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The O.N.Re = N.S.F. Sympsium on Wave Resistance

Theory in Ann Arbor held 1963 made clear that current
research 1s focussed around the following items:
(A) Determination of quantities from the wave pattern

representative for wave resistance,
(B) Formal and semi-empirical corrections to the

classical linearized theory,
(C) More refined techniques for optimizing ship forms

within linear theory,
Within the present paper I shall report on work done
since then which might provide material to enforce pro-
ress in any of these directions, The "pi&ce de résistance"
of this contribution 1s the gradual evolution of a com-
puter programm which in a rationalized way gives the basic
information of flow and wave components due to typical
singularities, - (as discrete doublets, doublet struts,
continuous parabolic distributions on submerged lines,
infinite and truncated vertical planes) - all within
linearized approach. This information lends itself readi-
ly for application to item (A). Any method proposed for
determination of energy flow from characteristics of the
flow, in peculiar from the geometry of wave pattern,
can be tested for accuracy and for consistency on such a
theoretical wave fleld available numerically before
entering into expensive experimental work which provides
in general tooc little reliable information on optimal
choice of reglon where to perform measurements, The over-
whelming part of the methods proposed for (A) is impli-
cit ly based on validity of certain asymptotic represen-
tations for the wave pattern. Only numerical :calculations
can tell what distances are already large enough, espe-
cially regarding decay of the so called "local flow compo-
nents" in order that such representations may be applied.
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For (B), the theories of wave resistance used now-
adays are of second order, based on linearized flow models,
For calculation of wave resistance, only a far fleld com-
ponent of this flow has to be known explicitely; for any
consistent approach to third order resistance contribu-
tions, however, the knowledge of the entire first order
flow 1is essential, Aside from some semi-empirical ap-
proaches to alternate formulations of linear theory, which
we shall submit to some critical examen, and aside from
indirect approach as successfully carried out by Kajitani
recently, the tool for a systematic perturbation attack
to the higher order flow components has been provided by
Wehausen (1], (2], (3] in a series of papers starting with
that read before this audience in 1956 up to his contribu-
tion to the Ann Arbor conference. As, however, the step to
formulate resistance expressions was not performed, credit
i1s generally given to Sisov (4] for first dealing with
these, We should, nevertheless, be aware, that expressions
given by Sisov so far essentially contain divergent inte-
grals due to selection of improper radiation condition
for Green's function of pressure point., In our present
investligation, we will rederive some of Sisov's results
from a Green's theorem approach essentially following
Wehausen, We willl, in particular, show up some simplifi-
cations which make calculations straightforward once a
Fourler representation of first order flow components is
glven, It willl become evident that integration over un-
disturbed free surface has to be performed only in a
small domain where local flow is significant; third order
wave resistance 1s, therefore, much more tractable to
numerical evaluation than is apparent from what was for-
mulated by Sisov, provided we decide on anappropriate
definition of wave resistance, |

We declded to deviate from Wehausen's approach by |
some slmplifications regarding the actual flow boundarles, |
However, the resulting expressions found for third order
resistance depend 1n a simple manner only on ship's
offsets and on first order velocity components, We,
therefore, feel that these deviations at least have not
introduced artificial complications against results still
to be found from more refined analysis.,

Regarding the third problem, i.e. ships of minimum
resistance withlin lowest order theory, our investigation
should throw light on the question to what degree third
order contributions might counteract the tendenciles
predicted., At the present stage, however, our calcu-
lations are limited to & two~parameter class of hull forms
having parabolic waterlines, This 1s mainly due to the
fact that we prefered analytical evaluation of integrals
over the geometry of the ship, An extension of our pro-
gramm for local flow, to include contributions from
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emplirical surface elements 1s feasible, but loss of
closed integration would probably increase time for
computation and weaken control of accuracy. Moreover,
the necessary degree of hull-subdivision will in general
depend on Froude number and is not known beforehand.,
Even for analytical ship forms, the development of
formal expressions for closed integration cannot be

done by the computer and provides many opportunities

for errors in evaluation of singular regions of
integrands for local flow,

Description of analysis to derive potentlal

and wave resistance,

We shall essentially follow the approach of Wehausen [3].
but modify it for flow in a tank of rectangular cross
section, This will simpllify the formulation of radiation
conditions for the flow and allows the use of a Green's
function in a Fourier series representation regarding

the ordinate y chosen in direction perpendicular to the
vertical tank walls, The ship's motion is in the +x-direc-
tion with speed ¢, the z coordinate 1s taken vertically
upwards to conform with earlier work [6]. As far as
possible we otherwise use notation consistent with [3].
However, direction of normal vectors 1s reversed result-
ing from our definition of Green's function with an
opposite sign. Extension of results to unrestricted

water 1is straightforward.

i, Derivation of second order potential,

We 1introduce dimensionless coordinates as X = 2x/L,
Y = 2y/L, Z = 2z/L, where L i1s the ship's length. The
velocity potential is nondimensionalized as ¢ = 2@/Lc
As speed parameter we use y, - gL/Zc

Let Y=t¢F (X,Z) be the dimensionless representa-
tion of the hull geometry, where B is the shilp's breadth.
€=8/L will serve as a perturbation parameter and is
considered as a small quantity, Let X=X, and X~ X, De
the equations of two vertical control planes S, and Se
ahead of and behind the ship. Let Sy stand for the tank
bottom plane Z =-H, Let Y =T T be the equations of the
vertical tank walls S, and S, , where T = b/L, b = tank
width, Let S; stand for the free surface 7= ;(X Y) for
XecXeXgq, TeYeT ; let S,° stand for the undisturbed
free surface Z = 0 with the waterplane area of the ship
excluded Let S, stand for the wetted surface of the ship
and S, stand for the part of the surface up to 2 = O,
Let D stand for the domain of the complete flow, bounded
Y Sus S¢ s Sas Ses Srs S, and S,. Let D° describe the
corresponding domain 1f S, and S; are replaced by S;
and S,°., Let ¢ “stand for "the Michell type first approxi-
mation to the exact potential ¢, let P stand for a point
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or D° with coordinates X, Y, Z and let P' represent

a polnt on a boundary surface with coordinates § s N and
C. Let G(P,P') stand for the potential of a source of
output 4T as defined in"™Appendix.
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Z=E (XY) on S
Y=eF(X.Z) on Sy
The functions ¢, (¢ and G of the variables X, Y,

Z are subject to the fcllowing set of conditions:

A,

Laplace equation: A{ =0 in D, Aq;‘”= 0 in D°,

(-]

AG=4T-6(P-P')in D
. where A stands for 8%/ 6X%+ 8%/6Y*+ 6% 82* and §

it o Eg.»

means the Dirac delta function, which is zero if

P is unequal P'; (condition A. implies that G
becomes singular as -1/IP-P'l ),

On S.° we have (linearized free surface condition):

o (1}
e, v, =05 5;(32+Gxx=0.

For the exact potential ¢, no such conditions holds,
But we define a function 6 (X,Y) by
Y, 9t by = 0 (X,Y).
-2 ‘ ) . ) . _
On S, and S. we have: Py * 0; ¢y -0; 6, =0.
On S, we have: ¢2=O; z“’=0', G, = 0.
On S, we have: ¢ =tef [Ve'Fi+ e F i+t

where ¥ stands for n positive or negative and the
index n stands fer derivation in normal direction
out of the fluid's domain D. |

On $.°*, the projection of S, on the plane Y = O,

we have q)Y“’%t ¢Fy for the first order potentlal.

For fixed P' we have .
G = 0(1) with X=-o; G=0(X)with X =+,
Gy= (1) with X— -os; GX-O(X") with X - + oo .

pr——
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Application of Green's theorem shows that anand ¢
can be defined subject to the same modes of asympto-
tic decay, provided the quantity & (X,Y) will then
turn out to be well behaved.

The symmetry of functlons ¢ and ¢”’regarding the lateral

coordinate Y will be taken for granted by the symmetry

of shlp sections and tank profile,

We should bear in mind that [3] for the function ¢
exlstence as a harmonic function 1s, - 1if at all, -
guaranteed only in domain D, but not necessarily in D°
However, low order approximat*ons have been derived [31
which are found to exist in the whole interior of D° . As
for the moment we seek terms up tc second degree only,
we shall in the following formulate the problem for the
domain D° with boundaries known a prlori in favor of a
less intricate analysis, and derive approximate solutions
to this auxiliary problem by perturtation techniques.
Then, for point P within D°, we may apply Green's theorem
to functions ¢ and G to find a representation of ¢ (P) as

@(P)-;ﬁ;/fi@ (P67, 7)- ¢ (PG, (P, P)] ds’ (1.1)
where the closed boundary S' is composed of Swf, 5;’, Sr,
Si» Sp» Sas» Se and the subscript n stands for normal
derivative outward in P' space,

From conditions C. and D. we may conclude that the
contributlons of S5 , S, Tand Sb can be omitted on the
right hand slde,

The integral over S;°, where the normal derivative
is in Z direction, may be transformed by integration re-
garding § and use of B.:

I T S .
J‘/((PG Q')G) S:ﬂff;/I(L’)UHQG )! dQ"f

47
S5 -7 5+ Xe

Le (12)

where the line integral around the ship’s load waterline
L, has to be understood in counterclockwlse sense when
viewed from above (compare (19)([3]).

The line integral has been thorcughly investigated
by Yim [5]. We shall find, however, that 1t is pertinent
to merge 1t with a similar term from the wetted surface
Sw « = If now we assume the functions ¢ and ¢, uni-
formly bounded for X« Xy, then, due to the finite size
of S, with conditions F, we may infer that the contribu-
tion of Se becomes insIgnificant as we let X, tend to-o.
Similary: gg ¢ and ¢, tend to zero with X -0 , then, due




to ocundedness of 4 and Gy, the coatribution of $, may be
neglected with X, becoming larg>. But the contrid utions
of 5, and S, must be inda;budent of position X, , Xg 1in

as much as uae contrivution of the defect 8(X,VY)may

be neglected., Considering higher order terms, however,

we willl see that independence from Xe cannot be assumed
in general,

For the first fntegra. in (1,2) over the wetted
surface 5, , we shall make the assumpticn that con-
dition E. for ¢ holds even for parts of the hull not
included in Sy up to the undisturbed free surface, s0
that we may substituta:

- S fee2 R G uE
G ds = eF, S oS, )
)n s9e} X/ JETR T 7 t <Dy (13

observing that

, B R S
ds,” = Ve Ft + e Fir1 d4s5* (1.4)
vy X Vd 'y +
For the second integral over Sj we substltute the
Lo ™ ey
actual components of the normal veclor as

ey

i“Fx;.'fi,-Fz}/\/lff,‘FX‘rszf (ccmpare [3](18))

“

and thereby nave

”1 /‘ - ot - [ | [ e g e - [ - + -
Z;:"Pondbf"ff/ 9(5 Zfr(édﬂ,g)wgrx{65+6§)+

J- G v0, | dEdC (1.5)

where ! stands for p positive or negetive
By partial integration regarding & nd § , observing
Laplace equatlon for G as stated in A, and making use
of the fact that F = 0 at the integration limits if
g‘go » We then have:

- =_.__,_... / -/ i .t - i ~t ..“\‘ e I
47“/ q)G ds // ”§,S)(<PX(G§ T G»;)* sz(urr(}w)/a £d i

;s ¢
qu 5':*
’ /
..i 2! E r 7 [ a4 ¢ e "“‘;’ ey
“4“//F\§:§) b (GYY+ YY' ‘ﬁg* ‘r./ U)LU _U(’d?’i?ma‘l‘j"%)r(g’.ZGSrngdg
Sw’ '\, o § ot -
” “" . (16)

We can now transform the line integral, obtained
previously, as
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4” 7((4)6 Gw)dg"“x /(w 6+G)- cpo+c)) L (E,0)0dE

Lp

- 4“ /F £,0) G+G) q)( Gg'g)}dg
(1.7)

and then combine all components, observing B. for G, as:

¢=~—[/F§§)G+G)d§dg+4w /a (£,7)6dEdn+

+1

g, | P60 4, (60608 25 FE D (gl dpen

Sw

T (-4 gqu
{

T[{q)x(§1'2;o) G'¢(§,?,O) G§+/((Pxx(§,q,§)G'qu(g,Q,S)Gg)dg}dQ

]
-1

(LRI RN CRE S FEXT:
Sw (1.8)

w

If we here neglect the contributions of S, and 5., the
remalining expression, proper behavior of d(X Y) assumed
really makes thils omlission legitimate due to the proper-
ties stated under F, for the function G,

So far, we have not used any considerations
regarding smallness of ¢ = B/L « We should note that G
is deflned even forn=0 , i.e. for P' within the ship's
hull,. and is well behaved there, if P 1s not too close
to P', By development in Taylor series regarding ¢f we
therefore may infer that

G, = -¢€F -Gy t 0(¢)

Gy =+ Ogq + 0(€) (13)

which shows that the factor of<p in the last integral
is small at least of order &° .
In general we have

G+ Gg = 6. (£,0,¢)+0(¢)

6§*+G§‘=G (£,0,2)+0(¢€%) (1.10)

and
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If we now assume an expansion
! (1) 2 (2) 3
¢ = €9 +ep +0()
5 = e6Vr e8P+ 0(E) (1.11)

i

inserting into Green's formula and collecting terms of
equal order in £, we find that ¢° is Just the expres-

sion from Michell's theory with &6“-0 and no contri-

butions from S, and S,

For examination of ¢“we must go into the
nature of §“(X,Y). From [2] page 464, (10.12) we find
with p = const, and replacing 3/, by 9/9, and g by
¥, for our nondimensional representation'

:%_ (P (1)( (p (1)1_ (P (1)}

(1.12)

(It should be observed that only the local component
of ¢“contributes to the expression in brackets in the
second term due to structure of G, see Appendix),
Sisov's expression corresponding to (1:12) 1is incorrect.

From the decay of G and its derivatives as
0(X™") for X+ , causin; the same mode of decay for
@ it may be seen that §'¥ =0(X®) for X+ and
this means that ¢ =0 (X ') ahead of the ship and the
contribution of S, to the Green's formula expression
may be neglected. If now we can assume that the
potential

(¢}

1o, gy = 67 (Y)= (grad ¢) ¢

= -./ §-G-ds’ and its X-derivative are

uniformly bounded for X«<Xg, - and to prove this for

not too peculiar ¢ "’ should be possible with moderate

effort, - then we may drop the contribution of S. as

well as X, tends to infinity and may finally write:
(2) (2)

Y= ¢ +w2“

1

q)'m(xl\/'z) = Z%//F( ( (€,¢F,C)G g §'eE§}G§(§,Q§)d§dg+

o
Sw

2

e /F(g,owx:’s(g,o,omg
k (1.13)

1
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6. 0% - 7 [[ 87 (E ) G azan. (114)

S;

The second order potential 1s thus produced by

1, A distribution of doublets with moment corresponding
to deviation of local first order flow relative to
the ship from uniform parallel flow (giving rise to
the Michell-distribution) times local volume of the
shlp.,

2+ A distribution of sources over the plane Z = O the
density of which is essentially the time-derivative
in an inertial system of dynamic pressure (save a
contribution of the local flow components in the
vicinity of the ship).

3+ A line distribution of sources around the ship's
load waterline of output corresponding to local
breadth times wave slope in X-direction along the
ship's contour according to linear theory,

One should observe that the potential appears only in

derivative form, On the other hand, no differentiabi-

lity of the hull surface function F is required to

make the expression for ¢’ meaningful.

For numerical evaluation, the following approxi-
mations are made:

(1) calculating the potential from a distribution §(X,Y)
extending over the entire undisturbed free surface
Z = 0 including the waterplane area,
(11) inserting the flow components calculated for the
plane n = O rather than on the hull surface.
Both these steps require continuation of the flow
potential and some of its derivatives into the domain
occupied by the ship. This is achleved by extension of
the corresponding Fourler series inn . In so far as
these series would not converge for n=0 in the
usual sense,-1.e, for example the series for ¢, ,-we
treat them as generallzed functlons. The second term
of 6(X,Y) in (1.,12) will in general become singular at
bow and stern; however, for a symmetric hull we will
find that it can be left out for calculatlion of wave
resistance,

The error involved with above modifications will
in general be of higher order in ¢ than the terms to be
determined, nevertheless, it should be checked for com-
ponents not uniformly bounded in the extended domain,
It should be noted that the expression (13) for ¢ ®
can be retransformed by partial integration in £ and

to a representation by a source distribution overS:'.
- eliminating the line integral, - so that
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(2) (1)
¢ /[ (F g >z}d§d§+m/5§rz G-dEdy,
Su* e (1.15)
We should observe that the source density corresponds
to the change ¢of internal flow with coordinate rather
than to the normal veloclity, .

Formula (1.15) may be compared with [3] (43),
where the influence of trim and sinkage i1s included. We
see that all line integrals presented there can be
eliminated under validity of our assumptions,

2. Determination of wave resistance.,

Having thus selected & model for the approximation of
the flow, there 1s a decision to be made for definition
of wave resistance to the corresponding degree of
approximation, Three different approaches may be
considered:

(a) Integrate pressure components over the wetted part
of the hull bounded by the calculated wave profile,
retain only terms up to third order,

(b) Start with expressions for the energy flow through
a vertical plane behind the ship, as given in (2]
(8.6) page 460, evaluate these for approximate flow,
using wave contour from this approximate flow,

(c) Consider the approximate second order flow to be
physically real in the domain D°,

Conslider a closed surface, part of which 1s the wetted
hull; from the fact that momentum iIn the enclosed
volume D should not change with time, we infer that
action of pressure on the hull can be expressed
through flow of generalized momentum across the

rest of the surface,

It can be shown easily that for the linearized
flow mcdel one and the same expression for the resistance
can be derived by either apprcach - (see however the
objections raised by Sharma [9]). Up to third order,
however, (a) and (c¢) should only give equivalent expres-~
silons AR, and R. , if the boundary condition on the
hull 1is already met exactly by the approximate flow, as
otherwise we may have substantial flux of momentum into
the ship's interior. The formula for (b) was derived
under assumption of a free surface under constant
pressure and composed of streamlines, For a second order
flow, it 1s unrealistic to maintain this assumption, We
should therefore expect that resistance K, , calculated
by this formula applied to the approximate flow, could,
even in a nonmonotonic way, depend on the location Xcof
the vertical control plane where data are taken,

10
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But R, , derived by approach (c), should be inde-
pendent of choice of domain D, We shall select D=D° ,
the domain bounded above by the undisturbed free sur-
face as described before. - Due to conservation of
momentum we have for surface integrals enclosing any
domain D of the flow (compare (2], [7]):

p/{(i?)/z-ﬁ-(?ﬂ)-?]ds=o (2.1)

where Vv may be the flow vector in any system of refer-
ence elther at rest or in uniform translatory motion,
fi be the unit normal vector directed outwards,

If we now select

={th,&? -{wx,wy,wz}-ld
and define A. as X-component of
7 - p/ VR)V-(VT)/2- 0] ds, (2.2)

where integration has to be performed over §W, the hull
surface up to 2 = 0, then we have from (1.15), returning
to nondimensional quantities, with e as unit vector

in X-direction,

RC;T% ¢ [/w ¢, dEdq- x[[/ ][}q» ¢, dEdg
s’ St

f

' xoﬁwxwzdgdmxo{[/ [[] LA
b Se (2.3)

Reference to conditions C. and D. shows, that the sur-
face S, , S, and S, may be left out, The integral over

Sf may be transfo“med to line integrals along the
boundaries and an integral containing the function &(X,Y)
in a similar way as was done for the potential (1.2).
The contribution from Sa s iIncluding the line integral
from S;” , tends to zero with X - oo due to F. Thus,

we are left with

/5 5.0)9,(§9,0)dEdp- }{ q)‘(gsigo =

q’)x (Xe,Q O q)Y e;"? g)*‘q) (X ,Q S) q)X eIQg s
+/{—-——-———-——2 +x/ o dglag

-7

(2.4)

k4 ]
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where the line integral over the load waterline L, is
agaln in counterclockwise direction when viewed from
above,

Now, there 1s no reason to assume that the con-
tribution from S, , though bounded in magnitude, should
tend to a definite limit with Xe~- , nor can we
postulate this for the contribution of the region X =.Xe.
It is only by some property of the Green's function G
involved that we shall be able to evaluate the contri-
bution of S (X,Y) to the resistance by an integration
on S;° in the vicinity of the ship only. - We shall now
look for a relation between the quantities defilned as
R.and R;. To achieve this, we add an expression to
the integrand of (2.2) which has no component in

direction of‘{(. We set

R-Rer(Ep (7)) as) - Rex p(E, [{(T-907-(E-R)7 ] 45)
(2.5)

and therefore, with (E'ﬁ)=(§'ﬁ) assumed even for the
first order flow,

R, =/p(étﬁ)-{(c-?)-(V-V)/Z}dS. (2.6)

But this 1s just R,, the resistance defined from pressure
integration over the hull, for the nonstatic pressure is
p((v~c)—(v~v)/2) and we thus have

Ra'RC*P/‘PX((g‘E)'(V-ﬁ))dS (2.7)
Sw

To R. as defined above, we now add an appropriate
correction for the influence of the wave profile along
the waterline, as only the wetted part of the hull can
experience pressure from the fluid, and then define the
quantity obtained as "third order wave resistance", Now,
up to second order, pressure 1s atmospheric pressure
plus hydrostatic pressure due to the wave elevationgT.
Integrating the last quantity over dZ d¥, the projection
of the surface element on the plane vertical to X axis,
we find a correction as

AR=P9/]5(Z~;)dqu=p936£-(%iﬂdq, (2.8)
LP . LP

As now the perturbation procedure gives the first order
wave elevation [2] as y
() c . S f m

g e e Tt Y ¢, (XY, 0)

p—
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adding this in nondimensional form to expression (2.,4),
we see that thils correction just cancels the line
integral around L,, which we, therefore, can happily
discard [8]., -

A further simplification will be made by extend-
ing the integration of & over the whole plane §T =0
-T<n<«T , E< Xe which means an error of order ¢‘, as the
waterplane area 1s of order¢ . Inserting now

n) (z) 2 (2) 2 (2) 3. (3)
q)‘fq) (P 5'56 ) R=¢'R+ ¢ R we have

T
(1) l)

(2) 1 (n? -
R =/{—2—wa (X.,9,0)+ //%1“% O dg}dq (2.10)

-7 ~H
R - R(3) + R(J)

( corresponding to the partition q» =<V”+ @Y )
with ' :

(3)

T (-]
(3) 1 {4) (z) 1) {2) (1) 2) ) (2)
Ry ey e o0 ag
-7
(2.11)

T ¢

(3)
= -

(Z) Q (2) (l) (2) ) @)
R, 7}-// 8 (&, Q,») d§dq+ ;(% ¢ f/ ! ‘ _Xq&)dg}dq
) (2.12)

€

3. Resistance due to additional singularities
within the hull,

Let us now, only to save labor in writing down formulas,
assume that the depth of the tank 1s large enough that
we may put H =« , If w can at X = X, be represented
by a system of free waves - we omit terms nonsymmetrilc
in Y for reasons of simplicity - as

e o » m K1l
gpx"” ¢ . }:(A: cos(W, y X)+ B, sin(W, y.X))-e cos(U,y,Y) (2.13)

Va-o
where AU~ T/(yT)and U, = v-AU :safevgney;rwy-1+4uf,
= ( i+ Mv)/Z = seczey,
Wv - VKV = SEC 6v, Av(” = Ai‘: ) 8:”)= B_(L) s

(where 6, stands for the angle of wave propagation
against X axis), then [6] we can evaluate the integrals
in closed form as

13
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oo 2 e y? J
R(Z)= T'Z Z‘C;-)S 8y (Ay“'*' Bv“)/xo (2.14)

y* -

(This formula reflects the fact that resistance is
essentlially equal to average energy in wave components
times difference between ship's speed ¢ and X~-component
of group-velocity, divided by c.)

If ¢ ¥ has a corresponding far-field representa-
tion: X

o
@)

2)ifree) ) K,
¢;" ' Zij{Aw mx(M4£X)+BJ’an(W;nX)}e r‘ZCO.S(U”*OY')
(2.15)

then Rf” as Interference between both systems can be
written down directly as

V-

o
(3)

R, = T3 (2-cos’s,)(A, - A+ 88 ")y  (216)

For evaluation of (2.14) and (2.16) we have to keep in
mind that for n=0 the Green's function G has a repre-
sentation for E M X as system of free waves llke
Koy, (Z+0)
G NZg cos Wx()( §)) cos(U,r,Y) (2.17)

with 9,=9., <" 8T - KV'X,,/(MV'T)

(see Appendix) and that we have:

=--—// (£,6)-6, dEds (2.18)
¢, // (o 60 9,6, Jas an / (690%,5,45
5

and therefore

A 2 [ Fla s tw g 5y agas 220)

s*
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(1)

w
h
i

v

f/ (€,8)-cos(W,y €)-e ”“-W,x,dgdg (2.21)

*

\2)

Ay s g || P 6 wy sin (w8 ) 0 o )] eges

5
%’“ / x' sin(W,r £)dég (2.22)
(2 ~ . s ) .
B,v) F(g,8) {q)x ! Wy -cos(Wy§)-¢ -nyo-sm(wmg)}dgdg
Sw.‘
3, )
Teny [ (£,0) 9, cos(W,rE)dE. (2.23)

The above expressions can in general be evaluated in
closed form for mathematical eTementary hulls, save the

contributions of local flow Q) to the integrands, where

however the V-integration may be interchanged with
closed-form & , { integration. -

4, Resistance due to additional singularities
at undisturbed free surface.

Consider a strip of widthd§ extending from n=-T to
n=T at T=0 with ordinate X-§ . Assume that a
Fourler expansion for §(§,p) holds as

m ZS (§)-cos (U, 1) (224)

VE-

)
Ir XCL¢§', this strip will contribute to un by
X

T

d <2) 8 G(frec) 0 -
q)zx - 41'[3»0 b's (g)m /X,Y, )deg (2.25)
with -
(free)  \ K,¥, 2
G, e =Lgy.e 4 cos (W, x, (X-€))cos (U, y,Y)cos(U,y n)

V-0

(2.26)

( + terms odd in n not needed here)
where .

9v,g”’,4v¢gn /(M,-T) (2.27)

(compare (A.,1)), We then have:

15
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do =21y 6K, /(M T)e %
X

VE-Co

x(cos(wvxog) cos(wvxa)(hs[n(W,xag)sin(wyxo)())-cos( UrY)dE
(2.28)

If now for qu as well only free waves are significant
at X==Xe » 1ees 1f we have:

o0
) () free)

G- 5 Al 1008 0] e (01

V-
“ ‘ (2.29)
then dqé will make up a contribution to R, as
X

G @ K 3t ar -
dR=T ) 8,(2-c0s'8,) o (A cos (W, %, §)- B sin(w, ¢, £))dE

ye.o

(2.30)
But from (2.13) we may derive that
Ky /M, = K, [(2K,-1) = 1/(2-c0s°6,), (2.31)
thus '
dr, =271 i 8V{Aumcos(wu L E) By"’sin(wvxag)] (2.32)
- [e(509," (5,9,0 ana g

fl"T

This is not yet the whole contribution of the strip
to R,”, however; from (2,12) we have to add:

dRz“)-f-/(Sm( g'q) q)xu)( glf?,o)d'? d§ (2.33)
Qs-T

This leads to the simple result

R, ~ “[[8 (E,Q,O) Q)x(glq’»O)dng | (2.34)
(1)(freed

~ . (n‘ 3
with Q§ q& ¢ (2.35)

The potential 5 would correspond to the solution of the

first order boundary value problem if we had postulated
waves traveling ahead of the ship instead of aft the

16
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ship, For a_ship symmetrical to the midship sectlon we ,
may insert ¢ (X)= ¢ (-X).

The aboge integral (2.,34) will Have significant
contributions ;o resistance only from the vieinity of_
the ship, as § 'has strong decay ahead and the factor Wy
shows a decay aft. The overwhelming contribution should
therefore come from the rhombe-shaped region bounded by
a Kelvin angle drawn from the bow and an opposite angle
from the stern, N

The expression for R could have been derived
directly as the Lagally force of the wave fleld due to
the surface disturbance 6(&,n) acting on the singulari-
ties creating the first order flow fleld of the shilp.,
It would, therefore, have been found by Sisov under use
of proper radiation condition, For the case of a nonsub-
merged body, we felt that formal application of Lagally's
law even for higher order contributions deserved caution,-
Inserting (1.13) we have

T ™

3) (112 tY] I} gt (\)(fr )
R, =-//[(9rad<p ) r o (19, o, Z/ eeJdXdY
-7 coo (2 36)

In peculiar forwa symmetrical hull, where X w +.Q
is odd and ¢“’ ¢ is even, we have'

// gmd¢ ) ( ) dXdY = .[/ qmdq)) w ( X)dxdY

1
-T// graqu (-X)dXdY
e (2.37)
If now for a symmetrical hull we have:
(2.38)

-

q)x“'(x,\{,ow e, (X)cos (U, Y) with ¢ =oc

V= -0

({)“)’X YO) Z B, (X)sin Uv'xo-Y) with B = B,

Vvs-x

(pm XYO0)=- Zx ) cos U,,',X‘G'Y) with Loy

V-0

where according to (2.,18) and (A.1) the coefficlents ¢ ,
B,» and y, depend on hull geometry given by Y-*'EF(XZ)
through the relations

I

17
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o, 3H,/3X,  B=UyH,, r\=aH/az (2.39)
with the function H (XY Z) given by

H, (XY,2) - %%//[siqn(»gw}e B8, €) cos (W (x-€)) dE S
v
z ~ug, |X- €|
_:’f‘aT ]f /slgn(X E) F(g ;)e {Vcos(Vy;) Usm(Vr;} Udv dgd;
$.°% vep
(2.40)

and UVDMVJWVS K
can express
(3)

Rz =,€’(j)' 4L/(PB3CZ)

2

and U as given by (A.4), then we

14

Y N
- /}; Zm (X)e5, ()= B, (X)- B, (X)+3, 005, (0 ¥ f (X0
{05, (Ko X0+ B ()<, (X) ¥ 5, (X5, 00}y (-X) | dx

fu-Al
- (2.41)

due to the Fourier orthogonality relations for Y integra-
tion, where the X integral may be truncated soon after X
exceeds 1 in absolute value, convergence of (2,41) assumed.
The above formula can easlly be extended to the
case of infinite tank width with T+ ; however, for
practical evaluation it 1s recommended to consider T
as 1inverse of spacing in integration by trapezoidal
rule and let T be Just large enough, dependent on X,
that for =t X the actual wave pattern 1s well within
[Y|<T » 1.e. that no tank effect can be felt,
For actual calculations we have to reintroduce
dimensions; we have

R -(8/1) p- (L)2)" - R = pBY (41 RY
- (8/L)Fp e (1/2)t - RY=pctBY 4R
(2.42)
u(comgare (2.3), (2.10), (2.11) (2.12)). - where R”

and R™ are the actual tnird and second order resilstance
components,

18
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Fig,.2

Portion of resistance obtainable
from cylinder force measurements
by Ward's X-Y-method,

Ship with parabolic waterlines
Draft/Length = 1/20

Percentage of

S0
o
o

~2
o =0,5F,

<

Y
~

[T 77077777777 77777777777

tunk wall

10

7/ <

reslstance 0%
from cut at o,
Yo 4024
truncated at X 0%
X=40

-41

-14

-

LTIV 77777777
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b/o = 3086 41455
Infinite strut
tank <1107,
width = 5/6 ship length
+1087
[ k///f/”’ //”\\\\\ . mo%
TO i1 \h/ }3 ]#i—
4 957
-+ 90%

Fig-3

{2)
Ratio of Calculated Resistance R_(x) from Transverse Cut
pnalysis [6] (Wave Blevation and“¥X-slope)to Asymptotic
Value R

Summa Yo

With the above analytical considerations, an attempt was
made to coordinate the intuitive approach of Sisov with
the rigorous procedure of Wehausen. Some simplifications
allowed, we found that even the latter leads to a repre-
sentation of the second order wave potential by sources
only, located on the undisturbed free surface and on the
longitudinal centerplane of the ship; - in particular all
line integrals can be eliminated, Additicnal resistance
can be expressed in terms of first order flow components
which determline these singularities, Only a region of the
free surface close to the ship need be considered,
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Aggendix

A Fourler series representation of the source potential
in a tank of finite width.

The expression to be presented here has essentially been
derived in [6}. We shall confine ourselves to show cer-
tain properties which are needed in the foregoing appli-
catlions,

The expression describes a wave potentilal of a
source of output +4mT, - i,e. a singularity like negative
inverse distance, - 1in coordinates made dimensionless by
ship's haif length as introduced under (1). The
expression is:

G= ZaA Z [ (free) g (local’(x élzlg)J{COS(Uya‘oY)XCOS(UVYOQ)“".(_”V)“_

V=~

£ sin (U, ¥) sin (U, g, n)(1-6)")f AU (A1)
with AU = T/(y7T) U =v AU=sec’8,sin8, §
9:frec)= _g—(vfrce) - {siqn(X‘ g)_1}._:}]’1/ -eKv(Z‘l‘-g)Jo,‘nW X (X- §>
~VI+ZUF ; K,=(1+M,)/2 - sec’8,
W = VK, = secB,

and

Uy 1X-El .
9v(lacql) (local) /T—/ [ % .{(Vcos(VX‘Z>-U25ln (VYOZ».

vs0

x(Veos(vy £)- U'sin (Vi £3)] - 8,07] /(viuts v3)-av

' (A.2)
with U=+ Vit U7 and 8,°(0)=1 for v=0 , else 8, =0 .
-op—smali—enough-not—to—disturb—convergence—of—series,
It is easy to find out by investigation of single terms
of the series that the function G is subject to the
following conditions:
AvG,, *Gyyt G, =0 provided the corresponding V integrals

. Tm -

exist, which 1s guaranteed for |[X-%|>0
B.yG,#G, =0 for Z=0 |

*
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Gy =0 for Y=1T
G, = 0 with Z ~-o
G=O(X—§)—‘asX-+oo, G=0(1)as X—=-o0,
G~ 0(X-E)'as X=+toe, G,~0(1)as X -+-oo,

explicitely shown in [6],
As the structure of G 1s symmetric, corresponding rela-
tions can be obtained under exchange of X, ¥, Z with

s N o

g (R It remains to be shown that

(1) the expressions for G and Gx match in a continous
way at X = .

(11) for |Y-nl1 2T, Z2<¢ 0 and (<0, G and G, become singu-
lar only for X=g , Y=n and Z=C , and that the
functions

G* = G+1/r and )

» . 2 2 2
6, = G +(1/r), , with r={(x-§) +(Y—r;)+(z-g)}
(A.3)
remain finite here; - (convergence of the series for
CT#+Z 1is shown in t6] )« Statement (i) is evident for
the function G, - Assume for simplicity §=O .
Then 1t 1s sufficient to show that

y p(2v5) . °°_K Ixi . 2 dv
LI ACSZ IR _‘H_] e " (Vcos(V[oZ)-Uzsm(V;:Z))(Vcos(Vyo;)}-Usm(Vx}))W

v x=-0
V=0 (A.4)
for arbitrary U 20 and Z+¥ with

U=vvieut M,=Vitr4u,® Kv=(1+M,)/2 .

On the right hand side we may substitute

s Ip o

-2—;- Ll'rpo {/ [Vz{COS(Vr.(ng))i‘COS Vy_(Z~;)}-U4[cos(v;;(Z+g))-cos(yxo(z-;))}f
ve0 _up.X
+2U Vsin vy, (Z+ g)] e dv

U4+ v2

0

| ViU Ve (Z46)- Ve I Vg XtiVy (2-¢)
=-——l [ e [l ° o
Z7 im Re{ TR dv+[e dv+
Ye-c0 yx -0
o» -Uy ixi Vg X e .'vx.(z+;)
+/ (e e )(Vﬁ;tU)e dV}
V-iU |

}
Ve

-0

(A.5)
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The second term In the last expression is zero for any
finite X, The last term is o(X), The first term may be
written

F oy (Vg (Z+C)-Vy [x
tim pel [V m)(vﬂ yri)fe) Y LERE VeI (A.6)
T 4T x~0 (VHiK)(V-((M, +1)/2)
Ve-o0
which shows poles of the integrand for V= ((M,-1)/2

and V= -((M,+1)/2=-iK, . By shifting the path of inte-
gration downward 1in the complex plane we can make the
Integral arbitrary small after splitting off the
residuum at V=-(K, , thus we finally get

. 27i Res (V-iK, ) (VEiM,+1)/2) e‘/ro(2+§)} 1K e vy (Z+8)
Ve-ik | (V+HIK)(V-1(M, +1)/2) 4T M,
v . (A.7)
q.E.d.

To prove the statement (ii) we start with the represen-
tation

A ‘1/(2Tr)/-/ e_u[x-glcosu{(Y—Q)cose+(2+g)sin 8} dud®
Us0 8-0 (A.8)

2w .
/ eﬁblx.s]cos u{(Y-Q)cOSQ-i—(Z-g)s{n 8} dud?®

9=0

= 1/(2m)

0\\8

Us

where r, corresponds to r with T under negatlve sign. =~
Introducing new varilables of integration U, V, U by

~

U= u/y U= ucossfy ; Vousingfy . (A9)
we have
tr-1/r, =X/(2u)/ / e Zsm(Vx Z)sm(ng)cos( (Y- q /UdUdv
- (A.10)
(t/r=1/r,) --x/(Zw)//e Zsm(\/x Z)sm(Vx g)cos(Ux(Y q)dUdV sign(X-§)
- (A.11)

Now there 1s a general law 1in the theory of Fourler
ransforms [11]" - essentially known as Poisson's
summation rule - stating that if the function F(y) has
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a representation

o ~

~ iU ~
Fy) = /G(U)e " 40 (A.12)
then F?'(é,y) - Z: F(ytvd), provided this seriles

VE -0

converges, has a representation

(8,y)-) 6(y,)e Al (A.13)

Va-—od

with alU-1/8§ U = v AU
With & - T/w » we therefore have the representation

)
bad %

. -2
2 (begletvmmeqeizeey’] - [0 gfatverafeizs)] A

Vs -0

-—Z/n‘/E:: ey n(vy Z)sin(Vy §)[U-dV-cos (U, (Y-n))

ys-o00

v (A.14)
with U =2wy/(y T); U=VVZis+ U}

But the terms under summation are equivalent to
corresponding terms in the serles for G (A.1), and it
can be seen that after subtraction of these terms the
integrals for the coefficilents g‘”“” (A.1) converge
even in the caseX=§% ,72=¢C ,

The argument for the function GX is analogous,
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