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ON SECOND ORDER CONTRIBUTIONS TO SHIP WAVES
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K. W. H. Eggers
Institut für Schiffbau der Universität

Hamburg, Germany

The O.N.R. - N.S.F. Sympsium on Wave Resistance
Theory in Ann Arbor held 1963 made clear that current
research is focussed around the following items:
(A) Determination of quantities from the wave pattern

representative for wave resistance.
(B) Formal and seml-empirical corrections to the

classical linearized theory.
(C) More refined techniques for optimizing ship forms

within linear theory.
Within the present paper I shall report on work done
since then which might provide material to enforce pro-
ress in any of these directions. The "piece de resistance"
of this contribution is the gradual evolution of a com-
puter programm which in a rationalized way gives the basic
information of flow and wave components due to typical
singularities, - (as discrete doublets, doublet struts,
continuous parabolic distributions on submerged lines,
infinite and truncated vertical planes) - all within
linearized approach. This information lends itself readi-
ly for application to item (A). Any method proposed for
determination of energy flow from characteristics of the
flow, in peculiar from the geometry of wave pattern,
can be tested for accuracy and for consistency on such a
theoretical wave field available numerically before
entering into expensive experimental work which provides
in general too little reliable information on optimal
choice of region where to perform measurements. The over-
whelming part of the methods proposed for (A) is impli-
cit ly based on validity of certain asymptotic represen-
tations for the wave pattern. Only numerical 'calculations
can tell what distances are already large enough, espe-
cially regarding decay of the so called "local flow compo-
nents" in order that such representations may be applied.
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For (B), the theories of wave resistance used now-
adays are of second order, based on linearized flow models.
For calculation of wave resistance, only a far f1eld com-
ponent of this flow has to be known explicitelYi for any
consistent approach to third order resistance contribu-
tions, however, the knowledge of the entire first order
flow is essential. Aside from some semi-empirical ap-
proaches to alternate formulations of linear theory, which
we shall submit to some critical examen, and aside from
indirect approach as successfully carried out by Kajitani
recently, the tool for a systematlc perturbation attack
to the higher order flow components has been provided by
Wehausen (11, [2], [31 in aseries of papers startingwith
that read before this audience in 1956 up to his contribu-
tion to the Ann Arbor conference. As, however, the step to
formulate resistance expressions was not performed, cred1t
1s generally g1ven to Sisov [41 for first dealing with
these. We should, nevertheless, be aware, that expressions
given by Sisov so far essentially contain divergent inte-
grals due to selection of improper radiation condition
for Green's function of pressure point. In our present
investigation, we will rederive some of Sisov's results
from a Green's theorem approach essentially following
Wehausen. We will, in particular, show up some simplifi-
cations which make calculations straight forward once a
Fourier representation of first order flow components is
given. It will become evident that integration over un-
disturbed free surface has to be performed only in a
small domain where local flow is significanti third order
wave resistance is, therefore, much more tractable to
numerical evaluation than is apparent from what was for-
mulated by Sisov, provided we decide on ~appropriate
definition of wave resistance.

We decided to deviate from Wehausen's approach by
some simplifications regarding the actual flow boundaries.
However, the resulting expressions found for third order
resistance depend in a simple manner only on ship's
offsets and on first order velocity components. We,
therefore, feel that these deviations at least have not
introduced artificial complications against results still
to be found from more refined analysis.

Regarding the third problem, i.e. ships of minimum
resistance within lowest order theory, our investigation
should throw light on the question to what degree third
order contributions might counteract the tendencies
predicted. At the present stage, however, our calcu-
lations are limited to a two-parameter class of hull forms
having parabolicwaterlines. This is mainly due to the
fact that we prefered analytical evaluation of integrals
over the geometry of the ship. An extension of our pro-
gramm for local flow, to i~clude contributions from
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empirical surface elements is feasible, but loss of
closed integration would probably increase time for
computation and weaken control of accuracy. Moreover,
the necessary degree of hull-subdivision will in general
depend on Froude number and is not known before~and.
Even for analytical ship forms, the development of
formal expressions for closed integration cannot be
done by the computer and provides many opportunities
for errors in evaluation of singular regions of
integrands for local flow.

Description of analysis to derive potential

and wave resistance.

We shall essentially follow the approach of Wehausen [3].
but modify it for flow in a tank of rectangular cross
section. This will simplify the formulation of radiation
conditions for the flow and allows the use of a Green's
function in a Fourier series representation regarding
the ordinate y chosen in direction perpendicular to the
vertical tank walls. The snip's motion is in the +x-direc-
tion with speed c, the z coordinate is taken vertically
upwards to conform with earlier work [6]. As far as
possible we otherwise use notation consistent with [3].
However, direction of normal vectors is reversed result-
ing from our definition of Green's function with an
opposite sign. Extension of results to unrestricted
water is straight forward.

1. Derivation of second order potential.

We introduce dimensionless coordinates as X = 2x/L,
Y = 2y/L, Z = 2z/L, where L is the ship's length. The
velocity potential is nondimensionalized as ~ =2cp/Lc.
As speed parameter we use

r.

... 9LI 2c2.
Let y..! ~ F ( X I

Z) be \he dimensionless representa-
tion of the hull geometry, where B is the ship's breadth.
C ., BIL will serve as a perturbation parameter and is
considered as a small quant ity. Let X ... Xa and X'" Xe be
the equations of two vertical control planes SQ and Se
ahead of and behind the ship. Let Sb stand for the tank
bottom plane Z =-H. Let Y =! T be the equations of the
vertical tank walls Sr and Sl , where T = b/L, b = tank
width. Let S f stand for the free surface Z" ~ (X

I
Y) for

Xe L.XL XQ , TL Y L T ; let Sf° stand for the undisturbed
free surface Z = 0 with the waterplane area of the ship
excluded. Let Sw stand for the wetted surface of the ship
and Swo stand for the part of the surface up to Z = O.

Let D stand for the domain of the complete flow, bounded
by Sw. Sf , SQ, Se, Sr, Sl and Sb. Let DO describe the

corresponding domain if Sw and Sf are replaced by Sf°
and Sw.. Let tp

(11
stand for the Michell type first approxi-

mation to the exact potential tP. let P stand for a point
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in D or DC with coord~nates X, Y, Z and let pt represent
a point on a boundary surface with coordinates ~ , Q and
~. Let G(P,P') stand ror the potential of a source of
output 4~ as defined ln~Appendix.

Ir
I
I
! Sl
I

!
iSa
I
I

J/ / / / // / ',/ // 777/ / / / ? /7~

X.X Sb X"X Y.,-T
e Q

~

I,

~C=::! /~ <,
c:. "
'"'w

z..o

s'
e

y.,o Y=T
Z.. $ (X,Y) on Sf
Y"cF(X,Z) on Sw

The functions cp, tpCl)and G cf the variables X, Y.
Z are subJect to the following set of conditions:

A. I..aplaceequatlon: Ll<.p
'" 0 in D, tJ.q,CII

'" 0 in DO}

~G"'41l".6(P-P')in DO

. where~ stands for 6z/6x2+ 61./6Y1.+6'/ ozt and Ö
means the Dirac delta function, whieh is zero if
P i8 unequal P'; (conditlon A. lmplles that G
becomes aingular as - 1/1 P - P"I- ).

ä. On Sfo we have (linearlzed free surtace condlticn):
CI} co

0'( c.p + cp v
... 0 j r Gz+ Gxx == .

o Z x" 0

For the exact potential c.p, no such condit1ons holds Ii

Bat we deflne a functlon Ö (X, Y) by .

't(j ll>z + tIJ}(X = Ö (X I V).
,

01

.90- On Sl and Sr we have: tpy '7'0 i tVy ""
0; Gy '" O.

~(j On Sbwe have: l/lz...Oj Lt'zCli=Oj Gz=O.

!. On SIAlwe have: 4>n"! tFX /V€2 Fxz+ tZ F/+f

where ! stands for ~ positive or negative and the
index n stands for der'iva.tionin normal direction
out of the flu1d's domain D.
On S';" 0 the project1.on of Swo on the plane Y :: 0.

we have c.jJy
(I)

;.!
e. Fx for the, first order potential.

!. For f1xed pt we have
G '"'

0(1) with

Gx"" 0(1) with

..

..
X--ooi G= o(X )with X--roo)
x- -OOj 0x. O(X-I) with X-+cc.
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(1)
Appllcation of Green's theorem shows that ~ and ~
can be defined subject to the same modes of asympto-
t ic decay. provided the quant ity <5(X,Y) 'will then
turn out to be well behaved.

(0
The symmetry of functions ~ and ~ regarding the lateral
coordinate Y will be taken for granted by the sy~~etry
of ship sections and tank profile.

We should beal" in mind that [3] for the function ~
existence as a harmonie function iSa - if at all, -

o 0guaranteed on1y in doma~n D, but not necessal"i1y in D .

Howevel", low order approximations have been derived [31

which are found to exist in the who1e interior of DO
. As

for the moment we seek terms up te secend degree on1y,
we shall in the following formulate the problem for the
domain DO wlth boundaries known a prior1 in favor of a
less intricate analysis, and derive approximate solutions
to this auxiliary problem by perturbation techniques.
Then, for point P within DO, we may app1y Green's theorem
to functions 4> and G to find a representation of c.IJ(P) as

Ih(P)=-~ /(dl (p') G(P p' ) -. (j)(p') G (P Pi)
}
ds' (1.1)'1' 4trJ l'Y'n

) I n /

o
s

o
where the closed boundary S' i s composed of Sw' f . Sr ,
SI' Sb' SQ, Se and the subscript n stands for normal
derivative outward in pi space.

From conditions C. and D. we may conc1ude that the
contributions of Sl , Sr -and Sb

-
can be ami tted on the

right hand side.
The integral over Sfo , where the normal derivative

is in Z direction, may be transformed by integration re-
garding ~ and use 0 f ,§,.:

T ~
~ xQ

1-
!
((jJG-lfiG )dS = ~,"'~--

f
'

I

(LJ G-yG ) 1 dn +
4'1r

_

Z ~' 41f (0) 1
X ~

I

(

':>; -T ~
. Xe

+
_1 r b(r C ) c; ci 5 ---~-

r

(

(4) G - (IiG ) dn
41f

to J
'<'
I (' 4-

..t
°

X "t

~
(

5;
Lp ( 1. 2)

where the 1ine integral around thc sh1p's load water1ine
Lp has to be understood in counterc1ockwise sense when
viewed from above (compare (19) (3)).

The line integral has been thorough1y lnvestigated
by Yim [51. We sha1l find, hcwever, that it 15 pertinent
to merge it with a simi1ar term from the wetted surface
5wo. - l!. now we assume the functions l/Jand (j.Jx uni-
form1y bounded for XL Xe. then, due to the finite size
or Se with conditions F. we may infel" that the contribu-
tion of Se becomes insTgnificant. as we let Xe tend to -00.
Similary: If 11)and 4) tend to zero with X -- 00. then, due_'t' x
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to OOl:ndedne~;;s of ,J :.:..:.d Gx~ the cO:H:r'lbution of Sa may be
neglected with Xa becoming larg2. But the contributions
of SQ and Sb must be independent cf position XQ' Xe inas much as the contrlbutlon cf the defect Sex, Y)may
be neglected. Consldering hlgher order terms, howeverj
we will see that independence from Xe cannot be aszumed
in general.

For the first integral in (lQ2) over the wetted
surface Swo » we sl'lall make the assurnptJ.on that con-
dit10n §. for ~ holds cven for parts of thc hull not
included in Sw up to the undisturbed free surface. so
that we may substitute:

,I I '-. "r /~
r:-z-::Z~---:-T~-f

' ,"
c;

(j

'" ( 1 3 )'1) C, ;,)-'
'-';.' / :/€ r., T

'-'

rzi 1
'.'

.J
W .

n ,\ , .i\

observing that

d 5W° = V?!;l~--;'- e lr;+ i ri ( 1.4)
_

0For the secend integral ovar jw we substitute the
actual components of thc normal vector as

(

} /

1 _
_",

i -
'

t-' ' '_ l l .Z j::"l.
l

Fx/- I I - Fz V I T G FX t'
'l

(ccmpare [3) (18))

and thereby have

4
=-~

J

f [11 G -< ('
I

1r 'I n('<.:J"'

S .
w

i

I

l

l

'

'

)

I
-'-

(I} .,-r ,"- ~ ,- r
"

A'" .(+- -

~1(
/

T($)-Cr($I~J1? \~rX \G~+G~)t

s 0,.

-"

> / r< +- - \..
,... t r \ ... >~, _~

_
t ,: F l'-' +- G J'" 01- LJ ;' d F

'-<
,

Z ~ ;; 'i 7, {" ?
( 1.5)

where ! stands for Q positive or negative.
By partial integration rega~dlng ~ and ~ . observing
Laplace equation for G as ~tated in A. and mak1ng use
of the fact that F ;;: 0 at the i.ntegrä'tion limits ir

~
L.0 . we then ha ve :

_,1~

! ljJGndS':
4~ 1/ F(~/»((PX(G,:t1' G,:-) + c.J;f(G_tt G_-V d ~d ~,+ I/

, j
, ? ~ .? ~SQ ~

,
,

N r
W ~w

..

!J

r ,

"

_ 1 ,
G -

,.
~",' ,(,.. .

-
4rr

H
F( ~,~), ~J( Gyy+ un) d $ d

~ t 4:;
1/

(p( G~t- G~)d $ d >
-

i1i) 4)F($ß)tG/G~
]
d~

..ot'
}

_:,

"

o~
t ..1W

.'", ~
(

I
l')

We can now transform the line integral. obtained .b
previously. as
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I

- 4~ '0 f (lfJx G - G~ 4J) d ~ = - 4; r
0 ./ ( tV/ G\ G-) - q>( G~t+ G~-)) FX (~, 0) d ~

Lp -I

=-
4-~to f F($IO){ tpXX(G\G-)-<jJ(G~; +G~~)} d ~

( 1. 7)

and then eombine all eomponents. observing B. for G. as:-
<f =-4~Tr r!F(~I~)(G~\G~-)d~d~+ 4;ro Ir ö( ~,Q) Gd ~d~ +

5"; 5;
1'1

+ 4:t f F ( ~J
0) 4J ( G\ Ci') d $ - 4~""JF (~ p [tj.> (G\ G) t ~ (G\ G

- )
J

d ~d ?
· 0 xx "I X $ ~ z ~ ~

-I 0
5w

T 0 S:"X11 q.

+ I ;. /! <1>, (~,~, 0) G - <I>(~,~, 0) G. +J (<I>xx(~,~, P G- <Px(~,~,~).G,)d~)dY
-T -H \ 1~.Xe

t 4~Jf t!J(~/€F(5/~J,$)'UG;-€F'G'l;)-(G;tc:FG'l;~d~d ~
s. (1.8)
w

If we here negleet the eontributions of Sa and Se. the
remalning expression, proper behavior of o(X,Y) ass~~ed,
really makes this omission legitimate due to the proper-
tles stated under F. for the funetion G.

So far. we have not used any eonsideratlons
regarding smallness of ~ = 6/ L . We should note that G
is defined even for'f1=O . i.e. for pI withln the ship's
hull.,and is weIl behaved there. if P is not too elose
to P'. By development in Taylor series regarding cF we
therefore may infer that

G7t = - ,F. G'l'l1-+ O([t)

and -
(

2
)GI?- :: + e F .

G'l7 t 0 [ ( L 9)

whieh shows that the faetor of ~ in the last integral
is small at least of order E'l.

.

In general we have

G,/ +- G~- .. G$
( ~I 0, ~) + 0 (t

~ )

G~f+-G~-= G~(~JO,~)+O(e2) (1.10)
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If we now assume an expansion
(1) 2. (Z) 3

tp = Clf' + E. Y' + 0 (€ )

(; ==
[,0(1)+ [;28(2)+ O(~3) ( 1. 1

j )

inserting into Green's formula and collecting
equal order in (;. we find that tp

(I)
is just the

sion from Michell's theory with 8(1)=0 and no
butions from Sa and Se a (2)

For examination of ~ we must go into the
nature of 8(Z)(X,Y)

. From [2] page 464. (10.12) we find
with p = const. and replacing ojat by -%x and g by
~ for our nondimensional representation:

terms of
expres-
contri-

4>

(2)

t I
(2)

==
8(21(x Y) ==( rad ci/li)' + J.- 11,

(1)(
4>

(11+ (1) )to l 4Jxx I 9 T
X to 't' X to z

(jJx
x z

( 1. 12 )

(It should be observed that only the local component
f (I)

(t)

o 't' contributes to the expression in brackets in the
second term due to structure of G. see Appendix).
Sisov's expression corresponding to (1.12) is incorrect.

From the decay of G and its derivatives as
o (X

-I) for X --+00. causin~ the same mode of decay for
4>(1). it may be seen that 0 II

== 0 (X
-2 ) for X... + 00 and

this means that q.>
<l)

= 0 (X -I) ahead of the ship and the
contribution of So.to the Green' s formula expression
may be neglected. If now we can assume that the
potential

4>0 ==
~1'i- f

0' G . dS' and its X-derivative are

5/
uniformly bounded for X L.Xe. - and to prove this for
not too peculiar 4J

(I)

should be possible with moderate
effort. - then we may drop the contribution of Se as
weIl as Xe tends to infinity and may finally wrlte:

lp
(2)

== q;
(2)

+ ljJ
(z)

1 ,
( 2 ([ {

(I) (I)

~2)(X,V,Z) ==
4ar!J

F($,~) tVx ($,cF, ~)G~ (~,O/~)+4>Z (~,t:~~)G~(~,o,~)d~d~+

5 o.
w

i

2

r
(I)

+
41fto

F(~,O) ~xx G(~/O/O)d ~

~I (1.13)
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tJi,"'(X,Y,Z)< 4~t, ff c5("(~,q)Gd~dq.
SO
f

The seeond order potential is thus produeed by
1. A distribution of doublets with moment eorresponding

to deviation of loeal first order flow relative to
the ship from uniform parallel flow (giving rise to
the Miehell-distribution) times loeal volume of the
ship.

2. A distribution of sourees over the plane Z = 0 the
density of whieh is essentially the time-derivative
in an inertial system cf dynamie pressure (save a
eontribution of the loeal flow eomponents in the
vieinity of the ship).

3. A line distribution of sourees around the ship's
load waterline of output eorresponding to loeal
breadth times wave slope in X-direetion along the
ship's eontour aeeording to linear theory.

One should observe that the potential appears only in
derivative form. On the other hand, no differentiabi-
lity of the hull surfaee funetion F is required to

(<I
make the expression for ~ meaningful.

For numerieal evaluation, the following approxi-
mations are made:
(i) ealeulating the potential from a distribution 8(X,Y)

extending over the entire undisturbed free surfaee
Z = 0 ineluding the waterplane area,

(ii) inserting the flow eomponents ealeulated for the
plane ~ = 0 rather than on the hull surfaee.

Both these steps require eontinuation of the flow
potential and some of its derivatives into the domain
oeeupied by the ship. This is aehieved by extension of
the eorresponding Fourier series inQ . In so far as
these series would not eonverge for t{= 0 in the
usual sense,-i.e. for example the series for ~y,-we
treat them as generalized funetions. The seeond term
of 8(X,Y) in (1.12) will in general beeome singular at
bow and stern; however, for asymmetrie hull we will
find that it ean be left out for ealeulation of wave
resistanee.

The error involved with above modifieations will
in general be of higher order in ~ than the terms to be
determined, nevertheless, it should be eheeked for eom-
ponents not uniformly bounded in the extended domain.
It should be noted that the expression (13) for 4>\(Z)

ean be retransformed by partial integration in ~
and

~ to a representation by a souree distribution over 5;",

- eliminating the line integral, - so that

( 1.14)

9.
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'I''" - ;~-
Ir

G[(F ~'\ + ( F <1>';\ ] d $" d ~+ 4~r.1r~(~,~)G.d~d~.

5';*
.T-OO

(1.15)

We should observe that the source dens1ty corresponds
to the change of 1nternal flow w1th coord1nate rather
than to the normal velocity.

Formula (1.15) may be compared w1th [3] (43),
where the 1nfluence of tr1m and s1nkage 1s 1ncluded. We
see that all line integrals presented there can be
eliminated under validity of our assumptions.

2. Determination of wave resistance.

Having thus selected a model for the approximat1on of
the flow~ there 15 adecision to be made for definition
of wave resistance tp the corresponding degree of
approximation. Three;different approaches may be
considered: ~

(a) Integrate pressure components over the wetted part
of the hull bounded by the calculated wave profile,
retain only terms up to thlrd order.

(b) Start with expressions for the energy flow through
a vertical plahe beh1nd the ship, a& given in [2]
(8.6) page 460, evaluate these for approx1mate flow,
us1ng wave contour from th1s approximate flow.

(c) Consider the approx1mate second order flow to be
phys1cally real in the doma1n DO .
Consider a closed surface, part of wh1ch is the wetted
hull; from the fact that momentum 1n the enclosed
volume D should not change w1th t1me, we infer that
action of pressure on the hull can be expressed
through flow of generalized momentum across the
rest of the surface.

It can be shown easily that for the linear1zed
flow model one and the same express10n for the resistance
can be der1ved by e1ther approach - (see however the
object1ons ra1sed by Sharma [91). Up to third order,
however, (a) and (c) should only give equ1valent expres-
sions Ra and Re , 1f the boundary cond1t1on on the
hull 1s already met exactly by the approx1mate flow, as
otherwise we may have substant1al flux of momentum 1nto
the sh1p's inter1or. The formula for (b) was der1ved
under aS5umpt1on of a free surface under constant
pressure and composed of streamlines. For a second order
flow, 1t is unrealist1c to mainta1n th1s assumpt1on. We
should therefore expect that resistance Rb , calculated
by this formula appl1ed to the approx1mate flow, could,
even in a nonmonotonic way, depend on the locat1on Xeof
the vert1cal control plane where data are taken.

"

.
'.
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But Re ~ derived by approach (c). should be inde-
pendent of choi~e of domain D. We shall select D" DO

.

the domain bounded above by the undisturbed free sur-
face as describeÄ before. - Due to conservation of
momentum we have for surface integrals enclosing any
domain D of the flow (compare [21. f7]):

p/UV'V)/2' n -(v.n).v} ds =0 (2.1)
.....

where v may be the flow vector in any system of refer-
ence either at rest or in uniform translatory motion.
n be the unit normal vector directed outwards.
If we now select

V =
r

tp
x

I 'f y /

lfJ

Z ]

-
{ 'VX I 4J y / 4J

Z ]

.

I c J

and define Re as X-component of

R = p
I {

( V
.

Ti ) ; - ( V .

V )
/
2 . ;} d 5 )

(2.2 )

swo
.

where integration has to be performed over >w. the hull
surface up to Z = 0. then we have from (1.15). returning
to nondimensional quantities. with ex as unit vector
in X-direction.

....

Re = ~~;(~~)' · t,

r(
<jJx <jJz d ~d

7
-

r, U(
-

ffJ
<fx

<jJy d ~d S

s( Sr Sl

z Z Z

+
to

J [
lJJx 4Jz d

~ d f] + (
{ fr

-

ff}

4>y r

~z

- ~>(
d Qd ~

Sb Se 5'1 (2.3)
Reference to conditions C. and D. shows. that the sur-
face Sr. Sl and Sb may be left out. The integral over
Sfo may be transformed to line integrals along the
boundaries and an integral containing the function 8(X,Y)
in a similar way as was done for the potential (1.2).
The contribution from SQ, including the line integral
from 5; . tends to zero with XQ-oo due to f. Thus.
we are left with

Re *

rr

ö ("§,~)
<Px (~,~,O) d5 d7 -

f

q>: (~,
tFi

~,O),O)dL

+

S( Lp
T ~

0
l Z 2

rl { 4')( (~eIQIO)
+ tor

(jJY(Xe/rJ/~)+<t'z~Xe/T7I»-\jJX(Xel~I~)d~]d~

-T -H
(2.4)

..
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where the line ~ntegral over the load waterline Lp is
again in counterclockwise direction when viewed from
above.

Now. there is no reason to assume that the con-
tribution from 5; . though bounded in magnitude. should
tend to a definite limit with Xe -.- 00

. nor can we
postulate this for the contribution of the region X = Xe .

It is only by some property of the Green's function G
involved that we shall be able to evaluate the contri-
bution of o(X,Y) to the resistance by an integration
on Sfo in the vicini ty of the ship only. - We shall now
look for a relation between the quantities defined as
Re and Ra. To achieve this. we add an expression to
the integrand of (2.2) which has no component in
direction of e . We setx

Re · Re t( e, p fI(v)(n))(c) dS) · Re + pie,
/(1

v' c);; -(c n) v] d S)

( 2.5)

and therefore, with (c.n)=(v.n) assumed even for the
first order flow,

Re:= !p(et.n),{(c'V)-(V'V)/Z]dS.

But this is just RQ. the resistance defined from pressure
integration over the hull. for the nonstatic pressure is
p((v.c)-(v.v)/2) and we thus have

RQ - Re T P Jlfx (( c . ii) - ( V . n») cl S ( 2.7)

sw.

To Re as defined above. we now add an appropriate
correction for the influence of the wave profile along
the waterline. as only the wetted part of the hull can
experience pressure from the fluid. and then define the
quantity obtained as "third order wave resistance". Now.
up to second order. pressure is atmospheric pressure
plus hydrostatic pressure due to the wave elevation >.
Integrating the last quantity over dZ dY. the projection
of the surface element on the plane vertical to X axis.
we find a correction as

(2.6)

6 R =
.p 9

1ft

(Z - ~ ) d Z d
~

= P 9 j

~

2
(

~'

E F)
d

7
.

Lp lp

As now the perturbation procedure gives the first order
wave elevation [2J as

(I) C
~ = E: 9 \fx

(2.8)

l. e.
L/2

~
(I)

(X Y 0)
t

\.jJx I I
J

o

(2.9 )



Eggers

adding t1'1isin nondimensional form to expression (2.4),
we see t1'1att1'1iscorrection just cancels t1'1eline
integral around Lp, w1'1ic1'1we, t1'1erefore, can 1'1appily
discard [8]. -

A further simplification will be made by extend-
ing t1'1e integration of <5 over t1'1ew1'1ole plane ~

'"

0 ,

- T~ 1('- T . ~
L..Xe whic1'1 means an error of order e~, as t1'1e

waterplane area is of ordere. Inserting now

tfI o/

'tj

" <p

CZ)
t. l.c

(l)

R ...2RCV
+ ...3 R

(3)
.. C + CU" e u = ~ ... we 1'1aveJ )

TOt

R''''

f i
zlr.

<1>,""(Xe' 7,0) t
f

<jJy'" + ~;"'- (I,;"
d (:

)
cl7

( 2.10)

-T -H
R(3)~ RO)

+ ROJ
I 2 (l) (l) (l)

(corresponding to the part ition 4J ..

'f + 4'
)

with I Z

(J)_

/

T

{

J-.~W.R -
'( Xt
0

-T

o
(l)

J(

(1) IZ) C1/ (2)

~)(
+ l/1y 4Jzy + 4Jz (.jJ2Z -

-H

<P:O 412:) ) d
?

1

d rz

(
2. 11

)

TQO T 0

{JI
I

f f

r(21
(

,11)

f [

f
(I) (2)

fi(

(t) (Z) PI Cl) (I)Cl)

]
dRz --T 0 ~)~)

Yx d$d?t- T'Px<P, + (jJy~yt-4Iz4;2-~~)d$ Q
o . X
-TX .T-He

(2.12)

3. Resistance due to additional singularities
wit1'1in t1'1e hull.

Let us now, only to save labor in writing down formulas.
assume that the depth of t1'1etank is large enoug1'1 t1'1at
we may put H = co . If <4Jx(1)can at X = Xe be represented
by a system of free waves - we omit terms nonsymmetrie
in Y for reasons of simplicity - as

00

Cf) free L (

(I) (t) .

)

K.r.l
( )

c.p .. A cos (W
'r' X) t B Sin(W

't
X) . e cos (U Y' Y) 2.13

x v 110. 11 voo .4"
v. -(10

/
Z . 2

where 6.U ..
'Ir (r~1")and Uv c: v..6 U

'"
sec 8v sm eilj Mv" 1+ 4-Uv j

K
v =

(
1 t f'v1

v
)

/
2

'"

sec
Z
8 v

j

W
,1< e A

CI)
A

lt)
8

(1)

B
(1)

- V 1\..
'"'

sec. ..
.

'"v v V ) V _11J v .v I

(w1'1ere Sv stands for the angle cf wave propagation
against X axis). t1'1en[6] we can evaluate t1'1eintegrals
in closed form as

13
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co l (I) Z (lil

R
(Z)

'=
T. L 2 - c~S 8 v

(Av + B~ )/ 40
~ "'-co

( 2.14)

(This formula reflects the fact that resistance is
essentially equal to average energy in wave components
times difference between ship's speed c and X-component
of group-velocity, divided by c.)

If tfJCZI has a corresponding far-field representa-
tion: IX

co
(Z/ifree) \

f

(li
Cl) .

}

K. j' Z
q;,x :: L_ AI_ cos(WvtoX)+B,. sln(WvtoX) e · C05(U~(oY)

va-Q)
( 2. 15)

R
(3)

bthen I as interference between both systems can e
written down directly as

(3)

L"" ~ (2)
Cf/ Cl) (1)

/R '= T. (2-C05 B )(A
j .A + B, 8 ) v-

I ~ 11 V V v 40
-00

( 2. 15 )

For evaluation of (2.14) and (2.16) we have to keep in
mind that for ~=O the Green's function G has a repre-
sentation for

~
~~ X as system of free waves like

Q)

[ ( ,) f<..t (l+P
Gxt"V gy'cos Wvdo(X-{;);e. cos(UyroY)

" 00
with 9 '" 9 .. - 811' k' ." j e M 'T)

v -y
y 00 Y

( 2. 17)

(see Appendix) and that we have:

CI) 2 f[ (q;
"'-4rrJJ

F ~/»'G~d~d~ (2.18 )

5 ..
w

III 2

1I {

(I)
CI/] 2

f
cO

'fJIX '"4Ti
F($,» tVx G~x+ljJz G>xJd?d~+41Tt. F($,O)~xGxd~

s o. -I
w

=_-L I! {
(F4J) +(F(jJ)

] G dJ:d""211 xx zz X ? ~
5 ..

w

(2.19 )

and therefore

(I) '3y
Ir ( K ( ~

Ay ..
21r F ( ~I » sin Wv ( $) . e v. . ~ t. d ~ d

>
sw..

( 2.20)

14
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(I) 9
11

k' r ~
Sv = - 2 ~ F(~,~) - cos (

WO' d'" ~). e ". .
W"t. d ~ci ~

s .\JW

(2.21 )

(2.) 9

Ir
( )

{

(I). (I)

( )}AI., '" 2 ~ F §,; {JJx' ~
r"

. sm (W" fo ~) T 4Jz
.

k'v t 'CO$ Wvt" ~ d~d>
sw..

,

+
2~~. f F( $,0)- <.jJxx(tJ.sin (W" '10~) d ~

-I

( 2.22 )

<Z) 9

Ir [

(1) (1).

]
B, =--

2 " F($,~) 4> .Wv'cos(Wr~)-4> 'K'I'sln(W"t.~)d;dr
"ir X "4,, " " Z .,40 .;. ;>

5 .'Jf
w

I
9v

f
(I)

-
2 tr t. F ( $,0) 'fJx X

COs( Wv to ~ ) d ~ .

-I
The above expressions can in general be evaluated in
closed form for mathematical elementary hulls. save the(I)
contributions of local flow ~ to the integrands. where
however the V-integration may be interchanged with
closed-form ~

'
>

integration. -
4. Resistance due to additional singularities

at undisturbed free surface.

Consider a strip of width d ~ extending from
~ = - T to

Q - T at ~== 0 with ordinate X '" ~ . Ass\L1lethat a
Fourier expansion for 8 (~,?) holds as

(2) 00

5 ( $I ~) == L Ö" ( $) . cos ( U
v t. ? ) (2.24)

(Z)

If X Li.;: . this strip will contribute to q; bye ? Zx
T

(2)

!
6 (ftee)

d<fJzx
c

4irV Gx ($II{,O,X,Y/Z)d?d~

-T

(2.25 )

with
<0

(free) [ K '( Z )Gx '" 9j1'
e ". cos(Wv to(X-$) cos(U"r" Y)cos(Uvtoq)

V--O)
(2.26 )

( + terms odd in
~

not needed here)
where

z
9 v '" 9_1/ '"

4 'Ir Kv
&: / ( Mv' T)

.

(compare (A.l). We then have:

( 2.27)

15
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co
(l)

\"'
Kilt Z

d (j.1Z = 2 TL 6v' 1\ / p./j
~

. T ) . e ·
x v.-00

x (cos ( Wv o. $ ) cos ( Wv t. X) t sin (Wy t. ~) sin (Wv t. X)), cos( Uvt. Y) cl ~

( 2.28)
(I)

If now for ~x as weIl only free waves are significant
atX=Xe , i.e.ifwehave:

00
(\) (t)(free)

[ {

(jJ CI)

}

t< t. Z
4J)( '" 4>)( ::

All cos(Wvt.X)+ Bv sin(WIlt.,X) e ". cos(Uvt.Y)
V~-CIO

( 2.29 )
CL) C3)

then cl~ will make up a contribution to R as
2)( 2

co
(3)

\" 2 Kv
(

(1) CI) .
)dRz ..T LOII(Z-cos 8.,)M A cos(Wvt.$)-B SIn(Wllt.~) d~

11y"-cz>
(2.30 )

But from (2.13) we may derive that

Kv / ( 2 K
v - 1) = 1/ ( 2 - cos Z

811
)

J
( 2.31 )

thus

(3)
<0

[

(I) (1) .

]d R
2

:: 2 T L 8 y A
IJ

cos ( WII t. $) + BjI Sin ( WII t. ~)
V--CIC)

( 2.32 )

T

==

1
8 ( >= ),

cIICfree)
( >= O) d d ~,?/ry qJx '2/7, ??

q.-T

This is not yet the whole contribution of the strip
to R(», however; from (2.12) we have to add:z

T

0)

1

(2) (I)

dRz =- <5 ($/~)4>x ($/7,0)d?d~

~c-T

This leads to the simple result

( 2.33)

00 T

R:3)~ - f I S(2)(~/Q/O)
~x (~/~/O) dfld ~

-co -T

( 2.34)

~ 111
(I) (l)(fre-e)

with y ..
't' - (jJ

X X X
-'The potential ~ would correspond to the solution of the

first order boundary value problem if we had postulated
waves traveling ahead of the ship instead of aft the

(2.35)

16
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ship. For a_sh~p symmetrical to the midship section we
may insert <iJ C~')::= c.jJ (-X). .,

The aba,e integral (2.34) will nave significant
contributions 10 resistance only from t,hevicinity of~
the ship, as S'~as strong decay ahead and the factor ~x
shows a decay aft. The overwhelming contribution should
therefore come from the rhombe-shaped region bounded by
a Kelvin angle drawn from the bow and an opposite angle
from the stern. )(.

The expression for R, could have been derived
directly as the Lagally force of the wave field due to
the surface disturbance 6(~/~) acting on the singulari-
ties creating the first order flow field of the ship.
It would, therefore, have been found by Sisov under use
of proper radiation condition. For the case of a nonsub-
merged body, we feIt that formal application of Lagally's
law even for higher order contributions deserved caution.-
Inserting (1.13) we have

Tao

R
O)

[[[( d
W )'

W
(

11\(1) (I»
) / ]{ 'ilW

1/,(I)((reeJ

]

.. - grQ <p + c.p r 't' + <p t 't'x -
't' dXclyz x x 0 l xx l"

)(
_T-OO (2.36)

In peculiar for a symmetrical hUll, where ~ c.p

(t)

+ <J.i

(\)

is odd and 'fi")'$ is even, we have:
. 0 z XK

Tco
X X Too

R
()

ff
(

'(I) 2 CI)

f f
(

ClI 2 (I)

2
-- grad 4J )x 'Px (-X) dXdY '" grad ~ ) t4Jxx ,(-X)dXdY

-T -...
-T - 00

1

f

T

f

OO

(t)
1. CI)

E-
t:

(grad <f )
4Jz

'(-X)dXdY
-T-co

(2.37)

If now for a symmetrical hull we have:

co
(I)

[{lI (XYO ) ", cx; (X)cos ( U 't.y)
x "

V 11 0
v. .00

(2.38)

with <X ..cx
\I

-
V

00

lpy\O ( X, Y. 0).. [ ~v ( X) sin ( Uy .
0"0

.Y )

v..oo

with R ..

ßy
- \I

""
c.pZ(I)

(X,Y, 0).. [ 4v
(X) cos ( Uv.t... y) with

t
...

't
\I - 11

where according to (2.18) and (A.l) the coefficients CX'v

'

.ßII' and 1'11depend on hull geometry gi ven by y..! G F (X, Z)

through the relations
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0.11"' 3Hvjax I ßII
= Uvt. Hv

J ;Yv'" aHili az (2.39)
with the function Hv (X,r: Z) gi yen by

H
11

( X
I Y,

Z). ~ ~
~r ° [[ (5; g n ( X - $ ) - 1] e

K. r. $.
F ( ~

I
». cos (

WII t) X- S ») d ~d ~

s ..t
IN

Q)

2 (

f[ r
. -u..IX-~I

{

z

~

Ud- 'rr
.oT sign (X- $) F(~, ~)e V(os(v~~)-Usin(Vt~)~d$d~

J · · U +v
S" \1<0

W ( 2.40)

and U\I' Mv, Wv, k'v and U as given by (A.4), then we
can express

( 3) (j)
3 z

Rz '" Rz . 4 l / ( P Be)
as

iiOO

R
0)

=- l
J

f- f-- [{CX' (X)'(X (X) - ß (X). ß (X) +t (X). t (X)}
. r (- X)+2 t L L_ ft i\ .f{ ~ }.t ~ "+lJo po-co 1\. - ""

f\ r
-CII)

+ [
cx (X).~ (X)+ ß (X)'ß~(X)tt (X).t~(X) ] a'(-X)

J
dX,u ~}J. ft f\

1ft _ AI
( 2.4!)

due to the Fourier orthogonality relations for Y integra-
tion, where the X integral may be truncated soon after X
exceeds 1 in absolute value~ convergence of (2,41) assumed.

The above formula can easily be extended to the
case of infinite tank width with T- co ; however, for
practical evaluation it is recommended to consider T
as inverse of spacing in integration by trapezoidal
rule and let T be just large enough, dependent on X,
that for ~ =::t X the actual wave pattern is weIl within
IYjL T , i.e. that no tank effect can be feIt.

For actual calculations we have to reintroduce
dimensions; we have

(j)
3 Z z

R = (B/L) . f' C .(L/Z)

R(Z/= (B/L)2.p' C2'(L/2/

0) z 3 (3)

R ...pe B/(4.L)'R

RC21= pc28l/4'
R(2)

( 2.42)
..

(3)

~(com~are (2.3), (2.10), (2.11) (2.12)). - where R
.s.nd HZ) are the actual third and'second order resistance
components.
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c-

O"Q= 3. 86

t
115%

Infinite strut

110%

= 5/6 ship length
tank
width

105%

1DO~

95%

T
90%

Fig.3
I

(1)

Ratio of ~alculated Resistance Rt(X) from Transverse Cut
Pnalysis [6] (Wave Elevation and X-slope)to Asymptotic
VeÜue R

(.2)

Summary.

With the above analytical considerations. an attempt was
made to coordinate the intuitive approach of Sisov with
the rigorous procedure of Wehausen. Some simplifications
allowed. we found that even the latter leads to a repre-
sentation of the second order wave potential by sources
only. located on the undisturbed free surface and on the
longitudinal centerplane of the ship; - in particular all
line integrals can be eliminated. Additional resistance
can be expressed in terms of first order flow components
which determine these singularities. Only a region of the
free surface close to the ship need be considered.
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Appendix

A Fourier series representation of the source potential

in a tank of finite width.

The expression to be presented here has essentially been
derived in [6]. We ~hall confine ourselves to show cer-
tain properties which are needed in the foregoing appli-
cations.

The expression describes a wave potential of a
source of output+4IT. - i.e. a singularity like negative
inverse d1stance. - in coordinates made dimensionless by
ship's half length as introduced under (1). The
expression is:

~
[

(free)( ) «(oca/)
( 11

{
( (

V
)

(j ,.2
to

f=a>
9}1 XJ, Z,~ t 9 ~ XJ)/~)J cos Uv t..

Y) x cos
Uv to

~)( 1+( - 1) 1"

,

+ sin ( U
I' 1'0

Y) s in ( U
v Co ~

) (
1 - (-1)

v
)

J

6. U (A.1 )

with tJ.U:;: TC/(f T) U
'" v'tlU '" seczS..sin8vo y ,

g(free)

'"

_gUree)
~

[ sign(X - §)-1
] '

~eK'v(Z+$)J'sil1Wvro(X-~)
v -v M v

M ..
v' I t 4 LJ

z' . K
=: ( 1 t H )

/ 2
'"

sec
2

8 vv v )
I' V

W .. ~
=: sec e

I' I' I

and
~

!(
-U.'X-~I

{

t
911«(OCQIJ

'"

g_(~OCQIJ., 1/11 e' . (Vcos(V~Z)-U sin (V'oZ))'

v.o

)(
(Vcos (Vr. ~

) - U 2s,'n (

Vt. p)
}

- oJud] /( V( u4+ V 2))- clV

(A. 2)

with U"+ ";v2+ u:. and cV(O)=1for ))
'"
0 . else 6v." 0 .

-<>P-SfRa-ll c nou-g-&-~~-s-t-U-I"-b--~-ve.pg~o-e-o-f---s-e-r-i-e-s-.
It is easy to find out by investigation of single terms
of the series that the function G is subject to the
following conditions:
!;,. Gxx + Gyy + Gzz '" 0 provided the corresponding V integrals

exist, which is guaranteed for I X - $/ ~ 0

~. doG
z

+ Gxx
,. 0 for Z .. 0

.
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Gy .. 0 ror Y - t T

G 0 with Z - - 00
Z _\!. G '" 0 (X - 5) os X-t 00 I

G.. 0 ( I) QS X - 00
I

Gx. o(x-~rIQSx-+oo, Gx"O(I) asX--oo,
explicitely shown in [6].

As the structure of G is symmetric, corresponding rela-
tions can be obtained under exchange of X, Y, Z with

~, ~, ~
.

It remains to be shown that
(i) the expressions for G and Gx match in a continous

way at X
'"' ~ .

(ii) for IY- '71
~ TI Z" 0 and

>
f 0, G and Gx become singu-

lar only for X. ~ . Y. ~ and Z" ~ . and that the
functions

G. = G T 1/ rand -y.

G; '" Gx+(I/r)x
I

with r" [(X-s)z+(Y-'l)\(Z-~)zl
z

(A.3)

remain finite here, - (convergence of the series for

> ... Z is shown in l6]). Statement (i) is evident for
the function G. - Assume for simplicity $ '" 0 .

Then it is sufficient to show that
co

k' K.,r (Z+~) . 1

f
-KtlXJ 2 z clV

Mv.e 0 =lim 1f e .. (VCOS(VrZ)-USI'n(VtZ») (VC05(V't~)-Usin(Vt~»)
u4vZv )(..0 0"

'j 0 . 'I ~
v.o (A.4)

for arbitrary UII ~ 0 and Z... ~ with

U.. VVZt U a' . M" v' 1 t"4 U
Z

.

II} LI V }

On the right hand side we may substitute

..

"2~ ~.~o [f !vZ{COS(Vr..(z+;»)+C05Vt.(Z.~)J-u4fCOS(V(..(Zt~)-COS(Vt..(Z-P)]t

v.g
oUt )(

z .

1

e · dV
t" 2 U Vsm V'to (Z + ~) U4 t v2

Q)

=_ 1
ll "m Re[f ""V+iUZ iVt(Z+$')-Vr!xJ

f
-ulXt-iV~.(Z-$)

e' · dV+ e"
..

dVi"
41'1"k'''O V-iU:

v. -co v. -00

(
oe

( oUt /XI -Vt IXI
)( .

U
z) iVr (Z+~)

e · -e 0 V+l e ·
1

i"J V-iUZ. dVJ
V.-oo

(A.5)
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The second term in the last expression is zero for any
finite X. The last term is o(X). The first term may be
written

00

,,~tl'm Re[f
(V-iKv)(Vi-l(Mvt1)/2) iVt.(ZtP-Vt.ixl

}411' )(-0 (V+iKv)(V-i(M +1) / 2 )
e dv

vc _
00

v

( A.6)

which shows poles of the integrand for V
""

l (Mv -1)/2
and V"" -i (M"t 1)/ 2" - iK'v . By shifting the path of inte-
gration downward in the complex plane we can make the
integral arbitrary small after splitting off the
residuum at V.. - i K

"
»thus we f1nally get

.. 21ft Res

!

(V- .iKv)(V+.i(MyT1)/Z)
e

Vt.(Zt~)

]
.~..

KveKvYQ(z+$)

Y"-iK (V+d<v)(V-iCN,,+1)/Z) 411 M
v . v

(A.7)

q.e.d.

To prove the statement (ii) we start with the
tation

J
""

J

Zii
-ul)(-~I

[

.

}1fr." t/(ZIf) . e cosu (Y-7)cosS+(Z+~)sln 8 dud8

u. 0 e. 0

represen-

( A.B )

(
""

/
Z[

_ul)('~1

[ ]Yr-." 1/(ZlI-);. e cosu (Y-ry)cose+(Z-~)s;n8 dud8

u.o a.o

where rj cOl"'responds to r with ~ under negativ""e
Introduc1ng new variables of integration U, V, U

U::: u/ t j U::: U cos 8/ 't . V:: U 5 In 8 / t .
o 0 J . I

sign.
by

(A.9)

we have
... 00

1/ r - 1/ r
I " t 0/

( 2 I[)

/ f e
- U t. Ix. ~! . 2 5 In ( Vt. Z ) 5 in ( VtQ ~) ws (0~

(Y -Q))/Ud D d V

-00 -<XI ( A. 10)
00 ca

J J
-Ut IX- ~I .

'"
~

(1/r -1/r,)x" -~/(211') e. 2 sm (Vt. Z)sJn(Vt. ~)cos(UtQ (Y-I{J)dUdV'si9n(X-$)

-00 - CD
(A.I1)

Now there is a general law in the theory of Fourier
transforms [1~~ - essentially known as Poisson's
summation rule - stat1ng that 1f the funct10n F(y) has
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a representatlon

F(y) '/G(u)eiÜY dU (A,12)

-... 00

then F. ( 0,y)... [F (y 1- vc5), provlded this series
'I~ -t:/O

converges, has a representation

""
F-(o,y)= [G(uy)eiUyy. 6U (A.!3)

wlth 6U" 1/8
I UlJ"

1J L1U

With ö.. T/~ , we therefore have the representation

,t~
([(X -ä + (y + ,T -? )'+ ( z+ ~)')

- y,

- [( X- ?J' +( y + v T -? )'+ ( Z- J; )')

-Y,

J
"

co

= -2jTr f tCK>

e-Ut./x-$I
sin(Vro Z)sin(Vt. ~)ju .dV. (OS(Uvto (y-~))

v. _00
(A.14 )

with U '" 21Tv/(t T) j1.1 0
'

u
'"

fVz + U
~ .

v .

But the terms under s~~atlon are equivalent to
corresponding terms in the series for G {A.l), and it
can be seen that after subtraction of these terms the
integralsfor the coefficients9

(Io,al)
(A.l) converge

even in the case X= ~ , Z" ~ .
v

The argument for the function Gx 15 analogous.
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