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1 Introduction

For several decades, scientists have warned about the dangers of climate change [1].
Today, extreme weather events such as very high temperatures or flooding as a result
of the anthropogenic climate change are already visible [2]. Without more restrictive
measures to mitigate greenhouse gases, the global mean temperature will increase by
3.7-4.8 degrees Celsius compared to pre industrial times according to the IPCCC [3].

Germany wants to reduce its greenhouse gas emissions by 65% until 2030 and aims to
be net zero by 2045 [4]. The largest greenhouse gas emitter was detected to be the
energy supply sector. On a global scale, the emissions of this sector are predicted to
double or even triple until 2050 compared to those 2010, unless new ways of mitigation
are introduced [3] In order to keep the rise in temperature under the 1.5 degrees Celcius
agreed on the Paris agreement, the total CO2 emissions of this sector have to decline by
45% from the level of 2010 and have to be net zero by 2050 [3].

In order to achieve this, there needs to be a shift from fossil fuels to renewable ener-
gies. This change from a few centralized energy sources to many decentralized renewable
energy sources is a huge economic and organisational challenge. Obviously, huge invest-
ments and many difficult political decisions have to be made. Energy system modelling
can play a crucial role in guiding these investments and decisions.

There already are various energy system modelling tools, some of them commercial
licensed and some of them open source. However, (free) open source programs are
of particular significance, because it is important that these difficult decisions are made
based on information accessible to everyone. In addition, since the trend goes to systems
of decentralized renewable energy sources, economic considerations play a growing role.
This is in particular true for poorer regions of the world.

To lower the threshold of using these software, the Hamburg University of Technology
started a program called Tessif (short for Transforming Energy Supply System Frame-
work). Through this framework it is possible to use different free open source energy
system modelling software.

One of the crucial characteristics of an algorithm, or in this particular case a modelling
tool, is the computational complexity, since time (or memory space) is an extremely
valuable resource. The main objective of this thesis is to develop a method to measure
and compare the computational complexity of open source energy system modelling tools
used through Tessif. We will use this tool to then analyse and compare two commonly
used modelling tools, namely Oemof and PyPSA.

To do so, we start by giving an overview of the theoretical background and describe the
development of the measurement functions. Subsequently follows the above mentioned
analysis of the two open source modelling tools. Finally, we summarize the results.
Most importantly, it is verified that the complexity class for the total resource usage as
well as for the running time and the memory usage is O(n) for both modelling tools.
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1 Introduction

Moreover, the biggest resource consumer is the optimization process which is done by
the integrated modelling tool.
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2 Theoretical Framework

The purpose of the following chapter is to build the theoretical framework for this the-
sis. We start by discussing the general principles of energy systems and energy system
modelling. Following that, various tools for energy system modelling are introduced.
We focus on open source software because of their special significance. Most impor-
tantly, Tessif and in particular its ability to execute several different simulation tools are
reviewed.

Finally, in view of the main objective of this thesis, we introduce the concept of compu-
tational complexity of an algorithm. This chapter is then concluded by an throughout
review of our functions, which we built to analyse the computational complexity of
modelling tools in Tessif.

2.1 Energy Systems

An energy system is defined as a system that comprises all processes from the energy
generation to the final consumption of the end user [3].

The first component of an energy system is the primary energy, for example oil, radioac-
tive plutonium or wind. In order to use this primary energy it has to be processed, e.g.
oil is refined, plutonium is used in nuclear power plants and wind is transformed with
help of turbines into electricity. This is called the conversion to secondary energy. From
there, the energy is either transported to the place of final consumption or it is stored.
In our example, the generated electricity of either the nuclear power plant or turbines is
fed into an electrical grid from where it can be stored in a storage system or delivered
to the end consumer. The refined oil on the other hand is directly transported to the
place of final consumption. In Figure 2.1 the process from the primary energy to the
final consumption or storage for the usual forms of primary energy is summarized.

There are several ways to store energy, ranging from batteries to hydropower storages.
From there the energy can be resupplied to the electricity grid if the demand is higher
than the current energy production. However, with every conversion there are losses.
Indeed, this is a big issue in the energy supply sector, which looses 29,3% of the primary
energy given into the systems. Therefore, one could say that the energy supply sector
itself is its biggest consumer [3] .

The energy supply sector is the largest sectorwise contributor of greenhouse gases. It is
responsible for about 35% of the total anthropogenic emissions in 2010. In addition, the
energy demand is growing fast. The gradient grew from 1.7% a year from 1990-2000 to
3.1% from 2000-2010. Consequently, it is not surprising that the baseline scenarios from
the IPCCC predict that the annual emissions from the energy supply sector will grow
from 14.4 GtCO2/perYear in 2010 to 24-33 GtCO2/perYear in 2050 [3].

3



2 Theoretical Framework

Figure 2.1: Graphical display of an energy system (own figure)

Consequently, good ideas on how to mitigate emissions by the energy supply sector are
essential for battling climate change. Improving on the energy efficiency of fossil power
plants or change from coal to gas is not going to be sufficient to realise the goals agreed
on in the Paris agreement. There needs to be a fundamental transformation of the
energy supply sector. Energy system modelling is expected to play an important role in
this fundamental transformation, in a way outlined in the next section.

2.2 Energy system modelling

Energy system models are the mathematical representation of an energy system. They
are translated into computer models in order to analyse them. Energy system modelling
started in the 1960s. Back then, the models were built to analyse the power sector for
industrial purposes [5]. Later, policy took an interest in this topic, which lead to more
sophisticated models on a larger scale. Because of the rising environmental concerns,
a fundamental shift in the structure of energy systems and the requirements for the
modelling tools had to be made. [6]

To realize the mitigation goals agreed on in the Paris agreement and to respond to safety

4



2 Theoretical Framework

concerns, energy systems are changing from having centralized fossil or nuclear power
plants to having many decentralized renewable energy sources. These changes come with
many new challenges. In particular, the higher complexity of energy systems requires
the modelling tools to be more sophisticated as well.

Roughly speaking, there are four different approaches to build an energy modelling tool
[6]. One is to focus on a small scale energy system with high detail. Tools developed
for this purpose can be used for example to analyse the connection of a wind turbine
unite and its effect on a electrical grid. It is then possible to gain knowledge about the
power flow and the stability of this particular grid. It usually operates on small time and
geographic scales. Those tools are often refereed to as Power System Analysis Tools.

The second approach is similar to the first one. The tools here operate on a larger
geographic scale (e.g. national level) but still on a rather short time scale. They are
mostly used as a support for making operational decisions.

The third one focuses on the energy system in general and how to optimize it and
transform it with new components in the future. This is the approach this thesis focuses
on.

The fourth one is to examine how new policies impact the energy supply sector. An
example of such a policy is the carbon tax. The third and fourth approach operate on
larger time scales that can last up to several decades. Simulating and optimizing that
much data is very costly in terms of computational resources.

2.3 Tessif

Tessif short for “Transforming Energy Supply System Framework” is written in the
programming language Python. It aims to be an interface for different free open source
energy modelling tools. Its main objective is to make the use of energy modelling tools
easier for people who are not too familiar with programming in general. Furthermore,
it offers a platform on which these tools can be compared and analysed. Implemented
in Tessif are several open source modelling tools, for example Oemof or PyPSA. These
tools were built by different organisations and hence differ in a lot of aspects. To lower
the threshold of using them, Tessif generalizes several aspects of those tools like data
in- or output, by transforming them into a common data format. Moreover, Tessif also
comes with several visualization tools, which are very helpful for interpreting the results.
In this context, one particular advantage is that the representation is independent from
the chosen modelling tool. A detailed documentation is provided in [7].

Tessif interprets an energy system as a graph which contains all relevant information.
This graph consists of nodes and edges, see figure 2.2. The edges usually represent the
energy flow, but in theory it can be a flow of any kind. The nodes usually represent energy
sources like power plants, storages, or other energy system components. Tessif can be
used for a wide range of applications, from small scale modelling (e.g. the energy supply
of one household) to the whole integrated European Network. However, it is optimized
for medium to large scale energy systems. Implemented in Tessif are several functions
to analyse optimization and modelling results of the integrated energy system modelling
tools. They help with the general understanding of the results and can also provide
information about which tool is best suited for the given task. Next to the accuracy and
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Figure 2.2: Representation of an Energy system as a graph(own figure generated with Tes-
sif)

reliability of a tool it is also important to keep an eye on the computational resources
needed to generate the results. A large scale simulation like the previously mentioned
optimization of the integrated European Network is a very complex task which needs a
lot of memory space and time. This corresponds to high costs for the end user. In this
thesis, new ways to measure the amount of computational resources are implemented
and reviewed.

2.4 Oemof

Oemof was founded in 2014 by researchers from the Center for Sustainable Energy
Systems in Flensburg in cooperation with researchers from the Reiner Lemoine Institute
in Berlin. It was originally developed to model energy systems from the heat and power
sector, but as time passed more researchers from other facilities joined and the Oemof
modelling framework grew bigger. New packages were included which specialize on
different tasks of the energy system modelling process. The program and documentation
can be found in [8]

The most famous Oemof package is oemof.solph which is also the package used in this
thesis. It is commonly used to generate tools for either mixed linear optimization or
linear optimization of energy systems.

The oemof.solph package builds a graph consisting of busses and energy system compo-
nents very similar to Tessif. These busses and components are connected via edges. They
represent the direction of e.g. the energy flow or the direction of fossil fuels. This graph
contains all the information about the energy system and the interactions of different
components with one another. The graph will then be transformed into an optimisation
model. The optimisation process will be done automatically by the python based open
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2 Theoretical Framework

source software package “pyomo”. This simplifies the process substantially, because an
in depth knowledge of the mathematical background is not strictly necessary, allowing
for usage by a wider range of people.

The energy system is optimized and solved with respect to several parameters. The main
goal is to minimize costs. These costs do not have to be exclusively of economic nature.
They can also be of environmental or technical nature. Finally, it is also possible to
simulate different investment scenarios to help make decisions on which form of energy
production to invest in.

2.5 PyPSA

PyPSA short for Python for Power System Analysis is an open source toolbox written
in the programming language Python. It was developed at the Frankfurt Institute for
Advanced Studies and is currently maintained by the Department of Digital Transfor-
mation in Energy Systems at the Technichal University of Berlin. It is financed by the
German Federal Ministry for Education and Research and its goal was to do simulations
for the CoNDyNet project. The objective of that project was to analyse future electrical
grids. The focus lays on stability, risks and economic performance.

PyPSA is commonly used to analyse modern electrical grids with both fluctuating re-
newable energies and constant energy supplying fossil fuels. It is optimized for large
networks and timescales. The principle way of working of PyPSA is quite similar to
that from oemof. Again, there are several components which can be put together to
an energy system. As in oemof the optimization is done with the software ‘pyomo’. A
detailed documentation can be found in [9]

2.6 Computational complexity theory

The computational complexity theory is a sub-field of theoretical computer science.
It focuses on the resource usage of computational problems. In order to analyse a
problem, it has to be computable or effectively decidable. This means it is solvable by a
computing device (i.e a computer.). In the context of the classical computability theory
every effectively decidable problem has the same difficulty, namely that it is solvable.
However, there can be huge differences in the practical difficulty. We will use methods
from this theory to analyse our modelling tools. [10]

2.7 Computational complexity

The objective of computational complexity is to analyse an algorithm regarding its effi-
ciency. The efficiency of an algorithm correlates with how much computational resources
are needed to execute it. Usually the time and memory space consumption are consid-
ered, but there are also other interesting parameters like electrical power or computer
cores. In this thesis, we will restrict ourselves to time and memory space consumption.
Time and space complexity is mostly expressed using Bachmann-Landau symbols which
are introduced in Section 2.22.

7
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2.8 Time complexity

Time complexity is an important part of computational complexity. It describes the
amount of time an algorithm needs to run. It can be determined by measuring the
run time of the algorithm, but more commonly there is a different approach to measure
the time complexity. With computers getting faster and faster the measurement of the
run time looses its reproducibility. An algorithm which took a few minutes to run in
1970 takes now maybe about a few milliseconds. There are even big differences between
current computing devices. A better approach is to measure the amount of operations
the algorithm needs. The number of operations did not change from 1970 to now if it
is still the same algorithm. The approach to measure the amount of steps taken by an
algorithm might be a good idea for smaller algorithm. However in the context of Tessif,
which is simulating big and complex energy system through tools like Oemof and PyPsa,
it is hard to count the amount of operations. Even with these open source tools, which
means that everyone has an insight in the source code, it is too complicated to retrace
and count every step the algorithm took. Keeping that in mind it is much easier to
measure the time needed by the algorithm. Furthermore Tessif aims to be a platform for
not only computer scientist. For engineers it is much more interesting to know how long
the algorithm will need on their specific computer than to know how many operations
are taking place.

2.9 Space complexity

The space complexity is very similar to the time complexity. It is also a part of the
computational complexity and describes the memory requirements of an algorithm. It
is determined by measuring the needed memory space.

2.10 Scalability

Scalability describes how a system is able to deal with a growing amount of work. The
most interesting question is how the resource consumption behaves with a growing input
size. Again, the scalability is measured in terms of Bachmann-Landau symbols. To
measure the scalability of an algorithm a duplication algortihm is often used, however
there are different options available in computer science. This thesis uses a form of the
duplication algorithm, which means that smaller, in this case, energy systems can be
connected to a larger one. Additionally to extending the scale of the energy system it is
also possible to vary the timescale.

2.11 Python

As already mentioned, the energy system modelling framework Tessif, as well as the
implemented modelling tools are written in the programming language Python. Python
was created in the early 1990’s by Guido van Rossum in the Netherlands. In 2001 the
Python Software Foundation (PSF) was formed, mainly for intellectual content related

8



2 Theoretical Framework

to this programming language. PSF is a non profit organisation and with this Python
became an open source software and still is today [11].

Open source means basically that the software and the source code is accessible for
everyone. Also changes and modifications must be allowed. The idea behind Python
was to create an easy object oriented language with a simple but strong core, which
can be easily extended even by external programmers. They can create modules and
libraries, which can be implemented via the “import” statement. In the following, some
of these modules are discussed, which are used or were considered to be used for analysing
the complexity of our algorithms.

2.12 Time and space measurement

There are various methods in the Python programming language universe to measure
the amount of time or memory space needed to execute algorithms. Most of them work
through inbuilt libraries or modules and are specialized on different cases, e.g. small
code snippets or large functions. In the next chapter some of them are introduced and
we will justify our decision of the chosen module [11].

2.13 Time libraries

2.13.1 Time library

The time function has many uses. It can be used in a function to state the momentary
time, day or year but it is also possible to measure the time with it. With the function
“time()” of the time module it is possible to return the passed time since the epoch.
The epoch is the point where the time started and can vary from platform to platform.
For Unix products this is January 1, 1970, 00:00:00 (UTC). This alone can not give any
information about how much time a specific task needs but if this function is executed
before and after running the algorithm the difference can be calculated. This provides
an idea of how long the given task takes. This is a bit too inaccurate for the purpose of
this thesis. But there are other inbuilt functions which are more accurate. One example
is the “process_time()” function. This function returns the sum of the users CPU time
and the time of the system needed for the current process. This also works process
wide. To get an accurate result it is necessary to measure the time before and after the
execution of the algorithm. After this, it is possible to calculate the difference and there
is a valid information about the needed time [12].

2.13.2 Timeit library

The python module “timeit” was designed to analyse small snippets of code. It executes
the snippet per default one million times and calculates the average time consumption
[13]. To measure the time the timeit module uses the function “process_time” from
the python library “time”. However, this module is created for small snippets of code
and therefore not ideal to use in this thesis. Indeed, with algorithm taking up to some
minutes the default setting of one million repetitions would take way too long.
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2.13.3 Decision on the time measurement library

In view of the arguments outlined above, we decided to use the time module with the
“process_time” function. This method has a low threshold, is easy to understand and
is sufficiently accurate for this thesis. Also in comparison to the timeit function it can
be better implemented into functions.

2.14 Memory measurment libraries

The next subsection outlines possible ways to analyse the amount of memory space
needed by an algorithm. To this end, different libraries are discussed. Finally, we justify
our decision on which one to use.

2.14.1 tracemalloc

The library “tracemalloc” [14] was designed to be a debugging tool to find memory
leaks by tracing memory blocks allocated by Python. To analyse possible memory leaks
there are several functions in the module which are also able trace the memory us-
age. The function tracemalloc.start() starts the analysing process and the function
.get_traced_memory() returns the size of the the memory blocks traced by the “trace-
malloc” module. Additionally, it returns the peak sizes of those allocated blocks. Both
are returned as integers in a tuple. Of particular interest for this thesis is especially the
first integer, which is the traced size of memory space. The .stop() function clears all
the previous collected data by the module.

2.14.2 psutil

“psutil” [15] is a library for Python and is mainly designed to analyse running processes.
It can be used to monitor and profile systems. However it is primarily designed for
actual system monitoring and not for tracing the memory usage of a specific function
implemented in a program. Therefore, it is not a very good fit for the task at hand.

2.14.3 Decision on memory library

After an thorough examination of the possible modules to analyze the memory space
usage the decision fell on the tracemalloc library. Even if it is designed to be a debugging
tool it still provides the lowest threshold of using.

2.15 Implementing functions into Tessif

The following chapter explains the implementation of the previous introduced theoretical
basics in the context of Tessif. The goal is to provide a low threshold analysing tool for
computational complexity questions. To this end, new functions and algorithms are
build. In addition, we also provide ways of visualizing the results. The complexity
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functions will be implemented into pre-existing algorithms, but also new energy systems
will be constructed.

Before explaining these new functions, this thesis will provide an thorough explanation
how the modelling framework Tessif works.

As mentioned before, Tessif aims to be a low threshold modelling platform. It should be
possible to use different modelling tools through it. Therefore, Tessif supports various
data formats which sometimes also extends the range of the other integrated modelling
tools. For example, through Tessif it is easier for Oemof to use data formats Oemof
does not support. How this is possible is described in more detail in the subsequent
paragraphs.

Tessif supports several data formats like for example .hdf5, .cfg, .xml, or even Python
files. This data formats can be transformed via the parse module. With the help of this
module the information stored in the files are transformed into a Python mapping.

The next step is transforming this mapping into the Tessif specific energy system, using
the transform module.

This Tessif energy system can now be transformed into any energy system associated to
one of the various implemented modelling tools. For example, if we want to use Oemof
for the optimization than Tessif will transform it into an Oemof energy system.

The next step is the actual optimisation. The energy system will be optimized regarding
the chosen parameters and modelling tool.

The last step is called “post-processing“. The optimized energy system is transformed
back into a Python mapping. This way the results can always be evaluated and visualized
in the same way independently of the modelling tool. In the following, an algorithm will
be introduced which measures the resource requirements of each of these steps.

2.16 Time measurement

The time measurement function has two objectives. The first one is to provide a tool
which can analyse the time consumption of one specific energy system simulation process.
The other is to provide a working bases for the scalability function. This function will
call the stop_time() function and iterate through energy systems of different sizes and
timescales to see how the resource requirements change with growing Input.

The time of each of the previous mentioned steps is measured. The “time” module with
the process_time() function was chosen to do this. The process_time() function returns
the system and CPU time of the current process. In order to get the time of a specific
process the function must be called before and after the algorithm. The difference of
this two function calls is the amount of time the computing device needs to execute the
algorithm. However, this is not the real time because the computer also makes other
things simultaneously which are not taken into account by this time module function.

The first float integer which the process_time() function returns will be stored in the
variable start_time1. After that the first of the above outlined steps takes place. The
information are extracted from the external data format and turned into a Python
mapping. This mapping will be stored in energy system mapping. In Python each
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line of code will be executed consecutively. Thus, when the energy system mapping is
built the next line of code is executed. The process_time function is called again and
stored in the variable end_time. The actual time which the process needed is now the
difference between the two measured times and is stored in the variable reading_time.
The last line of code rounds the time after the fourth decimal place and stores the result
in the dictionary “timing_results”. This method will be repeated for the other four other
steps.

2.17 Memory space measurement function

The algorithm to measure the memory usage is very similar to the time algorithm.
We briefly outline it here again. As previously mentioned the module tracemalloc was
chosen. The start function starts the tracking process.

After starting the process the first step of the energy system modulation process takes
place. The external data will be turned into an energy system mapping. After this
step the get_traced_memory function returns a tuple with two integers. The first
integer represents the amount of memory space which were traced by the tracemalloc
module. This result is stored into the variable reading_memory and then the stop
function will delete all the allocated memory blocks of the module. This is necessary,
because otherwise there could be an inaccurate result if the function is used again. This
method is repeated for all the subsequent steps.

2.18 Functions to give a quick overview of Energy Systems
simulation

In the following sections we discuss the functions we built to analyse the resource require-
ments of an energy system optimization in terms of time consumption (stop time), mem-
ory consumption (trace memory) and scalability assessment (asses scalability). More-
over, we also built visualization functions, which are part of the discussion as well. The
construction of the measurement functions will essentially follow the strategy outlined
in the last two sections.

One objective is to make these function as variable as possible, meaning that it is possible
to simulate all energy systems data formats and with all energy modelling tools that
Tessif supports.

2.18.1 stop time function

The function we built to analyse the time consumption of the energy system simulation
in Tessif is the stop_time function. We will outline its main characteristics below. This
function has four input parameters. The path, the parser, the simulation tool and the
timeframe.

The function simulates the whole process of simulating an energy system through Tessif.
From parsing the external data to the post-processing. For each of those steps the time
is measured.
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The first step is to extract the data from the external source and transform it into
a Python mapping. The path points the parsing function to the location where the
data is stored. Depending on the data file a different parser is necessary which can be
specified as an input parameter. Before and after extracting the data the process_time
function is executed. The difference, which is the time the processor needed for that
code execution, is measured. After parsing the data, it will be transformed into a Tessif
energy system. This energy system can now be transformed into an energy system
specific to all the modeling tools implemented in Tessif. All these steps are happening
in the Tessif framework. Now the actual optimization takes place. The energy system is
simulated with the chosen modeling tool. The modeling tool is specified with the second
parameter. After the optimization the data is transformed back in the post-processing
into a mapping. For each of those steps the process described in the beginning for the
creation of the mapping is done again.

All the results are stored into a dictionary keyed to the notation of the simulation steps.

2.18.2 trace memory function

The measuring of the memory space is very similar to the time measurement. The
input parameters are the same as well as the measured steps. The difference lies in the
external python library. The structure of the function is the same as for the stop_time
function.

Before each of the modeling steps the tracemalloc function tracemalloc.start() is used.
After each step the get_traced_memory() extracts all the traced memory up until that
point. After that the tracemalloc.stop() function is used which stops the analysing
process and clears all the previous data regarding the memory measurement. That is
necessary because otherwise time memory blocks would supersition for every step.

The function to measure the time of a modeling process is called stop_time and for the
memory space, trace_memory. Both of this two function have four parameters to define
them. The first one is the path to the location of the file, which contains the energy
system information. The second is to specify the parser. Depending on the data format
of the file a different parser is necessary to read the file and extract the data. The third
parameter defines the modelling tool and the last one the timescale. The timescale is set
on a specific one per default but can be changed to the liking of the user. Both functions
return a dictionary, where each measurement is keyed to the belonging step. Building
the functions like this makes it easy to use them on the one hand for quick measurements
of energy systems but also to use and call them in more complex functions. This will
happen later in the scalability function.

2.19 Visualization of stop time and trace memory

For better understanding we also implemented a visualization function. This function is
able to call the previous mentioned functions stop_time and trace_memory and builds
a instructive plot from the returned dictionary.

Figure 2.3. shows an exemplary simulation process with Oemof of the fully parameterized
working example, which is included in the Tessif example repository. It showcases how
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Figure 2.3: bar plot of the time visualization function (own figure created with Tessif)

long each step took to execute as well as how long the whole process was. The plot for
the trace_memory function has the same structure.

2.20 Scalalability

The goal of the function described subsequently is to provide a tool, which analyses the
scalability of an algorithm. As mentioned above, scalability is in general a parameter to
describe how a system copes with a growing amount of resources. In terms of computer
science the scalability describes how the algorithm or program deals with a growing input.
The function analyses the scalability of energy system modelling tools in Tessif regarding
their computational complexity. In order to realize that a duplication algorithm is used.
For that algorithm we designed a small energy system.

2.20.1 Creation of a minimum self similar energy system

This energy system consists of three energy sources. One symbolizes a renewable source,
for example a photovoltaic module. Another one generates energy through fossil fuels.
Both sources create a randomized energy output which is unique for every simulation
attempt. The last source serves as an excess source and is needed for the solvability of
the optimisation process. The excess source and the renewable energy source are both
connected to the main bus. The fossil fuel source is connected to a transformer which
transforms the fossil fuel into energy. The transformer is also connected to the main
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Figure 2.4: minimum self similar energy system (own figure created with Tessif)

bus. The bus is the main part of the energy system and represents a simplified version
of the electrical grid. It connects most of the energy system components to each other.
A storage unit and the sinks branches off from this main bus. The storage is able to
store excess energy from one time-step to the next. A time-step can represent a day or
a year depending on the chosen model and own specification. One sink represents the
normal energy demand and the other one is an excess sink. It works similar as the excess
source and is needed for the solvability. The last component included in the function
is the connector which is only needed when two or more minimum self similar energy
systems are connected with the create self similar function.

2.20.2 Creation of a self similar energy system

The ’create self similar energy system function’ is the foundation of the scalability anal-
ysis. In this function an adjustable amount of minimum self similar energy systems
can be connected to a larger one. Therefore energy systems with growing scale can be
analysed.

With the help of a connector it is possible to connect the two main busses of two
minimum self similar energy system and create a larger system. The energy system will
be called minimum self similar energy system and is an overly simplified representation
of an actual energy system. But in the context of scalability it enables the collection of
information.

The ’create self similar energy system function’ is defined by two input parameters.
The amount of minimum self similar energy system that should be connected and the
timeframe.

The timeframe consists of the information of how many timesteps, in this case days,
should be simulated. The function then connects the number, specified in the parameter
by the user, of minimum self similar energy systems to one big energy system and also
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Figure 2.5: Two minimum self similar energy system connected into a self similar energy
system (own figure created with Tessif)

stores the information of how many timesteps should be simulated. This big energy
system is then ready to be simulated.

2.20.3 asses scalability

The function to measure the scalability is called ’asses_scalability’. The algorithm calls
most of the previously explained functions. There are four input parameters to specify:
the amount of minimum self similar energy systems that should be connected in the end,
the timeframe, the storage location and the modeling tool.

As shown in the ’flow chart’ (see Figure 2.6) the first step of the function is to generate
the timeframes. The input parameter for the timeframe is called ’T’ and is an integer.
The dataformat for the timeframe on the other hand is a list. This list contains the
amount of days that are simulated in the function. Therefore the integer is transformed
into the required data format as well. In the end four different timeframes are stored in
that list with different amount of days. The integer T represents the largest timeframe,
where the amount of days equals the value of T. The other three timeframes are evenly
distributed from T to zero.

After having specified the timeframe the first ’for loop’ starts. The loop uses the input
parameter N, which represents the amount of minimum self similar energy systems. It
iterates N-times through the loop connecting each time another minimum self similar
energy systems to the already existing energy system.

Inside that first ’for loop’ is a second loop, which iterates four times through the time-
frames, once for every timeframe.
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In this second loop energy systems are generated, stored on the computing device and
analysed. The first step is to create the energy system. This is done by the cre-
ate_self_similar_energy_system function, which was described earlier. This function
uses the current value for N and the timeframe as input parameters and creates the en-
ergy system. Next this energy system is saved at the storage location. The data format
is an hdf5 file. After storing the energy system at the specific location, it is called by
the stop_time and the trace_memory function. The processor time and the memory
usage of that simulation is measured and stored in a list. The results are collected for
every iteration. Therefore N · 4 energy systems are simulated which makes it possible
to analyse how the system copes with a growing input size. In other words, we get an
impression of the scalability.

Figure 2.6: Flow chart of the asses_scalability function (own figure)
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2.21 Visualization of scalability functions

We created two visualization functions for an easier understanding and a better overview
of the results. The first one provides a general overview of the growth of the total resource
requirements. The result are presented in a 2D line plot. And the second one takes the
specific steps into account. For each energy system a stacked bar plot will be created.

2.21.1 2D visualization

The 2D visualization function is called visualize2D_asses_scalability. The function calls
the asses_scalabililty function and works with the returned data frames. The time and
memory space data is stored individually for every step of the simulation. The motivation
of the 2D visualization function is to obtain a general idea of the scalability of energy
system simulation in the Tessif framework. Therefore the total amount of computational
resources is calculated by adding the individual steps.

Figure 2.7: 2D visualization of the energy systems optimized with oemof

Figure 2.7 shows how the time consumption behaves for energy systems of different sizes
and timescales. Each of the lines represent how the time consumption of an N-msses
energy system grows after enlarging the number of time-steps. Additionally it is possible
to compare the elapsed wall time of different sized energy systems at the same timescale.
The different period number examined in the graph were 1000, 2000, 3000 and 4000 and
the number of mssesus went from one to six.

As mentioned above, this graph is used to get an idea of the scalability of the modelling
tools simulated through Tessif. It provides limited information on the scalability of the
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modelling tools itself, because steps where taken into account which are not necessary
for simulating the energy system directly with the modelling tool. In order to get an
idea about that, we created a second function. This differentiates more between the
individual steps and will be outlined in the next section.

2.21.2 3D visualization

Figure 2.8: Stacked 3D bar plot of a simulation with Oemof

Each of the colours in Figure 2.8 represent one of the step previously outlined above
and in the graphic for the stop_time function. The size of the energy systems ranged
from one too four msses. The timescale went from 100 to 400 in steps of 100. Each
stacked bar plot presents how much time was needed for the individual step and the
height of the stacked bar shows the total amount of time for the whole process. The
graph for the memory usage is similar to the shown one but presents the other belonging
information. However, the limits of this graph appeared when we were simulating larger
energy systems on a bigger timescale. Some of the ‘steps’ are nearly independent of
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the size and timescale of an energy system and can therefore become ‘invisible’ when
visualizing bigger energy systems. (steps mean in this context and in general in this
thesis the mentioned steps in the stop_time and trace_memory function. simulation
and post processing grow linear but the transformation or the generation of the mapping
is independent from the size of the energy system).

2.22 Bachmann-Landau symbols

The big-oh notation (O) also called Bachmann-Landau notation or asymptotic notation
is a mathematical notation, which describes the asymptotic behaviour of a function.
In computer science it is mainly used to describe the complexity of an algorithm and
is therefore a tool to analyse the computational resources of computer programs. The
formal definition is as follows [16]:

Definition 1 (Bachmann-Landau notation). Let f : N → R+ and g : N → R+ be
positive functions, both defined on the natural numbers. Then we write

f ∈ O(g)

if there exists N0 ∈ N and a constant C ≥ 0 such that

f(n) ≤ Cg(n) for all n ≥ N0.

In addition, we write

f ∈ o(g) if lim
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ = 0

In our setting, the variable n usually represents the input size and the function f(n) the
time used to compile the algorithm. The function g(n) is then used to give an idea of
the complexity of the algorithm in standardized terms. For example, commonly used
classes include

1. g(n) = log(n) meaning that the complexity is at most logarithmic

2. g(n) = n meaning that the complexity is at most linear

3. g(n) = n2 meaning that the complexity is at most quadratic

Finally, constant factors and small input sizes are in this context irrelevant, which can
be seen directly from the definition.
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In this chapter we evaluate the computational complexity of the two modelling tools
Oemof and PyPsa through Tessif. This is done with the help of our built functions,
which were documented in Chapter 2.

To this end, we start with the verification of the previously built functions. We introduce
a suitable measure of dispersion and verify the statistical correctness of the functions.

Then we look at two different scenarios: In the first we treat the timescale as a variable
and analyze how a growing timescale influences the necessary computational resources
(time and memory). In the second scenario, we treat the size of the system as a variable
and analyze how a growing size influences the necessary computational resources (time
and memory)

3.1 Verification of the collected data:

3.1.1 Measure of dispersion

Each simulation process generates different results. To get an idea of the scale of their
dispersion, we will conduct several simulations and analyse the obtained results.

There are two commonly used sets of parameters to analyse a set of data [17]. In this
context, a set of data consists of the collected results (called characteristics henceforth)
of the simulation process, for example the amount of time or memory space each iteration
needed to compute.

The first set are the so called location measures. Examples of location measures are the
median and the mean average. However, these parameter do not give any idea about
the general dispersion of the characteristics. Indeed, two sets of data can have the same
mean average even though their characteristics differ drastically. For example, consider
the two datasets [5,7] and [3,9], which have the same mean average (six).

The second set of parameters are the so called measures of dispersion. Their purpose is
to provide more detailed information about the the dispersion of the characteristics. One
example of a measure of dispersion, which is easy to calculate is the range of the values.
The range is calculated by the difference of the biggest and smallest characteristic.
However, this is very sensitive with respect to statistical outliers and can therefore be
rather misleading. Another, and more promising, parameter is the variance (together
with the standard deviation). The variance is a quadratic dispersion measurement,
which has the disadvantage that it is less informative at the first glance than the range.
Because of that one often considers the standard variation, which is the square root of
the variance. The variance (and the the standard deviation) provide information about
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the distance of the characteristics to the average mean. We are now giving the formal
definitions of the above introduced terms.

Definition 2 (Standard variation). Let {xi}i∈{1,...,n} be a set of data, where n is the
total amount of characteristics and xi the value of each characteristic. We define the
arithmetic mean as

x := 1
n

n∑
i=1

xi

and the variance as

s2 : = 1
n

[(x1 − x)2 + (x2 − x)2 + · · · + (xn − x)2]

= 1
n

n∑
i=1

(xi − x)

Finally, the standard deviation is defined as the square root of the variance, i.e.

s :=

√√√√ 1
n

n∑
i=1

(xi − x)

Definition 3 (range). Let {xi}i∈{1,...,n} be a set of data, where n is the total amount of
characteristics and xi the value of each characteristic. We define the range as

R := max
i∈{1,...,n}

xi − min
j∈{1,...,n}

xj

We will calculate the variance of our collected data sets. After the pre-evaluation of
the data we expect that the standard deviation is bigger for smaller energy systems
and becomes smaller as it grows. It also became clear that the first iteration of each
simulation process takes up more time than the following. One possible reason for
this is that certain data is generated in this first step which is stored and used in the
following iterations (and therefore does not have to be generated again). Because of
that, we decided to not include the first simulation for the calculation of the variance
and standard deviation.

As we can see from Definition 2, the first step is to calculate the arithmetic mean. Then
the arithmetic mean will be subtracted from each characteristic and the result squared.
Finally, we add things up and divide by the total number of characteristics.

3.1.2 Calculation of the measure of dispersion

In order to analyse the statistical quality of the implemented tools, we calculate, as
mentioned above, the standard deviation. To this end an energy system consisting of
5 minimum self similar energy systems and 4000 timesteps is simulated several times
and the computation time is measured. Then we determine the arithmetic mean, the
variance and finally the standard variation. The results are summarized in the following
figure.
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Figure 3.1: calculation of the standard variation (own figure)

The above described energy system was simulated ten times. We can see from Figure
3.1 that the first simulation was in terms of ’reading’ and ’parsing’ slightly off. As
already mentioned, this is presumably due to the way data is stored internally in the
computer. Indeed, the data is stored in the primary memory and can be directly called
from there again. The measured times are rounded to a hundred of a second. The
standard deviation is quite small already. This means that the functions are working
well for medium to large sized energy systems.

We also examined energy systems of different sizes, and realized that it seems to be the
case that the larger the energy system is the lesser is the variance. In particular, the
dispersion grows substantially for very small sized energy systems.

3.2 Analysis

In the following section the resource requirements of energy systems modelled by the
energy system modelling tools Oemof and PyPsa are analysed. In the previous chapter
we introduced various functions, that will be tested now for their reliability to analyse
small energy system as well larger ones. After reviewing the integrity of the self similar
energy system (see Subsection 2.20.2) the first measurements will take place.

We start by determining the complexity class for the individual modelling tools as well
as for every step of the simulation process. After that there will be an comparison
of the two modelling tools Oemof and PyPSA and we give possible explanations for
the existent differences. Additionally to the scalability of the systems, it will be also
discussed how the resource requirements vary from small to big energy systems and with
statistic verification how reliable the information are.

The computer used for the analysis runs with a 1.6 Ghz Dual-Core processor and 16 GB
RAM on the operating system Linux with Ubuntu 20.04.
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3.3 Scalability regarding the timescale

In this section we review the behaviour of the system if the timescale is enhanced. To
this end, the asses_scalability function is used. For the moment, we are only interested
in how the timescale influences the scalability. Therefore, our energy system consists
of only one minimum self similar energy system. The scale of the timeframe increases
throughout the simulation.

In the beginning, the process time is analysed. To this end, one energy system was
simulated ten times, each time with a different timescale. The scale went up in equal
steps from 5000 to 50.000. This was done for both integrated modeling tools

3.3.1 Expectation

Five different simulation steps are reviewed by the stop_time and trace_memory func-
tion. For each of those steps the complexity class is determined. Recall that the first
step is parsing the external data into a python mapping. The second one is the transfor-
mation into an Tessif energy system. The third one is the transformation into the model
specific system, the fourth one the optimization and the last one the post processing.

We conjecture that the first two steps need the same time to execute no matter which
model is used. The extraction of the data and the transformation into an Tessif energy
system are completely independent from the modeling tool, therefore the computational
resources should be the same no matter which tool is used later.

On the other hand, we expect the resource consumption of the transformation from the
Tessif energy system to the energy system of the modelling tool to differ. Tessif and
Oemof use similar interpretation of energy systems, which is why the transformation
should be quicker with Oemof than with PyPSA. However, we are not sure of how big
this difference will be in the end and in particular if their complexity class will coincide
or differ.

It follows the optimization step. Recall that PyPSA and Oemof both use the solver
’pyomo’ (see section 2.5). Therefore, we conjecture that both tools have the same com-
plexity class. However, the actual resource consumption may still vary, because of the
different interpretation of energy system that are solved by the same software.

In the post-processing the optimized energy system is transformed back into a python
mapping. Because both modeling tools use the same solver we predict that they need
similar computational resources to execute and have the same complexity class.

3.3.2 Oemof time complexity

As specified in 3.3 the energy system was simulated ten times with different timescales.
Figure 3.2 shows the simulations and their outcome.

We see from Figure 3.2 that the growth of the computational resource time is linear with
respect to the timeframes. Consequently, in terms of the introduced Bachmann-Landau
symbols Symbols (see Section 2.22) the complexity class is O(n)
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Figure 3.2: results of the Oemof time measurement (own figure created with Tessif)

We see from the rough data on the left hand side of Figure 3.2 that the timeframe
makes no visible difference in the beginning. The timeframe consists of a list containing
integers which represent the dates for the days. This list grows linear with respect to
the timescale. However, as it has been observed it does not significantly influence the
amount of time needed to extract the data. In addition, also the parsing from the
external data, the transformation into an Tessif energy system and the transformation
into the Oemof energy system stays the same for each timeframe. This outcome was
expected, because the timeframe is a parameter specifying the amount of days simulated
in the optimization process. Consequently, it is reasonable that it has little impact on
the previous steps.

The simulation step however is heavily influenced by the timeframe. The first simulation
step with a timeframe consisting of 5000 timesteps takes about 5,6 seconds. By doubling
the timesteps to 10000 the needed process time doubles to 11,5 seconds. The last time-
frame with 50.000 timesteps takes 56,5 seconds which is about ten times the amount
of the first timeframe. Therefore, the time consumption grows proportionally with the
timescale. The post_processing is similar to the simulation step. The required time is
again proportional, but the starting point is smaller than the one for the simulations.

We remark that the simulation step is by far the most relevant step in terms of absolute
time consumption. Therefore, the complexity of the entire process is dominated by the
complexity of the simulation step and their complexity classes are the same.

3.3.3 PyPSA time complexity

The time analysis in PyPSA for the timescale was conducted in the same way as for
Oemof. The same energy system was simulated ten times with the same timeframes as
the input.

From Figure 3.3 we learn that the time consumption is once again proportional to the
timeframe. Therefore, the complexity class is O(n) for the whole simulation process.
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However, the actual time consumption is larger than for the optimization process with
Oemof. By reviewing the individual simulation steps, we see that there are especially
differences in the transformation from the Tessif energy system to the PyPsa energy sys-
tem as well in the optimization process. We predicted differences for the transformation
(see Section 3.3.1).

Figure 3.3: results of the PyPSA time measurement (own figure created with Tessif)

A thorough step by step analysis reveals the following: The first two steps behave very
similar to Oemof, their complexety class are again O(1) and also their actual time
consumption is comparable. The same is true for the last step, here the complexity class
is O(n).

The third step, the transformation from the Tessif energy system to the PyPSA energy
system, is the most interesting one. As we can see from Figure 3.3. the time consumption
for this step is proportional to the timeframe, which means that the complexity class is
O(n). Therefore, this step does not only take more time than with Oemof (which we
expected) but it even has a different complexity class. We also observe, that this step is
consistently the second biggest contributor.

The complexity class of the optimization process is again O(n), so it is the same as with
Oemof. However, as already mentioned the actual time consumption is larger than for
the optimization process with Oemof.

3.3.4 Oemof memory complexity

We used a similar approach to analyse the computational resource ’memory’. Due to
the limitations of the computing device, the maximum timeframe consists of only 40.000
days. Otherwise, the analysed energy system stayed the same. The scalability of the
memory usage was compared for ten different timeframes.

As shown in figure 3.4 the complexity class for the total simulation process is O(n). The
memory usage grows linear with respect to the timeframe.

When reviewing the individual steps it is seen that there are differences in the scalability
regarding memory usage compared to processor time. The first step, the parsing, has a
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Figure 3.4: results of the Oemof memory usage measurement (own figure created with
Tessif)

complexity class of O(n). Except for the timeframe the energy system stays the same
for each simulation. Therefore it is assumed that difference follows out of the size of
the list containing the timeframes. This python list grows with every timeframe and the
memory usage with it.

This solidifies by looking at the results for the second step. The amount of KiB needed
to run the algorithm grows by similar values compared to the parsing. The grow rate
is in a range from 9.000 to 11.000 KiB when enhancing the timeframe. Therefore, we
propose that the change of the complexity class is due to the growing size of the list
containing the timeframe.

The transformation from the Tessif energy system to the Oemof energy system is O(1).
It is independent from the timescale and stays the same for each simulation.

The biggest consumer of the computational resource memory space is the optimisation
process, which has the complexity class O(n). The second biggest contributor in resource
usage is the post-processing. The complexity class is again O(n). The usage grows from
3178738 to 24220116 KiB. Comparing the memory usage of the optimization and post-
processing regarding the last timeframe, the post processing needs only about a 24th
of the memory space. Compared to the optimization the influence of the other steps
become mostly irrelevant.

3.3.5 PyPSA memory complexity

The analysis of the space complexity of the simulation with the modelling tool PyPSA is
conducted in the same way as for Oemof. The self similar energy system was simulated
ten times with different timeframes. The smallest timeframe consisted of 4.000 timesteps
and the largest of 40.000. The other timeframes were evenly distributed in that range.

As we expected the first two simulation steps behave the same way as for Oemof, their
complexity class is again O(n).
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Figure 3.5: results of the PyPSA memory usage measurement (own figure created with
Tessif)

Most interestingly, the transformation from the Tessif energy system to the PyPSA
energy system has the complexity class O(n). The memory usage grows linear from
1.684.441 KiB at 8.000 timesteps to 6.565.470 KiB at 40.000.

The optimization step is by far the biggest resource consumer in this process. It needs
about 50 times as much memory space as the post processing, which is the second biggest
user. The complexity class for the post-processing and the optimization is again O(n).
Summarizing, each individual step has complexity class O(n).

3.3.6 Comparison of Oemof and PyPSA time and space

This section compares the results of the simulation process for the modelling tools Oemof
and PyPSA through the Tessif framework regarding their time and space complexity.
To this end, the previously collected results are reviewed and compared.

As expected, the first two steps of the simulation have the same complexity class and very
similar final results for Oemof and PyPSA. We note that the size of the list containing
the timeframe has no impact on the time complexity of the execution of the first two
steps, they are both O(1).

On the other hand, the space complexity of the first two steps is influenced by the scale
of the timeframe. The complexity class of the parsing step (step 1) is O(n). Taking a
closer look at this part of the simulation, we see that the only thing that is changing is
the size of the list containing the timeframes. Therefore we assume that the change in
need for memory space is directly connected to the size of the timeframes.

Looking at the transformation of the python mapping into the Tessif energy system (step
2) we see that the growth of the computational resource is similar to the growth of the
preceding step, it is again O(n).

Reviewing the time complexity we see that the difference in the size of the list has no
visible influence on the running time, but when taking a closer at the memory space
complexity we see that there is a growth in the resource usage, which has to influence
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the running time as well. Therefore, we predict that the actual complexity class for the
time complexity for the first two steps is O(n) as well, but the difference is too small
to be detected by the chosen time measurement library. This difference however is very
small compared to the size of the optimization step that it is nearly neglectable. The
memory usage of the optimization is about a thousand times higher than the usage of
the parsing.

The biggest difference occurs in the third step. Whereas for Oemof this step is the fastest
one and has time complexity class O(1) for the PyPSA simulation process this step has
time complexity class O(n). This is a big performance difference. For the Oemof process
this step takes only milliseconds independent from the timeframe. For the simulation
process with PyPSA this step needs already for the second timeframe about 3.5 seconds
and grows linear after that. For the last timeframe, consisting of 50.000 timesteps, the
processor needs about 17.97 seconds longer.

This is solidified by the space complexity. The space complexity class for the simulation
with oemof is O(1). The complexity class for the space complexity with PyPSA is O(n).
However, the influence on the total memory usage is not as high as the influence on the
running time performance.

As previously mentioned it is assumed that the performance difference results in the
interpretation of the energy systems. Tessif and Oemof use similar approaches, whereas
PyPSA differentiates here.

The optimization of both modelling tools have the same time complexity class, namely
O(n) but there are differences in the time consumption. The optimization with PyPSA
needs more time to execute and the gradient is steeper, see Figure 3.6.

Figure 3.6: Comparison of the optimization process of the modelling tools Oemof and
PyPSA (own figure)

As shown in Figure 3.6 the performance gap grows with a growing timescale.
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Figure 3.7: Comparison of the post-processing process of the modelling tools Oemof and
PyPSA (own figure)

3.4 Scalability regarding the size of the energy system

This section analysis the scalability of the system when the size of the energy system
grows. To analyse this the asses_scalability function was used. Throughout the analyz-
ing process the timescale was constant. The size of the energy system was enhanced by
connecting minimum self similar energy systems and creating in this way a large one.

The constant timescale that was used consists of 1.000 timesteps. The first simulation
was executed with one minimum self similar energy system and with each iteration
another one was connected to the energy system up until the energy system consisted of
ten minimum self similar energy systems. Therefore, ten different scenarios are reviewed
and compared in the following sections.

3.4.1 Expectation

In the following we analyse again the five different steps of the simulation. In order to
do so we review the measurements and determine the complexity class for the time and
space complexity.

As for the previously reviewed scenario with the variable timescale and fixed size of the
energy system, we conjecture that the first two steps of the simulation are independent of
the chosen modelling tool. However, we expect at least a complexity class of O(n). For
every new simulation the energy system is connected to another minimum self similar
energy system. Therefore the amount of data that needs to be extracted grows respec-
tively. We conjecture a similar growth in the use of computational resources. This is
expected for the transformation of the python mapping into the Tessif energy system
for the same reasons.
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A similar result is expected for the transformation into the tool specific energy system
as well. We conjecture that the amount of resources needed to make the transformation
grows with the size of the energy system. A larger energy system has more information
and details stored, which have to be transformed as well. Therefore a rise in the time
and memory usage is expected.

The next step is the optimization process. It is expected that this step is again the
largest user of computational resources. We assume that the complexity class is at least
O(n) and the resource consumption grows at least linear with respect to the size of the
energy system.

For the post processing we expect a similar outcome as for the previous steps.

3.4.2 Oemof time complexity

Ten energy systems of different sizes were simulated. The scalability of the system
regarding the size of the energy system has the complexity class of O(n). This means
that the time grows linear with respect to the size of the energy system, see Figure 3.8.

Figure 3.8: Development of the time consumption by enhancing the energy system size
(own figure)

By reviewing the steps of the simulation itself we see that every simulation step has an
increase in the time consumption when enhancing the energy system. The growth of the
first three steps are in comparison to the post processing and especially optimization very
small. However the complexity class of the first three steps is still O(n). The smallest
step is the transformation from the Tessif energy system into the Oemof system. The
execution time grows from 0.0012 seconds for the smallest system to 0.012 seconds for
the largest.

The parsing process and the generation of the Tessif energy system take roughly the
same amount of time and grow with the same gradient. The complexity class of O(n)
coincides the previously made assumption about these steps.
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The next step is the optimization. The complexity class is O(n) and it has the biggest
time consumption increase when enhancing the system. We see that with a growing
energy system size the influence of the first three steps become marginal in comparison
to the optimization step, this is shown in Figure 3.9 as well.

Figure 3.9: Development of the time consumption for every step when enhancing the energy
system size (own figure)

The post processing is the last step. The complexity class is as well O(n). The gradient
is steeper than for the first three steps. The post processing needs normally about 25%
of the time to run the optimization.

3.4.3 PyPSA time complexity

The scenario for the analysis of the time complexity of the modelling tool was the same
as the previous one for Oemof. As for the Oemof simulation the complexity class for
PyPSA is O(n). The time grows from 2.76 seconds for one minimum self similar energy
system to 20,89 seconds for the system consisting of ten connected self similar energy
systems (see Figure 3.11). As we see the total time did not grow by the factor ten.

This follows from the influence of the different steps. In the beginning the gap be-
tween the time consumption of the different steps is very small. The optimization step
contributes to only 53% of the used time. For the largest system in the scenario the
percentage of the total time consumption grew to 68%.

The most surprising step is the transformation of the Tessif energy system into the
PyPSA system. It was expected that the behaviour of the resource usage is similar
or even more extreme than for the scenario with the fixed scale of the energy system
size and the variable timescale. Recall that in section 3.3.3 the transformation step was
consistently the second largest time consumer. As it can be seen from Figure 3.10 that
this is not the case now. Therefore, the size of the timeframe seems to have a bigger
influence on the running time than the size of the energy system. A possible reason
could be the formats of the data sets, but more research has to be done in this area.
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Figure 3.10: Development of the time consumption for every step when enhancing the
energy system size (own figure)

Every step has the complexity class O(n). When enhancing the energy system, every
step uses more of the computational resource time.

Figure 3.11: Development of the time consumption by enhancing the energy system size
(own figure)

3.4.4 Oemof space complexity

The space complexity class for this scenario in Oemof is O(n). The memory usage to
simulate one minimum self similar energy system equals approximately 21.000.000 KiB.
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For every minimum self similar energy system that is connected to energy system about
21.000.000 KiB more are necessary (see Figure 3.12).

Figure 3.12: Development of the time consumption by enhancing the energy system size
(own figure)

The complexity class is for every step O(n). Therefore the memory usage grows for
every step when enhancing the energy system. The first three steps have similar memory
usage.

Figure 3.13: Development of the time consumption by enhancing the energy system size
(own figure)

3.4.5 PyPSA space complexity

The complexity class for the memory usage in this scenario is O(n). The total memory
usage for the first simulation with only one minimum self similar energy system needs
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26909798 KiB. The largest energy system needs 264794086 KiB which is about ten times
as much. It follows for the total memory usage that when we double the size of the energy
system the memory usage doubles as well (see Figure 3.14).

Figure 3.14: Development of the memory usage when enhancing the energy system size
(own figure)

Looking at the different steps we see that almost every step has the complexity class
O(n) . The contribution to the total memory usage however is very different for each
step (see Figure 3.15).

Surprisingly the memory usage of the third step, the transformation of the Tessif energy
system into the PyPSA energy system, looks like it is staying constant for the different
energy system sizes (for more detailed discussion see Subsection 3.4.6). This is a big
difference to the simulation with the variable timeframe. As mentioned in the time
complexity section for this scenario this step was the second biggest contributor there
(see Section 3.3.3). This gives further evidence that the timeframe consumes more
computational resources for this step for PyPSA than the scale of the energy system.

Finally, we see that the optimization step has the biggest memory usage. For the sim-
ulation with ten connected minimum self similar energy systems the optimization step
contributes to 96% of the total resource usage.
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Figure 3.15: Development of the memory usage when enhancing the energy system size
(own figure)

3.4.6 Comparison of Oemof and PyPSA time and space

This section analyses the previously collected data of the simulation process for the
second scenario. This scenario investigates the scalability of the system with one constant
timeframe and a variable size of the energy system. The asses_scalability function starts
with one minimum self similar energy system an iterates ten times until there are ten
simulations with ten different energy system sizes. Each iteration another minimum self
similar energy system is connected. Therefore the last energy system consists of ten
minimum self similar energy systems.

We see for the first two steps that they are independent from the chosen model. Recall
that the modelling tool is up until the third step only a parameter that is passed along.
The steps are however not independent from the size of the energy size. If the size of
the energy system is enhanced there is also more data stored in the external data which
has to be extracted. This results in a longer running time and a higher memory usage.
Same goes for the transformation of the mapping into a Tessif energy system. This is
coherent for the time and memory usage analysis.

When looking at the third step of the simulation from the Oemof modelling tool we
see the expected results. The results grow linear with respect to the size of the energy
system. This is true for the memory usage as well as for the running time. When
doubling the size of the energy system the amount of computational resources doubles
as well. The results for modelling tool PyPSA however deviate from the one we expected,
especially after seeing the results from the first scenario with the variable timeframe and
the fixed size of the energy system. In the last scenario the third step was the second
largest consumer of computational resources. However when enhancing the size of the
energy system the usage of computaional resources is nearly constant. The time grows
from the smallest to the largest energy system by the factor 1.67. The transformation
takes for one minimum self similar energy system 0.68 seconds and for ten connected 1.04
seconds. For Oemof on the other hand the time needed for the first transformation is
only 0.0012 seconds. The running time however grows for every new connected minimum
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self similar energy system by 0.0012 seconds. Therefore it grows after ten iterations by
the factor ten.

Reviewing the memory usage this can be seen even clearer. Looking at figure 3.16 we see
that there is no visible difference in the plot for PyPSA. The Oemof modelling uses in the
beginning a lot less from the computational resource space, but it grows accordingly to
the size of the energy system. We assume that it is easier for the computing device to find
the data it needs to transform the energy system for the modelling tool Oemof. However
the actual transformation is faster for the modelling tool PyPSA. The modelling tool
PyPSA uses mainly dataframes from the pandas library which are very fast to process.
Oemof however uses different data formats as mappings and dictionaries which can
result in a difference of the running time and memory usage. This results in a faster
transformation for the modelling tool Oemof for smaller energy systems vice versa a
faster transformation for larger energy systems for the modelling tool PyPSA.

Figure 3.16: Comparison of the memory usage of the third step (own figure)

The optimization step (see Figure 3.17) is by far the biggest consumer of the compu-
tational resources. As previously mentioned it is responsible for 96% of the memory
usage for the modelling tool PyPSA for the largest energy system. For the modelling
tool Oemof this step is responsible for 95.7%. The PyPSA plot has a steeper gradient
regarding the memory usage.

However, when we look at the running time in Figure 3.18 we see that the optimization
is faster for the PyPSA modelling tool despite the higher memory usage. The incline for
the Oemof tool is steeper than for PyPSA. Oemof is faster for the two smallest energy
systems but afterwards PyPSA is faster.

The last step we analyse is the post processing. The time complexity class for both
modelling tools is O(n), but Oemof needs about twice as much time for every energy
system. The difference in the memory usage is not that extreme but it is still lower for
PyPSA. We assume that the performance advantage results from the used data formats
used by the modelling tools. As already mentioned for step number three PyPSA mainly
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Figure 3.17: Comparison of the memory usage of the third step (own figure)

Figure 3.18: Comparison of the memory usage of the third step (own figure)

uses the dataframes from Pandas, which are very fast to process. This could result in a
faster running time.

In conclusion after comparing both modelling tools regarding the size of the energy
system PyPSA has an advantage over Oemof when it comes to the computational cost
except for the memory usage in the optimization step. The trend predicts that the gap
grows even wider if the energy system is even more enhanced.
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3.5 comparison timescale and scale of the energy system

The scenario for the last comparison contains a growing timescale as well as an enhancing
energy system. To analyze this the asses_scalability function is used. The largest energy
system will consist of three connected minimum self similar energy systems. Therefore
the asses_scalability function will iterate three times and build three different energy
systems. Each of these systems will be simulated with four different timeframes. The
first timeframe consists of 2.000 timesteps, the second of 4.000, the third of 6.000 and
the last of 8.000. Therefore, there are in total 16 different simulations for each modelling
tool in the end.

We expect that the higher order complexity class of every step from the previous two
scenarios is dominating when enhancing both variables. For example, if for one step the
time complexity class is O(n) for the scenario with the variable timeframe and O(1) for
the scenario with the variable energy system, then we expect the complexity class to be
O(n) when enhancing both. And when both steps have the same complexity class we
expect that the class stays the same but that the rise in computational resources grows
steeper.

Furthermore, the contribution of every simulation step to the total resource usage is
analyzed.

3.5.1 Results

From our measurements we see that our conjecture about the complexity class and the
rise in the resource usage was right. First, we take a more detailed look at the results
for the modelling tool Oemof.
We see in Figure 3.19 that the use of computational resources rises when enhancing the
scale of the timeframe or the size of the energy system. In addition, the figure shows
that enhancing the size of the system mainly influences the optimization part, whereas
increasing the timeframe also has a visible influence on post processing. Furthermore,
the bigger the energy system is, the larger is the influence of the timeframe. In other
words, the effect of increasing the size of the timeframe on the resource usage is big-
ger for a large energy system than for a small one. This could be explained by the
fact that the gradients of the two previously introduced scenarios are intertwined. This
is as expected, because when enhancing both variables more connected data is generated.
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Figure 3.19: stacked 3D plot - Oemof (own figure created with Tessif)

We see from the stacked 3D plot for the memory usage (Figure 3.20) that the optimiza-
tion process is by far the biggest contributor and has the highest gradient. Finally, the
complexity class is O(n) when enhancing both variables at the same time.

We now take a look at PyPSA. In figure 3.20 we observe more visible differences than in
the Oemof case. The biggest one, as happened before in the scenario with the variable
timeframe, is the third step. Possible reasons are stated in 3.4.3. As before, this step is
mainly influenced by the timeframe and not so much by the energy system size.

Comparing both plots for the memory usage and the time measurement we see that the
steps executed in the framework Tessif, namely the extraction of the external data, the
transformation into the Tessif energy system, the transformation to the PyPSA energy
system and the post processing do have an influence on the running time. However,
the influence of the integrated modelling tool is a lot larger. Furthermore, the gap
grows when enhancing the size of the energy system and the scale of the timeframe. We
expect that this trend continues for bigger systems. Looking at the memory usage this
is even more extreme. The other steps are barely visible or even invisible next to the
optimization.

Figure 3.20: stacked 3D plot - PyPSA (own figure created with Tessif)

Finally, we take a closer look at the simulation with three connected energy systems
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and a timeframe with 6.000 timesteps. We noticed in the stacked bar plot that the
optimization step is by far the largest consumer when it comes to memory usage.

Comparing figure 3.21 and 3.22 we see that the biggest difference is, as previously men-
tioned, step three. Whereas for Oemof this step is the fastest one, PyPSA needs signifi-
cantly more time. Otherwise the structure is for both tools similar. For the optimization
and the post processing there is a slight performance advantage for the modelling tool
PyPSA. However, the main point is that the optimization step is for the running time as
well the largest contributor. For the Oemof simulation the optimization takes roughly
40 seconds whereas all the other steps combined only need about 5 seconds. This means
that the optimization step is responsible for about 90% of the proccesor time. It is
different for the modelling tool PyPSA. The optimization takes about 35 seconds and all
the other steps combined about 10 seconds. This results in a percentage of 72%. This
is mainly due to the faster running time in combination with the increased time needed
to transform the Tessif energy system into the PyPSA energy system. As we have seen
in Chapter 3, the percentage of the optimization step also increases when increasing
the variables. Consequently, by enhancing the system the impact of the steps executed
directly by the modelling framework Tessif become more and more neglectable.

Figure 3.21: time measurement bar plot - Oemof (own figure created with Tessif)
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Figure 3.22: time measurement bar plot - PyPSA (own figure created with Tessif)
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4 Conclusion and Outlook

This thesis is concluded by a short summary followed by a conclusion. Furthermore there
will be a short outlook on other modeling tools and the possibility of parallelization.

4.1 Conclusion

In the process of this thesis several methods were implemented in Tessif to analyse the
time and space complexity of energy system simulation tools. To this end, an energy
system was designed, where the size of the system and the scale of the timeframe can
be adjusted by the user. This energy system does not resemble any real system, it is
designed for the sole purpose of analysing the scalability of modelling tools.

The main results are the following: The complexity class of the entire simulation process
is O(n) for both computational resources (time and memory) and both modelling tools
(PyPSA and Oemof). The optimization process is the largest consumer of those resources
and has also the fastest incline when enhancing the size of the system or the scale of
the timeframe. In comparison to the optimization process, the other simulation steps
become almost irrelevant when increasing the input size. Thus, the main percentage
of the resources are used by the modelling tools integrated in Tessif and not by Tessif
itself.

Finally, we want to mention that the third step (the transformation into the model
specific system) behaves quite differently depending on the modelling tool. For example,
when we treated the timescale as a variable this step had complexity class O(1) in Oemof
and O(n) in PyPSA.

To make the analyses of this thesis even more accurate, simulating very big energy
systems could be of interest. This, however, was not possible because of the performance
limitation of the computing device that was used.

4.2 Outlook

To address the problem of the performance limitation, a parallelization approach can
be used. Parallelization is enhancing the amount of processing elements, which could
reduce the running time significantly. This would be important for the optimization
step of modelling very large energy systems. By analysing these, the required changes
to adress the climate change can be identified.

In addition to improving the performance through more sophisticated computing de-
vices or the parallelization, new energy system modelling tools can be implemented and
analysed in Tessif.
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