
Time- and Space-Efficient
Self-Stabilizing Algorithms

Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Bernd Hauck

aus

Hamburg

2012

Date of Oral Examination December 19th, 2012

Chair of Examination Board Prof. Dr. Sibylle Schupp
Institute for Software Systems
Hamburg University of Technology

First Examiner Prof. Dr. Volker Turau
Institute of Telematics
Hamburg University of Technology

Second Examiner Prof. Dr.-Ing. Oliver Theel
Department of Computer Science
University of Oldenburg

Abstract
In a distributed system error handling is inherently more difficult than in conven-

tional systems that have a central control unit. To recover from an erroneous state the
nodes have to cooperate and coordinate their actions based on local information only.
Self-stabilization is a general approach to make a distributed system tolerate arbitrary
transient faults by design. A self-stabilizing algorithm reaches a legitimate configura-
tion in a finite number of steps by itself without any external intervention, regardless
of the initial configuration. Furthermore, once having reached legitimacy this property
is preserved. An important characteristic of an algorithm is its worst-case runtime
and its memory requirements. This thesis presents new time- and space-efficient
self-stabilizing algorithms for well-known problems in algorithmic graph theory and
provides new complexity analyses for existing algorithms. The main focus is on proof
techniques used in the complexity analyses and the design of the algorithms. All
algorithms presented in this thesis assume the most general concept with respect to
concurrency.

The maximum weight matching problem is a fundamental problem in graph theory
with a variety of applications. In 2007, Manne and Mjelde presented the first self-
stabilizing algorithm to compute a 2-approximation for this problem. They proved an
exponential upper bound on the time complexity until stabilization is reached for both
the sequential and the concurrent setting. This thesis presents a new proof technique
based on graph reduction to analyze the complexity of self-stabilizing algorithms.
It is used to show that the algorithm of Manne and Mjelde in fact stabilizes within
polynomial time assuming sequential execution and that a modified version of the
algorithm also stabilizes within polynomial time in a concurrent setting.

Connected dominating sets are a vital structure for many applications. By relaxing
the connectivity requirement the number of nodes can be reduced significantly. The
first self-stabilizing algorithm for the weakly connected minimal dominating set
problem was presented by Srimani and Xu in 2007. For the worst-case runtime they
proved an exponential upper bound. It remained an open problem whether this limit
is sharp. This thesis provides an example that shows that their algorithm indeed has
an exponential time complexity. Furthermore, a new self-stabilizing algorithm is
presented that stabilizes within polynomial time.

Another classical problem in graph theory is the computation of a minimum vertex
cover. Currently, all self-stabilizing algorithms for this problem assume symmetry-
breaking mechanisms, such as restricted concurrency, unique identifiers, or random-
ization. This thesis presents a deterministic self-stabilizing algorithm to compute a
(3− 2

∆+1)-approximation of a minimum vertex cover in anonymous networks. It
reaches stabilization within polynomial runtime and requires O(log n) storage per
node. For trees the algorithm computes a 2-approximation of a minimum vertex cover.

In 2008, Dong et al. introduced the edge-monitoring problem and provided a

distributed algorithm to solve it. In this thesis the first self-stabilizing algorithm
for this problem is developed. Several versions of the edge-monitoring problem are
considered. The proposed algorithms have polynomial time complexity.

Table of Contents

1 Introduction 1

2 Self-Stabilization 5
2.1 Distributed Algorithms . 5
2.2 Fault Tolerance and Self-Stabilization 9

2.2.1 Classification of Faults in Distributed Systems 9
2.2.2 Fault Tolerance and Self-Stabilizing Algorithms 10
2.2.3 Terms and Definitions . 12
2.2.4 Complexity of Self-Stabilizing Algorithms 18

2.3 Design Methods for Self-Stabilizing Algorithms 20
2.3.1 Composition . 21
2.3.2 Distance-k Information . 22
2.3.3 Scheduler Transformation 24

2.4 Self-Stabilizing Algorithms for Classical Graph Problems 25
2.4.1 Independent Sets . 26
2.4.2 Dominating Sets . 27
2.4.3 Spanning Trees . 31
2.4.4 Coloring . 34
2.4.5 Covering . 36
2.4.6 Matching . 37

3 Analysis of Self-Stabilizing Algorithms 41
3.1 Elements of the Analysis . 41

3.1.1 Closure . 42
3.1.2 Convergence . 42
3.1.3 Worst-Case Example . 43

3.2 Proof Methods for the Complexity Analysis 43
3.2.1 Global State Analysis . 44
3.2.2 Analysis of Local States, Properties and Sequences 45
3.2.3 Potential Functions and Convergence Stairs 46
3.2.4 Graph Reduction and Induction 47
3.2.5 Invariancy-Ranking . 48

i

TABLE OF CONTENTS

4 Distance-Two Knowledge and Network Decomposition 49
4.1 Example: Weakly Connected Minimal Dominating Set 50

4.1.1 Introduction . 50
4.1.2 Related Work . 51

4.2 Algorithm of Srimani and Xu . 52
4.2.1 Complexity Analysis . 53

4.3 Network Decomposition . 56
4.4 Central Scheduler . 57
4.5 Distributed Scheduler . 62
4.6 Conclusion . 66

5 Analysis of Local States and Sequences 67
5.1 Example: Vertex Cover Approximation in Anonymous Networks . . 68

5.1.1 Introduction . 68
5.1.2 Related Work . 69

5.2 Basic Algorithm . 70
5.2.1 Preliminaries . 70
5.2.2 Algorithm Description . 72
5.2.3 Analysis . 75

5.3 Approximation Ratio Improvement 77
5.4 Conclusion . 86

6 Analysis of Local States and Sequences (II) 87
6.1 Example: Edge Monitoring . 88

6.1.1 Introduction . 88
6.1.2 Related Work . 88

6.2 Basic Algorithm . 90
6.2.1 Preliminaries . 90
6.2.2 Simple Edge Monitoring Algorithm 90
6.2.3 Knowledge about Monitored Edges 94

6.3 Conclusion . 96

7 Potential Function and Induction via Graph Reduction 97
7.1 Example: Weighted Matching with Approximation Ratio 2 98

7.1.1 Introduction . 98
7.1.2 Related Work . 99

7.2 Algorithm Description . 101
7.3 Synchronous Scheduler . 104
7.4 Central Scheduler . 104

7.4.1 Potential Function . 105
7.4.2 Graph Reduction and Induction 108

7.5 Distributed Scheduler . 121

ii

TABLE OF CONTENTS

7.6 Conclusion . 125

8 Conclusion 127
8.1 Summary . 127
8.2 Future Perspectives . 128

List of Algorithms 131

List of Figures 133

Bibliography 135

Author’s Publications 151

iii

TABLE OF CONTENTS

iv

Chapter1Chapter1

Introduction

Historically, computer systems were designed using architectures with a single control
unit. However, a lot of applications do not necessarily require a central instance that
is responsible for all decisions of the system. There are multiple reasons to distribute
the control among several entities that can make their own decisions, depending on
the context of an application. Just to mention a few: Prices for small and powerful
microprocessors continue to decrease, there is permanent and accelerated progress in
communication technology, multiple control units facilitate concurrent and parallel
processing and increase a system’s scalability. Some applications even rely on an
inherently distributed setting, such as gathering data via a wireless sensor network.
Due to its growing importance, in the late 1970s the analysis of computer systems
with several control units became a field of research on its own, called distributed

computing.
A distributed system consists of several autonomous computational units, so-called

nodes, that aim to achieve a common goal. The system’s topology is represented by
a graph composed of the nodes and the communication links between them. In the
absence of a shared memory, the nodes communicate with their adjacent nodes by
passing messages. Distributed algorithms are a class of algorithms that are specifically
designed for such settings. Typically, all nodes run the same program concurrently
and they only have access to their own and each neighbor’s state. There is no central
unit that has knowledge of the whole system. Thus, all decisions a node makes are
based on local knowledge. This absence of a unit with global knowledge that can steer

1

1 INTRODUCTION

the whole system is the basis for a distributed system, and it is also the key challenge
of the design of distributed algorithms: Since a node can only observe the behavior of
its direct neighbors distant nodes cannot easily coordinate their own actions.

A computer system has to be prepared to deal with errors that may occur. This
especially holds for a distributed setting. Several factors may affect the system’s state
adversely. For instance, a node can fail due to damage or energy depletion, the state
of a node can change as a result of memory corruption, or new nodes are added to the
system. The lack of a coordinator that has access to the state of all nodes makes it
rather difficult to detect faults in the system. Locating the source of an error, replacing
or removing an erroneous node or permanently monitoring the whole system to detect
faults and perform a global reset as needed can be complex and expensive.

There are two strategies to deal with faults in a computer system: Masking solutions
hide all errors from the application and the system stays operational without restric-
tions. However, such an approach is rather expensive as it depends on redundancy
and all possible faults have to be known in advance. In case the continuous effective
operation of the system is too expensive to guarantee or not essential, a non-masking

solution is possible. These approaches accept that the application may not work
properly for limited time.

Self-Stabilization is a general, non-masking approach to make a distributed sys-
tem tolerate arbitrary transient faults by design. A distributed system is called self-
stabilizing if it reaches a legitimate configuration in a finite number of steps by itself
without external intervention and remains legitimate, starting from any possible global
configuration. The concept of self-stabilization was presented forty years ago and has
attracted a lot of research activity recently.

Most research concentrates on the development of new algorithms to improve the
worst-case runtime of a self-stabilizing algorithm for a given problem. Therefore the
presentation of a self-stabilizing algorithm is usually followed by an analysis that
not only proves its correctness and the self-stabilization property but also provides
an upper bound on the time complexity until the algorithm terminates. This analysis
is inherently more difficult compared to the analysis of conventional (distributed)
algorithms since it is inadmissible to assume one fixed initial state to start from. Hence,
several proof techniques were developed to facilitate the analysis of self-stabilizing
algorithms.

This thesis contributes new self-stabilizing algorithms for common problems in

2

graph theory and analyzes their worst-case time complexity. Furthermore, existing al-
gorithms are examined to improve their complexity analysis. In doing so, several proof
techniques are demonstrated by applying them to certain algorithms. Beyond that, a
new method to determine the worst-case complexity of self-stabilizing algorithms is
presented.

The new proof technique represents the main contribution of this thesis. It consists
of a mapping from the execution sequence of a graph to that of a reduced graph. This
allows to leverage complete induction in the proofs. Along with the use of a potential
function this technique is applied to an algorithm by Manne and Mjelde that calculates
a 2-approximation for the weighted matching problem. Its time complexity was
stated to be exponential. By using the new technique this estimate can be improved
significantly: It stabilizes within polynomial runtime.

Furthermore, this thesis completes the analysis of an algorithm by Srimani and Xu
that builds up a weakly connected minimal dominating set by providing a lower bound
which shows that their algorithm has an exponential runtime. The main disadvantage
of the algorithm is identified: The hierarchic structure required by the algorithm gives
higher-ranked nodes a superior position that forces all lower-ranked nodes to adapt
their states multiple times with just one state update in an adverse setting. A new
self-stabilizing algorithm is developed starting from a distance-two design and using a
decomposition of the graph to reduce the impact of a single node’s state change. The
analysis shows that the new algorithm has a polynomial time complexity.

Anonymous networks pose a particular challenge due to the lack of symmetry-
breaking mechanisms. There are very few positive results for self-stabilizing algo-
rithms in such a network. In this thesis a new self-stabilizing approximation algorithm
for the vertex cover problem in an anonymous network is presented. It is shown that
for certain classes of graphs an algorithm with better approximation ratio cannot exist.
The design of the algorithm is based on a virtual network which is simulated by the
nodes. The complexity analysis studies the local states of the nodes and yields a
polynomial result for the time complexity.

The edge-monitoring problem was introduced by Dong et al. recently. It has
important applications in wireless network security. The authors proved this problem
to be NP-complete and proposed a distributed algorithm to solve it. This thesis
presents the first self-stabilizing algorithm for the edge-monitoring problem. Several
versions of the problem are considered. The proposed algorithms have polynomial

3

1 INTRODUCTION

time complexities.
This thesis is organized as follows: Chapter 2 provides an introduction into self-

stabilization and presents the state of the art. The general structure of analyses of self-
stabilizing algorithms as well as the most common proof techniques are presented in
Chapter 3. The following chapters demonstrate the usage of certain proof techniques
with the help of algorithms for the above-mentioned graph problems: Chapter 4
considers the weakly connected minimal dominating set problem and shows how
the use of network decomposition leads to a more local analysis. Chapters 5 and
6 both perform an analysis of local states and sequences using different models of
computation. The former addresses the calculation of a vertex cover in anonymous
networks while the latter considers the edge-monitoring problem. The new proof
technique is introduced in Chapter 7. It is demonstrated using an algorithm for the
maximum weight matching problem. Chapter 8 summarizes this thesis and discusses
future perspectives.

4

Chapter2Chapter2

Self-Stabilization

This chapter provides an introduction to self-stabilizing algorithms and related work.
The first section describes conventional distributed algorithms and the models of
computation. Section 2.2 starts with the categorization of faults in distributed systems
and fault tolerance. It introduces self-stabilization and gives a more formal definition of
the terms and concepts used in this thesis. Several methods to measure the complexity
of self-stabilizing algorithms are discussed. Section 2.3 presents methods to design a
self-stabilizing algorithm. Finally, Section 2.4 provides an overview of self-stabilizing
algorithms for classical graph problems. More related work on specific problems can
be found in the corresponding chapters.

2.1 Distributed Algorithms

In the literature, different definitions for the term distributed system can be found.
Tanenbaum and van Steen [TS06] provide a definition that emphasizes the transparency
property:

A distributed system is a collection of independent computers that appears
to its users as a single coherent system.

A famous aphorism by Lamport [Lam87] alludes to this property:

A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.

5

2 SELF-STABILIZATION

Bal et al. [BST89] characterize a distributed system in a more technical manner:

A distributed computing system consists of multiple autonomous pro-
cessors that do not share primary memory, but cooperate by sending
messages over a communication network.

They also discuss the disagreement on the term "distributed system" in the literature
[BST89]. The definition of Bal et al. will be used throughout this thesis with the un-
derstanding that this definition is not limited to physical processors but also considers
other autonomous units or nodes such as processes. The latter is what Bal et al. call a
logically distributed software system, but their distinction is not needed on the level of
abstraction of this thesis. The communication network mentioned in the definition is
considered to be a (connected) graph and only adjacent nodes can communicate with
each other directly.

Two main models of distributed systems are distinguished in the literature [Pel00]:
The synchronous model and the asynchronous model, the difference being whether
there are upper bounds on the time certain processes are allowed to consume. The
asynchronous model does not make any assumptions on the duration of a computa-
tional step or message delay, apart from being finite. Thus, messages that are sent
but not received within a certain time cannot be considered to be lost but may be
received later. On the other hand, the synchronous model assumes fixed time intervals
for computations and guarantees that any message is received within a given time
(which is known to all nodes). Hence, an advantage of synchronous systems is that
lost messages can be detected. In this thesis the degree of synchrony of the distributed
system is determined by the model used for the atomicity of communication and the
assumed scheduler. These terms will be explained later. More detailed information
about distributed systems in general can be found e.g. in [CDK05].

A distributed algorithm is an algorithm specifically designed to run in a distributed
system. The nodes can operate concurrently and they communicate with each other to
achieve a common goal. The most significant difference compared to conventional
algorithms is the lack of a central entity that has access to the global state, i.e. the
state of each node. All nodes act autonomously and the basis for their decisions is
local knowledge only: The nodes hold their own state and can retrieve the state of
their neighbors.

6

2.1 D ISTRIBUTED ALGORITHMS

It is possible to gather the local state of all nodes by passing a neighbor’s state
on to the next node until some special node has aggregated the information of the
whole system and can send tasks to the other nodes, but that is contrary to the idea
of a distributed algorithm. Furthermore this procedure requires time and memory
proportional to the size of the graph. The same arguments hold for a similar approach:
If all nodes determine the topology of the whole distributed system, they can calculate
their final state locally via the execution of an algorithm that is not restricted to local
knowledge.

Having a “distributed state” and nodes that execute their algorithm according to
local information only, different parts of the system may temporarily veer away from
their common goal without knowing it. This also depends on the locality of the
given problem or algorithm, i.e. to which extent the state of a node far away from a
certain node influences its own state. An example for such a dependency is given in
Section 4.2. More information about the locality of specific problems can be found in
[NS95, MNS95, AGLP89, Suo11].

The atomicity of communication between the nodes can be modeled in miscella-
neous ways for distributed algorithms [AW04, Tix09]. Tixeuil [Tix09] emphasizes
that most literature in the context of self-stabilizing algorithms uses a high level of
atomicity and lists the three most common models:

1. The state model (or shared-memory model with composite atomicity, [Dij74,
Dol00]): In this model, reading the states of all adjacent nodes and updating its
own state is considered an atomic action.

2. The shared-register model (or read-write atomicity model, [DIM93]): This
model treats a single read and a single write operation as atomic actions. This
model is the more general one, but there are methods for transforming algorithms
from one model to the other [Dol00].

3. The message-passing model [AB93, DIM97a, KP90]: Here, an atomic step con-
sists of either sending a message to one of the neighboring nodes, or receiving
such a message.

The latter model requires to explicitly use the send and receive operation in an
algorithm to exchange messages. The first two models simulate a common memory
area for two adjacent nodes. In these cases, lower layers realize the information

7

2 SELF-STABILIZATION

exchange [Tel01]. Where not explicitly stated otherwise, this thesis assumes the state
model for the algorithms. Another model is often used for algorithms in anonymous
networks (see below):

4. The link-register model with composite atomicity [DIM93]: In this model, a
node uses two separate registers for each neighbor (a read and a write register),
i.e. a node can only read “its own” segment of its neighbors memory. Reading
its registers from all neighbors and updating its own registers is considered
one atomic operation. A more formal introduction to the link-register model is
provided in Chapter 5.

Distributed algorithms substantially depend on the properties of the underlying
network. In a uniform network all nodes execute the same algorithm. Non-uniform
networks allow the nodes to execute distinct algorithms. A very important property
is the availability of a symmetry-breaking mechanism. Such a mechanism is needed
e.g. if it is undesirable that two adjacent nodes change their state at the same time.
The most common model assumes all nodes to have unique identifiers. These can be
used to ensure local mutual exclusion. For instance, in [GT07] the nodes have to set a
boolean flag to tell their neighbors in advance when they want to change their state. A
node is allowed to change its state only if none of its neighbors with smaller identifier
has also set its flag.

Non-uniform networks can use another mechanism to break the symmetry by having
a node that takes on a special role. These two network models are equivalent [Dol00].
In uniform networks without unique identifiers it is possible to use randomization
to break symmetry. Availing oneself of randomization results in a probabilistic
algorithm, though. A network is called anonymous if it is uniform and there are no
further symmetry breaking mechanisms such as unique identifiers or randomization.

A lot of research has been done in the field of algorithms in anonymous networks.
Angluin made the most remarkable publication in that area by proving several impos-
sibility results subject to the different anonymity properties of the network [Ang80].
In particular Angluin showed that it is impossible to break symmetry via a port num-

bering (i.e., an edge ordering, for details see Chapter 5) in general graphs. Most of the
algorithms in this thesis assume a uniform network and that all nodes have (locally)
unique identifiers. Only in Chapter 5 an anonymous network is assumed.

8

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

2.2 Fault Tolerance and Self-Stabilization

In general, it is impossible to guarantee that a system will stay free of faults all the
time. Hence, there must be a strategy to handle errors if they occur. Conventional
systems may have a central unit that detects errors and decides which measures have
to be taken. In a distributed system, error-handling is inherently more difficult: The
detection of an error is not as simple due to the lack of a node with global knowledge,
and also the nodes have to cooperate and coordinate their actions in order to overcome
the erroneous state. Furthermore, there are types of errors that occur more likely in a
distributed system. For instance, in a wireless sensor network a node can fail due to a
depleted battery or physical damage. Messages can get lost, they may be duplicated
or arrive in a different order.

Apart from errors there are other scenarios that can make a distributed system end
up in an illegitimate state, e.g. if new nodes are added to the system or some nodes are
removed from it. Locating the source of an error, replacing or removing an erroneous
node, or permanently monitoring the whole system to detect faults and perform a
global reset as needed can be complex and expensive.

If a distributed system does not tolerate any errors the fault of a single node can
corrupt the whole system, i.e. if this node exclusively offers an essential service to the
other nodes. There are several strategies to deal with faults. They will be discussed
after a short classification of faults in distributed systems.

2.2.1 Classification of Faults in Distributed Systems

This section is based on [Tix09]. Another taxonomy of faults and fault-tolerance can
be found in [Gär99]. Tixeuil distinguishes the nature of a fault, depending on whether
it involves the state or the code of a node. State-related faults only affect – as the
name says – the state of a node, i.e. the node’s variables may change their values
erroneously. Such errors occur e.g. due to cosmic rays or because of the continuously
decreasing transistor size. Code-related faults compromise the node’s behavior. This
category includes crashes, omissions, duplications, desequencing and Byzantine faults
[LSP82]. A more detailed description can be found in [Tix09].

Another criterion is the type of a fault. This aspect classifies the time span in which
faults of arbitrary nature can occur. Three types are distinguished: Transient faults

9

2 SELF-STABILIZATION

are considered not to occur after a given point in the execution, i.e. there is a “last”
transient error. In contrast, permanent faults stay permanently after a given point in
the execution. Intermittent faults have no further limitation. Such faults can hit the
system at any time. The latter type of faults is the most general one and subsumes the
other two types. However, if intermittent faults do not occur too frequently, it may be
sufficient to have a system tolerate transient faults provided that the time interval in
which it stays operational is long enough.

A third category in the fault taxonomy of Tixeuil is the extent (or span) of the faults,
describing how many components of the network can get hit by an error. In this thesis
the extent of faults is insignificant.

2.2.2 Fault Tolerance and Self-Stabilizing Algorithms

Depending on the application area of the distributed system there are several ap-
proaches to deal with faults of nodes. It may be necessary that the functionality is kept
up permanently. In this case, a masking approach is required. This category of fault
tolerance hides all errors from the application, the system stays operational without
restrictions. In case the continuous effective operation of the system is too expensive
to guarantee or not essential a non-masking solution is possible: Such an approach
accepts that the system does not work properly for a given time span, it suffices that it
will resume its normal behavior when the fault is resolved. These two strategies lead
to two major categories of fault tolerant algorithms [Tix09]:

1. Robust algorithms have a redundant layout for all critical components or calcu-
lations based on the expected error rate. Hence, if the system is hit by a bounded
number of faults, the spare components keep the system running. Usually,
robust algorithms follow a masking strategy. However, apart from being more
expensive than non-masking approaches due to the additional resources for
redundancy, robust algorithms require a clear concept of the (number of) errors
that may occur. For instance, an algorithm that uses triple modular redundancy
[vN56] can only cover up an error on a single component and may not work if
another module fails.

2. Self-stabilizing algorithms follow a non-masking error strategy and assume all
errors to be transient (cf. Section 2.2.1). Hence, no assumptions about their

10

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

nature or extent have to be made. An algorithm is self-stabilizing if it can
start in any possible configuration, reaches a legitimate configuration in a finite
number of steps by itself without any external intervention, and remains in a
legitimate configuration [Dij74, Dol00]. Note that being able to start from any
configuration implies that a self-stabilizing algorithm cannot rely on explicit
initialization of variables.

The self-stabilization approach was presented by Dijkstra in [Dij74]. It did not attract
much attention at first but became more and more popular in the late 1980s and has
registered an increase in research activity recently [Dol00]. Some important results
for classical graph problems are listed in Section 2.4.

The following definition allows to precede the formal introduction to self-stabilization
with a real-world example: According to Arora and Gouda, an algorithm is self-
stabilizing if the following two properties hold [AG93]:

� Convergence property: After a finite number of moves the system is in a
legitimate configuration irrespective of the configuration the algorithm starts
with if no further transient error occurs.

� Closure property: If the system is in a legitimate configuration, this property is
preserved if no further transient error occurs.

Figure 2.1 demonstrates these properties using a well-known example. A wobbly
man fulfills the convergence property since it always returns to its balanced position
irrespective of its initial displacement. Having reached its stable state it will not start
leaving this position by itself, hence the closure property also holds.

Note that a self-stabilizing algorithm may not be able to establish a legitimate
configuration at all if faults occur too frequently, i.e. if the next error occurs before
the algorithm has stabilized. Gärtner states that self-stabilizing algorithms can also
deal with certain classes of permanent faults, e.g. when there is a sufficiently long
error-free period of time [Gär98]. In principle this complies with the assumptions
made in most publications about self-stabilization which consider all errors to be
transient, i.e. no further error occurs during the stabilization process.

In the literature, two types of self-stabilizing algorithms can be found: Silent (or
static) self-stabilizing algorithms stop when they have reached a legitimate configu-
ration, i.e. no node will change its state with respect to this algorithm until the next

11

2 SELF-STABILIZATION

�� Figure 2.1: A real-world example for self-stabilization: A wobbly man (drawing
by Christian Renner) always returns to its balanced position in finite time without
external intervention, if no further impulse hits it.

fault occurs. Hence, the wobbly man (Figure 2.1) also serves as an example for a
silent algorithm. Most algorithms that establish a structure on the graph, such as e.g. a
matching, are silent. All self-stabilizing algorithms presented in this thesis are silent.

A reactive (or dynamic) algorithm does not terminate at all. However, it is guaran-
teed that once a legitimate configuration is reached, the set of legitimate configurations
cannot be left. A common example for a reactive self-stabilizing algorithm is mutual
exclusion [Dij74, DGT04].

2.2.3 Terms and Definitions

This section introduces the technical terminology of the area of self-stabilizing algo-
rithms. A formal model of these terms is required by some of the proofs in this thesis.
To establish a balance between mathematical symbols and readability, all terms are
illustrated with the help of an intuitive self-stabilizing algorithm.

In a distributed system the communication relation is represented by an undirected
graph G = (V, E), with n = |V| and m = |E|, where each process is represented by
a node in V and two processes vi and vj are adjacent if and only if 〈vi, vj〉 ∈ E. The
set of neighbors of a node v ∈ V is denoted by N(v). The closed neighborhood of a
node v is denoted by N[v] = {v} ∪ N(v). The diameter of G is denoted by D and
the maximum degree of G is denoted by ∆.

In [Tur07] Turau presented a self-stabilizing algorithm for the calculation of a max-
imal independent set of a graph. It is shown in Algorithm 2.1. A subset S ⊆ V forms

12

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

an independent set if no two nodes of S are adjacent. S is a maximal independent set if
S∪ {v} is not independent for any v ∈ V\S. Figure 2.5 on page 27 shows a maximal
independent set. Detailed information on such sets is provided in Section 2.4.1). The
technical terms will now be explained one by one.

Algorithm 2.1 Self-Stabilizing Maximal Independent Set

Predicates:
inNeighbor(v) ≡ ∃w ∈ N(v) : w.status = IN
waitNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.status = WAIT ∧ w.id < v.id
inNeighborWithLowerId(v) ≡ ∃w ∈ N(v) : w.status = IN ∧ w.id < v.id

Functions:
–

Actions:
R1 :: [status = OUT ∧ ¬ inNeighbor(v)]
−→ status := WAIT

R2 :: [status = WAIT ∧ inNeighbor(v)]
−→ status := OUT

R3 :: [status = WAIT ∧ ¬ inNeighbor(v) ∧ ¬waitNeighborWithLowerId(v)]
−→ status := IN

R4 :: [status = IN ∧ inNeighbor(v)]
−→ status := OUT

Definition 1 (State). All nodes v ∈ V maintain a set {var1, var2, . . . , vark}v of

variables, each of them ranging over a fixed domain of values. The state sv of the

node is represented by the values of its variables.

In the example above, the state of a node consists of a single variable status. The
values lie in the range of IN, WAIT and OUT. In Figure 2.2 these values correspond
to the colors black, gray and white. The values IN and OUT indicate whether a
node is part of the maximal independent set or not, WAIT is an intermediate value
that indicates that a node wants to change its status to IN. When Algorithm 2.1
has terminated, all nodes have their status variable set to either IN or OUT. If no
ambiguity arises, the assignment of a value to a variable is sometimes written as an

13

2 SELF-STABILIZATION

assignment to the node, i.e. in Figure 2.2 node v0 has the value WAIT. The states of
all nodes in V represent the state of the distributed system, also called configuration.

Definition 2 (Configuration). A configuration c of the graph G is defined as the n-

tuple of all nodes’ states: c = (sv1 , . . . , svn). The set of all configurations in G is

denoted by CG.

v0

v1

v2

v3

v4

v5

v6

v7

�� Figure 2.2: Configuration of a graph during the execution of Algorithm 2.1. The
colors black, gray and white correspond to the values IN, WAIT and OUT, respec-
tively.

Figure 2.2 shows a configuration of a graph during the execution of Algorithm 2.1.
The nodes v1, v2 and v7 have the value OUT assigned to their status variable, v3 and
v5 (resp. the other nodes) have the value IN (resp. WAIT).

The absence of faults can be defined by a predicate P over the configuration. This
motivates the following definition:

Definition 3 (legitimate). A configuration c is called legitimate with respect to P if c
satisfies P . Hence, a legitimate configuration is free of faults. Let LP ⊆ CG be the

set of all legitimate configurations with respect to a predicate P .

In this case P must evaluate to true if and only if the specified configuration forms
a maximal independent set, i.e. for the configuration shown in Figure 2.2 P is false
whereas P is true for the configuration depicted in Figure 2.5 (page 27). LP contains
all configurations that form an independent set of the graph.

14

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

Rules specify the behavior of the nodes. Note that a node can only update its own
state.

Definition 4 (Rule). A rule (or action) consists of a name, a precondition (or guard)

and a statement. The precondition of a rule is a Boolean predicate defined on the state

of the node itself and its neighbors’ states. It decides whether a node is allowed to

execute the corresponding statement. The statement describes how a node updates its

state.

The notation of a rule is:

Name :: [precondition] −→ statement

Algorithm 2.1 contains four rules that define in which situations a node has to change
the value of its status variable.

Definition 5 (Algorithm). An algorithm is a set of rules. It constitutes the program

executed on the nodes of the distributed system.

Definition 6 (enabled). A rule is called enabled in a configuration c if its precondition

evaluates to true in c. A node is enabled in a configuration if at least one of its rules

is enabled. A rule (resp. node) that is not enabled is called disabled.

If several rules are enabled for a node in a configuration, one rule is nondetermin-
istically chosen for execution. However, algorithms can be designed to guarantee
that at most one rule is enabled per node for any configuration. This can be done by
extending the guards of the rules to include the negation of the other rules’ guards.
Hence, without loss of generalization it is assumed that a node is enabled for at most
one rule in a given configuration.

In the configuration depicted in Figure 2.2 all nodes are enabled, except for nodes
v2 and v7. They are disabled since they have a neighbor (e.g. v5) that is included in
the minimal independent set and they themselves are not. Nodes v4 and v6 are enabled
to execute rule R2 to set their status variable to OUT. The black nodes are neighbors,
and hence, both of them are enabled to leave the independent set (rule R4). Node v0

could set its status to IN via rule R3 and node v1 is enabled to execute rule R1 to set
its status to WAIT. The execution of a rule by a node is called a move.

15

2 SELF-STABILIZATION

Definition 7 (Move). A move is a tuple (s, s′)v, where s (resp. s′) denotes the state of

node v before (resp. after) the execution of the statement of an enabled rule.

If it is clear (or of no relevance) which node executes the move, the subscript will
be omitted. If a certain rule is enabled for a given node, the corresponding move
is called enabled also. An essential property of the system is its synchrony. In
Figure 2.2 the nodes v3 and v5 are both enabled to execute rule R4. If they make a
move simultaneously, both of them set their status variable to OUT since they read
their neighbors’ states at the same time. However, if one of them makes its move
first, the other node becomes disabled since it no longer has a black neighbor. The
synchrony of a distributed system is modeled by a scheduler (or daemon). For a given
configuration the scheduler chooses which nodes make a move simultaneously.

Definition 8 (Scheduler). The scheduler of a distributed system is a function

sched : CG ↪→ 2V , such that sched(c) is a nonempty subset of the nodes in V
that are enabled in configuration c.

The most common schedulers are:

� the central scheduler: At any time, only a single node makes its move, i.e
∀c ∈ CG : |sched(c)| = 1.

� the synchronous scheduler: All enabled nodes make their moves simultaneously.

� the distributed scheduler: Any nonempty subset of the enabled nodes can make
their moves simultaneously.

Although it is easier to prove stabilization for algorithms working under the central
scheduler, the synchronous and the distributed scheduler are more suitable for practical
implementations. The distributed scheduler allows the nodes to operate with different
speed, i.e. not all nodes have to make their move at the same time. Note that the
distributed scheduler subsumes the other two types of schedulers and is the most
general concept. In general, schedulers have no restrictions on their scheduling policy.
However, sometimes it is useful to assume fairness:

Definition 9 (Fairness). A scheduler is called fair if it prevents a node being continu-

ously enabled without making a move. Otherwise, the scheduler is called unfair.

16

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

The results presented in this thesis are valid for the unfair distributed scheduler if not
explicitly stated otherwise.

Self-stabilizing algorithms operate in steps. Intuitively, steps can be seen as time
intervals, such that every node can make at most one move within one step and such
that all nodes make their move simultaneously. This implies that for any step all nodes
read their neighbors’ states at the same time.

Definition 10 (Step). A step is a tuple (c, c′), where c, c′ are configurations, such that

� all nodes that make a move in this step are enabled in configuration c, and

� c′ is the configuration reached after these nodes have made their move simulta-
neously.

When the central scheduler is used, each step consists of the move of a single node only.
Thus, if a step consists of the move m = (s, s′) that transforms configuration c0 into c1

it is also possible to write m = (c0, c1) and with a slight abuse of notation m(c0) = c1.
This notation does not introduce any ambiguity when the central scheduler is used,
since c0 and c1 coincide in all components but one.

Definition 11 (Execution). An execution of an algorithm is a maximal sequence

c0, c1, . . . of configurations such that for each configuration ci the next configuration

ci+1 is obtained from ci by a single step.

With these terms and definitions it is possible to describe the two properties closure

and convergence (cf. Section 2.2.2) more formally, which are used to give a formal
definition of self-stabilization:

Definition 12. An algorithm is self-stabilizing with respect to P if the following two

properties hold:

� Closure property: For all configurations c0, c1 ∈ CG: If (c0, c1) is a step with

c0 ∈ LP , then c1 ∈ LP .

� Convergence property: For every execution c0, c1, . . . there is an integer i such

that ci ∈ LP .

17

2 SELF-STABILIZATION

CG LP

�� Figure 2.3: Closure and convergence

Definition 12 is illustrated in Figure 2.3: The set LP of legitimate configurations
is a subset of CG, the set of all configurations. Any step starting from a legitimate
configuration results in another legitimate configuration. If the initial configuration is
not in LP , then in a finite number of steps a legitimate configuration is reached.

More details and other elaborative introductions to self-stabilization can be found
e.g. in [Dol00], [Tel01], or [Tix09].

2.2.4 Complexity of Self-Stabilizing Algorithms

The complexity of an algorithm is a measure for its maximum resource demand.
Usually this demand depends on the size of the input or, in case of a distributed
algorithm, the number of processors. The considered resources can be time, memory,
or the number of messages sent. The latter does not apply in this thesis due to the use
of the state model (see Section 2.1) [AW04]. Garey and Johnson contributed the most
influential publication on complexity of problems and algorithms [GJ79]. However,
they focus on centralized algorithms. The complexity of distributed algorithms
with respect to the communication model is discussed e.g. in [AW04]. A detailed
introduction to the complexity of self-stabilizing algorithms can be found in [Dol00].

There are several measures for the time complexity of a self-stabilizing algorithm.
Note that these measures do not consider local computation of the nodes. This is
due to the assumption that the time needed for communication greatly exceeds the
time needed for computation, an assumption made for algorithms that consider the
computations to be based on local knowledge only. A detailed discussion on this topic
can be found in [Tel01]. A standard measure is the move complexity.

18

2.2 FAULT TOLERANCE AND SELF-STABILIZATION

Definition 13 (Move Complexity). The (worst-case) move complexity of a self-

stabilizing algorithm denotes the maximum number of individual moves needed to

reach a legitimate configuration irrespective of the initial configuration.

This upper bound is relevant for many practical applications such as wireless systems
with bounded resources. The execution of self-stabilizing algorithms defined for the
state model in a wireless setting requires a transformation. The cached sensornet
transform (CST) proposed by Herman is a widely used transformation technique
[Her04]. It requires that nodes broadcast their state to their neighbors after every
move. Since communication is the main consumer of energy, a reduction of the
number of broadcasts prolongs the lifetime of a network [TW09].

For the second standard measure for time-complexity of a self-stabilizing algorithm,
assume the synchronous scheduler. In this case, in any step all enabled nodes make a
move. The term (asynchronous) rounds tries to extend this idea to match the nature of
the central and the distributed scheduler [Dol00]. Starting from a given configuration
some nodes may be scheduled several times before all enabled nodes have made a
move. Furthermore, since the move of a node can disable other nodes, it does not
make sense to require all nodes that were enabled at the beginning of a round to
make a move until the round is completed. It also suffices when a node is disabled in
between. Note that only for the synchronous scheduler the number of moves per round
is limited to the number of nodes, since a round is a single step under this scheduler.

Definition 14 (Round). A round is a minimal sequence of steps during which any

node that was enabled at the beginning of the round has either made a move or has

become disabled at least once.

Definition 15 (Round Complexity). The (worst-case) round complexity of a self-

stabilizing algorithm denotes the maximum number of rounds needed to reach a

legitimate configuration irrespective of the initial configuration.

Considering rounds allows to make assumptions on the states of all nodes, e.g. after
the first round all nodes have assigned certain values to their variables. The round
complexity further permits to ignore scenarios in which a particular node is continu-
ously enabled but does not make a move. The current round does not end unless the
node either makes a move or the move of one of its neighbors disables it.

19

2 SELF-STABILIZATION

The worst-case number of moves or rounds does not necessarily reflect the time
the algorithm needs to stabilize. The number of moves alone does not provide the
information whether these moves are equally distributed among all nodes or whether
they are performed by a small group of nodes only. Hence, only for the central
scheduler, this number conforms exactly with the worst-case stabilization time. On
the other hand, a round has no fixed limit for the number of moves contained under
the central or the distributed scheduler. Counting the worst-case number of steps

estimates the time an algorithm needs to stabilize best.

Definition 16 (Step Complexity). The (worst-case) step complexity of a self-stabilizing

algorithm denotes the maximum number of steps needed to reach a legitimate configu-

ration irrespective of the initial configuration.

Note that for the central scheduler the step complexity is equivalent to the move
complexity, since this scheduler allows only one move per step. For the synchronous
scheduler the step complexity is equivalent to the round complexity, since under this
scheduler a round consists of exactly one step. For the distributed scheduler the time a
self-stabilizing algorithm needs to reach a legitimate configuration exactly corresponds
to the number of steps in the execution. However, since any execution under the central
scheduler is also valid for the distributed scheduler, its worst-case number of steps
cannot be smaller than the move complexity under the central scheduler. Usually, the
step complexity is merely used for the synchronous scheduler to emphasize that the
rounds are synchronous.

The last complexity measure considered in this thesis refers to the memory re-
quirement of an algorithm. Often, self-stabilizing algorithms run on very restricted
hardware, therefore it is important to use the resources economically.

2.3 Design Methods for Self-Stabilizing

Algorithms

The definition of a legitimate configuration for a given problem is usually described
by several individual properties that have to hold true. In general, a self-stabilizing
algorithm consists of a set of rules that perform a local check whether a precondition
of a rule is valid for the executing node and set the state accordingly, if necessary.

20

2.3 DESIGN METHODS FOR SELF-STABILIZING ALGORITHMS

However, self-stabilizing algorithms can be designed in very different ways. This
section presents common techniques for the development of such algorithms.

As presented in [Mje08], early approaches to find a general mechanism to make any
distributed algorithm self-stabilizing aim to detect errors in the global configuration
and reset the whole system if required: In [KP90] this is done via a global snapshot,
i.e. one node temporarily gathers the state of all nodes. The node decides whether a
global reset is necessary or not and informs the other nodes. In [APSVD94] a similar
approach is used but the check whether the system is in a legitimate configuration is
done locally. These techniques require a lot of time and memory (cf. the following
paragraph), and in addition they do not consider the possibility to resolve an error
locally, i.e. without restarting the whole network.

In Section 2.1 two methods were outlined to turn any sequential algorithm into
a distributed algorithm. These techniques can also be extended to suit the self-
stabilizing paradigm: Within O(D) rounds any node can gather the state of all other
nodes, where D denotes the diameter of the system. Then, with local computation
the nodes can determine and set their target state. Such an approach suffers from the
same disadvantages as listed in Section 2.1. Apart from the fact that it requires unique
identifiers it leads to a space complexity of Ω(m) which is undesired. The goal of a
local algorithm is to be scalable, e.g. the memory requirement should be in O(∆).

In the following sections so-called transformers will be used to make algorithms
match certain model assumptions. A model is called weaker (resp. stronger) than
another if it is less (resp. more) restrictive than the other. For instance, a system
with a central daemon is stronger than a system that assumes a distributed daemon.
A transformer T converts a self-stabilizing algorithm A to a new self-stabilizing
algorithm A′, such that A′ runs under a weaker model than A. T must preserve

legitimacy, that is to say, A and A′ share the same set of legitimate configurations.
In general, using a transformer to make an algorithm suit a weaker model is attended
by a slowdown in stabilization time. This will be explained with more detail in the
following sections.

2.3.1 Composition

Often, algorithms are composed of several stages that achieve particular sub-ordinate
targets, each of them being the precondition for the next stage. In [Tel01] Tel lists

21

2 SELF-STABILIZATION

common examples for the first stage of such composed algorithms, e.g. algorithms
may rely on correct routing tables, an elected leader, a snapshot of the system or an
acyclic orientation of the graph.

In a classical distributed system these algorithms can be executed one after the other
by installing a distributed termination-detection algorithm which ensures that the first
stage is completed. Unfortunately, it is impossible to detect termination of the first
algorithm in a self-stabilizing manner ([Tel01]). However, it is possible to compose
two self-stabilizing algorithms in the following manner ([Her92, Tel01]):

Definition 17 (Composition). Let A1 and A2 be self-stabilizing algorithms, such that

no variable that is written by A2 occurs in A1. The composition of A1 and A2 is the

algorithm that consists of all variables and all actions of both A1 and A2.

Theorem 2.3.1. The composition of two self-stabilizing algorithms A1 and A2 is

self-stabilizing if the following properties hold:

� When Algorithm A1 has stabilized, property P1 holds forever.

� When property P1 holds, Algorithm A2 stabilizes.

� AlgorithmA1 does not change any variables AlgorithmA2 reads once P1 holds

(trivial if Algorithm A1 is a silent algorithm).

� The scheduler is fair with respect to both algorithms A1 and A2.

The proof for Theorem 2.3.1 can be found in [Her92, Tel01]. Obviously, the result
also holds if both algorithms are silent and stabilize under an unfair scheduler and
Algorithm A2 terminates regardless of the variables set by Algorithm A1.

The move complexity of a self-stabilizing composed algorithm is the product of the
complexities of the individual algorithms [Dol00].

2.3.2 Distance-k Information

According to the model of computation of distributed algorithms, a node has read
access only to its own variables and those of its neighbors (distance-one model).
However, for certain problems it is easier to design an algorithm assuming that a node
can even read the variables of nodes that are two or more hops away or assuming that

22

2.3 DESIGN METHODS FOR SELF-STABILIZING ALGORITHMS

the values of its neighbor’s variables are correct. To make such an algorithm run in
a distributed system it has to be transformed. Several transformers can be found in
the literature. The functional principle of such a transformer is to provide the nodes
with additional variables that gather information about the state of their neighbors.
Via these variables the state of a node (or at least parts of its state) can be seen by its
neighbors’ neighbors. All known transformers require (locally) unique identifiers.

To retrieve distance-two information, in [GGH+04], apart from its own state each
node holds a copy of its neighbors’ states. Whenever necessary, a node has to update
this copy. Furthermore, the node can signal its will to execute a move itself or it can
allow one of its neighbors to make a move. A node can execute the algorithm only if
all neighbors have given their permission. This way it is guaranteed that whenever
a node executes the algorithm, its neighbors have their copies up-to-date. (If a node
gives the right to execute a move to one neighbor, no other neighbors can make a move
themself.) A major drawback of this approach is the slowdown factor of O(n2m)

moves and the memory overhead of Ω(∆ log n) per node.

In [GHJT08], the approach of [GGH+04] is extended. Its recursive application
allows to retrieve distance-k knowledge. The memory requirement and the slowdown
factor in moves are both in nO(log k).

Recently, a new model to access distance-two information was published, the
expression model [Tur12]. In this model a node does not only have variables but
it also holds a set of named expressions. The value of an expression is based on
the state of the node and the state of its neighbors. A node cannot directly read the
variables of a node two hops away but it can evaluate the expressions of its neighbors.
The distance-two model [GGH+04] is a special case of the expression model since
it is possible to define an expression that returns the state of all neighbors. Hence,
the expression model has the same expressiveness as the distance-two model. An
advantage of the expression model is the slowdown factor of only O(m) moves. The
memory overhead can be adapted to the given algorithm.

The three models above are discussed in detail in [Tur12]. Since the aggregation
of information is attended by a slowdown factor for every hop (see e.g. [GHJT08]),
more than 2-hop information is rarely used. However, there are self-stabilizing
algorithms that assume a node to have read access to the 4-hop neighborhood, e.g.
[UT11, GHJT08].

23

2 SELF-STABILIZATION

2.3.3 Scheduler Transformation

Some algorithms that stabilize under the central scheduler do not stabilize under a
synchronous scheduler, e.g. the coloring algorithm in [GK93]. In this algorithm the
nodes can always choose the same color and hence, it may never terminate (Figure 2.4).

�� Figure 2.4: The coloring algorithm in [GK93] does not stabilize under the syn-
chronous scheduler if all nodes continually choose the same color.

Assuming a central scheduler is often convenient during the design of a self-
stabilizing algorithm. Problems that arise due to the simultaneous execution of a
rule by two neighbors do not have to be considered when only one node at a time is
allowed to move. Several transformers exist that convert an algorithm designed for
the central scheduler into an algorithm that stabilizes under the distributed scheduler.
Note that all known transformers for this purpose require the nodes to have (locally)
unique identifiers, and hence they are not applicable in anonymous networks. Since
the distributed scheduler subsumes all other schedulers, transformations from the
distributed scheduler to the central scheduler are not necessary.

In [BDGM00], a self-stabilizing local mutual exclusion algorithm is developed.
The authors show that a specific composition scheme can transform an algorithm for
the central scheduler into a version that runs under the distributed scheduler through
combination with the mutex algorithm. However, the transformation slows down the
algorithm by a factor of O(n2).

24

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

The conflict manager in [GT07] basically works in the following way: A node that
wants to execute a move indicates this via an extra move that sets a Boolean flag. In
the next move the node checks if it is the one with the largest identifier among the
nodes that have set their flag. Only in that case it is allowed to execute the move. The
conflict manager requires one bit of extra memory per node and leads to a slowdown
factor of O(∆) moves.

The distance-two transformation of [GGH+04] (resp. the expression model of
[Tur12]) can also be used to make a scheduler transformation from the central sched-
uler to the distributed scheduler since it guarantees mutual exclusion for adjacent
nodes. However, the slowdown factor in this case is n2m moves (resp. O(m) moves).
Thus, if the algorithm does not benefit from 2-hop knowledge, the conflict manager of
[GT07] is more efficient for scheduler transformation.

2.4 Self-Stabilizing Algorithms for Classical

Graph Problems

The first self-stabilizing algorithm was presented by Dijkstra to establish mutual

exclusion in a ring topology [Dij74]. Mutual exclusion is a fundamental problem of
concurrent programming [Dij65]. It assumes that several nodes need to have access to
a common resource but only one node is allowed to use it at a time. Hence, in case
several nodes want to use the resource concurrently, it must be ensured they access it
one after the other.

From the late 1980s on, the field of self-stabilization has attracted a lot of research
activity. Self-stabilizing algorithms have been applied to different fields such as device
drivers, operating systems and wireless sensor networks [DY06, Yag07, TW09]. The
majority of research has focused on distributed algorithms for optimization problems
in graph theory such as coloring problems, the minimal dominating set problem and
the maximal independent set problem [GT00, Tur07]. This chapter provides a survey
of self-stabilizing algorithms for classical graph problems.

Many references can be found in the survey paper of Guellati and Kheddouci
[GK10]. They analyze self-stabilizing algorithms for independent sets, dominating
sets, colorings and matchings. The survey of Gärtner [Gär03] examines self-stabilizing
algorithms for spanning trees. Their results are summarized in this thesis. Further

25

2 SELF-STABILIZATION

literature is discussed by Dolev [Dol00]. Tixeuil provides more references [Tix09].
The self-stabilization bibliography by Herman [Her02] lists about 500 self-stabilizing
algorithms ordered by several categories (e.g. topology or proof techniques). The
results of this section are subsumed using the same details as in [GK10], i.e. the
depicted characteristics are result type, required topology, anonymity, daemon type
and complexity of an algorithm.

In the context of self-stabilization, anonymous algorithms are very difficult to
design. In [SRR94] it is shown that it is impossible to colorize a path with even length
with two colors using a deterministic self-stabilizing algorithm under the distributed
scheduler. More impossibility results can be found in [SRR95]. Note that several
algorithms mentioned below are marked as anonymous since they do not require
(locally) unique identifiers, but they assume a central scheduler. Such a scheduler
trivially breaks symmetry in a distributed system. Hence it is easily possible to
generate identifiers by letting a node choose the smallest integer that is not used by
its neighbors. However, the algorithms do not use such a mechanism since they do
not depend on identifiers. This also implies that these algorithms do not make use
of pointers from one node to one of its neighbors, which is usually implemented by
storing the neighbor’s identifier.

2.4.1 Independent Sets

A subset S of vertices of a graph is called independent if no two nodes of S are adjacent.
S is called maximal (MIS) if no further node can be added to S without violating this
condition (see Table 2.5). A MIS whose cardinality cannot be increased by removing
one node and adding more nodes is called 1-maximal (1-MIS). If S is a MIS then
any node is either in S or has a neighbor in S. Thus, any maximal independent set
is also a dominating set (cf. Section 2.4.2). This makes them an important structure
for e.g. wireless ad hoc networks [AWF03]. Furthermore, MIS are used to establish
mutual exclusion and hence for conflict-avoiding problems such as scheduling. There
are several self-stabilizing algorithms in the literature that calculate independent sets.
Table 2.1 is taken verbatim from the survey paper by Guellati and Kheddouci [GK10].
It lists self-stabilizing algorithms for the maximal independent set problem classified
by several characteristics. A detailed discussion of the algorithms listed in this table
can be found in [GK10]. Further details are given in [Tur07].

26

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

�� Figure 2.5: Maximal independent set S of a graph. The nodes in S are colored
black.

The MIS algorithm of [HHJS03] is identical to that of [SRR95], hence it does
not appear in Table 2.1 on its own. Note that in [GK10] the algorithm of [LH03] is
mentioned but not included in their table. This algorithm is a fault-containing version
of the MIS algorithm in [SRR95], i.e. recovery from a single transient fault is achieved
quickly (O(∆) moves). However, the stabilization time starting from an arbitrary
configuration is not analyzed.

Reference Result Req. topology Anon. Daemon Complexity

[SRR95] MIS arbitrary 3 central O(n) moves

[IKK02] MIS arbitrary – distributed O(n2) moves

[GHJS03d] MIS arbitrary – synchron. O(n) rounds

[SGH04] 1-MIS tree 3 central O(n2) moves

[Tur07] MIS arbitrary – distributed O(n) moves

[LH03] MIS arbitrary – central unknown

�� Table 2.1: Self-stabilizing algorithms for the maximal independent set problem.
Source: [GK10]

2.4.2 Dominating Sets

A subset S of vertices of a graph G = (V, E) is called dominating (DS) if every
node in V is either contained in S or it has a neighbor in S. There is a wide variety
of domination parameters of a dominating set that can be defined [HL91]. The set

27

2 SELF-STABILIZATION

S is called a total dominating set (TDS) if every node of the graph has a neighbor
in S. The set is k-dominating (KDS) if every node has at least k neighbors in S.
If a dominating set is connected it is called connected dominating set (C-). It is
called weakly connected (WC-) if the subgraph weakly induced by S, i.e. the graph
(N[S], E ∩ (S× N[S])) is connected. A dominating set is minimal (M-) if for any
node v ∈ S the set S\{v} is not dominating. More details can be found in Chapter 4,
where a new algorithm for the WCMDS problem is presented. Figure 2.6 shows a
MDS.

�� Figure 2.6: Minimal dominating set S of a graph. The nodes in S are colored black.

Dominating sets are an important structure that is often used for efficient commu-
nication in wireless and ad hoc networks [AWF03, WL99, UT11]. Hedetniemi and
Laskar have gathered more than 300 references for algorithms that calculate various
types of dominating sets [HL91]. These algorithms are not self-stabilizing, though.

The survey paper of Guellati and Kheddouci [GK10] considers several self-
stabilizing algorithms for the dominating set problem. The upper part of Table 2.2
is taken almost verbatim from this paper, which also includes a detailed discussion
of the referenced algorithms. A further discussion of self-stabilizing algorithms for
the calculation of a k-dominating set can be found in [Tur12]. Some algorithms for
the k-dominating set problem did not appear in [GK10] since they were published
later: The algorithm in [DDH+11] is specifically designed to find small k-dominating
sets and guarantees an upper bound of at most

⌈
n

k+1

⌉
on the size of the calculated set.

In [DLV10] Datta et al. present an algorithm with fast stabilization time (3k + O(1)
rounds) and little memory overhead (O(k log n) space per node). Furthermore they
prove that no comparison-based algorithm for the k-clustering problem can approx-

28

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

imate the optimal solution within O(D) rounds. In [Tur12] Turau introduces the
two-expression model that assumes distance-two information and a central sched-
uler. Furthermore he presents a transformation technique to make the algorithms
run under the conventional model of computation. Additionally, this paper contains
an applications section where a new algorithm for the k-dominating set problem is
proposed.

Table 2.2 also contains self-stabilizing algorithms for the calculation of connected,
weakly connected and other dominating sets. These parts are new, since these types
are not analyzed with the same detail in [GK10].

In the following, the self-stabilizing algorithms for connected and weakly connected
minimal dominating sets listed in Table 2.2 are discussed. Note that the algorithm
in [KK07b] also guarantees an approximation ratio of 7.6 ·

∣∣Dopt
∣∣+ 1.4 (where Dopt

is an optimal solution in terms of cardinality) if it runs on a unit disk graph. The
algorithm in [KK08] is similar to that in [KK07b] but features safe convergence, i.e.
the algorithm establishes a particular safe state in short time, and this property holds
forever. In this case a dominating set is established after one round. Furthermore the
algorithm incorporates the creation of a BFS tree. The same safe convergence property
holds for the WCMDS algorithm in [KK07a]. Furthermore, on a unit disk graph an
approximation ratio of 5 with respect to the solution with minimum cardinality is
guaranteed.

The model of computation in [JG05] assumes a node to have instant read access in
its 3-hop neighborhood and write access in its 2-hop neighborhood. The algorithm in
[DFG06] also assumes 2-hop read access for the nodes. To make these algorithms run
under a more realistic model, a transformer is needed that increases the complexity of
the proposed algorithms.

In [RTAS09] a disk graph with bidirectional links (DGB) is assumed. This model is
closely related to unit disk graphs but allows the nodes to have different ranges. The
authors prove a constant approximation ratio for their algorithm.

The algorithm in [HS11] finds two disjoint minimal dominating sets. The approach
identifies the first MDS via the algorithm in [HHJS03]. Then, the remaining set of
nodes is reduced to also become a minimal dominating set.

In a distance-k dominating set a node is dominating itself or it has a dominating node
within its k-hop neighborhood, i.e. the dominating nodes have a larger domination

29

2 SELF-STABILIZATION

Reference Result Req. topology Anon. Daemon Complexity

Dominating Sets

[HHJS03]-1 DS arbitrary 3 central O(n) moves

[HHJS03]-2 MDS arbitrary 3 central O(n2) moves

[XHGS03] MDS arbitrary – synchron. O(n) rounds

[GHJS03b] MTDS arbitrary – central unknown

[Tur07] MDS arbitrary – distributed O(n) moves

[GHJ+08] MDS arbitrary – distributed O(n) moves

k-Dominating Sets

[KK03]-1 MKDS tree 3 central O(n2) moves

[KK03]-2 MKDS tree – distributed O(n2) moves

[GGHJ04] MKDS arbitrary 3 central O(kn) moves

[HCW08] M2DS arbitrary 3 central O(n) moves

[KK05] MKDS δ > k – synchron. O(n2) moves

[HLCW07] M2DS arbitrary – distributed unknown

[DLV10] MKDS arbitrary – distributed 3k + O(1) rounds

[DDH+11] MKDS arbitrary – distributed O(n) rounds/
O(Dn2) moves

[Tur12] MKDS arbitrary – distributed O(mn) moves

Connected Dominating Sets

[JG05] CDS arbitrary – synchron. O(n2) rounds

[DFG06] CDS arbitrary – distributed O(n) moves

[GS10] CDS arbitrary 3 distributed unknown

[KK07b] CMDS BFS tree – central O(k) rounds,
k = depth of BFS tree

[KK08] CMDS arbitrary – synchron. O(n) rounds

[RTAS09] CMDS DGB – central O(n2) moves

[SX07] WCMDS BFS tree – distributed O(2n) moves

[KK07a] WCMDS arbitrary – synchron. O(n2) rounds

Algorithm 4.4 WCMDS BFS tree – distributed O(mn) moves

Other Dominating Sets

[HS11] 2 disjoint
MDS

arbitrary – central O(n4) moves

[LHWC08] dist.-2
MDS

arbitrary – central unknown

�� Table 2.2: Self-stabilizing algorithms for the minimal dominating set problem.
Source of the first two parts: [GK10]

30

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

range. Such a set is calculated in [LHWC08]. An upper bound on the stabilization
time is not given in this paper. The authors believe it to be polynomial.

A revised version of [SX07] was published in [XWS10], however, the algorithm
and the included analysis did not change. Hence, it is not included in Table 2.2. This
algorithm is discussed in Chapter 4.

2.4.3 Spanning Trees

A connected subgraph T of a graph G is called a spanning tree (ST) if it comprises
all vertices of G and it does not contain a circle. There are several types of spanning
trees which are defined in the following. Note that some kinds of trees require one
node to have a special role, called root. Let T be a spanning tree of G = (V, E) with
root r. If the number of edges between r and all other nodes is minimal, T is called a
breadth-first spanning tree (BFS). If for any two nodes v, w ∈ V with (〈v, w〉 ∈ E
the path from v to w in T does not contain r, T is a depth-first spanning tree (DFS) of
G.

Assume the edges of G to have non-negative weights. T is a minimum spanning

tree (MST) if the sum of the weights of its edges is minimal among all spanning trees.
If the distance (i.e. the sum of the weights of the edges) between r and all other nodes
is minimal, T is called a shortest-paths spanning tree (SP-ST). Figure 2.7 shows a
simple spanning tree of a graph.

�� Figure 2.7: Spanning tree T of a graph. The edges of T are colored black.

Many algorithms rely on a spanning tree as an underlying network topology. In
[GGKP95] and [BM03] a general technique is presented that transforms any sequential

31

2 SELF-STABILIZATION

bottom up dynamic programming algorithm into a self-stabilizing algorithm for a
tree network. Gärtner provides a survey and detailed discussions on self-stabilizing
algorithms for the construction of spanning trees up to the year 2003 [Gär03]. Table 2.3
categorizes the algorithms of this survey paper and adds the spanning tree algorithms
published since then. In the following, the algorithms not discussed in [Gär03] are
surveyed. It is noteworthy that a lot of publications for these problems do not provide
an upper bound for the time complexity of the proposed algorithms.

There are two new algorithms for the construction of a minimum spanning tree.
In [BPBRT10] a general scheme is introduced that allows to develop loop-free and
super-stabilizing algorithms for the spanning tree problem that can be adapted for any
tree metric, such as e.g. shortest-path tree, minimum spanning tree, maximum-flow
tree or minimum-degree spanning tree. This scheme is based on the combination of
a new BFS algorithm that is also presented in [BPBRT10]. The resulting algorithm
stabilizes in O(n3) rounds. In the same year, another algorithm for the minimum
spanning tree problem was published in [BDPBR10]. It is a self-stabilizing version
of the classical distributed algorithm by Gallager, Humblet and Spira [GHS83]. The
algorithm requires only O(n2) rounds.

An algorithm that constructs a spanning tree with any maximizable metric is
presented in [DMT11]. Furthermore, the algorithm can deal with Byzantine faults.

In [KKDT10] the first self-stabilizing algorithm specifically designed for the
maximum-leaf spanning tree problem is presented. It guarantees an approximation
ratio of 3 and stabilizes in at most O(n2) rounds.

Three self-stabilizing spanning tree algorithms have been published that assume the
message-passing model: A solution for the construction of constant-degree spanning
trees in large-scale systems is given in [HLP+06]. Note that this algorithm requires
a complete graph. A shortest-paths tree is established in [BK07]. This algorithm
produces such a tree, rooted at the node with minimal identifier, in O(D) rounds.
However, the algorithm does not stabilize in that time. Instead it requires an unknown
time to reach stabilization. The first algorithm for the minimum-degree spanning tree
problem is presented in [BPBR11]. It guarantees a result within 1 from the optimal
degree. The algorithm has a memory complexity of O(∆ log n) and works for any
topology.

32

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

Reference Result Req. topology Anon. Daemon Complexity

Simple, Breadth-first, and Depth-first Spanning Trees

[DIM90, DIM93] BFS-ST arbitrary – central O(D) rounds,

[Her92] DFS-ST arbitrary – central O(DnK) rounds

[AKY90] BFS-ST arbitrary – distributed O(n2) rounds

[AG90, AG94] BFS-ST arbitrary – central O(N2) rounds

[CYH91] ST arbitrary – central unknown

[SS92] BFS-ST arbitrary – distributed unknown

[AS92] ST arbitrary – central unknown

[ABB97, ABB98] D/BFS-ST arbitrary – distributed O(n) rounds

[AK93] ST arbitrary – distributed O(D) rounds

[GGP96] ST arbitrary 3 central unknown

[DIM97b] DFS-ST arbitrary 3 central O(∆D)
Minimum Spanning Trees

[AS97a] MST arbitrary – distributed unknown

[AS98] MST symmetric – distributed unknown

[HL01] MST arbitrary – distributed unknown

[BDPBR10] MST arbitrary – distributed O(n2) rounds

[BPBRT10] MST arbitrary – distributed O(n3) rounds

Other Spanning Trees

[BLB95] min-diam ST arbitrary 3 distributed O(n∆ +D2 +
n log log n) rnds

[HLP+06] const-deg ST complete – central unknown

[BK07] SP-ST arbitrary – distributed unknown

[KKDT10] max-leaf ST arbitrary – distributed O(n2) rounds

[BPBR11] min-deg ST arbitrary – distributed O(mn2 log n)
rounds

[DMT11] max-metric ST arbitrary – distributed unknown

�� Table 2.3: Self-stabilizing algorithms for the spanning tree problem. Some algo-
rithms require global information: K is an upper bound for ∆, N is an upper bound
for n.

33

2 SELF-STABILIZATION

2.4.4 Coloring

A vertex coloring is a function color : V → C, where C is a set of colors, such that
color(v) 6= color(w) for adjacent nodes v and w. Figure 2.8 shows a vertex coloring
of a graph using three colors. Similarly, it is possible to color the edges of a graph,
such that adjacent edges do not share the same color. This is called an edge coloring.
Colorings are used e.g. for conflict avoiding, scheduling [Mar03] or register allocation
[Cha82]. Furthermore, colorings are used for the popular Sudoku game [HM07].

�� Figure 2.8: Vertex coloring of a graph. Adjacent nodes are not allowed to have the
same color.

Guellati and Kheddouci [GK10] illustrate several self-stabilizing coloring algo-
rithms. The upper part of Table 2.4 is taken verbatim from this paper. For a discussion
on the vertex coloring algorithms, see [GK10]. A detailed survey of self-stabilizing
edge-coloring algorithms is provided by [DDK09] and [HT06]. In the following, the
other coloring algorithms (in the lower part of Table 2.4) will be outlined.

The algorithm in [DK08] calculates a b-coloring of the system graph. A b-coloring
of a graph G is a vertex coloring of G such that for any color there is a vertex that has
neighbors in all other colors. Note that this algorithm uses distance-two knowledge.

In [BM09] a distance-two coloring is derived, i.e. nodes within distance two are not
allowed to have the same color. The algorithms uses at most ∆2 + 1 colors.

Sun et al. consider a particular NP-complete optimization problem [SEK08]: As-
suming the set of colors to be natural numbers, the goal is to find a coloring with a
minimal sum of colors. Their algorithm derives a locally minimal color sum which is
an upper bound for the optimal solution.

34

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

Reference Req. topology Anon. Daemon Complexity

Vertex Coloring

[SS93] bipartite graph 3 central unknown

[KK06]-1 bipartite graph 3 central O(mn3D) moves

[KK06]-2 bipartite graph – distributed O(mn3∆D) moves

[GK93] planar graph – distributed unknown

[HHT05] planar graph 3 central O(D) rounds

[SRR94]-1 odd chain 3 distributed unknown

[SRR94]-2 oriented ring 3 central unknown

[GT00]-1 arbitrary 3 central O(n∆) moves

[GT00]-2 arbitrary – distributed O(n∆) moves

[GT00]-3 arbitrary 3 distributed O(n∆) moves

[HJS03]-1 arbitrary 3 central O(m) moves

[HJS03]-2 arbitrary 3 central O(n) moves

[GHJS04] arbitrary 3 central unknown

Edge Coloring

[SOM04] tree – central 3 rounds

[KN06] arbitrary – central O(∆m) moves

[MT06] arbitrary 3 central 2∆ + 2 rounds

[HT06] bipartite graph – central O(n2m + m) moves

[TJH07] planar, ∆ ≥ 5 3 central O(n2) moves

[CT07] arbitrary – central O(∆2m) moves

[DDK09] arbitrary – central O(m(∆ + n)) moves

Other Colorings

[SEK08] arbitrary – central O(n∆3) moves

[DK08] arbitrary – central O(∆2) rounds

[BM09] arbitrary – distributed O(∆2m) moves

[CT11] rooted tree – central O(nh) moves,
h = height of tree

�� Table 2.4: Self-stabilizing coloring algorithms. Source of the upper part: [GK10]

35

2 SELF-STABILIZATION

Chaudhuri and Thompson present an algorithm for the L(2, 1)-labeling problem

[CT11]. Here, an ordering of the set of colors is assumed. The colors of the nodes not
only have to be unique within distance two, but adjacent nodes also have to choose
colors that are at least two apart. For example, if the set of colors is {1, 2, . . . 5}, a
node with color 3 is not allowed to have a neighbor with colors 2 or 4.

2.4.5 Covering

A subset S of vertices of a graph G = (V, E) is a vertex cover if every edge of
E is incident to at least one vertex in S. S is a minimal vertex cover if there is no
vertex cover S′ with S′ ⊂ S. S is a minimum vertex cover if there is no vertex cover
with smaller cardinality. Figure 2.9 shows a minimal vertex cover of a graph. The
minimal vertex cover problem plays an important role in computer science [NR99]
and other disciplines such as bioinformatics, where these structures are used for DNA
sequencing [SP07].

�� Figure 2.9: Minimal vertex cover S of a graph. The nodes in S are colored black.
All edges have at least one node in S.

Since any maximal matching implies a 2-approximation of a minimum vertex cover,
all maximal matching algorithms can be used to achieve such a result. Self-stabilizing
matching algorithms are presented in Section 2.4.6. Non-self-stabilizing algorithms
for the calculation of vertex covers are discussed in Chapter 5.

There are very few self-stabilizing algorithms for the vertex cover problem that
do not only compute a maximal matching. Kiniwa presented the first algorithm of
this kind in [Kin05]. His algorithm calculates a (2− 1/∆)-approximation vertex

36

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

Reference Req. topology Anon. Daemon Complexity

[Kin05] arbitrary – distributed |M|+ 2 rounds,
M = calculated matching

Algorithm 5.2 arbitrary 3 distributed O(n + m) moves, resp.
O(∆) rounds

�� Table 2.5: Self-stabilizing vertex cover algorithms.

cover. Kiniwa combines a greedy method based on a high-degree-first order of
vertices with the maximal matching technique. A new algorithm is presented in
Chapter 5. Algorithm 5.2 calculates a (3− 2/(∆ + 1))-approximation vertex cover
in anonymous networks.

2.4.6 Matching

Another classical problem in graph theory considers matchings of a graph. Let
G = (V, E) be an undirected graph. A set M of independent edges of G is called a
matching of G. M is a maximal matching if there is no matching M′ with M ⊂ M′.
Figure 2.10 shows a maximal matching of a graph. A matching with largest cardinality
is called a maximum matching. Let G be a weighted undirected graph. Any edge e
has an assigned weight, denoted by w(e) ∈ R+. The sum of the weights of all edges
of a matching M is the weight of M. A matching with heaviest weight is called a
maximum weight matching of G. Figure 7.1 on page 99 shows a weighted graph and
its maximum weight matching.

�� Figure 2.10: Maximal matching M of a graph. The edges in M are colored black.

37

2 SELF-STABILIZATION

Maximal matchings are an important structure that is used in diverse fields of
application, e.g. for scheduling [SP07] or for multi-channel MAC protocols [HHLL04].
An elaborate discussion about matchings and their applications can be found in [LP86].

Non-self-stabilizing algorithms for the maximal matching problem can be found
in Chapter 7. The survey paper by Guellati and Kheddouci [GK10] discusses several
self-stabilizing matching algorithms. Their results are listed here. Table 2.6 is taken
verbatim from this paper. For details, see [GK10] and Chapter 7.

Reference Result Req. topology Anon. Daemon Complexity

[HH92] maximal arbitrary 3 central O(m) moves

[CHS02]-1 maximal arbitrary – distributed O(n) rounds

[GHJS03d] maximal arbitrary – synchron. O(n) rounds

[GHJS03a] generalized arbitrary 3 central O(m) moves

[GHS06] 1-maximal tree 3 central O(n4) moves

[MMPT07],
[MMPT09]

maximal arbitrary – distributed O(m) moves

[KS00] maximum tree 3 central O(n4) moves

[CHS02]-2 maximum bipartite graph 3 central O(n2) rounds

Other matchings

[MM07] 1/2-approx.
max. weight

arbitrary – distributed O(3n) moves

Alg. 7.3 1/2-approx.
max. weight

arbitrary – distributed O(mn) moves

[MMPT08] 2/3-approx.
maximum

arbitrary – distributed O(n2) rounds

[GHJS03c] strong arbitrary – central ≥ O(2n/3) moves

�� Table 2.6: Self-stabilizing algorithms for the maximal matching problem. Source of
the upper part: [GK10]

Currently, there is no self-stabilizing algorithm that calculates a maximum matching
on general graphs. There are algorithms for certain classes of graphs, such as trees
[KS00] or bipartite graphs [CHS02]. An algorithm for arbitrary graphs is provided in
[MMPT08]. It calculates a 2/3-approximation of a maximum matching.

The self-stabilizing algorithm in [GHJS03c] computes a strong matching. This is a
more restrictive version of the matching problem that specifies that a matched node is
not allowed to have any matched neighbors apart from the node it itself is matched to.

38

2.4 SELF-STABILIZING ALGORITHMS FOR CLASSICAL GRAPH PROBLEMS

In [MM07] Manne and Mjelde proposed an algorithm for the maximum weight
matching problem that guarantees an approximation ratio of 1/2. The move com-
plexity of this algorithm was stated to be exponential for both the central and the
distributed scheduler. In Chapter 7 it is shown that the algorithm indeed stabilizes after
O(mn) moves under the central scheduler. Furthermore, a modified version of this
algorithm (Algorithm 7.3) also stabilizes after O(mn) moves under the distributed
scheduler.

39

2 SELF-STABILIZATION

40

Chapter3Chapter3

Analysis of Self-Stabilizing
Algorithms

Proving self-stabilization of an algorithm and determining its complexity is a chal-
lenging task. A famous example is the mutual exclusion protocol in [Dij74]: Its proof
of correctness appeared a total of twelve years later in [Dij86].

The algorithm and the choice of methods to derive the worst-case behavior have to
be a good match. Some proof techniques may be less effective on certain algorithms
and can lead to results that leave much room for improvement. Thus, deciding which
proof method(s) are most suitable for a given algorithm is a crucial factor for the
quality of the result.

This chapter presents several approaches to determine the worst-case complexity
of a self-stabilizing algorithm. The first section illustrates the necessary and optional
parts of the analysis. Section 3.2 describes the proof techniques.

3.1 Elements of the Analysis

The analysis of a self-stabilizing algorithm consists of several parts that can be treated
separately. The two properties closure and convergence are mandatory to give evidence
that an algorithm is indeed self-stabilizing (cf. Section 2.2.2). Most authors incorporate
the complexity analysis into the proof of convergence. Apart from these elements it is

41

3 ANALYSIS OF SELF-STABILIZING ALGORITHMS

helpful to provide a worst-case example. In the following sections these components
are described in detail.

3.1.1 Closure

To make the closure property hold true it has to be guaranteed that if the system is in a
legitimate configuration, it is impossible to leave the set of legitimate configurations
by executing the algorithm. For silent self-stabilizing algorithms (cf. Section 2.2.2) the
nodes do not make another move when a legitimate configuration is reached. Hence,
the closure property holds trivially.

Since a reactive algorithm does not stop after reaching a certain configuration, it is
much more difficult to show that a reactive self-stabilizing algorithm fulfills the closure
property. A common approach is to first assume an arbitrary legitimate configuration
and then show that any next step leads to another legitimate configuration. Often this
can be shown by considering only the local states of a single node and its neighbors.

The self-stabilizing algorithms considered in this thesis are all silent. Thus, the
closure property does not have to be proven explicitly for them.

3.1.2 Convergence

The convergence property demands a self-stabilizing algorithm to reach a legitimate
configuration after a finite number of moves irrespective of the configuration the
algorithm starts with. Assuming a silent self-stabilizing algorithm, the convergence
property can be verified by proving the following two properties:

� Termination: The algorithm stops after a finite number of moves.

� Correctness: Every final configuration is legitimate.

The proof of correctness verifies that the analyzed algorithm indeed calculates what
it was developed for, i.e. it does not stop at an illegitimate configuration. Due to the
design of self-stabilizing algorithms the correctness property is usually not very diffi-
cult to show: The predicate P that evaluates the correctness of a global configuration
is based on the local states of the nodes. Hence, if the system is not in a legitimate
configuration, there must be at least one enabled node.

42

3.2 PROOF METHODS FOR THE COMPLEXITY ANALYSIS

The second property to be proven is termination, i.e. the algorithm cannot make
an infinite number of moves. Most publications not only provide evidence that the
proposed algorithms eventually reach a final configuration but also prove an upper
bound for the maximum runtime. Section 3.2 describes the different methods to
determine the worst-case number of moves in detail.

The worst-case move complexity for an algorithm depends on the used scheduler
(cf. Section 2.3.3). Most self-stabilizing algorithms have different complexity results
for each scheduler. The choice of a scheduler has great influence on the analysis, too:
Assuming the central scheduler is used, the analyst does not have to consider effects
caused by adjacent nodes executing at the same time. Nevertheless, it is often easier
to determine the move complexity for an algorithm when a synchronous scheduler
is assumed: There are no enabled nodes that do not execute a rule for a considerable
number of steps as it can be the case under the central or distributed scheduler. In
many cases the synchronous scheduler makes an algorithm stabilize quickly. On the
other hand, certain algorithms do not stabilize at all under this scheduler due to the
lack of symmetry-breaking mechanisms [IJ90, GT00, Ang80]. Since the distributed
scheduler is the most general one which subsumes all other schedulers, all complexity
results for this scheduler trivially also hold for the others.

3.1.3 Worst-Case Example

To verify that the derived complexity is a sharp limit and not just any arbitrary upper
bound, the next step is to give an example that demonstrates the analyzed algorithm
indeed requires the derived number of moves. This step is often skipped, especially
for algorithms with a low complexity. Unfortunately, it is also often omitted even
in cases where the result is not obvious, e.g. [SX07]. If the lower bound provided
by the example and the calculated upper bound are far apart, further research can be
pursued to reduce this gap by either finding an example that requires more moves until
stabilization or by improving the complexity analysis.

3.2 Proof Methods for the Complexity Analysis

There is no such a thing as the perfect proof method that is applicable to all algorithms
to verify their self-stabilization property or to determine their worst-case complexity.

43

3 ANALYSIS OF SELF-STABILIZING ALGORITHMS

This section introduces the techniques most commonly used in the literature. In
Section 3.2.4, a new technique is presented that allows to make use of complete
induction on the number of edges of a graph.

Often, the analysis of a self-stabilizing algorithm cannot be done by using only
one proof method. Instead a combination of several techniques has to be applied. As
the result of the analysis heavily depends on the methods used, it is a crucial step to
decide which approach is probably best suited for a given algorithm.

3.2.1 Global State Analysis

The configuration of the whole distributed system is not visible to single nodes.
However, the “view from above” can be used in the complexity analysis to prove
termination. For instance, it may be possible to prove that no configuration can occur
twice. Especially in algorithms that make use of a hierarchical structure it may be
possible to show that local decisions made by one node cannot be undone unless a
higher-ranked neighbor makes a decision itself that contradicts the state of this node.
This yields the result due to the finite number of nodes.

The system’s configuration is also the basis for the following analysis: For some
algorithms it is possible to prove that, provided some nodes or parts of the system
have already reached their final state, there is a limit on the number of moves for at
least one further node. The rest may follow by induction if it is possible to find a node
that stops after a few moves, e.g. the highest-ranked node.

A disadvantage of the analysis of the system’s configuration to limit the number
of moves until stabilization usually is the quality of the result. Having the guarantee
that any configuration can occur at most once can be enough to provide evidence that
the algorithm terminates at all if the set of configurations is finite. But since for most
algorithms a node can take on several local states, the total number of configurations
is at least exponential. Hence, this technique may not be the method of choice when
the goal is to prove the efficiency of an algorithm.

In [SX07], Srimani and Xu present an algorithm for the calculation of a weakly
connected minimal dominating set (cf. Section 4.2). They prove that no configuration
can occur twice in order to show that their algorithm eventually stops. It remained
an open problem whether this is a sharp bound or not. In this thesis it is shown that

44

3.2 PROOF METHODS FOR THE COMPLEXITY ANALYSIS

there are examples for which their algorithm indeed needs O(2n) moves to establish a
legitimate configuration under a central scheduler.

An example for the second approach mentioned in this section is the minimum
weight matching algorithm by Manne and Mjelde [MM07]. They proved that if
there is at least one inactive node, then there always exists a node that makes at
most two more moves. Via induction this results in an upper bound of O(3n) moves.
Section 3.2.4 outlines a new proof method that can be applied to this algorithm and
which shows that the algorithm indeed stabilizes after at most O(mn) moves. A
more detailed description of this technique and the complete analysis of Manne and
Mjelde’s algorithm can be found in Chapter 7.

3.2.2 Analysis of Local States, Properties and Sequences

The analysis of a self-stabilizing algorithm does not necessarily have to consider
the states of all nodes. A very common approach is the analysis of the state of a
single node and its neighbors. Some algorithms have the property that nodes become
disabled permanently after executing a certain move. An intuitive example is a simple
node-coloring algorithm under a central scheduler, such as Algorithm 1 of [GK93]:
If a node has set its color to a value that does not occur in its neighborhood, it is
guaranteed that none of its neighbors can choose the same color. Hence, the node will
not become enabled again.

Another version of this property is a limitation on the number of moves a node
(or its neighbors) can make after it has executed a particular move. For instance,
in the maximal independent set algorithm by Turau the node with locally highest
identifier can enter the set if none of its neighbors is already included. After that all
its neighbors will make at most one further move [Tur07]. This paper also shows how
the analysis of sequences of moves can be used to determine the move complexity of a
self-stabilizing algorithm: The dependencies between the rules the algorithm consists
of and the states of a node’s neighbors lead to a specific order of the moves a node
can make. Since all these sequences either contain a move that disables a node itself
permanently or a move that requires a neighbor to have made a move that limits all its
neighbor’s moves, an upper bound on the total number of moves can be derived.

There are proof methods that combine the analysis of local and global properties.
Showing that a certain move e.g. disables the executing node permanently can be

45

3 ANALYSIS OF SELF-STABILIZING ALGORITHMS

combined with deriving an upper limit on the number of moves that can be made
in total without an execution of this move. As a simple example, consider an al-
gorithm consisting of two rules to color a node black and gray respectively (c.f.
Algorithm 4.2). Obviously, after n moves of one type all nodes have the same color
and the corresponding rule is disabled.

3.2.3 Potential Functions and Convergence Stairs

Potential functions have been used for proving self-stabilization e.g. in [Dol00] or
[Kes88]. A potential function (or variant function) measures the “progress” an al-
gorithm makes during its execution. This can be done e.g. by counting nodes with
a certain property. It may be possible to measure how close the current configura-
tion is to the final configuration in a system that converges to a unique legitimate
configuration.

Potential functions are usually monotonic functions with a given limit for the value.
It has to be shown that the value converges to this limit during execution, i.e. the
execution of at least one rule increases this function while the other rules at least do
not decrease it (or vice versa). The monotonicity is not a mandatory property but it
simplifies the proofs significantly since the convergence property trivially holds true if
it can be shown that the value increases (resp. decreases) regularly.

There are very simple examples for potential functions, for instance the growing
number of permanently disabled nodes. However, for some algorithms only very
complex potential functions were found. Such an example is given in Chapter 7. The
major challenge of this proof method is the search for a suitable function. In [The00]
Theel writes:

The difficulty of this verification strategy lies in the fact that finding such
a variant function for a given system requires experience and inspiration
since the function must in itself bear the “essence of convergence” of the
system. Thus, deriving a variant function for arbitrary systems is regarded
as an art rather than a craft.

In [TG99] and [The00] a relation between self-stabilization and control theory in
the engineering domain is shown. According to them, Ljapunov’s “Second Method”
[Lja07] can be used to more easily identify variant-like functions.

46

3.2 PROOF METHODS FOR THE COMPLEXITY ANALYSIS

A proof method similar to potential functions uses convergence stairs [GM91]. A
convergence stair consists of several global predicates R1, . . . , Rk with the following
conditions:

� Boundary: R1 = true and Rk corresponds to the definition of a legitimate
configuration of the system.

� Closure: Each Ri is closed, i.e. if Ri = true for a given configuration, all
subsequent configurations also satisfy Ri.

� Convergence: Each Ri converges to Ri+1 for i < k.

A monotonic potential function φ for a self-stabilizing algorithm is a special case of a
convergence stair since it is possible to define a predicate for each value of φ.

3.2.4 Graph Reduction and Induction

In Chapter 7, a new approach to determine the worst-case complexity of self-stabilizing
algorithms is presented. Its basic idea is to create a mapping from the algorithm’s
execution sequence of a graph to that of a reduced graph. This allows to use complete
induction in the proofs.

In particular, the original graph is reduced by removing the lightest edge. This
choice is due to the analyzed algorithm that makes use of edge weights. Then, two
mappings are defined: Configurations that are not valid on the reduced graph have to
be altered, and the same holds for moves that cannot be performed by the adjacent
nodes. These moves are either changed to suit the new topology or just omitted if there
is no reasonable substitute. It is shown that via these two mappings any execution
sequence of the original graph can be transformed to a valid execution sequence of the
reduced graph. Now the number of omitted moves due to the deletion of the edge has
to be determined. In this case it is possible to retrieve an upper bound for these moves.
The product of this number and the number of edges of the original graph yield the
result by induction. For more details see Chapter 7.

47

3 ANALYSIS OF SELF-STABILIZING ALGORITHMS

3.2.5 Invariancy-Ranking

Recently, Köhler and Turau developed a generic technique for proving stabilization
under the distributed scheduler, provided the algorithm in focus stabilizes under the
central scheduler [KT10] .

The basic idea of their work is to define a rank for each enabled node in a given
configuration. By sorting the moves of a step based on their rank it is aimed to obtain
a serialization, i.e. a sequence of moves for the central scheduler that produces the
same global configuration as executing these moves in a single step of the distributed
scheduler. If the rank of the nodes does not change during the execution of the
obtained sequence, the ranking function is called an invariancy-ranking. It is shown
that for an algorithm with an invariancy-ranking, every set of enabled instances is
serializable in any configuration. Furthermore they prove that for any execution e
under the distributed scheduler of an algorithm with an invariancy-ranking there is
an execution e′ under the central scheduler such that e is a subsequence of e′. This
yields the main result of [KT10]: If it is possible to find an invariancy-ranking for a
given algorithm, the complexity under the central scheduler is also an upper bound for
the complexity under the distributed scheduler. There is no slowdown as no scheduler
transformation has to be applied (cf. Section 2.3.3).

48

Chapter4Chapter4

Distance-Two Knowledge and
Network Decomposition

Many self-stabilizing algorithms aim to achieve a configuration that depends on a
fixed hierarchic structure with respect to e.g. edge weights, node identifiers or distance
to a root node. Usually, in such a case, a node only takes the states of its higher-ranked
neighbors as a basis for its move. The state of a lower-ranked node is ignored, these
nodes have to adapt their state to the state of their higher-ranked neighbors. Since a
higher-ranked node does not adjust its state according to all its neighbors, any of its
moves can force all its lower-ranked neighbors to change their states. In an adverse
setting, this may not only cause a significant number of nodes to get affected by
a single transient error (e.g. at the highest-ranked node) starting from a legitimate
configuration. Also, the complexity of an algorithm can be very high if a node can
activate other parts of the network again and again by a single move. An example
for such a case that leads to an exponential number of moves will be presented in
Section 4.2.1.

The idea of network decomposition is to “gain more locality” by limiting the area
a node can control just by its rank. This chapter uses this technique to develop a
distributed self-stabilizing algorithm for the weakly connected minimal dominating set
problem. It assumes a self-stabilizing algorithm to compute a breadth-first tree. Using
an unfair distributed scheduler the algorithm stabilizes in at most O(nmA) moves,

49

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

where A is the number of moves to construct a breadth-first tree, i.e. O(A) ≤ O(n3)

[SX07]. All previously known algorithms required an exponential number of moves.

This chapter is structured as follows: Section 4.1 introduces the weakly connected
minimal dominating set problem and overviews related work. In Section 4.2 the
first self-stabilizing algorithm for this problem, which was developed by Srimani and
Xu [SX07], is presented. Their complexity analysis is completed by proving that
the algorithm needs an exponential number of moves in the worst case. Section 4.3
explains how the disadvantages of the aforementioned algorithm can be resolved
by dividing the graph into several subnetworks. In Section 4.4 the new algorithm
is presented assuming a central scheduler. The design is made with a distance-two
setting which is later transformed to the common model that only allows distance-one
knowledge. The complexity analysis makes use of a potential function. Section 4.5
demonstrates that it is possible to transform the algorithm to run under a distributed
scheduler with only constant slowdown. The chapter ends with a short conclusion.

4.1 Example: Weakly Connected Minimal

Dominating Set

4.1.1 Introduction

A classical problem of graph theory is the calculation of dominating sets. Dominating
sets are an important structure for many applications, e.g. as a backbone network for
efficient communication in a distributed system [WL99]. Depending on the application
it is possible to define many distinct domination parameters [HL91]. For the sake of
coherence, the definitions of Section 2.4.2 are repeated here:

Let G = (V, E) be an undirected graph. A dominating set S of G is a subset of V
such that each v ∈ V\S has at least one neighbor in S. S is a minimal dominating
set if for any node v ∈ S the set S\{v} is not dominating. If S is connected, it is
called connected dominating set. A dominating set S is called weakly connected if the
subgraph weakly induced by S, i.e. the graph (N[S], E ∩ (S× N[S])) is connected
(Figure 4.1).

50

4.1 EXAMPLE : WEAKLY CONNECTED M INIMAL DOMINATING SET

(a) Connected dominating set

(b) Weakly connected dominating set

�� Figure 4.1: A weakly connected dominating set requires significantly less nodes
than a connected dominating set

4.1.2 Related Work

The construction of minimal dominating sets in distributed systems has attracted a
lot of research due to the importance of the concept in the field of wireless commu-
nication [AWF03]. Many applications use dominating sets as a structure to route
messages or for clustering. Often, the dominating sets are required to be connected.
However, connected dominating sets can be rather large. By relaxing the connec-
tivity requirement the number of nodes can be reduced significantly ([CL02], see
Figure 4.1). This led to the notion of a weakly connected minimal dominating set
[DGH+97, PH06]. Several distributed algorithms for approximating such sets have
been proposed [AWF03, DMP+03].

Self-stabilizing algorithms for dominating sets exist for several dominating param-
eters. A survey paper by Guellati and Kheddouci discusses several self-stabilizing
algorithms for the construction of minimal dominating sets and minimal k-dominating

51

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

sets [GK10]. Section 2.4.2 of this thesis provides a summary of their results and
further lists algorithms for connected and weakly connected dominating sets.

Recently, Srimani and Xu presented the first self-stabilizing algorithm to construct
a weakly connected dominating set (WCMDS) using the central scheduler [SX07]. A
revised version of this paper [XHGS03] contains more details but the results are the
same: The algorithm is based on a breadth-first tree and stabilizes after O(2n) moves.
This algorithm will be the subject of Section 4.2.

Kamei and Kakugawa published a self-stabilizing algorithm for the calculation
of a WCMDS under the synchronous scheduler [KK07a]. On a unit disk graph this
algorithm guarantees an approximation ratio of 5 with respect to the solution with
minimum cardinality. Furthermore, a dominating set is established after the first round.
The total stabilization time of the algorithm is O(n2) rounds.

A new algorithm for the construction of a weakly connected minimal dominating
set under the distributed scheduler will be presented in Section 4.4. It stabilizes after
O(mnA) moves, where A is the number of moves necessary for the construction of a
breadth-first spanning tree.

4.2 Algorithm of Srimani and Xu

The first self-stabilizing algorithm to compute a weakly connected minimal dominating
set was presented by Srimani and Xu [SX07]. Their algorithm requires a breadth-first
spanning tree of the given graph. A self-stabilizing algorithm that establishes such
a tree is also presented in [SX07] (within at most O(n3) moves). It assumes unique
node identifiers and the node with maximum id is chosen to be the root of the spanning
tree. The spanning tree algorithm initializes the variable v.p that stores the parent

node of a node v, and v.l which holds the level, i.e. the distance in hops to the root
node. The root node r has r.p = r and r.l = 0. The boolean flag v. f denotes, whether
node v is a member of the weakly connected minimal dominating set or not. The set
of rules is shown in Algorithm 4.1.

Via rule R1 the root node enters the WCMDS, if it is not included already. Rule R2

makes a node leave the set if an adjacent node with lower level is included. Otherwise
it enters the set itself. A more detailed description and the proofs of correctness and
termination can be found in [SX07].

52

4.2 ALGORITHM OF SRIMANI AND XU

Algorithm 4.1 WCMDS Algorithm of Srimani and Xu

Functions:
hasLowerLevelIncludedNeighbor(v) :

return (∃u ∈ N(v) s.t. u.l ≤ v.l ∧ u. f = true)

Actions:
(root node)

R1 :: [(v.p = v) ∧ (v. f = false)]
−→ v. f := true

(non-root nodes)
R2 :: [(v.p 6= v) ∧ (hasLowerLevelIncludedNeighbor(v) = v. f)]
−→ v. f := ¬hasLowerLevelIncludedNeighbor(v)

4.2.1 Complexity Analysis

Srimani and Xu prove that Algorithm 4.1 stabilizes by performing an analysis of the
global configuration. In particular they show that no configuration can occur twice.
This leads to an upper bound of at most O(2n) moves. Since they did not provide a
lower bound, i.e. a worst-case study that indeed uses O(2n) moves, it remained an
open question whether this limit is sharp or not. The following example provides a
lower bound for Algorithm 4.1.

Consider a circle C which consists of eight nodes. It contains a nodes vs and a node
vt with distance 4 (Figure 4.2). Assume node vs to have the lowest level in C and
hence, vt has the highest level of all nodes in C. Obviously, if node vs sets its flag
then all nodes of C with even distance will finally have assigned the same state and
the other nodes take on the opposite value.

vs vt

�� Figure 4.2: Circle C with node vs having the lowest level

In the following it will be shown that a certain initial configuration and an adverse
sequence of moves allows node vt to make four moves when vs only moves twice.

53

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

This is made possible because the nodes of the two paths that connect vs and vt not
necessarily execute their rules synchronously. Hence it is possible to “store a decision”
from a higher-ranked node for a finite time and pass it on with delay. Figure 4.3 shows
an execution of Algorithm 4.1 on C that demonstrates this behavior (this example
does not consider why node vs changes its state at all, configurations that allow for
such an assumption will be presented later in this section). Node vs changes its state
twice and vt changes its state four times. Nodes v with v. f = true are colored black,
the others are white.

vs vt

(a)

vs vt

(b)

vs vt

(c)

vs vt

(d)

vs vt

(e)

vs vt

(f)

vs vt

(g)

vs vt

(h)

vs vt

(i)

vs vt

(j)

vs vt

(k)

vs vt

(l)

vs vt

(m)

vs vt

(n)

vs vt

(o)

vs vt

(p)

vs vt

(q)

vs vt

(r)

vs vt

(s)

�� Figure 4.3: Adverse execution of Algorithm 4.1 on a circle when node vs moves
twice: Node vt makes four moves!

Let Gk be a graph that is composed of two nodes, one of them regarded as root, and
k circles C1, . . . Ck of the same type as described above and arranged in a row, such

54

4.2 ALGORITHM OF SRIMANI AND XU

that every circle shares a particular node with its neighboring circle, i.e. for all circles
Ci and Ci+1: vt,i = vs,i+1. Figure 4.4 shows G3.

root
vs,1 vt,1 vs,2 vt,2 vs,3 vt,3

�� Figure 4.4: Graph G3

According to the considerations of a single circle it is now possible to construct a
graph and an initial configuration that leads to an exponential number of moves until
stabilization: Consider the initial configuration given in Figure 4.5:

root
vs,1 vt,1 vs,2 vt,2 vs,3 vt,3

�� Figure 4.5: Adverse initial configuration of the WCMDS algorithm on Graph Gk

As shown above, vt,i can make twice as much moves as vs,i, if vs,i gets enabled by
a node with higher level. In an adversarial execution the nodes of a circle Ci do not
perform a move if a node of a circle Cj with i < j is enabled. Furthermore, the node
between vs,1 and root only moves if no other node is enabled. Consequently, node
vs,1 will move twice. Thus, there is an execution of Algorithm 4.1 of Gk (consisting
of 7k + 2 nodes) in which node vt,k can make 2k moves. Hence, O(2n) is also a lower
bound for Algorithm 4.1.

Remark 1. The behavior of the system in case of a single transient error after having
reached stability heavily depends on the rank of the node in the hierarchy, i.e. the
distance of the erroneous node to the root node. If a node with no lower-ranked
neighbors in the breadth-first tree fails, no other node gets enabled to execute a
rule. The node will reset its status and the system regains legitimacy after a single
move. However, if the memory of the root node gets corrupted, the same situation as
described in the worst-case example can occur, i.e. all nodes can make a move and the
system stabilizes after O(2n) moves.

55

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

4.3 Network Decomposition

The previous section showed that some algorithms allow the decisions of a single
node to decide the final state of any other node. The local storage of an impulse given
by a higher-ranked node can lead to an exponential number of moves.

There are several ways to prevent this behavior. One possibility is to build up a
certain level of synchrony by using synchronizers [Awe85, AKM+07]. However, these
approaches usually come along with a slowdown of the stabilization time. Furthermore
they require a-priori knowledge, e.g. the number of nodes of the system. In this
section a new, polynomial algorithm for the weakly connected minimal dominating
set problem is presented that uses a network decomposition [AGLP89], or layers, of
a graph to limit the influence of a single node’s move. The new algorithm has two
things in common with the algorithm of Srimani and Xu:

1. It is assumed that nodes have globally unique identifiers and that a distinguished
node, called root, has been selected, e.g. the node with the smallest identifier.

2. The proposed algorithm is based on a self-stabilizing algorithm A to construct
a breadth-first tree for the given root.

The only requirement for A is that each node maintains a variable d measuring the
distance in hops to the root of the tree. Algorithms of this type are described in
[HC92, SX07, SS92]. The breadth-first tree algorithm in [SX07] stabilizes after at
most O(n3) moves. The other references lack a detailed complexity analysis.

Instead of a boolean flag to indicate whether a node is considered to be part of the
weakly connected dominating set or not, the new algorithm will use a variable status.
This variable may assume any of the three values black, gray and white. The code
of the algorithm to build a breadth-first tree is modified as follows: Every time the
variable d is changed the following statement is executed:

if (d mod 2 = 1) then
status := white

else if (status = white) then
status := black

Additionally, a similar rule is introduced to color a node, in case the color and the
value of d are inconsistent. These changes do not increase the worst-case run time

56

4.4 CENTRAL SCHEDULER

of the algorithm. When A stabilizes, all nodes with an odd distance to the root have
been assigned the value white (see Figure 4.6). All other nodes are either black or
gray. The root always gets assigned the value black. For every node v there is a path
to the root where every second node is white and the other nodes are either black or
gray. Note that the variable status does not appear in any of the guards of A. Let
Nb(v), Nw(v), Ng(v) denote the sets of black, white and gray neighbors of v.

Layer d = 0: black (Root)

Layer d = 1: white

Layer d = 2: black/gray

Layer d = 3: white

Layer d = 4: black/gray

�� Figure 4.6: Network decomposition for the WCMDS Algorithm. The white nodes
will never change their status variable. Therefore, the move of a black/gray node
has only local effects.

The algorithm to compute a weakly connected minimal dominating set will be the
composition of A and an algorithm to be presented in the following sections. This
algorithm uses the variable status in its guards and also changes the value of this
variable. It will be shown that it stabilizes for any assignment of the variable status
(cf. Section 2.3.1). When both algorithms have stabilized, the black nodes will form
a weakly connected minimal dominating set. Moreover, the worst case number of
moves of the composed algorithm is the product of the worst case number of moves
of both algorithms (cf. Section 2.3.1).

4.4 Central Scheduler

In order to devise an algorithm to compute a weakly connected minimal dominating
set it is first assumed that each node has instant access to the states of all nodes

57

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

within distance two (distance-two model, cf. Section 2.3.2). Later this assumption
will be removed. Algorithm 4.2 is formulated using this premise. Intuitively, a black
node changes its color to gray if it has a black neighbor and if all its white and gray
neighbors have another black neighbor. A gray node changes its color to black if it
has no black neighbor or if it has a gray or white neighbor with no black neighbor.
Note that the state of white nodes never changes (see Figure 4.6).

Algorithm 4.2 MDS with Network Decomposition, Distance-Two Algorithm

Actions:
R1 ::

[
v.status = black ∧ Nb(v) 6= ∅ ∧ @w ∈ Ng(v) ∪ Nw(v) : |Nb(w)| = 1

]
−→ v.status = gray

R2 ::
[
v.status = gray ∧ (Nb(v) = ∅ ∨ ∃w ∈ Ng(v) ∪ Nw(v) : |Nb(w)| = 0)

]
−→ v.status = black

Lemma 4.4.1. When no node is enabled for Algorithm 4.2 in the distance-two model

then the black nodes form a minimal dominating set for the graph induced by all black

and gray nodes and white nodes with a black or gray neighbor.

Proof. Since no node is enabled for rule R2, every gray node must have a black
neighbor. Suppose there exits a white node v with Nb(v) = ∅. Then there exists a
gray node w ∈ N(v). But then w would be enabled with respect to rule R2. Thus, the
black nodes are dominating.

Suppose there exists a black node v such that the remaining black nodes are
dominating. Then Nb(v) 6= ∅ and |Nb(w)| > 1 for every white or gray node
w ∈ N(v). Thus, node v is enabled for rule R1. This contradiction completes the
proof.

Lemma 4.4.2. Algorithm 4.2 stabilizes after at most 3n moves in the distance-two

model.

Proof. For a configuration c let φ(c) denote the number of nodes that are either black
or have a black neighbor in c. Obviously, 0 ≤ φ(c) ≤ n. Rule R2 increases φ by at
least one and rule R1 does not decrease φ. Thus, there are at most n executions of
rule R2. Furthermore, a node cannot execute rule R1 twice without executing rule R2

in-between. This concludes the proof.

58

4.4 CENTRAL SCHEDULER

Goddard et al. developed a general mechanism to transform self-stabilizing al-
gorithms having distance-k knowledge into algorithms that operate in the normal
distance-one model [GHJT08] (cf. Section 2.3.2). This transformation will be used in
the following for the case k = 2. For this purpose each node will be reconfigured to
have two additional variables. The variable bn holds the number of black neighbors
of a node, i.e. v.bn = |Nb(v)|. The variable p can hold the identifier of a neighbor or
the special value null. This variable is used to ensure that a node v can execute an
action of the original algorithm only if the values of the variable bn of all neighbors
of v are up-to-date.

To formally define the transformed algorithm some definitions are needed. For each
node v let

minN[v] = min{w ∈ N[v] | w.p = w}.

If w.p 6= w for all nodes w ∈ N[v] then minN[v] = null. A node v is called correct,
if v.bn has the correct value. A correct node v is called prepared if w.p = v for all
w ∈ N[v] and it is called neutral if w.p = null for all w ∈ N[v]. Finally, v is called
willing if it is enabled with respect to Algorithm 4.2. This property is based on the
values of the variable bn of all neighbors. Note that these values do not necessarily
reflect the current state of the nodes. The complete set of rules is as follows:

Algorithm 4.3 WCMDS with Network Decomposition, Central Scheduler

Actions:
UPDATE :: [v is not correct]
−→ update v.bn

ASK :: [v is willing and neutral]
−→ v.p := v

RESET :: [v is correct and v.p 6= minN[v]]
−→ v.p := minN[v]

CHANGE :: [v is prepared]
−→ if (v is willing)

execute Algorithm 4.2
v.p := null

Theorem 1 of [GHJT08] with k = 2 yields that Algorithm 4.3 stabilizes under

59

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

a central scheduler after at most O(n2m) moves. In the following it is shown that
O(nm) moves suffice.

A move of a node v is called correct if it is based on correct values w.bn of all
neighbors w ∈ N(v) and incorrect otherwise. In the following, an execution of rule
CHANGE will be referred to as a REAL− CHANGE move if the node really executes
Algorithm 4.2.

Lemma 4.4.3. If a node v makes an ASK move and then later a CHANGE move with

no intervening RESET move by v, then the CHANGE move is correct.

Proof. At the time of the ASK move, all neighbors w of v point to null. Later, at the
time of the CHANGE move, each w points to v. At the moment when a neighbor w
changes its pointer back to v with a RESET move, its bn value is correct. From that
point on, since w.p = v, no other neighbor of w can make a CHANGE move, and so
w.bn remains correct.

Lemma 4.4.4. There are at most O(n) correct and incorrect REAL− CHANGE
moves.

Proof. By the preceding lemma an incorrect REAL− CHANGE can only occur as
the first CHANGE move of a node because subsequent CHANGE moves must be
preceded by an ASK move. An incorrect REAL− CHANGE move using rule R2

of Algorithm 4.2 will not decrease the value of the function φ(c) as introduced in
Lemma 4.4.2. An incorrect REAL− CHANGE move of a node v using rule R1 of
Algorithm 4.2 can decrease the value of φ(c) by at most dv − 1. If a node makes
an incorrect REAL− CHANGE move, then all REAL− CHANGE moves by any of
its neighbors are correct. Hence, all incorrect REAL− CHANGE moves together can
decrease the value of φ(c) by at most n. Thus, repeating the arguments contained in
the proof of Lemma 4.4.2 gives rise to the upper limit of O(n).

Lemma 4.4.5. Algorithm 4.3 stabilizes under a central scheduler after at most O(nm)

moves. After stabilization the black nodes form a minimal dominating set for the

graph induced by all black and gray nodes and those white nodes that have a black or

gray neighbor.

Proof. During an interval without any REAL− CHANGE moves all nodes together
make at most O(m) moves. This follows from Lemma 8 in [GHJT08] applied for the
case k = 2. Applying Lemma 4.4.4 yields the desired bound.

60

4.4 CENTRAL SCHEDULER

Consider a configuration in which no node is enabled with respect to Algorithm 4.3.
Then obviously all nodes are correct. Suppose that there exits a node that points to
itself and let v be the node with the smallest identifier having this property. If there
would be a neighbor w of v with w.p 6= v, then v would be enabled with respect to
rule RESET. This would imply that v is prepared and could execute rule CHANGE.
This yields that no node points to itself. Therefore, all nodes are neutral. Because
no node is enabled to execute rule ASK, no node can be enabled with respect to
Algorithm 4.2. Hence, the second statement follows from Lemma 4.4.1.

LetA be a self-stabilizing algorithm to compute a breadth-first tree that is enhanced
as described above and that stabilizes after O(A) moves under a central scheduler.
In order for Algorithm 4.3 to produce a weakly connected minimal dominating set of
the graph a small modification is required. In Algorithm 4.2 the set Nw(v) needs to
be restricted to white nodes w that satisfy w.d = v.d + 1. With this modification the
corresponding statement of Lemma 4.4.5 still holds. Denote by D the composition of
A and Algorithm 4.3. Intuitively A separates the nodes of G into layers. The nodes
in these layers are beginning with the root alternately colored black and white. Due
to the modification described above Algorithm 4.3 basically works independently on
every set of nodes consisting of a white layer and the black layer above. This leads to
the following theorem.

Theorem 4.4.1. D is a self-stabilizing algorithm to compute a weakly connected

minimal dominating set. Under a central schedulerD stabilizes after at most O(nmA)

moves.

Proof. According to Lemma 4.4.5, Algorithm 4.3 makes at most O(nm) moves in
between two moves of algorithm A. Hence, D makes at most O(nmA) moves.
When algorithm D has stabilized, every white node has a black or a gray neighbor.
According to Lemma 4.4.5 the set S of black nodes form a minimal dominating set.
To prove that the subgraph weakly induced by S is connected, note that each white
node has a black neighbor in the layer above and each gray node has a black neighbor
in the same layer. Furthermore, each black node except the root has a white neighbor
in the layer above. Hence, every node is connected with the root via a path, where
every second node is a black node. This implies that the black nodes form a weakly
connected minimal dominating set.

61

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

4.5 Distributed Scheduler

Gairing et al. provide a mechanism to transform self-stabilizing algorithms having
distance-two knowledge for the distributed scheduler [GGH+04]. This transformation
leads to a slowdown factor of O(n2) moves. Another option is to use a general
transformer to convert an algorithm stabilizing under a central scheduler into one
that stabilizes under a distributed scheduler. Usually this is achieved by avoiding
simultaneous rule executions of neighboring nodes. Then the transformed schedule
is equivalent to a serial schedule. In the best cases this leads to a slowdown factor
of O(∆) moves [GT07]. In the following, Algorithm 4.3 is modified such that it
stabilizes under a distributed scheduler with only a constant slowdown. The key
observation is that it is not necessary to avoid all simultaneous rule executions in order
to preserve the stabilization property. Furthermore, the proof makes use of a special
characteristic of Algorithm 4.2.

Algorithm 4.3 already prevents neighboring nodes to execute rule CHANGE simul-
taneously since neighboring nodes cannot be prepared at the same time. A problem
arises when a node v executes rule RESET at the same time as the node w it is pointing
to performs a CHANGE move (Figure 4.7). Let u be the node that v points to after

u v w

�� Figure 4.7: Node v executes rule RESET at the same time as node w makes a
CHANGE move. Now u can execute rule CHANGE despite being in an inconsistent
state!

the RESET move. Note that at this moment the value u.bn is not consistent. If u
would make a CHANGE move in this situation, then this move would not be legal with
respect to Algorithm 4.2. To avoid such situations, the rules RESET and CHANGE
are revised so that a node can detect whether the neighbor it is currently pointing to
wants to perform a CHANGE: A node wishing to execute a CHANGE move has to set
its wtc (“want to change”) flag first using rule LOCK.

Another modification addresses the ASK rule. Allowing neighboring nodes to per-
form ASK moves simultaneously can result in O(n2) ASK moves between CHANGE

62

4.5 D ISTRIBUTED SCHEDULER

moves. To avoid this to happen another flag wta (“want to ask”) is introduced. A node
v is allowed to perform an ASK move if and only if it is the node with the smallest
identifier in N[v] that has its wta flag set to true. Another rule is added to reset
this flag if a node cannot execute an ASK due to not being enabled with respect to
Algorithm 4.2 anymore. The complete set of rules is shown in Algorithm 4.4.

Algorithm 4.4 WCMDS with Network Decomposition, Distributed Scheduler

Actions:
UPDATE :: [v is not correct]
−→ update v.bn

ASK :: [v is willing and neutral and ∀w ∈ N(v) : (w > v or w.wta = f alse)]
−→ if (v.wta = f alse)

then v.wta := true
else v.p := v

v.wta := f alse

RESET :: [v is correct and v.p 6= minN[v] and v.p.wtc = f alse]
−→ v.p := minN[v]

LOCK :: [v is prepared and v.wtc = f alse]
−→ v.wtc := true

CHANGE:: [v is correct and v.wtc = true]
−→ if (v is prepared and willing)

then execute Algorithm 4.2
v.p := null
v.wtc := f alse

UNASK :: [v is correct and not willing and v.wta = true]
−→ v.wta := f alse

In the following, an execution of rule ASK for node v will be referred to as a
REAL− ASK move if v points to itself after the move.

Lemma 4.5.1. The number of RESET moves of nodes that point to themselves before

execution is limited to one per node.

Proof. A node v can only point to itself via performing REAL− ASK, which implies
that all neighbors point to null. Afterwards no neighbor can perform a REAL− ASK

63

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

and thus, v cannot perform a RESET. Therefore this situation can only appear once
for each node, namely in the initial configuration.

Lemma 4.5.2. During an interval without REAL− CHANGE moves all nodes to-

gether make at most O(n + m) moves.

Proof. a) Let v be any node. Obviously v makes at most one UPDATE move during
such an interval. After a CHANGE move of v, v.wtc (resp. v.p) has value false (resp.
null). For v to make another CHANGE move, it must first execute a LOCK move
requiring v to be prepared. Thus, v must execute a REAL− ASK move and for that
to happen it must be neutral. Hence, at the time of the LOCK move all neighbors of
v must have moved, and their bn values are correct at the time of the LOCK move.
Thus, v is enabled with respect to Algorithm 4.2 and cannot execute a CHANGE move
without this being a REAL− CHANGE.

Between every two LOCK moves of v there must be at least one CHANGE move.
Thus, there are at most two LOCK moves per node. If v performs a REAL− ASK
move then all its neighbors point to null. Obviously the next move of v cannot be an
UPDATE, ASK, LOCK, or UNASK move. If its next move is a RESET move there
must be a neighbor pointing to itself. Therefore this neighbor must have executed rule
REAL− ASK itself, which is impossible, because v does not point to null. Thus, the
next move of v is a CHANGE move. Since this rule can be executed only once, there
cannot be more than two REAL− ASK moves.

Hence, v makes at most O(n) REAL− ASK, LOCK, CHANGE, and UPDATE
moves.

b) In between two successive RESET moves the set of self-pointing neighbors must
change. By the result of the last paragraph and Lemma 4.5.1 each neighbor can enter
and leave the set of self-pointing nodes only twice. Thus, it follows that a node v can
execute at most 5dv RESET moves.

A node can execute rule UNASK only if it has executed rule ASK before (except for
the very first time). At this time it was enabled with respect to Algorithm 4.2. If it is
enabled to perform an UNASK this must have changed, and thus, one of its neighbors
must have performed an UPDATE. Every neighbor can execute at most one UPDATE
move, so the number of UNASK moves of a node v is bounded by dv + 1.

Obviously, a node v cannot execute rule ASK twice without having executed rule
UNASK or REAL− ASK in between. Thus, v can make at most dv + 4 ASK moves.

64

4.5 D ISTRIBUTED SCHEDULER

Hence, there are at most O(m) moves of the types ASK, UNASK and RESET.

Lemma 4.5.3. Algorithm 4.4 stabilizes after at most O(nm) moves under the dis-

tributed scheduler. After stabilization the black nodes form a minimal dominating set

for the graph induced by all black and gray nodes and those white nodes that have a

black or gray neighbor.

Proof. Lemma 4.4.3 holds for Algorithm 4.4 under a distributed scheduler, since
neighboring nodes cannot simultaneously execute a CHANGE and a RESET move.
This yields that Lemma 4.4.4 is also valid for Algorithm 4.4 using the distributed
scheduler. Note that even under this scheduler neighboring nodes cannot execute a
CHANGE move concurrently. Thus, there will be no more than O(n) moves of type
REAL− CHANGE. By Lemma 4.5.2 the algorithm stabilizes after at most O(nm)

moves.

When no node is enabled for Algorithm 4.4, then all nodes are correct and the
variable wtc has value false for all nodes. Furthermore, all non-willing nodes have
set wta to false. Suppose there is a node that points to itself. Then the node with the
smallest identifier pointing to itself would be prepared and thus rule LOCK would be
enabled. Hence, all nodes are neutral. Suppose there is a node that is willing. Among
all such nodes, let v be the node with the smallest identifier. Then rule ASK would
be enabled for v. This contradiction proves, that no node is enabled with respect to
Algorithm 4.2. Hence, the second statement follows from Lemma 4.4.1.

LetA be a self-stabilizing algorithm to compute a breadth-first tree that is enhanced
as described above and that stabilizes after O(A) moves under an unfair distributed
scheduler. Denote by D the composition of A and Algorithm 4.4. This leads to the
main result of this chapter.

Theorem 4.5.1. D is a self-stabilizing algorithm to compute a weakly connected

minimal dominating set. Under an unfair distributed scheduler D stabilizes after at

most O(nmA) moves.

Proof. The proof is similar to that of Theorem 4.4.1, using Lemma 4.5.3 instead of
Lemma 4.4.5.

65

4 D ISTANCE-TWO KNOWLEDGE AND NETWORK DECOMPOSITION

4.6 Conclusion

This chapter completed the analysis of the worst case complexity for an algorithm by
Srimani and Xu that computes a weakly connected minimal dominating set [SX07].
By giving an example it verified that O(2n) is not only an upper bound but also a lower
bound for the number of moves until stabilization. Furthermore, this chapter presented
another self-stabilizing algorithm for this problem. Via network decomposition the
area a node can control by its state is significantly reduced. Thus, the new algorithm
only requires a polynomial number of moves to stabilize assuming an unfair distributed
scheduler.

66

Chapter5Chapter5

Analysis of Local States and
Sequences

The local state analysis (see Section 3.2.2) is a convenient method to show self-
stabilization. If it can be applied, the proofs of termination are usually less complex
compared to other methods, such as e.g. graph reduction which will be presented
in Chapter 7. This chapter makes use of several techniques for the design and the
analysis of a self-stabilizing algorithm that runs in an anonymous network.

Designing self-stabilizing algorithms for anonymous networks is inherently difficult.
There are only a few positive results related to anonymous networks [AAFJ08]. The
reason is the lack of a mechanism for breaking symmetry (cf. Section 2.1). This
is best seen when considering completely symmetric graphs such as rings. When
a self-stabilizing algorithm starts in a configuration where all nodes have the same
initial state, then either no nodes or all nodes are enabled. In the latter case, under a
synchronous scheduler, all nodes will make the same move and will assume a common
state again. Thus, at any time, all nodes are in the same state and no node or edge
stands out. This implies that under this assumption it is impossible e.g. to compute
a minimum vertex cover or a maximal matching. At best it is possible to compute
approximations of the optimal solution.

In the following, a self-stabilizing algorithm for the minimum vertex cover problem
in an anonymous network is presented. It simulates a bipartite graph to calculate its
result and its complexity is determined by analyzing the local states of the nodes.

67

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

The chapter is structured as follows: The next section introduces the vertex cover
problem and summarizes related work for both this problem and self-stabilizing
algorithms in an anonymous network in general. Section 5.2 introduces a basic version
of the proposed algorithm with approximation ratio 3. This algorithm is extended
in Section 5.3 to achieve an approximation of 3− 2

∆+1 . Section 5.4 concludes this
chapter.

5.1 Example: Vertex Cover Approximation in

Anonymous Networks

5.1.1 Introduction

A vertex cover of a graph is a set S of vertices such that each edge of the graph is
adjacent to at least one vertex of S (see Figure 5.1).

�� Figure 5.1: Minimal vertex cover S of a graph. The nodes in S are colored black.

Finding a minimum vertex cover is a classical optimization problem and is an
example of an NP-hard problem. In a centralized setting, a simple polynomial-time 2-
approximation algorithm is well-known. Distributed algorithms with an approximation
ratio of less than two do exist, as long as a mechanism for symmetry breaking is
available. This chapter considers distributed self-stabilizing algorithms in anonymous
networks for the minimum vertex cover problem.

68

5.1 EXAMPLE : VERTEX COVER APPROXIMATION IN ANONYMOUS NETWORKS

5.1.2 Related Work

A well-known procedure to compute a 2-approximation of a minimum vertex cover is
based on the following observation: Any maximal matching (c.f. Section 2.4.6) implies
a 2-approximation vertex cover by selecting all nodes incident to matched edges.
Unfortunately it is impossible to establish a maximal matching with a distributed
algorithm in general anonymous networks. In such networks a minimum vertex cover
cannot be approximated with a ratio better than two (see Lemma 5.2.1). Polishchuk and
Suomela developed a local algorithm (not self-stabilizing) that finds a 3-approximation
vertex cover in anonymous networks [PS09]. So the question is whether there exist
k-approximation algorithms with k < 3. In [ÅS10] Åstrand and Suomela compare
several fast distributed algorithms with smaller approximation ratio but without the
self-stabilization property. The contribution of this chapter is a fault-containing
self-stabilizing (3− 2

∆+1)-approximation algorithm for a minimum vertex cover in
anonymous networks with port numbering using the distributed scheduler and the
link-register model with composite atomicity. Note that the model used - deterministic
self-stabilizing algorithms in anonymous networks with port numbers - is indeed a
very weak model of distributed computing.

Self-stabilizing algorithms work with different schedulers. The central scheduler
non-deterministically selects in every step a single node to make a move. Thus, this
type of scheduler inherently provides a mechanism for symmetry breaking. Hence,
algorithms running under this type of scheduler often work in anonymous networks.
This includes the algorithm in [HH92] for solving the maximum matching problem
and that in [BDGT09] for the coloring problem. Even under a central scheduler
some problems cannot be solved at all under these premises. Shukla et al. proved
that there is no self-stabilizing algorithm for coloring an arbitrary anonymous odd-
degree bipartite network, using a central scheduler [SRR95]. This reference contains
more impossibility results for the central scheduler scenario. Some special classes of
anonymous networks such as trees or planar graphs allow self-stabilizing algorithms
[AS97b, GHS06, SGH04, TJH07, XS05].

The situation is much more difficult for the distributed scheduler, because no
symmetry breaking mechanism is available. Many graph optimization problems
cannot be solved at all under this premise, in some cases even computing a good
approximation is impossible. In general it is impossible to compute a 2-approximation

69

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

of a minimum vertex cover in anonymous networks (see Lemma 5.2.1).
Recently Polishchuk and Suomela developed a local algorithm that finds a 3-

approximation vertex cover in anonymous networks [PS09]. Their algorithm is not
self-stabilizing, though. Even though there exist generic techniques to transform
synchronous distributed algorithms into the asynchronous world of self-stabilization
such as synchronizers [Awe85], the transformed algorithms are usually complicated,
require more memory or have a bad performance. Therefore, in this chapter a self-
stabilizing algorithm for the minimum vertex cover problem with approximation ratio
3− 2/(∆ + 1) extending this concept is proposed.

The remaining part of this section reviews related work for networks with unique
identifiers. Approximation algorithms for the minimum vertex cover problem have
been studied extensively under this assumption. In a sequential setting algorithms with
approximation ratios less than 2 are known to exist. However, Håstad showed that for
any δ > 0 it is NP-hard to approximate vertex cover within (7/6− δ) [Hås01].

In a distributed setting, a 2-approximation can be achieved if a maximal matching
is available. Hańćkowiak et al.’s distributed algorithm finds a maximal matching in
O(log4 n) rounds [HKP98], and Panconesi and Rizzi’s algorithm finds a maximal
matching in O(∆ + log∗ n) rounds [PR01]. Chattopadhyay et al. developed a self-
stabilizing algorithm that stabilizes in O(n2) steps with a maximal matching for a
fair distributed scheduler using the shared memory model with read/write atomicity
[CHS02]. Later, Manne et al. presented an algorithm that stabilizes in O(m) steps
using an unfair distributed scheduler and the shared memory model with composite
atomicity [MMPT09]. Both algorithms lead to a 2-approximation of a minimum vertex
cover. Kiniwa’s self-stabilizing algorithm calculates a (2 − 1/∆)-approximation
vertex cover using the shared memory model with composite atomicity and the
distributed scheduler [Kin05]. Kiniwa combined a greedy method based on a high-
degree-first order of vertices with the maximal matching technique.

5.2 Basic Algorithm

5.2.1 Preliminaries

The link-register model with composite atomicity is used as the communication model
[DIM93]. An overview of this model was provided in Section 2.1. More formally,

70

5.2 BASIC ALGORITHM

in the link-register model with composite atomicity a node v communicates with
neighbors p and q using separate registers: rvp is written by v and read by p, whereas
rqv is written by q and read by v. Reading the registers rqv of all neighbors and
updating all registers rvp is one atomic operation. It is assumed that each node can
distinguish the different edges that are incident to it, i.e., for each v ∈ V there exists a
bijection between the neighbors of v in G and {1, . . . , dv}. The numbers associated
by each vertex to its neighbors are called port-numbers and the bijections are called a
port-numbering of G. Port numbers are fixed and no assumption on the order of the
port numbers is made.

In [Ang80] Angluin showed that it is impossible to break symmetry via a port num-
bering. The following well-known lemma shows that there can be no self-stabilizing
algorithm computing a minimum vertex cover with an approximation ratio less than 2
in anonymous networks even when port numbering is available.

Lemma 5.2.1. In a uniform anonymous network with port numbering a non-proba-

bilistic self-stabilizing algorithm that calculates a k-approximation minimum vertex

cover with k<2 for arbitrary graphs cannot exist under a distributed scheduler.

Proof. Consider a ring with n nodes, where n is even and all nodes have the same
state. Furthermore, assume all nodes to have the same port number for their left (resp.
right) neighbor. If the scheduler always schedules all enabled nodes, then the states of
all nodes will always coincide. Thus, all of them will be selected for the vertex cover.
An optimal vertex cover only contains every second node.

Let G = (V, E) be an undirected graph with maximal degree ∆, |V| = n and

|E| = m. Let S ⊂ V and ES = {〈u, v〉 ∈ E | u, v ∈ S}, then G|S = (S, ES) is
called the subgraph of G induced by S. A vertex cover of G is a subset S of V such
that each e ∈ E is incident to at least one node of S. A vertex cover is called minimum

if there is no other vertex cover that contains less nodes. γ(G) denotes the size of
a minimum vertex cover of G. For a line graph P with |P| nodes γ(P) = |P|/2
if |P| is even and (|P| − 1)/2 if |P| is odd. Let S be a vertex cover of G, then
rG(S) = |S|/γ(G) denotes the approximation ratio of S. If U is a subgraph of G
with vertex set UV , then rU(S) = |S ∩UV |/γ(U).

71

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

Lemma 5.2.2. Let S be a vertex cover of G and Gi = (Vi, Ei) for i = 1, . . . , s
vertex disjoint subgraphs of G with |Ei| > 0 and S ⊆ ∪s

i=1Vi. Then rG(S) ≤
maxi=1,...,s rGi(S).

Proof.

rG(S) =
|S|

γ(G)
≤ ∑s

i |S ∩Vi|
∑s

i γ(Gi)
≤ max

i=1,...,s

|S ∩Vi|
γ(Gi)

= max
i=1,...,s

rGi(S)

A matching is a subset M of independent edges of G. M is a maximal matching

if there is no matching M′ with M ⊂ M′. Clearly, the vertices of the edges of a
maximal matching form a vertex cover which contains at most twice as many vertices
as an optimal vertex cover. This observation does not lead to a 2-approximation
algorithm for a vertex cover, since it is impossible to compute a maximal matching
in an anonymous network. To circumvent this dilemma, this thesis introduces the
concept of a generalized matching; this is a vertex disjoint set of subgraphs which
are either paths or rings. A generalized matching M of G is called maximal, if every
edge of G is incident to an edge belonging to a subgraph of M. The following result
is crucial for the new approximation algorithm.

Lemma 5.2.3. The vertices of a maximal generalized matching M of G form a vertex

cover with at most three times as many nodes as an optimal vertex cover.

Proof. Clearly, the maximality of M implies that the set S of vertices of the edges
of M form a vertex cover of G. Furthermore, rU(S) ≤ 3 for each subgraph U ∈ M.
Equality holds in case U is a path of length 3. Lemma 5.2.2 implies that S is a
3-approximation of a minimum vertex cover.

5.2.2 Algorithm Description

To leverage the last lemma to find a 3-approximation of a minimal vertex cover, it is
necessary to compute a maximal generalized matching in an anonymous network. This
section presents a self-stabilizing algorithm for this purpose based on the Kronecker

double cover K(G) of a graph G. First the construction of K(G) = G ⊗ K2 is
reviewed. K(G) is constructed by making two copies of the vertex set of G (black
and white nodes) and adding edges 〈xw, yb〉 and 〈yw, xb〉 for every edge 〈x, y〉 of G.

72

5.2 BASIC ALGORITHM

(a) Original graph

w

b

w

b

w

b

w

b

(b) Black and white nodes

w

b

w

b

w

b

w

b

(c) The new edges

w

b

w

b

w

b

w

b

(d) Kronecker double cover

w

b

w

b

w

b

w

b

(e) Maximal matching of
Kronecker double cover

(f) Maximal generalized
matching of original
graph

�� Figure 5.2: The Kronecker Double Cover

Each edge of K(G) can be uniquely associated with an edge of G. Figures 5.2(a)
to 5.2(d) illustrate the construction of K(G) for a graph with four nodes. The next
lemma is straightforward to prove. It reveals an important property of K(G), see also
Figures 5.2(e) and 5.2(f).

Lemma 5.2.4. LetM be a matching of K(G) and M the set of edges of G that are

associated with the edges ofM. IfM is a maximal matching of K(G), then M is a

maximal generalized matching of G.

The key to compute a maximal matching of K(G) in anonymous networks is the fact
that K(G) is a bicolored graph. Hańćkowiak et al. have developed an algorithm that
can be used for this end [HKP98]. Their algorithm works in synchronous networks,
therefore it is necessary to rewrite the algorithm such that it is self-stabilizing and can
be executed on G (as opposed to K(G)). The idea of the algorithm of Hańćkowiak is
simple. Assume the nodes are colored black and white. Black nodes make offers to
unmatched white nodes and white nodes choose one of the “offering” black nodes.
This process is repeated until no more offers can be made. Edges corresponding to
accepted offers form a maximal matching. Then Lemma 5.2.4 and 5.2.3 lead to a
3-approximation algorithm. The same approach is used by Polishchuk and Suomela
to develop a local algorithm that finds a 3-approximation vertex cover in anonymous
networks [PS09].

73

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

This section introduces the details of the algorithm as outlined above. It will be
refined in Section 5.3 to achieve the stated approximation ratio. The graph K(G)

will not be represented explicitly by the algorithm, only the edges belonging to the
matching of K(G) will be explicitly stored. For this purpose each node v of G defines
two variables that store the port numbers of neighbors: v.black and v.white. It is
assumed that these variables contain at any time a valid port number of a neighbor.
They will be referred to as the black and white pointer of a node. In the context of a
node v the names of neighboring nodes are identified with their corresponding port
numbers. Thus, the expression v.white = w is true, if w ∈ N(v) and v.white equals
the port number of w from v’s point of view.

Algorithm 5.1 (page 75) works as follows: Vertices try to have their black (resp.
white) pointer to point to a neighbor whose white (resp. black) pointer points back to
them. Each pair of nodes pointing to each other in this sense corresponds to a matched
edge in K(G). The following two predicates characterize situations in which a node v
participates in such a matching.

� blackMatched(v) ≡ v.black 6= v ∧ v.black.white = v

� whiteMatched(v) ≡ v.white 6= v ∧ v.white.black = v

The term v.black 6= v (resp. v.white 6= v) is necessary to exclude nodes that point
to themselves. The following notation is introduced for such pointers: The black (resp.
white) pointer of a node v is said to be free if v.black = v (resp. v.white = v). A
node is called free if both its pointers are free. A pointer is freed if it is set to point to
the node itself. A node v can assign to its black (resp. white) pointer only a neighbor x
with x.white = x (resp. x.black = v). The following two functions select a neighbor
to point to according to these rules. The function select(S) selects one element of the
specified set S in a deterministic manner. If nodes are equipped with port numbers
this operator can be implemented by the minimum function. For the algorithm it is
irrelevant which node is chosen. The definition of the select operation for a node v is
extended, such that v.select(∅) = v.

� selectWhite(v) = v.select{x ∈ N(v) | x.white = x}

� selectBlack(v) = v.select{x ∈ N(v) | x.black = v}

74

5.2 BASIC ALGORITHM

Algorithm 5.1 Maximal Generalized Matching / 3-Approximation Vertex Cover

Predicates:
blackMatched(v) ≡ v.black 6= v ∧ v.black.white = v
whiteMatched(v) ≡ v.white 6= v ∧ v.white.black = v

Functions:
selectWhite(v) = v.select{x ∈ N(v) | x.white = x}
selectBlack(v) = v.select{x ∈ N(v) | x.black = v}

Actions:
R1 :: [¬whiteMatched(v) ∧ (v.white 6= v ∨ v.white 6= selectBlack(v))]
−→ if (v.white 6= v) then

v.white := v
else

v.white := selectBlack(v)

R2 :: [¬blackMatched(v) ∧ (v.black = v ∨ v.black.white 6= v.black)∧
v.black 6= selectWhite(v)]

−→ v.black := selectWhite(v)

Rule R1 sets variable white of a node. If it points to a neighbor that does not point
back to it with its black pointer, the variable is freed. If a node has a free white pointer
and a neighbor points with its black pointer towards it, it sets its white pointer to this
neighbor. Freeing the white pointer ensures that a node executes rule R1 at most twice.

Rule R2 controls a node’s black pointer. If it points to a node which points with its
white pointer to another node itself, the pointer will be set to a neighboring node that
has a free white pointer, or it is freed if there is no such neighbor.

An execution of rule R1 (resp. R2) will also be referred to as white (resp. black)
move. Rule R1 has higher priority than R2, i.e. if a node is enabled to make a white
and a black move, it will only make the white move.

5.2.3 Analysis

Lemma 5.2.5. If all nodes are disabled with respect to Algorithm 5.1 then all pointers

are either matched or free and the set of matched edges forms a maximal generalized

matching.

75

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

Proof. If a node’s white (resp. black) pointer is neither matched nor free, rule R1 (resp.
R2) is enabled for this node. Let 〈u, v〉 be an edge. Since all nodes are disabled at least
one of the nodes u and v is matched via at least one of its pointers. Otherwise, because
rule R1 is not enabled, u and v would both have a free white pointer and hence, rule
R2 would be enabled for both nodes. Because no node is enabled for rule R2 there
cannot be a pair u, v of adjacent nodes such that u’s white and v’s black pointer is
free. Hence, the black and white pointers represent a maximal matching of K(G).
According to Lemma 5.2.4 the set of matched edges forms a maximal generalized
matching.

Lemma 5.2.6. While executing Algorithm 5.1 a node directs its black pointer towards

a given neighbor at most once.

Proof. According to Algorithm 5.1, for u being enabled to point to v, v must have
a free white pointer. Hence, the black pointer of u (and of all other nodes that point
towards v) is disabled until v moves its white pointer. After that v’s white pointer is
matched with one of the nodes that were pointing at it and will not make a move again.
Besides, from that time on, a node cannot point towards v with its black pointer since
v does not free its white pointer.

Let S be the set of nodes that are matched via their black or white pointer.

Theorem 5.2.1. Algorithm 5.1 stabilizes after O(n + m) moves under the distributed

scheduler and the set S is a 3-approximation of a minimum vertex cover.

Proof. There are at most two white moves per node. A white pointer can first be
freed if it is not free already and then it accepts an offer from a black pointer. This
black pointer cannot move unless the white pointer is directed to another node, thus,
there will be no further white moves. Hence, there are at most 2n white moves in
total. According to Lemma 5.2.6 a node v can point to any node only once via its
black pointer. Thus, its black moves are limited by 2d(v). Hence, the total number
of moves is at most 2n + 2 ∑v∈V d(v) = 2(n + 2m). Lemma 5.2.5 implies that the
matched edges of G form a maximal generalized matching of G. Thus, Lemma 5.2.3
implies that S is a 3-approximation of a minimum vertex cover.

The following example proves that the bound on the time complexity is tight.

76

5.3 APPROXIMATION RATIO IMPROVEMENT

Example 5.2.1. Let n be an even number and consider the complete Graph Kn.

Initially, all nodes have set their white pointer to any node and all black pointers are

free. A distributed scheduler is assumed and the execution is broken into phases. The

first phase consists of one step: All nodes free their white pointer. Now n/2 phases

follow that consist of the following moves each:

1. Let U = {v | ¬blackMatched(v)}. Choose any node x from U. Every node

y ∈ U\{x} points with its black pointer towards x and the black pointer of x
points to an arbitrary node y in y ∈ U\{x}.

2. x and y let their white pointers point towards each other.

Thus, after every phase two more nodes are matched via both pointers. This results in

2n white and ∑n/2
i=0 (n− 2i) black moves and hence, O(n + m) moves in total.

5.3 Approximation Ratio Improvement

Algorithm 5.1 computes a vertex cover S consisting of all nodes that have at least one
pointer matched. The idea of the improved algorithm is to check whether a node v that
is matched with exactly one pointer has only neighbors that have both their pointers
matched. If this is the case S\{v} is still a vertex cover since all of v’s neighbors are
in S. If two neighboring nodes have the same pointer matched, or if they are both
matched with both pointers, it is impossible to remove exactly one of them from S
due to the impracticality of symmetry breaking. Figure 5.3 provides an example for
this approach. To mark nodes that belong to the vertex cover a Boolean variable vc is
introduced.

v0 v1 v2 v3

v4 v5 v6 v7 v8

v0 v1 v2 v3

v4 v5 v6 v7 v8

v0 v1 v2 v3

v4 v5 v6 v7 v8

v0 v1 v2 v3

v4 v5 v6 v7 v8

�� Figure 5.3: Nodes v0 and v6 can be excluded from the vertex cover S. The adjacent
nodes v3 and v8 both have their white pointer matched. Hence, they cannot be
excluded from S.

77

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

The following predicate characterizes vertices that are candidates to be excluded
from the cover.

� candidate(v) ≡ ((blackMatched(v) ∨ v.black = v) ∧ v.white = v)∨
((whiteMatched(v) ∨ v.white = v) ∧ v.black = v)

For a node it is impossible to determine whether a neighbor has both pointers matched.
Therefore, the above stated criteria cannot be assessed by the node itself. To overcome
this problem a second Boolean variable dm is introduced. The purpose of dm is
to signal to a node’s neighbors that both pointers are matched (doubly matched).
Algorithm 5.2 consists of the rules of Algorithm 5.1 and additionally four rules that
change the values of the Boolean variables vc and dm. Rule Ri has a higher priority
than rule Rj for i < j.

Algorithm 5.2 Vertex Cover with Approximation Ratio 3− 2/(∆ + 1)

Predicates and Functions:
All predicates and functions of Algorithm 5.1

candidate(v) ≡ ((blackMatched(v) ∨ v.black = v) ∧ v.white = v)∨
((whiteMatched(v) ∨ v.white = v) ∧ v.black = v)

Actions:
R1 and R2 as in Algorithm 5.1

R3 :: [whiteMatched(v) ∧ blackMatched(v) ∧ v.dm = false]
−→ v.dm := true

R4 :: [(¬whiteMatched(v) ∨ ¬blackMatched(v)) ∧ v.dm = true]
−→ v.dm := false

R5 :: [(∀x ∈ N(v) : x.dm = true) ∧ candidate(v) ∧ v.vc = true]
−→ v.vc := false

R6 :: [((∃x ∈ N(v) : x.dm = false) ∨ ¬candidate(v)) ∧ v.vc = false]
−→ v.vc := true

Lemma 5.3.1. Algorithm 5.2 stabilizes after O(n + m) moves resp. O(∆) rounds

under the distributed scheduler.

78

5.3 APPROXIMATION RATIO IMPROVEMENT

Proof. If a node is whiteMatched (resp. blackMatched) it remains so forever as long
as no transient error occurs. Hence, rules R3 and R4 are executed O(n) times in total.
Thus, if a node sets its dm variable to true then this assignment is never changed.
The predicate candidate(v) can change its value at most d(v) times. Furthermore,
the expression ∀x ∈ N(v) : x.dm = true can also change its value at most 2d(v)
times. This implies that rules R5 and R6 are executed O(m) times in total for G.
Theorem 5.2.1 now implies that Algorithm 5.2 stabilizes after O(n + m) moves in
total.

In the following it will be shown that after the first round for every node v the
number of neighbors with unmatched white pointers is reduced at least every second
round, or v matches its own black pointer during that time. Note that due to the
priority of R1 over R2, after the first round all white pointers are either matched or
free. Therefore any node will make at most one further white move and this move will
match the white pointer.

Since all unmatched white pointers are free, a node v that has an unmatched black
pointer and at least one neighbor with an unmatched white pointer is enabled to
execute rule R1. Let a phase of v consist of two rounds:

1. In the first round node v points towards the white pointer of a neighbor w via
its black pointer.

2. In the second round node w matches its white pointer with one of its neighbor’s
black pointer.

Note that a phase can be prolonged by one further round in which node v matches its
own white pointer, but only once. Hence, after every phase the number of neighbors
that have an unmatched white pointer is reduced by at least 1 or v has matched its
own black pointer during that time. As a result, after d(v) phases all neighbors of v
have their white pointer matched or v has matched its own black pointer. Thus, after
2∆ + 2 rounds all white pointers are matched. There may be one further round in
which some unmatched black pointers have to be freed. Finally, there may be two
additional rounds in which nodes set their dm and their vc variables. Hence, after at
most 2∆ + 5 rounds Algorithm 5.2 has stabilized.

The following lemma shows that Algorithm 5.2 computes a vertex cover. Let
S = {v ∈ V | v.vc = true}.

79

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

Lemma 5.3.2. If all nodes of G are disabled with respect to Algorithm 5.2 then S is a

vertex cover of G.

Proof. Let v be a node with x.vc = false. It suffices to prove that all neighbors of v
have their vc variable set to true. Assume, there is a node x ∈ N(v) with x.vc = false.
According to the assumption, rules R1 and R2 are not enabled for both nodes. If one
of the two nodes has both pointers matched then it is enabled to execute R5, hence
both nodes have at least one free pointer. If one of the two nodes has two free pointers
then one of them is enabled to execute R2, so assume both nodes to have exactly one
free pointer. If these pointers have the same color then rule R5 is enabled, otherwise
the node that has a free black pointer is enabled to point to the other one via rule R2.
This contradiction concludes the proof.

Theorem 5.3.1. Algorithm 5.2 computes a (3− 2
∆+1)-approximation vertex cover.

Proof. Consider a configuration where no node is enabled with respect to algo-
rithm 5.2. The idea of the proof is to construct a set C of subgraphs of G, such
that S is a subset of the union of the vertices of these subgraphs and rP(S) ≤ 3− 2

∆+1

for all P ∈ C. Then rG(S) ≤ 3− 2
∆+1 by Lemma 5.3.2 and 5.2.2 and the proof is

complete.

According to Lemma 5.2.5 the set of matched edges forms a maximal generalized
matching. Let P denote the set of connected subgraphs of this matching. Insert all
subgraphs of P that are rings, paths of length two or paths with an endpoint v with
v.vc = false and v.white = v into C. Clearly rP(S) ≤ 2 < 3− 2

∆+1 for all P ∈ C.
Note that vertices of rings and paths of length two have no free pointer.

Each P ∈ P\C is a path of length at least three and has an endpoint vP with a free
white pointer and vP.vc = true. The black pointer of the other endpoint of P is also
free. The following notation is used throughout the proof: If v is a node with a free
white pointer and v.vc = true, then Pv denotes the corresponding path in P ∈ P\C.
Conversely, if P ∈ P\C then vP denotes the endpoint of P with vP having a free
white pointer and vP.vc = true.

Let D = {vP | P ∈ P\C} and let G|D be the subgraph of G induced by D. Note
that each v ∈ D has at least one neighbor in D, otherwise v.vc would be false. Let
M be a maximal matching of GD. If M contains an edge (a, b) such that Pa has odd
and Pb has even length, and such that a has an unmatched neighbor u ∈ D where Pu

80

5.3 APPROXIMATION RATIO IMPROVEMENT

has odd length, then replace edge 〈a, b〉 of M by 〈a, u〉. Thus, one may safely assume
that if for an edge 〈a, b〉 ∈ M the path Pa has odd length and Pb has even length, then
a has no unmatched neighbor u ∈ D such that Pu has odd length.

Uniquely associate with each unmatched node u ∈ D for which Pu has odd length
a matched node of GD. For each matched node v denote by Uv the set of unmatched
nodes that are associated with v. Furthermore, for each matched node x let Px be the
set of paths P from P\C with vP ∈ Ux. Note that all paths in Ux have odd length.
Add each even length path P from P where vP is not matched to the set C. Note that
rP(S) ≤ 2 for such P.

For each m = 〈a, b〉 ∈ M a subgraph Gm of G will be constructed. Gm consists
of the paths Pa, Pb, all paths in Pa ∪ Pb and the additional edges 〈a, x〉 for x ∈ Ua,
〈y, b〉 for y ∈ Ub, and 〈a, b〉. Denote by δx the degree of node x in Gm. Clearly,
δa = |Ua|+ 2 and δb = |Ub|+ 2. Figure 5.4 shows the general structure of Gm,
edges belonging toM are depicted in bold. Add the subgraphs in {Gm | m ∈ M}
into C. Note that the graphs contained in C are vertex disjoint and that S is contained
in the union of the vertex sets of these graphs.

a b

...

...

... ...

... ...

�� Figure 5.4: General structure of the graph Gm for m ∈ M

Let m = 〈a, b〉 be an edge of M. In the following it will be shown that rGm(S) ≤
3− 2

∆+1 holds for all m ∈ M. Note that the vertices of Gm form a subset of S of size

s = |Pa|+ |Pb|+ ∑
x∈Ua

|Px|+ ∑
x∈Ub

|Px|.

Denote with Pab the path resulting from joining the paths Pa and Pb with the edge
〈a, b〉. The union of minimum vertex covers of the paths in Pa ∪ Pb and a particular
vertex cover Cab of Pab forms a minimum vertex cover of Gm. If Pa 6= ∅ (resp.
Pb 6= ∅) then a (resp. b) must be in Cab. Cab is a minimum vertex cover of Gm

81

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

with respect to this constraint. To have a general term for γ(Gm) the size of Cab is
expressed with the help of a parameter ε:

|Cab| = (|Pa|+ |Pb|+ ε)/2

The value of ε will be determined through a case by case analysis. These considera-
tions lead to the following expression for γ(Gm):

γ(Gm) =

(
|Pa|+ |Pb|+ ε + ∑

x∈Ua

(|Px| − 1) + ∑
x∈Ub

(|Px| − 1)

)
/2

= (s− (δa + δb − 4− ε))/2

Thus,

rGm(S) =
s

γ(Gm)
=

2s
s− (δa + δb − 4− ε)

To derive an upper bound for rGm(S), this expression will be analyzed with respect
to monotonicity. rGm(S) is strictly monotonic decreasing with respect to s if δa + δb ≥
4 + ε. Thus, if smin is a minimal value for s and δa + δb ≥ 4 + ε then

rGm(S) ≤
2smin

smin − (δa + δb − 4− ε)
(∗)

The set Cab will be determined by looking at three different cases.

even length a b even length

...

...

... ...

... ...

�� Figure 5.5: Structure of Gm in case Pa and Pb have even length.

Case 1: Both Pa and Pb have even length (see Figure 5.5).
In this case Cab is equal to the minimum vertex cover for Pab that includes nodes a and
b, thus ε = 0 and δa + δb ≥ 4 + ε. The bold vertices in Figure 5.5 indicate the set

82

5.3 APPROXIMATION RATIO IMPROVEMENT

Cab. The value of s is minimized for |Pa| = |Pb| = 4 and |Px| = 3 for x ∈ Ua ∪Ub.
Hence, smin = 3(δa + δa)− 4. Using (∗) the following holds:

rGm(S) ≤
2(3(δa + δb)− 4)

3(δa + δb)− 4− (δa + δb − 4)
=

3(δa + δb)− 4
δa + δb

< 3− 2
∆ + 1

Case 2: Both Pa and Pb have odd length (see Figure 5.6).
First the subcase that both a and b have a degree strictly larger than 2 is considered.
Then Cab is equal to the minimum vertex cover for Pab that includes nodes a and b,
thus ε = 2 and δa + δb ≥ 4 + ε. The bold vertices in Figure 5.6 indicate the set
Cab. Furthermore, the value of s is minimized for |Pa| = |Pb| = 3 and |Px| = 3 for
x ∈ Ua ∪Ub. Hence, smin = 3(δa + δa)− 6. Using (∗) the following holds:

rGm(S) ≤
2(3(δa + δa)− 6)

3(δa + δa)− 6− (δa + δb − 4− 2)
=

3(δa + δb)− 6
δa + δb

< 3− 2
∆ + 1

odd length a b odd length

...

...

... ...

... ...

�� Figure 5.6: Structure of Gm in case Pa and Pb have odd length.

If δa = 2 and δb > 2 then Cab is equal to the minimum vertex cover for Pab that
includes node b, thus ε = 0 and δa + δb ≥ 4 + ε. The value of s is minimized for
|Pa| = |Pb| = 3 and |Px| = 3 for x ∈ Ub. Hence, smin = 3δb. Using (∗) the
following holds:

rGm(S) ≤
6δb

3δb − (2 + δb − 4)
=

3δb
δb + 1

< 3− 2
∆ + 1

Case 3: Pa has odd and Pb has even length, δa = 2, and δb ≥ 2 (see Figure 5.7).
In this case Cab is equal to the minimum vertex cover for Pab that includes node b,
thus ε = −1 and δa + δb ≥ 4 + ε. The bold vertices in Figure 5.7 indicate the set

83

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

Cab. Furthermore, the value of s is minimized for |Pa| = 3, |Pb| = 4 and |Px| = 3 for
x ∈ Ub. Hence, smin = 3δb + 1. Using (∗) the following holds:

rGm(S) ≤
6δb + 2

3δb + 1− (2 + δb − 4 + 1)
=

3δb + 1
δb + 1

≤ 3− 2
∆ + 1

odd length a b even length

...

... ...

...

�� Figure 5.7: Structure of Gm in case that Pa has odd and Pb has even length and
δa = 2

The following example demonstrates that the approximation ratio of Algorithm 5.2
is no better than 3− 3

∆+1 .

Example 5.3.1. Let Gk be the graph depicted in Figure 5.8. The optimal vertex cover

consists of nodes l, r, and m1, . . . , mk. Hence, γ(Gk) = k + 2. However, in the

worst case scenario Algorithm 5.2 selects all nodes of Gk. Figure 5.8 displays such a

configuration: Nodes mi and t have both pointers matched and nodes t and mi have

their white (resp. black) pointers matched with l, li (resp. r, ri). Any node that has

an unmatched pointer has a neighbor with an unmatched pointer of the same color.

Thus, the node is not enabled to set its vc variable to false. Hence, the approximation

ratio is 3− 3/(∆ + 1). This example corresponds to the second subcase of case 2 of

Theorem 5.3.1.

Algorithm 5.2 achieves approximation ratio two if applied to trees. The following
lemma is well-known. The proof is included for reasons of completeness.

Lemma 5.3.3. Let T = (V, E) be a tree with |V| > 2 and I the set of inner nodes,

i.e. I = {v ∈ V | d(v) > 1}. Let M be a maximum cardinality matching of T. Then

I is a vertex cover of T and |I| < 2 |M|.

84

5.3 APPROXIMATION RATIO IMPROVEMENT

l r

t

l1 m1 r1

l2 m2 r2

lk mk rk

..
.

..
.

..
.

�� Figure 5.8: Worst case example for Algorithm 5.2

Proof. I is a vertex cover of T. The rest is shown by induction on the number of
nodes. The statement holds for |V| = 3. Let |V| > 3, and x be a leaf of T. The
neighbor of x is denoted by y. Two cases are distinguished.

Case d(y) > 2: Let T′ = T\{x}. The set of inner nodes is not changed by
removing node x, i.e. I′ = I. By induction |I′| < 2 |M′|, where M′ is a maximum
cardinality matching of T′. Thus, |I| = |I′| < 2 |M′| ≤ 2 |M|.

Case d(y) = 2: Let T′ = T\{x, y}. Node y /∈ I′ and maybe its other neighbor is a
leaf in T′, hence |I′| ≤ |I|+ 2. By induction |I′| < 2 |M′|, where M′ is a maximum
cardinality matching of T′. M′ ∪ {〈x, y〉} is a maximum cardinality matching of T,
thus, |M′|+ 1 = |M|. This yields |I| = |I′|+ 2 < 2 |M′|+ 2 ≤ 2 |M|.

Theorem 5.3.2. For trees Algorithm 5.2 calculates a 2-approximation vertex cover.

Proof. Let T = (V, E) be a tree. Lemma 5.3.2 yields that S is a vertex cover. Let
M1 be the set of nodes that are matched to one neighbor via both pointers each, i.e.
M1 = {v ∈ V | v.black = v.white 6= v}.

Let T′ = T\M1. Assume there exists a leaf x of T′ such that x.vc = true. Then, x
must be matched with a node y via at least one of its pointers. If its other pointer is not
free, then it must have a second neighbor in T′ and therefore it is not a leaf. Note that
a vertex of T′ cannot be matched with the same neighbor via both its pointers. If y’s
second pointer is free one of the two nodes is enabled to execute rule R2, hence y is
also matched with another node. All other neighbors of x in T belong to M1 anyway,

85

5 ANALYSIS OF LOCAL STATES AND SEQUENCES

thus rule R3 must be enabled for x. This contradiction shows that x.vc = false for all
leaves x of T′.

Let I′ be the set of nodes of T′ without the leaves and let M2 be a maximum
cardinality matching of T′. From Lemma 5.3.3 follows that I′ < 2 |M2|. The set
M1 ∪ M2 is a maximal matching of T. Hence, König’s theorem yields: |S| ≤
2 |M1|+ |I′| < 2 |M1|+ 2 |M2| = 2 |M1 ∪M2| ≤ 2

∣∣Sopt
∣∣.

It is an open question whether Theorem 5.3.2 can be extended to other classes of
graphs. Example 5.3.1 shows that the theorem does not hold for bipartite graphs.

5.4 Conclusion

This chapter presented a self-stabilizing algorithm for a (3− 2
∆+1)-approximation

minimum vertex cover in anonymous networks using the distributed scheduler and the
link-register model with composite atomicity. It stabilizes after O(n + m) moves resp.
O(∆) rounds. The algorithm achieves a 2-approximation if it is executed on a tree.

Finding a linear self-stabilizing algorithm requiring only O(log n) storage per node
with a better approximation remains an open problem.

86

Chapter6Chapter6

Analysis of Local States and
Sequences (II)

Like Chapter 5, this chapter will perform an analysis based on local information.
Since this chapter assumes unique identifiers instead of an anonymous network it is
possible to design the algorithms in a different way: The identifiers facilitate the use
of distance-k information (c.f. Section 2.3.2). The expression model of [Tur12] will
be used to make 2-hop knowledge available to the nodes. Furthermore, this model
allows to design the algorithms for the central scheduler while they can be executed

under the distributed scheduler via the transformer of [Tur12].

This chapter presents the first self-stabilizing algorithms for the edge-monitoring

problem. It has important applications e.g. in network security. Two versions of
this problem are considered in this chapter: The minimal edge-monitoring problem,
which corresponds to the original problem definition by Dong et al. ([DLL08]), and an
edge-aware version, which yields a result more suitable for wireless networks. Using
the distributed scheduler both algorithms stabilize after at most O(mn2) moves.

This chapter is structured as follows: At first, a definition of the edge-monitoring
problem is given and related work is reviewed. Section 6.2 presents self-stabilizing al-
gorithms for the above mentioned versions of the problem. The results are summarized
in Section 6.3.

87

6 ANALYSIS OF LOCAL STATES AND SEQUENCES (II)

6.1 Example: Edge Monitoring

6.1.1 Introduction

A rather new problem in graph theory is the finding of a minimal edge monitoring. A
node can monitor an edge if it is a neighbor of both of its adjacent nodes. The minimal
edge-monitoring problem consists of identifying a minimal set of nodes that are able
to monitor a given subset of the edges of a graph (see Figure 6.1). Dong et al. defined
the minimal edge-monitoring problem and proved it to be NP-complete in case the set
is required to have minimum cardinality [DLL08, DLL+11].

�� Figure 6.1: Edge monitoring of a graph. The arrows indicate the edges that a node
monitors.

To be more formal, let G = (V, E) be an undirected graph. Given an edge
e = 〈y, z〉, node x can monitor e if 〈x, y〉, 〈x, z〉 ∈ E. A set of nodes V′ ⊆ V defines
a k-monitoring of a set of edges E′ ⊆ E if all edges of E′ are monitored by at least
k different nodes in V′. A k-monitoring V′ of E′ is minimal if no subset of V′ is a
k-monitoring of E′. Note that V′ is minimal with respect to the described property, it
does not have to be the set with minimum cardinality.

6.1.2 Related Work

Wireless sensor networks consist of many nodes that communicate via radio. They
facilitate a lot of applications e.g. military, health or environmental surveillance

88

6.1 EXAMPLE : EDGE MONITORING

applications [ASSC02]. Due to their wireless communication they are prone to
various attacks, such as interception, subversion, falsification, denial of service or
physical corruption [GSRV08]. Analyzing traffic flow is one method to secure the
network against compromised nodes. Dong et al. were the first to describe the minimal

edge-monitoring problem to retrieve a minimal set of nodes that are able to observe
particular communication links of a network [DLL08, DLL+11]. They provided two
distributed algorithms to solve it. Dong et al. also suggested using local monitors
for the edges since it reflects the broadcast nature of wireless communication: As
illustrated in Figure 6.2, a node within the communication range of both a sending
and a receiving node can monitor their interactions.

Sender Receiver

Monitor

�� Figure 6.2: Monitor of an edge

Wireless network diagnosis is a field of research that has been extensively studied.
Most approaches assume a central sink that gathers information from the whole
network to decide which measures have to be taken, e.g. [LLL10]. Distributed edge-
monitoring algorithms that allow local decisions can be found in [DLL+11] and
[DLL08]. Hsin and Liu developed a distributed mechanism to monitor nodes instead
of communication links [HL06]. The surveillance of nodes is also the object of the
self-protection problem [WZL07, WLZ08]. It consists of selecting a set of “protecting”
nodes and is closely related to the dominating set problem [HL91, Tur07]. Giruka et al.
give an overview of security in wireless sensor networks [GSRV08]. More references

89

6 ANALYSIS OF LOCAL STATES AND SEQUENCES (II)

on this topic can be found in [DLL08]. Akyildiz et al. provide a general survey on
wireless sensor networks [ASSC02].

6.2 Basic Algorithm

This section proposes the first self-stabilizing algorithms for the edge-monitoring
problem. Several aspects of this problem are considered: The first algorithm simply
establishes a minimal monitoring. The second one provides the nodes with more
information about the edges they have to monitor.

6.2.1 Preliminaries

The algorithms presented in this chapter run under the distributed scheduler assuming
the distance-one model, i.e. a node can see its own state and the state of its neighbors.
The nodes have unique identifiers and the shared memory model with composite
atomicity (see Section 2.1) is assumed for communication. The algorithms are modeled

in the expression-two model presented in [Tur12] (cf. Section 2.3.2) and using the
central scheduler. In order to run under the distributed scheduler in the distance-one
model the transformation of [Tur12] is applied which results in a slowdown factor of
O(m) moves.

As in [DLL+11] for all edges that are supposed to be monitored a specific monitor-
ing demand desired(e) ≥ 0 for each edge e is defined. This number describes
how many nodes are supposed to monitor e. The adjacent nodes are aware of
the edge’s desired value. The set of edges to be monitored is denoted by ES, i.e.
ES = {e ∈ E | desired(e) > 0}.

6.2.2 Simple Edge Monitoring Algorithm

In this section the first algorithm that calculates a minimal edge monitoring is described.
All nodes hold a Boolean variable state that can assume the values IN or OUT. A
node in state IN monitors all edges that it can monitor whereas a node in state OUT
does not monitor any edge. Let Vin (resp. Vout) denote the set of nodes that are in
state IN (resp. OUT) in a given configuration. Furthermore, the nodes hold a variable
neigh for the set of its neighbors. A node is called correct if this variable indeed

90

6.2 BASIC ALGORITHM

holds the node’s set of neighbors. This can be verified by the node’s neighbors via a
boolean expression. A node is safe if it itself and all its neighbors hold the correct set
of neighbors in their neigh variable. Only a node itself can check whether it is safe
or not. With the neigh variables each node x can determine the set monEdges(x) of
edges that it can monitor, i.e.

monEdges(x) = {〈y, z〉 | y, z ∈ N(x) ∧ y ∈ z.neigh ∧ z ∈ y.neigh}.

Let edge e = 〈x, y〉 ∈ ES. The following sets can be calculated by node x via
accessing y.neigh: The set of nodes that are able to monitor edge 〈x, y〉 is denoted by
monCandidates(〈x, y〉), that is to say:

monCandidates(〈x, y〉) = {N(x) ∩ y.neigh}.

Note that monCandidates(〈x, y〉) (and hence, all terms that use this set) may not be
correct, if node x is not safe. The subset of nodes in monCandidates(〈x, y〉) that
actually do monitor edge 〈x, y〉 is denoted by monNodes(〈x, y〉), i.e.

monNodes(〈x, y〉) = {z ∈ monCandidates(〈x, y〉) | z.state = IN}.

Correspondingly, via the neigh variable of node x, node y can calculate the sets
monCandidates(〈y, x〉) and monNodes(〈y, x〉). The two sets monCandidates(〈x, y〉)
and monCandidates(〈y, x〉) (resp. monNodes(〈x, y〉) and monNodes(〈y, x〉)) denote
the same sets if all variables and expressions are up-to-date, however, a distinction is
necessary to clarify which node is enabled to calculate the set. If it is clear which node
calculates the set, also the notation monCandidates(e) and monNodes(e) is used. The
same notation is used in the analysis to denote the set of nodes that can monitor an
edge e and its subset of nodes that currently monitor e.

The administrator of an edge is the adjacent node with smaller identifier, i.e.
admin(e) = min{x, y}. Apart from x and y each node in N(x) ∩ N(y), and hence
any node that can monitor e, can determine its administrator. The administrator
provides an expression demande that denotes the difference between the desired
number of monitoring nodes and the current number, i.e. demande = desired(e)−
|monNodes(e)|. The set adminEdges(x) contains all edges node x administrates. It
cannot be determined by other nodes.

91

6 ANALYSIS OF LOCAL STATES AND SEQUENCES (II)

The first algorithm consists of three simple rules: A node has to set its neigh
variable if it does not hold its set of neighbors. Note that a node can execute this
rule at most once, and it cannot make any other move before all nodes in its closed
neighborhood have the correct value for their neigh variable. Any node x in state OUT
which observes that there are not enough nodes in state IN for an edge e contained in
monEdges(x), i.e. admin(e).demande > 0, enters state IN itself. Conversely, a node
enters state OUT if all edges it can monitor are monitored by sufficient nodes even
without itself, i.e. ∀e ∈ monEdges(x) : admin(e).demande < 0. The complete set of
rules is given in Algorithm 6.1. The execution of rule In (resp. rule Out) is called an
IN-move (resp. OUT-move).

Algorithm 6.1 Expression-Two Algorithm for Edge Monitoring

Expressions:
correct :: (x.neigh = N(x))
demande :: desired(e)− |{z ∈ N(x) ∩ y.neigh | z.state = IN}|

for all edges e = 〈x, y〉 ∈ adminEdges(x)

Functions:
adminEdges(x) = {〈x, y〉 | y ∈ N(x) ∧ x < y}
monEdges(x) = {〈y, z〉 | y, z ∈ N(x) ∧ y ∈ z.neigh ∧ z ∈ y.neigh}
admin(〈y, z〉) = min{y, z}
safe(x) = ∀y ∈ N[x] : y.correct

Actions:
Neigh :: [x.neigh 6= N(x)]
−→ x.neigh := N(x)

In :: [safe(x) ∧ x.state = OUT∧ (∃e ∈ monEdges(x) : admin(e).demande > 0)]
−→ x.state := IN

Out :: [safe(x) ∧ x.state = IN∧ (∀e ∈ monEdges(x) : admin(e).demande < 0)]
−→ x.state := OUT

If there is an edge e that has a desired(e) value larger than the number of nodes
that are able to monitor e, an edge monitoring cannot be achieved since e cannot be

92

6.2 BASIC ALGORITHM

monitored sufficiently. The monitoring gap

gap = ∑
e∈ES ,

demande>0

demande

is a measure for the quality of an edge-monitoring approximation.

Lemma 6.2.1. If all nodes are disabled with respect to Algorithm 6.1, Vin constitutes

a minimal edge monitoring of ES. If G does not allow a sufficient edge monitoring of

ES, Vin constitutes an edge-monitoring approximation with minimal monitoring gap.

Proof. Assume all nodes to be disabled with respect to Algorithm 6.1 and let e ∈ ES.
If demande > 0 and there is a node x ∈ Vout that can monitor e then x is enabled
to execute rule In. If there is a node x ∈ Vin with demande < 0 for all edges
e ∈ monEdges(x) then x is enabled to execute rule Out. This contradiction proves
the lemma.

Lemma 6.2.2. Let Algorithm 6.1 be executed under the central scheduler and the

expression model. Assume that rule Neigh is not executed by any node. Then any node

can make at most one OUT-move and this is its last move.

Proof. Let e ∈ ES be an arbitrary edge. When a node x is enabled to leave state IN,
all edges e ∈ monEdges(x) are monitored by at least one node more than necessary
according to the administrator admin of e. Note that admin may not be able to
calculate the correct set monNodes(e) due to an incorrect neighbor (cf. Figure 6.3).
However, since the nodes do not execute rule Neigh, the administrator’s perspective
whether a neighbor is able to monitor an edge or not does not change in this scenario.
Furthermore neither the incorrect neighbor nor any of its neighbors can execute an IN-
or an OUT-move under these circumstances.

x y

u w

e

�� Figure 6.3: Let x be the administrator of e. If w /∈ y.neigh or y /∈ w.neigh then x
cannot calculate the correct set monNodes(e).

93

6 ANALYSIS OF LOCAL STATES AND SEQUENCES (II)

Under the central scheduler, only one monitor of e can leave state IN at any moment.
Hence, after node x has left state IN all edges that were monitored by x are still
indicated to be monitored sufficiently by its administrators. Since a node cannot leave
state IN without all affected administrators’ permission node x will never become
enabled to enter state IN again.

Corollary 6.2.1. Assuming the expression model, Algorithm 6.1 stabilizes after at

most 2n2 moves under the central scheduler.

Proof. Rule Neigh can only be executed once per node (as the node’s first move).
The rest follows directly from Lemma 6.2.2 since a node cannot enter state IN twice
without entering state OUT in between. This results in at most n2n moves.

The memory requirement of Algorithm 6.1 amounts to O(∆ log n) per node: Apart
from its neighbors’ ids a node has to store its boolean state and at most ∆ demand
variables (there are at most m demand variables in the whole network, one for every
monitored edge).

Let Algorithm 6.1T denote the resulting algorithm if the transformation of [Tur12]
is applied to Algorithm 6.1. From Theorem 3.2 of [Tur12] and Corollary 6.2.1
immediately follows:

Theorem 6.2.1. Algorithm 6.1T establishes an edge monitoring with minimal moni-

toring gap. It stabilizes after at most O(mn2) moves under the distributed scheduler

in the distance-one model.

6.2.3 Knowledge about Monitored Edges

Using Algorithm 6.1 a node x in state IN is expected to monitor all edges in
monEdges(x). This means that an edge may be monitored by more nodes than actually
needed. Since checking a communication link is an active process it makes more sense
to provide the nodes with information about which edges they actually have to monitor.
The algorithm has to be changed slightly to meet this requirement: Instead of the
boolean variable state each node x is equipped with a list x.mon of edges which it is
currently monitoring. In accordance, for an edge e = 〈x, y〉 the set monNodes(〈x, y〉)
has to be redefined to contain the nodes that have edge e in their mon list, i.e. for
node x monNodes(〈x, y〉) = {z ∈ N(x) ∩ y.neigh | 〈x, y〉 ∈ z.mon}. Thus, the

94

6.2 BASIC ALGORITHM

expression to determine the demand of an edge has to be adapted to the new definition
of monNodes(e). Correspondingly, rule In and rule Out have to be adjusted: Instead
of entering or leaving state IN the edge is added to or removed from the node’s mon
set. The complete set of rules is given in Algorithm 6.2.

Algorithm 6.2 Expression-Two Algorithm for Edge Monitoring with Monitoring
Knowledge

Expressions:
correct :: (x.neigh = N(x))
demande :: desired(e)− |{z ∈ N(x) ∩ y.neigh | e ∈ z.mon}

for all edges e = 〈x, y〉 ∈ adminEdges(x)

Functions:
adminEdges(x) = {〈x, y〉 | y ∈ N(x) ∧ x < y}
monEdges(x) = {〈y, z〉 | y, z ∈ N(x) ∧ y ∈ z.neigh ∧ z ∈ y.neigh}
admin(〈y, z〉) = min{y, z}
safe(x) = ∀y ∈ N[x] : y.correct

Actions:
Neigh :: [x.neigh 6= N(x)]
−→ x.neigh := N(x)

In :: [safe(x) ∧ ∃e ∈ monEdges(x) : ((admin(e).demande > 0) ∧ (e 6∈ x.mon))]
−→ ∀e ∈ monEdges(x) : ((admin(e).demande > 0) ∧ (e 6∈ x.mon))

x.mon := x.mon∪ {e}
Out :: [safe(x) ∧ ∃e ∈ x.mon : (admin(e).demande < 0)]
−→ ∀e ∈ x.mon : (admin(e).demande < 0)

x.mon := x.mon\{e}

Lemma 6.2.1 and 6.2.2 also hold for Algorithm 6.2 under the central scheduler and
the expression-two model. As in Algorithm 6.1, rule Out can be performed at most
once per node and the same holds for rule In since all edges in monEdges(x) that
have positive demand are monitored by node x after the first execution of rule In and
will never be excluded from x.mon as long as none of the nodes execute rule Neigh.
Hence, the following holds:

95

6 ANALYSIS OF LOCAL STATES AND SEQUENCES (II)

Corollary 6.2.2. Algorithm 6.2 calculates an edge monitoring with minimal monitor-

ing gap. Assuming a central scheduler and the expression-two model it terminates

after at most 2n2 moves.

The transformation of [Tur12] applied to Algorithm 6.2 results in Algorithm 6.2T.
The following theorem holds due to Theorem 3.2 of [Tur12] and 6.2.2:

Theorem 6.2.2. Algorithm 6.2T calculates an edge monitoring with minimal monitor-

ing gap. Assuming the distance-one model and a distributed scheduler, Algorithm 6.2T

terminates after O(mn2) moves.

6.3 Conclusion

This chapter presented the first two self-stabilizing algorithms for the edge-monitoring
problem. While the first algorithm finds a minimal edge monitoring that assumes
the selected nodes to monitor all edges they can monitor, the second algorithm is
more suitable for real-world applications since no edge has a negative monitoring
demand when the algorithm has stabilized. Both algorithms yield a result with minimal
monitoring gap. The algorithms are designed using the expression model. Using the
transformer of [Tur12] they stabilize after O(mn2) moves assuming the distance-one
model and the distributed scheduler.

96

Chapter7Chapter7

Potential Function and Induction
via Graph Reduction

This chapter uses a combination of a classical approach and a new technique to
determine the complexity of a self-stabilizing algorithm for the maximum weight
matching problem (see below): A complex potential function (cf. Section 3.2.3) is
constructed to assess the algorithm’s progress with respect to its convergence. An
important contribution of this chapter is the new technique to compute the move
complexity of self-stabilizing algorithms. The main idea is to map an execution
sequence for a graph to that of a given subgraph. This mapping allows to derive
an upper limit for the difference between the numbers of moves for both execution
sequences - for the original graph and for the subgraph. Hence, the total number of
moves required for the original graph is bound by the sum of this limit and the number
of moves required for the subgraph. Since the subgraph has less edges or nodes, the
latter number can be determined by induction.

The new graph reduction technique forms the basis for a new analysis of an algo-
rithm by Manne and Mjelde that computes a 2-approximation for the maximum weight
matching problem. In [MM07] they established that their algorithm stabilizes after
O(2n) (resp. O(3n)) moves under a central (resp. distributed) scheduler. The precise
determination of the stabilization time of this algorithm remained an open problem.
An example for which the algorithm requires an exponential number of moves was
not provided. The use of the new technique improves these bounds considerably.

97

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

In particular it is shown that the algorithm stabilizes after O(nm) moves under the
central scheduler and that a modified version of the algorithm also stabilizes after
O(nm) moves under the distributed scheduler.

This chapter is organized as follows: The first section defines the problem and
reviews the state of the art of distributed and self-stabilizing algorithms for matching
problems. Section 7.2 presents the basic algorithm of Manne and Mjelde. Its worst-
case complexity assuming a synchronous scheduler is analyzed in Section 7.3. The
other schedulers are treated in the following sections. In Section 7.4 the specific poten-
tial function and the new proof method for the analysis of self-stabilizing algorithms
is presented and applied to Manne and Mjelde’s algorithm under the assumption of a
central scheduler. Section 7.5 shows how the results of the preceding section can be
carried over to work under a distributed scheduler. Section 7.6 concludes this chapter.

7.1 Example: Weighted Matching with

Approximation Ratio 2

7.1.1 Introduction

The maximum weight matching problem is a fundamental problem in graph theory
with a variety of important applications. Let G = (V, E) be an undirected graph, with
n = |V| and m = |E|. A set M of independent edges of G is called a matching of G.
M is a maximal matching if there is no matching M′ with M ⊂ M′. A matching M is
a maximum matching if there is no matching with cardinality larger than |M|. Let G be
a weighted undirected graph. The weight of an edge e is denoted by w(e) ∈ R+. The
weight of a matching M is the sum of the weights of all edges of M. A matching is
called a maximum weight matching if its weight is the maximum among all matchings
of G. Figure 7.1 shows a weighted graph and its maximum weight matching.

The algorithm considered in this chapter computes a maximum weighted matching

of a graph with an approximation ratio of 2, i.e. the weight of the computed matching
is at least half the weight of the maximum weight [MM07].

98

7.1 EXAMPLE : WEIGHTED MATCHING WITH APPROXIMATION RATIO 2

1

2

13

4

5

6

17

7

8
9

18

11

3

10

15

16

14

�� Figure 7.1: A maximum weight matching with weight 66.

7.1.2 Related Work

Algorithms solving the maximum matching problem received a lot of attention since
the early work of Edmonds [Edm65]. This research has been carried out for bipartite
and general graphs both in the weighted and unweighted setting. While there are many
sequential algorithms, only a small number of distributed algorithms for matching
have been proposed [WW04]. In fact, I am not aware of any distributed algorithm
that solves the maximum matching problem optimally, except for special graph
classes such as bipartite graphs. Therefore, research has concentrated on finding
maximal matchings and on approximating maximum matchings, the weighted and the
unweighted case. In the following, related work is classified into synchronous and
asynchronous systems.

First, distributed algorithms to approximate maximum weighted matchings in
synchronous systems are considered. Wattenhofer et al. present a randomized 5-
approximation algorithm taking O(log n) rounds [WW04]. Nieberg’s algorithm
computes a (1 + ε)-approximation in O(log n) rounds [Nie08]. The unweighted
maximum matching problem received considerably more attention. The currently
best algorithms for finding approximately optimal matchings are due to Lotker et al.
[LPSR09]. For any ε > 0 they give a randomized distributed (4 + ε)-approximation
algorithm for maximum weighted matching, whose running time is O(log n) and
for unweighted dynamic graphs, they give a distributed algorithm that maintains a
(1 + ε)-approximation in O(1/ε) time for each node insertion or deletion. The focus

99

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

of this thesis lies on asynchronous systems. The state of the art for synchronous
systems is surveyed by Elkin [Elk04].

With respect to asynchronous systems at first the unweighted case is considered.
Early work concentrated on the maximal matching problem. The history of self-
stabilizing algorithms for the unweighted maximal matching problem goes back to
Hsu and Huang [HH92]. Their algorithm assumes the shared memory model with
composite atomicity and a central scheduler and requires O(n3) moves. Later the
analysis of the algorithm was improved and lower bounds were proven O(n2) [Tel94],
O(m) [HJS02]. Note that the algorithm does not work with a distributed scheduler.
Chattopadhyay et al. developed an algorithm that stabilizes in O(n2) steps for a
fair distributed scheduler using the shared memory model with read/write atomicity
[CHS02]. Later Manne et al. [MMPT09] presented an algorithm that stabilizes in
O(m) steps using an unfair distributed scheduler and the shared memory model with
composite atomicity.

Whereas the algorithm of Hsu and Huang assumed an anonymous network, these
two algorithms require node identifiers that are unique within distance 2. A deter-
ministic self-stabilizing algorithm for the maximal matching problem in anonymous
networks is impossible under a synchronous scheduler. For example, let G be a cyclic
graph where all edges are of the same weight and the nodes do not have identifiers. If
all nodes are in the same state initially, this property will hold after every step. Thus,
when an algorithm stabilizes no node and no edge stands out. Chattopadhyay et al.
presented a randomized algorithm for the maximal matching problem in anonymous
network with read/write atomicity [CHS02]. Several methods for transforming algo-
rithms using strong model assumptions to algorithms using weaker assumptions are
described in the literature: From a fair scheduler to an unfair scheduler [Kar01], from a
central to a distributed scheduler [GT07] and for atomicity refinement [NA02, CDP03].
In general, algorithms developed for a specific model are superior to transformed
algorithms in terms of complexity.

Approximation of a maximum matching for the unweighted case also received
some attention. Manne et al. presented the first self-stabilizing algorithm for finding a
3/2-approximation to this problem using at most exponential time under a distributed
adversarial scheduler [MMPT08]. This work is done for the shared memory model
with composite atomicity.

100

7.2 ALGORITHM DESCRIPTION

Finally, the case of maximum weight matchings in asynchronous systems is con-
sidered. The work in this area is sparse. Manne and Mjelde developed the first
self-stabilizing 2-approximation algorithm for the maximum weight matching prob-
lem [MM07]. The authors showed that their algorithm stabilizes after O(2n) (resp.
O(3n)) moves under a central (resp. distributed) scheduler. They assume unique
identifiers and the shared memory model with composite atomicity. The following
sections contribute a new analysis of Manne and Mjelde’s algorithm and limit the
number of moves to O(nm) for the central scheduler. Furthermore, a modified ver-
sion of this algorithm is presented, requiring O(nm) moves for the unfair distributed
scheduler. The survey of Guellati and Kheddouci [GK10] contains more references
for self-stabilizing algorithms solving the matching problem (c.f. Section 2.4.6).

7.2 Algorithm Description

Manne and Mjelde’s algorithm is based on the classical algorithm, shown in Algo-
rithm 7.1. It is a sequential greedy algorithm that calculates a matching Mgreedy with
at least half the weight of the maximum weight [Pre99]. The idea is to start with an
empty set and then add the remaining heaviest edges each time. Mgreedy is unique
if the edges’ weights are pairwise different. The algorithm of Manne and Mjelde
computes Mgreedy [MM07].

Algorithm 7.1 Greedy 2-Approximation of Maximum Weight Matching

M = ∅
for 〈u, v〉 in E in descending order with respect to their weight

if neither u nor v are incident to an edge in M
then M := M ∪ {〈u, v〉}

Having unique node identifiers permits the assumption that all edge weights are
different. This can be achieved by the following simple definition of a total order on
the set of edges. Let 〈u1, u2〉 and 〈v1, v2〉 be two edges then 〈u1, u2〉 < 〈v1, v2〉 if
and only if

� w(〈u1, u2〉) < w(〈v1, v2〉) or

� w(〈u1, u2〉) = w(〈v1, v2〉) ∧min(u1, u2) < min(v1, v2) or

101

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

� w(〈u1, u2〉) = w(〈v1, v2〉) ∧min(u1, u2) = min(v1, v2)∧
max(u1, u2) < max(v1, v2).

For the rest of this chapter it is assumed that the weights of all edges are pairwise
different.

In the following the self-stabilizing algorithm of Manne and Mjelde is presented
with a slightly different notation. The state sv = (v.p, v.w) of a node v is defined
by two variables p and w. The intention of these variables is as follows: p stores
a pointer (i.e. the identifier) to a neighbor of v or null, and w stores the weight of
the edge 〈v, v.p〉, i.e., w(〈v, v.p〉). The definition of w(〈·, ·〉) is extended such that
w(〈v, null〉) = 0. To express that v.p = u, it is said that node v points to node u or
synonymously node v points to edge 〈v, u〉.

Let Cv = {vi ∈ N(v) | w(〈vi, v〉) ≥ vi.w ∨ vi.p ∈ {v, null}}. A node
vmax ∈ Cv is called maximal if w(〈vmax, v〉) ≥ w(〈vi, v〉) ∀vi ∈ Cv. If Cv 6= ∅
then denote by maxCv the unique maximal node of Cv. The complete algorithm from
[MM07] is depicted below. Note that the definition of Cv has been slightly altered
compared to the original paper. It is straightforward to see that the results of [MM07]
still hold and the calculated matching is the same.

Algorithm 7.2 Self-Stabilizing 2-Approximation Maximum Weight Matching

Functions:
BestMatch(v) :

if Cv 6= ∅ then return maxCv
else return null

Actions:
R1 :: [v.p 6= BestMatch(v) ∨ v.w 6= w(〈v, v.p〉)]
−→ v.p := BestMatch(v)

v.w := w(〈v, v.p〉)

Two nodes are called matched, if they both point at each other. An edge 〈v, w〉
is matched, if v and w are matched. Denote by M the set of all matched edges of
a configuration. A node v is called in sync, if v.w = w(〈v, v.p〉). In [MM07] it
is proven that Algorithm 7.2 stabilizes under a distributed scheduler with at most
O(3n) moves and that in a configuration of G, where no node is enabled, M is a

102

7.2 ALGORITHM DESCRIPTION

2-approximation of the maximum weight matching of G. The following sections
prove that the move complexity of Algorithm 7.2 is in fact polynomial.

A configuration c satisfies P if all nodes are in sync, all nodes not contributing to
the matching point to null and the matching defined by c is Mgreedy.

Lemma 7.2.1. There is a unique configuration in which all nodes are disabled with

respect to Algorithm 7.2 and this configuration satisfies P .

Proof. Consider a configuration c where all nodes are disabled with respect to Al-
gorithm 7.2. Since rule R1 is not enabled, all nodes are in sync. Consider a node
v with v.p = u but u.p 6= v. If u.p = null or w(〈u, u.p〉) < w(〈v, u〉) then u is
enabled to point to v. Hence, w(〈u, u.p〉) > w(〈v, u〉) and thus, v is enabled. This
contradiction shows that all nodes not contributing to the matching point to null and
c defines a matching Mc.

Assume Mc 6= Mgreedy. Let e1 = 〈u1, v1〉 be the heaviest edge with e1 ∈ Mgreedy

and e1 /∈ Mc. Then, in configuration c node u1 and v1 do not point towards each other
but also they do not point to heavier edges, since there are no heavier edges leading
towards nodes that are not matched via even heavier edges already. Therefore u1 and
v1 are enabled, contradicting the assumption.

A disadvantage of the presented algorithms must be mentioned. A configuration that
represents a maximum weight matching is not necessarily a legitimate configuration,
i.e. it does not necessarily satisfy P . For this purpose consider a graph consisting
of the nodes v0, v1, v2, and v3 and the three edges 〈v0, v1〉, 〈v1, v2〉 and 〈v2, v3〉 with
weights 1, 1 + ε, and 1 where ε > 0, as shown in Figure 7.2. A maximum weight
matching consists of the edges 〈v0, v1〉 and 〈v2, v3〉 with a total weight of 2. Even if
initialized with this matching, Algorithm 7.2 will stabilize with the non-maximum
weight matching consisting of the edge 〈v1, v2〉 with a total weight of 1 + ε.

v0 v1 v2 v3

1 1 + ε 1

�� Figure 7.2: Disadvantage of Algorithms 7.1 and 7.2: They choose edge 〈v1, v2〉
instead of 〈v0, v1〉 and 〈v2, v3〉.

103

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

7.3 Synchronous Scheduler

An upper bound of O(n2) moves until stabilization for Algorithm 7.2 executed under
a synchronous scheduler directly follows from Theorem 3 of [MM07]: This theorem
proves that assuming a fair scheduler Algorithm 7.2 converges after at most 2 |M|+ 1
rounds, where M is the final matching found by the algorithm. The proof analyzes
the local states of the nodes and shows that after each second round the heaviest edge
possible (with respect to the matching under construction) is irreversibly added to
M (cf. Algorithm 7.1). Both adjacent nodes will not make a move afterwards. The
result follows since a matching cannot contain more than n/2 edges and under the
synchronous scheduler any node can make at most one move per round.

This section provides an example that shows that O(n2) is also a lower bound. For
this purpose consider the ladder graph L with n nodes: Let n be even and 〈vi, vj〉 ∈ E
if j = i + 2, or j = i + 1 and i is odd. The weights of the edges satisfy the relation
w(〈vi1 , vj1〉) < w(〈vi2 , vj2〉) if

� min(i1, j1) < min(i2, j2), or

� min(i1, j1) = min(i2, j2) ∧max(i1, j1) < max(i2, j2).

Figure 7.3 gives an initial configuration and shows the first two steps of an execution of
Algorithm 7.2. The nodes’ pointers are indicated by arrows. In the final configuration
the matching consists of all edges 〈vi, vj〉, where i is odd and j = i + 1. This
configuration is reached after n2/2 moves.

7.4 Central Scheduler

To analyze the complexity of Algorithm 7.2 under the central scheduler, two methods
are used: The following section introduces a potential function Φ for this algorithm
that measures its “progress”. This function has two important properties: It is mono-
tonically increasing and it has an upper limit. Section 7.4.2 presents a mapping of an
execution sequence of Algorithm 7.2 on a given graph to a closely-related execution
sequence on a certain subgraph. Via this mapping an upper bound for the difference
between the number of moves for both sequences can be determined by showing that
the potential function must be increased in some situations. Given this result, the
move complexity of the algorithm can be derived by induction.

104

7.4 CENTRAL SCHEDULER

v1 v2

v3 v4

vn−3 vn−2

vn−1 vn

(a) Start configuration

v1 v2

v3 v4

vn−3 vn−2

vn−1 vn

(b) After the first round

v1 v2

v3 v4

vn−3 vn−2

vn−1 vn

(c) After the second round

�� Figure 7.3: Start of the execution of Algorithm 7.2 under the synchronous scheduler
for graph L

7.4.1 Potential Function

Let the function Φ : CG −→ R+ be defined as the sum of the weights of all edges
〈x, x.p〉 that meet the following conditions:

� x is disabled with respect to Algorithm 7.2, and

� if x.p is enabled, then its move will not enable x.

In other words: An edge contributes to Φ if and only if either both nodes are disabled
and they are pointing to each other or they are exactly one move away from becoming
so. An edge 〈x, x.p〉 contributes to Φ only once, even in case x.p points to x itself
and the rules above also apply to the edge 〈x.p, x〉. Edges that contribute to the value
of function Φ will be called Φ-edges. This status of an edge 〈v, w〉 with respect to
being a Φ-edge can only change after a move of a neighbor of v or w.

Figure 7.4 illustrates the concept of Φ-edges. The nodes’ pointers are indicated by
arrows, the values of their weight variables are in brackets. Edge 〈a, c〉 is a Φ-edge,
because a points to c and is disabled while c is enabled to point to a; g and h are
matched and disabled and thus, 〈g, h〉 also contributes to Φ. Nodes d and e are both

105

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

disabled and point towards f . However, f is enabled to point to e, so 〈d, f 〉 is not a
Φ-edge, but 〈e, f 〉 is.

a(2) c(0) e(7) g(10)

b(0) d(6) f(6) h(10)

1

3

4

5 8

9

10

2

7

6

�� Figure 7.4: Illustration of the potential function: Edges 〈a, c〉, 〈e, f 〉 and 〈g, h〉 are
Φ-edges.

Lemma 7.4.1. Φ is monotonically increasing and so is the number of Φ-edges.

Proof. The value of Φ may change due to the nodes’ moves. The impact of a node’s
move on Φ is analyzed one by one. Let x be any node that is enabled with respect
to Algorithm 7.2. By executing its move node x changes its pointer from x.pold to
x.pnew.

If x.pold = x.pnew only the weight variable of x changed but its pointer did not.
Any neighbor y 6= x.pnew of x with y.p = x gets enabled and thus, 〈y, x〉 did not
contribute to Φ before. If x.pnew is enabled to point to x after that move, 〈x, x.pnew〉
is a new Φ-edge. So let x.pold 6= x.pnew. There are two distinct cases that are to be
applied after the move of x:

Case 1: x.pnew = null
Φ remains unchanged, since x was enabled before and all its neighbors are pointing to
heavier edges than 〈x, x.pold〉, otherwise x would not have been enabled to perform
this move. None of the neighbors gets enabled or disabled by x’s move.

Case 2a: x.pnew 6= null and x.pnew is disabled.
Clearly x.pnew was pointing to x and 〈x.pnew, x〉 was a Φ-edge before x’s move.
Hence, even though 〈x, x.pnew〉 meets all conditions to be a Φ-edge it does not
increase the Φ-value. Nodes that are pointing towards x have a lower weight than
w(〈x.pnew, x〉). So they did not contribute to Φ anyway. However, Φ can increase,
if, due to the move of x, a neighbor y ∈ N(x), that also pointed to x before (e.g.

106

7.4 CENTRAL SCHEDULER

y = x.pold or x.pold = null), becomes enabled to point to a disabled node z that on
its part already points to y.

Case 2b: x.pnew 6= null, x.pnew is enabled, and its move would not enable x.
Note that 〈x, x.pnew〉 is a Φ-edge. The goal is to show that the weight of this edge is
heavier than the weight of an edge that previously was a Φ-edge but lost this status
due to the move of x. Two cases are distinguished:

� w(〈x, x.pnew〉) > w(〈x, x.pold〉)
If there have been other nodes pointing at x resp. x.pnew before x’s move, their
edges would have been of lower weight than 〈x, x.pnew〉 and they would not
have been taken into account for Φ, since the move of x resp. x.pnew enables
them. Other nodes do not become enabled. Thus, no Φ-edge loses this status.
Since 〈x, x.pnew〉 is a new Φ-edge, the value of Φ increases.

� w(〈x, x.pnew〉) < w(〈x, x.pold〉)
x.pold was pointing to another node with higher weight and so w(〈x, x.pold〉)
did not account for Φ. Now x is the node that points to x.pnew with heaviest
weight. If there have been other nodes pointing at x before x’s move, their
edges would have been of lower weight than 〈x, x.pnew〉 and they would not
have been taken into account for Φ, since the move of x enables them.

If there are other nodes pointing at x.pnew, one of its edges could have been a
Φ-edge before the move. Due to the move of x this edge loses this status, since
x.pnew is enabled to point to x. However, the value of Φ increases, because the
new Φ-edge, 〈x, x.pnew〉 has a higher weight than the former Φ-edge.

Case 2c: x.pnew 6= null, x.pnew is enabled, and its move would enable x.
Note that 〈x, x.pnew〉 is not a Φ-edge. x.pnew was enabled to point to an edge of
weight greater than 〈x, x.pnew〉 before the move by x. So x.pnew is not affected by the
move of x nor are the neighbors of x.pnew. x obviously was enabled before its move
and so are all nodes that are pointing towards x. So their weight did not contribute to
Φ before and hence Φ does not decrease.

So, there is no move that decreases the value of Φ. The second statement also
follows from the preceding proof, since there is no move that decreases the number of
Φ-edges.

107

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

Lemma 7.4.2. At any time the number of Φ-edges is at most n/2.

Proof. Let e1, e2 be two incident edges. Without loss of generality w(e1) > w(e2).
Assume, both, e1 = 〈v1, v2〉 and e2 = 〈v2, v3〉 contribute to function Φ. If v2 points
to neither v1 nor to v3 then both v1 and v3 have to point to v2, and the move of v2

would enable v3, contradicting the assumption. If v2.p = v1 then e2 can only be a
Φ-edge if v1 points to a heavier edge than e1. So v2 is enabled and v1 does not point
to v2. Therefore e1 is not a Φ-edge. If v2.p = v3 than v2 is enabled to point to v1

unless v1 itself points to a heavier edge. In the latter case there is no node pointing
towards e1 and therefore it cannot be a Φ-edge. If v2 is enabled to point to v1, e2

cannot be a Φ-edge. Therefore the set of Φ-edges always forms a matching of the
underlying graph.

7.4.2 Graph Reduction and Induction

This section proves that Algorithm 7.2 stabilizes in O(nm) steps under the central
scheduler. For this purpose the graph G′ that is obtained by removing the lightest
edge from G is examined. It is shown that any execution of Algorithm 7.2 for G can
be mapped to a closely related valid execution for G′. In particular a bound for the
number of additional moves for G in comparison to G′ is established. This allows to
leverage induction on the number of edges. More precisely, it is proven that certain
sequences of moves on the lightest edge increase the number of Φ-edges. Furthermore,
it is shown that particular moves can only occur in the context of these sequences.
Then via Lemma 7.4.1 and 7.4.2 an upper bound for the number of moves can be
derived.

For the upcoming analysis the formal model for self-stabilizing algorithms, as
described in Section 2.2.3, is enhanced by the symbol ⊥, which denotes the empty

move. This move does not change the state of any node. Every node is at any
time enabled with respect to the empty move. It is not part of the algorithm under
consideration, it is a convenience for the proof. Furthermore, the wildcard symbol ∗
will be used to denote an arbitrary value, e.g. if it is irrelevant whether a node’s weight
variable is in sync with its pointer.

Let 〈a, b〉 be the lightest edge of G and without loss of generality a < b with respect
to the fixed order of the nodes. Let G′ := G\{〈a, b〉}. Let πc define a transformation
that converts a configuration of CG into a configuration of CG′ , i.e. the states of the

108

7.4 CENTRAL SCHEDULER

nodes a and b are changed to ensure they are not pointing towards each other and they
do not store the weight of edge 〈a, b〉.

πc :

CG −→ CG′ ,

(sv1 , . . . , svn) 7→ (s′v1
, . . . , s′vn), where

s′vi
= svi , if vi /∈ {a, b}

s′a =


sa, if sa.p 6= b

(null, 0), if sa.p = b ∧ sa.w = w(〈a, b〉)
(null, sa.w), if sa.p = b ∧ sa.w 6= w(〈a, b〉)

s′b =


sb, if sb.p 6= a

(null, 0), if sb.p = a ∧ sb.w = w(〈b, a〉)
(null, sb.w), if sb.p = a ∧ sb.w 6= w(〈b, a〉)

a

b

lighte
st ed

ge a

b

�� Figure 7.5: Graph G and the reduced graph G′. Some valid moves on G, e.g. node a
setting its pointer to node b, are no longer possible on G′.

There are four types of moves that may appear in an execution of Algorithm 7.2 for
G, which cannot be executed for G′ (cf. Figure 7.5, Table 7.1). Therefore, a mapping
from the moves that are executable in G to the moves executable in G′ is defined. To
facilitate readability the following shorthand notation is used throughout the rest of
the chapter. For x ∈ {a, b} let

⊥x
0 =

⊥, if sx.w = w(〈x, sx.p〉)
((null, ∗)x, (null, 0)x), if sx.w 6= w(〈x, sx.p〉)

109

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

Note that a node cannot be out of sync after its first move, so with the possible
exception of the node’s very first move ⊥x

0 = ⊥.

Denote byMG the set of all moves of the algorithm on graph G. LetMG′
⊥ :=

MG′ ∪ {⊥}. Every move ofMG is mapped to a move inMG′
⊥ . The only moves

that will be changed are related to edge 〈a, b〉. Move mix represents the move of type
i ∈ {1, .., 4} performed by node x ∈ {a, b}. It is mapped to move m′ix. Table 7.1
exemplifies the respective moves of node a. A formal definition of the four types of
moves is given in Table 7.2.

Move inMG Move inMG′
⊥

Name Move Name Move

m1a a pointed to null before, then
points to b

m′1a (empty move)

m2a a pointed to any node before,
then points to b

m′2a a sets its pointer to null

m3a a pointed to b before, then points
to null

m′3a (empty move)

m4a a pointed to b before, then points
to any other node

m′4a a pointed to null before, then
points to any other node

�� Table 7.1: Informal description of the moves in G and corresponding moves in G′

using the example of node a.

All other moves remain unchanged. Note that this does not only include the moves by
nodes other than a and b. Furthermore moves such as node a setting its pointer from
a node x 6= b towards a node y 6= b will not be altered. So formally the following
mapping is defined:

πm :

MG −→MG′
⊥ ,

m 7→ m′, where

m′ =

m′ix, if m = mix, for x ∈ {a, b} ∧ i ∈ {1, . . . , 4}
m, in all other cases.

The moves m4a and m4b will receive a special treatment, the moves referred to as
the list moves are those of type 1, 2 and 3 only.

110

7.4 CENTRAL SCHEDULER

Move inMG Move inMG′
⊥

Name Move Name Move

m1a ((null, ∗), (b, w(〈a, b〉))) m′1a ⊥a
0

m1b ((null, ∗), (a, w(〈a, b〉))) m′1b ⊥b
0

m2a ((y 6= null, ∗), (b, w(〈a, b〉))) m′2a ((∗, ∗), (null, 0))

m2b ((y 6= null, ∗), (a, w(〈a, b〉))) m′2b ((∗, ∗), (null, 0))

m3a ((b, ∗), (null, 0)) m′3a ⊥a
0

m3b ((a, ∗), (null, 0)) m′3b ⊥b
0

m4a ((b, ∗), (y 6= b, w(〈a, y〉))) m′4a ((null, ∗), (y, w(〈a, y〉)))
m4b ((a, ∗), (y 6= a, w(〈b, y〉))) m′4b ((null, ∗), (y, w(〈b, y〉)))

�� Table 7.2: Formal definition of the moves in G and corresponding moves in G′

Lemma 7.4.3. If a node v in configuration c of G is enabled to perform move m, then

v is enabled to perform move πm(m) in configuration πc(c) of G′.

Proof. There are several distinguishable possibilities for move m. Let m′ = πm(m)

and c′ = πc(c).

Case 1: m = m2a: All neighbors of a point to other nodes via heavier edges, so a
has no edge left to point to but 〈a, b〉. πc does not change anything about that, but G′

does not contain edge 〈a, b〉, so a is enabled to set its pointer to null instead.

Case 2: m ∈ {m1a, m3a}: m′ = ⊥a
0. Every node is enabled at any time with

respect to the empty move, and a node that is not in sync is enabled as well.

Case 3: m = m4a: In configuration c move m4a was enabled, i.e. a points to b
and wants to turn its pointer towards a node x via a heavier edge. πc sets a.p to null.
From a’s point of view this does not change anything else, so move m′4a is enabled.

Case 4: m is a move that is not contained in the list above: m′ = m. πc does not
affect moves that are not related to edge 〈a, b〉.

The corresponding moves of node b can be treated alike.

Lemma 7.4.4. Let c0 be a configuration of G and m a move enabled in this con-

figuration with respect to Algorithm 7.2. Then πc(m(c0)) = m′(πc(c0)), where

m′ = πm(m). In other words the diagram shown in Fig 7.6 is commutative.

111

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

c′0 c′1

c1c0
m

m′

πc πc

�� Figure 7.6: Visualization of Lemma 7.4.4: Commutativity of the order of move and
state transformation.

Proof. Four cases have to be considered :

1. Node x /∈ {a, b} performs move m, thus m′ = m:

πc(m(c0)) = πc(m((sv1 , . . . , sa, . . . , sb, . . . , sx, . . . , svn)))

= πc((sv1 , . . . , sa, . . . , sb, . . . , m(sx), . . . , svn))

= (sv1 , . . . , s′a, . . . , s′b, . . . , m(sx), . . . , svn)

= (sv1 , . . . , s′a, . . . , s′b, . . . , m′(sx), . . . , svn)

= m′((sv1 , . . . , sa, . . . , sb, . . . , sx, . . . , svn))

= m′(πc(c0))

Without loss of generality, for the rest of this proof assume node a to be the node that
performs move m.

2. m ∈ {m1a, m3a}, thus m′ = ⊥a
0. So a either points to null after its move,

which will not be changed by the application of πc, or it points to b; in this case
it will point to null after the application of πc:

πc(m(c0)) = πc(m((sv1 , . . . , sa, . . . , sb, . . . , svn)))

= πc((sv1 , . . . , m(sa), . . . , sb, . . . , svn))

= (sv1 , . . . , πc(m(sa)), . . . , πc(sb), . . . , svn)

= (sv1 , . . . , πc(m(sa.p, sa.w)), . . . , s′b, . . . , svn)

= (sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn)

112

7.4 CENTRAL SCHEDULER

If node a is enabled to perform the moves m1a or m3a in configuration c0, it
must be pointing to null or b before its move. Hence πc(sa) = (null, 0), if a
had its weight and its pointer in sync.

m′(πc(c0)) = ⊥a
0((sv1 , . . . , πc(sa), . . . , πc(sb), . . . , svn))

= ⊥a
0((sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn))

= (sv1 , . . . ,⊥a
0((null, 0)a), . . . , s′b, . . . , svn)

= (sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn)

If a did not perform a move before, then this node may be out of sync. In this
case πc(sa) = (null, sa.w) and move m′ is not the empty move but it sets the
weight of a to 0.

m′(πc(c0)) = ⊥a
0((sv1 , . . . , πc(sa), . . . , πc(sb), . . . , svn))

= ⊥a
0((sv1 , . . . , (null, sa.w)a, . . . , s′b, . . . , svn))

= (sv1 , . . . ,⊥a
0((null, sa.w)a), . . . , s′b, . . . , svn)

= (sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn)

3. m = m4a:

πc(m(c0)) = πc(m((sv1 , . . . , (b, ∗)a, . . . , sb, . . . , svn)))

= πc((sv1 , . . . , m((b, ∗)a), . . . , sb, . . . , svn))

= (sv1 , . . . , πc(m((b, ∗)a)), . . . , πc(sb), . . . , svn)

= (sv1 , . . . , πc((x 6= b, w(〈a, x〉)a)), . . . , s′b, . . . svn)

= (sv1 , . . . , (x 6= b, w(〈a, x〉)a, . . . , s′b, . . . , svn)

and

m′(πc(c0)) = m′((sv1 , . . . , πc((b, ∗)a), . . . , πc(sb), . . . , svn))

= m′((sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn))

= (sv1 , . . . , m′((null, 0)a), . . . , s′b, . . . , svn)

= (sv1 , . . . , (x 6= b, w(〈a, x〉)a, . . . , s′b, . . . , svn)

113

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

4. At last, m = m2a.

πc(m(c0)) = πc(m((sv1 , . . . , sa, . . . , sb, . . . , svn)))

= πc((sv1 , . . . , m(sa), . . . , sb, . . . , svn))

= (sv1 , . . . , πc(m(sa)), . . . , πc(sb), . . . , svn)

= (sv1 , . . . , πc(m(sa.p, sa.w)), . . . , s′b, . . . , svn)

= (sv1 , . . . , πc((b, w(〈a, b〉)a), . . . , s′b, . . . , svn)

= (sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn)

If the configuration is transformed first it should be pointed out that a is enabled
to perform move m2a in configuration c0 if it points to a node other than b
before. Hence, πc does not affect sa and m′ is the move that lets a point to null.
This yields:

m′(πc(c0)) = m′((sv1 , . . . , πc(sa), . . . , πc(sb), . . . , svn))

= m′((sv1 , . . . , sa, . . . , s′b, . . . , svn))

= (sv1 , . . . , m′(sa), . . . , s′b, . . . , svn)

= (sv1 , . . . , (null, 0)a, . . . , s′b, . . . , svn)

The same arguments hold for node b executing move m. Thus, in all cases
πc(m(c0)) = m′(πc(c0)).

Lemma 7.4.5. If c is a legitimate configuration of Algorithm 7.2 for G, then πc(c) is

a legitimate configuration for G′.

Proof. Let c be a legitimate configuration for G. πc cannot alter the state of any nodes
but a and b. Furthermore, these nodes are only changed if one of them points to the
other. Let x be a node of G. Three cases are considered:

Case 1: x.p = y and {x, y} 6= {a, b}.
Since c is legitimate, y points at x. None of them gets enabled by applying πc.

Case 2: x.p = null.
x cannot be a neighbor of a, unless a points at a heavier edge. In none of these cases
one of the involved nodes gets activated by πc. The same holds for the neighbors of b.

114

7.4 CENTRAL SCHEDULER

Case 3: x ∈ {a, b}, a and b are pointing at each other.
πc sets both nodes’ pointers to null. Since 〈a, b〉 is not contained in G′, a and b
cannot point to each other. If, without loss of generality, a is enabled in configuration
πc(c), there must be a neighbor z ∈ N(a) in G′ that points to null or to a. Since z
remains unaffected by πc, it must have been pointing towards a in c as well. Thus, a
was enabled in c in contradiction to the assumption.

Hence, from an execution for G it is possible to derive an execution for G′ that
differs from the original execution only in the list moves. Both executions result in
legitimate configurations that are related via πc. For G the algorithm will need at
most as many additional steps as there are moves replaced by move ⊥ in G′. The
latter only applies to moves of type 1 and 3.

Let #(mix) denote the number of executed moves of type i by node x. Besides, let
#(G) denote the number of executed moves of a given execution for graph G. This
yields:

#(G) ≤ #(G′) + #(m1a) + #(m1b) + #(m3a) + #(m3b)

To analyze how often the moves in question can be executed, it is shown that these
moves increase the number of Φ-edges in certain situations. Lemma 7.4.2 limits the
number of such edges to at most n/2. Therefore the executions of these moves can be
bounded.

At first, it should be noted that nodes a and b cannot point to null at the same time,
except for the initial configuration. As soon as one of them executes a move, this
situation will not occur again. a and b cannot perform any of the moves of the list as
long as both of them point to other nodes (the edges to these nodes are heavier). For
instance, move m2b cannot be executed after m2a without having another move of b
in between that makes it point to a heavier edge first.

The list moves cannot be executed in arbitrary order. For example, move m3a

cannot be executed twice, without having move m1a or m2a in between them, since it
requires a to point to b.

Let m0, m1, . . . , mk be a sequence of moves corresponding to an execution of
Algorithm 7.2 for graph G. If mi and mj are list moves and ml is not a list move for
all l with i < l < j, then [mi, mj] is called a list free sequence.

Table 7.3 shows the possible list free sequences according to Algorithm 7.2. Each
row represents the list free sequences that start with the specified move in the first

115

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

column and end with any of the moves in the following columns. The initial, nonrecur-
ring situation in which m1a and m1b could follow after each other without one of the
other list moves in between is not considered. Table 7.3 already contains the results
of Lemma 7.4.7. The cases, in which a new Φ-edge is created before the second list
move becomes enabled, are marked with a Φ.

Move m1a m1b m2a m2b m3a m3b

m1a – – 3 3 3 3

m1b – – 3 3 3 3

m2a – 3Φ 3Φ 3Φ 3 3

m2b 3Φ – 3Φ 3Φ 3 3

m3a – – 3Φ 3Φ – –

m3b – – 3Φ 3Φ – –

�� Table 7.3: Possible list free sequences. The cases, in which a new Φ-edge is created
before the second list move becomes enabled, are marked with a Φ.

In order that two moves of type 1 can be executed, there must be an intermediate
move of type 2. The same holds for moves of type 3. In the following it will be
shown that the number of Φ-edges increases during each of the list free sequences
[m2a, m1b], [m2a, m2a], [m2a, m2b], [m3a, m2a] and [m3a, m2b]. By symmetry the
results also hold for [m2b, m1a], [m2b, m2b], [m2b, m2a], [m3b, m2a] and [m3b, m2b],
respectively. Two sets of configurations that will play a major role in the upcoming
proofs are defined in advance:

C1: In these configurations, node a points at b, a is disabled, i.e. all neighbors of
a, except for b, point to other nodes via heavier edges. Node b points to a or
to null and is enabled. The heaviest edge b could point to is 〈b, z〉, where z on
its part points to b or null. Furthermore, node z has a neighbor t. Figure 7.7
shows a configuration of C1. Note that node b (resp. z) may point to null or a
(resp. b), which is indicated by the dotted arrows.

116

7.4 CENTRAL SCHEDULER

x2

x1

a b

t

z2

z

�� Figure 7.7: Configurations of C1

C2: In these configurations, nodes a and b are pointing at each other and are dis-
abled, i.e. all neighbors of a and b point to other nodes via heavier edges. A
configuration of C2 is shown in Figure 7.8.

x2

x1

a b

z2

z1

�� Figure 7.8: Configurations of C2

Remark 2. The upcoming proofs involve many nodes. Sometimes there may be several
possibilities for nodes z, x, and t. For example, in Figure 7.7 there are nodes x1 and x2.
Node a might be pointing to x1 first and then it switches to x2 later. These moves are
not of relevance – only the list moves are addressed here – so they are not considered
at this point. The node that is considered to be “node x” in these cases is the one that
can point to a via the heaviest edge.

Lemma 7.4.6. If for a configuration c ∈ C1 ∪ C2 the next list move is m2a (resp.

m2b), then the number of Φ-edges increases before a (resp. b) becomes enabled to

perform this move.

117

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

Proof. Let c ∈ C1. Initially, 〈a, b〉 is not a Φ-edge. As long as this is not the case,
the following holds: If an x ∈ N(a) points towards a (necessary for m2a ever being
executed again), then 〈x, a〉 becomes a new Φ-edge. Thus, a points at b all the time
(m3a is not allowed), no other x ∈ N(a) points at a and the next list move is m2b. In
order to let move m2b ever be executed again, b first has to point to another neighbor
z. As soon as all neighbors of b (distinct from a) point to heavier edges (necessary so
that m2b can become enabled), 〈a, b〉 becomes a new Φ-edge.

Now let c ∈ C2. Nodes a and b are disabled and 〈a, b〉 is a Φ-edge. a resp. b will
not become enabled unless a neighbor x ∈ N(a) resp. z ∈ N(b) performs a move and
points towards a resp. b. In doing so, the Φ-edge will be moved in the corresponding
direction, i.e. 〈x, a〉 (resp. 〈z, b〉) becomes a Φ-edge and 〈a, b〉 is no more a Φ-edge,
and the resulting configuration is contained in C1 (possibly with exchanged roles of a
and b). The result follows from the first case.

Lemma 7.4.7. During each of the list free sequences [m2a, m1b], [m2a, m2a], [m2a,

m2b], [m3a, m2a] and [m3a, m2b] as well as [m2b, m1a], [m2b, m2b], [m2b, m2a],

[m3b, m2a] and [m3b, m2b] respectively the number of Φ-edges increases.

Proof. The sequences will be analyzed one by one.

Case [m2a, m1b]:
Move m2a lets a point to b, i.e. all other neighbors of a point to heavier edges. Node
b on its part cannot have been pointing to another node immediately before this move,
otherwise m2a would not have been possible. Since b does not perform move m3b

next, it must have been pointing at null. Assume there is no x ∈ N(b)\{a} that
points to b or null, then via move m2a edge 〈a, b〉 would have become a new Φ-edge.
So let x ∈ N(b)\{a} with x.p = b or x.p = null. b cannot execute m1b until all
its neighbors point at a heavier edge. But in that case, again, edge 〈a, b〉 would have
become a new Φ-edge. If b points to x previously, it cannot set its pointer to null
(which is necessary for move m1b) before a performs a move. Since other list moves
are excluded, the only possibility is that a first points at a heavier edge and later to
null. But a cannot direct its pointer to a heavier edge, unless the other node of this
edge that on its part was pointing to a heavier edge previously, points to a. In doing
so, a new Φ-edge is created.

118

7.4 CENTRAL SCHEDULER

Cases [m2a, m2a] and [m2a, m2b]:
Node a points at b, all other neighbors of a are pointing at heavier edges. b points at a
or at null.

� If there is a z ∈ N(b)\{a}, which enables b, then the configuration is contained
in C1 and the rest follows from Lemma 7.4.6.

� All neighbors of b (except for a) are pointing at heavier edges. If b points at
null, then via the first move, m2a, 〈a, b〉 already became a new Φ-edge. If b
points at a, then the configuration is contained in C2 and the rest follows from
Lemma 7.4.6.

Case [m3a, m2a]:
Initially a points at b, b on its part (and all other neighbors of a) has selected another
node. Hence, a sets its pointer to null via executing move m3a. In order that m2a can
be the next list move, b has to point to null first (b cannot point towards a without
performing a list move). This is impossible, until a directs its pointer to a heavier edge
first. Therefore there must be an x ∈ N(a) that points at a afore. This makes edge
〈x, a〉 a new Φ-edge.

Case [m3a, m2b]:
Again, initially a points at b, b on its part (and all other neighbors of a) has selected
another node. Hence, a sets its pointer to null via executing move m3a. In order that
m2b can be the next list move, a has to point to null at that time. Before, the node
could point to a heavier edge and back to null. Since this requires a node x to point
towards a via a heavier edge (this node therefore would be disabled after this move)
this would make 〈x, a〉 a new Φ-edge. So from now on let a point to null and let no
other neighbor enable it. If all neighbors of b (except for a) point to a heavier edge
(this is required for m2b being enabled), edge 〈a, b〉 becomes a new Φ-edge.

By symmetry Lemma 7.4.7 also holds for the list free sequences [m2b, m1a], [m2b,
m2b], [m2b, m2a], [m3b, m2a] and [m3b, m2b].

Figure 7.9 illustrates the possible list move sequences. According to Lemma 7.4.7
(c.f. Table 7.3) edges that increase the number of Φ-edges are weighted 1, other edges
have weight 0. The basic idea of the following proof is to determine at which length a
path in the depicted graph necessarily exceeds the cost of n/2.

119

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

Type 1

Type 2 Type 3

0

01

0

1

1

�� Figure 7.9: Graph of list free sequences

Theorem 7.4.1. Running under a central scheduler Algorithm 7.2 stabilizes after at

most (n + 3)m moves, if m > 0.

Proof. To make use of induction it is necessary to determine an upper bound on the
number of moves of type 1 and 3. Considering the graph depicted in Figure 7.9 this
means to identify a path not exceeding n/2 cost containing as much occurrences of
type 1 and 3 as possible.

Since initially both nodes, a and b, could point to null for once, it is possible that
m1a and m1b are executed without another intermediate list move. In this case the
number of Φ-edges does not necessarily increase (c.f. page 115). After that the list
moves follow the graph of Figure 7.9. The next move of type 3 can be executed
without cost increases. The following list move will be attended by an increase of Φ
and so will at least every second subsequent list move.

Therefore #(m1a)+ #(m1b)+ #(m3a)+ #(m3b) ≤ #(all list moves) ≤ n+ 3. So,
the total number of moves the algorithm needs to stabilize in G is greater than the
number of moves in G′ by at most n + 3 moves. Clearly, for a graph that contains
only one edge Algorithm 7.2 stabilizes after at most n moves. By induction over the
edges of G this results in: #(G) ≤ (n + 3)m.

In the following a lower bound for the number of moves for Algorithm 7.2 of Ω(n2)

for the central scheduler is provided. For this purpose consider the line graph with n
nodes: The nodes are arranged along a line with ascending weighted edges from left

120

7.5 D ISTRIBUTED SCHEDULER

to right. Initially, let all nodes point to their left neighbor, except for the first and the
last node that point to null. Consider two phases:

1. From left to right, all enabled nodes, one after the other, point to their right
neighbor, the last one points to its left neighbor.

2. From left to right, all enabled nodes, one after the other, point to their left
neighbor, the first one points to null.

These two phases alternate until the algorithm stabilizes. The final configuration is
reached after n2/2− n/2 + 1 moves.

7.5 Distributed Scheduler

If Algorithm 7.2 is executed under the distributed scheduler it is possible that two
neighboring nodes make a move at the same time. Hence the results of the last section
do not necessarily hold true.

In [GT07] Tixeuil and Gradinariu showed how to transform an algorithm that
stabilizes under a central scheduler into an algorithm that stabilizes under a distributed
scheduler, provided unique node identifiers exist. Their method is now applied to
Algorithm 7.2. After that it will be shown that the resulting algorithm also stabilizes
after at most O(nm) moves, although the transformation of [GT07] usually comes
with a slowdown factor of O(∆) moves.

The basic idea is to provide the nodes with an additional variable want_to_act,
indicating, whether a node is enabled with respect to the original algorithm, and a
predicate allowed_to_act, that is used to guarantee that no two neighboring enabled
nodes execute a move simultaneously. In particular, only the node with the highest
identifier among the neighboring nodes having their want_to_act variable set to true
is allowed to execute a rule of the original algorithm.

One important property of Algorithm 7.2 is that a node is always disabled imme-
diately after its move, if the algorithm is running under a central scheduler. The
transformation of [GT07] is changed in order to preserve this property: When a node
executes a move of the original algorithm, simultaneously the variable want_to_act is
set to false. This simplifies the analysis of Algorithm 7.3.

121

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

Algorithm 7.3 Self-Stabilizing 2-Approximation Maximum Weight Matching under
a Distributed Scheduler

Predicates:
v.allowed_to_act:

v.want_to_act ∧ v > max{x ∈ N(v) | x.want_to_act}

Functions:
BestMatch(v) :

if Cv 6= ∅ then return maxCv
else return null

Actions:
R1 :: [v.want_to_act 6= (v.p 6= BestMatch(v) ∨ v.w 6= w(〈v, v.p〉))]
−→ v.want_to_act := (v.p 6= BestMatch(v) ∨ v.w 6= w(〈v, v.p〉))

R2 :: [v.allowed_to_act]
−→ v.p := BestMatch(v)

v.w := w(〈v, v.p〉)
v.want_to_act := false

Using Algorithm 7.3 neighboring nodes cannot both execute a move of type R2 in
the same step. Therefore the results of Table 7.3 still hold true under a distributed
scheduler. To prove this, arrange all moves that are executed simultaneously in an
arbitrary sequential order and execute them one by one. Since none of these executing
nodes are neighbors, their moves do not influence each other. Therefore, the moves
of Algorithm 7.3 using the distributed scheduler can be regarded as being executed
under the central scheduler. This allows to carry over the definitions introduced in
Section 7.4.2.

As for the central scheduler, the moves of Algorithm 7.3 for G will be mapped to
moves for G′. A move in which a node x executes rule R1 (resp. R2) will be called ux

(resp. mx). Since the moves of types ma and mb cannot be executed simultaneously
in G, all moves ux, mx are mapped to themselves for x /∈ {a, b}. The moves ma and
mb will be transformed as in Section 7.4.2.

For x ∈ {a, b} the move according to rule R1 setting want_to_actx to true (resp.
false) is denoted by ux+ (resp. ux−). The moves ua+ and ub+ have to be subjected
to a detailed review. For example node a can be enabled to perform move m1a for

122

7.5 D ISTRIBUTED SCHEDULER

G based on a previous execution of ua+, which is illegal for G′ (except for a not in
sync), since a is not enabled to perform any move in G′ in that case. Thus, ua+ will
be mapped to ⊥, if a performs this move in G, because it wants to perform m1a or
m3a and is in sync. If the next move of a is ua−, m1a or m3a, this move will also be
mapped to ⊥. If the next move mnext of a is any other move, then it is mapped to a
move consisting of a combination of ua+ and mnext. Node b is treated alike.

The following analyzes how often node a (resp. node b) can be enabled to perform
move m1a or m3a (resp. m1b or m3b). In combination with the number of executions

of the moves m1a, m3a, and the corresponding moves of node b, the number of moves
mapped to ⊥ in G′ can be determined.

Lemma 7.5.1. If node a or node b is enabled to perform a type 1 move (resp. a type 3

move) and later it again gets enabled to perform the same move, then there will either

be an intermediate execution of a list move (resp. of a list move type 2) or the number

of Φ-edges increases.

Proof. The two types are analyzed individually. Consider move m1a first. Initially, let
node a be enabled to perform move m1a, i.e. a points at null, b points at a or to null,
and all other neighbors of a are pointing towards heavier edges. In order for node a
to become enabled to perform move m1a again without executing it (in this case the
number of Φ-edges increases, see Table 7.3), m1a has to be disabled in the first place.
This can be realized, as either b points at a heavier edge, or a neighbor of a points at
a via a heavier edge. In the former case, a cannot become enabled to perform move
m1a, unless b performs move m1b or m2b first.

So let b point to a or to null constantly. If a neighbor x ∈ N(a) points at a, then
〈x, a〉 is a Φ-edge. If b was enabled before this move, this is a new Φ-edge. In
particular this is the case if b points to null. So assume b disabled. If a neighbor
z ∈ N(b) should point at b then 〈z, b〉 would become a new Φ-edge. If x should
point at a heavier edge later (required for a being enabled to perform move m1a), then
〈a, b〉 will become a new Φ-edge.

Next, the move m3a is considered. Let node a be enabled to perform move m3a, that
is a points at b, all neighbors of a, including b are pointing at heavier edges. So that
node a becomes enabled to perform move m3a again, without executing this move,
first of all m3a has to be disabled. This can be realized, as either b or another neighbor

123

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

of a points at a. If b directs its pointer towards a now, this is move m2b. So let b
constantly point to heavier edges in the following. Two cases are considered:

Case 1: Edge 〈a, b〉 is a Φ-edge.
If a neighbor x ∈ N(a)\{b} points at a, edge 〈x, a〉 replaces 〈a, b〉 as a Φ-edge. In
order to enable m3a anew x has to point to a heavier edge again. In doing so, this edge
replaces 〈x, a〉 as a φ-edge and 〈a, b〉 becomes a new Φ-edge.

Case 2: Edge 〈a, b〉 is not a Φ-edge.
As long as 〈a, b〉 is not a Φ-edge, the following holds true: If a neighbor x ∈
N(a)\{b} points at a, 〈x, a〉 becomes a new Φ-edge.

The same arguments hold for moves m1b and m3b.

Lemma 7.5.2. Node a (resp. node b) will not be enabled to perform move m1a or

m3a (resp. m1b or m3b) more than n/2 + 1 times each.

Proof. Before a becomes enabled to perform move m1a (resp. move m3a) – except
for the very first execution – the number of Φ-edges increases or a list move of type
1 or 2 (resp. type 2) will be executed (Lemma 7.5.1). Lemma 7.4.7 yields that the
number of Φ-edges increases before a new move of type 1 (resp. type 3) is possible
in that situation. Thus, a will be enabled to perform move m1a (resp. m3a) at most
n/2 + 1 times. The same holds for moves m1b and m3b.

Theorem 7.5.1. Running under a distributed unfair scheduler Algorithm 7.3 stabilizes

after at most (4n + 8)m moves.

Proof. As in Section 7.4.2 a bound for the possible additional moves for graph G
compared to graph G′ is calculated. In the distributed case for this purpose the number
of moves of type ua+ and ub+ that are mapped to ⊥ have to be counted, each with at
most one consecutive move, respectively. #(ua+) ≤ (n/2+ 1)+ (n/2+ 1) = n+ 2
(Lemma 7.5.2). In the worst case every time the consecutive move will be mapped to
⊥ as well. That makes a total of 2n + 4 moves. The same number has to be added
for ub+ respectively. This yields: #(G) ≤ #(G′) + 2(2n + 4). The theorem is now
easily proved by induction on the number of edges of G.

124

7.6 CONCLUSION

7.6 Conclusion

This chapter presented a new analysis of the time complexity of a self-stabilizing
algorithm that computes a 2-approximation for the maximum weight matching prob-
lem [MM07]. The analysis is based on a new proof technique. It is shown that the
original algorithm requires O(nm) moves under the central scheduler and a modified
version O(nm) moves under the distributed scheduler. Previously known bounds
were exponential. The following two conjectures are considered for future research:

Conjecture 1. Algorithm 7.2 stabilizes after at most O(n2) moves under the central

scheduler. This bound also holds for Algorithm 7.3 using the distributed scheduler.

Conjecture 2. Algorithm 7.2 stabilizes after at most O(n2) moves under the dis-

tributed scheduler even without the transformation of [GT07].

The example presented at the end of Section 7.4 only requires O(n2) moves and I
was unable to find an example requiring O(nm) moves, where m is not in the order
of n. It seems that in order to prove any of these conjectures, a different approach is
required. Induction on the number of edges is no longer possible.

125

7 POTENTIAL FUNCTION AND INDUCTION VIA GRAPH REDUCTION

126

Chapter8Chapter8

Conclusion

This chapter summarizes the results of this thesis and highlights perspectives for future
research.

8.1 Summary

This thesis provided new self-stabilizing algorithms for several problems in algorith-
mic graph theory. Additionally, several existing algorithms were analyzed with respect
to their time- and space complexity.

The main contribution of this thesis is a new proof technique for the complexity
analysis of self-stabilizing algorithms. It is based on graph reduction and allows
to leverage complete induction in the proofs. This novel approach was used for a
new analysis of the time complexity of a self-stabilizing algorithm that computes a
2-approximation for the maximum weight matching problem [MM07]. While the
upper bound on its time complexity was previously stated to be exponential, the new
technique proved that the algorithm indeed stabilizes after O(nm) moves under the
central scheduler. Furthermore, a modified version of the algorithm could be shown to
stabilize after O(nm) moves under the distributed scheduler.

A self-stabilizing algorithm for the calculation of a weakly connected minimal
dominating set by Srimani and Xu ([SX07]) is proven to have an exponential runtime
in an adverse setting. While it was known that this algorithm has an exponential upper

127

8 CONCLUSION

bound on the time complexity, it was an open problem whether this limit is sharp. In
this thesis a new self-stabilizing algorithm for the construction of weakly connected
minimal dominating sets was presented that requires only a polynomial number of
moves under the distributed scheduler.

A self-stabilizing algorithm for a 3− 2/(∆ + 1)-approximation minimum vertex
cover in anonymous networks was presented. It assumes the link-register model
with composite atomicity and a distributed scheduler. Stabilization is reached af-
ter O(n + m) moves resp. O(∆) rounds. Furthermore, the algorithm requires only
O(log n) storage per node. Note that unlike all previously known self-stabilizing algo-
rithms for the vertex cover problem this approach does not utilize symmetry-breaking
mechanisms such as restricted concurrency, unique identifiers, or randomization. The
algorithm achieves a 2-approximation vertex cover if it is executed on a tree.

This thesis presented the first two self-stabilizing algorithms for the edge-monitoring
problem. Two versions of this problem were considered: The first algorithm calculates
a minimal edge monitoring assuming that the selected nodes actually monitor all

edges they can. Using the second algorithm, the nodes obtain information about the
edges they actually have to monitor. Under the distributed scheduler both algorithms
stabilize after O(mn2) moves.

8.2 Future Perspectives

The self-stabilizing algorithm for the weakly connected minimal dominating set
problem presented in Chapter 4 is based on a spanning tree. The same holds for
all other currently known self-stabilizing algorithms for this problem. It would be
interesting to investigate if it is possible to create such a structure without a tree as a
basis.

In Chapter 5 a self-stabilizing approximation algorithm for the calculation of a
3− 2/(∆ + 1)-approximation of a vertex cover in anonymous networks was pre-
sented. It is an open question whether there is a self-stabilizing algorithm with better
approximation ratio that also requires only O(log n) storage per node.

The algorithms for the edge-monitoring problem (Chapter 6) assume that the nodes
do not have a limit on the number of edges they are allowed to monitor. Such a limit
makes the calculation of a valid monitoring significantly more difficult. Developing

128

8.2 FUTURE PERSPECTIVES

a self-stabilizing algorithm with polynomial runtime for this variation of the edge-
monitoring problem would be a challenging task.

In Chapter 7, a new proof method was presented that was applied to an algorithm
for the maximum weight matching problem [MM07]. While the previous best known
upper bound was exponential it was shown that the algorithm indeed stabilizes within
polynomial time. A starting point for future research is the use of this method for the
analysis of other algorithms.

On the one hand, the complexity of Algorithm 7.2 could be proven to be limited to
at most O(mn) moves, but on the other hand this thesis could not provide an example
that exceeds O(n2) moves. Hence it remains an open question, whether Conjectures 1
and 2 of Chapter 7 indeed hold true or can be proven wrong. The latter could be done
by presenting such an example. To prove that Algorithm 7.2 indeed has a quadratic
move complexity, it appears that the method presented in Chapter 7 does not suffice
since it makes use of induction on the number of edges.

Section 2.4 discussed self-stabilizing algorithms for classical problems in algorith-
mic graph theory. However, such an overview is necessarily subject to an “aging
process”. Due to the intense research activity in the field of self-stabilization there
soon will be new algorithms for the mentioned problems and it is worthwhile to
create supplementary lists every now and then. Furthermore, there are self-stabilizing
algorithms for many other problems, not necessarily related to graph theory. A list
with these algorithms can be included in a more application-oriented work.

As mentioned in Section 3.2, there is no perfect proof method that is applicable to
all algorithms to verify their self-stabilization property or to determine their worst-case
complexity. It is rather an experience-based guessing which method may lead to a
good result. Hence, it is possible to further investigate the systematic application of
proof methods as well as to look for new proof methods.

129

8 CONCLUSION

130

List of Algorithms

2.1 Self-Stabilizing Maximal Independent Set 13

4.1 WCMDS Algorithm of Srimani and Xu 53
4.2 MDS with Network Decomposition, Distance-Two Algorithm . . . 58
4.3 WCMDS with Network Decomposition, Central Scheduler 59
4.4 WCMDS with Network Decomposition, Distributed Scheduler . . . 63

5.1 Maximal Generalized Matching / 3-Approximation Vertex Cover . . 75
5.2 Vertex Cover with Approximation Ratio 3− 2/(∆ + 1) 78

6.1 Expression-Two Algorithm for Edge Monitoring 92
6.2 Expression-Two Algorithm for Edge Monitoring with Monitoring

Knowledge . 95

7.1 Greedy 2-Approximation of Maximum Weight Matching 101
7.2 Self-Stabilizing 2-Approximation Maximum Weight Matching . . . 102
7.3 Self-Stabilizing 2-Approximation Maximum Weight Matching under

a Distributed Scheduler . 122

131

L IST OF ALGORITHMS

132

List of Figures

2.1 A real-world example for self-stabilization 12

2.2 Configuration of a graph during the execution of Algorithm 2.1 . . . 14

2.3 Closure and convergence . 18

2.4 Coloring algorithm under the synchronous scheduler 24

2.5 Maximal independent set . 27

2.6 Minimal dominating set . 28

2.7 Spanning tree . 31

2.8 Coloring . 34

2.9 Minimal vertex cover . 36

2.10 Maximal matching . 37

4.1 Connected dominating set and weakly connected dominating set . . . 51

4.2 Circle C with node vs having the lowest level 53

4.3 Adverse execution of Algorithm 4.1 54

4.4 Graph G3 . 55

4.5 Adverse initial configuration of the WCMDS algorithm on Graph Gk 55

4.6 Network decomposition for the WCMDS Algorithm 57

4.7 Inconsistent CHANGE move . 62

5.1 Minimal vertex cover . 68

5.2 The Kronecker Double Cover . 73

5.3 Excludable nodes of the vertex cover 77

5.4 General structure of the graph Gm for m ∈ M 81

5.5 Structure of Gm in case Pa and Pb have even length. 82

5.6 Structure of Gm in case Pa and Pb have odd length. 83

5.7 Structure of Gm in case Pa has odd and Pb has even length and δa = 2 84

5.8 Worst case example for Algorithm 5.2 85

133

L IST OF F IGURES

6.1 Edge monitoring of a graph . 88
6.2 Monitor of an edge . 89
6.3 Incorrect neighbor sets . 93

7.1 A maximum weight matching . 99
7.2 Disadvantage of Algorithms 7.1 and 7.2 103
7.3 Execution of Algorithm 7.2 under the synchronous scheduler for graph L105
7.4 Illustration of the potential function: Φ-edges 106
7.5 Graph G and the reduced graph G′ 109
7.6 Commutativity of the order of move and state transformation 112
7.7 Configurations of C1 . 117
7.8 Configurations of C2 . 117
7.9 Graph of list free sequences . 120

134

Bibliography

[AAFJ08] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population
protocols. Autonomous and Adaptive Systems, ACM Trans., 3(4):1–28, 2008.

[AB93] Y. Afek and G. M. Brown. Self-stabilization over unreliable communication
media. Distributed Computing, 7:27–34, 1993.

[ABB97] Y. Afek and A. Bremler-Barr. Self-stabilizing unidirectional network algorithms
by power-supply (extended abstract). In Proc. Discrete Algorithms (SODA),
8th Ann. ACM-SIAM Symp., New Orleans, LA, USA, 1997, pages 111–120.
ACM/SIAM, 1997.

[ABB98] Y. Afek and A. Bremler-Barr. Self-stabilizing unidirectional network algorithms
by power supply. Theoretical Computer Science, Chicago J., 1998, 1998.

[AG90] A. Arora and M. G. Gouda. Distributed reset (extended abstract). In Proc. Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS),
10th Conf., Bangalore, India, 1990, volume 472 of LNCS, pages 316–331.
Springer, 1990.

[AG93] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-
tolerant computing. Software Engineering, IEEE Trans., 19:1015–1027, 1993.

[AG94] A. Arora and M. G. Gouda. Distributed reset. Computers, IEEE Trans.,
43(9):1026–1038, 1994.

[AGLP89] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposi-
tion and locality in distributed computation. In Proc. Foundations of Computer
Science (FOCS), 30th Ann. Symp., Research Triangle Park, NC, USA, 1989,
pages 364–369. IEEE Computer Society, 1989.

[AK93] S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algo-
rithms. In Proc. Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), 13th Conf., Bombay, India, 1993, volume 761 of LNCS, pages
400–410. Springer, 1993.

[AKM+07] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. A time-
optimal self-stabilizing synchronizer using a phase clock. Dependable and
Secure Computing, IEEE Trans., 4(3):180–190, 2007.

[AKY90] Y. Afek, S. Kutten, and M. Yung. Memory-efficient self stabilizing protocols for
general networks. In Distributed Algorithms (WDAG), 4th Int. Workshop, Bari,
Italy, 1990, volume 486 of LNCS, pages 15–28. Springer, 1990.

135

B IBLIOGRAPHY

[Ang80] D. Angluin. Local and global properties in networks of processors (extended
abstract). In Proc. Theory of Computing (STOC), 12th Ann. ACM Symp., Los
Angeles, CA, USA, 1980, pages 82–93. ACM, 1980.

[APSVD94] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-stabilization
by local checking and global reset (extended abstract). In Proc. Distributed
Algorithms (WDAG), 8th Int. Workshop, Terschelling, The Netherlands, 1994,
volume 857 of LNCS, pages 326–339, Terschelling, Netherlands. Springer, 1994.

[AS92] G. Antonoiu and P. K. Srimani. A self-stabilizing distributed algorithm to
construct an arbitrary spanning tree of a connected graph. Computers and
Mathematics with Applications, 30, 1992.

[AS97a] G. Antonoiu and P. K. Srimani. Distributed self-stabilizing algorithm for mini-
mum spanning tree construction. In Parallel Processing (Euro-Par), 3rd Europ.
Conf., Passau, Germany, 1997, volume 1300 of LNCS, pages 480–487. Springer,
1997. 10.1007/BFb0002773.

[AS97b] G. Antonoiu and P. K. Srimani. A self-stabilizing distributed algorithm to find the
center of a tree graph. Parallel Algorithms and Applications, 10(3-4):237–248,
1997.

[AS98] G. Antonoiu and P. K. Srimani. A self-stabilizing distributed algorithm for mini-
mal spanning tree problem in a symmetric graph. Computers and Mathematics
with Applications, 35(10):15–23, 1998.

[ÅS10] M. Åstrand and J. Suomela. Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In Proc. Parallelism in Algorithms
and Architectures (SPAA), 22nd ACM Symp., Santorini, Greece, 2010, pages
294–302, Santorini, Greece. ACM, 2010.

[ASSC02] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38:393–422, 2002.

[AW04] H. Attiya and J. L. Welch. Distributed computing: fundamentals, simulations,
and advanced topics. Wiley Series on Par. and Distr. Comput. Wiley, 2004.

[Awe85] B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823,
1985.

[AWF03] K. M. Alzoubi, P.-J. Wan, and O. Frieder. Independent Set, Weakly-Connected
Dominating Set, and Induced Spanners in Wireless Ad Hoc Networks. Founda-
tions of Computer Science, Int. J., 14(2):287–303, 2003.

[BDGM00] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing
local mutual exclusion and daemon refinement. In Proc. Distributed Computing
(DISC), 14th Int. Conf., Toledo, Spain, 2000, volume 1914 of LNCS, pages
223–237. Springer, 2000.

136

B IBLIOGRAPHY

[BDGT09] S. Bernard, S. Devismes, M. Gradinariu, and S. Tixeuil. Optimal deterministic
self-stabilizing vertex coloring in unidirectional anonymous networks. In Proc.
Parallel and Distributed Processing (IPDPS), IEEE Int. Symp., Rome, Italy,
2009, pages 1–8. IEEE Computer Society, 2009.

[BDPBR10] L. Blin, S. Dolev, M. Gradinariu Potop-Butucaru, and S. Rovedakis. Fast
self-stabilizing minimum spanning tree construction - using compact nearest
common ancestor labeling scheme. In Proc. Distributed Computing (DISC), 24th

Int. Symp., Cambridge, MA, USA, 2010, volume 6343 of LNCS, pages 480–494.
Springer, 2010.

[BK07] J. Burman and S. Kutten. Time-optimal asynchronous self-stabilizing spanning
tree. In Proc. Distributed Computing (DISC), 21st Int. Symp., Lemesos, Cyprus,
2007, volume 4731 of LNCS, pages 92–107. Springer, 2007.

[BLB95] F. Butelle, C. Lavault, and M. Bui. A uniform self-stabilizing minimum diameter
tree algorithm (extended abstract). In Proc. Distributed Algorithms (WDAG),
9th Int. Workshop, Le Mont-Saint-Michel, France, 1995, volume 972 of LNCS,
pages 257–272. Springer, 1995.

[BM03] J. R. S. Blair and F. Manne. Efficient self-stabilizing algorithms for tree network.
In Proc. Distributed Computing Systems (ICDCS), 23rd Int. Conf., Providence,
RI, USA, 2003. IEEE Computer Society, 2003.

[BM09] J. R. S. Blair and F. Manne. An efficient self-stabilizing distance-2 coloring
algorithm. In Proc. Structural Information and Communication Complexity
(SIROCCO), 16th Int. Coll., Piran, Slovenia, 2009, Revised Selected Papers,
volume 5869 of LNCS, pages 237–251. Springer, 2009.

[BPBR11] L. Blin, M. Gradinariu Potop-Butucaru, and S. Rovedakis. Self-stabilizing
minimum degree spanning tree within one from the optimal degree. Parallel
and Distributed Computing, J., 71(3):438–449, 2011.

[BPBRT10] L. Blin, M. Gradinariu Potop-Butucaru, S. Rovedakis, and S. Tixeuil. Loop-free
super-stabilizing spanning tree construction. In Proc. Stabilization, Safety, and
Security of Distributed Systems (SSS), 12th Int. Symp., New York, NY, USA, 2010,
volume 6366 of LNCS, pages 50–64. Springer, 2010.

[BST89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for
distributed computing systems. ACM Computing Surveys, 21(3):261–322, 1989.

[CDK05] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts
and Design (4th Edition) (International Computer Science). Addison-Wesley
Longman Publishing Co., Inc., 2005.

[CDP03] S. Cantarell, A. K. Datta, and F. Petit. Self-stabilizing atomicity refinement
allowing neighborhood concurrency. In Proc. Stabilization, Safety, and Security
of Distributed Systems (SSS), 6th Int. Symp., San Francisco, CA, USA, 2003,
volume 2704 of LNCS, pages 102–112. Springer, 2003.

137

B IBLIOGRAPHY

[Cha82] G. J. Chaitin. Register allocation and spilling via graph coloring. In Proc.
Compiler construction, SIGPLAN Symp., Boston, MA, USA, 1982, pages 98–105.
ACM, 1982.

[CHS02] S. Chattopadhyay, L. Higham, and K. Seyffarth. Dynamic and self-stabilizing
distributed matching. In Principles of Distributed Computing (PODC), 21st Ann.
Symp., Monterey, CA, USA, 2002, pages 290–297, Monterey, California. ACM,
2002.

[CL02] Y. P. Chen and A. L. Liestman. Approximating minimum size weakly-connected
dominating sets for clustering mobile ad hoc networks. In Proc. Mobile Ad Hoc
Networking and Computing (MobiHoc), 3rd Int. Symp., Lausanne, Switzerland,
2002, pages 165–172, 2002.

[CT07] P. Chaudhuri and H. Thompson. A self-stabilizing distributed algorithm for
edge-coloring general graphs. Combinatorics, Australasian J., 38:237–247,
2007.

[CT11] P. Chaudhuri and H. Thompson. Improved self-stabilizing algorithms for l(2,
1)-labeling tree networks. Mathematics in Computer Science, 5(1):27–39, 2011.

[CYH91] N.-S. Chen, H.-P. Yu, and S.-T. Huang. A self-stabilizing algorithm for con-
structing spanning trees. Information Processing Letters, 39:147–151, 1991.

[DDH+11] A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. Self-
stabilizing small k-dominating sets. In Networking and Computing (ICNC), 2nd

Int. Conf., Osaka, Japan, 2011, pages 30–39. Conference Publishing Service,
2011. Best Paper Award.

[DDK09] K. Drira, L. Dekar, and H. Kheddouci. A self-stabilizing (∆ + 1)-Edge-Coloring
algorithm of arbitrary graphs. In Proc. Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 10th Int. Conf., Hiroshima, Japan,
2009, pages 312–317, 2009.

[DFG06] V. Drabkin, R. Friedman, and M. Gradinariu. Self-stabilizing wireless connected
overlays. In Proc. Principles of Distributed Systems (OPODIS), 10th Int. Conf.,
Bordeaux, France, 2006, volume 4305 of LNCS, pages 425–439. Springer, 2006.

[DGH+97] J. E. Dunbar, J. W. Grossman, J. H. Hattingh, S. T. Hedetniemi, and A. A.
McRae. On weakly connected domination in graphs. Discrete Mathematics,
167/168:261–269, 1997.

[DGT04] A. K. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing mutual exclusion
under arbitrary scheduler. Computer J., 47(3):289–298, 2004.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569–, 1965.

138

B IBLIOGRAPHY

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commu-
nications of the ACM, 17(11):643–644, 1974.

[Dij86] E. W. Dijkstra. A belated proof of self-stabilization. Distributed Computing,
1:5–6, 1986.

[DIM90] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems as-
suming only read/write atomicity. In Proc. Principles of Distributed Computing
(PODC), 9th Ann. ACM Symp., Quebec City, QC, Canada, 1990, pages 103–117,
1990.

[DIM93] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems
assuming only read/write atomicity. Distributed Computing, 7(1):3–16, 1993.

[DIM97a] S. Dolev, A. Israeli, and S. Moran. Resource bounds for self-stabilizing message-
driven protocols. Computing, SIAM J., 26:273–290, 1997.

[DIM97b] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader
election. Parallel and Distributed Systems, IEEE Trans., 8(4):424–440, 1997.

[DK08] L. Dekar and H. Kheddouci. Distance-2 self-stabilizing algorithm for a b-
coloring of graphs. In Proc. Stabilization, Safety, and Security of Distributed
Systems (SSS), 10th Int. Symp., Detroit, MI, USA, 2010, volume 5340 of LNCS,
pages 19–31. Springer, 2008.

[DLL08] D. Dong, Y. Liu, and X. Liao. Self-monitoring for sensor networks. In Proc.
Mobile Ad Hoc Networking and Computing (MobiHoc), 9th ACM Int. Symp.
Hong Kong, China, 2008, pages 431–440. ACM, 2008.

[DLL+11] D. Dong, X. Liao, Y. Liu, C. Shen, and X. Wang. Edge self-monitoring for wire-
less sensor networks. Parallel and Distributed Systems, IEEE Trans., 22(3):514–
527, 2011.

[DLV10] A. K. Datta, L. L. Larmore, and P. Vemula. A self-stabilizing o(k)-time k-
clustering algorithm. Computer J., 53(3):342–350, 2010.

[DMP+03] D. P. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivasan. Fast
distributed algorithms for (weakly) connected dominating sets and linear-size
skeletons. In Proc. Discrete algorithms (SODA), 14th Ann. ACM-SIAM Symp.,
Baltimore, MD, USA, 2003, pages 717–724, 2003.

[DMT11] S. Dubois, T. Masuzawa, and S. Tixeuil. Maximum metric spanning tree made
byzantine tolerant. In Proc. Distributed Computing (DISC), 25th Int. Symp.,
Rome, Italy, 2011, volume 6950 of LNCS, pages 150–164. Springer, 2011.

[Dol00] S. Dolev. Self-stabilization. MIT Press, 2000.

[DY06] S. Dolev and R. Yagel. Self-stabilizing device drivers. In Proc. Stabilization,
Safety, and Security of Distributed Systems (SSS), 8th Int. Symp., Dallas, TX,
USA, 2006, volume 4280 of LNCS, pages 276–289. Springer, 2006.

139

B IBLIOGRAPHY

[Edm65] J. Edmonds. Paths, trees, and flowers. Mathematics, Canadian J., 17:449–467,
1965.

[Elk04] M. Elkin. Distributed approximation: A survey. Algorithms and Computation
Theory, ACM SIG News, 35(4):40–57, 2004.

[Gär98] F. C. Gärtner. On the relationship between self-stabilization and fault tolerance.
In Proc. Self-Stabilization, Dagstuhl Sem. 98331, Dagstuhl, Germany, 1998,
page 9, 1998.

[Gär99] F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31:1–26, 1999.

[Gär03] F. C. Gärtner. A Survey of Self-Stabilizing Spanning-Tree Construction Al-
gorithms. Techn. Rep. IC/2003/38, Swiss Federal Institute of Technology,
Lausanne, 2003.

[GGH+04] M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, and A. A. McRae.
Distance-two information in self-stabilizing algorithms. Parallel Processing
Letters, 14(3-4):387–398, 2004.

[GGHJ04] M. Gairing, W. Goddard, S. T. Hedetniemi, and D. P. Jacobs. Self-stabilizing
maximal k-dependent sets in linear time. Parallel Processing Letters, 14(1):75–
82, 2004.

[GGKP95] S. Ghosh, A. Gupta, M. H. Karaata, and S. V. Pemmaraju. Self-stabilizing
dynamic programming algorithms on trees. In Proc. Self-Stabilizing Systems,
2nd Workshop, Las Vegas, NV, USA, 1995, pages 11.1–11.15, 1995.

[GGP96] S. Ghosh, A. Gupta, and S. V. Pemmaraju. A fault-containing self-stabilizing
spanning tree algorithm. Computing and Information, J., 2(1):332–338, 1996.

[GHJ+08] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, P. K. Srimani, and Z. Xu. Self-
stabilizing graph protocols. Parallel Processing Letters, 18(1):189–199, 2008.

[GHJS03a] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. A robust
distributed generalized matching protocol that stabilizes in linear time. In
Proc. Distributed Computing Systems (ICDCSW), 23rd Int. Conf. Workshop,
Providence, RI, USA, 2003, pages 461–. IEEE Computer Society, 2003.

[GHJS03b] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. A self-stabilizing
distributed algorithm for minimal total domination in an arbitrary system graph.
In Proc. Parallel and Distributed Processing (IPDPS), 17th Int. Symp., Nice,
France, 2003, pages 240.2–. IEEE Computer Society, 2003.

[GHJS03c] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
distributed algorithm for strong matching in a system graph. In Proc. High
Performance Conputing (HiPC), 10th Int. Conf., Hyderabad, India, 2003, volume
2913 of LNCS, pages 66–73. Springer, 2003.

140

B IBLIOGRAPHY

[GHJS03d] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
protocols for maximal matching and maximal independent sets for ad hoc
networks. In Proc. Parallel and Distributed Processing (IPDPS), 17th Int. Symp.,
Nice, France, 2003, pages 162.2–. IEEE Computer Society, 2003.

[GHJS04] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Fault tolerant
algorithms for orderings and colorings. In Proc. Parallel and Distributed Pro-
cessing (IPDPS), 18th Int. Symp., Santa Fe, NM, USA, 2004. IEEE Computer
Society, 2004.

[GHJT08] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and V. Trevisan. Distance-k
knowledge in self-stabilizing algorithms. Theoretical Computer Science, 399(1-
2):118–127, 2008.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for
minimum-weight spanning trees. Programming Languages and Systems, ACM
Trans., 5(1):66–77, 1983.

[GHS06] W. Goddard, S. T. Hedetniemi, and Z. Shi. An anonymous self-stabilizing
algorithm for 1-maximal matching in trees. In Proc. Parallel and Distributed
Processing Techniques and Applications (PDPTA), Int. Conf., Las Vegas, NV,
USA, 2006, pages 797–803. CSREA Press, 2006.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[GK93] S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar
graphs. Distributed Computing, 7:55–59, 1993.

[GK10] N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for
independence, domination, coloring, and matching in graphs. Parallel and
Distributed Computing, J., 70:406–415, 2010.

[GM91] M. G. Gouda and N. J. Multari. Stabilizing communication protocols. Computers,
IEEE Trans., 40:448–458, 1991.

[GS10] W. Goddard and P. K. Srimani. Anonymous Self-Stabilizing Distributed Algo-
rithms for Connected Dominating Set in a Network Graph. In Proc. Complexity,
Informatics and Cybernetics (IMCIC), 1st Int. Multi-Conf., Orlando, FL, USA,
2010, 2010.

[GSRV08] V. C. Giruka, M. Singhal, J. Royalty, and S. Varanasi. Security in wireless sensor
networks: Research articles. Wireless Communications and Mobile Computing,
8:1–24, 2008.

[GT00] M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloration and arbitrary
graphs. In Proc. Principles of Distributed Systems (OPODIS), 4th Int. Conf.,
Paris, France, 2000, Studia Informatica Universalis, pages 55–70. Suger, Saint-
Denis, rue Catulienne, France, 2000.

141

B IBLIOGRAPHY

[GT07] M. Gradinariu and S. Tixeuil. Conflict managers for self-stabilization without
fairness assumption. In Proc. Distributed Computing Systems (ICDCS), 27th Int.
Conf., Toronto, Canada, 2007, page 46. IEEE Computer Society, 2007.

[Hås01] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859,
2001.

[HC92] S.-T. Huang and N.-S. Chen. A self-stabilizing algorithm for constructing
breadth first trees. Information Processing Letters, 41:109–117, 1992.

[HCW08] T. C. Huang, C.-Y. Chen, and C.-P. Wang. A linear-time self-stabilizing algorithm
for the minimal 2-dominating set problem in general networks. Information
Science and Engineering, J., 24(1):175–187, 2008.

[Her92] T. R. Herman. Adaptivity through distributed convergence. PhD thesis, Depart-
ment of Computer Science, University of Texas at Austin, 1992. UMI Order No.
GAX92-12547.

[Her02] T. R. Herman. A comprehensive bibliography on self-stabilization. Theoretical
Computer Science, Chicago J., 2002.

[Her04] T. R. Herman. Models of self-stabilization and sensor networks. In Distributed
Computing (IWDC), 5th Int. Workshop, Kolkata, India, 2003, volume 2918 of
LNCS, pages 836–836. Springer, 2004.

[HH92] S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal matching.
Information Processing Letters, 43(2):77–81, 1992.

[HHJS03] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-
stabilizing algorithms for minimal dominating sets and maximal independent
sets. Computers and Mathematics with Applications, 46:805–811, 2003.

[HHLL04] S.-H. Hsu, C.-C. Hsu, S.-S. Lin, and F.-C. Lin. A multi-channel mac protocol
using maximal matching for ad hoc networks. In Proc. Distributed Computing
Systems (ICDCSW), 24th Int. Conf. Workshop, Tokyo, Japan, 2004, volume 7,
pages 505–510. IEEE Computer Society, 2004.

[HHT05] S-T. Huang, S.-S. Hung, and C.-H. Tzeng. Self-stabilizing coloration in anony-
mous planar networks. Information Processing Letters, 95(1):307–312, 2005.

[HJS02] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Maximal matching stabilizes
in time O(m). Information Processing Letters, 80(5):221–223, 2002.

[HJS03] S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Linear time self-stabilizing
colorings. Information Processing Letters, 87:251–255, 2003.

[HKP98] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the distributed complexity
of computing maximal matchings. In Proc. Discrete Algorithms, 9th Ann. ACM-
SIAM Symp., San Francisco, CA, USA, 1998, pages 219–225, 1998.

142

B IBLIOGRAPHY

[HL91] S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs
and some basic definitions of domination parameters. Discrete Mathematics,
86:257–277, 1991.

[HL01] L. Higham and Z. Liang. Self-stabilizing minimum spanning tree construction
on message-passing networks. In Proc. Distributed Computing (DISC), 15th Int.
Conf., Lisbon, Portugal, 2001, volume 2180 of LNCS, pages 194–208. Springer,
2001.

[HL06] C.-F. Hsin and M. Liu. Self-monitoring of wireless sensor networks. Computer
Communications, 29(4):462–476, 2006.

[HLCW07] T. C. Huang, J.-C. Lin, C.-Y. Chen, and C.-P. Wang. A self-stabilizing algorithm
for finding a minimal 2-dominating set assuming the distributed demon model.
Computers and Mathematics with Applications, 54:350–356, 2007.

[HLP+06] T. Hérault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. Self-stabilizing
spanning tree algorithm for large scale systems. Technical Report 1457, Labora-
toire de Recherche en Informatique, 2006.

[HM07] A. M. Herzberg and R. M. Murty. Sudoku Squares and Chromatic Polynomials.
Notices of the AMS, 54(6):708–717, 2007.

[HS11] G. Hong and P. K. Srimani. A self-stabilizing algorithm for two disjoint minimal
dominating sets in an arbitrary graph. In Proc. Southeast Regional, 49th Ann.
Conf. Kennesaw, GA, USA, 2011, pages 306–307. ACM, 2011.

[HT06] S.-T. Huang and C.-H. Tzeng. Distributed edge coloration for bipartite networks.
In Proc. Stabilization, Safety, and Security of Distributed Systems (SSS), 8th Int.
Symp., Dallas, TX, USA, 2006, pages 363–377. Springer, 2006.

[IJ90] A. Israeli and M. Jalfon. Token management schemes and random walks yield
self-stabilizing mutual exclusion. In Proc. Principles of distributed computing
(PODC), 9th Ann. ACM Symp., Quebec City, QC, Canada, 1990, pages 119–131.
ACM, 1990.

[IKK02] M. Ikeda, S. Kamei, and H. Kakugawa. A space-optimal self-stabilizing algo-
rithm for the maximal independent set problem. In Proc. Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 3rd Int. Conf., Kanazawa,
Japan, 2002, pages 70–74, 2002.

[JG05] A. Jain and A. Gupta. A distributed self-stabilizing algorithm for finding a con-
nected dominating set in a graph. In Proc. Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 6th Int. Conf., Dalian, China, 2005,
pages 615–619. IEEE Computer Society, 2005.

[Kar01] M. H. Karaata. Self-stabilizing strong fairness under weak fairness. Parallel
and Distributed Systems, IEEE Trans., 12:337–345, 2001.

143

B IBLIOGRAPHY

[Kes88] J. L. W. Kessels. An exercise in proving self-stabilization with a variant function.
Information Processing Letters, 29:39–42, 1988.

[Kin05] J. Kiniwa. Approximation of self-stabilizing vertex cover less than 2. In Proc.
Stabilization, Safety, and Security of Distributed Systems (SSS), 7th Int. Symp.,
Barcelona, Spain, 2005, volume 3764 of LNCS, pages 171–182. Springer, 2005.

[KK03] S. Kamei and H. Kakugawa. A self-stabilizing algorithm for the distributed
minimal k-redundant dominating set problem in tree networks. In Proc. Parallel
and Distributed Computing, Applications and Technologies (PDCAT), 4th Int.
Conf., Chengdu, China, 2003, pages 720–724, 2003.

[KK05] S. Kamei and H. Kakugawa. A self-stabilizing approximation algorithm for the
distributed minimum k-domination. Fundamentals of Electronics, Communica-
tions and Computer Sciences, IEICE Trans., E88-A(5):1109–1116, 2005.

[KK06] Adrian Kosowski and Lukasz Kuszner. Self-stabilizing algorithms for graph
coloring with improved performance guarantees. In Proc. Artificial Intelligence
and Soft Computing (ICAISC), 8th Int. Conf., Zakopane, Poland, 2006, volume
4029 of LNCS, pages 1150–1159. Springer, 2006.

[KK07a] S. Kamei and H. Kakugawa. A self-stabilizing approximation algorithm for the
minimum weakly connected dominating set with safe convergence. In Proc.
Reliability, Availability, and Security (WRAS), 1st Int. Workshop, Paris, France,
2007, pages 57–66, 2007.

[KK07b] S. Kamei and H. Kakugawa. A self-stabilizing distributed approximation al-
gorithm for the minimum connected dominating set. In Proc. Parallel and
Distributed Processing (IPDPS), 21st Int. Symp., Long Beach, CA, USA, 2007,
pages 1–8. IEEE, 2007.

[KK08] S. Kamei and H. Kakugawa. A self-stabilizing approximation for the minimum
connected dominating set with safe convergence. In Proc. Principles of Dis-
tributed Systems (OPODIS), 12th Int. Conf., Luxor, Egypt, 2008, volume 5401
of LNCS, pages 496–511. Springer, 2008. 10.1007/978-3-540-92221-6_31.

[KKDT10] S. Kamei, H. Kakugawa, S. Devismes, and S. Tixeuil. A self-stabilizing 3-
approximation for the maximum leaf spanning tree problem in arbitrary networks.
In Proc. Computing and Combinatorics (COCOON), 16th Ann. Int. Conf., Nha
Trang, Vietnam, 2010, volume 6196 of LNCS, pages 80–89. Springer, 2010.

[KN06] L. Kuszner and A. Nadolski. Self-stabilizing algorithm for edge-coloring of
graphs. Foundations of Computing and Decision Sciences, 31(2):157–167, 2006.

[KP90] S. Katz and K. Perry. Self-stabilizing extensions for message-passing systems.
In Proc. Principles of distributed computing (PODC), 9th Ann. ACM Symp.,
Quebec City, QC, Canada, 1990, pages 91–101. ACM, 1990.

144

B IBLIOGRAPHY

[KS00] M. H. Karaata and K. A. Saleh. A distributed self-stabilizing algorithm for
finding maximum matching in trees. Computer Systems Science and Engineering,
15(3):175–180, 2000.

[KT10] S. Köhler and V. Turau. A new technique for proving self-stabilization under the
distributed scheduler. In Proc. Stabilization, Safety, and Security of Distributed
Systems (SSS), 12th Int. Symp., New York, NY, USA, 2010, volume 6366 of LNCS,
pages 65–79. Springer, 2010.

[Lam87] L. Lamport. Distribution, May 1987. E-mail correspondence. Message-Id:
<8705281923.AA09105@jumbo.dec.com>.

[LH03] J.-C. Lin and T. C. Huang. An efficient fault-containing self-stabilizing algorithm
for finding a maximal independent set. Parallel and Distributed Systems, IEEE
Trans., 14(8):742–754, 2003.

[LHWC08] J.-C. Lin, T. C. Huang, C.-P. Wang, and C.-Y. Chen. A self-stabilizing algo-
rithm for finding a minimal distance-2 dominating set in distributed systems.
Information Science and Engineering, J., 24(6):1709–1718, 2008.

[Lja07] A. M. Ljapunow. Problème général de la stabilité du mouvement. Annales de la
faculté des sciences de Toulouse, 9(2):203–474, 1907.

[LLL10] Y. Liu, K. Liu, and M. Li. Passive diagnosis for wireless sensor networks.
Networking, IEEE/ACM Trans., 18(4):1132 –1144, 2010.

[LP86] L. Lovász and M. D. Plummer. Matching theory. Annals of discrete mathematics.
North-Holland, 1986.

[LPSR09] Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approximate matching.
Computing, SIAM J., 39(2):445–460, 2009.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. Pro-
gramming Languages and Systems, ACM Trans., 4:382–401, 1982.

[Mar03] D. Marx. Graph colouring problems and their applications in scheduling. Peri-
odica Polytechnica, Electrical Engineering, 48:11–16, 2003.

[Mje08] M. Mjelde. New Results on Self-Stabilizing Algorithms, and on Protocols for
Wireless Sensor Networks. PhD thesis, University of Bergen, Norway, 2008.

[MM07] F. Manne and M. Mjelde. A self-stabilizing weighted matching algorithm. In
Proc. Stabilization, Safety, and Security of Distributed Systems (SSS), 9th Int.
Symp., Lyon, France, 2007, pages 383–393, 2007.

[MMPT07] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal
matching algorithm. In Structural Information and Communication Complexity
(SIROCCO), 14th Int. Coll., Castiglioncello, Italy, 2007, pages 96–108, 2007.

145

B IBLIOGRAPHY

[MMPT08] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A self-stabilizing 2/3-
approximation algorithm for the maximum matching problem. In Proc. Sta-
bilization, Safety, and Security of Distributed Systems (SSS), 10th Int. Symp.,
Detroit, MI, USA, 2008, pages 94–108. Springer, 2008.

[MMPT09] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal
matching algorithm. Theoretical Computer Science, 410(14):1336–13450, 2009.

[MNS95] A. Mayer, M. Naor, and L. Stockmeyer. Local computations on static and
dynamic graphs. Technical report, Weizmann Science Press of Israel, Jerusalem,
Israel, 1995.

[MT06] T. Masuzawa and S. Tixeuil. A self-stabilizing link-coloring protocol resilient
to unbounded byzantine faults in arbitrary networks. In Proc. Principles of
Distributed Systems (OPODIS), 9th Int. Conf., Pisa, Italy, 2005, volume 3974 of
LNCS, pages 118–129. Springer, 2006.

[NA02] M. Nesterenko and A. Arora. Stabilization-preserving atomicity refinement.
Parallel and Distributed Computing, J., 62(5):766–791, 2002.

[Nie08] T. Nieberg. Local, distributed weighted matching on general and wireless topolo-
gies. In Proc. Foundations of Mobile Computing (FOMC), 5th Int. Workshop,
Toronto, Canada, 2008, pages 87–92. ACM, 2008.

[NR99] R. Niedermeier and P. Rossmanith. Upper bounds for vertex cover further
improved. In Proc. Theoretical Aspects of Computer Science (STACS), 16th Ann.
Symp., Trier, Germany, 1999, volume 1563 of LNCS, pages 561–570. Springer,
1999.

[NS95] M. Naor and L. Stockmeyer. What can be computed locally? Computing, SIAM
J., 24(6):1259–1277, 1995.

[Pel00] D. Peleg. Distributed computing: a locality-sensitive approach. Society for
Industrial and Applied Mathematics, 2000.

[PH06] A.-S. K. Pathan and C. S. Hong. A Key-Predistribution-Based Weakly Connected
Dominating Set for Secure Clustering in DSN. In Proc. High Performance
Computing and Communications, 2nd Int. Conf., Munich, Germany, 2006, pages
270–279. Springer, 2006.

[PR01] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse
networks. Distributed Computing, 14(2):97–100, 2001.

[Pre99] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In Proc. Theoretical Aspects of Computer Science,
16th Ann. Symp., Trier, Germany, 1999, volume 1563 of LNCS, pages 259–269.
Springer, 1999.

146

B IBLIOGRAPHY

[PS09] V. Polishchuk and J. Suomela. A simple local 3-approximation algorithm for
vertex cover. Information Processing Letters, 109(12):642–645, 2009.

[RTAS09] H. Raei, M. Tabibzadeh, B. Ahmadipoor, and S. Saei. A self-stabilizing dis-
tributed algorithm for minimum connected dominating sets in wireless sensor
networks with different transmission ranges. In Proc. Advanced Communica-
tion Technology (ICACT), 11th Int. Conf., Gangwon-Do, South Korea, 2009,
volume 1, pages 526–530. IEEE Press, 2009.

[SEK08] H. Sun, B. Effantin, and H. Kheddouci. A self-stabilizing algorithm for the
minimum color sum of a graph. In Proc. Distributed Computing and Networking
(ICDCN), 9th Int. Conf., Kolkata, India, 2008, volume 4904 of LNCS, pages
209–214. Springer, 2008.

[SGH04] Z. Shi, W. Goddard, and S. T. Hedetniemi. An anonymous self-stabilizing
algorithm for 1-maximal independent set in trees. Information Processing
Letters, 91:77–83, 2004.

[SOM04] Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring pro-
tocol resilient to byzantine faults in tree networks. In Proc. Principles of
Distributed Systems (OPODIS), 8th Int. Conf., Grenoble, France, 2004, Revised
Selected Papers, volume 3544 of LNCS, pages 283–298. Springer, 2004.

[SP07] A. Dharwadker S. Pirzada. Applications of graph theory. Korean Society for
Industrial and Applied Mathematics, J., 11(4):19–38, 2007.

[SRR94] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Developing self-stabilizing
coloring algorithms via systematic randomization. In Proc. Parallel Processing
(IWPP), 1st Int. Workshop, Bangalore, India, 1994, pages 668–673, 1994.

[SRR95] S. K. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Observations on self-stabilizing
graph algorithms for anonymous networks. In Proc. Self-Stabilizing Systems
(WSS), 2nd Workshop, Las Vegas, Nevada, 1995, pages 7.1–7.15, 1995.

[SS92] S. Sur and P. K. Srimani. A Self-Stabilizing Distributed Algorithm to Construct
BFS Spanning Trees of a Symmetric Graph. Parallel Processing Letters, 2:171–
179, 1992.

[SS93] S Sur and P. K. Srimani. A self-stabilizing algorithm for coloring bipartite
graphs. Information Sciences, 69:219–227, 1993.

[Suo11] J. Suomela. Survey of local algorithms. ACM Computing Surveys, 2011. To
appear.

[SX07] P. K. Srimani and Z. Xu. Self-stabilizing algorithms of constructing spanning tree
and weakly connected minimal dominating set. In Proc. Distributed Computing
Systems (ICDCSW), 27th Int. Conf. Workshop, Toronto, Canada, 2007, page 3,
2007.

147

B IBLIOGRAPHY

[Tel94] G. Tel. Maximal matching stabilizes in quadratic time. Information Processing
Letters, 49(6):271–272, 1994.

[Tel01] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2nd edition, 2001.

[TG99] O. E. Theel and F. C. Gärtner. An exercise in proving convergence through
transfer functions. In Proc. Distributed Computing Systems (ICDCSW), 4th Int.
Conf. Workshop, Austin, Texas, 1999, pages 41–47. IEEE Computer Society,
1999.

[The00] O. E. Theel. Exploitation of ljapunov theory for verifying self-stabilizing
algorithms. In Proc. Distributed Computing (DISC), 14th Symp.,Toledo, Spain,
2000, volume 1914 of LNCS, pages 209–222. Springer, 2000.

[Tix09] S. Tixeuil. Algorithms and Theory of Computation Handbook, 2nd Edition,
chapter Self-stabilizing Algorithms, pages 26.1–26.45. CRC Press, Taylor &
Francis Group, 2009.

[TJH07] C.-H. Tzeng, J.-R. Jiang, and S.-T. Huang. A self-stabilizing (∆ + 4)-edge-
coloring algorithm for planar graphs in anonymous uniform systems. Information
Processing Letters, 101(4):168–173, 2007.

[TS06] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). Prentice-Hall, Inc., 2006.

[Tur07] V. Turau. Linear self-stabilizing algorithms for the independent and dominating
set problems using an unfair distributed scheduler. Information Processing
Letters, 103(3):88–93, 2007.

[Tur12] V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms.
Parallel and Distributed Computing, J., 2012.

[TW09] V. Turau and C. Weyer. Fault tolerance in wireless sensor networks through self-
stabilization. Communication Networks and Distributed Systems, J., 2(1):78–98,
2009.

[UT11] S. Unterschütz and V. Turau. Construction of connected dominating sets in
large-scale manets exploiting self-stabilization. In Proc. Localized Algorithms
and Protocols for Wireless Sensor Networks (LOCALGOS), 5th Int. Workshop,
Barcelona, Spain, 2011, 2011.

[vN56] J. von Neumann. Probabilistic logics and synthesis of reliable organisms from
unreliable components. In Automata Studies, pages 43–98. Princeton University
Press, 1956.

[WL99] J. Wu and H. Li. On calculating connected dominating set for efficient routing in
ad hoc wireless networks. In Proc. Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), 3rd Int. Workshop, Seattle, WA, USA,
1999, pages 7–14. ACM, 1999.

148

B IBLIOGRAPHY

[WLZ08] Y. Wang, X.-Y. Li, and Q. Zhang. Efficient algorithms for p-self-protection
problem in static wireless sensor networks. Parallel and Distributed Systems,
IEEE Trans., 19(10):1426–1438, 2008.

[WW04] M. Wattenhofer and R. Wattenhofer. Distributed Weighted Matching. In Dis-
tributed Computing (DISC), 18th Ann. Conf., Amsterdam, The Netherlands, 2004,
pages 335–348, 2004.

[WZL07] D. Wang, Q. Zhang, and J. Liu. The self-protection problem in wireless sensor
networks. Sensor Networks, ACM Trans., 3, 2007.

[XHGS03] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-
stabilizing minimal domination protocol in an arbitrary network graph. In Proc.
Distributed Computing (IWDC), 5th Int. Workshop, Kolkata, India, 2003, volume
2918 of LNCS, pages 26–32. Springer, 2003.

[XS05] Z. Xu and P. K. Srimani. Self-stabilizing anonymous leader election in a tree.
In Proc. Parallel and Distributed Processing (IPDPS), 19th IEEE Int. Symp.,
Denver, CO, USA, 2005, page 207.1. IEEE Computer Society, 2005.

[XWS10] Z. Xu, J. Wang, and P. K. Srimani. Distributed fault tolerant computation of
weakly connected dominating set in ad hoc networks. Supercomputing, J.,
53(1):182–195, 2010.

[Yag07] R. Yagel. Self-Stabilizing Operating Systems. PhD thesis, Ben-Gurion University
of the Negev, Beersheva, Israel, 2007.

149

Author’s Publications

[Hau08] Bernd Hauck. Worst-case analysis of a self-stabilizing algorithm computing a
weakly connected minimal dominating set. Technical Report urn:nbn:de:gbv:830-
tubdok-5126, Hamburg University of Technology, Hamburg, Germany, 2008.

[HT09a] Bernd Hauck and Volker Turau. A self-stabilizing algorithm for constructing weakly
connected minimal dominating sets. Information Processing Letters, 109(14):763–
767, 2009.

[HT09b] Bernd Hauck and Volker Turau. A self-stabilizing approximation algorithm for
vertex cover in anonymous networks. In Proc. Stabilization, Safety, and Security
of Distributed Systems (SSS), 11th Int. Symp., Lyon, France, 2009, volume 5873 of
LNCS, pages 341–353. Springer, 2009.

[HT11a] Bernd Hauck and Volker Turau. A fault-containing self-stabilizing (3 - 2/(delta+1))-
approximation algorithm for vertex cover in anonymous networks. Theoretical
Computer Science, 412(33):4361–4371, 2011.

[HT11b] Bernd Hauck and Volker Turau. A new analysis of a self-stabilizing maximum
weight matching algorithm with approximation ratio 2. Theoretical Computer
Science, 412(40):5527–5540, 2011.

151

AUTHOR’S PUBLICATIONS

152

	Titlepage
	Abstract
	Table of Contents
	1 Introduction
	2 Self-Stabilization
	2.1 Distributed Algorithms
	2.2 Fault Tolerance and Self-Stabilization
	2.2.1 Classification of Faults in Distributed Systems
	2.2.2 Fault Tolerance and Self-Stabilizing Algorithms
	2.2.3 Terms and Definitions
	2.2.4 Complexity of Self-Stabilizing Algorithms

	2.3 Design Methods for Self-Stabilizing Algorithms
	2.3.1 Composition
	2.3.2 Distance-k Information
	2.3.3 Scheduler Transformation

	2.4 Self-Stabilizing Algorithms for Classical Graph Problems
	2.4.1 Independent Sets
	2.4.2 Dominating Sets
	2.4.3 Spanning Trees
	2.4.4 Coloring
	2.4.5 Covering
	2.4.6 Matching

	3 Analysis of Self-Stabilizing Algorithms
	3.1 Elements of the Analysis
	3.1.1 Closure
	3.1.2 Convergence
	3.1.3 Worst-Case Example

	3.2 Proof Methods for the Complexity Analysis
	3.2.1 Global State Analysis
	3.2.2 Analysis of Local States, Properties and Sequences
	3.2.3 Potential Functions and Convergence Stairs
	3.2.4 Graph Reduction and Induction
	3.2.5 Invariancy-Ranking

	4 Distance-Two Knowledge and Network Decomposition
	4.1 Example: Weakly Connected Minimal Dominating Set
	4.1.1 Introduction
	4.1.2 Related Work

	4.2 Algorithm of Srimani and Xu
	4.2.1 Complexity Analysis

	4.3 Network Decomposition
	4.4 Central Scheduler
	4.5 Distributed Scheduler
	4.6 Conclusion

	5 Analysis of Local States and Sequences
	5.1 Example: Vertex Cover Approximation in Anonymous Networks
	5.1.1 Introduction
	5.1.2 Related Work

	5.2 Basic Algorithm
	5.2.1 Preliminaries
	5.2.2 Algorithm Description
	5.2.3 Analysis

	5.3 Approximation Ratio Improvement
	5.4 Conclusion

	6 Analysis of Local States and Sequences (II)
	6.1 Example: Edge Monitoring
	6.1.1 Introduction
	6.1.2 Related Work

	6.2 Basic Algorithm
	6.2.1 Preliminaries
	6.2.2 Simple Edge Monitoring Algorithm
	6.2.3 Knowledge about Monitored Edges

	6.3 Conclusion

	7 Potential Function and Induction via Graph Reduction
	7.1 Example: Weighted Matching with Approximation Ratio 2
	7.1.1 Introduction
	7.1.2 Related Work

	7.2 Algorithm Description
	7.3 Synchronous Scheduler
	7.4 Central Scheduler
	7.4.1 Potential Function
	7.4.2 Graph Reduction and Induction

	7.5 Distributed Scheduler
	7.6 Conclusion

	8 Conclusion
	8.1 Summary
	8.2 Future Perspectives

	List of Algorithms
	List of Figures
	Bibliography
	Author's Publications

