
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 107 (2022) 1101–1106

2212-8271 © 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems
10.1016/j.procir.2022.05.115

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing Systems

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

55th CIRP Conference on Manufacturing Systems

Procedural synthetic training data generation for AI-based defect detection

in industrial surface inspection

 Ole Schmedemanna,*, Melvin Baaßa, Daniel Schoepflina, Thorsten Schüppstuhla

aHamburg University of Technology, TUHH, Institute of Aircraft Production Technology, Denickestr. 17, 21073 Hamburg, Germany

* Corresponding author. Tel.: +49-40-42878-3234 ; fax: +49-40-42731-4551. E-mail address: ole.schmedemann@tuhh.de

Abstract

Supervised machine learning methods are increasingly used for detecting defects in automated visual inspection systems. However, these methods

require large quantities of annotated image data of the surface being inspected, including images of defective surfaces. In industrial contexts, it

is difficult to collect the latter since acquiring sufficient image data of defective surfaces is costly and time-consuming. Additionally, gathered

datasets tend to contain selection-bias, e.g. under representation of certain defect classes, and therefore result in insufficient training data quality.

Synthetic training data is a promising alternative as it can be easily generated unbiasedly and in large quantities. In this work, we present a

procedural pipeline for generating training data based on physically based renderings of the object under inspection. Defects are being introduced

as 3D-models on the surface of the object. The generator provides the ability to randomize object and camera parameters within given intervals,

allowing the user to use the domain randomization technique to bridge the domain gap between the synthetic data and the real world. Experiments

suggest that the data generated in this way can be beneficial to training defect detection models.

© 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review - Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing

Systems

 Keywords: Synthetic training data; machine learning; surface inspection; industrial quality control; domain randomization

1. Introduction

Automated optical inspection systems use computer vision

to perform inspection tasks. Setting up a classic computer

vision system is a tedious and time consuming task, e.g. if free-

form geometries have to be inspected. Recent advances in

machine learning methods, most of all Convolutional Neural

Networks (CNNs), promise to be an alternative to classic image

processing pipelines. Critical for the performance of CNNs is

the data with which they are trained. The weakness in visual

defect detection is sufficient training data showing defective

surfaces, mainly due to the following reasons:

• Collecting defective samples is cost intensive [1]

• Biased data through predomination of non-defective

samples [2]

• Laborious manual annotation [3]

• Lack of publicly available datasets [4]

Defective samples are naturally rare in an industrial

production line. Additionally, the collected defective samples

will be biased towards certain types, shapes or positions of

defects on the surface making them less suitable as training

data. Annotating the collected data by hand is laborious, time-

consuming and often requires expertise for identifying defects

in images. Therefore, the creation of comprehensive datasets is

often challenging.

Synthesizing training data by means of computer graphics is

an increasingly used alternative [5, 6]. Benefits of synthetic

data generation are: fast and cheap production of large

quantities, rare events can be represented in synthetic datasets

just as frequently as common events, and automatic annotation

of class labels on a pixel level. Furthermore, training data can

be generated before the first part has been produced, making

AI-assisted detection of surface defects immediately available

at production start. While initial research indicates that

synthetic data may be beneficial [2], its utilization remains

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

55th CIRP Conference on Manufacturing Systems

Procedural synthetic training data generation for AI-based defect detection

in industrial surface inspection

 Ole Schmedemanna,*, Melvin Baaßa, Daniel Schoepflina, Thorsten Schüppstuhla

aHamburg University of Technology, TUHH, Institute of Aircraft Production Technology, Denickestr. 17, 21073 Hamburg, Germany

* Corresponding author. Tel.: +49-40-42878-3234 ; fax: +49-40-42731-4551. E-mail address: ole.schmedemann@tuhh.de

Abstract

Supervised machine learning methods are increasingly used for detecting defects in automated visual inspection systems. However, these methods

require large quantities of annotated image data of the surface being inspected, including images of defective surfaces. In industrial contexts, it

is difficult to collect the latter since acquiring sufficient image data of defective surfaces is costly and time-consuming. Additionally, gathered

datasets tend to contain selection-bias, e.g. under representation of certain defect classes, and therefore result in insufficient training data quality.

Synthetic training data is a promising alternative as it can be easily generated unbiasedly and in large quantities. In this work, we present a

procedural pipeline for generating training data based on physically based renderings of the object under inspection. Defects are being introduced

as 3D-models on the surface of the object. The generator provides the ability to randomize object and camera parameters within given intervals,

allowing the user to use the domain randomization technique to bridge the domain gap between the synthetic data and the real world. Experiments

suggest that the data generated in this way can be beneficial to training defect detection models.

© 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review - Peer-review under responsibility of the International Programme committee of the 55th CIRP Conference on Manufacturing

Systems

 Keywords: Synthetic training data; machine learning; surface inspection; industrial quality control; domain randomization

1. Introduction

Automated optical inspection systems use computer vision

to perform inspection tasks. Setting up a classic computer

vision system is a tedious and time consuming task, e.g. if free-

form geometries have to be inspected. Recent advances in

machine learning methods, most of all Convolutional Neural

Networks (CNNs), promise to be an alternative to classic image

processing pipelines. Critical for the performance of CNNs is

the data with which they are trained. The weakness in visual

defect detection is sufficient training data showing defective

surfaces, mainly due to the following reasons:

• Collecting defective samples is cost intensive [1]

• Biased data through predomination of non-defective

samples [2]

• Laborious manual annotation [3]

• Lack of publicly available datasets [4]

Defective samples are naturally rare in an industrial

production line. Additionally, the collected defective samples

will be biased towards certain types, shapes or positions of

defects on the surface making them less suitable as training

data. Annotating the collected data by hand is laborious, time-

consuming and often requires expertise for identifying defects

in images. Therefore, the creation of comprehensive datasets is

often challenging.

Synthesizing training data by means of computer graphics is

an increasingly used alternative [5, 6]. Benefits of synthetic

data generation are: fast and cheap production of large

quantities, rare events can be represented in synthetic datasets

just as frequently as common events, and automatic annotation

of class labels on a pixel level. Furthermore, training data can

be generated before the first part has been produced, making

AI-assisted detection of surface defects immediately available

at production start. While initial research indicates that

synthetic data may be beneficial [2], its utilization remains

1102	 Ole Schmedemann et al. / Procedia CIRP 107 (2022) 1101–1106
 O. Schmedemann et al. / Procedia CIRP 00 (2022) 000–000 3

use PBR pipelines to render images for the defect detection on

metal surfaces. In both approaches, defects are introduced

using artificially created 2D textures. Gutierrez et al. [2] use

photometric stereo to capture bump maps to texture their

model. Existing approaches partly lack successful domain

transfer, or imply high effort for generating textures.

We aim to overcome limitations of existing approaches by

making extensive use of DR. We introduce defects as 3D

models in the rendering pipeline. Thus we are able to vary the

shape, size, and position of the defects. Additionally, we use

procedural textures instead of laboriously collected real-world

textures. With the procedural textures, the look of the object

can be easily varied by changing the texture parameters which

increases the domain randomization potential.

3. Synthetic data generation pipeline

We first present the overall concept of our data generation

pipeline. Afterward we detail the parameters that are

randomized by the pipeline. Finally, the implementation is

presented.

3.1. Training data generator concept

Our training data generator (TDG) takes user inputs like

models, textures, and process parameters. Then the TDG

generates a scene with a defective object and renders an image

for a set of randomly chosen process parameters, see Fig. 2.

Starting point for the TDG is a 3D model of the inspected

object, which is usually available at the manufacturer.

Additionally, procedural textures are chosen for each surface

type of the object. A procedural texture is a texture created

using a mathematical description. We use procedural textures

for three reasons. Firstly, they can be easily randomized by

varying the parameters used to describe them. Secondly, they

allow the object to be viewed from arbitrary distances since

their resolution scales with the distance. Lastly, texture

mapping with procedural textures does not generate seams on

the part reducing the risk for unwanted artifacts in the rendered

image.

Procedural textures can be chosen from texture libraries for

common materials. An exact modeling of the real surface

behavior is not necessary, since the parameters describing the

texture will be randomized within chosen intervals. Thus the

total effort is reduced compared to other methods, e.g. [2].

Together with the procedural textures, we use physically based

rendering (PBR) to keep the discrepancy between the synthetic

and the real-world domain small.

Additional inputs for the TDG are camera and illumination

parameters. Camera parameters are necessary to describe the

virtual camera for the rendering engine and include field of

view, resolution, and position and orientation. The illumination

parameters are used to approximate the illumination behavior

in the inspection setup and include shape, size, intensity, color

temperature, position, and orientation.

Based on these inputs the TDG generates the synthetic

images. The first step is the defect creation. Our defect

generation method is inspired by Bosnar et al. [38]. Defect tools

are used to modify the mesh of the main object using Boolean

operators. A negative defect tool is modelled for each defect

type. The tool must have the shape which has to be imprinted

into or added onto the surface of the inspected object. Fig. 1

shows the defect generation exemplarily for a spherical defect

tool, which can be used to simulate blowhole defects in cast

iron. For different defect types tools can be created and used in

a similar way in the TDG. Defect tools that are not symmetric

may be oriented towards the surface normal at the point of

introduction into the object.

Outputs of the TDG are the rendered images as well as a

segmentation map, which states which pixel belongs to a

defective or a defect-free surface. In that way, our generated

images can be used to train a model for object segmentation but

also for object detection and image classification tasks. To

ensure transferability for our generated images, we aim to

randomize as many parameters as possible within our

modeling. Next, we specify what those parameters are.

3.2. Domain randomization

We group our parameters, based on the object type the

parameter is assigned to, into the four groups Defect,

Illumination, Camera, and Texture, see Table 1. Intervals and
Fig. 2. Concept of the training data generator.

Fig. 1. (a) Negative defect form; (b) negative defect form with displacement

modifier; (c) defect introduced to part.

a b c

2 O. Schmedemann et al ./ Procedia CIRP 00 (2022) 000–000

challenging and not ubiquitous. The main obstacle is the

transferability from the synthetic domain to the real domain [7].

In this work, a novel approach for synthesizing training data

for CNN-assisted defect detection is proposed. Existing

approaches for synthetic defect generation are based on 2D

mergence of images [8] and 2D defect maps [2, 9–11]. Despite

initial success and principal applicability of synthetic data

generation for defect detection, those approaches are limited to

special use cases, complex in implementation, or not able to

completely close the domain gap. Therefore, we aim to

introduce a novel approach for synthesizing 3D objects and

defect data.

For this approach, a 3D model of the object under inspection

is rendered. Defects are introduced into the model using

negatives of the defect geometry. To bridge the domain gap to

the real world the principle of domain randomization is used

[12]. Process parameters like textures, illumination, and defect

shape are randomized within intervals. The goal is to extend

the synthetic domain to such an extent that the real domain

becomes a subset of the synthetic domain, enabling models

trained with synthetic data to be applied to real-world data. In

addition, less sensor realism is needed to reduce the modeling

complexity in the rendering pipeline. To our knowledge, this is

the first extensive utilization of the principle of domain

randomization for the generation of synthetic data for visual

defect detection.

2. Related work

CNNs have improved visual object recognition and object

detection significantly [13]. However, when only trained with

datasets of small size, models tend to overfit and produce poor

results. Popular strategies in dealing with small datasets are

data augmentation, transfer learning, use of pre-trained models,

or synthetic training data.

For detection of everyday objects, extensive datasets are

available, e.g. ImageNet [14], KITTI [15], or MS COCO [16],

which can be used to pre-train models. On the contrary,

publically available datasets for surface defect detection,

e.g. NEU-DET [3] or GC10-DET [4], are not extensive enough

to be used for pre-training and are limited to specialized use

cases, thus lacking the ability to transfer to new inspection

tasks. The availability of suitable training data inhibits the

further spread of the use of CNNs in industrial inspection.

2.1. Synthetic training data

Multiple approaches such as [12, 17–20] have shown that

synthetic data can be used to solve the data availability problem

with small or biased datasets. Nikolenko gives an extensive

survey on research regarding synthetic training data [21]:

Machine learning models usually assume, that training and test

data distributions are similar. However, the distributions of

synthesized training data and real world test data differ

significantly, making the domain transfer from source to target

domain challenging. Several strategies have been proposed to

tackle this challenge:

• Domain adaptation

• Sensor-realistic rendering

• Domain randomization

The goal of domain adaptation techniques is to reduce the

statistical deviation between source and target domain. Several

strategies, e.g. adversarial learning or generative-based, have

been suggested to adapt the domains. Toldo et al. [22]

summarize state of the art domain adaption methods.

As stated by Hodan et al. [23] a high degree of visual realism

can be achieved by focusing on modeling the geometry,

textures and materials to a high level of detail and by simulating

the lighting as physically correct as possible. A technique

known as physically based rendering (PBR) [24] has been

shown to help in bridging the domain gap and may even be

necessary for rendering usable images featuring complex

reflections.

The goal of domain randomization (DR) as introduced by

Tobin et al. [12] is to extend the synthetic domain to the point

where the real domain becomes a subset of the synthetic

domain. They showed that DR enables the use of lower-quality

renderers which are optimized for speed. Tremblay et al. [25]

demonstrated that parts of the domain, which are not the feature

that is to be detected, can be randomized in a non-realistic way.

Prakash et al. [18] demonstrate further that generating images

which preserve the structure of a scene can increase the

performance of DR further.

 Several toolboxes like BlenderProc [26], NDDS [27], and

Perception [28] have been published in order to assist

researchers to render images and generate annotations. These

toolboxes assume that 3D models and texture maps of the

objects to be rendered are available. For surface defects, these

must first be created, thus they cannot be directly deployed for

industrial inspection tasks.

2.2. Synthetic data generation for visual quality inspection

Successful automated visual defect detection with CNNs

has been extensively demonstrated [29–33]. Typically, these

authors approach the data problem by tediously collecting data

for their use case or by relying on existing data collected with

vision systems in the field. Each of the aforementioned

researchers created a dataset specific to their inspection task

that cannot be generalized to other inspection tasks.

There exists a variety of approaches for the generation of

synthetic data for visual inspection that can be categorized into

rendering-based and generative-based methods. Generative

approaches use generative adversarial networks (GANs) to

create or augment training data [10, 11, 34–36] making use of

their intrinsic domain adaption capability, while rendering

approaches [1, 2, 7, 9, 37] aim for high sensor-realism.

Retzlaff et al. [7] use procedural modeling and PBR to

generate images for glass shade classification. Lee et al. [37]

combine DR and sensor-realism to render images for industrial

object detection. [2, 8, 9] create synthetic images for defect

detection. Haselmann and Gruber [8] use real images and

overlay them with randomly generated defect textures. [2, 9]

	 Ole Schmedemann et al. / Procedia CIRP 107 (2022) 1101–1106� 1103
 O. Schmedemann et al. / Procedia CIRP 00 (2022) 000–000 3

use PBR pipelines to render images for the defect detection on

metal surfaces. In both approaches, defects are introduced

using artificially created 2D textures. Gutierrez et al. [2] use

photometric stereo to capture bump maps to texture their

model. Existing approaches partly lack successful domain

transfer, or imply high effort for generating textures.

We aim to overcome limitations of existing approaches by

making extensive use of DR. We introduce defects as 3D

models in the rendering pipeline. Thus we are able to vary the

shape, size, and position of the defects. Additionally, we use

procedural textures instead of laboriously collected real-world

textures. With the procedural textures, the look of the object

can be easily varied by changing the texture parameters which

increases the domain randomization potential.

3. Synthetic data generation pipeline

We first present the overall concept of our data generation

pipeline. Afterward we detail the parameters that are

randomized by the pipeline. Finally, the implementation is

presented.

3.1. Training data generator concept

Our training data generator (TDG) takes user inputs like

models, textures, and process parameters. Then the TDG

generates a scene with a defective object and renders an image

for a set of randomly chosen process parameters, see Fig. 2.

Starting point for the TDG is a 3D model of the inspected

object, which is usually available at the manufacturer.

Additionally, procedural textures are chosen for each surface

type of the object. A procedural texture is a texture created

using a mathematical description. We use procedural textures

for three reasons. Firstly, they can be easily randomized by

varying the parameters used to describe them. Secondly, they

allow the object to be viewed from arbitrary distances since

their resolution scales with the distance. Lastly, texture

mapping with procedural textures does not generate seams on

the part reducing the risk for unwanted artifacts in the rendered

image.

Procedural textures can be chosen from texture libraries for

common materials. An exact modeling of the real surface

behavior is not necessary, since the parameters describing the

texture will be randomized within chosen intervals. Thus the

total effort is reduced compared to other methods, e.g. [2].

Together with the procedural textures, we use physically based

rendering (PBR) to keep the discrepancy between the synthetic

and the real-world domain small.

Additional inputs for the TDG are camera and illumination

parameters. Camera parameters are necessary to describe the

virtual camera for the rendering engine and include field of

view, resolution, and position and orientation. The illumination

parameters are used to approximate the illumination behavior

in the inspection setup and include shape, size, intensity, color

temperature, position, and orientation.

Based on these inputs the TDG generates the synthetic

images. The first step is the defect creation. Our defect

generation method is inspired by Bosnar et al. [38]. Defect tools

are used to modify the mesh of the main object using Boolean

operators. A negative defect tool is modelled for each defect

type. The tool must have the shape which has to be imprinted

into or added onto the surface of the inspected object. Fig. 1

shows the defect generation exemplarily for a spherical defect

tool, which can be used to simulate blowhole defects in cast

iron. For different defect types tools can be created and used in

a similar way in the TDG. Defect tools that are not symmetric

may be oriented towards the surface normal at the point of

introduction into the object.

Outputs of the TDG are the rendered images as well as a

segmentation map, which states which pixel belongs to a

defective or a defect-free surface. In that way, our generated

images can be used to train a model for object segmentation but

also for object detection and image classification tasks. To

ensure transferability for our generated images, we aim to

randomize as many parameters as possible within our

modeling. Next, we specify what those parameters are.

3.2. Domain randomization

We group our parameters, based on the object type the

parameter is assigned to, into the four groups Defect,

Illumination, Camera, and Texture, see Table 1. Intervals and
Fig. 2. Concept of the training data generator.

Fig. 1. (a) Negative defect form; (b) negative defect form with displacement

modifier; (c) defect introduced to part.

a b c

2 O. Schmedemann et al ./ Procedia CIRP 00 (2022) 000–000

challenging and not ubiquitous. The main obstacle is the

transferability from the synthetic domain to the real domain [7].

In this work, a novel approach for synthesizing training data

for CNN-assisted defect detection is proposed. Existing

approaches for synthetic defect generation are based on 2D

mergence of images [8] and 2D defect maps [2, 9–11]. Despite

initial success and principal applicability of synthetic data

generation for defect detection, those approaches are limited to

special use cases, complex in implementation, or not able to

completely close the domain gap. Therefore, we aim to

introduce a novel approach for synthesizing 3D objects and

defect data.

For this approach, a 3D model of the object under inspection

is rendered. Defects are introduced into the model using

negatives of the defect geometry. To bridge the domain gap to

the real world the principle of domain randomization is used

[12]. Process parameters like textures, illumination, and defect

shape are randomized within intervals. The goal is to extend

the synthetic domain to such an extent that the real domain

becomes a subset of the synthetic domain, enabling models

trained with synthetic data to be applied to real-world data. In

addition, less sensor realism is needed to reduce the modeling

complexity in the rendering pipeline. To our knowledge, this is

the first extensive utilization of the principle of domain

randomization for the generation of synthetic data for visual

defect detection.

2. Related work

CNNs have improved visual object recognition and object

detection significantly [13]. However, when only trained with

datasets of small size, models tend to overfit and produce poor

results. Popular strategies in dealing with small datasets are

data augmentation, transfer learning, use of pre-trained models,

or synthetic training data.

For detection of everyday objects, extensive datasets are

available, e.g. ImageNet [14], KITTI [15], or MS COCO [16],

which can be used to pre-train models. On the contrary,

publically available datasets for surface defect detection,

e.g. NEU-DET [3] or GC10-DET [4], are not extensive enough

to be used for pre-training and are limited to specialized use

cases, thus lacking the ability to transfer to new inspection

tasks. The availability of suitable training data inhibits the

further spread of the use of CNNs in industrial inspection.

2.1. Synthetic training data

Multiple approaches such as [12, 17–20] have shown that

synthetic data can be used to solve the data availability problem

with small or biased datasets. Nikolenko gives an extensive

survey on research regarding synthetic training data [21]:

Machine learning models usually assume, that training and test

data distributions are similar. However, the distributions of

synthesized training data and real world test data differ

significantly, making the domain transfer from source to target

domain challenging. Several strategies have been proposed to

tackle this challenge:

• Domain adaptation

• Sensor-realistic rendering

• Domain randomization

The goal of domain adaptation techniques is to reduce the

statistical deviation between source and target domain. Several

strategies, e.g. adversarial learning or generative-based, have

been suggested to adapt the domains. Toldo et al. [22]

summarize state of the art domain adaption methods.

As stated by Hodan et al. [23] a high degree of visual realism

can be achieved by focusing on modeling the geometry,

textures and materials to a high level of detail and by simulating

the lighting as physically correct as possible. A technique

known as physically based rendering (PBR) [24] has been

shown to help in bridging the domain gap and may even be

necessary for rendering usable images featuring complex

reflections.

The goal of domain randomization (DR) as introduced by

Tobin et al. [12] is to extend the synthetic domain to the point

where the real domain becomes a subset of the synthetic

domain. They showed that DR enables the use of lower-quality

renderers which are optimized for speed. Tremblay et al. [25]

demonstrated that parts of the domain, which are not the feature

that is to be detected, can be randomized in a non-realistic way.

Prakash et al. [18] demonstrate further that generating images

which preserve the structure of a scene can increase the

performance of DR further.

 Several toolboxes like BlenderProc [26], NDDS [27], and

Perception [28] have been published in order to assist

researchers to render images and generate annotations. These

toolboxes assume that 3D models and texture maps of the

objects to be rendered are available. For surface defects, these

must first be created, thus they cannot be directly deployed for

industrial inspection tasks.

2.2. Synthetic data generation for visual quality inspection

Successful automated visual defect detection with CNNs

has been extensively demonstrated [29–33]. Typically, these

authors approach the data problem by tediously collecting data

for their use case or by relying on existing data collected with

vision systems in the field. Each of the aforementioned

researchers created a dataset specific to their inspection task

that cannot be generalized to other inspection tasks.

There exists a variety of approaches for the generation of

synthetic data for visual inspection that can be categorized into

rendering-based and generative-based methods. Generative

approaches use generative adversarial networks (GANs) to

create or augment training data [10, 11, 34–36] making use of

their intrinsic domain adaption capability, while rendering

approaches [1, 2, 7, 9, 37] aim for high sensor-realism.

Retzlaff et al. [7] use procedural modeling and PBR to

generate images for glass shade classification. Lee et al. [37]

combine DR and sensor-realism to render images for industrial

object detection. [2, 8, 9] create synthetic images for defect

detection. Haselmann and Gruber [8] use real images and

overlay them with randomly generated defect textures. [2, 9]

1104	 Ole Schmedemann et al. / Procedia CIRP 107 (2022) 1101–1106
 O. Schmedemann et al. / Procedia CIRP 00 (2022) 000–000 5

We manually chose a set of 137 inspection poses as an input

for the TDG. We generated 100 defects in a part and generated

822 images per part. We repeated this process for 6 times. The

generated images were filtered depending on the defect size in

the image. Defects larger than 50 px became part of the

defective class. Images without visible defects were assigned

to the defect-free class. Images with very small defects were

not further considered. In this way a synthetic dataset with

4.906 images was created.

4.2. Model training

To evaluate the suitability of our approach we created two

real-world datasets of endoscopic images. The training and the

test dataset show both defective and defect-free textures, see

Fig. 4a-b, and consist of each 110 images. The real-world

training dataset was split into equally sized training and

validation datasets.

We used an 18-layer ResNet [40] architecture which was

pre-trained on the ImageNet dataset. Two experiments were

conducted. First, we trained the model with the synthesized

dataset. We split the synthetic dataset in an 80/20 ratio in a

training and a validation dataset and pre-trained with a learning

rate of 1e-4 and a batch size of 64 for 45 epochs. Then, we fine-

tuned the model with the real-world training dataset. For the

second experiment we trained the model directly with the real-

world training dataset without using our synthetic data.

For the two experiments we conducted a hyperparameter

search and evaluated combinations of three learning rates (1e-

2, 1e-3, and 1e-4) and three batch sizes (16, 32, and 64). We

trained for 25 epochs with an SGD optimizer. In both

experiments the best performing network based on the

validation accuracy was tested on the real-world test dataset.

The model that was pre-trained with our synthetic data

(accuracy 98.2 %, recall 96.2 %, specificity 100 %)

outperformed the model solely trained on real-world data

(accuracy 93.6 %, recall 94.2 %, specificity 93.1 %). The

results of our investigation indicate that synthetic training data

generated with our approach can be beneficial for training

defect detection models when few real-world images are

available.

5. Conclusion and outlook

We introduced and implemented a training data generator

that makes extensive use of the principle of domain

randomization and can be used to generate synthetic training

data for visual defect detection tasks. Our concept radically

reduces the overall complexity and effort needed to construct a

synthetic dataset for a given inspection task.

The TDG allows researchers to explore what makes good

synthetic training data for defect detection, which parameter to

randomize, and how to set appropriate randomization intervals

for the process parameters. Researchers can use the TDG to

investigate if synthetic data is useful for their inspection task at

hand.

Our use case demonstrates the usability of our approach.

Future work will apply models with our synthesized data

directly on real-world data without fine-tuning taking

advantage of the scalability of our TDG to create very large

datasets with high variability. Additionally, we will leverage

the pixelwise ground truth information that our TDG provides

for object detection and segmentation tasks.

CRediT author statement

Ole Schmedemann: Conceptualization, Methodology,

Software, Investigation, Writing - Original Draft, Writing -

Review & Editing, Visualization. Melvin Baaß:

Conceptualization, Methodology, Software, Writing - Review

& Editing. Daniel Schoepflin: Writing - Review & Editing.

Thorsten Schüppstuhl: Writing - Original Draft, Supervision,

Resources, Funding acquisition, Project administration.

Fig. 4. (a) real-world endoscopic image of turbocharger housing cavity; (b) real-world endoscopic image of blowhole; (c) synthetic image from modeling; (d)

synthetic image with generated defect from TDG; (e) example of variation of roughness; (f) example of variation of color; (g) example of variation of defect

size; (h) segmentation map

e

a b c d

f g h

4 O. Schmedemann et al ./ Procedia CIRP 00 (2022) 000–000

distributions for the parameters have to be given as an input for

the TDG. If no distribution is given then an equal distribution

is assumed.

The defect shape is randomized by varying its size, position,

and orientation on the surface of the object. Additionally, a

displacement modifier based on a procedural texture is placed

on the defect tool, see Fig. 1b. For the input parameters of the

procedural texture intervals for the randomization have to be

set. The texture randomization depends on the chosen

procedural texture for a material. An example of an

implementation is given in chapter 4.

Camera and illumination position and orientation of the

virtual camera are varied within the given intervals. For the

illumination the intensity is varied.

Table 1. Randomized parameter in training data generator pipeline.

Group Parameters for randomization

Defect Position, orientation, size, shape

Illumination Position, orientation, intensity, spectral

distribution, shape

Camera Position, orientation

Texture Roughness, base color, normal map

3.3. Implementation

The TDG was implemented using the 3D computer graphics

software toolset Blender. Blender features a python API which

allows us to automate the training data generation by executing

scripts. Furthermore, Blender allows for advanced 3D object

manipulation that is used to execute the Boolean operations to

integrate the defect tool shape into the object. For physical

based rendering we make use of Blenders raytracing engine

Cycles. In addition, we use BlenderProc [26] to create the

segmentation maps showing the defect position in the rendered

images, see Fig. 4h.

Fig. 3 shows the general structure of the TDG. For each

defect object, a script to generate the defects is executed, which

contains the object’s model with the material applied to it. The

defect tool is used to generate all defects. Next, the supplied

camera poses get randomized and for each pose, an arbitrary

number of additional randomized poses can be added. The

middle for-loop iterates over all of these randomized poses.

Then the according light pose is computed. In the same step,

the light intensity is randomized too. Finally, the innermost for-

loop randomizes the texture. Afterwards, all elements needed

to execute BlenderProc have been assembled and the first

image along with its segmentation map can be generated. When

the textures have been changed the number of times that was

specified, the next camera pose is chosen and after all camera

poses have been used, the next defect object is generated. The

size of the dataset is thus the product of iterations of each for-

loop.

4. Demonstration

To demonstrate our training data generation pipeline a part

from the manufacturing industry was chosen: a turbocharger

housing for the automotive industry. The cast iron component

has to be visually inspected after demolding. We choose the

endoscopic inspection of the part’s cavities for this

demonstration. Difficult illumination conditions, varying

relative positioning of the camera to the part’s surface, as well

as freeform surfaces make the visual inspection of the part

challenging. The concept of using synthetic data for endoscopic

inspection was first published in [39].

The cast iron component consists of only one surface

texture, therefore only one texture needs to be modeled. In

addition, the cavity allows to neglect having to model the

background since it will not be visible in the images reducing

the modeling complexity. This makes the part well suited as a

demonstration part since it combines a challenging image

processing task with relatively limited modeling effort.

4.1. Synthetic dataset generation for use case

To approximate the look of the real-world part, see Fig. 4a,

we combined noise textures of different scale to generate a

bump map. The result is shown in Fig. 4c. For this experiment

we focus on the defect type ‘blowhole’ as seen in Fig. 4b. We

created a spherical defect tool for our TDG. Fig. 4d shows a

synthetic defect generated with the defect tool. We randomized

image features that are not relevant for detecting the defect. Fig.

4e-g show exemplarily variations in roughness (e), color (f),

and defect size (g).

Fig. 3. Flowchart of the training data generator.

	 Ole Schmedemann et al. / Procedia CIRP 107 (2022) 1101–1106� 1105
 O. Schmedemann et al. / Procedia CIRP 00 (2022) 000–000 5

We manually chose a set of 137 inspection poses as an input

for the TDG. We generated 100 defects in a part and generated

822 images per part. We repeated this process for 6 times. The

generated images were filtered depending on the defect size in

the image. Defects larger than 50 px became part of the

defective class. Images without visible defects were assigned

to the defect-free class. Images with very small defects were

not further considered. In this way a synthetic dataset with

4.906 images was created.

4.2. Model training

To evaluate the suitability of our approach we created two

real-world datasets of endoscopic images. The training and the

test dataset show both defective and defect-free textures, see

Fig. 4a-b, and consist of each 110 images. The real-world

training dataset was split into equally sized training and

validation datasets.

We used an 18-layer ResNet [40] architecture which was

pre-trained on the ImageNet dataset. Two experiments were

conducted. First, we trained the model with the synthesized

dataset. We split the synthetic dataset in an 80/20 ratio in a

training and a validation dataset and pre-trained with a learning

rate of 1e-4 and a batch size of 64 for 45 epochs. Then, we fine-

tuned the model with the real-world training dataset. For the

second experiment we trained the model directly with the real-

world training dataset without using our synthetic data.

For the two experiments we conducted a hyperparameter

search and evaluated combinations of three learning rates (1e-

2, 1e-3, and 1e-4) and three batch sizes (16, 32, and 64). We

trained for 25 epochs with an SGD optimizer. In both

experiments the best performing network based on the

validation accuracy was tested on the real-world test dataset.

The model that was pre-trained with our synthetic data

(accuracy 98.2 %, recall 96.2 %, specificity 100 %)

outperformed the model solely trained on real-world data

(accuracy 93.6 %, recall 94.2 %, specificity 93.1 %). The

results of our investigation indicate that synthetic training data

generated with our approach can be beneficial for training

defect detection models when few real-world images are

available.

5. Conclusion and outlook

We introduced and implemented a training data generator

that makes extensive use of the principle of domain

randomization and can be used to generate synthetic training

data for visual defect detection tasks. Our concept radically

reduces the overall complexity and effort needed to construct a

synthetic dataset for a given inspection task.

The TDG allows researchers to explore what makes good

synthetic training data for defect detection, which parameter to

randomize, and how to set appropriate randomization intervals

for the process parameters. Researchers can use the TDG to

investigate if synthetic data is useful for their inspection task at

hand.

Our use case demonstrates the usability of our approach.

Future work will apply models with our synthesized data

directly on real-world data without fine-tuning taking

advantage of the scalability of our TDG to create very large

datasets with high variability. Additionally, we will leverage

the pixelwise ground truth information that our TDG provides

for object detection and segmentation tasks.

CRediT author statement

Ole Schmedemann: Conceptualization, Methodology,

Software, Investigation, Writing - Original Draft, Writing -

Review & Editing, Visualization. Melvin Baaß:

Conceptualization, Methodology, Software, Writing - Review

& Editing. Daniel Schoepflin: Writing - Review & Editing.

Thorsten Schüppstuhl: Writing - Original Draft, Supervision,

Resources, Funding acquisition, Project administration.

Fig. 4. (a) real-world endoscopic image of turbocharger housing cavity; (b) real-world endoscopic image of blowhole; (c) synthetic image from modeling; (d)

synthetic image with generated defect from TDG; (e) example of variation of roughness; (f) example of variation of color; (g) example of variation of defect

size; (h) segmentation map

e

a b c d

f g h

4 O. Schmedemann et al ./ Procedia CIRP 00 (2022) 000–000

distributions for the parameters have to be given as an input for

the TDG. If no distribution is given then an equal distribution

is assumed.

The defect shape is randomized by varying its size, position,

and orientation on the surface of the object. Additionally, a

displacement modifier based on a procedural texture is placed

on the defect tool, see Fig. 1b. For the input parameters of the

procedural texture intervals for the randomization have to be

set. The texture randomization depends on the chosen

procedural texture for a material. An example of an

implementation is given in chapter 4.

Camera and illumination position and orientation of the

virtual camera are varied within the given intervals. For the

illumination the intensity is varied.

Table 1. Randomized parameter in training data generator pipeline.

Group Parameters for randomization

Defect Position, orientation, size, shape

Illumination Position, orientation, intensity, spectral

distribution, shape

Camera Position, orientation

Texture Roughness, base color, normal map

3.3. Implementation

The TDG was implemented using the 3D computer graphics

software toolset Blender. Blender features a python API which

allows us to automate the training data generation by executing

scripts. Furthermore, Blender allows for advanced 3D object

manipulation that is used to execute the Boolean operations to

integrate the defect tool shape into the object. For physical

based rendering we make use of Blenders raytracing engine

Cycles. In addition, we use BlenderProc [26] to create the

segmentation maps showing the defect position in the rendered

images, see Fig. 4h.

Fig. 3 shows the general structure of the TDG. For each

defect object, a script to generate the defects is executed, which

contains the object’s model with the material applied to it. The

defect tool is used to generate all defects. Next, the supplied

camera poses get randomized and for each pose, an arbitrary

number of additional randomized poses can be added. The

middle for-loop iterates over all of these randomized poses.

Then the according light pose is computed. In the same step,

the light intensity is randomized too. Finally, the innermost for-

loop randomizes the texture. Afterwards, all elements needed

to execute BlenderProc have been assembled and the first

image along with its segmentation map can be generated. When

the textures have been changed the number of times that was

specified, the next camera pose is chosen and after all camera

poses have been used, the next defect object is generated. The

size of the dataset is thus the product of iterations of each for-

loop.

4. Demonstration

To demonstrate our training data generation pipeline a part

from the manufacturing industry was chosen: a turbocharger

housing for the automotive industry. The cast iron component

has to be visually inspected after demolding. We choose the

endoscopic inspection of the part’s cavities for this

demonstration. Difficult illumination conditions, varying

relative positioning of the camera to the part’s surface, as well

as freeform surfaces make the visual inspection of the part

challenging. The concept of using synthetic data for endoscopic

inspection was first published in [39].

The cast iron component consists of only one surface

texture, therefore only one texture needs to be modeled. In

addition, the cavity allows to neglect having to model the

background since it will not be visible in the images reducing

the modeling complexity. This makes the part well suited as a

demonstration part since it combines a challenging image

processing task with relatively limited modeling effort.

4.1. Synthetic dataset generation for use case

To approximate the look of the real-world part, see Fig. 4a,

we combined noise textures of different scale to generate a

bump map. The result is shown in Fig. 4c. For this experiment

we focus on the defect type ‘blowhole’ as seen in Fig. 4b. We

created a spherical defect tool for our TDG. Fig. 4d shows a

synthetic defect generated with the defect tool. We randomized

image features that are not relevant for detecting the defect. Fig.

4e-g show exemplarily variations in roughness (e), color (f),

and defect size (g).

Fig. 3. Flowchart of the training data generator.

1106	 Ole Schmedemann et al. / Procedia CIRP 107 (2022) 1101–1106
6 O. Schmedemann et al ./ Procedia CIRP 00 (2022) 000–000

Acknowledgements

This research was funded by the German Federal Ministry

for Economic Affairs and Climate Action under grant number

ZF4736301LP9.

References

[1] Peres, R.S., Guedes, M., Miranda, F., Barata, J., 2021. Simulation-

Based Data Augmentation for the Quality Inspection of Structural

Adhesive With Deep Learning. IEEE Access 9, p. 76532.

[2] Gutierrez, P., Luschkova, M., Cordier, A., Shukor, M., Schappert, M.,

Dahmen, T., 2021. Synthetic Training Data Generation for Deep

Learning Based Quality Inspection.

[3] He, Y., Song, K., Meng, Q., Yan, Y., 2020. An End-to-End Steel

Surface Defect Detection Approach via Fusing Multiple Hierarchical

Features. IEEE Transactions on Instrumentation and Measurement 69,

p. 1493.

[4] Lv, X., Duan, F., Jiang, J.-J., Fu, X., Gan, L., 2020. Deep Metallic

Surface Defect Detection: The New Benchmark and Detection

Network. Sensors (Basel, Switzerland) 20.

[5] Peng, X., Sun, B., Ali, K., Saenko, K., 2014. Learning Deep Object

Detectors from 3D Models.

[6] Su, H., Qi, C.R., Li, Y., Guibas, L.J., 2015. Render for CNN:

Viewpoint Estimation in Images Using CNNs Trained with Rendered

3D Model Views, in 2015 IEEE International Conference on

Computer Vision (ICCV), IEEE, p. 2686.

[7] Retzlaff, M.-G., Richter, M., Längle, T., Beyerer, J., Dachsbacher, C.,

2016. Combining synthetic image acquisition and machine learning:

accelerated design and deployment of sorting systems. Forum

Bildverarbeitung 2016, p. 49.

[8] Haselmann, M., Gruber, D.P., 2019. Pixel-Wise Defect Detection by

CNNs without Manually Labeled Training Data. Applied Artificial

Intelligence 33, p. 548.

[9] Boikov, A., Payor, V., Savelev, R., Kolesnikov, A., 2021. Synthetic

Data Generation for Steel Defect Detection and Classification Using

Deep Learning. Symmetry 13, p. 1176.

[10] Niu, S., Li, B., Wang, X., Lin, H., 2020. Defect Image Sample

Generation With GAN for Improving Defect Recognition. IEEE

Transactions on Automation Science and Engineering, p. 1.

[11] Li, B., Yuan, X., Shi, M., 2020. Synthetic data generation based on

local-foreground generative adversarial networks for surface defect

detection. Journal of Electronic Imaging 29, p. 1.

[12] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.,

2017. Domain Randomization for Transferring Deep Neural Networks

from Simulation to the Real World, in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE, p. 23.

[13] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521,

p. 436.

[14] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009.

ImageNet: A large-scale hierarchical image database, in 2009 IEEE

Conference on Computer Vision and Pattern Recognition, IEEE, p.

248.

[15] Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets

robotics: The KITTI dataset. The International Journal of Robotics

Research 32, p. 1231.

[16] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,

Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: Common Objects in

Context, in Computer Vision – ECCV 2014, Springer International

Publishing, Cham, p. 740.

[17] Hinterstoisser, S., Lepetit, V., Wohlhart, P., Konolige, K., 2017. On

Pre-Trained Image Features and Synthetic Images for Deep Learning.

[18] Prakash, A., Boochoon, S., Brophy, M., Acuna, D., Cameracci, E.,

State, G., Shapira, O., Birchfield, S., 2019. Structured Domain

Randomization: Bridging the Reality Gap by Context-Aware Synthetic

Data, in 2019 International Conference on Robotics and Automation

(ICRA), IEEE, p. 7249.

[19] Schoepflin, D., Holst, D., Gomse, M., Schüppstuhl, T., 2021.

Synthetic Training Data Generation for Visual Object Identification on

Load Carriers. Procedia CIRP 104, p. 1257.

[20] Magana, A., Wu, H., Bauer, P., Reinhart, G., 92020. PoseNetwork:

Pipeline for the Automated Generation of Synthetic Training Data and

CNN for Object Detection, Segmentation, and Orientation Estimation,

in 2020 25th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), IEEE, p. 587.

[21] Nikolenko, S.I., 2021. Synthetic Data for Deep Learning, 1st edn.

Springer International Publishing; Imprint Springer, Cham.

[22] Toldo, M., Maracani, A., Michieli, U., Zanuttigh, P., 2020.

Unsupervised Domain Adaptation in Semantic Segmentation: A

Review. Technologies 8, p. 35.

[23] Hodan, T., Vineet, V., Gal, R., Shalev, E., Hanzelka, J., Connell, T.,

Urbina, P., Sinha, S.N., Guenter, B., 2019. Photorealistic Image

Synthesis for Object Instance Detection.

[24] Pharr, M., Jakob, W., Humphreys, G., 2017. Physically Based

Rendering, 3rd edn. Elsevier.

[25] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy,

Varun Jampani, Cem Anil, Thang To, Eric Cameracci, Shaad

Boochoon, Stan Birchfield, 2018. Training Deep Networks With

Synthetic Data: Bridging the Reality Gap by Domain Randomization.

Proceedings of the IEEE conference on computer vision and pattern

recognition workshops, p. 969.

[26] Denninger, M., Sundermeyer, M., Winkelbauer, D., Zidan, Y., Olefir,

D., Elbadrawy, M., Lodhi, A., Katam, H., 2019. BlenderProc.

[27] To, T., Tremblay, J., McKay, D., Yamaguchi, Y., Leung, K., Balanon,

A., Cheng, J., Hodge, W., Birchfield, S. NDDS: NVIDIA Deep

Learning Dataset Synthesizer, 2018.

[28] Unity Technologies. Unity Perception Package, 2020.

[29] Staar, B., Lütjen, M., Freitag, M., 2019. Anomaly detection with

convolutional neural networks for industrial surface inspection, in

Procedia CIRP (79), Elsevier, p. 484.

[30] Soukup, D., Huber-Mörk, R., 2014. Convolutional Neural Networks

for Steel Surface Defect Detection from Photometric Stereo Images, in

Advances in Visual Computing, Springer International Publishing,

Cham, p. 668.

[31] Weimer, D., Scholz-Reiter, B., Shpitalni, M., 2016. Design of deep

convolutional neural network architectures for automated feature

extraction in industrial inspection. CIRP Annals 65, p. 417.

[32] Kim, S., Kim, W., Noh, Y.-K., Park, F.C., 2017 - 2017. Transfer

learning for automated optical inspection, in 2017 International Joint

Conference on Neural Networks (IJCNN), IEEE, p. 2517.

[33] Faghih-Roohi, S., Hajizadeh, S., Nunez, A., Babuska, R., Schutter, B.

de, 2016 - 2016. Deep convolutional neural networks for detection of

rail surface defects, in 2016 International Joint Conference on Neural

Networks (IJCNN), IEEE, p. 2584.

[34] Martin Mundt, Sagnik Majumder, Sreenivas Murali, Panagiotis

Panetsos, Visvanathan Ramesh, 2019. CODEBRIM: COncrete DEfect

BRidge IMage Dataset. Zenodo.

[35] Mery, D., 2020. Aluminum Casting Inspection Using Deep Learning:

A Method Based on Convolutional Neural Networks. Journal of

Nondestructive Evaluation 39.

[36] Jain, S., Seth, G., Paruthi, A., Soni, U., Kumar, G., 2020. Synthetic

data augmentation for surface defect detection and classification using

deep learning. Journal of Intelligent Manufacturing.

[37] Lee, Y.-H., Chuang, C.-C., Lai, S.-H., Jhang, Z.-J., 2019. Automatic

Generation of Photorealistic Training Data for Detection of Industrial

Components, in 2019 IEEE International Conference on Image

Processing (ICIP), IEEE, p. 2751.

[38] Bosnar, L., Saric, D., Dutta, S., Weibel, T., Rauhut, M., Hagen, H.,

Gospodnetic, P., 2020. Image Synthesis Pipeline for Surface

Inspection.

[39] Bath, L., Schmedemann, O., Schüppstuhl, T., 2021. Development of

new means regarding sensor positioning and measurement data

evaluation – automation of industrial endoscopy. wt Werkstattstechnik

online, p. 644.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2016. Deep

Residual Learning for Image Recognition. Proceedings of the IEEE

conference on computer vision and pattern recognition, S. 770-778.

