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Chapter 1.

Introduction

At the beginning of this thesis about image segmentation, we first have to define what
an image is in a mathematical sense. We want to describe two-dimensional images, like
photos or scans, as well as three-dimensional images, created by computer tomography
or magnetic resonance imaging for example. These images may be described by one
brightness value per image point (grayscale image) or several brightness values (several
color channels).

1.1. Mathematical Description of Images

We will describe images as a mapping from a domain Ω to a color space C:
Definition 1.1 (Image) An image f is a mapping from the image domainΩ to the color space
C. In this thesis and the accompanying software toolbox, the input image to an image
processing method is typically denoted by f and the method’s output image by u.

The domain Ω could either be a discrete set Ω ⊂ Nd , typically

Ω �

d∏
i�1
{1, . . . , ni},

or a continuous set Ω ⊂ Rd , typically

Ω �

d∏
i�1
[si , ti],

with d � 2 for two-dimensional images and d � 3 for three-dimensional images.
The color space C as well may be either a discrete or a continuous set. In the discrete

setting, we will only consider k-bit images with 2k distinct brightness values for each of
the c color channels, C �

{
0, . . . , 2k − 1

}c . In the continuous setting, we will consider
C � I ⊂ R or C � Ic ⊂ Rc for an interval I, typically I � [0, 1].
Whether we will model the image as a function on a discrete or continuous set Ωwill

depend on the respective image segmentation method.

1



2 Chapter 1. Introduction

Regarding the color space, we will almost always start with a k-bit image (as this is
the way images are stored on a computer) and then migrate to a continuous color space
since this simplifies many computations. The result will then be stored as a k-bit image
again, mapping the darkest value of the image to 0, the brightest value to 2k − 1 and the
intermediate values proportionally.

1.2. Image Segmentation

Image segmentation is the decomposition of an image (strictly speaking of the domain of an
image) into coherent regions. This could be the differentiation between an object and the
background, but also the separation of several objects inside an image.
For human beings, segmentation is typically easy. The human eye is well capable of

telling different image regions apart, even if their borders are blurred, inarticulate or
even partially obscured, see figure 1.1. The segmentation under human survey is called
supervised segmentation, in contrast to the automatic unsupervised segmentation requiring
no human input. Due to the respective image capturing techniques, real-world images
inevitably contain noise, artifacts or other quality flaws. Therefore, the unsupervised
segmentation of an image is a challenging task.

Figure 1.1.: Highly degraded image, yet still readable

In the medical context, segmentation means the differentiation between diagnostically
or therapeutically relevant regions like tissue, tumors or vessels for example. For brains,
this could mean the separation of white matter, gray matter, and cerebrospinal fluid.

Definition 1.2 (Segmentation) Let f : Ω→ C be an image, u : Ω→ C be an image and
S ⊂ P(Ω) be a partition of Ω, that is⋃

A∈S

A � Ω and A ∩ B � ∅ ∀A, B ∈ S with A , B.

The tuple (u , S) is called segmentation of f and the sets A ∈ S are called regions. If there is a
k ≥ 1 such that u is k-times continuously differentiable on every A ∈ S, the segmentation
is called piecewise smooth. If u is constant on A for every A ∈ S, the segmentation is called
piecewise constant. See also figure 1.2.
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(a) Input image (b) Piecewise smooth (c) Piecewise constant

Figure 1.2.: Image segmentation example

Remark 1.3 Up to this point, a segmentation in the sense of definition 1.2 is a purely
formal concept with limited practical use. The following properties are desirable for a
“good”, practically relevant segmentation (u , S) of f :

1. u should be a segmented version of f , so in some sense f and u should be similar.
2. The system S should be a “fine enough” partition of Ω, such that there is little

variation of u on A ∈ S and there is no need to further subdivide A.
3. The system S should be a “coarse enough” partition of Ω, such that small artifacts,

noise or little dirt particles are not assigned an own region.

1.3. Images of the Brain

The presented segmentation methods will be examined on two types of brain images:
three-dimensional magnetic resonance images, like the image seen in figure 1.3, and
two-dimensional photographs of histological sections, like the image seen in figure 1.4.

Only marginal parts of a three-dimensional image can be shown in a two-dimensional
document, which makes a credible performance estimate and comparison impossible.
Our focus, therefore, will be the histological image in figure 1.4, but the results apply to
the three-dimensional data in a similar way.
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(a) d3 � 63 (b) d3 � 119 (c) d3 � 187

Figure 1.3.: Three slices of three-dimensional (size d1 × d2 × d3) magnetic resonance image
[20]

Figure 1.4.: Histological section of the brain [21]
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1.4. Overview of the Upcoming Chapters

Chapters 2 and 3 describe two basic segmentation methods, thresholding and graph-based
segmentation. Both will turn out to work well for special kinds of images, but to be
inapplicable to general problems.
In chapter 4, a sophisticated variational approach to segmentation is developed. The

core part of this approach is the Mumford-Shah functional, which is well suited to model a
segmentation in the sense of remark 1.3. Unfortunately, the numerical implementation
of this method will turn out to be very difficult and subsequent chapters will present
alternative approximations to the Mumford-Shah functional.

Chapter 5 deals with the task to recognize an object in front of a background and how
this special case of Active Contours can be tackled numerically.
Chapter 6 is dedicated to the optimization of variational problems in the context of

image processing. The theory of primal-dual optimization and the associated numerical
algorithms are described. The results of chapter chapter 6 will then be used in chapter 7,
where the Fast Mumford-Shah approach is presented. This approach is very flexible as it
allows an arbitrary number of regions and both piecewise smooth and piecewise constant
segmentations. It can be practically implemented using the primal-dual optimization
framework.

Chapter 8 will show how the combination of the presented methods delivers interesting
results and opens up new perspectives.

An essential part of this thesis is the associated software toolbox. Appendix A contains
the documentation of the user-relevant functions in this toolbox.





Chapter 2.

Thresholding

Thresholding is a histogram-based segmentation method primarily useful for grayscale1

images. In thresholding, only the brightness values and no spatial properties of the input
image are considered.

Definition 2.1 (Histogram) Let f : Ω → C �
{
0, . . . , 2k − 1

}
be a k-bit image on the

discrete set Ω. The mapping

H f : C → N0

H f (t) B
��{x ∈ Ω : f (x) � t

}��
is called the histogram of f .

2.1. Definition of Thresholding

Suppose that f is a k-bit grayscale image on Ω. Let the color space C �
{
0, . . . , 2k − 1

}
be

split into n regions by the (n − 1) thresholds t1 , . . . , tn−1:

L1 � {k ∈ F : k ≤ t1}
Li � {k ∈ F : ti−1 < k ≤ ti} i ∈ {2, . . . , n}
Ln � {k ∈ F : tn−1 < k}

See also figure 2.1. This partitioning of C may be used to obtain a segmentation u as

u : Ω→ {1, . . . , n}
u(x) � i if x ∈ Li

This order of segmentation steps, partitioning the color space first and using this partition
to segment the domain of the image, demonstrates that thresholding only utilizes the
brightness distribution and no spatial or geometric features, see also figure 2.2.
1There are extensions to color images, but these typically consider every color channel separately or
transform the color space such that the brightness is described by only one channel (e.g. into HSV or LAB).

7



8 Chapter 2. Thresholding

0 t1 t2 t3 2k − 1

L1 L2 L3 L4

Figure 2.1.: The thresholds t1 , t2 , t3 shown in the histogram above partition the color space
in the four classes L1 , L2 , L3 , L4

(a) (b)

Figure 2.2.: Rearranging the pixels of image (a) yields image (b), therefore these two
images have the same histogram. Although not impossible, it is unlikely that
there is a threshold t1 that could be used to separate object from background
in both images.
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2.2. Automatic Threshold Computation with Otsu’s Method

If the thresholds t1 , . . . , tn are computed automatically, thresholding may be used as an
unsupervised segmentation method. This computation can be done using Otsu’s method
([13]):

Let f : Ω → C �
{
0, . . . , 2k − 1

}
be a k-bit image. For every class Li , we define the

following properties:

mi B
∑
h∈Li

Hu(h) probability of class Li

µi B
1

mi

∑
h∈Li

h · Hu(h) expexted value of class Li

σ2
i B

∑
h∈Li

(
h − µi

)2 · Hu(h) variance of class Li

Now choose t1 , . . . , tn−1 such that the sum of the brightness variances is minimized:

min
(t1 ,...,tn−1)

n∑
i�1

σ2
i

For a visualization, see figure 2.4.

2.3. Application to Medical Data

When applying thresholding to the histology image 1.4, the results are dissatisfying, see
figure 2.3. Thresholdingworkswell if the histogram of the input image contains prominent
peaks, so that the image is nearly segmented and there are only slight variations around
each region’s average brightness left.
Another use case is the coarsening of a piecewise constant segmentation, that is the

transition of a segmentation with N regions to a segmentation with n regions, where
n < N . This works well if the original segmentation contains many regions with similar
brightness. We will see and use this in chapter 8.



10 Chapter 2. Thresholding

(a) Thresholding with Otsu thresholds t � (74, 143, 215)

(b) Thresholding with manual thresholds t � (66, 138, 238)
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0 50 100 150 200

(c) Excerpt of the histogram with dashed Otsu thresholds and dotted manual thresholds

Figure 2.3.: Thresholding with t � (t1 , t2 , t3) applied to the histology image 1.4. While the
manual thresholds work slightly better (see for example the light gray area
at the bottom of the images), both results are dissatisfying: the regions are
sprinkled and there is no sharp border between them.
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(a) Input image (b) Thresholding with t � 113

0 50 100 113 150 200

(c) Histogram in gray, sum of variances σ2
1 + σ

2
2 as the solid line and optimal threshold t � 113

as dashed line

Figure 2.4.: Otsu’s method: computing the threshold that minimizes the sum of the class
variances



Chapter 3.

Graph-based Segmentation

Definition 3.1 A graph G � (V, E) consists of the non-empty, finite set of vertices V and
the set of edges E ⊂ V × V .

With the weight function w : E→ R+ assigning a weight to every edge, (V, E, w) is called
weighted graph.

An image f : Ω → C � Rc on a discrete set Ω can be modeled as a weighted graph:
Every point in Ω relates to a vertex in V . All vertices vi , v j ∈ V are pairwise connected
(E � V × V) and the weight function w quantifies the correspondence between vi and
v j regarding yet to be discussed criteria. It is convenient to consider w(vi , v j) � 1 for
maximum correspondence between vi and v j (especially w(vi , vi) � 1) and w(vi , v j) � 0
for no correspondence at all. In this case, the weight could also be understood as the
probability that vi and v j belong to the same region.

A piecewise constant segmentation of f in n regions then corresponds to a partition of
V in V1 , . . . ,Vn . To construct this partition, in some way the weighting function w can be
used.

This already highlights an advantage of the graph-based segmentation methods: their
flexibility. The weight function w that specifies which vertices are considered to be similar
and the technique to partition the set of vertices can be chosen independently.

3.1. Partitioning by Minimal Normalized Cuts

The very popular technique of minimal normalized cuts is presented in [17].
Let V � {v1 , . . . , vn} be the set of vertices and E � V × V . The weight function

w : E→ [0, 1] is made up of two terms, the brightness term wb and the spatial term ws

with

w(vi , v j) B wb(vi , v j) · ws(vi , v j),
where wb measures the correspondence with respect to the brightness or color values and
ws the spatial distance of vi , v j . Possible choices could be

wb(vi , v j) B exp(−‖ f (vi) − f (v j)‖2)

13



14 Chapter 3. Graph-based Segmentation

and

ws(vi , v j) B
{

exp(−‖vi − v j ‖2) if ‖vi − v j ‖ < r

0 otherwise,

with a radius r > 0, where f (vi) is the color value at the point in Ω that corresponds to vi

and ‖vi − v j ‖ is the distance of the points corresponding to vi , v j in Ω.
For a partition V � A ∪ B, we define

cut (A, B) B
∑

u∈A,v∈B

w(u , v),

the sum of the weight of all edges that are removed when the graph is split in the two
parts. Naturally, we want to minimize this cut, so that we separate vertices with a low
correspondence. Apart from removing edges with low weight only, minimizing the cut
can be also achieved by removing as few edges as possible. This means that minimizing
the cut tends to create one big subset A ⊂ V and one small subset B ⊂ V , where the cut is
minimal because of the small number of edges between A and B.

To prevent this from happening, the authors in [17] suggest normalizing the cut in the
following way: They define the association of a subset S ⊂ V and V as the sum of the
weights of all edges from S to V as

assoc (S,V) B
∑

s∈S,v∈V

w(s , v),

and then define the normalized cut of A, B as

ncut (A, B) B cut (A, B)
assoc (A,V) +

cut (A, B)
assoc (B,V) . (3.1)

Minimizing this normalized cut instead of the original cut reduces the problem of small
sets with isolated vertices, see figure 3.1 for an example.

Minimizing the normalized cut exactly turns out to be NP-complete and the authors de-
velop an approximation as a computable alternative. They make the following definitions:

• The weight matrix W with
Wi j � w(vi , v j), (3.2)

• the diagonal matrix D, where Dii is the sum of the weights of all edges leaving vi :

Dii �

n∑
j�1

Wi j , (3.3)



3.1. Partitioning by Minimal Normalized Cuts 15

For simplicity, we assume every edge in this graph to have
weight one.

Cut and normalized cut for the partition displayed left:

cut (A, B) � 3 ncut (A, B) � 3
3 +

3
12 �

5
4

Equally sized A, B result in a higher cut, but a lower ncut:

cut (A, B) � 4 ncut (A, B) � 4
8 +

4
8 � 1

Figure 3.1.: Comparison of cut and normalized cut when partitioning V � A ∪ B. The
rings are the vertices in A and the filled circles are the vertices in B.

• the n-dimensional index vector x with xi � 1 if vi ∈ A and xi � −1 otherwise,
• the n-dimensional vector e with ei � 1 for every i ∈ {1, . . . , n},
• the ratio of the association of A,V to the association of V with itself,

k �

∑
{1≤i≤n:xi>0}

Dii

n∑
i�1

Dii

�
assoc (A,V)
assoc (V,V) and b �

k
1 − k

.

With these definitions, they show the following equivalence to minimizing the normalized
cut:

min
x

ncut(x) � min
y

yT(D −W)y
yT D y

, (3.4)

with the constraints on y that yi ∈ {1,−b} and yT De � 1 and where ncut(x) B ncut (A, B)
with A, B defined by x. Up to here, equation (3.4) is only a reformulation of the original
problem and not easier to solve. But rejecting the constraint yi ∈ {1,−b} and instead
considering y ∈ Rn and equation (3.4) as a generalized Rayleigh quotient, y may be
computed as the eigenvector to the second smallest eigenvalue in the eigenvector problem

(D −W) y � λD y. (3.5)

The authors show that such an eigenvector y always fulfills the second constraint yT De � 1.
The remaining question is how to partition V � A ∪ B given y. One could choose to
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just consider the sign of y, that is

vi ∈
{

A if yi > 0,
B otherwise.

The suggestion in [17] is to not only consider the threshold 0, but to take several thresholds
distributed between the minimal and maximal entry of y and of these take the one that
gives the smallest normalized cut.
This procedure is summarized in algorithm 1. If the goal is a segmentation in more

than two regions, the algorithm may be used repeatedly. To give an example, to partition
G � (V, E) in four regions one would apply the algorithm, obtain V � A ∪ B and could
then apply the algorithm to GA � (A, EA) and GB � (B, EB). If three regions are desired,
the algorithm would be only applied to either GA or GB.

If the decision which regions should be further subdivided could be made automatically
or is known from the beginning (or especially if only two regions are desired), this
graph-based approach is an unsupervised segmentation method. Otherwise, it is a
supervised method.
An example can be seen in figure 3.2.

Algorithm 1
1: Initialize: G � (V, E), weight function w that measures similarity between vertices,

weight matrix W as in equation (3.2), diagonal matrix D as in equation (3.3), k ≥ 1 as
number of thresholds plus one .

2: Compute the eigenvector corresponding to the second smallest eigenvalue in equa-
tion (3.5).

3: m ← min
i

yi

4: M ← max
i

yi

5: for i=1,. . . ,k-1 do
6: ti ← m + i · M−m

k
7: Ai ←

{
v j ∈ V : y j > t

}
8: Bi ←

{
v j ∈ V : y j ≤ t

}
9: ci ← ncut (Ai , Bi)
10: end for
11: Select j ∈ {1, . . . , k − 1} such that c j � arg min

i∈{1,...,k−1}
ci

A big disadvantage of algorithm 1 is its computational cost. Even for a small image
with a size of 100 × 100 pixels, an eigenvector with a length of 100 · 100 � 10000 has
to be computed. For slightly larger (but still relatively small) images, the length of the
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eigenvector quickly goes beyond the scope of computational possibility. This algorithm
could still turn out to be interesting in combination with another method, as we will see
in section 8.2.

(a) Original, artificial image

(b) First segmentation step yields A
(black) and B (white)

(c) Second segmentation step, al-
gorithm 1 applied to GB � (VB , EB),
the white area in (b)

Figure 3.2.: Segmentation using algorithm 1





Chapter 4.

Variational Segmentation and Definition of the
Mumford-Shah Functional

Variational methods are a popular technique in mathematical image processing. For a
given image processing task, each desired property of the processed image ū is formulated
as a functional that quantifies how well ū fulfills that respective property. Typically,
the lower the value of the functional at ū, the better does ū fulfill the property. These
properties could for example be similarity to the input image f , exact accordance to the
input on a subset of the image domain or smoothness. Then one tries to find the “optimal”
image ū that minimizes the sum of these functionals.
The desired properties of a segmentation in remark 1.3 can be modeled well by a

variational approach. If f : Ω→ C is the input image, then we are looking for an image
u (in a yet to be defined function space X) and an edge set K ⊂ Ω dividing Ω in distinct
regions such that

1. u and f are similar, which could be achieved by demanding thatD f (u) � ‖u − f ‖2X
is small,

2. there is no intense variation in brightness and color of u on every region, so in some
sense the gradient of u is small on Ω \ K,

3. the set K is small (in a sense that is yet to be defined), such that small artefacts or
dirt particles are not dedicated an own region.

The sum of these three requirements will lead to the Mumford-Shah functional, first
described in [9], the classical variational approach to image segmentation. Before we can
formulate this functional, we have to address the two remaining questions above: in what
sense is the set K small and what is a suitable function space X for segmented images?
The set K ⊂ Ω ⊂ Rd represents the border between different regions, therefore has a

dimension that is smaller than d and in consequence is Ld negligible.
On the one hand, the space X should contain functions with discontinuities, since

those represent edges in an image. On the other hand, the functions in X should be
differentiable, such that in some sense a gradient exists. These seemingly inconsistent
requirements are neither fulfilled by the classical function spaces Ck nor by the Sobolev
spaces.

19
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In the following section 4.1, we will define the Hausdorff measure as an answer to the
first question and lay the groundwork for the definition of the space of Special Functions of
Bounded Variation, which turns out to be a function space well suited for our needs.

The next sections follow the demonstrations in [19, 8, 16].
In the following let Ω ⊂ Rd be a non-empty and open subset, P(Ω) be the power set of
Ω and let

• W � [0,∞],
• W � [−∞,∞) or W � (−∞,∞],
• or W � Rd .

4.1. Preliminaries from Measure Theory

Definition 4.1 The family of subsetsA ⊂ P(Ω) is called Sigma-algebra, short σ-algebra, if

• ∅ ∈ A
• for every A ∈ A it holds (Ω \ A) ∈ A
• if Ai ∈ A , i ∈ N, then also

⋃
i∈N Ai ∈ A

The pair (Ω,A) is called measurable space and the sets A ∈ A are called measurable.

Definition 4.2 Let (Ω,A) be a measurable space. A function ν : A → W fulfilling
ν(∅) � 0 is called σ-additive, if for all pairwise disjoint (Ai)∞i�1 ∈ A

ν

( ∞⋃
i�1

Ai

)
�

∞∑
i�1

ν (Ai).

Definition 4.3 (Measure) Let (Ω,A) be ameasurable space. Let ν : A →W be σ-additive.
For

W � [0,∞] ν is called non-negative measure
W � [−∞,∞) or W � (−∞,∞] ν is called signed measure
W � Rd ν is called vector measure

on (Ω,A). In all three cases we call ν a measure on (Ω,A) and the tuple (Ω,A , ν) is called
measure space.

Definition 4.4 Let (Ω,A , ν) be a measure space. A set A ∈ A is called ν-negligible, if
ν(A) � 0. A proposition is said to hold ν-almost everywhere on Ω or for ν-almost every
x ∈ Ω, short ν-a.e., if the set N ⊂ Ωwhere it does not hold is ν-negligible.
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Definition 4.5 Let (Ω,A) be a measurable space and ν, µ : A →W be two measures.
ν is called absolutely continuouswith respect two µ, denoted

ν � µ,

if every µ-negligible set is also ν-negligible.
ν, µ are called singular on (Ω,A), denoted

ν ⊥ µ,

if there are A1 ,A2 ∈ A such that Ω � A1 ∪ A2, A1 is µ-negligible and A2 is ν-negligible.

Definition 4.6 (Restriction of a measure) Let (Ω,A , ν) be a measure space and A ∈ A.
The restriction of ν to A is a measure defined as

(ν A)(B) � ν(A ∩ B).

Theorem 4.7 (Jordan decomposition) Let ν be a signedmeasure on themeasurable space
(Ω,A). There is a unique decomposition

ν � ν+ − ν−
such that ν+ and ν− are non-negative measures on (Ω,A), at least one of them is finite
(ν+(Ω) < ∞ or ν−(Ω) < ∞) and ν+, ν− are singular.

Proof:
For a proof see [7, chapter VII.1]. �

For the definition of measurable functions, the integration of real or vector valued
functions with respect to a non-negative measure, the associated properties and function
spaces see for example [7] and [4, chapter 2.2].

The concept of integration may be naturally extended to signed and vector measures:

Definition 4.8 Let (Ω,A) be a measurable space and f : Ω → W . The integration of
f over A ∈ A with respect to a signed or vector measure ν is defined in terms of the
integration with respect to non-negative measures.

• Let ν be a signed measure on (Ω,A) and W � [−∞,∞]. Then∫
A

f dν B
∫
A

f dν+ −
∫
A

f dν− ,

defined if the case “∞−∞” does not occur and with ν � ν+ − ν− as in theorem 4.7.



22 Chapter 4. Variational Segmentation and Definition of the Mumford-Shah Functional

• Let ν � (ν1 , . . . , νd) be a vector measure and W � [−∞,∞]. Then∫
A

f dν B ©«
∫
A

f dν1 ,

∫
A

f dν2 , . . . ,

∫
A

f dνd
ª®¬ ∈ Rd ,

defined if all integrals on the right-hand side are finite.
• Let ν � (ν1 , . . . , νd) be a vector measure and W � Rd . Then∫

A

f • dν B
d∑

i�1

∫
A

fi dνi ∈ R,

defined if all integrals on the right-hand side are finite.

Since the integrals on the right-hand sides in the previous definition are σ-additive with
respect to A ∈ A, the expressions on the left-hand are measures, and we further define:

Definition 4.9 Let (Ω,A) be a measurable space, f : Ω → W and ν be a measure. We
define the following measure for A ∈ A if the integrals on the right-hand side exist:

• For W � R+ and a non-negative measure ν, the non-negative measure f ν is defined
as

f ν(A) B
∫
A

f dν.

• For W � [−∞,∞] and a vector measure ν or W � Rd and a non-negative measure ν,
the vector measure f ν is defined as

f ν(A) B
∫
A

f dν.

• For W � Rd , the signed measure f • ν is defined as

f • ν(A) B
∫
A

f • dν.

In the respective case, f ν or f • ν is called weighting of ν with density f .

4.1.1. Vector Radon Measures and their Variation

Definition 4.10 (Radon measure) Let B (Ω) be the Borel σ-algebra over Ω.
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1. A non-negative measure µ : B (Ω) → [0,∞] with µ(K) < ∞ for every compact
K ∈ B (Ω) is called (non-negative) Radon measure.

2. ν : B (Ω) → Rd is called (vector) Radon measure, if there exists a non-negative Radon
measure µ on (Ω,B (Ω)) and a density f ∈ L1

loc
(
Ω,Rd ; µ

)
such that

ν � f µ.

The linear space of Radon measures on Ω is denoted as RMloc
(
Ω,Rd ) .

Remark 4.11 Strictly speaking, the definition of vector Radon measures requires an
intermediate step. In the definition of a non-negative Radon measure µ, the case of an Ω
with µ(Ω) � ∞ is covered. For vector Radon measures, this case is more difficult, since
there is no clear understanding of “∞” in Rd .

A possible solution is to define vector Radonmeasures initially on the relatively compact
Borel sets

K (Ω) B
{
A ∈ B (Ω) : A compact in Ω

}
.

Because the vector Radonmeasure µ : K (Ω) → Rd may be uniquely extended toB (Ω) (see
[16]) and because the situation of a domainΩwith an infinite mass might be inappropriate
in the context of image processing from the beginning, we omitted this intermediate step
in definition 4.10.

Definition 4.12 (Variation of a measure) Let ν � f µ ∈ RMloc
(
Ω,Rd ) as in definition 4.10.

The non-negative Radon measure
|ν | B | f |µ

on Ω is called the variation of ν.

The variation of a vector measure is a non-negative measure and can be interpreted as
an absolute value for measures, see the following lemma:

Lemma 4.13 (Polar decomposition) Let ν ∈ RMloc
(
Ω,Rd ) . There is a g ∈ L1

loc
(
Ω,Rd ; |ν |)

such that
ν � g |ν |

and
‖g(x)‖ � 1 for |ν |-almost every x ∈ Ω.

g is |ν |-almost everywhere uniquely determined by ν.

Proof:
Let ν � f µ as in definition 4.10 and letN :�

{
x ∈ Ω | f (x) � 0

}
, then

|ν |(N) � (| f |µ) (N) � ∫
N
| f | dµ � 0
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and we may for |ν |-almost every x ∈ Ω define

g B
f
| f | with ‖g(x)‖ � 1.

It further holds
ν � f µ � g | f |µ � g |ν |.

For the |ν |-almost everywhere uniqueness, let

ν � g1 |ν | � g2 |ν |.
Then ∫

Ω

g1 d |v | �
∫
Ω

g2 d |v |

and g1 � g2 |ν |-almost everywhere. See [16] for further properties and details. �

Definition 4.14 The linear space of finite Radon measures on Ω is defined as

RM
(
Ω,Rd

)
B

{
ν ∈ RMloc

(
Ω,Rd

)
: |ν |(Ω) < ∞

}
.

Lemma 4.15 RM
(
Ω,Rd ) equipped with the total variation

‖ · ‖RM(Ω,Rd) : ν 7→ |ν |(Ω)
as a norm is a Banach space.

Proof:
For a proof see [16, theorem 0.22]. �

4.1.2. Hausdorff Measure

Suppose that A ∈ B (
Rd ) is k-dimensional with k < d. We want to develop a method to

quantify the volume of A. The Lebesgue measure Ld is not suitable, since Ld (A) � 0.
Instead, wewill use the following idea: We cover A with countablymany balls Bd

ri
(xi) ⊂ Rd

with finite radius 0 ≤ ri < δ around certain points xi ∈ Rd ,

A ⊂
∞⋃

i�1
Bd

ri
(xi),

and then sum up the volume of the k-dimensional equatorial planes inside Bd
ri
(xi):

∞∑
i�1

α(k)rk
i : A ⊂

∞⋃
i�1

Bd
ri
(xi) .
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α(k) is the volume of the unit sphere in Rk , α(1) � 2, α(2) � π, α(3) � 4π/3, . . ..
We then take the infimum of all covers of A and finally consider the limit δ → 0. This
construction yields the Hausdorff measure, see also definition 4.16 and figure 4.1.

Definition 4.16 (Hausdorff measure) The k-dimensional Hausdorff measure on B
(
Rd ) is

defined as

H k (A) B lim
δ→0

inf
(Bi)

{ ∞∑
i�1

α(k)rk
i : A ⊂

∞⋃
i�1

Bd
ri
(xi) , 0 ≤ ri < δ

}
where Bn

0 (xi) � ∅ and α(k) is the volume of the unit sphere in Rk .

Theorem 4.17 The functionH k in definition 4.16 is a measure on B
(
Rd ) .

Proof:
For a proof see [8], theorem 1 in section 2.1. �

Theorem 4.18 (Properties of the Hausdorff measure) Using the Hausdorff measure on
lower-dimensional subsets is reasonable in the following sense:

1. H 0 is the counting measure.
2. H d � cLd with a constant factor c ∈ R. This factor may be applied in the definition

of the Hausdorff measure, such that H d � Ld , but this makes the definition less
intuitive.

3. H k ≡ 0 if k > d.
4. Scaling a subset with a factor respects the dimension: H k(λA) � λkH k(A) for all
λ > 0,A ⊂ Rd .

5. The position of a subset is irrelevant for its size: H k (L (A)) � H k(A) for each affine
isometry L : Rd → Rd ,A ⊂ Rd .

Proof:
For a proof see [8], theorem 2 in section 2.1 and the section 2.2. �
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Curve in R2

2 dimensional ball B2
ri
(xi)

1 dimensional equatorial plane with length α(1)r1
i

Figure 4.1.: Construction of the Hausdorff measure for a k � 1 dimensional curve in n � 2
dimensions. From top to bottom, the allowed maximal radius δ is decreased.
The smaller the maximal radius, the better the approximation of the curve
length.
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4.2. The Spaces BV and SBV

For the rest of this chapter, we will consider the color space C � R. The treatment of the
general case C � Rn can be done analogously, but requires more technical work.
Let u ∈ C1 (Ω) and let ϕ ∈ C1 (

Ω,Rd ) be compactly supported in Ω. The formula for
integration by parts (Gauß) states∫

Ω

u divϕ dLd
� −

∫
Ω

ϕ • ∇u dLd , (4.1)

The idea for functions that are not differentiable in a classical sense is to replace ∇uLd

on the right-hand side of equation (4.1) by a general Radon measure ν.

Definition 4.19 (Weak derivative) Let u ∈ L1
loc (Ω). ν in RMloc

(
Ω,Rd ) is called weak

(total) derivative of u and u is called weakly differentiable on Ω, if∫
Ω

u divϕ dLd
� −

∫
Ω

ϕ • dν ∀ϕ ∈ D
(
Ω,Rd

)
. (4.2)

In this case, we will write Du B ν.

Definition 4.20 The space of weakly differentiable functions is denoted by

BVloc (Ω) B
{
u ∈ L1

loc (Ω) : Du ∈ RMloc

(
Ω,Rd

)}
.

Definition 4.21 (Space of functions of bounded variation) The linear space of functions
of bounded variation is

BV (Ω) �
{
u ∈ BVloc (Ω) ∩ L1 (Ω) : Du ∈ RM

(
Ω,Rn×d

)}
�

u ∈ BVloc (Ω) :
∫
Ω

|u | dLd
+ |Du |(Ω) < ∞

 .
Lemma 4.22 With the norm

‖ · ‖ : u 7→
∫
Ω

|u | dLd
+ |Du | (Ω) (4.3)

BV (Ω) is a Banach space.

Proof:
See for example [4, Lemma 6.105]. In [16, Theorem 1.9] it is also proved that BV (Ω) is
not separable for Ω , ∅. �
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Remark 4.23 Equation (4.1) is often used to define the Sobolev spaces by calling a function
that behaves like ∇u for all test functions the weak derivative of u and then define the
Sobolev space as the functions with these weak derivatives.
In our situation, we could define Sobolev spaces from the other direction as those BV

functions whose weak derivatives in the sense of definition 4.19 are a weighting of the
Lebesgue measure:

W1,1
loc (Ω) B

{
u ∈ BVloc (Ω) : ∃ f ∈ L1

loc

(
Ω,Rd

)
: Du � fLd

}
.

Remark 4.24 The following function is a canonical example for a weakly differentiable
function: Let u : (a , b) → R, u ∈ C1 ((a , x0) ∪ (x0 , b)

)
with L1-almost everywhere defined

classical derivative u′ ∈ L1
loc ((a , b)) and jump in x0 ∈ (a , b) (figure 4.2). Assume that the

one-sided limits u(x0+) and u(x0−) exist. For ϕ ∈ D ((a , b) ,R) it holds
b∫

a

uϕ′ dL1
�

x0∫
a

uϕ′ dL1
+

b∫
x0

uϕ′ dL1

�
[
uϕ

] x0−
a −

x0∫
a

ϕu′ dL1
+

[
uϕ

] b
x0+
−

b∫
x0

ϕu′ dL1

� − ©«
b∫

a

ϕu′ dL1
+ u(x0+)ϕ(x0) − u(x0−)ϕ(x0)ª®¬

� −
b∫

a

ϕ d
(
u′L1

+ (u(x0+) − u(x0−)) δx0

)
and therefore u ∈ BVloc ((a , b) ,R)with weak derivative

Du � u′L1
+

(
u (x0+) − u (x0−)

)
δx0 .

Remark 4.25 In many applications, the regularizer in variational methods demands that
solutions don’t “vary too much” onΩ or on certain subsets ofΩ, that means the brightness
is more or less homogeneous on the respective set.
For a continuously differentiable u : Ω→ R, this “variation” may be quantified using

the derivative u′:

VarΩ(u) �
∫
Ω

|u′ | dL1.
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u(x0−)

u(x0+)

a x0 b

Figure 4.2.: Weakly differentiable function with discontinuity

To give an example, if we consider

u(x) � −x3
+

1
2 x2

+ x

on Ω � (−1, 1), we can calculate the variation as

Var(−1,1)(u) �
1∫

−1

| − 3x2
+ x | dx

�

0∫
−1

3x2 − x dx +

1/3∫
0

−3x2
+ x dx +

1∫
1/3

3x2 − x dx �
55
27 .

If we define the not continuous û (see figure 4.3) with two “jumps” of length 1/2 as

û(x) �
{

u(x) + 1
2 if − 1

2 ≤ x ≤ 1
2

u(x) otherwise,

once again thinking of discontinuities as edges in an image, we would now expect the
variation of û to be

Var(−1,1)(û) � Var(−1,1)(u) + 1,

and indeed the total variation of the weak derivative of û gives this result: As we have
seen in remark 4.24, we can compute the weak derivative of û as

Dû � u′L1
+

1
2δ− 1

2
− 1

2δ 1
2

� f
(
L1

+ δ− 1
2
+ δ 1

2

)
with f (x) �


u′(x) if x ∈ (−1, 1) \ {−1

2 ,
1
2
}
,

1
2 if x � − 1

2 ,

− 1
2 if x �

1
2 ,
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where f , u′ only on the L1-negligible subset {−1/2, 1/2}. Now

|Dû |(Ω) � | f |
(
L1

+ δ− 1
2
+ δ 1

2

)
(Ω)

�

1∫
−1

|u′(x)| dx +
1
2δ− 1

2
(Ω) + 1

2δ 1
2
(Ω)

� Var(−1,1)(u) + 1
2 +

1
2 � Var(−1,1)(u) + 1.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

(a) u(x) � −x3+ 1
2 x2+x

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1
2

1
2

(b) û(x) �
{

u(x) + 1
2 if − 1

2 ≤ x ≤ 1
2

u(x) otherwise

Figure 4.3.: û is in principle u but has two jumps, each with “length” 1/2. We would
therefore expect û to have the variation of u plus the length of the jumps.

4.2.1. Structure of Weak Derivatives

For proofs and details regarding the statements in this subsection, see [3, 2, 8].
Since BVallows a concept of derivatives for functionswithdiscontinuities, it is reasonable

to expect the segmented images are contained in that space. Unfortunately, BV contains
functions which are highly inappropriate in the context of image segmentation as well:
Functions whose weak derivative may be decomposed into a measure DL � Ld and a
measure with a density depending on jumps as described in remark 4.24 are not the only
kind of functions with weak derivatives.
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We define a sequence ( fn)n∈N of continuous functions fn : [0, 1] → [0, 1] as

f1(x) � x fn+1(x) �


1
2 fn(3x) for 0 ≤ x ≤ 1

3 ,
1
2 for 1

3 < x < 2
3 ,

1
2
(
1 + fn

(
3
(
x − 2

3
) ) )

for 2
3 ≤ x ≤ 1,

see also figure 4.4.
(

fn
)
uniformly converges to a function f ∈ BV((0, 1)) , the Cantor-Vitali

function. This function is L1-a.e. constant on [0, 1] (since f is not constant only on the
L1-negligible Cantor set) and especially f ′ � 0 L1-almost everywhere. Yet still, f is
continuous and monotonically increasing on [0, 1]with f (0) � 1 and f (1) � 1.

To analyze the structure ofweakderivatives, we need the following terms anddefinitions:

Definition 4.26 Let u : Ω→ R. l ∈ R is called the approximate limit of f in x ∈ Ω, denoted

ap lim
y→x

f (y) � l ,

if for all ε > 0

lim
r→0

Ld (Br(x) ∩
{| f − l | ≥ ε})

Ld
(
Br(x)

) � 0.

In essence this means l is the approximate limit of f in x, if f evaluates to a value close to
l almost everywhere in the vicinity of x.

The approximate limit may be used to define the approximate derivate:

Definition 4.27 Let u : Ω → R. u is called approximately differentiable at x ∈ Ω, if there
exists a linear mapping L : Ω→ R such that

ap lim
y→x

| f (y) − f (x) − L(y − x)|
|y − x | � 0.

L is called the approximate derivate of u in x.

Definition 4.28 The jump set Su of u is the set of all points where u has no approximate
limit.

It turns out that the weak derivative of every u ∈ BV (Ω)may be decomposed into three
mutually singular measures:

Du � Dl u + D j u + Dc u (4.4)

where
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• Dl u � ∇uLd is aweightingof theLebesguemeasure,where∇u(x) is the approximate
derivative for Ld-a.e. x ∈ Ω and it is called the Lebesgue part,

• D j u is a weighting of the restricted Hausdorff-measureH d−1 Su , called the Jump
part,

• Dc u is the so called Cantor part.

For functions like the Cantor-Vitali function f it holds Dl f � D j f � 0. These kinds of
functions are dense in L2 (Ω), which means that (in anticipation of the functional we will
define in section 4.3) for any input f ∈ L2 (Ω) and for all α, λ > 0

inf
u∈BV(Ω)

∫
Ω

(u − f )2 dLd
+ α

∫
Ω\K
|∇u |2 dLd

+ λ

∫
K

d(H d−1 Su) � 0.

After all, functions whose weak derivatives have a Cantor part are not well suited to
represent images, and we will restrict the function space to those functions whose weak
derivatives don’t have a Cantor part.

Definition 4.29 The space of special functions of bounded variation is defined as

SBV (Ω) � {
u ∈ BV (Ω) : Dc u � 0 in equation (4.4)

}
.
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Figure 4.4.: The Cantor-Vitali function, also known as the devil’s staircase
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4.3. The Mumford-Shah Functional

We are finally able to formulate a segmentation in the sense of remark 1.3 as a variational
problem on SBV (Ω). We can fulfill the “wishes” in remark 1.3 in the following way:

1. u and f should be similar, which we can model by requiring∫
Ω

(u − f )2 dLd (4.5)

to be small.
2. Inside each region, u should be more or less homogeneous, which we can model by

requiring ∫
Ω\K
|∇u |2 dLd (4.6)

to be small. Here, K ⊂ Ω is the set of the borders that are separating the different
regions and ∇u is the density of the Lebesgue part in Du.

3. Small artifacts, noise or little dirt particles should be ignored and not assigned an
own region. In other words, the set K should be small, so we require

H d−1 (K) �
∫
K

dH d−1 (4.7)

to be small.

The combination of equations (4.5) to (4.7) with parameters α, λ > 0 forms theMumford-
Shah functional:

Definition 4.30 (Mumford-Shah functional) Let f : Ω → R, α, λ > 0 and K ⊂ Ω be a
closed subset. TheMumford-Shah functional FMS is defined as

FMS (u , K) �
∫
Ω

(u − f )2 dLd
+ α

∫
Ω\K
|∇u |2 dLd

+ λ

∫
K

dH d−1.

Theorem 4.31 Let Ω ⊂ Rd be a bounded, open set, α, λ > 0 and f ∈ L∞ (Ω). Then there
exists a solution of

min
u∈SBV(Ω)

K⊂Ω closed

FMS (u , K).
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Proof:
Luigi Ambrosio proved the existence in a series of publications he then summarized
in [3]. The proof utilizes the Direct Method of Variational Calculus (in anticipation of
remark 6.10):

The Mumford-Shah functional consists of the integration of non-negative functions
with respect to non-negativemeasures, is consequently non-negative itself and bounded
from below, so the first requirement in the direct method is fulfilled.

Ambrosio defines

F̂ (u) B
∫
Ω

(u − f )2 dLd
+ α

∫
Ω

|∇u |2 dLd
+ λ

∫
Su

dH d−1 ,

using Ld (Ω \ K) � Ld (Ω) and where Su is the jump set of u, and argues that

inf
u∈SBV(Ω)

F̂ (u) ≤ inf
u∈SBV(Ω)

K⊂Ω
FMS(u , K).

Given a minimizer u of F̂ and setting K � Ω ∩ S̄u , the pair (u , K)will minimize FMS.
Ambrosio then generalizes the problem to functionals on SBV (Ω) of the type

F (u) �
∫
Ω

f (x , u ,∇u) dLd
+

∫
Su

ϕ dH d−1 , (4.8)

where u : x 7→ u(x) and with a quite general (here not further explained) density ϕ.
In chapter 3 of [3], a compactness theorem on SBV (Ω)which ensures the existence of

a converging subsequence is proved and the second requirement of the direct method
is fulfilled.
Finally, in chapter 4 of [3], the lower semi-continuity of functionals of the type (4.8)

is proved, the third requirement is fulfilled and the direct method can be applied. �

While the existence of solutions certainly is desirable, we are equally interested in
finding a way to compute these solutions. A great difficulty in the minimization of
the Mumford-Shah functional is the very different nature of the two parameters u , K in
FMS(u , K): u is a function on Ω and K is a subset of Ω. As we have seen in the proof
of theorem 4.31, the optimal set may be described in terms of the optimal image ū as
K̄ � Ω∩ Sū . But recalling definition 4.28, we realize that it is difficult to compute the jump
set explicitly.
In chapter 5 we will consider images of objects in front of a background and how in

this special case the Mumford-Shah functional can be minimized. In chapter 7, we will
describe the set K in terms of the discrete gradient (obtained by finite differences) and
define the Fast-Mumford-Shah functional which may be used in a more general setting than
the special case above.





Chapter 5.

Active Contours: Separating Object and Background

Active contours ([6]) are a well-studied method to minimize a special case of the Mumford-
Shah functional. We assume to have a two-dimensional image of an object in front of some
background, separated by a smooth curve C ⊂ Ωwith length l(C). The segmentation task
is to compute a piecewise constant segmentation with two regions Ωo (object) and Ωb

(background) with Ω � Ωo Û∪Ωb , such that Ωo is open and C � ∂Ωo .
With the above and assuming that u evaluates to co on Ωo and cb on Ωb , the Mumford-

Shah functional reduces to

FAC(co , cb , C) B λ1

∫
Ωo

(
f (x) − co

)2 dL2(x) + λ2

∫
Ωb

(
f (x) − cb

)2 dL2(x) + l(C) (5.1)

with parameters λ1 , λ2 > 0.
For a fixed curve, the optimization with respect to co and cb can be done analytically by

differentiation:

∂
∂co
FAC(co , cb , C) � 0 ⇒ co �

∫
Ωo

f dL2

∫
Ωo

dL2
,

so co is the average of f on Ωo and likewise cb is the average of f on Ωb .
The curve C might be represented as the zero level set of a level set function φ as

follows:

C �
{

x ∈ Ω : φ(x) � 0
}

Ωo �
{

x ∈ Ω : φ(x) > 0
}

Ωb �
{

x ∈ Ω : φ(x) < 0
}

Using φ and the Heaviside function H, defined by

H(x) �
{

1 if x ≥ 0,
0 otherwise,

37
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we can obtain the characteristic function of the subset Ωo as

1Ωo � H ◦ φ.

Now, we may rewrite the length of C as

l(C) � H 1(Ωo ∩Ω︸  ︷︷  ︸
�Ωo

) � P(Ωo ,Ω) �
∫
Ω

d |D1Ωo |,

where P(Ωo ,Ω) is the perimeter of Ωo in Ω, defined as the variation of the weak derivative
of the characteristic function of Ωo , evaluated at the whole set Ω. See [19, section 5.4] and
[8, chapter 5] for details and the theory of sets of finite perimeter.

Using the above, equation (5.1) can be reformulated as

FAC(co , cb , φ) � λ1

∫
Ω

(
f (x) − co

)2H
(
φ(x)) dL2(x)

+ λ2

∫
Ω

(
f (x) − cb

)2 (
1 − H

(
φ(x)) ) dL2(x)

+

∫
Ω

d |D1Ωo |,

where all the integrals are over the whole set Ω now. The authors in [6] then compute
the Euler-Lagrange equation (with respect to φ) of a regularized version of the above
functional and introduce an artificial time t ≥ 0 in Φ(t , x), where Φ(0, x) � φo(x) is an
initial curve. They further specify algorithm 2 to iteratively evolve this initial curve φ0
and argue that φk+1 is obtained from φk by propagation of the set Ωo parallel to normal
direction. See figure 5.1 for a visual demonstration and figure 5.2 for an example.
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Algorithm 2 Active-Contour Iteration

1: Initialize: φ0 � φ0
2: for k � 0, 1, 2 . . . do
3: Compute the averages co , cb for the partition defined by φk

4: Compute φk+1 by solving the partial differential equation given by the Euler-
Lagrange equation

5: if Termination criterion fulfilled then
6: break
7: end if
8: end for

Object

φk > 0

φk � 0

φk < 0

Figure 5.1.: Computing φk+1 from φk corresponds to a propagation of the curve C parallel
to normal direction.
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(a) Initial contour (b) 100 iterations (c) 200 iterations

(d) 300 iterations (e) 400 iterations (f) 500 iterations

(g) 600 iterations (h) 700 iterations (i) 800 iterations

(j) 900 iterations (k) 1000 iterations (l) 1100 iterations

Figure 5.2.: Iteratively updating the initial contour until it separates object and background
after around 1000 iterations.



Chapter 6.

Optimization of Variational Problems in Image
Processing

In this chapter, wewill develop a general framework to analyze and (numerically) optimize
variational problems of the type

ū � arg min
u∈X

F(u) + G(Au)

where F,G are functionals on spaces X,Y and A : X → Y is a linear operator between
these spaces. While there are certain requirements on F,G, they are not required to be
differentiable. This framework will then be used in the upcoming chapter 7.

This chapter follows [10, chapter 2] and [4, chapter 6]. If not explicitly stated otherwise,
in this chapter let X and Y be Banach spaces over R.

6.1. Convex Analysis

Definition 6.1 (Domain and proper functional) Afunctional f : X → R∞ is called proper,
if its domain

dom F B
{

x ∈ X : f (x) < ∞}
is non-empty.

Definition 6.2 (Convex set) A subset C ⊂ X is called convex, if for every x , y ∈ C and for
every λ ∈ [0, 1] it holds

λx + (1 − λ)y ∈ C.

Definition 6.3 (Convex function) Let C ⊂ X be convex and let f : C→ R∞ be a function
on C.

f is called convex, if for all x , y ∈ C and for every λ ∈ [0, 1]

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

41
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f is called strictly convex, if for all x , y ∈ C with x , y and for every λ ∈ (0, 1)

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y).

f is called strongly convex with parameter γ > 0, if for all x , y ∈ C and for every λ ∈ [0, 1]

f (λx + (1 − λ)y) + γ

2 λ(1 − λ)‖x − y‖2 ≤ λ f (x) + (1 − λ) f (y).

Remark 6.4 By definition 6.3, every strictly convex function is also convex. And since for
γ > 0, x , y ∈ C with x , y and λ ∈ (0, 1)

γ

2 λ(1 − λ)‖x − y‖2 > 0,

every strongly convex function is also strictly convex.

Lemma 6.5 Let C ⊂ X be convex and let f , g : C→ R∞ be convex.

1. ( f + g) is convex. If g is strictly convex, then ( f + g) is strictly convex.
2. If α > 0, then (α f ) is convex. If f is strictly convex, then (α f ) is strictly convex.
3. If g : R∞ → R∞ is convex and monotonically increasing, then g ◦ f is convex. If f is

strictly convex and g strictly monotonically increasing, then g ◦ f is strictly convex.

Proof:
Let f , g : C→ R∞ convex, x , y ∈ C, α > 0 and λ ∈ (0, 1). Then

1.

( f + g)(λx + (1 − λ)y)
� f

(
λx + (1 − λ)y)

+ g
(
λx + (1 − λ)y)

≤ λ f (x) + (1 − λ) f (y) + λg(x) + (1 − λ)g(y)
� λ( f + g)(x) + (1 − λ)( f + g)(y)

2. Multiplication with α > 0 does not affect the “≤” and “<” relations in defini-
tion 6.3.

3.

g
(

f
(
λx + (1 − λ)y) ) ≤ g

(
λ f (x) + (1 − λ) f (y)) ≤ λg

(
f (x)) + (1 − λ)g (

f (y))
The proofs for strict convexity may be carried out analogously. �

Lemma 6.6 Let f : X → R∞, x̂ ∈ X and g : X → R∞ with g(x) B f (x + x̂).
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If f is


convex,
strictly convex,
strongly convex,

then g is also


convex.
strictly convex.
strongly convex.

Proof:
Let x , y ∈ X, λ ∈ [0, 1] and assume f is convex. Then

g
(
λx + (1 − λ)y)

(6.1)
� f

(
λx + (1 − λ)y + x̂

)
(6.2)

� f
(
λx + λx̂ + (1 − λ)y + x̂ − λx̂

)
(6.3)

� f
(
λ(x + x̂) + (1 − λ)(y + x̂)) (6.4)

≤ λ f (x + x̂) + (1 − λ) f (y + x̂) (6.5)
� λg(x) + (1 − λ)g(y) (6.6)

and g is also convex. For x , y, λ ∈ (0, 1) and strictly convex f , the proof may be
carried out the same way, replacing the “≤” between equations (6.4) and (6.5) by “<”.
If f is strongly convex with γ > 0, the proof may be carried out by adding

γ

2 λ(1 − λ)‖x − y‖2

to equations (6.1) to (6.4). �

Lemma 6.7 ‖ · ‖pX is convex for p ≥ 1.

Proof:
Let x , y ∈ X and λ ∈ [0, 1]. Since ‖ · ‖X is absolutely homogeneous and subadditive,

‖λx + (1 − λ)y‖ ≤ λ‖x‖ + (1 − λ)‖y‖.

For p ≥ 1, convexity is guaranteed by lemma 6.5. �

Lemma 6.8 In a Hilbert space X, ‖ · ‖2X defined as ‖x‖X B
√
(x , x) is strongly convex with

parameter γ � 2.

Proof:
We show that ‖ · ‖2X fulfills the criterion for strong convexity in definition 6.3 for γ � 2.
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Let x , y ∈ X and λ ∈ [0, 1] be arbitrary. Then

‖λx + (1 − λ)y‖2X + λ(1 − λ)‖x − y‖2X
� λ2(x , x) + 2λ(1 − λ)(x , y) + (1 − λ)2(y , y)

+ λ(1 − λ) ((x , x) − 2(x , y) + (y , y))
� λ2(x , x) + λ(x , x) − λ2(x , x)

+ 2λ(1 − λ)(x , y) − 2λ(1 − λ)(x , y)
+ (1 − λ)2(y , y) + λ(y , y) − λ2(y , y)

� λ(x , x) + (1 − λ)(y , y)
� λ‖x‖2X + (1 − λ)‖y‖2X . �

6.2. Existence and Uniqueness of Solutions

Definition 6.9 Let F : X → R∞. If for all sequences (un)n∈N it holds

• lim
n→∞ ‖un ‖ � ∞⇒ lim

n→∞ F(un) � ∞, then F is called coercive.

• un → u ⇒ F(u) ≤ lim inf
n→∞ F(un), then F is called lower semi-continuous.

Remark 6.10 (Direct Method of Variational Calculus) Let X be a topological space and
F : X → R. To prove the existence of a minimizer, conduct the following steps:

1. Verify that F is bounded from below, which means there is a sequence (un)with

lim
n→∞ F(un) � inf

u∈X
F(u).

2. Choose a topology on X such that (un) has a subsequence unk which converges to
ū ∈ X.

3. Show that F is lower semi-continuous with respect to the topology from step 2 (see
definition 6.9). Then

inf
u∈X

F(u) ≤ F(ū) ≤ lim inf
k→∞

F(unk ) � inf
u∈X

F(u)

and ū is a minimizer of F.

Note that the steps 2 and 3 are competing: when a stronger topology is chosen, on the one
hand the lower semi-continuity of F has to be shown for fewer sequences, but on the other
hand there are also fewer sequences with a converging subsequence. See also [4, section
6.2.1].
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Theorem 6.11 (Existence of solutions) Let X be a reflexive Banach space and F : X → R∞
be bounded from below, coercive, convex and lower semi-continuous. Then there exists a
solution to the minimization problem

min
u∈X

F(u)

Proof:
This theorem is a combination of theorem 6.17 and corollary 6.28 in [4]. �

Theorem 6.12 (Uniqueness of Solutions) If F : X → R∞ is strictly convex, the minimiza-
tion problem

min
u∈X

F(u)

has at most one solution.

Proof:
Assume there exists u , v ∈ X, u , v such that F(u) � F(v) � inf

u∈X
F(u). Then, for an

arbitrary λ ∈ (0, 1),

F
(
λu + (1 − λ)v)

< λF(u) + (1 − λ)F(v) � inf
u∈X

F(u),

which is a contradiction. �

6.3. Subdifferential Calculus

Definition 6.13 (Gâteaux-derivative) Let F : X → R∞. For x ∈ X, h ∈ X let

δF(x; h) B lim
t→0

F(x + th) − F(x)
t

.

If for x ∈ X and for every h ∈ X the limit δF(x; h) exists such that there is a linear operator
F′(x) ∈ X∗ with

δF(x; h) � (F′(x)) h ,
then F′(x) is called Gâteaux-derivative of F in x. If the Gâteaux-derivative exists for every
x ∈ X, F is called Gâteaux-differentiable.

Remark 6.14 (Theorem 6.33 in [4]) Let F : X → R∞ be convex and Gâteaux-differentiable
and u be an interior point of X. Then w � F′(u) is the unique operator in X∗ such that

F(u) + 〈w , v − u〉 ≤ F(v) ∀v ∈ X. (6.7)
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The concept of derivatives is essential in numerical optimization. Unfortunately, many
interesting functionals in image processing are not Gâteaux-differentiable. In order to
broaden the concept of differentiation, we use equation (6.7) to define subgradients and
the subdifferential:

Definition 6.15 (Subgradient and Subdifferential) Let F : X → R∞ be convex. w ∈ X∗

is called subgradient in u if it fulfills the subgradient inequality

F(u) + 〈w , v − u〉 ≤ F(v) ∀v ∈ X. (6.8)

Given u ∈ X, the subdifferential of F in u is the set of all subgradients:

∂F(u) B {
w ∈ X∗ | u and w fulfill the subgradient inequality (6.8)

}
Because for u ∈ X there might be several subgradients w ∈ X∗, the subdifferential is not a
mapping ∂F : X → X∗, it is a multi-valued operator:

Definition 6.16 (Multi-valued operator) A multi-valued operator F : X ⇒ Y is a subset
F ⊂ X × Y. We will write

F(x) � {
y ∈ Y | (x , y) ∈ F

}
and y ∈ F(x) :⇔ (x , y) ∈ F.

For F,G : X ⇒ Y and λ ∈ Rwe define

(F + G) (x) B {
y f + yg | y f ∈ F(x), yg ∈ G(x)} ,

(λF) (x) B {
λy | y ∈ F(x)} .

For F : X ⇒ Y the inverse F−1 : Y ⇒ X is defined as

F−1 B
{(y , x) ∈ Y × X | (x , y) ∈ F

}
.

The identity id : X ⇒ X is defined as

id B {(x , x) ∈ X × X} .

Remark 6.17 If F : X ⇒ X, but for every x ∈ X there exists exactly one y ∈ Y such that
(x , y) ∈ Y, we will implicitly treat F also as a mapping F : X → X and write y � F(x).

Lemma 6.18 Let F,G : X → R∞ be convex and proper and λ > 0. Assume it exists
û ∈ dom F ∩ dom G such that F is continuous in û. Then

1. ∂(λF) � λ∂F,
2. ∂ (F + G) � ∂F + ∂G.
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Proof:
For a proof see [4, theorem 6.51]. �

Theorem 6.19 (Generalization of remark 2.17 and theorem 6.43 in [4]) Let F : X → R∞
be convex. It holds

ū � arg min
u∈X

F(u) ⇔ 0 ∈ ∂F(ū).

Proof:

ū � arg min
u∈X

F(u)

⇔ F(ū) ≤ F(u) ∀u ∈ X

⇔ F(ū) + 〈0, u − ū〉 ≤ F(u) ∀u ∈ X

⇔ 0 ∈ ∂F(ū) �

Definition 6.20 (Proximal operator) Let X be a Hilbert space and F : X → R∞ be proper,
convex, lower semi-continuous and let σ > 0. The proximal operator of F with respect to σ
is defined as

proxσ,F B


X → X

u 7→ arg min
v∈X

‖v−u‖2
2σ + F(v).

By lemmata 6.5 and 6.8, ‖v−u‖2
2σ + F(v) is strictly convex and by section 6.2, there is a unique

minimizer.

In section 6.5, for a given F : X ⇒ X and σ > 0, wewant to derivemulti-valued operators
like (id + σ∂F)−1 : X ⇒ X. It turns out that for certain f , these types of multi-valued
operators reduce to the proximal operator.

Definition 6.21 (Resolvent operator) If F : X ⇒ X is a multi-valued operator and σ > 0,
then (id + σ∂F)−1 : X ⇒ X is called resolvent operator of F with respect to σ.

Lemma 6.22 Let X be a real Hilbert space, F : X → R∞ be proper, convex, lower semi-
continuous, and let σ > 0. Then the resolvent operator and proximal operator of F with
respect to sigma coincide:

(id + σ∂F)−1
� proxσ,F

Proof:
For a proof see [4, lemma 6.134]. �
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Lemma 6.23 Let X be a real Hilbert space, F : X → R∞ be proper, convex, lower
semi-continuous, and let σ > 0.

G(u) � F(u) + α, α ∈ R ⇒ proxσ,G � proxσ,F (6.9)

G(u) � F(u) + (u , w), w ∈ X ⇒ proxσ,G(u) � proxσ,F(u − σw) (6.10)

Proof:
• Equation (6.9) holds, because addition of a real constant only changes the value,

but not the argument of the minimization problem in definition 6.20.
• Equation (6.10): Let G(u) � F(u) + (u , w).

proxσ,G(u − σw)

� arg min
v∈X

‖v − u + σw‖2
2σ + F(v)

� arg min
v∈X

(v − u , v − u) + 2 (v − u , σw) + (σw , σw)
2σ + F(v)

� arg min
v∈X

(v − u , v − u) + 2σ
((v , w) − (u , w)) + (σw , σw)

2σ + F(v)

� arg min
v∈X

‖v − u‖2
2σ + F(v) + (v , w) � proxσ,G(u),

where we used that terms independent of v don’t change the argument of the
minimization problem. �

6.4. Duality in Optimization

Many variational methods in image processing may be written in the following way: Find
ū ∈ X such that

ū � arg min
u∈X

F(u) + G(Au), (6.11)

where F : X → R∞, G : Y → R∞ are proper, convex and lower semi-continuous and
A : X → Y is a linear operator. Note that F,G are not required to be differentiable.
Equation (6.11) is called the primal problem.

Definition 6.24 Let F : X → R∞ be proper. The Fenchel-conjugate F∗ : X∗ → R∞ (also
called convex-conjugate) of F is defined as

F∗(w) B sup
u∈X
(〈w , u〉 − F(u)).
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For every (u ,w) ∈ dom F × dom F∗ definition 6.24 directly gives the Fenchel-inequality

〈w , u〉 ≤ F(u) + F∗(w). (6.12)

For a proper F : X → R∞ we also define the Fenchel-biconjugate F∗∗ : X → R∞ as

F∗∗(u) B sup
w∈X∗
(〈w , u〉 − F∗(w)).

If F is convex and lower semi-continuous, then F∗∗ � F (see [4, remark 6.62 and lemma
6.63]).

Lemma 6.25 Let F : X → R∞. Then F∗ is convex.

Proof:
Let v , w ∈ X∗ and λ ∈ [0, 1].

F∗
(
λv + (1 − λ)w)

� sup
u∈X

(〈λv + (1 − λ)w , u〉 − F(u))
� sup

u∈X

(
λ 〈v , u〉 + (1 − λ) 〈w , u〉 − F(u))

� sup
u∈X

(
λ 〈v , u〉 − λF(u) + (1 − λ) 〈w , u〉 − (1 − λ)F(u))

≤ sup
u ,û∈X

(
λ 〈v , u〉 − λF(u) + (1 − λ) 〈w , û〉 − (1 − λ)F(û))

� λ sup
u∈X

(〈v , u〉 − F(u)) + (1 − λ) sup
û∈X

(〈w , û〉 − F(û))
� λF∗(v) + (1 − λ)F∗(w) �

Lemma 6.26 Let F : X → R∞ be proper.

G(u) � λF(u) with λ > 0 ⇒ G∗(w) � λF∗
(w
λ

)
(6.13)

G(u) � F(u − û) with û ∈ X ⇒ G∗(w) � F∗(w) − 〈w , û〉 (6.14)

Proof:
These are special cases of lemma 6.65 in [4]. �

Lemma 6.27 Let F : X → R∞ be proper, convex and lower semi-continuous. For x ∈ X,
x∗ ∈ X∗ it holds

x∗ ∈ ∂F(x) ⇔ x ∈ ∂F∗(x).
Proof:
For a proof see [14]. �
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Lemma 6.28 (Moreau decomposition) Let F : X → R∞ be proper, convex, lower semi-
continuous and let σ > 0. For every u ∈ X it holds

u � proxσ,F(u) + σ · prox 1
σ ,F
∗

(u
σ

)
. (6.15)

Proof:
The proof for the case X � Rd and σ � 1 can be found in [15]. For the sake of
completeness, we prove the lemma for a Banach space X and also start with the case
σ � 1.

x � prox1,F(u)

⇔ x � arg min
v∈X

‖v − u‖2
2 + F(v)

⇔ 0 ∈ (x − u) + ∂F(x) (“Classical” optimization and theorem 6.19)
⇔ (u − x) ∈ ∂F(x)
⇔ x ∈ ∂F∗(u − x) (Lemma 6.27)
⇔ u − (u − x) ∈ ∂F∗(u − x)
⇔ u − x � prox1,F∗(u) (Same argumentation using theorem 6.19 as above)

And inserting the first in the last equation shows

u � prox1,F(u) + prox1,F∗(u). (6.16)

We obtain the general case with σ > 0 by inserting σF in equation (6.16):

u � prox1,σF(u) + prox1,(σF)∗(u)
⇔ u � proxσ,F(u) + prox1,(σF)∗(u)

⇔ u � proxσ,F(u) + arg min
v∈X

‖v − u‖2
2 + (σF)∗(v)

⇔ u � proxσ,F(u) + arg min
v∈X

‖v − u‖2
2 + σF∗

( v
σ

)
(Equation (6.13))

⇔ u � proxσ,F(u) + σ · arg min
v∈X

‖σv − u‖2
2 + σF∗ (v)

⇔ u � proxσ,F(u) + σ · arg min
v∈X

σ2‖v − u
σ ‖2

2 + σF∗ (v)

(Factor σ > 0 does not change minimizing argument)

⇔ u � proxσ,F(u) + σ · arg min
v∈X

σ‖v − u
σ ‖2

2 + F∗ (v)

⇔ u � proxσ,F(u) + σ · prox 1
σ ,F
∗

(u
σ

)
�
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Remark 6.29 If F � F∗∗, equation (6.15) also holds with F and F∗∗ swapped:

u � proxσ,F∗(u) + σprox 1
σ ,F

(u
σ

)
Theorem 6.30 (Fenchel-Rockafellar duality, theorem 6.68 in [4]) Let F : X → R∞ and
G : Y → R∞ be proper, convex, lower semi-continuous and let A : X → Y be a linear
operator. Further, assume there is ū ∈ X such that

ū � arg min
u∈X

F(u) + G(Au).

If there is an u0 ∈ X such that F(u0) < ∞, G(Au0) < ∞ and such that G is continuous in
Au0. Then

max
w∈Y∗
−F∗(−A∗w) − G∗(w) � min

u∈X
F(u) + G(Au). (6.17)

Definition 6.31 (Dual problem) The optimization problem to find w̄ ∈ Y∗ such that

w̄ � arg max
w∈Y∗

−F∗(−A∗w) − G∗(w) (6.18)

is called dual problem to the primal problem (6.11). The task to find (ū , w̄) ∈ X × Y∗ such
that ū solves the primal problem (6.11) and w̄ solves the dual problem (6.18) is called
primal-dual problem.

The dual problem has nice properties. By lemma 6.25, we know that F∗ and G∗ are
convex even if F and G are not. We call a functional J concave if −J is convex and since −F∗

and −G∗ are concave, the dual problem (6.18) is always concave. The theory of convex
minimization may be applied to concave maximization analogously and therefore it might
be easier to solve the dual problem than the primal problem. In addition, theorem 6.30
describes a correspondence between the primal problemwe intend to solve and the related
dual problem.
Unfortunately, equation (6.17) describes a correspondence between the optimal values,

not between the optimal arguments we are interested in. The duality concept will still turn
out to be useful.

Definition 6.32 The functional L : dom F × dom G∗ → Rwith

L(u , w) B 〈w ,Au〉 + F(u) − G∗(w)

is called the Lagrange-functional of F,G and A.
(û , ŵ) ∈ dom F × dom G∗ is called saddle-point of L, if for all (u , w) ∈ dom F × dom G∗

L (û , w) ≤ L (û , ŵ) ≤ L (u , ŵ) .
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Theorem 6.33 (ū , w̄) ∈ X × Y∗ is a solution to the primal-dual problem if and only if it is
a saddle-point of the Lagrange-functional of F and G.

Proof:
Let (ū , w̄) ∈ X × Y∗ solve the primal-dual problem. Then ū ∈ dom F and w̄ ∈ dom G∗

because otherwise the minimum in the primal problem and respectively the maximum
in the dual problem would not be attained. It further holds

L (ū , w̄) ≤ sup
w∈Y∗

L (ū , w)

� sup
w∈Y∗

(〈w ,Aū〉 + F(ū) − G∗(w))
≤ sup

w∈Y∗

(
G(Aū) + G∗(w) + F(ū) − G∗(w)) (Fenchel-inequality (6.12))

� F(ū) + G(Aū)
� −F∗(−A∗w̄) − G∗(w̄) (Assumption)
� −(F∗(−A∗w̄) + G∗(w̄))
� − sup

u∈X

(〈−A∗w̄ , u〉 − F(u) + G∗(w̄)) (Definition 6.24 Fenchel-conjugate)

� inf
u∈X

(〈w̄ ,Au〉 + F(u) − G∗(w̄))
� inf

u∈X
L (u , w̄) ≤ L (ū , w̄)

And, comparing the first and last line, in summary

sup
w∈Y∗

L(ū , w) � L(ū , w̄) � inf
u∈X

L(u , w̄)

and (ū , w̄) is a saddle-point of the Lagrange-functional.

Now let (ū , w̄) be a saddle-point of the Lagrange-functional. Then

L (ū , w̄) � sup
w∈Y∗

L(ū , w)

� F(ū) + sup
w∈Y∗

(〈w ,Aū〉 − G∗(w))
� F(ū) + G∗∗(Aū) � F(ū) + G(Aū)
� inf

u∈X
L(u , w̄) (because (ū , w̄) is a saddle-point)

� −F∗(−A∗w̄) − G∗(w̄) �

By theorem 6.33, instead of finding a minimizer of the primal-problem we may instead
compute a saddle-point of the Lagrange-functional. At first glance, this might seem
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unprofitable: instead of solving the primal problem with respect to u, we define a second
problem with respect to w and couple both problems via the Lagrange-functional.

This concept turns out to be very useful, as the saddle-point may be derived by two
fixed-point iterations. These iterations are coupled: when computing un+1, besides un

also wn is used and respectively for computing wn+1 also un is used.

6.5. Primal-Dual Algorithms

From now on

• let X,Y be finite Hilbert spaces over R,
• let F : X → R∞ and G : Y → R∞ be proper, convex and lower semi-continuous,
• assume there exists a solution ū ∈ X to the primal problem (6.11),
• assume given σ, τ > 0, the proximal operators proxτ,F and proxσ,G∗ are computable,

that is the optimization problem in definition 6.20 may be solved analytically,
• for the linear operator A : X → Y let K B ‖A‖ and assume the adjoint operator A∗

is computable,
• assume there is a u0 ∈ dom F such that Au0 ∈ dom G and G is continuous in Au0.

The Fenchel-conjugate for a proper F : X → R∞ then becomes

F∗ : X → R∞
F∗(w) � sup

u∈X
(w , u) − F(u).

To compute a saddle-point of the Lagrange functional L : dom F × dom G∗ → R, we have
to minimize L with respect to u ∈ X and maximize L with respect to w ∈ Y. For the sake
of clarity let

Lŵ : dom F→ R Lû : dom G∗ → R
Lŵ(u) B L(u , ŵ) Lû(w) B L(û , w)

If F and G∗ are convex, then also Lŵ and −Lû are convex. Let σ, τ > 0.
Minimization of Lŵ :

ū � arg min
u∈X

Lŵ(u) ⇔ 0 ∈ ∂Lŵ(ū)

⇔ ū ∈ ū + τ∂Lŵ(ū)
⇔ ū ∈ (id + τ∂Lŵ) (ū)
⇔ ū ∈ (id + τ∂Lŵ)−1 (ū)
⇔ ū � proxτ,Lŵ

(ū) (Lemma 6.22)
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proxτ,Lŵ
may be expressed in terms of proxτ,F by using lemma 6.23:

proxτ,Lŵ
(ū)

� proxτ,H1
(ū) with H1 �

(
ŵ ,A( · )) + F( · ) − G∗(ŵ)

� proxτ,H2
(ū) with H2 � (A∗ŵ , ·) + F( · )

� proxτ,F(u − τA∗ŵ)
Maximizing Lû is equivalent to minimizing −Lû and analog transformations yield

w̄ � arg min
w∈Y

−Lû(w) ⇔ w̄ � proxσ,−Lû
(w̄)

and by application of lemma 6.23

proxσ,−Lû
(w) � proxσ,G∗(w + σAû).

In summary, we derive the coupled fixed-point equations{
ū � proxτ,F(ū − τA∗ŵ)
w̄� proxσ,G∗(w̄ + σAû) (6.19)

In [5], Antonin Chambolle and Thomas Pock present and analyze algorithms 3 to 5.
These algorithms to solve the fixed-point equations (6.19) are called primal-dual algorithms.
Algorithm 3 may be used for problems fulfilling the requirements listed at the beginning
of this section. If in addition F is strongly convex with parameter γ > 0, the accelerated
algorithm 4 may be used. If F is strongly convex with parameter γ > 0 and G∗ is strongly
convex with parameter δ > 0, the even faster algorithm 5 may be used.
We will stop the iteration when the stopping criterion G (

uk+1 , uk , wk+1 , wk ) < ε is
fulfilled. Possible criteria are

• the difference between the values of the primal and dual problem, the so called
duality gap:

G
(
uk+1 , uk ,wk+1 , wk

)
� F(uk+1) + G(Auk+1) + F∗(−A∗wk+1) + G∗(wk+1),

• the difference of the primal iteratives:

G
(
uk+1 , uk , wk+1 , wk

)
� ‖uk+1 − uk ‖ ,

• a combination of the differences of the primal and dual iteratives:

G
(
uk+1 , uk , wk+1 , wk

)
� η1‖uk+1 − uk ‖ + η2‖wk+1 − wk ‖ ,

with η1 , η2 > 0.

A proof for the convergence of these algorithms and further analysis can be found in [5].
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Algorithm 3

1: Initialize: σ, τ > 0, Θ ∈ [0, 1], (u0 , w0) ∈ X × Y, û0 � u0, ε > 0
2: for k � 0, 1, 2 . . . do
3: wk+1 ← proxσ,G∗

(
wk + σAûk )

4: uk+1 ← proxτ,F
(
uk − τA∗wk+1)

5: ûk+1 ← uk+1 +Θ
(
uk+1 − uk )

6: if G (
uk+1 , uk , wk+1 , wk ) < ε then

7: break
8: end if
9: end for

Algorithm 4

1: Initialize: σ0 , τ0 > 0, σ0τ0K2 ≤ 1,
(
u0 , w0) ∈ X × Y, û0 � u0, ε > 0

2: for k � 0, 1, 2 . . . do
3: wk+1 ← proxσn ,G∗

(
wk + σnAûk )

4: uk+1 ← proxτn ,F
(
uk − τnA∗wk+1)

5: Θn ← 1/√1 + 2γτn

6: τn+1 ← Θnτn

7: σn+1 ← σn/Θn

8: ûk+1 ← uk+1 +Θn
(
uk+1 − uk )

9: if G (
uk+1 , uk , wk+1 , wk ) < ε then

10: break
11: end if
12: end for

Algorithm 5

1: Initialize: Choose µ ≤ 2
√
γδ/K, let τ � µ(2γ), σ � µ/(2δ), Θ ∈ [(1 + µ

)−1
, 1],(

u0 , w0) ∈ X × Y, û � u0, ε > 0
2: for k � 0, 1, 2 . . . do
3: wk+1 ← proxσ,G∗

(
wk + σAûk )

4: uk+1 ← proxτ,F
(
uk − τA∗wk+1)

5: ûk+1 ← uk+1 +Θ
(
uk+1 − uk )

6: if G (
uk+1 , uk , wk+1 , wk ) < ε then

7: break
8: end if
9: end for





Chapter 7.

The Fast Mumford-Shah Approach

The idea of the Fast Mumford-Shah approach (presented in [18]) is to describe the edge
set K in terms of the gradient of u: When the norm of the gradient is small at x ∈ Ω,
then around x there is probably a small brightness or color variation inside a region. If
on the other hand the norm of the gradient at x is large, there is a significant brightness
and/or color change around x, it probably lies on the border between different regions
and consequently x ∈ K.
To define a functional using this pointwise properties is easier in the discrete than in

the continuous setting, and since we would have to the discretize the functional for the
numerical implementation anyways, we follow the original [18] and use a discrete setting
from the beginning.

7.1. Discrete Setting

The most general case we will consider are images on a three-dimensional domain
into a c-dimensional color space, and we might represent these images as elements of
X � Rd1×d2×d3×c with d1 , d2 ≥ 2, d3 , c ≥ 1. The image domain is three-dimensional, if
d3 > 1 and two-dimensional, if d3 � 1. To be able to define partial derivatives for all
dimensions, we also define the space Y � Rd1×d2×d3×c×nd , with nd � 2 for two-dimensional
and nd � 3 for three-dimensional images.

For the sake of clarity, let

S B {(i , j, k) : i ∈ {1, . . . , d1} , j ∈ {1, . . . , d2} , k ∈ {1, . . . , d3}
}

and for s ∈ S let

Xs B
{

ui , j,k ,l ∈ X : s �
(
i , j, k

)
, l ∈ {1, . . . , c}}

Ys B
{

wi , j,k ,l ,m ∈ Y : s �
(
i , j, k

)
, l ∈ {1, . . . , c} ,m ∈ {1, . . . , nd}

}
.

For the rest of this chapter, all norms on X, Y, Xs and Ys are the respective Frobenius
norm, and we identify X � Rd1·d2·d3·c , Y � Rd1·d2·d3·c·nd , Xs � Rc and Ys � Rc·nd .

57



58 Chapter 7. The Fast Mumford-Shah Approach

Definition 7.1 We define the following finite difference operators:

For u ∈ Rd1×d2×d3×c and for t � 1, 2, 3 we define the forward finite difference operators ∂t

with ∂t u ∈ Rd1×d2×d3×c as

(∂1u)i , j,k ,l B
{

ui+1, j,k ,l − ui , j,k ,l i < d1

0 otherwise
(7.1)

(∂2u)i , j,k ,l B
{

ui , j+1,k ,l − ui , j,k ,l j < d2

0 otherwise
(7.2)

(∂3u)i , j,k ,l B
{

ui , j,k+1,l − ui , j,k ,l k < d3

0 otherwise.
(7.3)

For w ∈ Rd1×d2×d3×c×nd and for t � 1, 2, 3 we define the backward finite difference operators
∂−t with ∂−t w ∈ Rd1×d2×d3×c as

(
∂−1 w

)
i , j,k ,l B


w1, j,k ,l ,1 i � 1
wi , j,k ,l ,1 − wi−1, j,k ,l ,1 1 < i < d1

−wd1−1, j,k ,l ,1 i � d1

(7.4)

(
∂−2 w

)
i , j,k ,l B


wi ,1,k ,l ,2 j � 1
wi , j,k ,l ,2 − wi , j−1,k ,l ,2 1 < j < d2

−wi ,d2−1,k ,l ,2 j � d2

(7.5)

(
∂−3 w

)
i , j,k ,l B


wi , j,1,l ,3 k � 1
wi , j,k ,l ,3 − wi , j,k−1,l ,3 1 < k < d3

−wi , j,d3−1,l ,3 k � d3.

(7.6)

Definition 7.2 (Discrete Gradient) For u ∈ Rd1×d2×d3×c , the discrete gradient is defined
as

∇u B

{
(∂t u)1≤t≤2 ∈ Rd1×d2×1×c×2 d3 � 1
(∂t u)1≤t≤3 ∈ Rd1×d2×d3×c×3 d3 > 1.

Definition 7.3 (Discrete Divergence) For w ∈ Rd1×d2×d3×c×nd , the discrete divergence is
defined as

div w B

nd∑
t�1

∂−t w ∈ Rd1×d2×d3×c .
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Lemma 7.4 (Generalization of lemma 6.142 in [4]) The linear operator

∇ : Rd1×d2×d3×c → Rd1×d2×d3×c×nd

has the following properties:

∇∗ � −div and ‖∇‖2 ≤ 4nd .

Proof:
We start with the adjoint operator. Let u ∈ Rd1×d2×d3×c , w ∈ Rd1×d2×d3×c×nd and let
wt �

(
wi jklm

) ∈ Rd1×d2×d3×c where m � t is fixed. We first observe

(
∂1u ,w1)

Rd1×d2×d3×c

�

d1−1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1

(
ui+1, j,k ,l − ui , j,k ,l

)
wi , j,k ,l ,1

�

d2∑
j�1

d3∑
k�1

c∑
l�1

(
d1−1∑
i�1

(
ui+1, j,k ,l wi , j,k ,l ,1

) − d1−1∑
i�1

(
ui , j,k ,l wi , j,k ,l ,1

))
�

d2∑
j�1

d3∑
k�1

c∑
l�1

(
d1∑

i�2

(
ui , j,k ,l wi−1, j,k ,l ,1

) − d1−1∑
i�1

(
ui , j,k ,l wi , j,k ,l ,1

))
�

d2∑
j�1

d3∑
k�1

c∑
l�1

(
−w1, j,k ,l ,1u1, j,k ,l +

d1−1∑
i�2

( (
wi−1, j,k ,l ,1 − wi , j,k ,l ,1

)
ui , j,k ,l

)
+ wd1−1, j,k ,l ,1ud1 , j,k ,l

)
�

d1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1
−(∂−1 w

)
i , j,k ,l ui , j,k ,l .

Analog transformations on j and k yield the following expressions for
(
∂2u , w2) and(

∂3u ,w3) :
(
∂2u , w2)

�

d1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1
−(∂−2 w

)
i , j,k ,l ui , j,k ,l

(
∂3u , w3)

�

d1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1
−(∂−3 w

)
i , j,k ,l ui , j,k ,l
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Now we may conclude

(∇u , w)Rd1×d2×d3×c×nd �

nd∑
t�1

(
∂t u , wt )

Rd1×d2×d3×c

�

nd∑
t�1

d1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1
−(∂−t w

)
i , j,k ,l ui , j,k ,l

� (u ,−div w)Rd1×d2×d3×c

and consequently ∇∗ � −div .
Next, we prove that ‖∇‖2 ≤ 4nd by showing that ‖∇u‖2 ≤ 4nd if ‖u‖ � 1. For

u ∈ Rd1×d2×d3×c with ‖u‖ � 1 it holds

−
d1−1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1

ui+1, j,k ,l ui , j,k ,l < 1, (7.7)

−
d1∑

i�1

d2−1∑
j�1

d3∑
k�1

c∑
l�1

u, j+1,k ,l ui , j,k ,l < 1, (7.8)

−
d1∑

i�1

d2∑
j�1

d3−1∑
k�1

c∑
l�1

u, j,k+1,l ui , j,k ,l < 1. (7.9)

Assume the first of these inequalities does not hold and let wi , j,k ,l � −ui+1, j,k ,l for i < d1,
j ≤ d2, k ≤ d3, l ≤ c and wd1 , j,k ,l � 0. Then, by assumption,

d1−1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1

wi , j,k ,l ui , j,k ,l � (w , u) ≥ 1.

On the other hand, by construction ‖w‖ ≤ ‖u‖ � 1 and with the Cauchy-Schwarz
inequality

(w , u) ≤ ‖w‖‖u‖ ≤ 1, (7.10)

and in consequence (w , u) � 1. Now (7.10) holds with equality and therefore either
w � u or w � −u, where the latter can be rejected because of (w , u) � 1. It further
holds by recursion along i < d1 and for j ≤ d2, k ≤ d3 and l ≤ c

0 � wd1 , j,k ,l � ud1 , j,k ,l � −ud1−1, j,k ,l � (−1)i ui , j,k ,l .

The above means u � 0, a contradiction to ‖u‖ � 1 and inequality (7.7) holds. The
inequalities (7.8) and (7.9) can be proved under analogous argumentation.
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Now, for ‖u‖ � 1, we consider

‖∇u‖2 �

d1−1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1

(
ui+1, j,k ,l − ui , j,k ,l

)2

+

d1∑
i�1

d2−1∑
j�1

d3∑
k�1

c∑
l�1

(
ui , j+1,k ,l − ui , j,k ,l

)2

+

d1∑
i�1

d2∑
j�1

d3−1∑
k�1

c∑
l�1

(
ui , j,k+1,l − ui , j,k ,l

)2

︸                                       ︷︷                                       ︸
�0 if d3�1⇔nd�2

�

d1−1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1

u2
i+1, j,k ,l − 2ui+1, j,k ,l ui , j,k ,l + u2

i , j,k ,l

+

d1∑
i�1

d2−1∑
j�1

d3∑
k�1

c∑
l�1

u2
i , j+1,k ,l − 2ui , j+1,k ,l ui , j,k ,l + u2

i , j,k ,l

+

d1∑
i�1

d2∑
j�1

d3−1∑
k�1

c∑
l�1

u2
i , j,k+1,l − 2ui , j,k+1,l ui , j,k ,l + u2

i , j,k ,l︸                                                           ︷︷                                                           ︸
�0 if nd�2

.

For now let nd � 2. We split the sums and group the quadratic and non-quadratic
terms, where for the quadratic terms we add the summands for i � d1 and j � d2
respectively:

‖∇u‖2 ≤ 4 ©«
d1∑

i�1

d2∑
j�1

d3∑
k�1

c∑
l1

u2
i , j,k ,l

ª®¬︸                       ︷︷                       ︸
�1

+ 2 ©«−
d1−1∑
i�1

d2∑
j�1

d3∑
k�1

c∑
l�1

ui+1, j,k ,l ui , j,k ,l
ª®¬︸                                     ︷︷                                     ︸

<1 by inequality (7.7)

+ 2 ©«−
d1−1∑
i�1

d2−1∑
j�1

d3∑
k�1

c∑
l�1

ui , j+1,k ,l ui , j,k ,l
ª®¬︸                                      ︷︷                                      ︸

<1 by inequality (7.8)

< 4 + 2 + 2 � 8 � 4nd .
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For nd � 3 with the additional terms from above, analogous argumentation results in

‖∇u‖2 ≤ 6 + 2 + 2 + 2 � 12 � 4nd . �

7.2. The Fast Mumford-Shah Functional

Similar to the original Mumford-Shah functional, we define the data-term F : X → R as

F(u) � ‖u − f ‖2.

Instead of using two regularizers, we use the combination G : Y → R with parameters
α, λ > 0,

G(w) �
∑
s∈S

Gs(ws) Gs(ws) � min
(
α‖ws ‖2 , λ

)
.

With A � ∇ : X → Y, we define the Fast Mumford-Shah functional FFMS : X → R as

FFMS(u) B ‖u − f ‖2 + G(∇u). (7.11)

This means that if ‖(∇u)s ‖ at a point s ∈ S is smaller than
√
λ/α, we assume that at s there

is a small brightness or color variation within a region, and we penalize this variation in
equation (7.11) with the factor α > 0.

If on the other hand ‖(∇u)s ‖ ≥
√
λ/α, we assume that at s is a border between different

regions which we penalize with λ > 0. We especially obtain the set K as

K B

{
s ∈ S : ‖(∇u)s ‖ ≥

√
λ
α

}
.

Increasing λ will result in a higher penalty for the border between regions and
consequently in the optimal solution this border will get shorter and the number of
regions decreases.

Increasing αwill result in a higher penalty for variation inside a region and consequently
the optimal solution will get smoother inside every region. Note that K is defined in terms
of α, so changing α will also have an effect on K.

In the limit case α→∞we get

lim
α→∞Gs(ws) � lim

α→∞min
(
α‖ws ‖2 , λ

)
�

{
λ if ‖ws ‖ , 0,
0 otherwise.

This means that every point at which the norm of the gradient is positive is a point in K,
the slightest brightness or color variation is considered to define an edge. Or, in other
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words, the resulting image is constant on every region, so for α→∞we obtain a piecewise
constant segmentation and for 0 < α < ∞ a piecewise smooth segmentation.

One apparent characteristic of this approach is the lacking possibility to fix the number
of regions in the segmentation. While α, λ have an influence on this number (the higher
λ/α the lower the number of regions), it is almost impossible to select them in such a way
that the output will contain exactly k regions. This drawback can be evened out by the
combination of Fast Mumford-Shah with other segmentation methods, see chapter 8.

7.3. Primal-dual Optimization Algorithm

Requirements

To minimize the Fast Mumford-Shah functional (7.11), we use the framework described in
chapter 6.

According to lemmata 6.6 and 6.8, the data term

F(u) � ‖u − f ‖2

is strongly convex with parameter γ � 2, so we are able to use the accelerated algorithm 4.
The combined regularizer G on the other hand is not strongly convex. In fact, it

is not even convex, see figure 7.1. The theory in chapter 6 is only guaranteed to work

λ

Figure 7.1.: G(u) � min
(
α |u |2 , λ) is not convex

in the case where F,G both are convex, but we did not state that it would fail for a
non-convex G. It turns out that it works well and changes to α and λ result in the expected
effects (see section 7.5). Note that in algorithms 3 to 5, G itself does not appear, only its
Fenchel-conjugate G∗, which according to lemma 6.25 is convex.

We check the remaining requirements of section 6.5:

• X, Y are finite Hilbert spaces over R.
• F, G are proper, dom F � X, dom G � Y and continuous on X and Y respectively.
• The direct method (remark 6.10) shows that there exists a solution:
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1. FFMS is non-negative and therefore bounded from below, so there exists a
minimizing sequence.

2. For ‖un ‖ → ∞ it holds F(un) → ∞ and G(un) ≥ 0, so consequently FFMS →∞
and FFMS is coercive. This means that the minimizing sequence from step 1 has
to be bounded and by the Bolzano-Weierstraß theorem, there is a converging
subsequence.

3. FFMS is continuous and especially lower semi-continuous.

• We will see below that we are able to compute the proximal operators proxτ,F and
proxσ,G∗ .

• For A � ∇, by lemma 7.4 we have an estimate ‖∇‖ ≤ 4nd .

The proximal operators

The proximal operator of F : X � Rd1×d2×d3×c → Rwith F(u) � ‖u − f ‖2 can be derived as

proxτ,F(u) � arg min
v∈X

( ‖v − u‖2
2τ + F(v)

)
� arg min

v∈X

( ‖v − u‖2
2τ + ‖v − f ‖2

)
.

This expression is strictly convex with respect to v and setting the derivative to zero yields

0 �
(v̄ − u)
τ

+ 2(v̄ − f ) ⇒ v̄ �
u + 2τ f
1 + 2τ

and in conclusion

proxτ,F(u) �
u + 2τ f
1 + 2τ . (7.12)

Deriving the proximal operator proxσ,G∗ is more involved. We will determine the
proximal operator of G : Y � Rd1×d2×d3×c×nd → Rwith

G(w) �
∑
s∈S

Gs (ws), Gs(ws) � min
(
α‖ps ‖2 , λ

)
,

and then use the Moreau decomposition to get the proximal operator of G∗. We at first
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observe that

proxσ,G(w) � arg min
y∈Y

‖y − w‖2
2σ + G(y)

� arg min
y∈Y

‖y − w‖2
2σ +

∑
s∈S

min
(
α‖ys ‖2 , λ

)
� arg min

y∈Y

∑
s∈S

( ‖ys − ws ‖2
2σ + min

(
α‖ys ‖2 , λ

) )
� arg min

y∈Y

∑
s∈S

proxσ,Gs
(ws),

which enables us to derive ys for every s ∈ S and then reconstruct y by combining the ys .
To avoid indices, let q B ws .

proxσ,Gs
(q) � arg min

ys∈Rc×d

( ‖ys − q‖2
2σ + min

(
α‖ys ‖2 , λ

) )
This minimization problem can be transformed into an one-dimensional problem, see
figure 7.2.

min
ys∈Rc×d

( ‖ys − q‖2
2σ + min

(
α‖ys ‖2 , λ

) )
(7.13)

� min
ξ∈R

©«
ξ q
‖q‖ − q

2

2σ + min

(
α

ξ q
‖q‖

2
, λ

)ª®®¬
� min

ξ∈R
©«
(
ξ
‖q‖ − 1

)2
‖q‖2

2σ + min
(
αξ2 , λ

)ª®®¬
� min

ξ∈R

(
1

2σ ξ
2 − ‖q‖

σ
ξ +
‖q‖2
2σ + min

(
αξ2 , λ

) )
� min

ξ∈R
(

f1 (ξ) , f2 (ξ)
)
,

with

f1(ξ) �
(

1
2σ + α

)
ξ2 − ‖q‖

σ
ξ +
‖q‖2
2σ (7.14)

f2(ξ) � 1
2σ ξ

2 − ‖q‖
σ
ξ +
‖q‖2
2σ + λ. (7.15)
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0
q
‖q‖ ȳs � ξ

q
‖q‖ q

ys

ξ

Figure 7.2.: Given any ys ∈ Rc×d with norm δ � ‖ys ‖, all points ŷs on the sphere with
radius ξ will result in the same value of min

(
α‖ ŷs ‖ , λ

)
. But the point ȳs on

that sphere that also lies on the line through 0 and q will minimize the first
summand in equation (7.13). It is therefore sufficient to search the optimal ys

along the line through 0 and q.

Both f1 , f2 are quadratic and strictly convex in ξ and the respective minimizers ξ1 , ξ2
may be computed as

∂
∂ξ

f1(ξ) �
(

1
σ
+ 2α

)
ξ − ‖q‖

σ
!
� 0 ⇒ ξ1 �

‖q‖
1 + 2σα (7.16)

∂
∂ξ

f2(ξ) � 1
σ
ξ − ‖q‖

σ
!
� 0 ⇒ ξ2 � ‖q‖. (7.17)

Inserting ξ1 , ξ2 in equations (7.14) and (7.15) yields

min
ξ∈R

f1(ξ) �
(

1
2σ + α

) ‖q‖2
(1 + 2σα)2

− ‖q‖2
σ (1 + 2σα) +

‖q‖2
2σ

�
(1 + 2σα) ‖q‖2
2σ(1 + 2σα)2

− 2‖q‖2
2σ(1 + 2σα) +

(1 + 2σα)‖q‖2
2σ(1 + 2σα)

�
‖q‖2 − 2‖q‖2 + ‖q‖2 + 2σα‖q‖2

2σ(1 + 2σα) �
α‖q‖2

1 + 2σα (7.18)

min
ξ∈R

f2(ξ) � ‖q‖
2

2σ −
‖q‖2
σ

+
‖q‖2
2σ + λ � λ. (7.19)

It remains to compute

min
(
min
ξ∈R

f1(ξ),min
ξ∈R

f2(ξ)
)
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by comparing equations (7.18) and (7.19). σ, α and λ are fixed, but whether the expression
in equation (7.18) or in equation (7.19) is smaller depends on ‖q‖ � ‖ps ‖:

α‖q‖2
1 + 2σα ≤ λ ⇔ ‖q‖ ≤

√
λ
α
(1 + 2σα) . (7.20)

Using ys � ξ · q/‖q‖, ξ1 , ξ2 from equations (7.16) and (7.17) and the result from equa-
tion (7.20), we conclude

proxσ,G(w) �


1
1+2σαw if ‖w‖ ≤

√
λ
α (1 + 2σα),

w otherwise.
(7.21)

Now we are able to determine proxσ,G∗s . Let σ′ � σ−1, w′ � σ′w. Then, by Moreau
decomposition (lemma 6.28 and remark 6.29),

proxσ,G∗s (w) � w − σproxσ′,Gs
(w′)

� w − σ ·


1
1+2σ′αw′ ‖w′‖ ≤

√
λ
α (1 + 2σ′α),

w′ otherwise,

� w − σ ·


1
1+2σ′ασ

′w ‖σ′w‖ ≤
√
λ
α (1 + 2σ′α),

σ′w otherwise,

�


(
1 − 1

1+2σ′α
)

w ‖w‖ ≤
√

λ
σ′2α (1 + 2σ′α),

0 otherwise,

�


1+2σ′α−1

1+2σ′α w ‖w‖ ≤
√

λ
σ′α ( 1

σ′ + 2α),
0 otherwise,

�


2α
σ+2αw ‖w‖ ≤

√
λσ
α (σ + 2α),

0 otherwise.
(7.22)

The Algorithm

Using the proximal operators above, ‖∇‖ ≤ 4nd and that F is strongly convex with
parameter γ � 2, we are now able to reformulate algorithm 4 to minimize the Fast
Mumford-Shah functional and obtain algorithm 6. In [18], the authors show that
algorithm 6 always terminates, that is

‖uk+1 − uk ‖ → 0 as k →∞,
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although with the methods of chapter 6 we can not guarantee that uk converges to a
minimizer. However, practical experiments show that the results depend on α, λ as one
would expect.

Algorithm 6 Fast Mumford-Shah Segmentation
1: Initialize: Input image f ∈ X, parameters 0 < α ≤ ∞ and 0 < λ < ∞, σ0 � 1/2nd and
τ0 � 1/2, u0 � f , w0 � 0, û0 � u0, ε > 0

2: for k � 0, 1, 2 . . . do
3: w̃k+1 ← wk + σn∇ûk

4: for s ∈ S do

5: wk+1
s ←


2α

σn+2α w̃k+1
s if ‖w̃k+1

s ‖ ≤
√
λ
α σn(σn + 2α)

0 otherwise
6: end for
7: ũ � uk + τndiv wn+1

8: uk+1 �
(
ũ + 2τn f

) /(1 + 2τn)
9: Θn ← 1/√1 + 4τn

10: τn+1 ← Θnτn

11: σn+1 ← σn/Θn

12: ûk+1 ← uk+1 +Θn
(
uk+1 − uk )

13: if ‖uk+1 − uk ‖ < ε then
14: break
15: end if
16: end for

7.4. Parallel Implementation using OpenACC

When implementing algorithm 6, one will quickly run into the problem of long runtimes.
An implementation in MATLAB is only applicable when the input image is small, and for
larger images even an efficient implementation in C could result in a runtime of several
days1.

However, algorithm 6 is efficiently parallelizable: As explicitly stated in the algorithm,
for every s ∈ S the local component ws is updated and w is obtained by the combination
of the ws . For every s ∈ S, the computation of ws can be done in parallel. Although not
explicitly stated in the algorithm, the primal variable u may be updated in the same way.

A relatively new, but already very powerful parallel programming model is OpenACC2.

1RGB image with 7132 × 3808 pixels, serial execution on a 3,4 GHz processor with a tolerance ε � 10−4.
2https://www.openacc.org

https://www.openacc.org
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In this model, sections in the code are marked with the so called directives. An OpenACC
capable compiler (for example the pgcc3 compiler) will then interpret and use these
directives, while a not capable compiler will ignore them. So even with the OpenACC
directives, the program still consists of valid C code that requires no special compiler or
parallel computing environment.

When using the pgcc compiler, the execution target can be chosen flexibly. It is possible
to compile for either the central processing unit (short CPU, also called the host) or for a
graphics processing unit (short GPU, also called the device) by using the following flags in
the compilation command:

-ta=host will compile for serial execution on the host,
-ta=multicore will compile for parallel execution on the host,
-acc -ta=tesla will compile for parallel execution on a Tesla device.

First, we consider a simple loop that can be parallelized using the kernels construct,
the simplest OpenACC parallelization directive:

1 #pragma acc kernels

2 for(i=0;i<n;i++)
3 {

4 u[i] = i;

5 }

This directive (#pragma acc kernels) instructs the compiler to parallelize the following
loop, if that is possible. Compiling this loop with the -ta=multicore flag gives the
following result:

2, Loop is parallelizable

Generating Multicore code

2, #pragma acc loop gang

And compilation with the -acc -ta=tesla flag gives:

2, Loop is parallelizable

Accelerator kernel generated

Generating Tesla code

2, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

3https://www.pgroup.com

https://www.pgroup.com
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The compiler automatically recognized that the loop is parallelizable and createdmulticore
code for execution on the host or Tesla code for execution on the device respectively.
Now we consider the following, not parallelizable example:

1 #pragma acc kernels

2 for(i=1;i<n;i++)
3 {

4 u[i] = 2*u[i-1];

5 }

Compilation for multicore execution results in

2, Loop carried dependence of u-> prevents parallelization

Loop carried backward dependence of u-> prevents vectorization

and the compiler recognized that the loop is not parallelizable and consequently generated
no parallel code.
The loops arising when implementing algorithm 6 are more complicated. We have

to iterate over up to three dimensions and over the color channels. For an image
u ∈ Rd1×d2×d3×c , this results in loops of the following form:

1 for(l=0;l<c;l++)
2 {

3 for(k=0;k<d3;k++)
4 {

5 for(j=0;j<d2;j++)
6 {

7 for(i=0;i<d1;i++)
8 {

9 idx = l*d1*d2*d3 + k*d1*d2 + j*d1 + i;

10 u[idx] = /* ... */

11 }

12 }

13 }

14 }

When the loops are this deeply nested and the array indices are this complex, the compiler
is unable to recognize whether the loops are parallelizable or not. In this case, the kernels
construct is not applicable. Instead, we have to use the acc parallel loop independent
construct. With this construct, it lies in the responsibility of the programmer to ensure
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that the respective loop is parallelizable. If it is not, the compiler won’t recognize and
the program might not even crash during execution. Instead, the consequence will most
likely be false, time-dependent and not easily reproduceable program state.
The implementation of algorithm 6 can be found in fastms.c and consists essentially

of the following components:

• Anouter loop, often called convergence loop, that is executed as long as the termination
criterion ‖uk+1 − uk ‖ < ε is not fulfilled.

• The update of the dual variable. Here, for every dimension, every color channel and
every s ∈ S the discrete partial derivative has to be computed. This can be done in
parallel. Note that we do not store the gradient ∇ûk but combine its computation
and the update of w in one step.

• The update of the primal variable, which again can be done in parallel for every
dimension, color channel and s ∈ S and update of the scalar values τ, σ and Θ.

• The computation of ‖uk+1 − uk ‖, which also can be done in parallel. To reduce
computational cost, we only check this condition every 20 iteration steps.

When using OpenACC directive for the steps above, the following things have to be
kept in mind:

• OpenACC does not work with pointer arithmetic, so expressions like

1 for(i=0;i<n;i++)
2 {

3 *(u++) = i;

4 }

5 u -= n;

have to be replaced by

1 for(i=0;i<n;i++)
2 {

3 u[i] = i;

4 }

• When compiling for execution on theGPUdevice, memorymanagement is important.
Consider the case of an outer, convergence loop with an inner loop working on
some array, just marked with the #pragma acc parallel loop construct. The
computation time on the device might take longer than the serial execution on the
host. The reason is the data transfer between the host and the device. In every
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iteration, the whole array is copied from the host to the device, the computation is
done, and the updated array is copied back from the device to the host.
To avoid these time consuming transfers, OpenACC provides the data directives.
With these, the programmer can specify which data should be kept on the host and
which on the device. It is typically sufficient to copy the data to the device once,
perform all operations on the device and copy the data back after the convergence
loop is done.

• A reduction loop (a loop computing the sum or the maximum of all array entries, for
example) has to be marked explicitly with the reduction construct. This construct
takes the operator and the local variable that stores intermediate state as an argument.
The computation of ‖uk+1 − uk ‖, for example, is done as

1 #pragma acc parallel loop reduction(+:sum)

2 for(i=0;i<lmnc;i++)
3 {

4 sum += (u[i]-uOld[i])*(u[i]-uOld[i]);

5 }

6 normDiff = sqrt(sum);

Further information on OpenACC, its possibilities and “best practices” can be found in
[1, 12, 11].
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7.5. Results

The results of the Fast Mumford-Shah method when applied to the medical data can
be seen in figures 7.3 to 7.6, which for the sake of comparability are positioned on the
following, opposing pages.
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(a) Original (b) λ � 0.4 (c) λ � 0.8

(d) λ � 1.2 (e) λ � 1.6 (f) λ � 2.0

(g) λ � 2.4 (h) λ � 2.8 (i) λ � 8

Figure 7.3.: Piecewise constant segmentation of the histological image 1.4 with varying
parameter λ. Because the left and right half of the image are very similar, we
concentrate on the right half to ease the comparison. As one would expect,
with increasing λ the number of regions decreases.



7.5. Results 75

(a) α � 90

(b) Original (c) α � 30 (d) α � 60 (e) α � 90

(f) α � 120 (g) α � 150 (h) α � 180 (i) α � 210

Figure 7.4.: Piecewise smooth segmentation of the histological image 1.4 with varying
parameter α. We choose λ � 0.001α, such that λ/α and in consequence the set
K is constant. As one would expect, with increasing α the variation inside
each region decreases.
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(a) Original (b) Original (c) Original

(d) λ � 0.004 (e) λ � 0.004 (f) λ � 0.004

(g) λ � 0.008 (h) λ � 0.008 (i) λ � 0.008
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(j) λ � 0.012 (k) λ � 0.012 (l) λ � 0.012

(m) λ � 0.016 (n) λ � 0.016 (o) λ � 0.016

(p) λ � 0.020 (q) λ � 0.020 (r) λ � 0.020

Figure 7.5.: Piecewise constant segmentation of the magnetic resonance image 1.3
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(a) Original (b) λ � 0.001 (c) λ � 0.020

(d) Original (e) λ � 0.001 (f) λ � 0.020

Figure 7.6.: In the Mumford-Shah functional and the derived approximations, the para-
meters α, λ are typically set globally for the whole image. If an image contains
both fine and coarse structures, a difficulty to select the optimal parameters
may arise: λ � 0.001 is too small for (b), the segmentation is too coarse. For this
region of the image, λ � 0.02 works better, see (c). On the other hand, for finer
structures λ � 0.001 works better (see (e)) and the higher value of λ � 0.02
results in a loss of information, see (f). It could be promising to decompose
the image into several levels (for example by wavelet transformation) and
segment those levels independently or to use local parameters α(x) and λ(x).



Chapter 8.

Combination of Segmentation Methods and
Perspective

8.1. Fast Mumford-Shah and Thresholding

We already discussed that in the Fast Mumford-Shah method the number of regions can
only be controlled in a limited way. But the output contains many regions that have
a similar brightness, see also figure 8.2. This segmentation may be coarsened using
thresholding, where the number of regions can be explicitly specified. Two possible
results can be seen in figure 8.1.

(a) Three regions (including background),
λ � 2.51

(b) Four regions (including background),
λ � 1.35

Figure 8.1.: Thresholding after piecewise constant Fast Mumford-Shah Segmentation

79
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(a) Original (b) Original

(c) λ � 0.5 (d) λ � 0.5

(e) λ � 1.0 (f) λ � 1.0

(g) λ � 1.5 (h) λ � 1.5
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(i) λ � 2.0 (j) λ � 2.0

(k) λ � 2.5 (l) λ � 2.5

(m) λ � 3.0 (n) λ � 3.0

Figure 8.2.: On the left-hand side piecewise constant segmentations of the histological
image using the Fast Mumford-Shah method with different parameters λ. On
the right-hand side the respective histogram, where the bar corresponding to
the white background pixels is omitted and the maximum is normalized to
one. With increasing λ, the histograms show the development of gaps with
increasing size, so thresholding could be a promising next processing step.
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8.2. Verdict and Perspective

Besides thresholding, also the graph-based segmentation is a possible second processing
step after the Fast Mumford-Shah segmentation. As we saw in section 3.1, partitioning
a graph with n vertices by minimizing the normalized cut requires the computation
of an eigenvector of length n. If n � np is the number of points in Ω (the number of
pixels/voxels), with increasing image size this computation quickly becomes impossible.

The application of the piecewise constant version of the Fast Mumford-Shah method
yields a partition

Ω � Ω1 ∪ . . . ∪ Ωnr ,

where nr is much smaller than np . Now every region Ωi instead of every point x ∈ Ω
is considered to be a vertex in the graph, the resulting graph is much smaller and the
eigenvector computation becomes possible.
Like thresholding, this approach can be used to coarsen a piecewise constant Fast

Mumford-Shah segmentation. First experiments show that this idea is worth pursuing.
This combination could also be interesting for multicontrast (also called multiband)

segmentation: Given are several images of the same scene or object, each highlighting a
special area or emphasizing differences between certain areas, see also figure 8.3. The task
is to create one segmented version of these images.

(a) (b) (c)

Figure 8.3.: Only (a) contains the square, only (b) highlights the difference between the
two circles, only (c) contains the rhombus/rotated square. The task is to create
one image, containing both squares within the same region, the lower circle
also in that region and the upper circle in a different region.

Given those c images fi : Ω→ R, i ∈ {1, . . . , c}, let f � ( f1 , . . . , fc) : Ω→ Rc be their
combination. Instead of c images mapping to a one-dimensional color space, we now
have one image mapping to a c-dimensional color space. Using the piecewise constant
version of the Fast Mumford-Shah method, we obtain u : Ω → Rc , mapping into the
same color space, and a partition of Ω. Then, as described above, a graph with respect
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to the subsets in this partition may be constructed and the vertices of the graph can be
assigned to k different regions using the minimal normalized cut method. Now, every
point in Ω is uniquely assigned to one of that k regions, and we could construct a final
image ū : Ω→ {1, . . . , k} that is a segmented version of the original images

(
fi
)
. For this

method, first experiments are promising as well.
In summary, the Fast Mumford-Shah approach is a sophisticated image segmentation

method. It is capable of computing both piecewise constant and piecewise smooth
segmentation and allows a flexible choice of the parameters α and λ. By combination
with other segmentation methods, it is possible to explicitly set the desired number of
regions. Because the parameters α, λ have to be set, Mumford-Shah and the derived
approximations are supervised segmentation methods. Using a priori knowledge for
special images, for example the expectation that the output image contains three circles in
front of a background, it would be conceivable to tweak α, λ automatically such that this
expectation is fulfilled. This could lead to an unsupervised segmentation method.





Appendix A.

Software Toolbox Documentation

Documentation of all user-relevant functions. For documentation of internal functions,
see the respective code file.

A.1. MATLAB

A.1.1. MATLAB Functions

bipartition Partition the vertices V of a graph into two subsets V � A ∪ B using
algorithm 1. If f is an image, then u = bipartition(f) is an image of the same
size, where u(i,j,k) = 1 if u(i,j,k) is in A, and u(i,j,k) = -1 if u(i,j,k) is in
B. If f is a cell array of length n, then u = bipartition(f) is a vector of length n,
where u(i) = 1 if the points corresponding to the brightness values in f{i} are in
A and u(i) = -1 otherwise. To use bipartition, the script compileMex has to be
called first.

callFms Wrapper for the C function fms.c that has to compiled to fms.out first. For
input image f and parameters alpha, lambda and tolerance, call

u = callFms(f,alpha,lambda,tolerance)

f will be exported as a binary file, the C program will be called, and the result will
be imported to MATLAB. Note that callFms and fmsMat are called with the same
parameters and might be interchanged.

compileMex Compiles the C-Mex functions.
fmsMat MATLAB implementation of algorithm 6. For input image f and parameters

alpha, lambda and tolerance, call u = fms(f,alpha,lambda,tolerance). Note
that callFms and fmsMat are called with the same parameters and might be inter-
changed.

A.1.2. MATLAB GUI

The following functions are available with an accompanying graphical user interface:
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guiThresh to perform thresholding as described in chapter 2. The number of thresholds
can be set in the upper right of the user interface and the thresholds can be set using
the sliders below. The button in the lower right sets the thresholds automatically
using Otsu’s method. The output image and the histogram with the thresholds can
be seen on the left hand side. The histogram might be cropped using the sliders
below. This is useful when the image contains many background pixels of the same
color. See also figure A.1.

guiFms provides a graphical user interface to fmsMat and callFms. It allows to choose
between the C and MATLAB version of algorithm 6, to choose between a piecewise
constant and piecewise smooth segmentation, and to set the parameters α, λ and
the tolerance ε. See also figure A.2.

guiFmsThresh is a combination of guiThresh and guiFmsThresh as described in chapter 8.
It allows to compute a piecewise constant segmentation with parameters λ, ε and
to use thresholding afterwards. The number of brightness classes (number of
thresholds plus one) may be chosen and the thresholds can be set manually or
automatically. See also figure A.3.

A.2. C Functions

fms.c is a C implementation of algorithm 6. It contains OpenACC directives and might
be compiled for serial, multicore or GPU execution. If the executable is called fms.out,
use the following syntax to call the program:

./fms.out $INPUT $OUTPUT $L $M $N $C $ALPHA $LAMBDA $PIECEWISE_CONSTANT

$TOLERANCE↪→

where

$INPUT is the binary file containing the input image,
$OUTPUT is a binary file that will contain the output after execution,
$L is equal to d1, the size of the image in the first dimension,
$M is equal to d2, the size of the image in the second dimension,
$N is equal to d3, the size of the image in the third dimension,
$C is the number of colors,
$LAMBDA is the parameter λ in equation (7.11),
$ALPHA is the parameter α in equation (7.11),
$PIECEWISE_CONSTANT determines whether the segmentation will be piecewise constant

(PIECEWISE_CONSTANT=1) or piecewise smooth (PIECEWISE_CONSTANT=0),
$TOLERANCE is the target tolerance ε in algorithm 6.
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Figure A.1.: guiThresh
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Figure A.2.: guiFms
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Figure A.3.: guiFmsThresh
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A.3. Shell Scripts

compileFms.sh compiles fms.c and names the executable fms.out. If the pgcc compiler
is available, it will be used to compile for a multicore target. The script also contains
a compilation command for (Tesla) GPUs that is commented out and can be used
instead of the multicore command. If the pgcc compiler is not available, the script
falls back to the clang or gcc compiler, but without using OpenACC.
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List of symbols

B (Ω) Borel σ-algebra overΩ, the smallest σ-algebra containing all open subsets
of Ω

〈·, ·〉 When X is a Banach space with dual space X∗, u ∈ X and w ∈ X∗, then
〈w , u〉 B w(u)

(·, ·) Inner product in a Hilbert space

BV (Ω) space of functions of bounded variation, definition 4.21 on page 27

BVloc (Ω) space of weakly differentiable functions, definition 4.20 on page 27

C∞ (Ω) space of arbitrarily often continuously differentiable functions

Ck (Ω) space of continuously differentiable functions up to order k

C color space of an image, definition 1.1 on page 1

δx Dirac measure: δx(A) �
{

1 if x ∈ A,

0 otherwise

dom F domain of F, see definition 6.1 on page 41

D (
Ω,Rd ) D (

Ω,Rd ) B {
u ∈ C∞

(
Ω,Rd ) : supp u compact in Ω

}
∇u In chapter 4, the classical derivative of u, if it exists. Otherwise, the

approximate derivative as in definition 4.27 on page 31. In chapter 7, the
discrete gradient as in definition 7.2 on page 58.

H k k−dimensional Hausdorff measure, definition 4.16 on page 25

Ld Lebesgue measure on Rd

ν � µ ν is absolutely continuous with respect to µ, definition 4.5 on page 21

L1
loc (Ω) space of locally integrable functions

L1
loc

(
Ω,Rn ; µ

)
space of locally integrable functions with integration with respect to the
measure µ instead of the Lebesgue-measure
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94 List of symbols

Lp (Ω) Lebesgue space

Lp (
Ω,Rn ; µ

)
Lebesgue space with integration with respect to the measure µ instead of
the Lebesgue-measure

ν ⊥ µ ν and µ are singular, definition 4.5 on page 21

R∞ R∞ B R ∪ {∞}
RM

(
Ω,Rd ) space of finite vector Radon measures on Ω, definition 4.14 on page 24

RMloc
(
Ω,Rd ) space of vector Radon measures on Ω, definition 4.10 on page 22

R+ R+ B {x ∈ R | x ≥ 0}
SBV (Ω) space of special functions of bounded variation, definition 4.29 on page 32
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