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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Supervised machine learning methods are increasingly used for detecting defects in automated visual inspection systems. However, these methods 

require large quantities of annotated image data of the surface being inspected, including images of defective surfaces. In industrial contexts, it 

is difficult to collect the latter since acquiring sufficient image data of defective surfaces is costly and time-consuming. Additionally, gathered 

datasets tend to contain selection-bias, e.g. under representation of certain defect classes, and therefore result in insufficient training data quality. 

Synthetic training data is a promising alternative as it can be easily generated unbiasedly and in large quantities. In this work, we present a 

procedural pipeline for generating training data based on physically based renderings of the object under inspection. Defects are being introduced 

as 3D-models on the surface of the object. The generator provides the ability to randomize object and camera parameters within given intervals, 

allowing the user to use the domain randomization technique to bridge the domain gap between the synthetic data and the real world. Experiments 

suggest that the data generated in this way can be beneficial to training defect detection models. 
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1. Introduction 

Automated optical inspection systems use computer vision 

to perform inspection tasks. Setting up a classic computer 

vision system is a tedious and time consuming task, e.g. if free-

form geometries have to be inspected. Recent advances in 

machine learning methods, most of all Convolutional Neural 

Networks (CNNs), promise to be an alternative to classic image 

processing pipelines. Critical for the performance of CNNs is 

the data with which they are trained. The weakness in visual 

defect detection is sufficient training data showing defective 

surfaces, mainly due to the following reasons: 

• Collecting defective samples is cost intensive [1] 

• Biased data through predomination of non-defective 

samples [2] 

• Laborious manual annotation [3] 

• Lack of publicly available datasets [4] 

Defective samples are naturally rare in an industrial 

production line. Additionally, the collected defective samples 

will be biased towards certain types, shapes or positions of 

defects on the surface making them less suitable as training 

data. Annotating the collected data by hand is laborious, time-

consuming and often requires expertise for identifying defects 

in images. Therefore, the creation of comprehensive datasets is 

often challenging. 

Synthesizing training data by means of computer graphics is 

an increasingly used alternative [5, 6]. Benefits of synthetic 

data generation are: fast and cheap production of large 

quantities, rare events can be represented in synthetic datasets 

just as frequently as common events, and automatic annotation 

of class labels on a pixel level. Furthermore, training data can 

be generated before the first part has been produced, making 

AI-assisted detection of surface defects immediately available 

at production start. While initial research indicates that 

synthetic data may be beneficial [2], its utilization remains 
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1. Introduction 

Automated optical inspection systems use computer vision 

to perform inspection tasks. Setting up a classic computer 
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data. Annotating the collected data by hand is laborious, time-
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in images. Therefore, the creation of comprehensive datasets is 

often challenging. 
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quantities, rare events can be represented in synthetic datasets 

just as frequently as common events, and automatic annotation 
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be generated before the first part has been produced, making 

AI-assisted detection of surface defects immediately available 

at production start. While initial research indicates that 

synthetic data may be beneficial [2], its utilization remains 



1102	 Ole Schmedemann  et al. / Procedia CIRP 107 (2022) 1101–1106
 O. Schmedemann et al. / Procedia CIRP 00 (2022) 000–000  3 

 

use PBR pipelines to render images for the defect detection on 

metal surfaces. In both approaches, defects are introduced 

using artificially created 2D textures. Gutierrez et al. [2] use 

photometric stereo to capture bump maps to texture their 

model. Existing approaches partly lack successful domain 

transfer, or imply high effort for generating textures.  

We aim to overcome limitations of existing approaches by 

making extensive use of DR. We introduce defects as 3D 

models in the rendering pipeline. Thus we are able to vary the 

shape, size, and position of the defects. Additionally, we use 

procedural textures instead of laboriously collected real-world 

textures. With the procedural textures, the look of the object 

can be easily varied by changing the texture parameters which 

increases the domain randomization potential. 

3. Synthetic data generation pipeline 

We first present the overall concept of our data generation 

pipeline. Afterward we detail the parameters that are 

randomized by the pipeline. Finally, the implementation is 

presented. 

3.1. Training data generator concept 

Our training data generator (TDG) takes user inputs like 

models, textures, and process parameters. Then the TDG 

generates a scene with a defective object and renders an image 

for a set of randomly chosen process parameters, see Fig. 2.  

Starting point for the TDG is a 3D model of the inspected 

object, which is usually available at the manufacturer. 

Additionally, procedural textures are chosen for each surface 

type of the object. A procedural texture is a texture created 

using a mathematical description. We use procedural textures 

for three reasons. Firstly, they can be easily randomized by 

varying the parameters used to describe them. Secondly, they 

allow the object to be viewed from arbitrary distances since 

their resolution scales with the distance. Lastly, texture 

mapping with procedural textures does not generate seams on 

the part reducing the risk for unwanted artifacts in the rendered 

image. 

Procedural textures can be chosen from texture libraries for 

common materials. An exact modeling of the real surface 

behavior is not necessary, since the parameters describing the 

texture will be randomized within chosen intervals. Thus the 

total effort is reduced compared to other methods, e.g. [2]. 

Together with the procedural textures, we use physically based 

rendering (PBR) to keep the discrepancy between the synthetic 

and the real-world domain small. 

Additional inputs for the TDG are camera and illumination 

parameters. Camera parameters are necessary to describe the 

virtual camera for the rendering engine and include field of 

view, resolution, and position and orientation. The illumination 

parameters are used to approximate the illumination behavior 

in the inspection setup and include shape, size, intensity, color 

temperature, position, and orientation. 

Based on these inputs the TDG generates the synthetic 

images. The first step is the defect creation. Our defect 

generation method is inspired by Bosnar et al. [38]. Defect tools 

are used to modify the mesh of the main object using Boolean 

operators. A negative defect tool is modelled for each defect 

type. The tool must have the shape which has to be imprinted 

into or added onto the surface of the inspected object. Fig. 1 

shows the defect generation exemplarily for a spherical defect 

tool, which can be used to simulate blowhole defects in cast 

iron. For different defect types tools can be created and used in 

a similar way in the TDG. Defect tools that are not symmetric 

may be oriented towards the surface normal at the point of 

introduction into the object. 

Outputs of the TDG are the rendered images as well as a 

segmentation map, which states which pixel belongs to a 

defective or a defect-free surface. In that way, our generated 

images can be used to train a model for object segmentation but 

also for object detection and image classification tasks. To 

ensure transferability for our generated images, we aim to 

randomize as many parameters as possible within our 

modeling. Next, we specify what those parameters are. 

3.2. Domain randomization 

We group our parameters, based on the object type the 

parameter is assigned to, into the four groups Defect, 

Illumination, Camera, and Texture, see Table 1. Intervals and 
Fig. 2. Concept of the training data generator. 

Fig. 1. (a) Negative defect form; (b) negative defect form with displacement 

modifier; (c) defect introduced to part. 

a b c 
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challenging and not ubiquitous. The main obstacle is the 

transferability from the synthetic domain to the real domain [7]. 

In this work, a novel approach for synthesizing training data 

for CNN-assisted defect detection is proposed. Existing 

approaches for synthetic defect generation are based on 2D 

mergence of images [8] and 2D defect maps [2, 9–11]. Despite 

initial success and principal applicability of synthetic data 

generation for defect detection, those approaches are limited to 

special use cases, complex in implementation, or not able to 

completely close the domain gap. Therefore, we aim to 

introduce a novel approach for synthesizing 3D objects and 

defect data. 

For this approach, a 3D model of the object under inspection 

is rendered. Defects are introduced into the model using 

negatives of the defect geometry. To bridge the domain gap to 

the real world the principle of domain randomization is used 

[12]. Process parameters like textures, illumination, and defect 

shape are randomized within intervals. The goal is to extend 

the synthetic domain to such an extent that the real domain 

becomes a subset of the synthetic domain, enabling models 

trained with synthetic data to be applied to real-world data. In 

addition, less sensor realism is needed to reduce the modeling 

complexity in the rendering pipeline. To our knowledge, this is 

the first extensive utilization of the principle of domain 

randomization for the generation of synthetic data for visual 

defect detection. 

2. Related work 

CNNs have improved visual object recognition and object 

detection significantly [13]. However, when only trained with 

datasets of small size, models tend to overfit and produce poor 

results. Popular strategies in dealing with small datasets are 

data augmentation, transfer learning, use of pre-trained models, 

or synthetic training data. 

For detection of everyday objects, extensive datasets are 

available, e.g. ImageNet [14], KITTI [15], or MS COCO [16], 

which can be used to pre-train models. On the contrary, 

publically available datasets for surface defect detection, 

e.g. NEU-DET [3] or GC10-DET [4], are not extensive enough 

to be used for pre-training and are limited to specialized use 

cases, thus lacking the ability to transfer to new inspection 

tasks. The availability of suitable training data inhibits the 

further spread of the use of CNNs in industrial inspection. 

2.1. Synthetic training data 

Multiple approaches such as [12, 17–20] have shown that 

synthetic data can be used to solve the data availability problem 

with small or biased datasets. Nikolenko gives an extensive 

survey on research regarding synthetic training data [21]: 

Machine learning models usually assume, that training and test 

data distributions are similar. However, the distributions of 

synthesized training data and real world test data differ 

significantly, making the domain transfer from source to target 

domain challenging. Several strategies have been proposed to 

tackle this challenge: 

• Domain adaptation 

• Sensor-realistic rendering 

• Domain randomization 

The goal of domain adaptation techniques is to reduce the 

statistical deviation between source and target domain. Several 

strategies, e.g. adversarial learning or generative-based, have 

been suggested to adapt the domains. Toldo et al. [22] 

summarize state of the art domain adaption methods. 

As stated by Hodan et al. [23] a high degree of visual realism 

can be achieved by focusing on modeling the geometry, 

textures and materials to a high level of detail and by simulating 

the lighting as physically correct as possible. A technique 

known as physically based rendering (PBR) [24] has been 

shown to help in bridging the domain gap and may even be 

necessary for rendering usable images featuring complex 

reflections. 

The goal of domain randomization (DR) as introduced by 

Tobin et al. [12] is to extend the synthetic domain to the point 

where the real domain becomes a subset of the synthetic 

domain. They showed that DR enables the use of lower-quality 

renderers which are optimized for speed. Tremblay et al. [25] 

demonstrated that parts of the domain, which are not the feature 

that is to be detected, can be randomized in a non-realistic way. 

Prakash et al. [18] demonstrate further that generating images 

which preserve the structure of a scene can increase the 

performance of DR further. 

 Several toolboxes like BlenderProc [26], NDDS [27], and 

Perception [28] have been published in order to assist 

researchers to render images and generate annotations. These 

toolboxes assume that 3D models and texture maps of the 

objects to be rendered are available. For surface defects, these 

must first be created, thus they cannot be directly deployed for 

industrial inspection tasks. 

2.2. Synthetic data generation for visual quality inspection 

Successful automated visual defect detection with CNNs 

has been extensively demonstrated [29–33]. Typically, these 

authors approach the data problem by tediously collecting data 

for their use case or by relying on existing data collected with 

vision systems in the field. Each of the aforementioned 

researchers created a dataset specific to their inspection task 

that cannot be generalized to other inspection tasks. 

There exists a variety of approaches for the generation of 

synthetic data for visual inspection that can be categorized into 

rendering-based and generative-based methods. Generative 

approaches use generative adversarial networks (GANs) to 

create or augment training data [10, 11, 34–36] making use of 

their intrinsic domain adaption capability, while rendering 

approaches [1, 2, 7, 9, 37]  aim for high sensor-realism. 

Retzlaff et al. [7] use procedural modeling and PBR to 

generate images for glass shade classification. Lee et al. [37] 

combine DR and sensor-realism to render images for  industrial 

object detection. [2, 8, 9] create synthetic images for defect 

detection. Haselmann and Gruber [8] use real images and 

overlay them with randomly generated defect textures. [2, 9] 
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must first be created, thus they cannot be directly deployed for 

industrial inspection tasks. 

2.2. Synthetic data generation for visual quality inspection 

Successful automated visual defect detection with CNNs 

has been extensively demonstrated [29–33]. Typically, these 

authors approach the data problem by tediously collecting data 

for their use case or by relying on existing data collected with 

vision systems in the field. Each of the aforementioned 

researchers created a dataset specific to their inspection task 

that cannot be generalized to other inspection tasks. 

There exists a variety of approaches for the generation of 

synthetic data for visual inspection that can be categorized into 

rendering-based and generative-based methods. Generative 

approaches use generative adversarial networks (GANs) to 

create or augment training data [10, 11, 34–36] making use of 

their intrinsic domain adaption capability, while rendering 

approaches [1, 2, 7, 9, 37]  aim for high sensor-realism. 

Retzlaff et al. [7] use procedural modeling and PBR to 

generate images for glass shade classification. Lee et al. [37] 

combine DR and sensor-realism to render images for  industrial 

object detection. [2, 8, 9] create synthetic images for defect 

detection. Haselmann and Gruber [8] use real images and 

overlay them with randomly generated defect textures. [2, 9] 
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We manually chose a set of 137 inspection poses as an input 

for the TDG. We generated 100 defects in a part and generated 

822 images per part. We repeated this process for 6 times. The 

generated images were filtered depending on the defect size in 

the image. Defects larger than 50 px became part of the 

defective class. Images without visible defects were assigned 

to the defect-free class. Images with very small defects were 

not further considered. In this way a synthetic dataset with 

4.906 images was created. 

4.2. Model training 

To evaluate the suitability of our approach we created two 

real-world datasets of endoscopic images. The training and the 

test dataset show both defective and defect-free textures, see 

Fig. 4a-b, and consist of each 110 images. The real-world 

training dataset was split into equally sized training and 

validation datasets. 

We used an 18-layer ResNet [40] architecture which was 

pre-trained on the ImageNet dataset. Two experiments were 

conducted. First, we trained the model with the synthesized 

dataset. We split the synthetic dataset in an 80/20 ratio in a 

training and a validation dataset and pre-trained with a learning 

rate of 1e-4 and a batch size of 64 for 45 epochs. Then, we fine-

tuned the model with the real-world training dataset. For the 

second experiment we trained the model directly with the real-

world training dataset without using our synthetic data. 

For the two experiments we conducted a hyperparameter 

search and evaluated combinations of three learning rates (1e-

2, 1e-3, and 1e-4) and three batch sizes (16, 32, and 64). We 

trained for 25 epochs with an SGD optimizer. In both 

experiments the best performing network based on the 

validation accuracy was tested on the real-world test dataset. 

The model that was pre-trained with our synthetic data 

(accuracy 98.2 %, recall 96.2 %, specificity 100 %) 

outperformed the model solely trained on real-world data 

(accuracy 93.6 %, recall 94.2 %, specificity 93.1 %). The 

results of our investigation indicate that synthetic training data 

generated with our approach can be beneficial for training 

defect detection models when few real-world images are 

available. 

5. Conclusion and outlook 

We introduced and implemented a training data generator 

that makes extensive use of the principle of domain 

randomization and can be used to generate synthetic training 

data for visual defect detection tasks. Our concept radically 

reduces the overall complexity and effort needed to construct a 

synthetic dataset for a given inspection task. 

The TDG allows researchers to explore what makes good 

synthetic training data for defect detection, which parameter to 

randomize, and how to set appropriate randomization intervals 

for the process parameters. Researchers can use the TDG to 

investigate if synthetic data is useful for their inspection task at 

hand. 

Our use case demonstrates the usability of our approach. 

Future work will apply models with our synthesized data 

directly on real-world data without fine-tuning taking 

advantage of the scalability of our TDG to create very large 

datasets with high variability. Additionally, we will leverage 

the pixelwise ground truth information that our TDG provides 

for object detection and segmentation tasks. 
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distributions for the parameters have to be given as an input for 

the TDG. If no distribution is given then an equal distribution 

is assumed. 

The defect shape is randomized by varying its size, position, 

and orientation on the surface of the object. Additionally, a 

displacement modifier based on a procedural texture is placed 

on the defect tool, see Fig. 1b. For the input parameters of the 

procedural texture intervals for the randomization have to be 

set. The texture randomization depends on the chosen 

procedural texture for a material. An example of an 

implementation is given in chapter 4.  

Camera and illumination position and orientation of the 

virtual camera are varied within the given intervals. For the 

illumination the intensity is varied.  

Table 1. Randomized parameter in training data generator pipeline. 

Group Parameters for randomization 

Defect Position, orientation, size, shape 

Illumination Position, orientation, intensity, spectral 

distribution, shape 

Camera Position, orientation 

Texture Roughness, base color, normal map 

3.3. Implementation  

The TDG was implemented using the 3D computer graphics 

software toolset Blender. Blender features a python API which 

allows us to automate the training data generation by executing 

scripts. Furthermore, Blender allows for advanced 3D object 

manipulation that is used to execute the Boolean operations to 

integrate the defect tool shape into the object. For physical 

based rendering we make use of Blenders raytracing engine 

Cycles. In addition, we use BlenderProc [26] to create the 

segmentation maps showing the defect position in the rendered 

images, see Fig. 4h. 

Fig. 3 shows the general structure of the TDG. For each 

defect object, a script to generate the defects is executed, which 

contains the object’s model with the material applied to it. The 

defect tool is used to generate all defects. Next, the supplied 

camera poses get randomized and for each pose, an arbitrary 

number of additional randomized poses can be added. The 

middle for-loop iterates over all of these randomized poses. 

Then the according light pose is computed. In the same step, 

the light intensity is randomized too. Finally, the innermost for-

loop randomizes the texture. Afterwards, all elements needed 

to execute BlenderProc have been assembled and the first 

image along with its segmentation map can be generated. When 

the textures have been changed the number of times that was 

specified, the next camera pose is chosen and after all camera 

poses have been used, the next defect object is generated. The 

size of the dataset is thus the product of iterations of each for-

loop. 

4. Demonstration 

To demonstrate our training data generation pipeline a part 

from the manufacturing industry was chosen: a turbocharger 

housing for the automotive industry. The cast iron component 

has to be visually inspected after demolding. We choose the 

endoscopic inspection of the part’s cavities for this 

demonstration. Difficult illumination conditions, varying 

relative positioning of the camera to the part’s surface, as well 

as freeform surfaces make the visual inspection of the part 

challenging. The concept of using synthetic data for endoscopic 

inspection was first published in [39]. 

The cast iron component consists of only one surface 

texture, therefore only one texture needs to be modeled. In 

addition, the cavity allows to neglect having to model the 

background since it will not be visible in the images reducing 

the modeling complexity. This makes the part well suited as a 

demonstration part since it combines a challenging image 

processing task with relatively limited modeling effort. 

4.1. Synthetic dataset generation for use case  

To approximate the look of the real-world part, see Fig. 4a, 

we combined noise textures of different scale to generate a 

bump map. The result is shown in Fig. 4c. For this experiment 

we focus on the defect type ‘blowhole’ as seen in Fig. 4b. We 

created a spherical defect tool for our TDG. Fig. 4d shows a 

synthetic defect generated with the defect tool. We randomized 

image features that are not relevant for detecting the defect. Fig. 

4e-g show exemplarily variations in roughness (e), color (f), 

and defect size (g). 

Fig. 3. Flowchart of the training data generator. 
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We manually chose a set of 137 inspection poses as an input 

for the TDG. We generated 100 defects in a part and generated 

822 images per part. We repeated this process for 6 times. The 

generated images were filtered depending on the defect size in 

the image. Defects larger than 50 px became part of the 

defective class. Images without visible defects were assigned 

to the defect-free class. Images with very small defects were 

not further considered. In this way a synthetic dataset with 

4.906 images was created. 

4.2. Model training 

To evaluate the suitability of our approach we created two 

real-world datasets of endoscopic images. The training and the 

test dataset show both defective and defect-free textures, see 

Fig. 4a-b, and consist of each 110 images. The real-world 

training dataset was split into equally sized training and 

validation datasets. 

We used an 18-layer ResNet [40] architecture which was 

pre-trained on the ImageNet dataset. Two experiments were 

conducted. First, we trained the model with the synthesized 

dataset. We split the synthetic dataset in an 80/20 ratio in a 

training and a validation dataset and pre-trained with a learning 

rate of 1e-4 and a batch size of 64 for 45 epochs. Then, we fine-

tuned the model with the real-world training dataset. For the 

second experiment we trained the model directly with the real-

world training dataset without using our synthetic data. 

For the two experiments we conducted a hyperparameter 

search and evaluated combinations of three learning rates (1e-

2, 1e-3, and 1e-4) and three batch sizes (16, 32, and 64). We 

trained for 25 epochs with an SGD optimizer. In both 

experiments the best performing network based on the 

validation accuracy was tested on the real-world test dataset. 

The model that was pre-trained with our synthetic data 

(accuracy 98.2 %, recall 96.2 %, specificity 100 %) 

outperformed the model solely trained on real-world data 

(accuracy 93.6 %, recall 94.2 %, specificity 93.1 %). The 

results of our investigation indicate that synthetic training data 

generated with our approach can be beneficial for training 

defect detection models when few real-world images are 

available. 

5. Conclusion and outlook 

We introduced and implemented a training data generator 

that makes extensive use of the principle of domain 

randomization and can be used to generate synthetic training 

data for visual defect detection tasks. Our concept radically 

reduces the overall complexity and effort needed to construct a 

synthetic dataset for a given inspection task. 

The TDG allows researchers to explore what makes good 

synthetic training data for defect detection, which parameter to 

randomize, and how to set appropriate randomization intervals 

for the process parameters. Researchers can use the TDG to 

investigate if synthetic data is useful for their inspection task at 

hand. 

Our use case demonstrates the usability of our approach. 

Future work will apply models with our synthesized data 

directly on real-world data without fine-tuning taking 

advantage of the scalability of our TDG to create very large 

datasets with high variability. Additionally, we will leverage 

the pixelwise ground truth information that our TDG provides 

for object detection and segmentation tasks. 
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distributions for the parameters have to be given as an input for 

the TDG. If no distribution is given then an equal distribution 

is assumed. 

The defect shape is randomized by varying its size, position, 

and orientation on the surface of the object. Additionally, a 

displacement modifier based on a procedural texture is placed 

on the defect tool, see Fig. 1b. For the input parameters of the 

procedural texture intervals for the randomization have to be 

set. The texture randomization depends on the chosen 

procedural texture for a material. An example of an 

implementation is given in chapter 4.  

Camera and illumination position and orientation of the 

virtual camera are varied within the given intervals. For the 

illumination the intensity is varied.  

Table 1. Randomized parameter in training data generator pipeline. 

Group Parameters for randomization 

Defect Position, orientation, size, shape 

Illumination Position, orientation, intensity, spectral 

distribution, shape 

Camera Position, orientation 

Texture Roughness, base color, normal map 

3.3. Implementation  

The TDG was implemented using the 3D computer graphics 

software toolset Blender. Blender features a python API which 

allows us to automate the training data generation by executing 

scripts. Furthermore, Blender allows for advanced 3D object 

manipulation that is used to execute the Boolean operations to 

integrate the defect tool shape into the object. For physical 

based rendering we make use of Blenders raytracing engine 

Cycles. In addition, we use BlenderProc [26] to create the 

segmentation maps showing the defect position in the rendered 

images, see Fig. 4h. 

Fig. 3 shows the general structure of the TDG. For each 

defect object, a script to generate the defects is executed, which 

contains the object’s model with the material applied to it. The 

defect tool is used to generate all defects. Next, the supplied 

camera poses get randomized and for each pose, an arbitrary 

number of additional randomized poses can be added. The 

middle for-loop iterates over all of these randomized poses. 

Then the according light pose is computed. In the same step, 

the light intensity is randomized too. Finally, the innermost for-

loop randomizes the texture. Afterwards, all elements needed 

to execute BlenderProc have been assembled and the first 

image along with its segmentation map can be generated. When 

the textures have been changed the number of times that was 

specified, the next camera pose is chosen and after all camera 

poses have been used, the next defect object is generated. The 

size of the dataset is thus the product of iterations of each for-

loop. 

4. Demonstration 

To demonstrate our training data generation pipeline a part 

from the manufacturing industry was chosen: a turbocharger 

housing for the automotive industry. The cast iron component 

has to be visually inspected after demolding. We choose the 

endoscopic inspection of the part’s cavities for this 

demonstration. Difficult illumination conditions, varying 

relative positioning of the camera to the part’s surface, as well 

as freeform surfaces make the visual inspection of the part 

challenging. The concept of using synthetic data for endoscopic 

inspection was first published in [39]. 

The cast iron component consists of only one surface 

texture, therefore only one texture needs to be modeled. In 

addition, the cavity allows to neglect having to model the 

background since it will not be visible in the images reducing 

the modeling complexity. This makes the part well suited as a 

demonstration part since it combines a challenging image 

processing task with relatively limited modeling effort. 

4.1. Synthetic dataset generation for use case  

To approximate the look of the real-world part, see Fig. 4a, 

we combined noise textures of different scale to generate a 

bump map. The result is shown in Fig. 4c. For this experiment 

we focus on the defect type ‘blowhole’ as seen in Fig. 4b. We 

created a spherical defect tool for our TDG. Fig. 4d shows a 

synthetic defect generated with the defect tool. We randomized 

image features that are not relevant for detecting the defect. Fig. 

4e-g show exemplarily variations in roughness (e), color (f), 

and defect size (g). 

Fig. 3. Flowchart of the training data generator. 
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