the transformation T ∈ T .

We can construct a balanced state-space realisation for an exponentially stable system
(∆,M) using the following procedure:
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Algorithm 3.3
step 1. Solve (3.4) for feasible X, Y ∈ X
step 2. Compute the Cholesky decomposition for each block of X ∈ X , and Y ∈ X , such
that

X1 = S∗
1S1, X2 = S∗

2S2, X3 = −S∗
3S3,

Y1 = R∗
1R1, Y2 = R∗

2R2, Y3 = −R∗
3R3.

step 3. Compute the SVD of R1S
∗
1 , SVD of R2S

∗
2 and the SVD of R3(−S∗

3), such that

R1S
∗
1 = U1Σ1V

∗
1 , R2S

∗
2 = U2Σ2V

∗
2 and R3(−S∗

3) = U3Σ3V
∗
3

step 4. Define

T1 = S∗
1V1Σ

−(1/2)
1 , T2 = S∗

2V2Σ
−(1/2)
2 , T3 = (−S∗

3)V3Σ
−(1/2)
3

T−1
1 = Σ

−(1/2)
1 U∗

1R1, T−1
2 = Σ

−(1/2)
2 U∗

2R2, T−1
3 = Σ

−(1/2)
3 U∗

3R3.

Define T = diag(T1,T2,T3), and T−1 = diag(T−1
1 ,T−1

2 ,T−1
3 ). Note that T ∈ T .

step 5. Utilising the block diagonal transformation matrix T ∈ T , calculate a balanced
realisation as: Ã = T−1AT , B̃ = T−1B, C̃ = CT , D̃ = D, and Σ = X̃ = Ỹ =
diag(Σ1,Σ2, −Σ3), where since X3, Y3 are negative definite matrices, the simultaneously
diagonalisable matrices X̃, Ỹ still have negative definite submatrices.

Remark 3.2 We need (−X3) and (−Y3) in the Cholesky decomposition in step 2, be-
cause X3, Y3 are negative definite (they are associated with the backward spatial part), see
Appendix A.

Since exponential stability follows from either of the Lyapunov inequalities (from Theorem
3.1), the balanced system is exponentially stable.

Note that if the system has a singular solution either X or Y , then Algorithm 3.3 will
not work, since we will have zero values in some or all of Σi, i = 1, 2, 3, which prevents
computing the inverse of Σi, (in case of very small singular values, a similar problem may
happen). In this case, we can apply the same idea as in [77] for 1D systems with un-
structured Gramians by defining the reduced system directly, truncating the zero singular
values in Σi and removing the corresponding rows and columns in Ui, and Vi for each i,
respectively, then defining T , and T−1 as in step 4 of Algorithm 3.3.

3.3.1 Balanced Truncation

After applying the structured balanced transformation, we can partition each Σi, i = 1, 2, 3
into two diagonal blocks corresponding to significant (s) and non-significant (ns) gener-

alised singular values, respectively, as Σi =

[
Σsi

Σnsi

]

and truncate the states correspond-

ing to Σnsi to obtain a reduced-order balanced system. To see that, partition the system
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matrices according to Σi =

[
Σsi

Σnsi

]

, i = 1, 2, 3 as follows.

Ã =












(Att)11 (Att)12
(Att)21 (Att)22

(Ats
+)11 (Ats

+)12
(Ats

+)21 (Ats
+)22

(Ats
−)11 (Ats

−)12
(Ats

−)21 (Ats
−)22

(Ast
+)11 (Ast

+)12
(Ast

+)21 (Ast
+)22

(Ass
++)11 (Ass

++)12
(Ass

++)21 (Ass
++)22

(Ass
+−)11 (Ass

+−)12
(Ass

+−)21 (Ass
+−)22

(Ast
−)11 (Ast

−)12
(Ast

−)21 (Ast
−)22

(Ass
−+)11 (Ass

−+)12
(Ass

−+)21 (Ass
−+)22

(Ass
−−)11 (Ass

−−)12
(Ass

−−)21 (Ass
−−)22












, B̃ =












(Bt)1
(Bt)2

(Bs
+)1

(Bs
+)2

(Bs
−)1

(Bs
−)2












(3.12)

and C̃ =
[
(Ct)1 (Ct)2 (Cs

+)1 (Cs
+)2 (Cs

−)1 (Cs
−)2
]
.

Truncate the blocks which are corresponding to Σnsi , i = 1, 2, 3, such that

Ar =





(Att)11 (Ats
+)11 (Ats

−)11
(Ast

+)11 (Ass
++)11 (Ass

+−)11
(Ast

−)11 (Ass
−+)11 (Ass

−−)11



 , Br =





(Bt)1
(Bs

+)1
(Bs

−)1



 and Cr =
[
(Ct)1 (Cs

+)1 (Cs
−)1
]
.

(3.13)

Then Gr = ∆r ⋆

[
Ar Br

Cr D

]

, where ∆r is the reduced version of ∆ given in (3.3) and

Mr =

[
Ar Br

Cr D

]

.

Using the error bound of Theorem 3.3 below as an initial step, and since the solutions X
and Y of (3.4) are not unique (because the defining conditions are inequalities, but not
equations), it is reasonable to search for X and Y with as many as possible small singular
values, in order to reduce the order as far as possible. Therefore, a rank constraint
on X, Y ∈ X has to be imposed while solving (3.4). Note that this is a non-convex
condition. In previous work (e.g., [49, 58]), this problem was addressed using a trace
heuristic algorithm. Here, we propose to use the log-det heuristic, which is a smooth
surrogate for matrix rank minimisation, see [63]. The log-det heuristic uses the result
of the trace heuristic as starting point and minimises the rank further, thus giving more
accurate results, and as a consequence an improved error bound will be obtained. Here,
we briefly describe the log-det heuristic: define a small positive regularisation constant δ
(to ensure invertibility), take the objective function as log-det(X+δI) + log-det(Y+δI),
subject to (3.4), where I is the identity matrix.
In [63], an efficient method is proposed to solve the rank condition of a matrix as LMI
problem by utilising the first-order Taylor series expansion of log-det(X+δI) and of log-
det(Y+δI). Here, we propose the steps in Algorithm 3.3.1 below.

Algorithm 3.3.1 together with Algorithm 3.3 yields generalized Gramians with small gen-
eralized singular values.

Theorem 3.2 of Section 3.3 provides a result for exact reducibility (i.e. zero error bound);
the next theorem presents an error bound for model reduction.
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Algorithm 3.3.1
step 1. Initialise (3.4) with
Xk = In1

, Xkk = In2
, Xkkk = In3

, and Yk = In1
, Ykk = In2

, Ykkk = In3
, set α = ∞, fix ǫ > 0

step 2. Minimise (over X, Y ∈ X )

β = {s1 · trace (Xk + δI)−1X1 + s2 · trace (Xkk + δI)−1X2 + s3 · trace (Xkkk + δI)−1(−X3)

+s4 · trace (Yk + δI)−1Y1 + s5 · trace (Ykk + δI)−1Y2 + s6 · trace (Ykkk + δI)−1(−Y3)};

subject to (3.4), where
∑6

l=1 sl = 1.

step 3. if |(β − α)/β| > ǫ;
set Xk = X1, Xkk = X2, Xkkk = X3, Yk = Y1, Ykk = Y2, Ykkk = Y3, and δ = δ/η, and set
α = β, go to step 2, else stop.

Theorem 3.3 Suppose (∆r ⋆ Mr) is the reduced model obtained by truncation from a
balanced realisation of the exponentially stable spatially interconnected model (∆ ⋆ M).
Then the reduced model is exponentially stable, balanced and

‖ (∆ ⋆ M)− (∆r ⋆ Mr) ‖2→2≤ 2

(
3∑

i=1

mi∑

j=nri+1

σi,j

)

, (3.14)

where m is as defined in Theorem 3.2; and σi,j are the absolute values of the diagonal
entries of Σns = diag(Σns1 ,Σns2 ,−Σns3 ).

Proof The exponential stability condition in Theorem 3.1 is preserved in either of the
Lyapunov inequalities. Clearly, the transformed (balanced) system is exponentially stable
according to (3.11). Therefore, truncating the non-significant states and substitute (3.13)
and Σs = diag(Σs1,Σ

s
2,−Σs3), then the resulting reduced model is still exponentially stable

and balanced.
For the proof of the error bound (3.14) see Appendix B.

Remark 3.3 In [58], a matlab toolbox for model reduction of discrete domain multidi-
mensional systems using the balanced truncation method has been presented. As already
mentioned, [58, 56] and [57] consider only the reduction of the temporal dynamics, which
are associated with positive definite blocks in the generalized Gramians. Here, we consider
continuous domain systems, and include both temporal and spatial dynamics; in this case,
we encounter positive and negative diagonal matrix blocks when we minimise the rank of
the generalized Gramians. The balanced truncation and its error bound presented in this
section are used as an initial step for applying the results proposed in the next section.
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3.4 Model Order Reduction with Guaranteed Error

Bound

In the previous section, balanced truncation for LTSI systems was considered. In this sec-
tion, we continue with the model reduction problem via applying the bounded real lemma.
As discussed in Section 3.2, in order to preserve the temporal- and forward/backward
spatial-structure of the system, a structured set X has to be defined. In the same way,
define

Y =

{

Ye = Y ∗
e : Ye =

[
Y Y 12

Y 12∗ Y 22

]}

(3.15)

where Y ∈ X , Y k2 = diag (Y k
1 , Y

k
2 , Y

k
3 ), Y k

1 > 0, k = 1, 2; Y 1
i ∈ Cni×nri , Y 2

i ∈
Cnri×nri, i = 1, 2, 3.

Based on the bounded real lemma [5], in order to find an exponentially stable reduced
model while at the same time ensuring a small error bound γ on the difference between
the original system and the reduced one, we formulated the reduction problem as follows.

Reduction Problem: Given γ, find a reduced system Mr and Ye ∈ Y , such that




A∗
e Ye + YeAe YeBe C∗

e

B∗
e Ye −γI D∗

e

Ce De −γI



 < 0, (3.16)

where (Ae, Be, Ce, De) denotes a state space realization of the error model (2.29).
Note that (3.16) is a necessary and sufficient condition for the error system to be exponen-
tially stable, well-posed and for the error norm to be less than γ, i.e. ‖ (∆e ⋆E) ‖2→2≤ γ ,
if condition (3.16) is solvable for Ye ∈ Y and Mr.
Note that in the discrete-domain version of inequality (3.16), a term quadratic in Ae

arises; in order to render the problem convex, a bilinear transformation is required that
transforms the problem into continuous-domain. Actually, (3.16) is still nonlinear in
the variables; however, applying the elimination lemma (see Appendix E.2) leads to the
convex conditions (3.18)–(3.20) in Theorem 3.4 below.

In order to apply the elimination lemma, the above condition (3.16) is rewritten as

R + UMrV
∗ + VM∗

rU
∗ < 0 (3.17)

where

R =







[
A∗ 0
0 0

]

Ye + Ye

[
A 0
0 0

]

Ye

[
B
0

] [
C∗

0

]

[
B∗ 0

]
Ye −γI D∗

[
C 0

]
D −γI






, U =







Ye

[
0
I

] [
0
0

]

0 0
0 −I






, V =







0 0
I 0
0 I
0 0






.

Defining

V ∗
⊥ =

[
I 0 0 0
0 0 0 I

]

and U∗
⊥ =

[
[I 0]Y −1

e 0 0
0 I 0

]

,

and combining the result of [56] and [1], we have the following result.
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Theorem 3.4 Given the representation (∆ ⋆ M) of a LTSI system, and γ > 0, there
exists a reduced order representation (∆r ⋆Mr) such that ‖(∆ ⋆ M)− (∆r ⋆ Mr)‖2→2 ≤ γ,
if there exist X, Y ∈ X , and a scalar constant ν > 0 satisfying 2

[
A∗Y + Y A C∗

C −γI

]

< −νI (3.18)

[
A∗X +XA XB

B∗X −γI

]

< −νI (3.19)

Y1 −X1 ≥ 0, (3.20)

rank (Y −X) ≤ r. (3.21)

Here, γ represents the overall approximation error, expressed in the induced spatio-
temporal 2-norm of the error system. Note that in contrast to (3.18)–(3.20), condition
(3.21) is non-convex; this will be discussed below.

Remark 3.4 Having obtained solutions X, Y ∈ X (of Theorem 3.4) with satisfaction
of the rank constraint (rank (Yi − Xi) ≤ ri, for all or some i), one can compute Ye ∈ Y
as follows.

1) Recall that the solutions Y ∈ X and X−1 ∈ X are the upper left blocks of Ye ∈ Y and
Y −1
e ∈ Y, respectively, see (3.15). Then, according to the matrix inversion Lemma [78]

we have X = Y − Y 12Y 22−1
Y 12∗, which gives Y −X = Y 12Y 22−1

Y 12∗.

2) Define [79] Y 22 =

[
Inr1+nr2

−Inr3

]

, i.e., decompose Yi − Xi = Y 1
i Y

2
i Y

1∗
i , i = 1, 2, 3,

(see (3.15)) such that Y 2
i = Iri, for i = 1, 2, and Y 2

i = −Iri , for i = 3. Note that Y 1
i

are tall matrices as desired. To see this, consider the eigen decomposition for (Yi − Xi)
such that Y 2

i contains the eigenvalues of (Yi − Xi), and Y 1
i contains the eigenvectors of

(Yi −Xi) for each i; then pulling out the eigenvalues (without their signs) from Y 2
i into

Y 1
i gives the desired decomposition.

Finally, having the complete Ye ∈ Y , one can find Mr that satisfies condition (3.16), which
is an LMI in Mr (a more efficient way to calculate Mr is to construct it explicitly, see
[80]).

According to Remark 3.4, the new order r of the reduced model (∆r ∗Mr) is determined
by the rank of the solutions of (3.18) – (3.21). In order to reduce the rank, which is a
non-convex problem, we use the cone complementarity method [64] in order to linearize
this problem. The procedure is summarized in Algorithm 3.4 below.

2 To insure the strict feasibility of conditions (3.18) and (3.19), we use a regularization ν > 0.



Chapter 3. Model Order Reduction for LTSI Systems 37

Algorithm 3.4
step 1. Solve (3.18) – (3.20) for feasible initial X0, Y0 ∈ X . Set g = 0.
step 2. Since X, Y ∈ X are block diagonal, for i = 1, 2, 3, set Vgi = Ygi, Wgi = Xgi. Find
X(g+1)i and Y(g+1)i that solve the LMI problem

min
Xi,Yi

∑

i

trace(VgiXi +WgiYi)

subject to conditions of Theorem 3.4.
step 3. If a stopping criterion is satisfied, stop. Otherwise, set g = g + 1 and go back to
step 2.

Now, we summarize our proposed model order reduction (MOR) scheme which allows a
trade-off between minimising the rank of the Gramians, and improving the error bound γ.
The approach is validated in the next section as an effective approach to obtain a reduced
model with improved error bound.

Model order reduction scheme

step 1. Apply the balanced realisation procedure (Algorithm 3.3) to the spatially inter-
connected system using the log-det method (Algorithm 3.3.1), and set the initial 3 upper
bound to γ < 2

∑3
i=1

∑mi

j=nri+1 σij , where m is defined as in Theorem 3.2. Note that for
this step, we determine the smallest generalised singular values without truncating them.
The initial new order r =

∑

i ri is selected for the reduced model.

step 2. Solve three LMIs with one non-convex rank constraint (Theorem 3.4), using the
cone complementarity method (Algorithm 3.4), and obtain the generalised controllability
and observability Gramians including small singular values.

step 3. Check the rank of Yi − Xi for i = 1, 2, 3; if rank(Yi −Xi) is greater than ri for
some i, then increase the value of γ, if not then decrease the value of γ. Go to step 2

until satisfactory results are obtained.

3.5 Application to An Actuated Beam

The results of this chapter are validated on an experimentally validated model of an
actuated beam that was introduced in Chapter 1; see also [8].

First we illustrate the representation of a distributed system with sensor-actuator array
by spatially and temporally discretizing a distributed model of an actuated beam.

3 Note that we set the initial γ to a value which is strictly less than the balanced truncation error
bound, i.e., in step 2 we start with this initial value and we try to minimize it further.
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Thus, consider the Euler-Bernoulli beam equation

∂2

∂x2

(
∂2y(k, x)

∂x2

)

+
∂2y(k, x)

∂t2
= u(k, x) (3.22)

where u(k, x) represents the force applied to the beam (for continuous time k and space x)
and y(k, x) describes the deflection of the beam as a response to the force. Here, we ignore
physical dimensions and assume for simplicity that all physical constants have value 1.

Then, applying temporal- and spatial-discretization (using finite difference approxima-
tion) to (3.22), leads to the spatially interconnected system (2.5) as follows.
The discretization of (3.22) is

y(t, s− 2)− 4y(t, s− 1) + 6y(t, s)− 4y(t, s+ 1) + y(t, s+ 2)

h4

+
y(t− 1, s)− 2y(t, s) + y(t+ 1, s)

l2
= u(t, s)

(3.23)

where l is the temporal sampling period, h is the spatial sampling period and we use the
central finite difference, i.e.

∂2y(k, x)

∂x2
≈ y(t, s− 1)− 2y(t, s) + y(t, s+ 1)

h2
.

Define coefficients (a and b) suitably, such that (3.23) yields

y(t, s) = a1,2 y(t− 1, s− 2) + a1,1 y(t− 1, s− 1) + a1,−1 y(t− 1, s+ 1)

+a1,−2 y(t− 1, s+ 2) + a2,0 y(t− 2, s) + a1,0 y(t− 1, s) + b1,0 u(t− 1, s).
(3.24)

The general form of (3.24) is

y(t, s) =
∑

it,is∈Ymask

ait,is y(t− it, s− is) +
∑

it,is∈Umask

bit,is u(t− it, s− is) (3.25)

The input and output masks Umask, Ymask (given in Figure 3.2) indicate the temporally-
and spatially-shifted inputs and outputs required for calculating the output y(t, s) in
(3.24). Note how the fact the system is causal in time and non-causal in space results in
the masks to be confined to the lower half plane.

Define the temporal state vector as
[
y(t− 2, s) y(t− 1, s)

]T
, the spatial state vector as

[
y(t− 1, s− 1) y(t− 1, s− 2) y(t− 1, s+ 1) y(t− 1, s+ 2)

]T
and recall the definition

of temporal and spatial shift operators (Definition 2.4). Then, a state-space model of the
Euler-Bernoulli beam is

T+x

{

w+

{

w−

{














y(t− 1, s)
y(t, s)

y(t− 1, s)
y(t− 1, s − 1)
y(t− 1, s)

y(t− 1, s + 1)

y(t, s)














=














0 1 0 0 0 0 0
a2,0 a1,0 a1,1 a1,2 a1,−1 a1,−2 1

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0

0 b1,0 0 0 0 0 0




























y(t− 2, s)
y(t− 1, s)

y(t− 1, s − 1)
y(t− 1, s − 2)
y(t− 1, s + 1)
y(t− 1, s + 2)

u(t, s)















}

x
}

v+
}

v−

(3.26)
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b1,0
a1,2 a1,1 a1,0 a1,−1 a1,−2

a2,0

Umask Ymask
itit

is is

Figure 3.2: Input and output masks for Euler-Bernoulli beam.

3.5.1 Experimental Setup

The framework presented in Section 2.2.1 has been used to model an experimentally
identified actuated beam [8]. The setup is shown in Figure 1.2 of Chapter 1. An aluminium
beam of length = 4.8 m, width = 0.04 m, thickness = 0.003 m is considered. It is equipped
with 16 evenly distributed collocated piezoelectric actuator and sensor pairs, i.e., the
distances between any two neighboring sensors (actuators) are identical. Soft springs
have been used to suspend the beam, such that it has free-free boundary conditions.

The beam is sufficiently thin to be modeled in a single-spatial dimension. Also, it is long
enough to be approximated by an infinite model according to [8] and [81], see Remark 3.5
below.
As discussed above, the locations of the piezoelectric actuator/sensor pairs (i.e., the iden-
tical distance between between neighboring pairs) and the fact that the beam is long
enough, suggest identical subsystems which are used to capture the spatially-invariant
structure of the system (see [8],[81]), where the beam is discretised into 16 identical parts
according to the 16 piezoelectric actuators and sensors as shown in Figure 3.3. Here, y(t, s)
represents the measured curvature, and u(t, s) a moment generated by the actuators.

u(t, s− 1) u(t, s) u(t, s+ 1)

y(t, s− 1) y(t, s) y(t, s+ 1)

Figure 3.3: Part of a long beam.

A single subsystem is represented by the partial difference equation

y(t, s) =
∑

it,is∈Ymask

ait,is y(t− it, s− is) +
∑

it,is∈Umask

bit,is u(t− it, s− is) (3.27)

where Umask and Ymask are the masks for the input and output coefficients ait,is and bit,is
as shown in Figure 3.4. Note that their masks are different from the ones shown in Fig.
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3.2. This reflects the fact that the experimental beam is not fully represented by the
model (3.24) but includes additional dynamics, e.g. due to piezo actuators and sensors.

b1,0
b2,0

b3,0

a1,2 a1,1 a1,0 a1,−1 a1,−2

a2,2 a2,1 a2,0 a2,−1 a2,−2

it it

is is

Umask Ymask

Figure 3.4: Input and output masks.

A state-space model of a single subsystem is given in Appendix D.1, where the temporal
and spatial state vectors are chosen suitably.

The system has order n = n1 + n2 + n3 = 11; n1 = 3 due to a three steps temporal
shift (according to Figure 3.4), n2 = n3 = 4 due to four steps spatial shifts. The number
of inputs and outputs of the system are nu = ny = 1.

3.5.2 Application to The Experimental Beam

The results of this chapter are illustrated by applying them to the experimentally identified
model of the actuated beam.

The results of Section 3.3 and Section 3.4 have been applied to the beam model (D.1) of
order n = 11. We obtain a reduced model with order nr = 6, where nr1 = 2, nr2 = 2 and
nr3 = 2, and γ = 0.0018.

Applying the results of Section 3.3 yields a reduced system with order m = 7, m1 = 3,
m2 = 2 and m3 = 2; this completes step 1 of the proposed model-order reduction scheme
and provides the start values for step 2 with initial error bound γ < 0.1798.
Table 3.5.2 shows a comparison between the generalised singular values when we min-
imise the rank of only the temporal part of the Gramians as done in [57, 56] (using the
trace heuristic), and when we minimise the rank of each block of the Gramians (using
Algorithm 3.3.1).

In step 2 of the proposed method, the order of the system is further reduced by applying
the results of Section 3.4 we arrive at the reduced system of order r = 6, and error
bound γ = 0.0018. The motion of the beam in response to a disturbance unit step at
subsystem 8 is simulated using the multidimensional (MD)-toolbox [80]. Figure 3.5 shows
the response over time of the fourth and thirteenth subsystems (i.e. sensor 4 and sensor
13), respectively, for the original system (∆ ∗M) of order n = 11 (blue) and the reduced
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Table 3.5.2:
Generalized Singular Values

only temporal (Trace heuristic) spatial-temporal (Log-det)

Σ1 diag(0.3913, 0.1890, 0.0403) diag(0.4552, 0.2846, 0.0899)
Σ2 diag(0.3448, 0.2074, 0.0126, 0.0070) diag(0.1250, 0.1103, 0, 0)
Σ3 diag(0.3183, 0.2548, 0.2157, 0.1935) diag(0.0958, 0.0156, 0, 0)

system (∆r ∗Mr) of order r = 6 (dark green).
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Figure 3.5: Simulated response over time of the 4th (top) and 13th (bottom) subsystem,
to a disturbance step at the 8th subsystem.

In addition, the overall response of all subsystems is shown as 3D-plot in Fig. 3.6.

Finally, the experimental input with 16 noises signals has been applied here as well in
order to excite 16 actuators simultaneously. The measured and simulated responses of
the original model and the response of the reduced model to the experimental input are
shown in Figure 3.7 over time for subsystems 3rd and 11th, respectively.

Remark 3.5 For spatially interconnected systems with finite spatial extension, bound-
ary effects play an important role; one way of dealing with them within the framework of
spatially interconnected systems was proposed in [82] and is based on the spatial reversibil-
ity property.
There is an alternative way of dealing with boundary effects that has been taken in the
present work: experimental results reveal that when the spatial extension of the structure
under consideration is sufficiently long, then a spatially-invariant model can be experi-
mentally identified that captures the system’s dynamic properties with reasonable accu-
racy, whereas structures with short extension require (due to dominant boundary effects)
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Figure 3.6: Response of all subsystems (Original model, n = 11 top), and (reduced model,
r = 6 bottom).
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Figure 3.7: Measured and simulated (full and reduced order) responses over time of the 3rd
(top) and 11th (bottom) subsystem, respectively, to 16 noises signals applied in parallel
to 16 actuators.

a spatially-varying model to represent their dynamics. A case study illustrating this was
reported in [83]: For the 4.8 m beam which is also considered in this thesis, a spatially-
invariant model has been identified experimentally that captures the dynamic behavior with
reasonable accuracy. In contrast, a short (0.5m) beam could only be represented accurately
by a spatially parameter-varying model, see also [11]. This is one of the motivations for
considering spatial-LPV model and its order reduction, which is considered next.

3.6 Summary

Model order reduction for LTSI systems has been presented in this chapter, based on
generalized Gramians. LMI conditions for exponential stability of LTSI systems have been
stated. Moreover, minimal state space realizations and their relation to the reachability
and the observability matrices have been established.

Based on generalized Gramians, a reduced model has been constructed via truncating
small generalized singular values. A MOR approach for exponentially stable LTSI systems
is proposed in Section 3.4.

The exponential stability and the spatial structure of the system are preserved in the
reduced model. An error bound in terms of truncated generalized singular values between
the original model and the reduced one is derived for LTSI systems with non-causal Grami-
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ans. The practicality of the theoretical results is demonstrated with their application to
an actuated beam.

The results of this chapter which are derived for time- and space-invariant systems, will
next be extended to the more realistic situation of temporal- and spatial-varying param-
eters. That is discussed in the following chapters.



Chapter 4

Model Order Reduction for LTSV
Systems

4.1 Introduction

In contrast to the rather restrictive assumption of parameter-invariant spatially inter-
connected systems (or LTSI) considered in the last chapter, a model order reduction
technique is provided here for the more general and realistic case of parameter-varying
spatially interconnected systems (time- and space-varying interconnected systems).

Model order reduction based on balanced truncation for LPV systems was first proposed
in [34] for 1D lumped systems varying with respect to time via temporal scheduling
parameters. The technique was based on defining a grid on the set of the admissible
scheduling parameters. Extended result to the case of LTSV systems was presented in
[66] with traditional error bound which has been improved in [84]. The result was based
on gridding. However, defining a grid on the admissible parameter range considerably
increases the complexity of solving the reduction problem. Here we propose an effective
way that avoids the gridding requirement.

This chapter extends the MOR technique given in the previous chapter to the case of
LTSV systems with a novel representation of a pair of Lyapunov inequalities. The system
is represented as (temporal and spatial) LPV model in LFT form. The representation
in LFT form basically means a decomposition of the model into a parameter varying
and an LTSI part; the latter is referred to as the nominal system. As mentioned in the
previous chapters, the temporal and spatial scheduling parameters are pulled out into
two uncertainty blocks which allows to apply the full block S-procedure to the reduction
problem such that the reduction problem is applied to the nominal system.

As shown in Chapter 3, in order to improve the result it would be reasonable to balance
the system as a first step. The balancing transformation is applied to the nominal system.
The reduced order system will be connected to the same local uncertainties.

After presenting some preliminaries, MOR for LPV/LFT systems based on balanced
truncation is presented in Section 4.3 with a classical balanced truncation error bound.

45
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An improved error bound result based on the equivalence of model reduction and controller
design is shown in Section 4.4, where a value less than the resulting balanced truncation
error bound is used as an initial value for this step. The efficiency of the proposed
method is examined with the same long actuated beam that is considered in the previous
chapter, but after deactivating some sensor/actuator pairs to realize a spatially-varying
interconnected system rather than spatially-invariant one, [8]. In addition, a comparison
between the proposed technique and the gridding-based technique is discussed as well.
The chapter includes results presented in [85] and [68].

4.2 Preliminaries

Recall the system (2.13) of state order n, where for G0 =





A B0 B1

C0 D00 D01

C1 D10 D11



, we have

G(∆t,∆s) = Fu

(

G0,

[
∆t

∆s

])

=

[

A(∆t,∆s) B(∆t,∆s)

C(∆t,∆s) D(∆t,∆s)

]

,∆t ∈ Θt,∆s ∈ Θs,

(4.1)
where

[
A(∆t,∆s) B(∆t,∆s)
C(∆t,∆s) D(∆t,∆s)

]

=

[
A +B0 Φ C0 B1 +B0 ΦD01

C1 +D10 Φ C0 D11 +D10 ΦD01

]

,

and Φ =

[
∆t

∆s

](

I −D00

[
∆t

∆s

])−1

.

In this chapter we search for a reduced version (with reduced state order nr < n) of the
form (see Fig. 4.1 below)

Gr(∆
t,∆s) = Fu

(

G0
r,

[
∆t

∆s

])

=

[
Ar(∆

t,∆s) Br(∆
t,∆s)

Cr(∆
t,∆s) Dr(∆

t,∆s)

]

, ∆t ∈ Θt,∆s ∈ Θs,

(4.2)
where for nr = nr1 + nr2 + nr3 < n, and a given constant γ > 0, we have

‖G(∆t,∆s)−Gr(∆
t,∆s)‖2→2≤ γ.

Following the assumptions stated in [8], we assume that D(∆t,∆s) = 0 and D00 = 0.

Our proposed technique is based on the application of the full block S-procedure Lemma,
which is stated next.

Lemma 4.1 (Full block S-procedure, [86])
Given a quadratic matrix inequality

G∗(∆t,∆s) N G(∆t,∆s) < 0 (4.3)
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Figure 4.1: LFT representation of temporal- and spatial-LPV reduced model.

with two scheduling parameter blocks ∆t and ∆s, where G and N are real-valued matrices,
∆t ∈ Θt, ∆s ∈ Θs, and G(∆t,∆s) can be written in a linear fractional transformation
(LFT) form

G(∆t,∆s) =

[
∆t

∆s

]

⋆

[
G11 G12

G21 G22

]

the inequality (4.3) holds ∀∆t ∈ Θt,∆s ∈ Θs if and only if the following two conditions
are satisfied:
1. There exists a real symmetric matrix Π such that

[∗]∗
[
Π

N

]




G11 G12

I 0
G21 G22



 < 0

2. For any ∆t ∈ Θt, ∆s ∈ Θs

[∗]∗Π







I
I

∆t

∆s






≥ 0.

Let us define the set P of the symmetric matrices Π (referred to as multipliers) as

P = {Π ∈ R
2(nt+ns)×2(nt+ns) : ΠT = Π =

[
Π11 Π12

ΠT
12 Π22

]

,Πmk =

[
Πt
mk

Πs
mk

]

,

Πt
mk ∈ R

nt×nt

,Πs
mk ∈ R

ns×ns

,

[
∆t

∆s

]

Πmk = Πmk

[
∆t

∆s

]

, m, k = 1, 2}.
(4.4)

4.3 Balanced Truncation

In order to construct a balanced LTSV realization for the original system (4.1), we define
the following.
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Definition 4.1 .
For system (4.1), the generalized controllability and observability Gramians [49], respec-
tively are defined as Y,X ∈ X , satisfying ∀∆t ∈ Θt,∆s ∈ Θs

A(∆t,∆s)Y + Y A∗(∆t,∆s) + B(∆t,∆s)B∗(∆t,∆s) < 0

A∗(∆t,∆s)X +XA(∆t,∆s) + C∗(∆t,∆s)C(∆t,∆s) < 0.
(4.5)

In Chapter 3 we presented a technique for balancing LTSI systems. Here, we extend it to
the case of LTSV system (4.1).
First, we have to construct a balanced transformation T ∈ T (as defined in (3.10)) via
extended version of Algorithm 3.3, such that we have (see (4.1))

[
Ã(∆t,∆s) B̃(∆t,∆s)

C̃(∆t,∆s) D(∆t,∆s)

]

=

[
T−1

I

] [
A(∆t,∆s) B(∆t,∆s)
C(∆t,∆s) D(∆t,∆s)

] [
T

I

]

=

[
T−1

I

] [
A+B0 Φ C0 B1 +B0 ΦD01

C1 +D10 Φ C0 D11 +D10 ΦD01

] [
T

I

]

∀∆t ∈ Θt, and ∆s ∈ Θs,

(4.6)

and X̃ = T−1Y T−∗ = T ∗Y T = Ỹ .
According to the above representation (4.6), clearly the nominal system matrices are
multiplied by the balancing transformation T ∈ T , such that

G̃(∆t,∆s) =

[
Ã(∆t,∆s) B̃(∆t,∆s)

C̃(∆t,∆s) D(∆t,∆s)

]

=

[
Ã+ B̃0 Φ C̃0 B̃1 + B̃0 ΦD01

C̃1 +D10 Φ C̃0 D11 +D10 ΦD01

]

, (4.7)

where Φ =

[
∆t

∆s

](

I −D00

[
∆t

∆s

])−1

.

Then, the balanced LTSV system (4.1) is defined as (see Fig. 4.2)

G̃(∆t,∆s) = Fu

(

G̃0,

[
∆t

∆s

])

, ∆t ∈ Θt,∆s ∈ Θs, (4.8)

where, the nominal system matrices are transformed via the balanced transformation

qt pt

qs ps

uỹ
G̃0

∆s

∆t

Figure 4.2: LFT representation of temporal- and spatial-LPV balanced system.

T ∈ T ; note that they are connected to the same uncertainty blocks ∆t ∈ Θt and ∆s ∈ Θs.
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According to Algorithm 3.3, the first step to construct the balanced transformation T ∈ T
for an LTSV system is to solve (4.5) for X, Y ∈ X . A practical difficulty is that (4.5)
needs to be checked for all ∆t ∈ Θt,∆s ∈ Θs, i.e. at infinitely many points.

If we rewrite (4.5) as ∀∆t ∈ Θt,∆s ∈ Θs






I
A∗(∆t,∆s)

B∗∆t,∆s)






∗ 



Y
Y

I










I
A∗(∆t,∆s)

B∗(∆t,∆s)




 < 0





I
A(∆t,∆s)

C(∆t,∆s)





∗ 



X
X

I









I
A(∆t,∆s)

C(∆t,∆s)



 < 0,

(4.9)

we can apply the full block S-procedure. Using Lemma 4.1 for each of the inequalities in
(4.9) individually, we have the following result.

Lemma 4.2 .
The matrix inequalities (4.9) hold for X, Y ∈ X iff there exist symmetric matrices
Πx,Πy ∈ P such that the following conditions hold ∀∆t ∈ Θt,∆s ∈ Θs

[∗]∗







Y
Y

Πy

I















I 0
A∗ C0∗

0 I
B0∗ D00∗

B1∗ D01∗









< 0 (4.10)

[∗]∗Πy





[
∆t

∆s

]

I



 ≥ 0 (4.11)

[∗]∗







X
X

Πx

I
















I 0
A B0

0 I
C0 D00

C1 D10










< 0 (4.12)

[∗]∗Πx





[
∆t

∆s

]

I



 ≥ 0. (4.13)

However, the resulting conditions (4.10), (4.11), (4.12) and (4.13) still have to hold at
infinitely many points, (4.11) and (4.13). Using D scales (4.15) below or D-G scales
(4.14) [70] has the advantage of converting the problem into a finite dimensional one,
possibly at the expense of conservatism.
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For that reason, we define the set PDG of specific symmetric matrices Π that have a D-G
scale structure as

PDG =
{
Π ∈ P : Π11 < 0,Π22 = −Π11, and Π12 = −ΠT

12

}
. (4.14)

While the set PD of symmetric matrices Π that have D scale as

PD = {Π ∈ P : Π11 < 0,Π22 = −Π11,Π12 = 0} . (4.15)

In order to reduce the number of LMI conditions to be solved (in Lemma 4.2) to a finite
number, here we impose a D-G scaling structure on Πx and Πy.
Note that imposing a D-G scale structure on the matrices Π ∈ P results in a conservative
solution. However, if only one scheduling parameter is considered, then there is no con-
servatism [70], which is the case in the beam example, which considers only one spatial
scheduling parameter, as will be discussed in Section 4.5.

Therefore, imposing Πx,Πy ∈ PDG on conditions (4.10), (4.11), (4.12) and (4.13), we see
that the conditions (4.11) and (4.13) are always fulfilled and therefore can be removed,
so that we have to satisfy the LMIs (4.10) and (4.12) only; this fact will be used in the
rest of the chapter.

Note that stability of (4.1) is preserved in conditions (4.10)–(4.13), [12], [69], [8], as given
in the next Theorem which is a direct application of Lemma 4.1 with the introduction of
the set PDG.

Theorem 4.1 (Exponential Stability for LPV/LFT Systems)
The LTSV system (2.12) is exponentially stable if one of the following two conditions is
satisfied

(1) There exists a matrix X ∈ X , such that ∀∆t ∈ Θt,∆s ∈ Θs

[
I

A(∆t,∆s)

]∗ [
X

X

] [
I

A(∆t,∆s)

]

< 0. (4.16)

(2) There exists a matrix X ∈ X and a symmetric matrix Π ∈ PDG such that







I 0
A B0

0 I
C0 D00







∗




X
X

Π











I 0
A B0

0 I
C0 D00






< 0. (4.17)

Based on the above discussion, we propose the following definition

Definition 4.2 (Balanced LPV/LFT Realization)
Consider a pair of matrices X, Y ∈ X and Πx,Πy ∈ PDG satisfying (4.10) and (4.12),
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and a transformation matrix T ∈ T . We call T a balancing transformation if Σ =
diag(Σ1,Σ2,−Σ3) = T−1Y (T−1)T = T TXT is a diagonal matrix 1, i.e. the transformed
system is balanced: Ã = T−1AT , B̃0 = T−1B0, B̃1 = T−1B1, C̃0 = C0T , C̃1 = C1T , see
(4.8) and Fig. 4.2.

The matrix Σ contains the generalized singular values in descending order along its di-
agonal. For the integer nr =

∑3
i=1 nri where nri < ni for all or some i, we partition

Σ =

[
Σs

Σns

]

, Σs = diag(Σs1,Σ
s
2,−Σs3) and Σns = diag(Σns1 ,Σns2 ,−Σns3 ) according to

the significant (s) and non-significant (ns) generalized singular values such that Σs has
dimension nr×nr and Σns has dimension (n−nr×n−nr). Truncate the states correspond-

ing to Σns by partitioning Ã, B̃0, B̃1, C̃0, C̃1 conformably with

[
Σsi

Σnsi

]

, i = 1, 2, 3 , as

(see (2.12))

Ã =












(Att)11 (Att)12 (Ats
+)11 (Ats

+)12 (Ats
−)11 (Ats

−)12
(Att)21 (Att)22 (Ats

+)21 (Ats
+)22 (Ats

−)21 (Ats
−)22

(Ast
+)11 (Ast

+)12 (Ass
++)11 (Ass

++)12 (Ass
+−)11 (Ass

+−)12
(Ast

+)21 (Ast
+)22 (Ass

++)21 (Ass
++)22 (Ass

+−)21 (Ass
+−)22

(Ast
−)11 (Ast

−)12 (Ass
−+)11 (Ass

−+)12 (Ass
−−)11 (Ass

−−)12
(Ast

−)21 (Ast
−)22 (Ass

−+)21 (Ass
−+)22 (Ass

−−)21 (Ass
−−)22












, B̃0 =













(B0,tt)1 (B0,ts)1
(B0,tt)2 (B0,ts)2

(B0,st
+ )1 (B0,ss

+ )1
(B0,st

+ )2 (B0,ss
+ )2

(B0,st
− )1 (B0,ss

− )1
(B0,st

− )2 (B0,ss
− )2













,

B̃1 =













(B1,t)1
(B1,t)2

(B1,s
+ )1

(B1,s
+ )2

(B1,s
− )1

(B1,s
− )2













, C̃0 =

[
(C0,tt)1 (C0,tt)2 (C0,ts

+ )1 (C0,ts
+ )2 (C0,ts

− )1 (C0,ts
− )2

(C0,st)1 (C0,st)2 (C0,ss
+ )1 (C0,ss

+ )2 (C0,ss
− )1 (C0,ss

− )2

]

,

C̃1 =
[
(C1,t)1 (C1,t)2 (C1,s

+ )1 (C1,s
+ )2 (C1,s

− )1 (C1,s
− )2

]
,

(4.18)

where the dimension of each sub-matrix is given by the dimension of partitioned Σ. Then
we end up with the reduced nominal system

G0
r =













(Att)11 (Ats
+)11 (Ats

−)11 (B0,tt)1 (B0,ts)1 (B1,t)1
(Ast

+)11 (Ass
++)11 (Ass

+−)11 (B0,st
+ )1 (B0,ss

+ )1 (B1,s
+ )1

(Ast
−)11 (Ass

−+)11 (Ass
−−)11 (B0,st

− )1 (B0,ss
− )1 (B1,s

− )1

(C0,tt)1
(C0,st)1

(C0,ts
+ )1

(C0,ss
+ )1

(C0,ts
− )1

(C0,ss
− )1

D00 D01

(C1,t)1 (C1,s
+ )1 (C1,s

− )1 D10 D11













=





Ar B0
r B1

r

C0
r D00 D01

C1
r D10 D11





(4.19)

1 In some cases, inverses of X,Y ∈ X are required rather than the original matrices, [40].
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such that

Gr(∆
t,∆s) = Fu

(

G0
r,

[
∆t

∆s

])

, ∆t ∈ Θt,∆s ∈ Θs (4.20)

Remark 4.1 Note that as in (3.2), according to (4.5), X, Y ∈ X have both positive and
negative eigenvalues, so does the matrix Σ, where Σ = diag(Σ1,Σ2,−Σ3).

Theorem 4.2 Suppose that Gr(∆
t,∆s) in the form of (4.20) is obtained from the

exponentially stable G(∆t,∆s) in the form of (4.1) according to Definition 4.2. Then
Gr(∆

t,∆s) is balanced, exponentially stable and

‖G(∆t,∆s)−Gr(∆
t,∆s)‖2→2≤ 2

(
3∑

i=1

ni∑

g=ri+1

σi,g

)

(4.21)

where σi,g are the absolute values of the diagonal entries of diag(Σns1 ,Σns2 ,−Σns3 ).

Proof According to (4.7) and (4.8), the transformed nominal system matrices (4.18)
define the balanced system G̃(∆t,∆s) as in Fig. 4.2. Since the original system G(∆t,∆s)
satisfies (4.10) and (4.12) with X, Y ∈ X and Πx,Πy ∈ PDG. Clearly, the balanced system
G̃(∆t,∆s) still satisfies (4.10),(4.12) with Σ and Πx,Πy ∈ PDG.
Therefore, if we truncate the non-significant states and substitute (4.19) and Σs, then the
resulting reduced model is still balanced with Σs and exponentially stable, see Theorem
4.1.
The error bound (4.21) can be proved following a similar way as in Theorem 3.3 or
Theorem 5.1.

Clearly from Theorem 4.2 the error bound in (4.21) is based on the truncated generalized
singular values of the generalized Gramians, so it would be reasonable to minimize their
rank as stated in Chapter 3. Therefore, rank constraints on X and Y ∈ X (i.e. minimize
rank(X) and rank (Y )) are imposed on conditions (4.10) and (4.12), as in Algorithm
3.3.1.
Minimizing the rank of X, Y ∈ X while solving the reduction problem, improves the
balanced truncation error bound. However, the error bound in (4.21) can be improved
further as shown in the next subsection.

4.4 Improved Error Bound Model Order Reduction

Problem

As already discussed and shown in Chapters 2 and 3, respectively (in Section 2.4 and
Section 3.4), a bound on the induced 2-norm of the stable error system can be represented
by the Integral Quadratic Constraint (IQC)

∫ ∞

t=0

∫ ∞

s=−∞

(
d(t, s)
z(t, s)

)T ( −γI
γ−1I

)(
d(t, s)
z(t, s)

)

≤ 0, (4.22)
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which is equivalent to the existence of a matrix Xe ∈ Y (as defined in (3.15)) and a matrix
Πe such that [12], [8] ∀∆t,s

e ∈ Θt,s
e

[∗]∗









Xe

Xe

Πe

−γI
γ−1I




















I 0 0
Ae B0

e B1
e

0 I 0
C0
e D00

e D01
e

0 0 I
C1
e D10

e D11
e












< 0 (4.23)

[∗]T Πe

[

∆t,s
e

I

]

≥ 0, (4.24)

where Θt,s
e = {∆t,s

e : ∆t,s
e = diag(∆t,∆s,∆t,∆s),∆t ∈ Θt,∆s ∈ Θs} where we assume that

the reduced system is connected to the same uncertainty blocks that for the original
system.

Accordingly, we define a symmetric matrix Πe =

[
Πe

11 Πe
12

ΠeT
12 Πe

22

]

, where

Πe
mk =

[
Π11
mk Π12

mk

Π12T
mk Π11

mk

]

, m, k = 1, 2, such that

[
Π11

11 Π11
12

Π11T
12 Π11

22

]

= Π ∈ P. (4.25)

The nominal error system matrices are defined as

Ae =

[
A 0
0 Ar

]

, B0
e =

[
B0 0
0 B0

r

]

, C0
e =

[
C0 0
0 C0

r

]

, D00
e =

[
D00 0
0 D00

r

]

,

B1
e =

[
B1

B1
r

]

, D01
e =

[
D01

D01
r

]

, C1
e =

[
C1 −C1

r

]
, D10

e =
[
D10 −D10

r

]
and

D11
e = D11 −D11

r .

That is done following a similar result for LTSI systems (see (2.28)); here we define

Ĝ(∆t,∆s) = Fu

([
G0 −I
I 0

]

,

[
∆t

∆s

])

, see Fig 4.3, such that

(4.26)Ĝ∆t,∆s :

















ξ̃(t, s)

qt(t, s)
qs(t, s)

z(t, s)

y(t, s)











=









A B0 B1 0

C0 D00 D01 0

C1 D10 D11 −I

0 0 I 0


















ξ(t, s)

pt(t, s)
ps(t, s)

d(t, s)

u(t, s)










[
pt(t, s)
ps(t, s)

]

=

[
∆t

∆s

] [
qt(t, s)
qs(t, s)

]

, ∆t ∈ Θt,∆s ∈ Θs.

Then, based on (4.23) and (4.24), in order to find a reduced LPV/LFT system while
ensuring a small error bound γ, we have the following result.
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Ĝ(∆t,∆s)

Gr(∆
t,∆s)

d

u

z

y

Figure 4.3: Error system configuration

Reduction Problem: Given γ, find a reduced model (4.2) and Xe ∈ Y , Πe such that
(4.23) and (4.24) hold for all ∆t,s

e ∈ Θt,s
e .

In order to be able to solve (4.23), (4.24) for the reduced system, we have again to apply
the elimination lemma as in Chapter 3. Therefore, we redefine the error system matrices
as [12]





Ae B0
e B1

e

C0
e D00

e D01
e

C1
e D10

e D11
e



 =










A 0 B0 0 B1

0 0 0 0 0

C0 0 D00 0 D01

0 0 0 0 0

C1 0 D10 0 D11










+ U





Ar B1
r B0

r

C1
r D11

r D10
r

C0
r D01

r D00
r



V ∗,

where U =









0 0 0
I 0 0
0 0 0
0 0 I

0 −I 0









, and V =









0 0 0
I 0 0
0 0 0
0 0 I
0 I 0









.

We then construct U∗
⊥ =

[
Ny1 0 Ny2 0 Ny3

]
, V ∗

⊥ =
[
Nx1 0 Nx2 0 Nx3

]
, where

Ny =
[
Ny1 Ny2 Ny3

]∗
= Ker

[
0 0 −I

]
and Nx =

[
Nx1 Nx2 Nx3

]∗
= Ker

[
0 0 I

]
.

Clearly, Ny = Nx =

[
I 0 0
0 I 0

]T

.

Then we have the result of Theorem 4.3 below.

Before we present the next result, in order to decrease the value of γ together with the
rank constraint (as mentioned before), we summarize the proposed model order reduction
scheme (the extended version of the one proposed in Chapter 3 for LTSI systems), which
allows a trade-off between minimizing the rank of the generalized Gramians and improving
the error bound γ.
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Algorithm 4.4: Model Order Reduction Scheme for LPV/LFT

1) Apply the balanced realization procedure, Definition 4.2, and set the initial
upper bound to value less than the balanced truncation error bound (γ <
2
∑3

i=1

∑ni

g=nri+1 σig). We determine the smallest generalized singular values, the

initial new order nr =
∑3

i=1 nri is selected for the reduced system. The resulting
balanced system and γ are used to initialize the next step.

2) Solve LMIs (4.27), (4.29), (4.31) and condition (4.32) of Theorem 4.3 below for
X, Y ∈ X and Πx,Πy ∈ PDG, and obtain X and Y including the small generalized
singular values.

3) Check the rank of YiXi − I for i = 1, 2, 3; if rank(YiXi − I) is greater than nri, for
some i, then increase the value of γ, if not then decrease the value of γ (if necessary).
Go to step 2) until satisfactory results are obtained.

The following Theorem is inspired by [8].

Theorem 4.3 Given G(∆t,∆s) and γ > 0, there exists Gr(∆
t,∆s) (as defined in (4.2))

such that ‖G(∆t,∆s) − Gr(∆
t,∆s)‖2→2≤ γ, if there exist X, Y ∈ X ,Πx,Πy ∈ P, such

that ∀∆t ∈ Θt,∆s ∈ Θs, we have

N∗
y [∗]∗









Y
Y

Πy

−γ−1I
γI




















I 0 0
A∗ C0∗ C1∗

0 I 0
B0∗ D00∗ D10∗

0 0 I
B1∗ D01∗ D11∗












Ny < 0 (4.27)

[∗]∗Πy





[
∆t

∆s

]

I



 ≥ 0 (4.28)

N∗
x [∗]∗









X
X

Πx

−γI
γ−1I



















I 0 0
A B0 B1

0 I 0
C0 D00 D01

0 0 I
C1 D10 D11











Nx < 0 (4.29)

[∗]∗Πx





[
∆t

∆s

]

I



 ≥ 0 (4.30)

[
Y1 I
I X1

]

≥ 0 (4.31)
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rank(Y X − I) ≤ nr (4.32)

where Ny = Nx =

[
I 0 0
0 I 0

]T

.

The D-G structure (4.14) as in Section 4.3 can be imposed on the multipliers Πx and
Πy here in order to reduce the problem to finite dimension, where as mentioned at the
beginning of this section, we consider that the reduced model is connected to the same
uncertainty blocks that for the original model.
In addition, a cone complementarity method (as in Algorithm 3.4) is used here to solve
the non-convex condition (4.32).

Having obtained solutions X, Y ∈ X and Πx,Πy ∈ PDG (by satisfying Theorem 4.3),
a reduced order LPV/LFT spatially interconnected system can be constructed in the
following steps.

(i) Use X and Y to compute Xe (which satisfies (4.23)) in the same way as in the LTSI
systems case proposed in Chapter 3 , Remark 3.4.

(ii) Use Πx,Πy ∈ PDG to compute Πe (in (4.23)) as in [69], [8], where for skew symmetric
Πe

12

Πe =

[
−Πe

11 Πe
12

ΠeT
12 Πe

11

]

,Πe
mk =

[
−Π11

mk Π12
mk

Π12T
mk Π11

mk

]

, Π12
mk is skew symmetric , m, k = 1, 2.

(4.33)

(iii) Solve the LMI (4.23) for the reduced nominal system matrices.

(iv) Define the reduced system as in (4.2), with the same uncertainty blocks as the
original system, i.e. ∆t ∈ Θt and ∆s ∈ Θs.

4.5 Application to an Actuated Beam

To demonstrate the results of this chapter, the proposed model order reduction technique
has been applied again to the same experimentally identified model [8] of the actuated
beam shown in Fig.1.2 in Chapter 1 and used in Chapter 3. Now, six (arbitrarily located)
actuator-sensor pairs have been deactivated, whereas the remaining ten unevenly spaced
actuator-sensor pairs (piezo patches) are still active and distributed along the length of
the aluminium beam, such that the beam has unequal length subsystems. The beam is
accordingly divided into 10 nonidentical subsystems as in Fig. 4.4; each subsystem has
its own actuator-sensor capabilities.

Since the beam has been discretized into ten unequal length subsystems, the dynamic
behavior of the system is now represented by a spatial LPV model with one spatial
scheduling parameter, ρ(s). [8].
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Figure 4.4: Aluminium beam with unevenly spaced actuator-sensor pairs

Because the actuator-sensor locations s are unevenly spaced, we have s ∈ R and introduce
a mapping q : R → Z, so that we replace ρ(s) by ρ(q) in order to be able to apply spatial
shift operations.

A single subsystem is represented by a two-dimensional difference equation

y(t, q) = −
∑

it,is∈Ymask

α(it,is)(ρ(q))y(t−it, q−is)+
∑

it,is∈Umask

β(it,is)(ρ(q))u(t−it, q−is) (4.34)

where Umask and Ymask are the input and output masks, respectively, determined at the
subsystem level as shown in Fig. 4.5, indicating which temporally and spatially shifted
inputs and outputs contribute to the current output, α(it,is)(ρ) and β(it,is)(ρ) are the
coefficients varying with respect to space.
If one compares (4.34) with (3.27) in Chapter 3, we can see that here the coefficients
α(it,is)(ρ) and β(it,is)(ρ) are allowed to vary with respect to space, while in (3.27) the
coefficients ait,is and bit,is are constants.

t

q

t

q

Umask Ymask

Figure 4.5: Input and output mask for spatial LPV model

The state space model of a single subsystem is defined in Appendix D.2 as in (2.9)
according to (4.34), with suitably chosen temporal and spatial state vectors.

Each subsystem has state order n = n1 + n2 + n3 = 10 , where n1 = 2 and n2 = n3 = 4,
see Fig. 4.5.

After pulling out the scheduling parameter ρ into a delta block, a state space model of
a single subsystem is defined in LFT form with respect to ∆s ∈ Θs as in (2.12) with
constant ∆t. Its LFT representation is shown in Fig. 4.6 as Fu (G

0,∆s), where

G0 =





A B0 B1

C0 D00 D01

C1 D10 D11



 and ∆s = ρI2.

Note that ns = 2, since ρ has multiplicity 2 (see Appendix D.2, where ρ appears in A(ρ)
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y

∆s
psqs

u





A B0 B1

C0 D00 D01

C1 D10 D11





Figure 4.6: Spatial LPV/LFT for Actuated Beam

and C(ρ)).
As mentioned before, the system has order n = 10. The application of the approach
proposed in Section 4.4 (see Algorithm 4.4) gives a reduced system of order nr = 6;
(nr1 = nr2 = nr3 = 2), and provides an initial error bound (set to γ < 0.017) which is
improved to γ = 0.0026 in Section 4.4.

First, a balanced truncation in Section 4.3 has been applied by solving conditions (4.10)
and (4.12) (with rank constraint) for Πx,Πy ∈ PDG and X, Y ∈ X with small generalized
singular values. Following the procedure of Definition 4.2, we get a reduced system of
order (nr1 = 2, nr2 = nr3 = 3); the selected initial error bound is γ = 0.017. This com-
pletes step 1 of the proposed MOR scheme (Algorithm 4.4) and provides the start values
for step 2.

In step 2, starting with an error bound γ < 0.017 we try to reduce this error bound and
the order of the system further by solving conditions (4.27), (4.29), (4.31) and (4.32) for
Πx,Πy ∈ PDG and X, Y ∈ X with small generalized singular values. Then, following the
four steps given at the very end of Section 4.4 gives the required reduced system with
order (nr1 = nr2 = nr3 = 2) and γ = 0.0026.

Fig. 4.7 shows the response over time of the first, fifth, seventh and tenth subsystems
(i.e. sensors 1,5,7 and 10), respectively, to a step disturbance applied on actuator 5,
comparing the original identified model (original) and the reduced model based on the
full block S-procedure (FBSP, CGs). Furthermore, Fig.4.7 includes a comparison with
the MOR approach based on gridding; this result has been presented in [66] and [84]. It is
worth mentioning that the result based gridding is obtained using parameter-dependent
generalized Gramians, i.e. X(ρ) and Y (ρ); whereas here we are using constant generalized
Gramians (a comparison between the using of parameter-dependent generalized Gramians
and constant generalized Gramians is considered in Chapter 5). Even though, the results
are of comparable accuracy. This suggests that it is more efficient to solve the reduction
problem for systems defined in LPV/LFT representation with the application of the full
block S-procedure and utilizing D-G scaling, rather than using a grid representation,
because in the former case, only a single pair of LMIs have to be solved instead of solving
one at each grid point.

In addition, based on the FBSP, the response to a step disturbance over space at time
t = 1.05, and t = 4.05 seconds, respectively, is shown in Fig.4.8, which compares the
original identified model (original) and the reduced model.
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Figure 4.7: Response over time of (from top to bottom) the 1st, 5th, 7th and 10th LPV
subsystems to a disturbance step
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Figure 4.8: Response over space of the beam at time (from top to bottom) t = 1.05 s,
and t = 4.05 s to a disturbance step

Finally, experimental measurements have been used as well, with the injection of 10
noise signals in parallel into 10 actuators as inputs to the original and reduced system,
respectively. The measured outputs (measured), simulated outputs using the original
model (full), and the outputs of the reduced model (reduced) for all subsystems are
shown in Fig. 4.9.

4.6 Conclusion

In this chapter, an extension of the MOR technique proposed in Chapter 3 has been
presented for temporal- and spatial-LPV interconnected systems. The nominal system
matrices are reduced and connected again with the same uncertainty blocks as for the
original system, while the stability of the system is preserved in the reduced model. In
order to reduce an exponentially stable LPV/LFT spatially interconnected systems, the
full block S-procedure has been utilized, which leads to efficient solutions, reduces con-
servatism and simplifies the MOR problem in the sense of avoiding gridding. Based on
the result of the previous chapter, a novel way of dealing with the non-causality of the
spatial dynamics (when solving the MOR for temporal- and spatial-LPV interconnected
systems) is proposed as well. An application of the proposed procedure to an experimen-
tally identified actuated beam, demonstrated its practicality.
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Figure 4.9: Measured response of the beam (measured, top), simulated response of the
beam (full, middle), response of the reduced model (reduced, bottom) to 10 noises signals
applied in parallel to 10 actuators.





Chapter 5

Joint Dynamic and Scheduling Order
Reduction

5.1 Introduction

Usually, model order reduction refers to the number of states, but for LPV systems this
is not always the case, because the complexity of LPV systems is not determined by its
state order only, but also by the order of the scheduling parameters that represent the
system.

In this chapter, a technique for joint dynamic and scheduling order reduction (i.e. reduc-
tion of the number of states as well as of scheduling parameters) of exponentially stable
LTSV systems is presented, the technique is based on balanced truncation. Again, the
full block S-procedure is applied here. The reduced models preserve exponential stability
and the spatial structure of the system.

The key idea of joint dynamic and scheduling order reduction is to simultaneously diago-
nalize the Gramians X and Y as well as the multipliers Πx and Πy, then apply the usual
balanced truncation technique.

In contrast to the previous chapter, where the nominal system has been reduced and
connected with the same uncertainty blocks as for the original system (i.e. the same
number of scheduling parameters is kept), here both the nominal system as well as the
uncertainty blocks are reduced (i.e. the number of scheduling parameters and of states is
reduced), such that an error bound for the uncertainty block reduction has to be consid-
ered as well as the error bound for the state order reduction. This chapter considers both
constant generalized Gramians (CGs) and Parameter-Dependent generalized Gramians
(PDGs). Where for the latter case, a parameter-dependent balanced transformation is
constructed. Note when PDGs are used, then the reduction procedure should be done
in two steps, first reduce the scheduling order, and second reduce the state order of the
system. While when CGs are used, then the scheduling order and the state order are
simultaneously reduced. A comparison between the use of CGs and PDGs is presented
as well.
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The same actuated beam (Fig. 4.4) is used to demonstrate the proposed method. The
results of this chapter are based on [68].

The chapter is structured as follows. In Section 5.2, the joint order reduction via balanced
truncation for LTSV systems is presented. A less conservative result based on the use of
PDGs is given in Section 5.3, where a generalization of the result of the previous section is
derived. The efficiency of the proposed approach is demonstrated on the actuated beam
in Section 5.4 with a comparison between using CGs and PDGs.

5.2 Joint Order Reduction Based on Balanced

Truncation

Problem Statement

The model reduction problem considered here can be formulated as follows: givenG(∆t,∆s)
as in (2.12), (2.13) with state order n and temporal and spatial scheduling orders nt and
ns, respectively, defined as

G(∆t,∆s) = Fu

(

G0,

[
∆t

∆s

])

=

[

A(∆t,∆s) B(∆t,∆s)

C(∆t,∆s) D(∆t,∆s)

]

,∆t ∈ Θt,∆s ∈ Θs,

(5.1)
where

[
A(∆t,∆s) B(∆t,∆s)
C(∆t,∆s) D(∆t,∆s)

]

=

[
A+B0 Φ C0 B1 +B0 ΦD01

C1 +D10 Φ C0 D11 +D10 ΦD01

]

, (5.2)

Φ =

[
∆t

∆s

](

I −D00

[
∆t

∆s

])−1

.

find a reduced order model (2.20), (2.21) with reduced state order nr = nr1+nr2+nr3 < n,
reduced temporal and spatial scheduling orders ntr < nt and nsr < ns, respectively, defined
as

Gr(∆
t
r,∆

s
r) =

Fu

(

G0
r ,

[
∆t
r

∆s
r

])

=

[
Ar(∆

t
r,∆

s
r) Br(∆

t
r,∆

s
r)

Cr(∆
t
r,∆

s
r) Dr(∆

t
r,∆

s
r)

]

,∆t
r ∈ Θt

r ⊂ Θt, ∆s
r ∈ Θs

r ⊂ Θs,

(5.3)

where

[
Ar(∆

t
r,∆

s
r) Br(∆

t
r,∆

s
r)

Cr(∆
t
r,∆

s
r) Dr(∆

t
r,∆

s
r)

]

=

[
Ar +B0

r Φr C
0
r B1

r +B0
r Φr D

01
r

C1
r +D10

r Φr C
0
r D11 +D10

r Φr D
01
r

]

, (5.4)

Φr =

[
∆t
r

∆s
r

](

I −D00
r

[
∆t
r

∆s
r

])−1

.
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Figure 5.1: A joint reduced state and scheduling order subsystem Gr(∆
t
r,∆

s
r).

as shown in Fig. 5.1, such that

‖G(∆t,∆s)−Gr(∆
t
r,∆

s
r)‖2→2 is minimized.

In this section, for simplicity of presentation, we concentrate on the single parameter case,
i.e., nδ = nρ = 1, see (2.11). Also, as in Chapter 4, for simplicity we consider D00 = 0.

In order to solve the above problem, as in Chapter 4, with the introduction of the balanced
transformation T ∈ T (as in (3.10)), system (5.1) is transformed to its balanced realiza-
tion. Here, in addition to the transformation T ∈ T , we need another transformation
W ∈ W where

W =

{

W =

[
W∆t

W∆s

]

: ∆t W∆t = W∆t ∆t, ∆s W∆s = W∆s ∆s, det(W ) 6= 0

}

.

(5.5)

Using both transformation matrices, i.e. T ∈ T and W ∈ W, the change of coordinates
in (5.1) gives (see Fig. 5.2)1

G̃(∆̃t, ∆̃s) =

[

Ã(∆̃t, ∆̃s) B̃(∆̃t, ∆̃s)

C̃(∆̃t, ∆̃s) D̃(∆̃t, ∆̃s)

]

=

[
T−1

I

] [

A(∆̃t, ∆̃s) B(∆̃t, ∆̃s)

C(∆̃t, ∆̃s) D(∆̃t, ∆̃s)

][
T

I

]

=

[
Ã+ B̃0Φ̃C̃0 B̃1 + B̃0Φ̃D̃01

C̃1 + D̃10Φ̃C̃0 D11 + D̃10Φ̃D̃01

]

(5.6)

1 For simplicity of presentation in Fig. 5.2, we combine the two uncertainty blocks ∆t and ∆s together
in one block. This will be used in figures throughout this chapter. Also, we combine the uncertainty

temporal channel pt with the uncertainty spatial channel ps in one vector p =

[
pt

ps

]

. This vector p will

be used also in the proof of Theorem 5.1. The same is true for the vector q as well.
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with Φ̃ =

[
∆̃t

∆̃s

](

I − D̃00

[
∆̃t

∆̃s

])−1

,

where Ã = T−1AT,

B̃0 = T−1B0W, B̃1 = T−1B1,

C̃0 = W−1C0T, C̃1 = C1T,

D̃00 = W−1D00W, D̃01 = W−1D01, D̃10 = D10W,

and

[
∆̃t

∆̃s

]

= W−1

[
∆t

∆s

]

W =

[
∆t

∆s

]

, ∀ ∆t ∈ Θt, ∆s ∈ Θs.

y

[
∆t

∆s

]

pq

u





A B0 B1

C0 D00 D01

C1 D10 D11





W−1 W
[
T−1

I

] [
T

I

]

Figure 5.2: Balanced Realization

System (5.1) has been transformed into (5.6), but is not reduced yet. In order to construct
system (5.3) of reduced complexity, we have to apply a specific partition (according to
the significant and non-significant singular values) and truncation (the blocks relating to
the non-significant parts) to (5.6). To do that, (i.e. to construct T ∈ T (as defined in
(3.10)) and W ∈ W), again, as in Chapter 4 we use the full block S-procedure such that
the inequalities in (4.9) hold for X, Y ∈ X for all ∆t ∈ Θt and ∆s ∈ Θs if and only if
there exist symmetric matrices Πx,Πy ∈ PD satisfying (5.7) and (5.8) below. Then, we
have the following result.

Joint Order Reduction Scheme
Given G(∆t,∆s) defined in (5.1) with state order n, temporal and spatial scheduling
orders nt and ns, respectively. A reduced complexity system (5.3) can be constructed
with reduced state order nr < n, reduced temporal and spatial scheduling orders ntr < nt

and nsr < ns, respectively, by following these steps:

1. Find X, Y ∈ X and Πx,Πy ∈ PD (defined in (4.15)) that satisfy

[∗]∗








Y
Y

Πy

I
















I 0
A∗ C0∗

0 I
B0∗ D00∗

B1∗ D01∗









< 0 (5.7)
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[∗]∗








X
X

Πx

I
















I 0
A B0

0 I
C0 D00

C1 D10









< 0. (5.8)

According to the definition of the set PD in (4.15), the D-scale structure is imposed

here to Πx =

[
−Πx11

Πx11

]

and Πy =

[
−Πy11

Πy11

]

; this fact will be used in the rest

of this section.

2. Construct a transformation T ∈ T (as defined in (3.10) via the extended version of
Algorithm 3.3), that

T−1Y T−∗ = T TXT = diag(Σ1,Σ2,−Σ3) = Σ

is diagonal and contains the generalized singular values along its diagonal in de-
scending order.

3. Find a transformation2 W ∈ W (via applying the Cholesky/SVD decomposition
to Πx,Πy ∈ PD in a similar way as in constructing T ∈ T , via applying the
Cholesky/SVD decomposition to X, Y ∈ X , see Algorithm 3.3) that

[
W−1

W−1

] [
−Πy11

Πy11

]

︸ ︷︷ ︸

Πy

[
W−T

W−T

]

=

[
−Ψ

Ψ

]

and [
W T

W T

] [
−Πx11

Πx11

]

︸ ︷︷ ︸

Πx

[
W

W

]

=

[
−Ψ

Ψ

]

,

and Ψ is structured according to the temporal and spatial uncertainty blocks as

Ψ =

[
Ψ∆t

Ψ∆s

]

,

where Ψ∆t and Ψ∆s are diagonal matrices.

4. Calculate Ã(∆̃t, ∆̃s), B̃(∆̃t, ∆̃s), C̃(∆̃t, ∆̃s) and D̃(∆̃t, ∆̃s) as in (5.6).

5. Partition each Σi, i = 1, 2, 3, into two blocks according to the significant (s) and

non-significant (ns) singular values as Σi =

[
Σsi

Σnsi

]

, i = 1, 2, 3, such that Σsi has

dimension nri × nri and Σnsi has dimension (ni − nri)× (ni − nri), i = 1, 2, 3.

2Note that a sufficient condition for the existence of such a transformation W is that the
multiplication (Πy11

Πx11
) has distinct eigenvalues [87], where if W−1Πy11

Πx11
W = Ψ2, then

W−1Πy11
W−TWT

︸ ︷︷ ︸

I

Πx11
W = Ψ2 which means W−1Πy11

W−T = WTΠyW = Ψ.
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Also, partition Ψ = diag(Ψs,Ψns), where Ψs = diag(Ψs
∆t ,Ψs

∆s) and Ψns = diag(Ψns
∆t ,Ψns

∆s)
according to the significant and non-significant values, where
Ψs ∈ R(nt

r+n
s
r)×(nt

r+n
s
r) and Ψns ∈ R((nt−nt

r)+(ns−ns
r))×((nt−nt

r)+(ns−nt
r)).

6. Partition the transformed system (5.6) conformably with Σi, i = 1, 2, 3 and Ψ.
Then truncate the non-significant parts from each block of Σi, Ψ and accordingly
from Ã(∆̃t, ∆̃s), B̃(∆̃t, ∆̃s), C̃(∆̃t, ∆̃s) and D̃(∆̃t, ∆̃s) to get Ar(∆

t
r,∆

s
r), Br(∆

t
r,∆

s
r),

Cr(∆
t
r,∆

s
r) and Dr(∆

t
r,∆

s
r) as in (5.3).

Now, we present the following Theorem.

Theorem 5.1 Consider a reduced model Gr(∆
t
r,∆

s
r), defined in (5.3), that has been con-

structed from the exponentially stable G(∆t,∆s) (according to the above scheme). Then,
the reduced model is exponentially stable and we have an upper error bound γ that satisfies

‖G(∆t,∆s)−Gr(∆
t
r,∆

s
r)‖2→2 ≤ 2

(
trace(Σ̄ns) + trace(Ψns)

)
= γ (5.9)

where Σ̄ns contains (along its diagonal) the absolute values of the diagonal entries of
Σns = diag(Σns1 ,Σns2 ,−Σns3 ).

Proof The proof of the exponential stability of the reduced model follows the same line
in Theorem 4.2.
With a simple permutation (and dropping the ˜ ), rewrite the transformed versions of
(5.8) as

[∗]∗







Σ
Ψ

Σ
−Ψ













A B0

C0 D00

I 0
0 I






+

[

C1∗

D10∗

][

C1∗

D10∗

]∗

< 0 (5.10)

and (5.7) as (see Appendix C)

[∗]∗





Σ−1

Ψ−1

Σ−1

−Ψ−1











A B0 B1

C0 D00 D01

I 0 0
0 I 0




 <





0
0

I



 (5.11)

Then, a similar way as in Theorem 3.3 can be followed, to show how an error bound on
the induced 2-norm of the error system can be computed.
Following the same line as in the proof of Theorem 3.3, with state vector ξ partitioned

according to the significant (s) and non-significant (ns) singular values as ξ =

[
ξs

ξns

]

with

reduced state vector ξr, the same is true for p =

[
ps

pns

]

with reduced pr.

We divide the proof into two parts.

• Consider first that only the state order is reduced, i.e. nr < n and (ntr = nt, nsr = ns):
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Multiply (5.10) by [(ξs − ξr)∗ ξns∗ p∗] from the left and its transpose from the
right, and add this to the inequality obtained by multiplying inequality (5.11) by
[(ξs + ξr)∗ ξns∗ p∗ 2u∗] from the left and its transpose from the right.

• Consider that only the scheduling orders are reduced, i.e. nr = n and (ntr < nt, nsr <
ns):

Multiply (5.10) by [ξ∗ (ps − pr)∗ pns∗] from the left and its complex conjugate
from the right, and adding this to the inequality obtained by multiplying inequality
(5.11) by [ξ∗ (ps + pr)∗ pns∗ 2u∗] from the left and its complex conjugate from
the right.

The proof is then complete by following the same reasoning as in Theorem 3.3.

Remarks:

1 As already mentioned, the error bound in (5.9) (a related result is given in [88]
and [89] for uncertain 1-D lumped systems with a specific scaling), is based on the
truncated singular values of the matrices Πx,Πy ∈ PD as well as on those of the
Gramians X, Y ∈ X . Therefore, it would be reasonable to minimize their rank when
solving the reduction problem. Again, this nonconvex condition can been resolved

by applying a cone complemetarity method [64] to the blocks

[
X

Πx11

]

and

[
Y

Πy11

]

,

instead of X and Y in Algorithm 3.4.

2 Exponential stability is preserved in the reduced model when solving the reduction
problem as in Chapter 4.

3 Reducing the scheduling order takes two aspects into consideration: first reducing
the number of the scheduling parameters, and second reducing their multiplicity.
According to the second term in the error bound (defined in (5.9)), there is a direct
relationship between the error bound and the number of scheduling parameters.
Scheduling parameters that do not have a significant impact on the model will not
have a significant effect on the error bound either.

4 Using constant generalized Gramians (CGs) (parameter-independent generalized
Gramians) will be conservative (see Chapter 4) due to allowing parameter variations
of infinite rate. Therefore, in the next section, we extend the result of the current
section to the case of using Parameter-Dependent generalized Gramians (PDGs)
rather than CGs, where an improved result is obtained as shown in Section 5.4.
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5.3 Joint Order Reduction Using PDGs

In this section, an improved and less conservative result (based on the use of PDGs) com-
pared with the previous section is presented. Due to the use of PDGs rather than CGs,
the balanced transformation has to be parameter-varying; consequently the differentia-
bility of such transformation has to be checked [30]. While for discrete-domain systems
this is not required, which makes the problem easier. Therefore, we return here to the
original discrete-time and -space system. We will not distinguish in notation between the
representation of the discrete-domain system here and the continuous-domain system in
the previous chapters.

For solving the problem of joint order reduction using PDGs, we first define a structured
set

S = {X(∆t,∆s) = diag (X1(∆
t), X2(∆

s), X3(∆
s)), X = X∗, X1 > 0} (5.12)

where X1 ∈ Cn1×n1 corresponds to the temporal part, and X2 ∈ Cn2×n2 and X3 ∈ Cn3×n3

to the forward and backward spatial parts, respectively.

Also, define ∂X(∆t,∆s) as the variation rate of X(∆t,∆s) ∈ S. Let the set of temporal
and spatial variation rates of uncertainties be denoted by Θt

∂ and Θs
∂, such that (∆t, ∂∆t) ∈

Θt ×Θt
∂ and (∆s, ∂∆s) ∈ Θs ×Θs

∂.
Next, we define the PDGs for LTSV system defined in discrete time and space as follows.

Definition 5.1 The parameter-dependent generalized controllability and observability
Gramians are defined as Y (∆t,∆s), X(∆t,∆s) ∈ S, which satisfy

A(∆t,∆s) Y (∆t,∆s) A∗(∆t,∆s)− ∂Y (∆t,∆s) +B(∆t,∆s)B∗(∆t,∆s) < 0,

A∗(∆t,∆s) ∂X(∆t,∆s) A(∆t,∆s)−X(∆t,∆s) + C∗(∆t,∆s)C(∆t,∆s) < 0,
(5.13)

∀(∆t, ∂∆t) ∈ Θt ×Θt
∂ and (∆s, ∂∆s) ∈ Θs ×Θs

∂, where

∂X(∆t,∆s) = diag (X1(∆
t(t+ 1)), X2(∆

s(s+ 1)), X3(∆
s(s− 1))),

∂Y (∆t,∆s) = diag (Y1(∆
t(t + 1)), Y2(∆

s(s+ 1)), Y3(∆
s(s− 1))).

The inequalities in (5.13) can be rewritten as

[∗]∗




−∂Y (∆t,∆s)
Y (∆t,∆s)

I









I

A∗(∆t,∆s)

B∗(∆t,∆s)



 < 0

[∗]∗




−X(∆t,∆s)
∂X(∆t,∆s)

I









I

A(∆t,∆s)

C(∆t,∆s)



 < 0,

(5.14)

∀(∆t, ∂∆t) ∈ Θt ×Θt
∂ and (∆s, ∂∆s) ∈ Θs ×Θs

∂.
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Define the set Γ consisting of structured block diagonal matrices that have bounded
inverses and are partitioned (conformably with temporal and spatial forward/backward
variables) as

Γ = {T (∆t,∆s) : T (∆t,∆s) = diag (T1(∆
t), T2(∆

s), T3(∆
s)).

We also introduce ∂T (∆t,∆s) = diag (T1(∆
t(t+ 1)), T2(∆

s(s+ 1)), T3(∆
s(s− 1)))}.

(5.15)

In Section 5.2, it was shown that the change of coordinates in (5.1) could be done via the
transformations T ∈ T and W ∈ W, see (5.6). Here since we are using PDGs rather than
CGs, we have to use the parameter-dependent transformation T (∆t,∆s) ∈ Γ rather than
the constant one (i.e., T ∈ T defined in (3.10)), such that we have (see Fig. 5.3, compare
with Fig. 5.2)

G̃(∆̃t, ∆̃s) =

[

Ã(∆̃t, ∆̃s) B̃(∆̃t, ∆̃s)

C̃(∆̃t, ∆̃s) D̃(∆̃t, ∆̃s)

]

=

[
∂T−1(∆̃t, ∆̃s)

I

][

A(∆̃t, ∆̃s) B(∆̃t, ∆̃s)

C(∆̃t, ∆̃s) D(∆̃t, ∆̃s)

] [
T (∆̃t, ∆̃s)

I

]

=

[
Ã+ B̃0Φ̃C̃0 B̃1 + B̃0Φ̃D̃01

C̃1 + D̃10Φ̃C̃0 D11 + D̃10Φ̃D̃01

]

(5.16)

with Φ̃ =

[
∆̃t

∆̃s

](

I − D̃00

[
∆̃t

∆̃s

])−1

,

where Ã = ∂T−1(∆̃t, ∆̃s)AT (∆̃t, ∆̃s),

B̃0 = ∂T−1(∆̃t, ∆̃s)B0W, B̃1 = ∂T−1(∆̃t, ∆̃s)B1,

C̃0 = W−1C0T (∆̃t, ∆̃s), C̃1 = C1T (∆̃t, ∆̃s),

D̃00 = W−1D00W, D̃01 = W−1D01, D̃10 = D10W,

and

[
∆̃t

∆̃s

]

= W−1

[
∆t

∆s

]

W =

[
∆t

∆s

]

, ∀ ∆t ∈ Θt, ∆s ∈ Θs, where W ∈ W.

y

[
∆t

∆s

]

pq

u





A B0 B1
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Figure 5.3: Balanced Realization Using PDGs

Before we present the generalization of the joint order reduction scheme (given in Section
5.3), we give the following result which is a direct application of Lemma 4.1 (in Chapter
4) with the set PD defined in (4.15).
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Lemma 5.1 The matrix inequalities (5.14) hold for X(∆t,∆s), Y (∆t,∆s) ∈ S if and
only if there exist symmetric matrices Πx,Πy ∈ PD such that the following conditions hold
∀(∆t, ∂∆t) ∈ Θt ×Θt

∂ and (∆s, ∂∆s) ∈ Θs ×Θs
∂

[∗]∗







−∂Y (∆t,∆s)
Y (∆t,∆s)

Πy

I
















I 0

A∗ C0∗

0 I

B0∗ D00∗

B1∗ D01∗










< 0 (5.17)

[∗]∗
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







< 0. (5.18)

Next, we generalize the joint order reduction scheme of Section 5.3 to the the case of
using PDGs rather than CGs. Note that in the case of using PDGs the joint order re-
duction scheme has to be applied in two steps: first, transform (and truncate) the model
G(∆t,∆s) via a transformation W ∈ W (as in (5.16)) in order to reduce the scheduling
order (i.e., the uncertainty blocks) , such that a reduced scheduling order model (defined
with ∆t

r ∈ Θt
r ⊂ Θt and ∆s

r ∈ Θs
r ⊂ Θs) is obtained; this completes steps 1–4 of the

joint order reduction scheme which is given below. Second, proceed with the reduction
procedure by applying the transformation T (∆t

r,∆
s
r) in order to reduce the state order of

the system as well, such that finally we obtain a jointly reduced dynamic and scheduling
order model. Note that when using CGs, the reduction procedure is applied directly to
simultaneously reduce the scheduling order and the state order of the system. That is
because the transformation T ∈ T is constant (does not depend on (∆t,∆s) or (∆t

r,∆
s
r)).

Joint Order Reduction Scheme Using PDGs
Begin with system G(∆t,∆s) defined in (5.1) with state order n, temporal and spatial
scheduling orders nt and ns, respectively; follow the steps:

1. Find X(∆t,∆s), Y (∆t,∆s) ∈ S and Πx,Πy ∈ PD that satisfy (5.17) and (5.18) for
all (∆t, ∂∆t) ∈ Θt ×Θt

∂ and (∆s, ∂∆s) ∈ Θs ×Θs
∂ and

minimize rank(Πx) and rank(Πy). (5.19)

2. Construct a transformation W ∈ W that
[
W−1

W−1

]

Πy

[
W−T

W−T

]

=

[
Ψ

−Ψ

]

and
[
W T

W T

]

Πx

[
W

W

]

=

[
Ψ

−Ψ

]

,where Ψ =

[
Ψ∆t

Ψ∆s

]

is diagonal.
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3. Define Ã(∆̃t, ∆̃s), B̃(∆̃t, ∆̃s), C̃(∆̃t, ∆̃s) and D̃(∆̃t, ∆̃s) as in (5.16) (see Fig. 5.3) for
T (∆̃t, ∆̃s) = ∂T−1(∆̃t, ∆̃s) = I.

4. Partition Ψ =

[
Ψs

Ψns

]

, Ψs = diag(Ψs
∆t ,Ψs

∆s) and Ψns = diag(Ψns
∆t ,Ψns

∆s) according

to the significant and non-significant singular values, where Ψs ∈ R(nt
r+n

s
r)×(nt

r+n
s
r)

and Ψns ∈ R((nt−nt
r)+(ns−ns

r))×((nt−nt
r)+(ns−nt

r)).
Consequently, partition the transformed system matrices conformably with Ψ. Then
truncate the non-significant parts from Ψ and accordingly from Ã(∆̃t, ∆̃s), B̃(∆̃t, ∆̃s),
C̃(∆̃t, ∆̃s) and D̃(∆̃t, ∆̃s) to get A(∆t

r,∆
s
r), B(∆t

r,∆
s
r), C(∆t

r,∆
s
r) and D(∆t

r,∆
s
r).

This completes the scheduling order reduction steps and provides the starting for
the next four steps of reducing the state order of the system.

5. Solve the resulting reduced version of (5.17) and (5.18) for X(∆t
r,∆

s
r), Y (∆t

r,∆
s
r) ∈

S, and Πxr,Πyr ∈ PDr (where PDr is the reduced version of PD defined in (4.15))
for all (∆t

r, ∂∆
t
r) ∈ Θt

r ×Θt
∂r and (∆s

r, ∂∆
s
r) ∈ Θs

r ×Θs
∂r that

minimize rank(X(∆t
r,∆

s
r)) and rank(Y (∆t

r,∆
s
r)). (5.20)

6. Construct the transformation operator T (∆t
r,∆

s
r) ∈ Γ, that for all ∆t

r ∈ Θt
r, ∆s

r ∈
Θs
r simultaneously diagonalizes X(∆t

r,∆
s
r), Y (∆t

r,∆
s
r) ∈ S, i.e.

T−1(∆t
r,∆

s
r)Y (∆t

r,∆
s
r)T

−∗(∆t
r,∆

s
r) = T ∗(∆t

r,∆
s
r)X(∆t

r,∆
s
r)T (∆

t
r,∆

s
r)

= diag(Σ1(∆
t
r),Σ2(∆

s
r),−Σ3(∆

s
r)) = Σ(∆t

r,∆
s
r)

is diagonal for all ∆t
r ∈ Θt

r, ∆
s
r ∈ Θs

r, and Σ contains the generalized singular values
along its diagonal in descending order.

7. Define Ã(∆t
r,∆

s
r), B̃(∆t

r,∆
s
r), C̃(∆t

r,∆
s
r) and D̃(∆t

r,∆
s
r) as in (5.16) (see Fig. 5.3)

for W = W−1 = I.

8. Partition each Σi(∆
t
r,∆

s
r), i = 1, 2, 3, into two blocks according to the significant (s)

and non-significant (ns) singular values as Σi(∆
t
r,∆

s
r) =

[
Σsi (∆

t
r,∆

s
r)

Σnsi (∆t
r,∆

s
r)

]

,

i = 1, 2, 3, such that Σsi has dimension nri× nri and Σnsi has dimension (ni− nri)×
(ni − nri), i = 1, 2, 3.

Consequently, partition Ã(∆t
r,∆

s
r), B̃(∆t

r,∆
s
r), C̃(∆t

r,∆
s
r) and D̃(∆t

r,∆
s
r) conformably

with Σi(∆
t
r,∆

s
r), i = 1, 2, 3. Then truncate the non-significant parts from each block

of Σi(∆
t
r,∆

s
r) and accordingly from the transformed matrices to get Ar(∆

t
r,∆

s
r),

Br(∆
t
r,∆

s
r), Cr(∆

t
r,∆

s
r) and Dr(∆

t
r,∆

s
r), see (5.4).

Note that conditions (5.17), (5.18) need to be checked at infinitely many points inside
Θt ×Θt

∂ and Θs ×Θs
∂, due to the introduction of PDGs rather than CGs. The following

two approaches can be used to solve the above problem, such that the conditions are
reduced to finite dimensions
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• Define a grid on the admissible parameter ranges Θt × Θt
∂ and Θs ×Θs

∂, such that
we solve the inequalities at each grid point.

• Before applying the FBSP, parameterize X(∆t,∆s), Y (∆t,∆s) ∈ S (in (5.14)) in
quadratic LFT form of ∆t,∆s [90], [8] i.e.,

X(∆t,∆s) = L∗
x(∆

t,∆s) X Lx(∆
t,∆s),

Y (∆t,∆s) = L∗
y(∆

t,∆s) Y Ly(∆
t,∆s).

where Lx(∆
t,∆s), Ly(∆

t,∆s) are pre-specified LFT functions of ∆t,∆s and X, Y ∈
X are constant (parameter-independent) matrices defined as decision variables. This
approach suffers from the difficulty of imposing the rank minimization constraint
on X(∆t,∆s), Y (∆t,∆s) ∈ S for this case. Experience with practical examples
suggests however that it performs reasonably well.

Remarks:

1. The non-convex rank constraints (5.19) and (5.20) are solved using Algorithm 3.3.1,
or Algorithm 3.4.

2. Due to the use of PDGs, the reduced model is defined with respect to (∆t
r, ∂∆

t
r) ∈

Θt
r×Θt

∂r and (∆s
r, ∂∆

s
r) ∈ Θs

r×Θs
∂r. We suppress here the dependence on ∂∆t

r and
∂∆s

r for simplicity of presentation. In addition, the reduced system is not defined
in LFT form (as in Fig. 5.1) any more, in contrast to the case where CGs are used.

5.4 Application to an Actuated Beam

The actuated beam in Fig. 4.4 of Chapter 4 is used here to demonstrate the efficiency of
the proposed results. As mentioned, the system has state order n = 2 + 4 + 4 = 10 and
spatial scheduling order ns = 2, see Section 4.5.

The application of the proposed approach gives a reduced model of state order nr =
2+2+2 = 6 and reduced spatial scheduling order nsr = 1, and an error bound γ = 0.0972.

Fig. 5.4 shows the simulated responses over time of the third, fifth and ninth subsystem
to a step disturbance (applied to subsystem 5), comparing the original identified model
and the reduced models obtained by using the results presented in Section 5.2 (CG) and
in Section 5.3 (PDG). According to Fig.5.4, clearly using CG leads to conservatism, while
using PDG reduces this conservatism.

In addition, a comparison is made using experimental measurements with the injection
of 10 noise signals in parallel to 10 actuators as inputs. Fig.5.5 shows the measured
output (Measured), simulated output using the original model (Full), and the output of
the reduced model (Reduced) for the first and eighth subsystem, respectively.
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Figure 5.4: Simulated responses over time of the (from top to bottom) 3rd, 5th and 9th

LPV subsystem to a disturbance step
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Figure 5.5: Responses over time of the 1st (top) and 8th (bottom) subsystems to 10 noises
signals applied in parallel to 10 actuators, experimentally.

5.5 Conclusion

In this chapter, a practical method for reducing both the state and the scheduling order
of exponentially stable parameter-dependent spatially interconnected systems has been
presented, and a guaranteed error bound has been established. Utilizing the full block
S-procedure leads to efficient solutions and reduced conservatism. Constant as well as
parameter-dependent generalized Gramians have been considered. Application of the
proposed procedures to an experimentally identified actuated beam shows its practicality,
and demonstrates the reduction of conservatism when PDGs are employed.



Chapter 6

Conclusion

6.1 Summary

This thesis considers complexity reduction for spatially interconnected systems. Such
systems are governed by a spatial-discretization of a Partial Differential Equation, such
that the system is represented as a spatial interconnection of subsystems; each subsystem
is defined as a two-dimensional model with respect to time and space.
Such large-scale systems can be complex due to several reasons, such as the interconnection
structure, a high order representation, or the dependence on several time and space varying
parameters (in the case of parameter-varying systems). This thesis addresses the problem
of reducing the complexity of such systems and proposes new methods for solving the
reduction problem for such multidimensional systems. The spatial interconnection of the
system is preserved when solving the reduction problem.

The accuracy of a reduced model is measured via the induced norm of the error system
(the difference between the original system and the reduced one); bounds on this error
have been established as well.

The work is based on representing the system in Linear Fractional Transformation form
with respect to shift operators, which allows to employ results on model reduction for un-
certain systems and helps to extend results on lumped systems to spatially interconnected
systems.

Considered are both parameter-invariant (LTSI) and parameter-varying (LTSV) systems.

Model Order Reduction (MOR) for LTSI systems considered in chapter 3 is based on
balanced truncation (through balancing the Gramians) via solving a pair of Lyapunov
inequalities with one rank constraint, which is non-convex; efficient methods for lineariz-
ing the non-convex rank constraint are used. The reduced model preserves the spatial-
structure as well as the stability of the system, provided that the original model is stable.
The proposed method can cope with the fact that the considered systems are non-causal
with respect to space.

Model reduction for LTSV systems is considered in Chapters 4 and 5 using Constant
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Gramians (CG) as well as Parameter-Dependent Gramians (PDG) to reduce conservatism.
Due to parameter variation with respect to time and space, the reduction problem has
an infinite number of conditions to be solved. In order to reduce conditions to a finite
number, two approaches are considered: first, defining a grid on the admissible parameter
range (in the application part, where it has been used for a comparison) and second, using
the full block S-procedure (FBSP). A comparison between the latter two approaches is
discussed as well. This thesis shows that the FBSP is applicable to solve the model
reduction problem efficiently and avoids gridding.

The complexity of parameter-varying systems is not only determined by the state order
of the system, but also by the scheduling order. Therefore, the problem of joint state and
scheduling order reduction for LTSV systems is proposed in Chapter 5 (through balancing
the Gramians as well as the multipliers). In this chapter, a comparison between the use
of CGs and PDGs is also discussed.

For all the above cases, error bounds have been established. In addition, the performance
of the proposed methods has been demonstrated with the application to an experimen-
tally identified piezoelectric actuated beam.

6.2 Outlook

An outlook on possible future research is summarized by the following aspects.

• Using PDGs in model reduction of LTSV systems (such as in Section 5.3) raises
some issues;

– The error bound between the original system and the reduced one is dependent
on ∆t ∈ Θt and ∆s ∈ Θs. A way to define that error bound is to consider it
for admissible value of frozen scheduling parameters (which is conservative).
In order to reduce the conservatism, the (time and space) varying scheduling
signals should be taken into consideration while defining the error bound. In
this case, we have to consider twice the sum of all truncated generalized singular
values along time and space as shown in e.g., [28], [91], [92] and [93] for lumped
LTV systems which is generalized to LTSV systems in [66] and then improved in
[84] in order to avoid the sum of all truncated generalized singular values along
time and space, but instead only some of them have been considered. That
what already has been done, further improvement is an interesting research.

– After applying balanced truncation, the reduced system matrices are dependent
on the rate of change of the scheduling parameters (due to the introduction of
the parameter-dependent transformation) which would complicate the resulting
reduced system unless a balanced transformation which does not depend on the
rate of the scheduling parameters is obtained. Work in this direction would be
of interest. Even though several methods proposed in the literature address this
issue for 1-D (lumped) systems see e.g. [94], [95], [96], [97], unfortunately these
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methods lead to unbalanced models, in addition no a priori error bound can
be guaranteed. In these approaches, after defining several local (at each grid
point) balanced transformations, a global transformation has to be constructed
(which is parameter-independent) and used to transform the original system
matrices and constructing a reduced system, which is then no longer guaranteed
to be balanced even at each local point.

• Using dynamic multipliers [98], [99] rather than static ones (such as Πx and Πy

which have been used in the thesis) helps in reducing the conservatism of the model
reduction problem. While the FBSP reduces the complexity of the analysis problem,
dynamic multipliers further reduce the conservatism. Therefore, improved results
may be obtained based on dynamic multipliers rather than constant ones.

A starting point for doing this could be the following observation.
First let us simplify the problem by considering the case of 1D lumped LPV systems.
Also, assume that the LPV system is defined as with only one scheduling parameter,
such that the considered system can be represented as in Fig. 6.1. Extension to the
more general case of more than one scheduling parameter is straightforward.

y

δI

u





A B0 B1

C0 D00 D01

C1 D10 D11





Figure 6.1: LPV system with one scheduling parameter

For both cases (using static and dynamic multipliers), conditions (which to be solved
in order to construct a balancing transformation T ) for generating a reduced model
based on balanced truncation are given next.

– Static Multipliers:

The conditions (6.1) and (6.2) have to be solved for Y > 0, X > 0, and
symmetric multipliers Πy and Πx

[∗]∗







Y
Y

Πy

I















I 0
A∗ C0∗

0 I
B0∗ D00∗

B1∗ D01∗









< 0, [∗]∗Πy

[

δI

I

]

≥ 0 (6.1)
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
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< 0, [∗]∗Πx

[

δI

I

]

≥ 0. (6.2)

– Dynamic Multipliers:

In this case one can define (and factorize) the frequency dependent multipliers
Πy = Ψ∗NΨ and Πx = Φ∗MΦ, where N and M are static matrices, while

Ψ =

[
Aψ Bψ

Cψ Dψ

]

and Φ =

[
Aφ Bφ

Cφ Dφ

]

.

We have (directly using the Kalman-Yakubovich Lemma, [100]) to solve con-
ditions (6.3) and (6.4) for symmetric Y, N , S and X,M , R with Y22 > 0 and
X22 > 0
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Y
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(6.3)
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Ĉ D̂
C1 D10










< 0, [∗]∗




R
R

M











I 0
Aφ Cφ
Bφ Dφ

0 I






> 0

(6.4)

where

[
A B
C D

]

=





Aψ BψC
0 BψD

00

0 A B0

Cψ DψC
0 DψD

00



 ,

[
Â B̂
Ĉ D̂

]

=





Aφ BφC
0 BφD

00

0 A B0

Cφ DφC
0 DφD

00





and B1 =

[
0
B1

]

, C1 =
[
0 C1

]
.

Also Y =

[
Y11 Y12

Y21 Y22

]

, X =

[
X11 X12

X21 X22

]

are partitioned according to A and Â.

The positive definiteness constraint on Y22 or/and X22 is to ensure the stability
of the system [101], as is clear from the first block of first inequality in (6.3)
or/and (6.4).
Then construct a balancing transformation T such that the transformed (bal-
anced) system is defined as
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[

Ã B̃
C̃ D

]

=





I
T−1

I









Aψ BψC0 BψD00

0 A B0

Cψ DψC0 DψD00
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

Aψ BψC̃0 BψD00

0 Ã B̃0

Cψ DψC̃0 DψD00






and
T−1Y22T

−T = T TX22T = Σ.

Clearly, by comparing the above conditions (6.1), (6.2) with (6.3), (6.4), the latter
ones are less conservative than the first ones, due to the presence of extra free
variables.





Appendix A

Lyapunov Stability for Non-Causal
Systems

Consider the 1D discrete-time system

x(t + 1) = Ax(t), x(t) ∈ R
n (A.1)

We consider the Lyapunov stability of such a system, by defining a candidate Lyapunov
function V (x(t)) = xT (t)Px(t), P > 0, and the Lyapunov difference as

xT (t+ 1) P x(t + 1)− xT (t) P x(t) < 0, ∀x 6= 0. (A.2)

System (A.1) is stable if x(t+ 1) < x(t), ∀t ≥ 0 is satisfied. Then, P > 0 satisfying (A.2)
will ensure the stability of the system.
If we suppose that system (A.1) is non-causal and consider −∞ < t < ∞, then P < 0
will satisfy (A.2), such that x(t) < x(t + 1), for −∞ < t ≤ 0 which is exactly what is
required for the backward shift such that:

x(t) = Ax(t + 1), (A.3)

see Figure A.1.

t

x(t)

1 2 · · ·−1· · · − 2 0

Figure A.1: Decreasing states in both directions
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Appendix B

Proof of Theorem 3.3

This proof is an extension of the 1D systems case given in [102], [28] to non-causal MD
systems.
Define the continuous-time and -space domain system of (2.7) as:

z(t, s) = A ξ(t, s) +B u(t, s)

y(t, s) = C ξ(t, s) +D u(t, s)

where1 z(t, s) = ∆−1ξ(t, s) =





ẋ(t, s)
w+(t, s)
w−(t, s)



; ξ(0, s) = 0 and ξ(t, 0) = 0. (For simplicity of

presentation, sometimes we drop the dependence on t and s.

Partition ξ =

[
ξs

ξns

]

according to significant (s) and non-significant (ns) states such that

ξs =





xs

vs+
vs−



, ξns =





xns

vns+
vns−



, and accordingly z =

[
zs

zns

]

.

Introduce a corresponding partition of the matrices A, B and C as

A =

[
Ar A12

A21 A22

]

, B =

[
Br

B2

]

and C =
[
Cr C2

]
(B.1)

such that the dimensions of Ar, A12, A21, A22 are (nr×nr), (nr×n−nr), (n−nr×nr), (n−
nr×n−nr), respectively; the dimensions of Br, B2 are (nr×nu), (n−nr×nu), respectively;
and the dimensions of Cr, C2 are (ny × nr), (ny × n− nr), respectively.
Matrices Ar, Br and Cr are defined in (3.13) and the other matrices are defined accord-
ingly.

1Note that we present the differential and the integral of v+(t, s), v−(t, s) respectively, as
w+(t, s), w−(t, s); see (3.3).
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According to the above partitions, we define the reduced system as

zr = Ar ξ
r +Br u

yr = Cr ξ
r +D u,

ξr(0, s) = 0; ξr(t, 0) = 0.

Define the auxiliary signal

ẑ = A21ξ
r +B2u.

Suppose that Σ =





Σs
[
σn1−1

σn1

]



, such that Σns =

[
σn1−1

σn1

]

and nr = n−2. Start

by removing the state with the generalized singular value σn1
, then proceed iteratively

and remove σn1−1. For simplicity of presentation, we use σ.
Rewrite the non-strict inequalities (dropping the ˜ ) in (3.11) as

[
A
I

]∗ [
Σ

Σ

] [
A
I

]

+ C∗C ≤ 0 (B.2)

[
A B
I 0

]∗ [
Σ−1

Σ−1

] [
A B
I 0

]

+

[
0 0
0 −I

]

≤ 0. (B.3)

Multiplying inequality (B.2) with the row vector [(ξs − ξr)∗ ξns∗] from the left and
its complex conjugate from the right, and adding this to the inequality obtained by
multiplying inequality (B.3) with the row vector σ[(ξs + ξr)∗ ξns∗ 2u∗] from the left
and its complex conjugate from the right, we obtain







zs − zr

zns − ẑ
ξs − ξr

ξns







∗ 





Σs

σ
Σs

σ













zs − zr

zns − ẑ
ξs − ξr

ξns






+ (y − yr)

∗(y − yr)

+σ2













zs + zr

zns + ẑ
ξs + ξr

ξns







∗ 





(Σs)−1

σ−1

(Σs)−1

σ−1













zs + zr

zns + ẑ
ξs + ξr

ξns













− 4σ2 u∗u ≤ 0.

(B.4)

Then double-integrating the resulting inequality (B.4) over the time interval [0, T ] and
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space interval [s, s] we obtain

∫ T

0

∫ s

s

[
∗
]∗







Σs

σ
Σs

σ


































ẋs

ws
+

ws
−



−





ẋr

wr
+

wr
−









ẋns

wns
+

wns
−



− ẑ





xs

vs+
vs−



−





xr

vr+
vr−









xns

vns+
vns−




























ds dt+

∫ T

0

∫ s

s

(y − yr)
∗(y − yr) ds dt

+ σ2
















∫ T

0

∫ s

s

[ ∗ ]∗
[

(Σs)−1

σ−1

(Σs)−1

σ−1

]




















ẋs

ws
+

ws
−



+





ẋr

wr
+

wr
−









ẋns

wns
+

wns
−



+ ẑ





xs

vs+
vs
−



+





xr

vr+
vr
−









xns

vns
+

vns
−




















ds dt
















−4 σ2

∫ T

0

∫ s

s

u∗u ds dt ≤ 0.

Recall that Σs = diag(Σs1,Σ
s
2,−Σs3). We can rewrite the above inequality as

∫ T

0










−
∫ s

0

[ ∗ ]∗
[

−Σs
3

−Σs
3

]





[

ws
−

− wr
−

wns
−

]

[

vs
−

− vr
−

vns
−

]



 ds+

∫ s

0

[∗]∗







Σs
1

Σ2s

σ
Σs

1

Σs
2

σ
















[

ẋs

ws
+

]

−

[

ẋr

wr
+

]

[

ẋns

wns
+

]

[

xs

vs
+

]

−

[

xr

vr
+

]

[

xns

vns
+

]










ds










dt
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−σ

∫ T

0

∫ s

s

2ẑ∗ξnsds dt+

∫ T

0

∫ s

s

(y − yr)
∗(y − yr) ds dt

+ σ2

∫ T

0
















−
∫ s

0

[
∗
]∗
[

(−Σs3)
−1

(−Σs3)
−1

]







[
ws

− + wr
−

wns
−

]

[
vs− + vr−

vns−

]






ds

+

∫ s

0

[
∗
]∗











(Σs1)
−1

(Σs2)
−1

σ−1

(Σs1)
−1

(Σs2)
−1

σ−1


























[
ẋs

ws
+

]

+

[
ẋr

wr
+

]

[
ẋns

wns
+

]

[
xs

vs+

]

+

[
xr

vr+

]

[
xns

vns+

]
















ds
















dt

+ σ

∫ T

0

∫ s

s

2ẑ∗ξnsds dt− 4 σ2

∫ T

0

∫ s

s

u∗u ds dt ≤ 0.

Note that the third and seventh term in the latter inequality cancel each other; moreover,
the remaining terms are positive and the result follows by letting T → ∞, s → ∞ and
s → −∞,

‖ y − yr ‖2L2
≤ 4 σ2 ‖ u ‖2L2

,

which completes the proof.



Appendix C

The Equivalence Between (5.11) and
(5.7)

Inequality (5.11) is equivalent to the transformed version of (5.7), where expanding (5.11)
and applying the Schure complement yield





A∗Σ−1 + Σ−1A Σ−1B0 Σ−1B1

B0∗Σ−1 −Ψ−1 0
B1∗Σ−1 0 −I



+





C0∗

0
D01∗



Ψ−1
[
C0 0 D01

]
< 0. (C.1)

Pre- and post-multiplying (C.1) by diag(Σ, I, I) and applying the Schur complement twice
gives the equivalence; we obtain

[
ΣA∗ + AΣ+B0ΨB0∗ B1

B1∗ −I

]

+

[
ΣC0∗

D01∗

]

Ψ−1
[
C0Σ D01

]
< 0.
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Appendix D

State-space Models of Actuated
Beam

D.1 Spatially Invariant System

A state-space model for a single subsystem of the experimentally identified beam as in
(2.5) is

T+x







w+















w
−

























































y(t − 2, s)
y(t − 1, s)
y(t, s)

y(t − 2, s− 1)
y(t − 2, s)

y(t − 1, s− 1)
y(t − 1, s)

y(t − 2, s+ 1)
y(t − 2, s)

y(t − 1, s+ 1)
y(t − 1, s)

y(t, s)











































=











































0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 a2,0 a1,0 a2,2 a2,1 a1,2 a1,1 a2,−2 a2,−1 a1,−2 a1,−1 1

0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0

b3,0 b2,0 b1,0 0 0 0 0 0 0 0 0 0





















































































y(t − 3, s)
y(t − 2, s)
y(t − 1, s)

y(t − 2, s− 2)
y(t − 2, s− 1)
y(t − 1, s− 2)
y(t − 1, s− 1)
y(t − 2, s+ 2)
y(t − 2, s+ 1)
y(t − 1, s+ 2)
y(t − 1, s+ 1)

u(t, s)

















































x















v+















v
−

(D.1)

In this case, n = 11;nu = ny = 1; nu, ny are the number of inputs and outputs of the
system, respectively. Here, n = n1 + n2 + n3; n1 = 3 due to a three-step temporal shift
(Figure 3.4), n2 = n3 = 4 due to four-step spatial forward and backward shifts, respec-
tively. The values of the a and b coefficients are as follows.

a1,2 a1,1 a1,0 a1,−1 a1,−2 a2,2 a2,1 a2,0 a2,−1 a2,−2 b1,0 b2,0 b3,0
-0.1456 -0.0451 -0.0098 0.2016 0.2288 0.0822 0.0453 -0.0223 -0.1061 -0.0215 -0.0071 -0.0720 -0.039

91



Appendix D. State-Space Models of Actuated Beam D.2. Spatially Varying System

D.2 Spatially Varying System

A state-space model of a spatial-LPV subsystem of the experimentally identified beam is

T+x

{

w+







w−




























y(t− 1, q)
y(t, q)

y(t− 2, q − 1)
y(t− 2, q)

y(t− 1, q − 1)
y(t− 1, q)

y(t− 2, q + 1)
y(t− 2, q)

y(t− 1, q + 1)
y(t− 1, q)

y(t, q)






















= M(ρ))






















y(t− 2, q)
y(t− 1, q)

y(t− 2, q − 2)
y(t− 2, q − 1)
y(t− 1, q − 2)
y(t− 1, q − 1)
y(t− 2, q + 2)
y(t− 2, q + 1)
y(t− 1, q + 2)
y(t− 1, q + 1)

u(t, q)






















}

x






v+







v−

(D.2)

where M(ρ) =





















0 1 0 0 0 0 0 0 0 0 0
α8(ρ) α3(ρ) α6(ρ) α7(ρ) α1(ρ) α2(ρ) α10(ρ) α9(ρ) α5(ρ) α4(ρ) 1

0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0

β2(ρ) β1(ρ) 0 0 0 0 0 0 0 0 0





















In this case, n = 10; nu = ny = 1; n = n1 + n2 + n3, n1 = 2, n2 = n3 = 4.
The α and β coefficients are affine functions of the spatial scheduling parameter ρ(q):

αd(ρ(q)) = αd1 + ρ(q) αd2, d = 1, · · · , 10,
βz(ρ(q)) = βz1 + ρ(q) βz2, z = 1, 2,

where ρ(q) varies along q = 1, · · · , 10.



Appendix E

Auxiliary Results

E.1 Bilinear Transformation

Here, in order to clarify the presentation, we refer to the discrete-domain system matrices
as: Ad, Bd, Cd and Dd, while the continuous system matrices are A, B, C and D.

With H =





In1

In2

−In3



, the transformation from temporal- and spatial-discrete domain

into temporal- and spatial-continuous domain is given by [12]

A = H (Ad − I) (Ad + I)−1

B =
√
2 H (Ad + I)−1Bd

C =
√
2 Cd (Ad + I)−1

D = Dd − Cd (Ad + I)−1Bd.

(E.1)

E.2 Elimination Lemma [1]

Lemma E.1 Given a matrix R = R∗ ∈ C
m×m and given full column rank matrices

U ∈ Cm×l and V ∈ Cm×k. Let U⊥, V⊥ denote the matrices such that [U U⊥] , [V V⊥]
are square and invertible with U∗

⊥U = 0, V ∗
⊥V = 0. Then, there exists a matrix K ∈ Cl×k,

such that
R + UKV ∗ + V K∗U∗ < 0 (E.2)

if and only if
U∗
⊥RU⊥ < 0 and V ∗

⊥RV⊥ < 0. (E.3)
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Z Set of integers

Z+ Set of nonnegetive integers

R Set of real numbers

C Set of complex numbers

n Size of the state vector

n1 Size of the temporal state vector

n2, n3 Size of the forward/backward spatial state vectors

i Temporal, forward/backward spatial index

nr Size of the reduced state vector

nt, ns Size of the temporal/spatial uncertainty
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r Size of the reduced temporal/spatial uncertainty
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ny Size of the physical output
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Shorthand for parameter-invariant state space realization
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Shorthand for state space realization varying on ∆

diag Diagonal matrix

δ Temporal scheduling parameter

ρ Spatial scheduling parameter

∂(.) Variation rate
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X Structured generalized Gramian
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X Set of structured generalized Gramian
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k Controller
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⊥ Perpendicular complement
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