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Abstract. In this contribution we consider the rational eigenvalue problem governing free

vibrations of a plate with elastically attached masses. We discuss the numerical solution of

the problem by an iterative projection method generalizing the Arnoldi method for linear

eigenproblems. Taking advantage of a minmax characterization of the eigenvalues for

nonoverdamped problems the projected eigenproblems are solved by safeguarded iteration.

Special care is taken to determine all eigenvalues between two consecutive poles, and to

inhibit the method from converging to the same eigenvalues repeatedly.
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1 INTRODUCTION

The vertical deflection w(x, t) of a thin isotropic plate with elastically attached loads
is governed by the equations

Lw(x, t) + ρd
∂2

∂t2
w(x, t) +

q
∑

j=1

mj

d2

dt2
ξj(t)δ(x − xj) = 0 , x ∈ Ω, t > 0 (1)

Bw(x, t) = 0 , x ∈ ∂Ω, t > 0 (2)

mj

d2

dt2
ξj + kj(ξj(t) − w(xj, t)) = 0 , t > 0, j = 1, . . . , q. (3)

Here Ω ⊂ R
2 is a domain occupied by the plate, L is the plate operator, and B a boundary

operator specifying the support of the plate at its boundary ∂Ω. ρ is the mass per volume
density, and d the thickness of the plate. For j = 1, . . . , q at xj ∈ Ω a load mj is joined
elastically to the plate with stiffness coefficient kj, and ξj denotes the displacement of the
mass mj.

Using the ansatz w(x, t) = u(x)eiωt and ξj(t) = cje
iωt characterizing the eigenmodes

and eigenfrequencies of the vibrating plate, and eliminating cj we obtain the rational
eigenproblem

Lu(x) = λρdu(x) +

q
∑

j=1

λσj

σj − λ
mjδ(x − xj)u , x ∈ Ω (4)

Bu(x) = 0 , x ∈ ∂Ω (5)

where λ = ω2 and σj = kj/mj. Discretizing by finite elements one gets a rational matrix
eigenvalue problem

Kx = λMx +

p
∑

j=1

λ

σj − λ
Cjx (6)

where the stiffness matrix K and mass matrix M are symmetric and positive definite, and
the matrices Cj are positive semidefinite with small rank. We assume that the rational
terms corresponding to the same pole σj have been merged to the matrix Cj, and that
the poles are ordered by magnitude 0 = σ0 < σ1 < · · · < σp < σp+1 = ∞.

It can be checked easily that for each of the intervals Jj := (σj−1, σj), j = 1, . . . , p + 1
problem (6) (and the infinite dimensional problem (4), (5) as well) satisfies the conditions
of the minmax theory for nonoverdamped eigenproblems [16]. Hence, in each of the
intervals Jj there is a finite number of eigenvalues which can be enumerated λℓ ≤ λℓ+1 ≤
. . . in an appropriate way (cf. Section 2).

For this type of problems we studied iterative projection methods of Jacobi–Davidson
type [2] and of Arnoldi type [13], where the eigenvalues and corresponding eigenvectors
can be determined from projections to subspaces of small dimension which are expanded
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in the course of the algorithm. Since the projected eigenproblems inherit the symmetry
properties of the original problem, they can be solved efficiently by safeguarded iteration.

In [2] and [14] we claimed that the methods while computing the ℓ-th eigenvalue usually
gathers enough information about the (ℓ+1)-th eigenvalue, such that the eigenvalues can
be determined safely one after the other, and this was true for the examples from fluid–
solid vibrations considered there. For the plate problem (6), however, we observed that
eigenvalues were missed, and at a later stage eigenvalues were obtained repeatedly.

In this paper we modify the Arnoldi method to make sure that all eigenvalues of the
rational eigenproblem (6) in a given interval are found. In particular we address the issue
how to determine a suitable initial space.

The paper is organized as follows. Section 2 summarizes the minmax characterization
of eigenvalues for nonoverdamped problems, and in particular introduces an appropriate
enumeration of the eigenvalues. Section 3 contains the nonlinear Arnoldi method from
[14], and its modification to inhibit the method to miss eigenvalues, and to determine
eigenvalues which have been found previously. In Section 4 we discuss the question how
many eigenvalues of problem (6) are contained in a given interval, and in particular
between two consecutive poles, and Section 5 demonstrates the efficiency of the method
for a numerical example. The paper closes with concluding remarks.

2 MINMAX CHARACTERIZATION FOR NONLINEAR PROBLEMS

For λ in an open real interval J let T (λ) ∈ R
n×n be a family of symmetric matrices

the elements of which are differentiable. We consider the nonlinear eigenvalue problem to
identify parameters λ ∈ J such that the linear system of equations

T (λ)x = 0 (7)

has a nontrivial solution x 6= 0. As in the linear case we call λ with this property an
eigenvalue and x a corresponding eigenvector.

We assume that for every x ∈ R
n \ {0} the real equation

f(λ, x) := xT T (λ)x = 0 (8)

has at most one solution λ ∈ J . Then equation (8) defines a functional P on some
subset D ⊂ R

n which obviously generalizes the Rayleigh quotient for a linear pencil
T (λ) = λB − A, and which we call the Rayleigh functional of the nonlinear eigenvalue
problem (7). We further assume that

xT T ′(P (x))x > 0 for every x ∈ D (9)

generalizing the definiteness requirement for linear pencils. By the implicit function the-
orem D is an open set, and differentiating the identity xT T (P (x))x = 0 one obtains, that
the eigenvectors of (7) are stationary points of P .

3



Heinrich Voss

Obviously these conditions are satisfied for the plate problem (6) in each of the intervals
Jj, j = 1, . . . , p + 1, if we define

T (λ) := −K + λM +

p
∑

j=1

λ

σj − λ
Cj. (10)

Under the general conditions above we proved in [16] a minmax principle for the non-
linear eigenproblem (7) (which applies to the infinite dimensional problem (4), (5), too)
if the eigenvalues are enumerated appropriately.

λ ∈ J is an eigenvalue of (7) if and only if µ = 0 is an eigenvalue of the matrix T (λ),
and by Poincaré’s maxmin principle there exists k ∈ N such that

0 = max
dim V =k

min
x∈V, x 6=0

xT T (λ)x

‖x‖2
. (11)

Then we assign this k to λ as its number and call λ an k-th eigenvalue of problem (7).
Note that k is not uniquely determined for multiple eigenvalues.

With this enumeration it holds (cf. [16]) that for every k ∈ {1, . . . , n} problem (7) has
at most one k-th eigenvalue in J , which can be characterized by

λk = min
dim V =k,D∩V 6=∅

sup
v∈D∩V

P (v), (12)

and conversely, if
λk := inf

dim V =k,D∩V 6=∅
sup

v∈D∩V

P (v) ∈ J, (13)

then λk is a k-th eigenvalue of (7), and the characterization (12) holds. The minimum is
attained by the invariant subspace of T (λk) corresponding to its k largest eigenvalues, and
the supremum is attained by any eigenvector of T (λk) corresponding to µ = 0. From (13)
it follows immediately, if (7) has a k1-th eigenvalue λk1

∈ J and a k2-th eigenvalue λk2
∈ J

with k1 < k2 then there exists an ℓ-th eigenvalue λℓ for every ℓ ∈ {k1, k1 + 1, . . . , k2}, and
λk1

≤ λk1+1 ≤ · · · ≤ λk2
.

The enumeration of eigenvalues and the fact that the eigenvectors of (7) are the sta-
tionary vectors of the Rayleigh functional suggests the method in Algorithm 1 called
safeguarded iteration for computing the k–th eigenvalue. Since in each iteration step a
linear eigenproblems has to be solved this method is not appropriate for the plate problem
(6) which will be large and sparse. However, in iterative projection methods the problem
under consideration is projected to eigenproblems of small dimension, and solving these
ones by safeguarded iteration the occurring linear eigenproblems of small dimension can
be treated with standard software.
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Algorithm 1 Safeguarded iteration

1: Start with an approximation σ1 to the k-th eigenvalue of (7)
2: for ℓ = 1, 2, . . . until convergence do

3: determine an eigenvector xℓ corresponding to the k-largest eigenvalue of T (σℓ)
4: solve xT

ℓ T (σℓ+1)xℓ = 0 for σℓ+1 = P (xℓ)
5: end for

Safeguarded iteration has the following approximation properties [15].

THEOREM 1

(i) If λ1 := infx∈D P (x) ∈ J and x1 ∈ D then the safeguarded iteration converges
globally to λ1.

(ii) If λk ∈ J is a k-th eigenvalue of (7) which is simple then the safeguarded iteration
converges locally and quadratically to λk.

(iii) Let T (λ) be twice continuously differentiable, and assume that T ′(λ) is positive
definite for λ ∈ J . If xℓ in step 3. of Algorithm 1 is chosen to be an eigenvector
corresponding to the k largest eigenvalue of the generalized eigenproblem T (σℓ)x =
µT ′(σℓ)x then the convergence is even cubic.

3 ITERATIVE PROJECTION METHODS

For sparse linear eigenvalue problems Ax = λx iterative projection methods are very
efficient. Here the dimension of the eigenproblem is reduced by projection to a subspace
of much smaller dimension, and the reduced problem is handled by a fast technique
for dense problems. The subspaces are expanded in the course of the algorithm in an
iterative way with the aim that some of the eigenvalues of the reduced matrix become
good approximations to some of the wanted eigenvalues of the given large matrix.

Essentially two types of methods are in use: methods which project the problem to a
sequence of Krylov spaces like the Lanczos or the Arnoldi method [1], [10] and methods
which aim at a specific eigenpair expanding a search space by a direction which has a high
approximation potential for the eigenvector under consideration like the Jacobi–Davidson
method [1], [11], [12]. The Krylov subspace approaches take advantage of the linear
structure of the underlying problem and construct an approximate incomplete Schur fac-
torization (or incomplete spectral decomposition in the Hermitean case) from which they
derive approximations to some of the extreme eigenvalues and corresponding eigenvec-
tors, whereas the second type aims at the wanted eigenvalues one after the other using
the Schur decomposition only to prevent the method from converging to eigenpairs which
have been obtained already in a previous step. Since for general nonlinear eigenprob-
lems a normal form like the Schur factorization does not exist generalizations of iterative
projection methods have to be of the second type.
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Iterative projection methods for nonlinear eigenproblems are discussed in [2], [3], [4],
[5], [8], [9], [13], [14]. A typical example is the nonlinear symmetric Arnoldi method
[13], [14] where the current search space is expanded by the increment of the residual
inverse iteration ([7]) which has a high local approximation potential. If it is applied to a
linear problem then the preconditioned Arnoldi method results, which motivates its name
although no Arnoldi recursion and no Krylov spaces appear.

A crucial point in iterative projection methods for general nonlinear eigenvalue prob-
lems when approximating more than one eigenvalue is to inhibit the method from con-
verging to eigenvalues which have been found previously.

If T (λ) is a family of symmetric matrices allowing a minmax characterization of its
eigenvalues then the projected problems inherit this property suggesting to compute the
eigenvalues one after the other by safeguarded iteration. Algorithm 2 contains a template
of the Arnoldi method for the symmetric problem (7) for computing all eigenvalues in a
given interval J where we assume that λm1

is the smallest eigenvalue in J and λm2
is the

largest one.

Algorithm 2 Nonlinear Arnoldi method for symmetric problems

1: start with an initial pole σ and an initial basis V , V HV = I; m = m1

2: determine preconditioner M ≈ T (σ)−1, σ close to first wanted eigenvalue
3: while m ≤ m2 do

4: compute k-th eigenvalue µ and corresponding eigenvector y of projected problem
V HT (µ)V y = 0 by safeguarded iteration.

5: determine Ritz vector u = V y, ‖u‖ = 1, and residual r = T (µ)u
6: if ‖r‖ < ǫ then

7: accept λk = µ, xk = u,
8: choose new pole σ and determine M ≈ T (σ)−1 if indicated
9: restart if necessary

10: choose approximations µ and u to next eigenvalue and eigenvector and determine
residual r = T (µ)u

11: m = m + 1
12: end if

13: v = Mr
14: v = v − V V Hv ,ṽ = v/‖v‖, V = [V, ṽ]
15: reorthogonalize if necessary
16: end while

In [14] we commented on the individual steps of the algorithm, namely when and
how to renew the preconditioner, how to restart if the increasing storage and/or the
computational cost for solving the projected eigenvalue problems make it necessary to
purge some of the basis vectors, and how to choose an approximation to the eigenvalues
targeted at next. Most important are the questions how to start the algorithm, i.e. what
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the number m1 of the smallest eigenvalue in J is and how to find a suitable initial search
space V , and how many eigenvalues exist in J . For rational eigenproblems like the plate
problem with attached masses this was discussed in [6] and [15], and will be summarized
in the next section.

Usually, while computing the m1-th eigenvalue λm1
the algorithm gathers enough in-

formation in the search space V about the next eigenvector to compute λm1+1 safely, and
the eigenvalues in J can be computed one after the other without determining the same
eigenvalue repeatedly.

This procedure worked fine in all of our examples from vibrations of fluid–solid struc-
tures (cf. [14]). For plate problems with attached loads, however, we observed that the
algorithm missed eigenvalues, and at a later stage determined eigenvalues that were found
already previously.

After having found the k-th eigenpair (λk, xk) the method misses the (k + 1)-th eigen-
value λk+1, if the orthogonal projection of the corresponding eigenvector xk+1 to the space
V is small compared to the projection of some xℓ with k + 1 < ℓ where V denotes the
search space for which the termination condition ‖T (λk)V u‖ < ε for λk was satisfied. In
this case it may happen that the enumeration of the eigenvalues of the projected problem
does not coincide with the enumeration for the original problem, and an approximation
to a higher eigenpair is returned in the next step. Since the residual inverse iteration
defining the expansion of V converges locally to the eigenvalue closest to the current
approximation the component of xk+1 in the current search space will not be amplified
sufficiently, and the method converges to a higher eigenvalue. As the method proceeds the
component of xk+1 in the search spaces will grow, and the enumeration of the eigenvalues
of the projected problem will be corrected. In this situation the method when converging
will replicate an eigenvalue that was found already previously, usually the last but one.
Of course we have to check whether this multiply detected eigenvalue is a multiple eigen-
value. If this is not the case we reduce the number of the eigenvalue we are searching
for.

To cope with the problem of missing eigenvalues and getting some repeatedly we in-
troduced the following if clause into the nonlinear Arnoldi method after step 6:
6a: if (λm − λm−1)/λm < ε1 & |〈u, xk〉| > 1 − ε2 then

6b: m=m-1
6c: else

and closed the else clause after statement 11. Here ε1 and ε2 are small positive con-
stants, and 〈u, xk〉 denotes the scalar product of u and xk.

4 LOCATING EIGENVALUES OF RATIONAL EIGENPROBLEMS

To determine the number of eigenvalues between two consecutive poles σk and σk+1

of problem (6) we consider for µ ∈ (σk, σk+1) the parameter dependent linear eigenvalue
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problem
(

K +
k

∑

j=1

µ

µ − σj

Cj

)

x = λ
(

M +

p
∑

j=k+1

1

σj − µ
Cj

)

x. (14)

We denote by λm(µ) the m-smallest eigenvalue. Then λ̂ is an eigenvalue of the rational
eigenproblem (6) if and only if λ̂ is a fixed point of λm : (σk, σk+1) → R, and it is easily
checked that it is an m-th eigenvalue.

For the Rayleigh quotient Rµ(x) of problem (14) it holds Rµ1
(x) ≥ Rµ2

(x) for µ1 ≤ µ2

and every x 6= 0, and therefore each of the functions λm(·) is monotonely nonincreasing.
Hence, if N(µ) for µ ∈ (σk, σk+1) denotes the number of eigenvalues of problem (14) which
are less than µ, then for σk < α < β < σk+1 the interval [α, β) contains N(β) − N(α)
eigenvalues of the rational problem (6), and they are enumerated by N(α) + 1, N(α) +
2, . . . , N(β).

To determine the number of eigenvalues between the poles σk and σk+1 we have to
study the limit behaviour of the function λm(µ) for µ tending to the boundaries of the
interval. In [6] we obtained the following results which were even proven for the infinite
dimensional case.

LEMMA 1

κm := lim
µ→σk+

λm(µ) (15)

is the m-th eigenvalue of the reduced problem
Find λ ∈ R and x ∈ Hk := {x ∈ H : Ckx = 0}, x 6= 0 such that

(

K +
k−1
∑

j=1

σk

σk − σj

Cj

)

x = λ
(

M +

p
∑

j=k+1

1

σj − σk

Cj

)

x, (16)

LEMMA 2

Let rk+1 = rank(Ck+1). Then

lim
µ→σk+1−

λj(µ) = 0 for j = 1, . . . , rk+1. (17)

For m > rk+1

lim
µ→σk+1−

λm(µ) =: κ̃m = λ̃m−r, (18)

where λ̃m−r is the m − r smallest eigenvalue of the reduced problem
Find λ ∈ R and x ∈ Hk+1 := {x ∈ H : Ck+1x = 0}, x 6= 0 such that

(

K +
k

∑

j=1

σk+1

σk+1 − σj

Cj

)

x = λ
(

M +

p
∑

j=k+2

1

σj − σk+1

Cj

)

x, (19)
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Figure 1: Eigencurves of equation (14) for a plate with 4 masses

These results demonstrate that it is reasonable to call a pole σk an m-th eigenvalue of
the rational eigenproblem (6) if and only if it is the m-smallest eigenvalue of the restricted
problem (16).

If we connect the m + rk+1-th eigencurve in (σk, σk+1) to the m-th eigencurve in
(σk+1, σk+2) then we obtain a joint curve which is continuous at σk+1. Figure 1 con-
tains the eigencurves for a plate to which 3 identical masses and one further mass are
attached.

Concerning the number of eigenvalues of (6) between two consecutive poles we obtain
from Lemmas 1 and 2.

THEOREM 2

Let mk be the number of eigenvalues λj of the reduced problem (16) satisfying λj ≤ σk,
and let rk be the rank of Ck.

Then the rational eigenproblem

Kx = λ
(

M +

p
∑

j=1

1

σj − λ
Cj

)

x, (20)

has nk+1 +rk+1−nk eigenvalues in (σk, σk+1] enumerated by nk +1, nk +2, . . . , nk+1 +rk+1.

Theorem 2 answers the question how to initialize the Arnoldi method for the rational
eigenproblem (6). For the interval J1 := (0, σ1) the infimum of the Rayleigh functional

9



Heinrich Voss

is contained in J1, and due to the global convergence of the safeguarded iteration we
can start with any one dimensional space V such that P (V ) ∈ J1, and can compute the
eigenvalues in J1 one after the other until the method leaves the interval J1. Let Ñ1 be
the number of the largest eigenvalue λÑ1

of (1) found in J1.
To start the method for J2 := (σ1, σ2) we choose µ̂ = σ1+ε, ε > 0 small, and determine

the eigenvalues of the linear problem (14) for µ = µ̂ which are less than µ̂. We assume
that these are ñ1. If ñ1+r1 = N1 then all eigenvalues in J1 have been found, no eigenvalue
exist in (σ1, µ̂), and we can start the Arnoldi method for J2 with an orthonormal basis of
the invariant subspace of problem (14) corresponding to the ñ1 + 1 smallest eigenvalues.
Otherwise we have to explore the intervals (λÑ1

, σ1) and (σ1, µ̂) for further eigenvalues.
For the subsequent intervals we can proceed in an analogous way.

5 NUMERICAL EXAMPLE

Consider the clamped plate occupying the domain Ω = (0, 4) × (0, 3) with constant
coefficients ρ = d = 1. We assume that 6 masses are attached to the plate at x1 = (1, 1),
x2 = (2, 1), x3 = (3, 1), x4 = (1, 2), x5 = (2, 2) and x6 = (3, 2), where σ1 = σ2 = σ3 = 1000
σ4 = σ6 = 2000 and σ5 = 3000, and m1 = 1, m2 = 1/2 and m3 = 1/3.

We discretized the eigenproblem by Bogner-Fox-Schmit elements on a quadratic mesh
with stepsize h = 0.05 which yielded a matrix eigenvalue problem

Kx = λMx +
1000λ

1000 − λ
C1x +

1000λ

2000 − λ
C2x +

1000λ

3000 − λ
C3x (21)

of dimension 18644. Here Cj for j = 1, 2, 3 is a diagonal matrix of rank 3, 2 and 1,
respectively, corresponding to the loads {m1,m2,m3}, {m4,m6} and m5.

By Theorem 2 problem (21) has 24 eigenvalues smaller than the smallest pole σ1

enumerated λ1, . . . , λ24. The Arnoldi method found all eigenvalues. Figure 2 contains the
convergence history of the method, where we show graphically the norm of the residual
vector as a function of the iteration number. Every time when the norm is less than 10−3

(marked by ×) an eigenvalue has been found. It is flagged by ◦ if it is assigned the correct
number.

In accordance with Theorem 1 the method converges to the smallest eigenvalue λ1 first,
but then it detects λ3, λ4, λ6, and λ6 again as second, third, forth and fifth eigenvalue,
respectively. Since λ6 is found to be not a double eigenvalue the method returns to
computing a forth eigenvalue and finds λ4 a second time. Reducing the number of the
desired eigenvalue again, λ3 is obtained again, and after a further reduction the method
finally converges to the second eigenvalue λ2. Thereafter the eigenvalues λ3, . . . , λ6 are
found correctly, each of them requiring an expansion of the search space V by one vector
only. For λ3, λ4 and λ6 this is no surprise since these eigenvalues were found already
previously, and therefore the search space already contained a good approximation of the
corresponding eigenvector. After determining λ8 twice and returning to searching for the
seventh eigenvalue the method finds all remaining eigenvalues one after the other in the
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Figure 2: Convergence history; interval (0, 1000)

correct order. In Figure 2 we assigned the numbers to the converged eigenvalues up to
λ9.

Although in the whole run the algorithm reduced the number of the desired eigenvalue
four times the method performs efficiently. The dimension of the search space containing
good approximations to all 24 wanted eigenvectors grows only to 61, hence, an average of
only 2.5 iteration steps is needed to find an eigenvalue.

On an Intel Centrino M processor with 1.7 GHz and 1 GB RAM under MATLAB 6.5
the nonlinear Arnoldi method required 138.6 seconds CPU time, where we terminated the
iteration if the residual norm was less than 10−3. 0.54 seconds were needed to solve all
61 projected eigenproblems by safeguarded iteration, and 36.3 seconds to determine the
preconditioners (namely, two LU factorizations of T (σ)).

The interval J2 = (σ1, σ2) contains 8 eigenvalues enumerated λ̃22, . . . , λ̃29 (notice that
there are 24 eigenvalues λ1, . . . , λ24 ∈ (0, σ1) and rank(C1) = 3; thus, by Theorem 2
the smallest eigenvalue in J2 must be a 22nd eigenvalue). According to Section 4 an
appropriate initial search space is the invariant subspace corresponding to the 22 largest
eigenvalues of the linear problem

Kx +
1000(1000 + ε)

ε
C1x = λMx +

1000λ

1000 − ε
C2x +

1000λ

2000 − ε
C3x (22)

Figure 3 shows the convergence history of the nonlinear Arnoldi method for the interval J2

where we tagged the correct number to the converged eigenvalues and marked the correctly
found eigenvalues by ◦. The method required 32 iteration steps, and 86.5 seconds CPU
time, 0.45 of which were needed to solve the projected eigenproblems and 36.7 seconds to
obtain the preconditioners.
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Figure 3: Convergence history; interval (1000, 2000)
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Figure 4: Convergence history; interval (2000, 3000)
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Figure 5: Convergence history; interval (3000, 5000)

For the interval J3 and the eigenvalues which are larger than the largest pole the
method behaved similar. 9 eigenvalues are contained in J3 enumerated λ̂29, . . . , λ̂36 which
were found requiring 41 iteration steps and 84.4 seconds CPU time, were 0.90 second
were needed to solve the projected eigenproblems and 18.1 seconds to determine the
preconditioner. The convergence history is contained in Figure 4.

Finally, there are 18609 eigenvalues greater than σ3 the smallest of them being a 36th
one. The interval J4 = (3000, 5000) contains 15 eigenvalues. The Arnoldi method needed
48 iterations and 149.9 seconds CPU time. 1.42 seconds were required to solve the pro-
jected eigenproblems and 73.4 seconds to determine the preconditioners (4 LU factoriza-
tions). Figure 5 shows the convergence history for this interval.

6 CONCLUSIONS

For the rational eigenvalue problem governing the free vibrations of plate with attached
loads we considered a nonlinear iterative projection methods of Arnoldi type. Taking
advantage of symmetry properties and the minmax characterization of its eigenvalues
the projected eigenproblems of small dimension can be solved efficiently by safeguarded
iteration. Particular care is taken that the method does not miss eigenvalues in a specified
interval, and the method is prohibited from converging to eigenvalues which have been
found already in a preceding step.
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