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Abstract

LWE-Based Encryption Schemes and Their Applications In
Privacy-Friendly Data Aggregation

by Daniela BECKER

Since its introduction in 2005, the Learning With Errors (LWE) problem has
had a profound impact in both the theoretical and the applied crypto world
with a growing number of theoretical results and corresponding applica-
tions. The reason for the increased interest in the LWE problem is its hard-
ness with respect to the lattice problems Decisional Approximate Shortest
Vector Problem and Approximate Shortest Independent Vector Problem in
the worst case. Thus, as a result of the LWE hardness assumption, LWE-
based cryptographic systems are conjectured to be post-quantum secure.
In this thesis we consider two problems: privacy-preserving data aggrega-
tion and solutions for privacy-friendly social media marketing. The former
problem was introduced by Shi et al. (NDSS, 2011). The authors provide a
first solution to the sum aggregation problem with a scheme that is based
on the Decisional Diffie-Hellman problem. Their solution can handle only
a very limited plaintext space, i.e. binary inputs.
In the first part of this dissertation, we extend the plaintext space. Similar
to Valovich (CoRR, 2016), we leverage a variant of the LWE problem, which
is inherently additively homomorphic. In contrast to Valovich, our LWE
variant does not incur parameter increases due to reductions. Our scheme
performs significantly better in terms of both runtime and bandwidth ef-
ficiency. In particular, it allows for roughly 66000 times larger plaintexts
while improving on decryption runtime by a factor of about 150 compared
to Shi et al.’s scheme.
In the second part of this work, we apply our scheme in the context of dig-
ital advertising: we combine it with a lattice-based signature scheme and
provide the first solution for social media marketing that preserves the pri-
vacy of the users. Our construction has strong privacy and security guar-
antees and ensures cryptographic verifiability of the computed results.
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Chapter 1

Introduction

“One must acknowledge with cryptography no amount of violence will
ever solve a math problem.” - Jacob Appelbaum [Ass+16].

1.1 Motivation

A lattice is an elegant geometric construct: it can be thought of as the set
of intersection points of an infinite grid in multi-dimensional space. The
concept of lattices and their associated problems have fascinated cryptogra-
phers for decades: earliest work on using lattice problems for cryptography
dates back to 1997 when Ajtai and Dwork [AD97] proposed a lattice-based
public-key encryption scheme following Ajtai’s [Ajt96] seminal worst-case
to average-case reductions for lattice problems. Concretely, Ajtai [Ajt96]
showed that if there is no efficient algorithm that approximates the decision
version of the Shortest Vector Problem (SVP)1 with a polynomial approxi-
mation factor, then it is hard to solve the associated search problem exactly
over a random choice of the underlying lattice2 [MG02].

FIGURE 1.1: Example of a basic two-dimensional lattice

Observe that this relationship between the worst-case complexity of the
former and the average-case complexity of the latter problem, is very use-
ful from a cryptographic perspective: basing a cryptosystem on the latter

1Informally, SVP describes the following problem: given the basis of a lattice, find its
shortest lattice vector. We refer to Section 2.1.1 for the formal definitions of some relevant
related problems.

2Note that this lattice has to be chosen from a certain distribution that is easily sam-
pleable as described by Ajtai [Ajt96].
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problem would imply that on average, i.e. over a random choice of the se-
lected inputs, e.g. the cryptographic keys, breaking the system is as hard
as solving the former problem in its worst case. Therefore, Ajtai’s [Ajt96]
reduction created the first cryptographically meaningful lattice-based hard-
ness assumption, which has become essential in proving the security of any
lattice-based cryptographic construction.
While the strength of the underlying assumption was a great advancement
from a theoretical perspective, the practicality of the scheme was signif-
icantly limited: with large key and ciphertext sizes and correspondingly
slow encryption and decryption operations, it was considered impractical.
Although later constructions (e.g. [Reg03]) greatly improved on these con-
straints, lattice-based schemes long kept the reputation for being inefficient.
The introduction of the Learning With Errors (LWE) problem in 2005 by
Regev [Reg05] overhauled this thinking: Regev’s seminal work proposed
a mathematical problem that has the rare property of being in the aver-
age case as hard as certain lattice problems in the worst case. Therefore,
any LWE-based cryptosystem has security properties that are based on the
hardness of worst-case lattice problems. At the same time, it can leverage
the beautifully simplistic structure of the LWE problem, which allows to
significantly improve efficiency.
There is now a consistently growing number of applications of the LWE
problem both in theory and practice: from novel definitions of one-way
functions and trapdoor constructions, to encryption and signature schemes,
including some highly sought-after applications in identity-based encryp-
tion and fully homomorphic encryption.
Lattice-based cryptography, and specifically LWE-based cryptography, has
received a lot of additional attention due to the fact that cryptography based
on worst-case lattice problems is conjectured to be post-quantum secure, i.e.
it remains secure against quantum adversaries. However, this insight has
also lead to a race for more efficient LWE-based schemes in order to com-
pete with other post-quantum secure solutions or directly with currently
used classically secure schemes like RSA.
In this work, we construct novel LWE-based encryption schemes and for-
mally analyze their correctness and security guarantees. With respect to
our focus on privacy-preserving data aggregation, we showcase a particularly
well-suited use case of LWE-based encryption due to the inherent proper-
ties of the LWE problem. We further show, how our resulting scheme can
be efficiently applied to privacy-preserving advertising in social media, which
has not been considered before.

1.2 Contributions

We summarize our contributions as follows.

Lattice-Based Private Stream Aggregation

• In Chapter 3 we introduce a new lattice-based Private Stream Ag-
gregation (PSA) scheme called LaPS. We are able to resolve a main
problem from Shi et al. [Shi+11]. In particular, our scheme allows
for any plaintext size in contrast to Shi et al.’s [Shi+11] PSA scheme,
which only allows for very small (i.e. binary) plaintext space. We
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achieve this by leveraging a variant of the LWE problem as a hard-
ness assumption. In contrast to Valovich’s [Val16] LWE-based PSA
scheme, our choice of LWE variant allows us to take full advantage
of LWE’s additively homomorphic properties and encrypt more ef-
ficiently. Our PSA scheme accomplishes higher bandwidth efficiency
than the state-of-the-art while maintaining the same Differential Priva-
cy-guarantees and providing the strong security notion of (conjec-
tured) post-quantum security.

• LaPS’s general design does not restrict the noise distribution to a par-
ticular privacy mechanism and we account for potential improve-
ments in the ever evolving field of homomorphic encryption. We al-
low for the replacement of the additively homomorphic scheme that
is part of our construction in a straightforward manner.

• We extend Shi et al.’s [Shi+11] PSA scheme to support multiple en-
cryptions in contrast to their encrypt-once model, which limits the
users to a single encryption per execution of the scheme.

• We instantiate our scheme with a reduced version of the BGV [BGV12]
encryption scheme and the discrete Laplace privacy mechanism and
we implement this instantiation, which to the best of our knowledge
is the first implementation of a lattice-based PSA scheme. Our ex-
perimental results show that our scheme is practical. Moreover, it
outperforms previous works in several aspects. First, because our
construction is optimized to support a single operation (i.e. additive
homomorphism), we are able to significantly reduce the BGV param-
eters by multiple orders of magnitude compared to [Dam+13]. Fur-
thermore, we achieve 150 times faster decryption for the overall PSA
scheme, while providing over 4 orders of magnitude larger plaintexts
compared to [Shi+11].

Privacy-Preserving Social Media Marketing

• In Chapter 4 we consider the problem of social media advertisement
and formally analyze it. Our architecture SOMAR achieves privacy of
end user data in the Differential Privacy-sense and complies with the
following requirements: users can make social-media induced pur-
chases, merchants can sponsor influencers to advertise their products
on their social media sites and influencers can receive aggregate user
data about their followers.

• In SOMAR we eliminate the existing trust assumptions between a
merchant and an influencer and replace it by cryptographic proofs
of correctness. Therefore, we achieve verifiable data aggregation in
the social media marketing model.

• In a concrete instantiation we show that our LaPS scheme can be
directly applied to our SOMAR architecture by extending it with a
lattice-based homomorphic aggregate signature scheme [Jin14], which
also yields (conjectured) post-quantum security. Our experimental re-
sults show practicality of our construction.
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We refer readers who are not familiar with lattice theory and the LWE liter-
ature to Chapter 2, which covers basic results and hardness theorems used
in the chapters of this work. We end this thesis in Chapter 5, where we sum-
marize our results and make some recommendations for future research.
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Chapter 2

Lattices and Learning With
Errors

The Learning With Errors (LWE) problem was introduced by Regev in his
seminal work [Reg05] more than a decade ago. The interest in LWE and its
variants originates from the problem’s worst-case/average-case hardness
and its conjectured post-quantum computer hardness due to its relation to
the mathematical notion of lattices and lattice problems. At the same time,
its compact structure can be more efficiently utilized within cryptosystems
than previously used lattice problems. In this chapter we provide basic
facts and terminology from lattice theory and introduce the LWE problem.
Note that we restrict our treatment of lattice theory to the minimum nec-
essary to understand the hardness properties of the LWE problem. For a
comprehensive treatment of lattice theory we refer to [MG02].
The following lattice definitions and explanations are based on [MG02]
and [Pei16].

2.1 Lattices

Formally, an n-dimensional lattice Λ is a subset of Rn that is an additive sub-
group and discrete:

Λ = Λ(B) := B · Zk =
{ k∑
i=1

zibi : zi ∈ Z
}
,

where B = [b1, . . . ,bk] is the non-unique basis consisting of linearly inde-
pendent basis vectors bi. The lattice is therefore generated as the set of all
integer linear combinations of the basis vectors and k denotes the rank of Λ.
We have already seen an example of a lattice in Figure 1.1, which shows a
simple 2-dimensional lattice. A generally common example for a lattice is
the integer lattice Zn.
The notion of the ith successive minimum λi for i ∈ {1, . . . , n} describes the
smallest possible radius of a sphere that is centered in the origin such that i
linearly independent lattice vectors in Λ are contained in it. Consequently,
λ1 corresponds to the length of the shortest lattice vector, the so-called min-
imum distance of Λ:

λ1(Λ) := min
v∈Λ\{0}

||v||.

We state “smoothing properties” of a lattice Λ using its smoothing parameter
ηε next, which is parametrized by the positive real tolerance ε > 0. Intu-
itively, ηε captures the amount of “Gaussian “blur” required to “smooth out”
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all the discrete structure of Λ” [Pei16]. Note that log denotes the logarithm to
base 2 unless noted otherwise.

Lemma 1 ([MR04, Lemma 3.3]). For any n-dimensional lattice Λ and positive
real ε > 0, the smoothing parameter is at most

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ).

In particular, ηε(Λ) ≤ ω(
√

log n) · λn(Λ) for some negligible function ε(n) =
n−ω(1).

2.1.1 Lattice Problems

We highlight the following two lattice problems due to their particular sig-
nificance with regards to the LWE problem: the decisional approximate Short-
est Vector Problem (GapSVP) and the approximate Shortest Independent Vectors
Problem (SIVP)1. Note that both GapSVP and SIVP are approximation prob-
lems, where γ(n) ≥ 1 denotes the approximation factor with respect to the
lattice dimension n, i.e. perfect accuracy is achieved with γ(n) = 1.
GapSVP is a promise problem associated to SVP (see Section 1.1) that asks
to distinguish between a Yes- and a No-instance. In this case, Yes-instances
mean that for the given lattice basis B and a rational value r ∈ Q, there
exists a shortest lattice vector whose length is at most r. Conversely, No-
instances represent the statement that all lattice vectors associated to the
given basis B are strictly longer than r · γ(n). Note that in below definition
r is set to 1.

Definition 1 (Decisional Approximate Shortest Vector Problem (GapSVPγ)).
Given basis B for some lattice Λ = Λ(B) with dimension n, decide whether
λ1(Λ) ≤ 1 or λ1(Λ) > γ(n).

SIVP intuitively asks to find a set of n linearly independent lattice vectors
such that each vector is at most as long as the lattice’s nth successive min-
imum λn(Λ). The approximate version of the problem only requires the
lattice vectors’ lengths to be individually at most the approximation factor
γ(n) longer than λn(Λ).

Definition 2 (Approximate Shortest Independent Vector Problem (SIVPγ)).
Given a basis B for some full-rank lattice Λ = Λ(B), i.e. where rank k = dimen-
sion n, find a set S = {si} ⊂ Λ of n linearly independent lattice vectors si, where
||si|| ≤ γ(n) · λn(Λ) for all i.

2.1.2 Lattice-Based Cryptography

The following overview summarizes the main theoretical advances in the
area of lattice-based cryptosystems - essentially up to the introduction of
the LWE problem in 2005. We follow [Pei16] in our presentation.

1It appears to be unclear when these problems were first formulated. According to Aj-
tai [Ajt96] lattice problems related to finding a shortest vector in a lattice were first consid-
ered by Dirichlet in 1842. Ajtai [Ajt96] provides a somewhat more general formulation of
what is now called the unique Shortest Vector Problem (unique-SVP). GapSVP and SIVP are
related problems, we use the formulation due to [Pei16].



2.1. Lattices 7

After Ajtai’s [Ajt96] seminal presentation of worst-to-average-case reduc-
tions for lattice problems in 1996, the follow-up construction of a lattice-
based public-key encryption scheme due to Ajtai and Dwork [AD97] was
celebrated as a great theoretical advancement (it was later further improved
by Regev [Reg03]). However, there was a growing desire for lattice-based
schemes with better efficiency in terms of key and ciphertext sizes as well
as runtimes.
One of the first attempts, the NTRU encryption scheme, introduced by
Hoffstein, Pipher and Silverman [HPS98] in 1998, and its revisions ended
up having a somewhat opposite problem: while it was considered com-
paratively efficient due to the use of algebraically structured lattices, i.e.
by leveraging polynomial rings, its theoretical underpinning was never
proven to be linkable to worst-case lattice problems. The only exception is
the NTRU version introduced by Stehlé and Silverstein [SS11] in 2011, who
reduce its security to the Ring-LWE problem (see Section 2.4.5), however
with much larger parameters than the original, which negatively impacted
the efficiency of the scheme.
Similarly, the GGH encryption and signature schemes [GGH97] did not
provide a worst-case security proof at first (and were later broken in this
initial form [Ngu99; NR06]). However, the idea of generating a “good” lat-
tice basis consisting of short basis vectors and a “bad” basis with long and
non-orthogonal lattice vectors for the same lattice, where the latter can be
efficiently generated from the former but not vice-versa, became the cen-
tral concept in developing lattice-based trapdoor functions. These trap-
door functions remain a crucial element of a myriad of modern lattice-based
cryptographic constructions, such as the GPV signature scheme [GPV08].
Another important result on the way to LWE-based encryption, more pre-
cisely Ring-LWE-based encryption, is the one-way function due to Miccian-
cio [Mic02; PR06; LM06]: it is defined over polynomial rings and its hard-
ness is reduced from worst-case lattice problems over cyclic lattices. Previ-
ously quasi-quadratic key sizes were thereby reduced to quasi linear, which
significantly improved the efficiency of the construction and any derived
lattice-based schemes.

2.1.3 Post-Quantum Security

The topic of lattices, especially in its application to cryptography, gained
wide popularity among academia and industry with the surge of develop-
ments around quantum computers (see e.g. [Wil11; BR18; Ibm]). While the
creation of a fully functional quantum computer will be a break-through
beyond technology, the literal “quantum leap” in computing power will
immediately put the majority of currently deployed encryption techniques
and security systems in jeopardy. As most of our known and used crypto-
graphic systems are based on security notions that are breakable by quantum
computers, e.g. by solving the factoring problem, these constitute a threat
to global security architectures in their current form [Sho97; Ber09].
Although the commercial off-the-shelf availability of such a quantum com-
puter is currently estimated to be little under a decade away [Bau+16],
the research community has been actively looking for quantum-secure (or
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quantum-resistant) solutions, which lead to the coining of the term post-
quantum cryptography2. These cryptosystems are considered secure against
quantum adversaries, since the Shor algorithms [Sho97] could not be ap-
plied, which efficiently solve the discrete logarithm problem and prime
factorization using a “hypothetical quantum computer” [Sho97]. Hence, dif-
ferent from currently widely used cryptosystems like RSA or ECDSA, post-
quantum schemes have not been found to be breakable by the Shor algo-
rithms and are therefore conjectured to be secure both against classical and
quantum computers.
Lattice-based cryptography is believed to belong to this category3. While
all of the currently known post-quantum secure options have individual
advantages and drawbacks, the particular attraction of lattice-based cryp-
tography stems firstly, from the availability of worst-to-average-case reduc-
tion proofs. For instance, the LWE problem, which is as hard as worst-case
lattice problems but more efficient in practice, can be used to formulate
an appropriate hardness assumption. Secondly, practical applications of
lattice-based cryptography are not restricted to encryption schemes or sig-
nature schemes alone but are versatile in that they cover the entire range of
cryptographic systems.
Therefore, the constructions that we discuss in this work are indeed con-
jectured to be post-quantum secure. Nevertheless, we aim to show their
immediate applicability as our lattice-based schemes improve on existing
(classical) solutions both in terms of efficiency and breadth of functionali-
ties.

2.2 Learning With Errors (LWE)

When Learning With Errors (LWE) was first introduced in the celebrated
work of Regev [Reg05] in 2005, it was formulated as a generalization of
the Learning from Parity with Noise (LPN) problem [BKW03]. LPN had been
around for a few years at this time and had already built a reputation as a
novel hardness assumption giving rise to a plethora of cryptographic con-
structions and applications (see e.g. [Pie12] for an overview of LPN-based
systems). LWE was viewed as a breakthrough: Regev [Reg05] showed that
the LWE problem can be reduced from the lattice problems GapSVP and
SIVP in the worst case. As described previously, this implies LWE’s conjec-
tured post-quantum hardness.
In the following, we first present the basic structure of the LWE problem
before highlighting the specific parameter instantiation defined by Regev
[Reg05] that allows for the desired reduction from worst-case lattice prob-
lems (Section 2.2.1). We also discuss LWE’s security guarantees from a prac-
tical perspective (Section 2.2.2). Subsequently, we present a selection of
LWE-based encryption schemes (Section 2.3), before we review a number
of relevant variations of the LWE problem and highlight their individual
properties (Section 2.4). Note that the LWE problem has been defined and
formulated in various different formats - here we follow the notation used

2Daniel J. Bernstein seems to have introduced the term in 2003 [BL16]. The first
PQCrypto-conference took place in 2006.

3Other post-quantum solutions are code-based and multivariate cryptography (see
e.g. [Ber09] for an overview).
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by Regev [Reg09] unless noted otherwise.
The LWE problem describes the task of solving the following system of equa-
tions:

(a1, b1 = 〈a1, s〉+ e1)
...

(am, bm = 〈am, s〉+ em).

The coefficients ai are drawn uniformly at random from Znq , multiplied with
the wanted secret s ∈ Znq and subsequently perturbed by adding some error
ei. The latter is drawn from some error distribution χ. n is the secret’s di-
mension and the security parameter, m determines the number of samples,
and all operations are performed over Zq.
The LWE problem can also be formulated in more compact matrix notation,

i.e. given (A,b) s.t. b = As + e mod q, where A
$← Zm×nq , s $← Znq and

e← χm, recover s. Note that the x $← S operation denotes choosing x from
the uniform distribution over S.
Concretely, there are two problems associated to LWE: search LWE asks to
recover the secret vector s as described above; decision LWE on the other
hand asks to distinguish between a tuple (a, b) sampled from the LWE dis-
tribution As,χ and a tuple sampled uniformly at random from Znq × Zq. We
formally summarize these notions in Definition 3.

Definition 3 (LWE problem [Reg05; Reg09]). Let n, m, q = q(n) ≤ poly(n)
be integers, and χ be some probability distribution over Zq. Then,As,χ denotes the
LWE distribution that is obtained by generating tuples of the form (ai, 〈ai, s〉 +

ei) ∈ Znq × Zq, where vectors ai, s
$← Znq and error ei ∈ Zq is drawn according to

distribution χ.
Given some m samples fromAs,χ, search LWEq,χ describes the problem of recover-
ing s.
Given a sample in Znq × Zq, decision LWEq,χ describes the problem of determin-
ing whether it was sampled according to As,χ or drawn uniformly at random
from Znq × Zq, respectively.

Regev shows that for n ≥ 1 and 2 ≤ q ≤ poly(n), where q is a prime, both
problems are equally hard except with negligible probability.
We adopt the convention that when referring to LWE, the search version is
meant. Furthermore note that we may abuse notation and highlight certain
parameters by adding them as a subscript, e.g. LWEn,m,q,χ.

2.2.1 Hardness

A remarkable property of the LWE problem is its reducibility from worst-
case lattice problems under a certain parametrization. Regev initially shows
this in the following setting: Let Ψ̄α be a distribution over Zq that is shaped
like the discrete Gaussian distribution that is centered around 0 with stan-
dard deviation αq, where α ∈ R+ and all samples are reduced modulo 1,
i.e. pick a number from the interval [0, 1) according to the Gaussian distri-
bution, multiply it by q and take the nearest integer [Reg09].
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Note that Regev’s [Reg05] original hardness result is provided for the con-
tinuous Gaussian distribution. More recent definitions of LWE-based sys-
tems typically refer directly to the discrete Gaussian as in Definition 4.
The previously described naive method of rounding to the nearest inte-
ger gives an intuition for discretization. However, this method does not
produce a true discrete Gaussian, as Lindner and Peikert [LP11] remark.
Peikert [Pei10] provides an appropriate randomized rounding method.

Definition 4 (Discrete Gaussian Distribution [LP11]). For a lattice Λ and a
positive real σ > 0, the discrete Gaussian distribution DΛ,σ over Λ with param-
eter σ is the probability distribution having support Λ that assigns a probability
proportional to exp(−π||x||2/σ2) to each x ∈ Λ.

When the LWE error is drawn from the distribution Ψ̄α with standard de-
viation αq, where α ∈ (0, 1) and αq > 2

√
n, efficiently solving LWE implies

an efficient quantum solution for GapSVP and SIVP over n-dimensional
lattices up to an approximation factor γ = Õ(n/α) in the worst case. This
culminates in the LWE-assumption.

Lemma 2 (LWE-assumption [Reg05, Theorem 1.1]). For integers n, q and α ∈
(0, 1) s.t. αq > 2

√
n, if there exists a PPT algorithm solving LWEq,Ψ̄α , then there

exists an efficient quantum algorithm that approximates the decisional GapSVP
and the SIVP problem on n-dimensional lattices to within γ = Õ(n/α) in the
worst case.

Note that the standard deviation of the error distribution αq determines
the magnitude of the error in the equation system. As Micciancio and Peik-
ert [MP13] point out, the relation of (roughly) q ≥

√
n/α is the tightest

possible in order to obtain the relation to worst-case lattice problems and
therefore optimal.
Observe that Regev’s quantum reduction from lattice problems to LWE is
formulated for the search version of the problem. Peikert et al. [PRSD17]
recently showed a result that is identical to Lemma 2 but directly extends
to decision LWE.
As mentioned previously, the LWE-assumption has emerged as a novel
hardness assumption, that has been since utilized to prove security of var-
ious cryptosystems (see [Pei16] for an overview - we discuss a selection of
encryption schemes in more detail in Section 2.3).

2.2.2 Practical Security of LWE-Based Systems

Besides its connection to worst-case lattice problems, the concrete security
of an LWE-based system highly depends on the parameters used in a par-
ticular instantiation. In particular, the modulus q, the security parameter
n, which corresponds to the secret key dimension, and the Gaussian pa-
rameter σ, impact the concrete bit-security of a given encryption scheme.
As recently analyzed in Herold et al.’s [HKM18] work, which surveys the
existing solution algorithms for LWE, the asymptotic complexity of solv-
ing LWE is 2O(n), regardless of the approach, i.e. whether lattice-based or
combinatorial techniques are used. However, actual runtimes of the indi-
vidual algorithms reveal that “LWE’s complexity changes as a function of the
LWE-parameters” [HKM18]. Therefore, the general idea is to apply the best
known attacks to the LWE problem and thereby determine lower bounds
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for the parameter instantiation. In this section, we give an overview of
known attacks and discuss Lindner and Peikert’s [LP11] results in more de-
tail as they are currently considered the baseline4 for the computation of
LWE bit-security levels.

Distinguishing attack. The distinguishing attack [MR09; RS10] is directed
at decision LWE and aims to distinguish between LWE and uniformly ran-
dom samples. It reduces LWE to the Short Integer Solution (SIS) problem
and attacks the SIS-instances. The SIS problem [Ajt96] describes the task of
finding a nonzero integer vector z ∈ Zm that satisfies a given norm such
that Az =

∑
i ai · zi = 0 ∈ Znq , where matrix A ∈ Zm×nq is composed of m

uniformly random column vectors ai ∈ Znq [Pei16, Definition 4.1.1]. The SIS
problem also reduces from worst-case lattice problems and it can be seen as
dual to LWE. We omit the details of the algorithm here as attacks on search
LWE are known to be inherently more powerful, since they actually recover
the secret vector5 [LP11].

Combinatorial attack. Some combinatorial attacks have been proposed to
solve LWE. The deployed algorithms are generally a derivation of the BKW
algorithm [BKW03; Wag02], which actually targets the LPN problem. Since
Regev [Reg05] introduced LWE as a generalization of LPN, the generalized
BKW algorithm also solves LWE. It was later improved in several other
works [Alb+14; APS15; KF15] but the general structure remained mostly
the same. Given an LWE instance {(ai, bi = 〈ai, s〉 + ei)}, in a first stage,
the left-hand side of the LWE equations, i.e. the coefficient vectors ai, are
reduced in dimension. This results in a decrease of the “bias” of the right-
hand sides bi, which in the second stage serves to distinguish between LWE
samples and uniform samples. The algorithm also has asymptotic complex-
ity 2O(n) but to date its runtimes were not able to outperform lattice basis
reduction techniques [LP11], which we detail next.

Lattice basis reduction. The LLL algorithm was introduced by Lenstra,
Lenstra and Lovász [LLL82]. It takes a lattice basis B as input and returns
an LLL-reduced basis for Λ(B), resulting in basis vectors that are very short
and almost orthogonal. The guarantee of the LLL-reduction is that the out-
put contains a lattice vector that is at most γ(n)λ1 long, where γ(n) denotes
the approximation factor as before. On a high level, the algorithm iterates
through all input basis vectors pairwise, reduces them and orders each pair
by length, until they cannot be reduced anymore [MG02]. The BKZ algo-
rithm due to Schnorr and Euchner [SE94] is a blockwise generalization of
this approach and is considered the best approximation algorithm in high
dimension according to [CN11]. Chen and Nguyen [CN11] significantly
improve the BKZ algorithm’s runtime in their implementation by incorpo-
rating the pruning technique due to Gama et al. [GNR10].

4Note that this is the case even though there have been follow-up works that improve
over the efficiency of Lindner and Peikert’s [LP11] attack, e.g. [LN13].

5In addition, the presented decoding attack from Lindner and Peikert [LP11] also
yields a significantly higher advantage in solving search LWE while providing a better
time/advantage ratio than the distinguishing attack.
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Lattice reduction and decoding attack. Lindner and Peikert’s [LP11] find-
ings in particular have shaped the understanding of how LWE parame-
ters need to be instantiated in order to provide certain bit-security guaran-
tees. The authors combine lattice basis reduction techniques with bounded-
distance decoding and attack the standard search LWE problem as defined
by Regev [Reg05]. This combination is especially efficient as the reduced
basis from the first step is used in order to execute the decoding attack in
the second part. Observe that lattice basis reduction is individually con-
sidered more efficient than a combinatorial attack like the BKW algorithm
and their decoding attack alone is more powerful than the distinguishing
attack. Therefore, Lindner and Peikert’s [LP11] attack leverages “the best of
the best” algorithms and thereby beats previous proposals somewhat auto-
matically.
For the decoding part of the attack Lindner and Peikert [LP11] extend the
nearest-plane algorithm by Babai [Bab85] and adapt it to the particular Gaus-
sian distribution of the error-term in LWE. In fact, the LWE problem can be
formulated as a Bounded-Distance Decoding (BDD) problem, where given a
lattice basis and a target point with a certain guaranteed distance to the lat-
tice, the task is to find the unique lattice vector that is closest to the target
point [Pei16, Definition 2.2.5]. The right-hand side b of an LWE instance
(A,b = As + e) is the target point and the lattice is defined as Λ = Λ(A),
where As ∈ Λ [LP11; Pei16]. Therefore, solutions to the decoding problem
also provide solutions to the search LWE problem.
Babai’s [Bab85] nearest-plane algorithm expects a lattice basis B and a tar-
get point t as inputs and returns a lattice point v that is somewhat close
to the target. More specifically, the output v is indeed the desired unique
lattice point iff it is close enough to the fundamental parallelepiped of the
orthogonalized6 basis vectors B̃ . Observe that this means that LWE-error
e would have to lie within that parallelepiped. Lindner and Peikert [LP11]
generalize the nearest-plane algorithm in such a way that the shape of this
parallelepiped is most likely to yield the correct solution. They achieve this
by recursing over several distinct planes that are chosen to “capture the most
probability mass of the Gaussian error distribution of e” [LP11].
Note that the decoding algorithm works best if the input basis B is max-
imally reduced. Therefore, Lindner and Peikert [LP11] first run a BKZ-
reduction7 as implemented by Shoup in the NTL library [Sho] before in-
putting the result into the decoding algorithm.
Finally, they obtain the runtime results of running this attack on different
parameter sets and thereby determine lower bounds on the respective val-
ues for secret dimension n, modulus q and Gaussian parameter σ.

Arora-Ge attack. Finally, the Arora-Ge attack due to Arora and Ge [AG11]
exploits an unbounded number of LWE-samples by using a linearization
technique, which reduces the problem of solving an LWE-equation system
to solving a linear equation system. They achieve complexity 2Õ(σ2), which

6B̃ is the Gram-Schmidt orthogonalization of the vectors in B = {b1, . . . ,bk} and the
fundamental parallelepiped is defined as P1/2(B) := B · [− 1

2
, 1
2
)k =

{∑
i∈[k] ci · bi : ci ∈

[− 1
2
, 1
2
)
}

, see e.g. [LP11].
7It is noteworthy that Lindner and Peikert [LP11] combine the notions of the Hermite

factor [GN08] and the Geometric Series Assumption [Sch03] as a quality measure of the reduced
basis. We refer to [LP11, Section 5.1] for more details.
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is subexponential for σ ≤
√
n and exponential for σ >

√
n, where σ is the

Gaussian parameter and n is the secret dimension, as before. Consequently,
this imposes a lower bound on the error magnitude, which is essentially de-
fined by σ. Micciancio and Mol [MM11] were the first to propose limiting
the number of available LWE-samples in order to mitigate this attack, i.e.
limit parameter m. Micciancio and Peikert [MP13] later continued to ex-
plore this idea and indeed show that LWE remains hard even for small er-
rors when the number of samples is limited accordingly (see Section 2.4.2).

We refer to [HKM18, Table 1] for an asymptotic comparison of the men-
tioned attacks and their concrete significance in terms of parameters.

2.3 Encryption Schemes

Over time LWE has given rise to a myriad of different cryptosystems - to-
gether with a growing family of LWE-variants, the number of resulting ap-
plications has only increased. Our results will mainly leverage LWE-based
encryption. Hence in this section, we present a selection of LWE-based en-
cryption schemes, which have shaped the state-of-the-art of lattice-based
encryption.

2.3.1 Regev’s Encryption Scheme

With the introduction of the LWE problem and the proof of its relation
to worst-case lattice problems, Regev [Reg05] also proposed the follow-
ing public-key encryption scheme, which is still a go-to basis for modern
lattice-based cryptosystems. We here present its definition using the more
compact matrix notation as shown in [AGV09].

Definition 5 (Regev’s Encryption Scheme (RPKE) [Reg05; AGV09]). For the
public key encryption scheme RPKE = (RGen, REnc, RDec), let m(n), q(n) and
α(n) be parameters of the scheme, where n is the security parameter. q(n) is a
prime between n2 and 2n2, m(n) = (1 + ε)(n + 1) log q for some constant ε and
α(n) = o(1/(

√
n log n)). All additions are performed over Zq.

- RGen(1n) randomly selects a matrix A
$← Zm×nq , a vector s

$← Znq and a
vector e ← Ψ̄m

α , i.e. each entry ei is chosen independently from the proba-
bility distribution Ψ̄α. Output pk = (A, As + e) and sk = s.

- REnc(pk, µ ∈ {0, 1}), where µ is the bit to be encrypted: Pick a random
vector r ∈ {0, 1}m. Output c = (c0, c1) = (rA, r(As + e) + µb q2e) as the
ciphertext.

- RDec(sk, c) computes µ′ = |c1 − c0 · s|. Output 0 if µ′ is closer to 0 than
to d q2e mod q, and 1 otherwise.

Note that the parameters in Definition 5 guarantee correctness and semantic
security under the LWE-assumption (Lemma 2). A critical aspect is the re-
sulting performance: the public key size isO(mn log q) = Õ(n2) and the en-
cryption blowup is a factor ofO(n log q) = Õ(n). Additionally, the plaintext
size is limited to a single bit. As Regev [Reg09] points out, one may assume
that the users of the scheme share the public matrix A beforehand [Ajt05].
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Then pk would only consist of As + e and the public key size is reduced to
O(m log q) = Õ(n).
Peikert et al. [PVW08] observe that parts of the public key pk and the ran-
domness r in the encryption step can be securely reused l = O(n) num-
ber of times. By taking advantage of this fact they reduce the encryption
blowup to O(1) and encrypt n-bit messages at essentially the same cost as
1-bit messages in Regev’s scheme. Consequently, both the secret S ∈ Zn×lq

and error E ∈ Zl×mq are matrices - as opposed to vectors. They propose the
following multi-bit encryption scheme.

Definition 6 (Multi-bit Encryption [PVW08]). For the public key encryption
scheme MPKE = (MGen, MEnc, MDec), let m(n), q(n), p(n) and α(n) be pa-
rameters of the scheme, where n is the security parameter. q ≥ 4pm is a prime,
p(n) = poly(n) ≥ 2 is an integer and α ≤ 1/(p

√
mg), where g(n) = ω(

√
log n)

and m ≥ 3(n+ l) log q.
The amortization factor is denoted by integer l(n) = O(n) ≥ 1. The domain of
messages lies in Zlp. All operations are performed over Zq.

- MGen(1n) picks matrices A
$← Zn×mq and S

$← Zn×lq each uniformly at
random. Choose E ← Ψ̄l×m

α where each entry ei,j is drawn independently
from the probability distribution Ψ̄α. Output pk = (A, P = STA + E) and
sk = S.

- MEnc(pk,v), where v ∈ Zlp is the message to be encrypted: Pick a vector e
at random from {0, 1}m. Output (u, c) = (Ae,Pe + t) as the ciphertext,
where t(v) = bv · pq e ∈ Zq and t = t(v) = (t(v1), . . . , t(vl))

T .

- MDec(sk, (u, c)) computes w = c− STu. Output v′, where each v′i is s.t.
wi − t(v′i) is closest to 0.

Note that the public key size remains asymptotically the same as in Regev’s
scheme at Õ(n2).
Again, semantic security holds based on the LWE-assumption (Lemma 2).

2.3.2 LP Encryption Scheme

Lindner and Peikert [LP11] achieve a significant improvement in terms of
key size: compared to RPKE, concrete key sizes in their encryption scheme
LP are “up to 10 times smaller” [LP11] while achieving a higher bit-security
level, where they compare to the parameters presented in [MR09]. The LP
encryption scheme, which we restate in the following, is considered the
most efficient LWE-based public-key encryption scheme.

Definition 7 (LP [LP11]). For the public key encryption scheme LP = (LGen,
LEnc, LDec), let n1, n2, q, l and sk, se be parameters of the scheme where q ≥ 2,
n1, n2 ≥ 1, l ≥ 1 and sk · se ≤

√
2π
c ·

t√
(n1+n2)·ln (2/δ)

for some c ≥ 1 and δ > 0.

Let encode : Σ → Zq and decode : Zq → Σ be error-tolerant encoding and
decoding functions such that decode(encode(m)+e mod q) = m for any integer
e ∈ [−t, t) where t ≥ 1 is the error tolerance. Component-wise application allows
for encoding and decoding of vectors.
A ∈ Zn1×n2

q is a matrix that is chosen uniformly at random and shared among all
users.
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- LGen(1l) samples R← Dn1×l
Z,sk and S← Dn2×l

Z,sk . Output pk = P = R−AS
and sk = S.

- LEnc(pk,m), where m ∈ Σl is the message to be encrypted: Draw vectors
e1 ∈ Zn1 , e2 ∈ Zn2 , e3 ∈ Zl according toDZ,se . Compute m̄ = encode(m)
and output the ciphertext (c1 = et1A + et2, c2 = et1P + et3 + m̄t).

- LDec(sk, (c1, c2)) outputs decode(ct1 · S + ct2)t.

For alphabet Σ = {0, 1}, the authors give the following example for the
error-tolerant encoder and decoder: encode(m) := m · b q2c and decode(m̄) :=
0 if m̄ ∈ [−b q4c, b

q
4c) ⊂ Zq, and 1 otherwise. The error tolerance is t = b q4c.

LP is secure under the LWE-assumption (Lemma 2) and keys and cipher-
texts are roughly of size 2n2 log q for n1 = n2 = n.

2.4 LWE Variants

Although LWE has a distinctly simple structure, the instantiation of LWE-
based schemes raised some efficiency concerns in practice: They are gen-
erally speaking more efficient than previously known lattice-based cryp-
tosystems. However, taking into account asymptotic key and ciphertext
lengths alone, LWE-based encryption schemes are simply incomparable to
commonly used systems like RSA. This is primarily due to the fact that for
“just one extra pseudo-random number” LWE-based encryption requires
“n extra random numbers” [Reg10]. Therefore, early LWE-based encryp-
tion schemes only allowed for 1 bit at a time-encryption with comparatively
large key and ciphertext lengths, i.e. Regev’s [Reg05] encryption scheme
(see Section 2.3.1). Additionally, choosing an exponential modulus q causes
the resulting LWE components to grow in magnitude. Lastly, running a
discrete Gaussian sampler in order to sample the errors in LWE is generally
more complex than sampling uniformly at random, i.e. leading to longer
encryption run-times [CGW14]. In the urge of closing the gap between the-
ory and practice, new versions of LWE have been introduced by breaking
the problem down into its components, exchanging parts, and putting them
back together.
Here we provide an overview of some proposed problem variants. We only
present a small subset of all existing LWE variants that are relevant in our
context. Note that while the initial motivation for creating new versions of
LWE was mainly efficiency improvement, over the last decade a countless
number of variations has been proposed. The majority of variants were de-
veloped for special-case applications and some could eventually not com-
pete with the efficiency of the original definition of LWE.
We structure the findings according to the components of LWE, i.e. coef-
ficients (Section 2.4.1), error (Section 2.4.2) and secret (Section 2.4.3). In fact,
some results from Section 2.4.2 and Section 2.4.3 have also been combined in
an effort to jointly improve the outcome, which we evaluate in Section 2.4.4.

2.4.1 Coefficients

Observing that the coefficients in the LWE problem, i.e. the matrix A ∈
Zm×nq in an LWE-instance (A,As + e) ∈ Zm×nq × Zmq , take up most space
when stored in memory, Galbraith [Gal13] proposed to draw A from the
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binary instead of the q-ary field: He shows that any standard LWE-instance
(A,As + e) ∈ Zm×nq × Zmq can be formulated as an instance of his variant
(A′,A′s′ + e′), where A′ ∈ {0, 1}m×n′ , at the cost of increasing the secret’s
dimension n′ = nblog qc.
We restate the definition of this LWE-variant below, which we denote Learn-
ing With Errors from Parity (LWEP). The name reflects the fact that this vari-
ant is a hybrid between the LWE and the LPN problem [BKW03]. The latter
is a special case of LWE, in which all components are binary.

Definition 8 (Learning With Errors from Parity (LWEP) [Gal13]). Let n,m
be integers, q be a prime and χ be some probability distribution over Zq. Then,
Ls,χ denotes the LWEP distribution that results from taking tuples of the form

(ai, 〈ai, s〉 + ei) ∈ {0, 1}n × Zq, where vector ai
$← {0, 1}n, vector s $← Znq and

error ei ∈ Zq is drawn according to distribution χ.
Given some m samples from Ls,χ, the Learning With Errors from Parity problem8

LWEPn,m,q,χ describes the problem of recovering s.

Galbraith [Gal13] proposes an LWEP-based version of Regev’s [Reg05] en-
cryption scheme (see Section 2.3.1), where the ciphertexts c = (c0, c1) =
(rA, r(As + e) + µb q2e) look just like in Regev’s scheme and the error is
sampled from the Gaussian distribution Ψ̄α, except that A is binary. Note
that if vector r would be known to the adversary, this would be suffi-
cient to recover the message, simply by subtracting r(As + e) from the
right-hand side c1. Galbraith [Gal13] considers different lattice-based at-
tacks to retrieve r from the left-hand side c0 = rA and concludes that
LWEP is safe to use for encryption under a certain parameter setting. He
gives concrete guidelines for parameter magnitudes and suggests that for
(n,m) = (256, 400) and (n,m, q, σ) = (256, 640, 4093, 3.33) his LWEP-based
encryption provides moderate and high security, respectively.
However, Herold and May [HM17] recently broke Galbraith’s encryption
scheme and were able to recover the plaintext message from the LWEP-
based ciphertexts. While Galbraith [Gal13] regarded the problem of com-
puting r, given rA, as a vectorial integer subset sum problem that should be
solved by finding a closest vector in the corresponding lattice, Herold and
May [HM17] recognized that the problem can be formulated as an Integer
Linear Programming (ILP) problem. An ILP problem asks to find an inte-
gral solution r ∈ Zm for an equation system of m linear equations over the
integers. They solve this problem in polynomial time by removing the in-
tegral requirement of the solution using an LP relaxation. Ultimately, they
break both the moderate- and high security-LWEP instances provided by
Galbraith [Gal13]. In particular, the authors find that for m ≤ 2n, LWEP-
based encryption as defined by Galbraith [Gal13] is especially easy to break
and therefore insecure. Note that Herold and May’s [HM17] results only
break this particular instantiation of LWEP and not the hardness of the
LWEP problem itself. This is why, they are only able to recover the plaintext
message and not the secret, as the authors remark [HM17].

8Note that we here focus on the search problem - the decision variant can be defined
analogously to decision LWE (Definition 3).
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2.4.2 Error

While the original definition of LWE requires the error e in an LWE-instance
(A,As + e) to be drawn from the discrete Gaussian distribution Ψ̄α, the
correct implementation of the sampling process itself is non-trivial and may
negatively affect performance in practice [Fol14; Saa15; CGW14; DM13].
This lead to the investigation of alternative error distributions - in particu-
lar whether the error could be securely sampled from the uniform distribu-
tion. Note that U(S) denotes the uniform distribution over S.
An LWE-variant, where the error is sampled from a (small) uniform distri-
bution, is proposed by both Micciancio and Peikert [MP13], and Döttling
and Müller-Quade [DM13], however with slightly different results, which
we discuss in the following.

Lemma 3 (LWE with uniform error [MP13, Theorem 4.6]). Let 0 < k ≤ n ≤
m − ω(log k) ≤ kO(1), l = m − n + k, s ≥ (Cm)l/(n−k) for a large enough
constant C and q be a prime such that max{3

√
k, (4s)m/(m−n)} ≤ q ≤ kO(1).

For any set X ⊆ {−s, . . . , s}m where |X| ≥ sm, if there exists a PPT algo-
rithm solving LWEq,χ=U(X), then there exists an efficient quantum algorithm
that solves worst-case lattice problems on k-dimensional lattices to within approx-
imation factor γ = Õ(

√
k/q).

In direct comparison to the traditional LWE-assumption (Lemma 2), the
approximation factor γ, i.e. the accuracy of solving the respective worst-
case lattice problem, remains roughly the same. However, depending on
the value of k, the underlying lattice assumption in Lemma 3 becomes po-
tentially stronger: since k is sub-linear in n, the dimension of the lattice
problem is smaller than in Lemma 2.
Note that the parameter settings in Lemma 3 also allow for binary errors by
setting s = 2 andX = {0, 1} and still achieve the same hardness guarantees
with regards to worst-case lattice problems as stated in Lemma 4. However,
since there is a dependency between s and k, this impacts the dimension of
the underlying worst-case lattice problem.

Lemma 4 (LWE with binary error [MP13, Theorem 1.2]). Let security param-
eter n and m = n · (1 + Ω(1/ log n)) be integers and q ≥ nO(1) be a sufficiently
large polynomially bounded prime modulus. If there exists a PPT algorithm solv-
ing LWEq,χ=U({0,1}), then there exists an efficient quantum algorithm that solves
worst-case lattice problems on Θ(n/ log n)-dimensional lattices to within approxi-
mation factor γ = Õ(

√
n · q).

From a formal point of view, Micciancio and Peikert [MP13] resort to the
SIS problem in order to prove their results and achieve the above notion.
In contrast, Döttling and Müller-Quade [DM13] utilize the notion of lossy
codes in order to formulate a similar version of LWE with uniform error
as stated in Lemma 5. A lossy code is essentially a pseudorandom code,
i.e. indistinguishable from a random code, that when used for encoding
provably annihilates the message after adding a certain error.

Lemma 5 (LWE with uniform error [DM13, Theorem 1]). Let q(n) be the
modulus and m(n) = poly(n) be an integer with m ≥ 3n where n is the security
parameter. Let c ∈ (0, 1) be an arbitrarily small constant.
For ρ(n) ∈ (0, 1/10) such that ρq ≥ 2n0.5+cm, if there exists a PPT algorithm
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that solves LWEq,U([−ρq,ρq]), then there exists an efficient quantum algorithm that
solves worst-case lattice problems on n/2-dimensional lattices to within approxi-
mation factor γ = Õ(n1+cm/ρ).

As Micciancio and Peikert [MP13] point out, the main difference is in the
magnitude of the error: while according to Lemma 3 and 4 the error can be
shrunk to being binary (and is always smaller than

√
n), Lemma 5 requires

the error to be at least roughly
√
n · m due to the constraint on ρq. In fact

this is also larger than the lower bound on the error magnitude imposed by
the original LWE-assumption (Lemma 2).
Both works require a bounded number of LWE-samplesm due to the Arora-
Ge attack [AG11] (see Section 2.2.2). As the error magnitude directly relates
to the number of samples, Döttling and Müller-Quade’s [DM13] result al-
lows for a larger m, namely polynomial in n.
Fuller et al. [FMR13] observe that as long as the given LWE-instance remains
an under-determined equation system with regards to the secret, a small
number of elements of the error-vector can be securely set to 0. In their
resulting variant of LWE they utilize the notion of a symbol-fixing source,
which denotes a distribution that outputs α fixed symbols and m random
samples over a pre-defined alphabet Z .

Lemma 6 (LWE with some fixed errors [FMR13, Theorem 5.2]). Let m,α be
polynomial in n, q = poly(n) be a prime and β ∈ Z+ such that q−β = negl(n),
where n is the security parameter. For the uniform distribution U over Zm, an
alphabet Z ⊂ Fq and an (m + α,m, |Z|) symbol-fixing source W over Zm+α,
if there exists a PPT algorithm that solves decisional LWEn+α+β,m+α,q,W , then
there exists a PPT algorithm that solves decisional LWEn,m,q,U .

Fixing parts of the error vector implies extending the secret’s dimension
and the overall number of provided samples, accordingly. The authors also
generalize the above result to hold for arbitrary (hence not necessarily uni-
form) distributions over Fq.
Note that the above result can only enjoy hardness based on worst-case lat-
tice problems, when properly linked to the LWE-assumption (Lemma 2):
this can be achieved by setting the error distribution to be uniform as in
Lemma 6, which results in basing hardness on LWE with uniform errors.
The latter, in turn, is known to be as hard to solve as standard LWE due
to Lemma 3 or 5 depending on the chosen parameters. Alternatively, one
may choose the original discrete Gaussian distribution, such that m entries
are chosen according to the discrete Gaussian and the remaining α symbols
are fixed. Consequently, Fuller et al.’s [FMR13] result essentially states that
solving LWE is still hard even when a few components of the error-vector
are set to 0.

2.4.2.1 Augmented LWE (A-LWE)

The possibility of increasing the amount of data that can be hidden inside
an LWE-term is explored by El Bansarkhani et al. [EDB15], who use message
embedding where auxiliary information is placed into the error-term. They
construct the Augmented LWE (A-LWE) problem, where essentially the er-
ror term e ∈ Zmq is indistinguishable from a discrete Gaussian distributed
vector but effectively encodes some message m ∈ {0, 1}m. Consequently,
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the search version of A-LWE has two variants, namely search-m A-LWE and
search-s A-LWE, which denote recovering either message m or secret s from
an A-LWE sample, respectively.
Note that El Bansarkhani et al. [EDB15] utilize the concept of a gadget matrix,
which is denoted G in the following. It was first introduced by Micciancio
and Peikert [MP12] and it is computed using the Kronecker product ⊗ of
the identity matrix I and the vector g, which is constructed as detailed next.

Definition 9 (A-LWE problem [EDB15]). Let n, m, q, l, x be integers, where
l = dlog qe and m = x · l. Let H : Znq → {0, 1}m be some function. Let
gT = (1, 2, . . . , 2l−1) ∈ Zlq and G = Im/l ⊗ gT ∈ Zm/l×mq .

For s
$← Znq and A

$← Zn×mq , define the A-LWE distribution LA-LWE
n,m,σ (m) with

m ∈ {0, 1}m to be the distribution over Zn×mq × Zmq obtained as follows:

• Set v = encode(H(s)⊕m) ∈ Zm/lq .

• Sample e← DΛ⊥v (G),σ ∈ Zmq .

• Return (A,bT ) where bT = sTA + eT .

Given polynomially many samples fromLA-LWE
n,m,σ (m) and input m ∈ Zm/lq , search-s

A-LWEHn,m,σ describes the problem of recovering s.
Given polynomially many samples from LA-LWE

n,m,σ (m), search-m A-LWEHn,m,σ de-
scribes the problem of recovering m.
Given a sample in Zn×mq × Znq , decision A-LWEHn,m,σ describes the problem of de-
termining whether it was sampled according to LA-LWE

n,m,σ (m) or drawn uniformly at
random from Zn×mq × Zq, respectively.

The corresponding security properties with respect to the LWE-assumption
are stated next.

Lemma 7 (A-LWE-assumption [EDB15, Theorem 2]). Let κ be the security pa-
rameter. Let n,m, q, l = dlog qe be integers, H : Znq → {0, 1}m be a hash function
modeled as a random oracle and G be the gadget matrix G = I⊗ gT where gT =
(1, . . . , 2l−1). For a real ε = negl(κ) > 0, let σ ≥ ηε(Λ

⊥(G)), let H∞(s) > κ.
Then, if there exists a PPT algorithm that solves search-s A-LWEHn,m,σ, then there
exists a PPT algorithm that solves LWEn,m,σ. If there exists a PPT algorithm that
solves decision A-LWEHn,m,σ or search-m A-LWEHn,m,σ, then there exists a PPT al-
gorithm that solves decision LWEn,m,σ.

In other words, A-LWE terms are essentially indistinguishable from LWE-
terms (as long as the error distribution is properly shaped) and inherits the
security properties of LWE while allowing to embed a message into the er-
ror term. Note that different from most other LWE-variants, this reduction
does not require the costly increase of parameters.
Additionally, El Bansarkhani et al. [EDB15] show a straightforward way of
using this message embedding technique for encryption, where a plaintext
message m is embedded into the error-term of an A-LWE term, which then
constitutes the ciphertext. In fact, we will leverage this approach in our
constructions, which we present in Chapter 3.
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2.4.3 Secret

Goldwasser et al. [Gol+10] investigate the hardness of the LWE-problem in
the presence of leakage, i.e. when parts of the secret are leaked to the ad-
versary. They conclude that LWE remains hard to solve even if the secret is
sampled from an arbitrary distribution, as long as some minimum entropy
is guaranteed. We restate this “minimum” version of LWE next.

Lemma 8 (Entropy-k LWE [Gol+10, Theorem 4]). Let n′, q ≥ 1 be integers
where q is super-polynomial in n′, α, β > 0 such that α/β = negl(n′) and D be
an arbitrary distribution over {0, 1}n′ with min-entropy at least k where n′ is the
security parameter. For any n ≤ k−ω(logn′)

log q if there exists a PPT algorithm that
solves decisional LWEn′,q,β(D), i.e. where the secret s is sampled from D, then
there exists a PPT algorithm that solves decisional LWEn,q,α.

This means that LWE is leakage resilient, i.e. secret information can be leaked
to a certain extent without compromising security. Observe that the above
reduction comes at the cost of increasing the secret’s dimension from n
to n′ ≈ n log q.
Subsequently, Brakerski et al. [Bra+13] followed by Micciancio [Mic18] give
a somewhat stronger reduction for decisional LWE with binary secrets, i.e.
binLWE, which is essentially shown to be equivalent to traditional deci-
sional LWE. In what follows, the distribution A± is defined analogously to
the LWE distribution A (Definition 3) but with the secret sampled from the
binary distribution.

Lemma 9 (binLWE [Mic18, Theorem 4.1]). Assume the distributionAq,k,n+1,σ

is pseudorandom for some σ > ω(
√

log n), k ≥ ω(log n), and (n + 1) ≥ (k +
1) · (log(q) + 1). Then the distribution A±

q,n,nO(1),σ′
is also pseudorandom for

σ′ = 2σ
√
n+ 1.

Note that the transformation to the LWE-assumption also requires a secret
dimension shift from n to k, which is considered likely “unavoidable, as it
preserves the bit-length of the secret” [Mic18].

2.4.4 Error and Secret

By “putting the LWE distribution into Hermite normal form” [App+09] Apple-
baum et al. construct a variant of LWE, where both the error and the secret
are sampled from the error distribution and show that this variant is equiv-
alent to standard LWE.

Lemma 10 (Error and secret from error distribution [App+09, Lemma 1]).
Let q = pe be a prime power, if there exists a PPT algorithm solving decisional
LWEq,s′,e, where s′ ← χn and e ← χm, then there exists a PPT algorithm that

solves decisional LWEq,s,e, where s $← Znq and e← χm.

This result has great significance, since it can be applied to virtually any
variation of LWE that modifies the error distribution. In fact, it opened up
the possibility of combining previously unrelated variants.
For example, Cabarcas et al. [CGW14] use exactly this technique and com-
bine Micciancio and Peikert’s [MP13] result on LWE with small uniformly
distributed errors (Lemma 3) with Applebaum et al.’s [App+09] finding
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(Lemma 5) that the secret in the LWE-term can be securely sampled from
the same distribution as the error. Consequently, they construct an LWE-
version, where both the secret and the error are sampled from a uniform
distribution over a set of relatively small values.
While this “chaining” of results has become a convenient proof technique
commonly used with LWE-based cryptosystems, some LWE-variants im-
pose specific parameter restrictions that amplify through the transforma-
tions and eventually trickle down to the regular LWE-assumption, which
causes significantly increased parameter magnitudes. In the case of Cabar-
cas et al.’s [CGW14] LWE with small uniform secret and error, they instan-
tiate Lindner and Peikert’s [LP11] encryption scheme LP (see Section 2.3.2)
with their LWE variant, resulting in the new scheme U-LP, and realize that
the resulting efficiency has in fact decreased.
Although modifying the underlying LWE problem of the LP-scheme was
intended to improve the efficiency of the scheme by avoiding the need for
Gaussian sampling, it turns out that it actually had a negative impact on
performance. U-LP requires a larger modulus and bigger error magnitude
than LP: q = O(n3.7) and t = O(n1.4) where U({0, . . . , t− 1}) is the uniform
distribution for the secret and the error in U-LP - compared to q = O(n2)
and Gaussian parameter se = O(n1/2) in LP.
Consequently, the performance gain from using the uniform distribution
over the discrete Gaussian distribution is cancelled out by the large param-
eters required to establish a sufficient security level. This in turn results in
larger key and ciphertext sizes and slower encryption and decryption times
as Cabarcas et al.’s [CGW14] experimental results show. As an additional
drawback, U-LP restricts the message space to binary strings compared to
an unrestricted alphabet in LP.

2.4.5 Ring-LWE

While most LWE-variants attempt to improve efficiency in one way or an-
other, the LWE-version that is generally considered most competitive is
somewhat orthogonal to all previously discussed variants: Ring-LWE (R-
LWE). Given n random numbers, LWE cannot produce O(n) pseudo-ran-
dom numbers “in one shot”. Instead, an additional set of n random num-
bers is required to output a new pseudo-random number [Reg10]. Lyuba-
shevsky et al. [LPR10] recognized this fact as the main inefficiency of LWE-
based schemes. Hence, with R-LWE they found a way to define a vec-
tor multiplication operation such that the resulting distribution is indeed
pseudo-random, namely using multiplication over the polynomial ring. We
state the formal problem definition next9.

Definition 10 (Ring-LWE (R-LWE) [LPR10]). For a ring R of degree n over Z,
let Rq = R/qR be the quotient ring with integer modulus q ≥ 2 and let χ denote
a distribution over the ring R.
Then, Rs,χ denotes the R-LWE distribution that is obtained by generating tuples
of the form (a, b = s · a + e mod q) ∈ Rq × Rq, where a ∈ Rq and s ∈ Rq are
sampled uniformly at random and e is drawn according to distribution χ.

9Note that we follow the notation from Peikert in [Pei16] for better readability. As he
points out, there is a slight difference in writing from the original definition [LPR10], where
a certain fractional idealR∨ is used instead ofR, which is its dual. However, this “tweaked”
version is equivalent to the original form as Peikert [Pei16] also describes.
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Given some m samples from Rq,χ, search R-LWEq,χ describes the problem of re-
covering s (fixed for all samples).
Given a sample of the form (ai, bi) ∈ Rq × Rq, decision R-LWEq,χ describes the
problem of determining whether it is distributed according to eitherRs,χ for a uni-
formly random s ∈ Rq (fixed for all samples) or drawn uniformly at random from
Rq ×Rq, respectively.

R-LWE is considered to be analogous to LWE from a hardness perspective
because it has its own reduction from worst-case lattice problems: R-LWE is
known to be as hard as the SIVP problem over ideal lattices [LPR10]. There-
fore, there is no loss in parameters due to additional reduction from the
original LWE-assumption.
In what follows, the K-SIVPγ problem is defined analogously to the SIVP
problem as in Definition 2 but works over a fractional ideal I in some num-
ber field K that is endowed with some geometric norm as opposed to a
general lattice. Consequently, the desired output is a set of n linearly in-
dependent elements in I whose norms are all at most γ · λn(I) [LPR10,
Definition 2.10].

Lemma 11 (R-LWE-assumption [LPR10], [PRSD17, Corollary 6.3]). Let K be
an arbitrary number field of degree n and R = OK . Let α = α(n) ∈ (0, 1), and
let q = q(n) ≥ 2 be an integer such that αq ≥ ω(1). There is a polynomial-time
quantum reduction from K-SIVPγ to (average-case, decision) R-LWEq,Υα for any

γ = max
{
ω(
√
n/α) · η(I)/λn(I),

√
2n/(λ1(I∨)λn(I))

}
≤ max

{
ω(
√
n log n/α),

√
2n
}
,

where a distribution sampled from Υα is an elliptical Gaussian10.

Note that although R-LWE is commonly instantiated over cyclotomic num-
ber fields, the above hardness result applies to any number field and any
number setting. In fact this recent result from Peikert et al. [PRSD17] is
especially remarkable as Lyubashevsky et al. [LPR10] originally only pro-
vided a quantum reduction from worst-case lattice problems to search R -
LWE. An additional classical search-to-decision reduction allowed to argue
worst-case hardness for decision R-LWE. However, this second reduction
restricted parameters to “prime moduli that split well” [PRSD17] and cyclo-
tomic number fields. Therefore, Peikert et al.’s [PRSD17] result (reflected in
Lemma 11) was able to lift that restriction.
Since R-LWE is understood as the analogue of LWE in the ring setting and
more compact, it has become common practice to propose an LWE-based
scheme with an LWE-based security proof and implement it using R-LWE
in order to improve efficiency and practicality. For instance Lindner and
Peikert [LP11] show that for their encryption scheme LP (see Section 2.3.2)
they are able to reduce the key sizes by a factor of at least 200 when moving
from standard LWE to R-LWE while maintaining the same security level.
In fact, with 2-5 kilobits the key sizes became comparable to modern imple-
mentations of RSA as the authors note [LP11].
Additionally, since the transformation to the ring setting is straightforward,

10We omit the details of the parameter setup for the error distribution here for better
readability. We refer to [PRSD17, Definition 6.1] for more details.
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virtually any LWE-variant can also be defined as a ring version: for example
Brakerski and Vaikuntanathan [BV11b] utilize Applebaum et al.’s [App+09]
result (Lemma 10) and base their schemes on an R-LWE version, where both
the secret and the error are sampled from the error distribution. We will use
this R-LWE variant due to [BV11b] in our schemes in Section 3.7. We state
the problem’s definition next.

Definition 11 (R-LWE variant [BV11b]). For all κ ∈ N, let f(x) = fκ(x) ∈
Z[X] be a polynomial of degree n = n(κ), let q = q(κ) ∈ Z be a prime integer, let
t = t(κ) ∈ Z∗q (thus t and q are relatively prime), let the ring R = Z[X]/〈f(X)〉
and Rq = R/qR, and let χ denote a distribution over the ring R.
The decision Ring-LWE problem asks to distinguish in polynomial time (in κ) be-
tween any l = poly(κ) samples (ai, ai ·s+t ·ei)i∈[l] and l uniform random samples
from Rq ×Rq, where s is sampled from the error distribution χ, ai are uniform in
Rq and the error polynomials ei are sampled from the error distribution χ.

Note that this R-LWE variant inherits the security properties of standard
R-LWE (Lemma 11) [BV11b, Theorem 1].
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Chapter 3

Privacy-Preserving Data
Aggregation

Differential Privacy (DP) built a long research track record (see e.g. [Dwo08;
DR14] for an overview) since its introduction by Dwork [Dwo06] in 20061.
It has recently regained interest in the wider technology community with
companies such as Apple [App] and Google [EPK14; MR17] adopting DP
techniques in their products, see e.g. [Gre16; Nov17].
Private Stream Aggregation (PSA) applies DP techniques to aggregation op-
erations. We propose a novel lattice-based PSA scheme called LaPS, which
extends secure sum aggregation for distributed privacy-sensitive data into
the post-quantum age. We give a high-level overview of our approach (Sec-
tion 3.1) and review related work (Section 3.2) before covering some back-
ground information on DP and the concept of PSA-schemes (Section 3.3).
We recall Shi et al.’s [Shi+11] PSA scheme in particular, which was the first
such proposal, as it will serve as the baseline for the evaluation of our re-
sults (Section 3.4).
Subsequently, we present our lattice-based PSA scheme LaPS. We leverage
the A-LWE problem in combination with additively homomorphic encryp-
tion in order to satisfy strong security guarantees and provide increased
efficiency and scalability compared to Shi et al.’s [Shi+11] PSA scheme.
Our definitions first come in a general flavor (Section 3.5). In particular, the
choice of privacy-preserving noise is up to the application, i.e. it can be im-
plemented in a plug-and-play manner. We formally analyze LaPS’s security
and privacy guarantees within this framework (Section 3.6). Additionally,
we present a concrete instantiation of our scheme (Section 3.7) and its im-
plementation, which demonstrates a performance gain in terms of decryp-
tion runtime of roughly 150 times compared to [Shi+11] for a plaintext space
of 216 and 1000 participants (Section 3.8). We also consider some extensions
of our scheme (Section 3.9). Our findings were presented in [BGZ18].

3.1 Our Approach

PSA schemes aim to solve the problem of aggregating data from multiple
users in a privacy-preserving way without placing trust in the aggrega-
tor. This is achieved by combining privacy-preserving techniques based
on the addition of noise to each user’s input and encryption of the resulting

1The term was first coined by Dwork in [Dwo06] but was actually a culmination of the
following works [DN03; DN04; Blu+05; Dwo+06].
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value. The aggregator can only decrypt the aggregate result, which inher-
ently contains some noise and therefore preserves the privacy of each indi-
vidual user. As mentioned previously, Shi et al.’s [Shi+11] scheme was the
first proposition of a PSA scheme for sum aggregation. It is based on the
Decisional Diffie-Hellman (DDH) assumption and the decryption routine
requires solving a discrete logarithm problem. The scheme’s parameters
have to be chosen such that this step can be efficiently executed, which sig-
nificantly limits the plaintext space (i.e. binary inputs). Resolving this issue
is left as an open problem in [Shi+11].
In Section 2.4.2.1 we presented the A-LWE problem due to El Bansarkhani et
al. [EDB15] as a variant of LWE, where the error term e can be utilized in
order to embed a message m inside it. Recalling Definition 9, an A-LWE
term (A,bT = sTA + eT ) is produced by first encoding message m into a
pseudo-random vector v as v = encode(H(s)⊕m) before sampling e such
that e ← DΛ⊥v (G),αq. The authors show that this error distribution is indis-
tinguishable from the standard discrete Gaussian distribution that is used
in regular LWE. Using the relation v = Ge one can recover the message,
where G = I ⊗ gT is a gadget matrix (see Section 2.4.2.1). Subsequently,
v is decoded to retrieve m. Note that leveraging the error term essentially
as a data container immediately allows for secure encryption. This concept
is more efficient than adding a message to a freshly sampled LWE-term
for each encryption, which corresponds to typical LWE-based encryption
schemes such as Regev’s encryption scheme (see Section 2.3.1).
Therefore, by using A-LWE for our PSA scheme we benefit from higher
bandwidth-encryption and a simple decryption routine, which yields faster
decryption runtime compared to previous approaches such as [Shi+11].
Note that the latter almost comes “for free” when moving away from the
DDH-based system as in [Shi+11], since LWE-based decryption is much
faster than solving a discrete logarithm problem, especially for a large plain-
text space.

3.1.1 Naive Approach

At first, one might consider taking an A-LWE-based encryption scheme
such as the generic scheme proposed by El Bansarkhani et al. [EDB15] and
integrating it as the user’s encryption operation in Shi et al.’s [Shi+11] PSA
scheme - thereby replacing the DDH-assumption by the A-LWE-assumption
and leveraging A-LWE’s efficiency advantages.
However, this idea fails when aggregating the resulting ciphertexts: accord-
ing to A-LWE’s definition (Definition 9) each message m is encoded into a
vector v in a one-time pad style. Unfortunately, the XOR-operation that
is used for the encoding is not additively homomorphic, i.e. the sum of the
ciphertexts will not correspond to the sum of the underlying plaintexts.
Furthermore, decryption as formulated in El Bansarkhani et al.’s [EDB15]
generic scheme requires knowledge of the secret s. Therefore, the aggrega-
tor’s decryption would necessitate having the user’s secret key. However,
this violates the basic requirement of PSA schemes as it would entail plac-
ing trust in the aggregator.
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3.1.2 A solution that does work

In the naive construction it turns out that the main problem lies in the way
the message is encoded in the A-LWE term. Therefore, instead of encoding
as El Bansarkhani et al. [EDB15] define it, we generate the encoding v by
applying any additively homomorphic function2 to the message. From a
security standpoint, the resulting vector v is only required to be indistin-
guishable from random. As long as this requirement is met, the hardness
of the problem is preserved. In particular, A-LWE reduces from the LWE-
assumption and by extension from worst-case lattice problems.
We achieve indistinguishability from random by formulating the encoding
step as the encryption routine of an additively homomorphic encryption
scheme with pseudorandom ciphertexts. The vector v then corresponds
to the resulting ciphertext. Finally, correct decryption of this “inner” en-
cryption allows the aggregator to correctly retrieve the aggregate result by
decrypting the sum of the ciphertexts. Therefore, our generalized version of
A-LWE maintains security while ensuring correct aggregation of the user’s
output ciphertexts. Note that we view this additively homomorphic en-
cryption scheme as a building block in our general PSA scheme. As a result,
our construction allows for a flexible instantiation of individual building
blocks based on the requirements of the application.

Remark 1. Note that the idea of using LWE for PSA schemes in itself is not new:
Valovich [Val16] bases his PSA scheme on a variant of LWE, where the error in
the LWE-term is drawn from a Skellam distribution [Ske46] and serves as privacy-
preserving noise at the same time. Thus his scheme addresses both security and
privacy at once. The LWE-based construction also allows him to resolve the open
problem from [Shi+11] regarding the plaintext length.
However, in order to prove hardness of his LWE variant, Valovich uses the lossy
code construction due to Döttling and Müller-Quade [DM13] (see Section 2.4.2)
and the resulting parameter constraints decrease the efficiency of the scheme. Al-
though one would typically resort to implementing the scheme in the ring setting
in order to improve efficiency in practice, Valovich’s [Val16] LWE version does not
seem to translate into a ring variant as the author remarks. Therefore, the practical
performance of the scheme remains unclear.
From a formal point of view, his reduction from LWE also results in a slight loss
in tightness with respect to worst-case lattice problems. In contrast, our scheme’s
security is based directly on the LWE-assumption and does not require increased
parameters. Additionally, our construction translates into the ring setting in a
straightforward way and our experimental results show that we can indeed benefit
from this setting in terms of efficiency.

3.2 Related Work

In this section we review several areas of previous work that are relevant
in evaluating our PSA scheme LaPS. We discuss how our work fits into
the context of each field and highlight how we advance the state-of-the-art.
Note that we will cover some of these topics in more technical detail later
on. However, here we highlight particular lines of work that aim to solve

2Here, we refer to additive homomorphism in the sense that the addition of the func-
tion’s outputs corresponds to the addition of the function’s respective inputs.
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a similar question as ours, focusing on the different solution concepts in
comparison to our contributions.

PSA. After Shi et al.’s [Shi+11] introduction of PSA for sum aggregation
in 2011 there have been a number of follow-up works extending the capa-
bilities of the scheme. For instance, Jung et al. [Jun+13] generalize Shi et
al.’s [Shi+11] scheme to evaluate a general multi-variate polynomial function.
Note that this scheme is still based on the DDH-assumption and therefore
has the same plaintext size limitations as in [Shi+11].
Chan et al. [CSS12] address the problem of user failures, i.e. dynamic joins
and leaves. Their solution could actually be applied in order to extend ours,
however this additional functionality comes at the cost of accuracy due to
high accumulated aggregation error. Li and Cao [LC13] achieve better ac-
curacy but incur a higher communication cost: they order the PSA users in
an interleaved ring structure, where each user only adds a small amount
of noise - consequently, when some users drop out, only a subset of the re-
maining ones have to update their keys. Our scheme, on the other hand,
does not require a trade-off between accuracy and communication cost.
Note that Li and Cao’s scheme as well as its extension in order to compute
the minimum [LCP14] are based on symmetric-key cryptography.

Local DP. The idea of local DP solutions is to protect the privacy of each
sensitive data source in a distributed setting at the user’s end before it is col-
lected and evaluated. By applying privacy mechanisms locally, privacy is
ensured in the DP sense. PSA schemes belong to solutions with that mis-
sion. However, they provide both privacy guarantees with respect to the
aggregate output and security guarantees with respect to the individual
user ciphertexts by combining encryption techniques with DP-mechanisms
- different from other solutions that solely focus on the privacy part.
For instance, Erlingsson et al.’s [EPK14] RAPPOR system, which we briefly
recall below, is an example of a deployed local DP solution but its secu-
rity guarantees remain somewhat unclear: RAPPOR achieves the goal of
privacy-preserving frequency estimation by applying a generalized version
of the randomized response technique to each user’s input before publish-
ing it to the server. Concretely, the data that is collected is a set of attributes
that correspond to e.g. the user’s browser settings. These are represented as
a binary vector, where each value is a predicate for a given attribute, and the
user encodes it using Bloom filters before creating a randomized response,
which is the user’s DP output. After all users’ responses are collected, the
final result, i.e. frequencies of certain attributes, is calculated in a sophisti-
cated decoding step based on hypotheses testing, least-squares solving and
Lasso regression [Tib96].
RAPPOR is a completely user-based local DP construction and it does not
require a trusted third party, which is different from our scheme as we
assume a trusted setup (see Section 3.6.3). Besides the authors’ in-depth
analysis of DP, it is unclear what security guarantee is provided by the uti-
lized Bloom filters. Although no attacks are known against the RAPPOR
scheme, some attacks have been proposed against other Bloom-filter based
constructions, such as a privacy-preserving record linkage system [Nie+14]
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or a network protocol for packet forwarding, where the attack exploits in-
formation leaked from the utilized Bloom filters [AAS14].
Furthermore, Erlingsson et al.’s discussion of RAPPOR’s attack model is
based on the information leakage from the users’ outputs and assesses its
privacy implications [EPK14, Section 6]. In contrast, our construction elim-
inates this concern altogether as each user’s output is encrypted. Therefore,
we can rely on the security guarantees of our scheme, which we prove in
our formal security analysis. In fact, our example instantiation allows to
conjecture post-quantum security.
Finally, observe that RAPPOR is optimized for categorical input data, with
the specific goal of frequency estimation. For instance the choice of ran-
domized response over other privacy mechanisms was made with this ap-
plication in mind as the authors state [EPK14]. It can be extended to nu-
meric data by formulating the predicates as ranges up to the desired value.
However, in order to achieve a fine-grained distinction, as it would be ap-
propriate for the computation of the sum, a large expansion of the input
vectors may become necessary. Our construction LaPS on the other hand,
processes numeric input values in a straightforward manner as the plain-
text for encryption.

Multi-party computation and fully homomorphic encryption. The gen-
eral idea of multi-party computation (MPC) is to allow for the execution
of computations over distributed data. Consequently, the involved par-
ties learn the output of the computation without revealing any individual
user’s input. This compelling concept has become a thriving field of re-
search with a long history [Yao82; Yao86; GMW87], see e.g. [Gol04, Chap-
ter 7] for an overview. Observe that MPC-techniques have a very simi-
lar goal to PSA schemes, therefore it is natural to consider an application
of MPC to the PSA setting. Here, we discuss qualitative and conceptual
differences between some of the resulting MPC-based constructions and
our LaPS scheme.
Danezis et al. [Dan+13] leverage secret sharing-based MPC techniques due
to [Dam+06; Dam+12] in order to build a PSA scheme that allows for the
computation of non-linear aggregation functions. They specifically design the
scheme for the application to smart metering and assume a set of trusted au-
thorities that collaboratively compute the desired function while ensuring
the privacy of intermediate results. Therefore, each user distributes shares
of her privacy-sensitive data to all authorities. The authorities then com-
pute basic linear aggregation functions locally and finally combine their
results in order to produce the output aggregate. However, the protocol
requires interaction among the parties in order to compute a non-linear
function, which with higher complexity increases the number of commu-
nication rounds. Our scheme is non-interactive and no additional set of
trusted parties is required. On the other hand, we only support addition
operations and we require a trusted setup.
MPC protocols generally do not account for a separate aggregating party.
Therefore, it would require a tweak in order to apply them to PSA. Con-
cretely, one may consider using threshold fully homomorphic encryption, e.g.
Asharov et al.’s [Ash+12] TFHE scheme, which utilizes LWE-based encryp-
tion together with the fully homomorphic encryption schemes due to Brak-
erski et al. [BV11a; BGV12]: in this scheme all N users each possess a secret



30 Chapter 3. Privacy-Preserving Data Aggregation

and a public key share, which are combined into a common public encryp-
tion key after two key generation rounds. Subsequently, homomorphic op-
erations can be executed on the generated ciphertexts. In the PSA setting,
one would define a dedicated party as the aggregator, who would receive
the combination, i.e. the sum, of the users’ secret key shares, which then
functions as his PSA decryption capability. Consequently, the aggregator
could decrypt any ciphertext that corresponds to a function, e.g. the sum,
of individual ciphertexts from any of the N users.
This also implies that the aggregator will be able to decrypt the sum of any
subset of all N users’ ciphertexts, including individual ones. This fact vio-
lates the core security notion of PSA schemes, which requires that the ag-
gregator learns nothing but the final aggregate of all users’ values. Further-
more, the TFHE scheme [Ash+12] is based on Regev’s encryption scheme
(see Section 2.3.1), which only allows for single-bit encryption. In contrast,
our PSA scheme allows for a significantly larger plaintext space and prov-
ably satisfies the security requirements of PSA schemes.

3.3 Preliminaries

3.3.1 Differential Privacy

When surveying a group of people on potentially privacy-sensitive topics
and assuming you ask yes/no questions, how do you make sure that the re-
sponses are indeed honest? If for instance the entire group responds “Yes”
to the question “Have you smoked in the past?”, the resulting statistic will
inevitably leak information about the surveyed group although the indi-
vidual responses were given anonymously. In fear of consequences, the
respondents might lie.
Differential Privacy (DP) addresses exactly such scenarios where statistical
queries are made on datasets containing privacy-sensitive data. The under-
lying idea is that useful information can be computed about a given popu-
lation but no information is leaked about any particular participant. More
formally, the output is considered DP iff one cannot tell whether or not
a given individual was part of the surveyed population. Hence, by com-
paring two databases whose entries are equal except for one data record,
so-called adjacent databases, a DP statistic will not reveal a significant dif-
ference in the output. This is achieved by applying some privacy mechanism
M to the raw data in such a way that the published output fulfills the for-
mal notion of (ε, δ)-DP, as defined next:

Definition 12 ((ε, δ)-DP)[DR14]). A randomized algorithmM with domain Dn
and rangeRk is (ε, δ)-DP if for all adjacent databases D0, D1 and for all R ⊆ Rk:

Pr[M(D0) ∈ R] ≤ exp(ε) Pr[M(D1) ∈ R] + δ,

where the probability space is over the coin flips of the mechanismM. If δ = 0, we
say thatM is ε-DP.

One of the aspects that distinguishes DP from other notions of privacy is
its formal approach to quantifying a given level of privacy with concrete
parameters, namely ε and δ. Intuitively, they give a ratio of likelihood: the
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probability of retrieving a certain output from applying the privacy mecha-
nismM on inputD0 versus getting the same result from applyingM onD1.
This relation is called privacy loss and ε denotes its absolute upper bound
with probability at least 1− δ. Hence, typically small values are desired for
ε and δ.
In general, a privacy mechanism produces a DP output by slightly distort-
ing the input, e.g. by adding noise to the input. We present the arguably
most common privacy mechanism, which utilizes Laplace distributed noise
in order to guarantee DP. In what follows, f denotes the statistical query
and ∆f is its sensitivity, which expresses how much changing a single entry
in a given database affects the outcome of the query.

Definition 13 (Laplace Mechanism (MLap) [DR14]). Let the Laplace distribu-
tion with scale σ and probability density function Lapσ(x) = 1

2σ exp(−|x|/σ) be
denoted as Lapσ. Given any function f : Dn → Rk, the Laplace mechanism is
defined as:

MLap(D, f(·), ε) = f(D) + (Y1, . . . , Yk),

where Yi are i.i.d. random variables drawn from Lapσ with σ = ∆f/ε.

MLap is best suited for numerical queries, such as computing the sum of nu-
merical data records, and indeed it guarantees ε-DP [DR14, Theorem 3.6].
Circling back to our example above, one may suggest to add noise to ev-
ery given response and thereby preserve privacy of the statistical output as
it will largely deviate from the count of actual responses. However, that
sort of statistic is barely useful as the repeated addition of noise will lead
to a significant distortion of the output. Therefore, accuracy is another im-
portant criterion in judging the quality and suitability of a given privacy
mechanism. We restate the formal definition next.

Definition 14 ((α, β)-accuracy [UV11]). For a query f : Dn → Rk, the output
of a mechanismM achieves (α, β)-accuracy if for all D ∈ Dn:

Pr[|M(D)− f(D)| ≤ α] ≥ 1− β.

The probability space is defined over the randomness ofM.

Similar to (ε, δ)-DP, the parameter α denotes an absolute upper bound on
the maximum deviation ofM’s output from the true result with probability
at least 1− β.

Local DP. In fact, for our survey problem it is not only crucial what pri-
vacy mechanism is applied but also how it is applied. If the surveyed re-
sponses are centrally collected and treated using some privacy mechanism
before being published, it may be acceptable to add a single Laplace distri-
buted sample to the output. For a sufficiently large number of participants,
the result would only be slightly perturbed. However, if DP is desired for
each individual response as it is collected in order to compute the final out-
put, this alternative is not an option. This additional requirement has been
termed local differential privacy and is especially relevant when privacy-
sensitive data is collected from a distributed set of databases, i.e. several
different users.
An appropriate technique for our example problem is randomized response,
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which was specifically developed in order to protect the privacy of survey
participants and it is one of the first known privacy mechanisms [War65].
Instead of answering the question directly, the respondent flips a coin and
only answers truthfully if tails comes up. In case of heads, she flips another
time and subsequently responds “Yes” for heads and “No” otherwise. The
idea is to provide “plausible deniability” [DR14] of an answer to the partici-
pant through the probabilistic construction of the mechanism. At the same
time, the true fraction of “Yes” answers can be estimated accurately with
overwhelming probability.
An example of this mechanism is used in practice in Google’s RAPPOR
technology introduced by Erlingsson et al. [EPK14]. As we have discussed
previously, it extends randomized response from binary answers to sets of
categoric responses in order to estimate frequencies of certain users’ Google
Chrome settings in a privacy-preserving manner. In addition to providing
local DP, Erlingsson et al. [EPK14] show efficiency in their experimental re-
sults that are collected from millions of users.

3.3.2 Aggregation With Untrusted Aggregator

DP is traditionally achieved by applying a privacy mechanism to some
given sensitive data statistic before publishing it. However, for scenarios
with multiple parties, where each wishes to protect her privacy as data is
collected, this process is undesirable.
Private Stream Aggregation (PSA) aims to provide a mechanism for aggrega-
tion, e.g. computing the sum of sensitive data records, where the individual
users or participants do not trust the aggregator. We highlight the conceptual
difference between the standard privacy model with a trusted aggregator
and the PSA approach with an untrusted aggregator in Figure 3.1.
In a PSA protocol each participant Ui applies a privacy mechanism to their
sensitive data Di, resulting in a noisy version of their data Xi, before en-
crypting it and providing the ciphertext to the aggregator A. Subsequently,
A computes the desired output by aggregating the ciphertexts and decrypt-
ing the result. This result is inherently DP and can be directly published.

At:
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FIGURE 3.1: Comparison of privacy models
Left: Standard DP-model, right: PSA model [BGZ18].

Shi et al. [Shi+11] introduced the notion of PSA schemes in 2011. We restate
their formal definition of a PSA scheme next.

Definition 15 (PSA Scheme [Shi+11]). Let [n] := {1, 2, . . . , n} be the set of
users participating in the aggregation each holding values from some domain D.
Let f : Dn → R be an aggregation function with some rangeR. Let χ : D×Ω→
D denote some randomization function that adds the two input values from D and
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Ω, where Ω is some sample space of the randomization noise. Let T be the set of
time steps used throughout execution. A PSA scheme consists of the following
PPT-algorithms:

• (param, {ski}, skA)← Setup(1κ): Takes in a security parameter κ and out-
puts public parameters param, a private key ski for each participant, as well
as an aggregator capability skA needed for decryption of aggregate statistics
in each time step t ∈ T . Each participant i obtains the private key ski and
the data aggregator obtains the capability skA.

• ci,t ← NoisyEnci(param, ski, t, d, r): During time step t, each participant
calls the NoisyEnci algorithm to encode its data d with noise r. The result is
a noisy encryption c of d randomized with the noise r.

• f(x) ← AggrDec(param, skA, t, c1,t, c2,t, . . . , cn,t): The decryption algo-
rithm takes in the public parameters param, a capability skA, and cipher-
texts c1,t, c2,t, . . . , cn,t for the same time step t. For each i ∈ [n], let ci,t =
NoisyEnci(ski, t, xi), where each xi := χ(di, ri) for some randomization
function χ. Let d := (d1, . . . , dn) and x = (x1, . . . , xn). The decryption al-
gorithm outputs f(x) which is a noisy version of the targeted statistics f(d).

Note that we sometimes abuse notation and only require the user to input
her raw value d to NoisyEnc (as opposed to both d and r as in Definition 15)
when noise r is generated within the routine. Furthermore, we simplify
notation by omitting the time-step t in the subscripts.

3.3.2.1 Aggregator Obliviousness

The guarantee of PSA schemes is centered around restricting the knowl-
edge gain of the aggregator to a minimum, i.e. the aggregator does not
learn anything but the noisy output. The fact that each participant only
transmits a noisy version of their data in the first place, ensures that the
output does not leak information about any individual participant’s data
in the DP sense. The other crucial component is encryption: each partici-
pant has an individual encryption key ski. The aggregator’s counterpart,
i.e. A’s decryption capability consisting of his decryption key skA, allows A
to only decrypt the final result and none of the individual users’ ciphertexts
on their own. In other words, A has to aggregate the input ciphertexts in
order to retrieve the result.
Shi et al. [Shi+11] capture this guarantee with the notion of aggregator obliv-
iousness, which we formally state in Definition 16. Note that while provid-
ing DP of the aggregate output as well as the individual inputs is a goal
of this construction, the privacy guarantee comes from the deployed pri-
vacy mechanism. Therefore, aggregator obliviousness is a security notion3.
Observe that PSA schemes satisfy the notion of local DP (see Section 3.3.1).
However, that particular terminology is rather recent - Shi et al. refer to
“distributed differential privacy” [Shi+11].

Definition 16 (Aggregator Obliviousness [Shi+11]). A PSA scheme is aggre-
gator oblivious if no PPT adversary has more than negligible advantage in κ in
winning the following security game:

3We will address both security and privacy when instantiating our PSA scheme but we
refer back to Definition 12 for the privacy guarantee based on the utilized privacy mecha-
nism.
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Setup. Challenger runs the Setup algorithm, returns the public parameters
param to the adversary.

Queries. The adversary makes the following types of queries adaptively.

– Encrypt. The adversary may specify (i, d, r) and ask for the ciphertext.
The challenger returns the ciphertext NoisyEnci(param, ski, t, d, r) to
the adversary.

– Compromise. The adversary specifies an integer i ∈ {0, . . . , n}. If
i = 0, the challenger returns the aggregator’s decryption key skA to
the adversary. If i 6= 0, the challenger returns ski, the secret key of the
ith participant, to the adversary.

– Challenge. This query can only be made once throughout the game.
The adversary specifies a set of participants U and a time t, such that
i ∈ U has not been previously compromised.
For each user i ∈ U the adversary chooses two plaintext-noise pairs
(di, ri) and (d′i, r

′
i) and sends them to the challenger. The challenger

flips a random bit b. If b = 0, the challenger computes ∀i ∈ U :
ci = NoisyEnci(param, ski, t, di, ri). If b = 1, ∀i ∈ U : ci =
NoisyEnci(param, ski, t, d

′
i, r
′
i) and returns {ci} to the adversary.

Guess. The adversary guesses, whether b is 0 or 1.

We say that the adversary wins the game if she correctly guesses b and if she com-
promised the aggregator (i.e. possesses the decryption key skA,) then

∑
i∈U di +

ri =
∑

i∈U d
′
i + r′i must hold.

Note that if the aggregator colludes with a subset of the participants or is leaked
some of the plaintexts4, then he can inevitably learn the sum of the remaining par-
ticipants’ values. We require that in this case the aggregator learns no additional
information about these participants’ data. However, this requirement is achieved
by the privacy guarantees of the scheme.

3.3.2.2 Aggregator Unforgeability

Aggregator obliviousness denotes the basic security requirement for PSA
schemes and essentially ensures that the aggregator cannot retrieve any
result but the noisy aggregate of the users’ inputs. However it does not
protect from the aggregator manipulating that result before publishing it.
Therefore, one may additionally desire public verifiability of the aggregator’s
output. This notion is referred to as aggregator unforgeability.
The formal definition was first introduced by Leontiadis et al. [Leo+15]
and extends aggregator obliviousness with public verifiability. In other
words, this extended version of the scheme weakens the assumption of an
honest-but-curious aggregator to a dishonest aggregator and therefore pro-
vides stronger guarantees. Note that depending on the adversarial model,
i.e. the assumed capabilities of the adversary, the definitions of aggrega-
tor unforgeability range from strong [Leo+15] to weak [Emu17] unforgeabil-
ity. We restate strong aggregator unforgeability according to Leontiadis et
al. [Leo+15] in Definition 17.
Concretely, each user generates a tag that she transmits together with her

4This applies analogously to the adversary who compromises all of the secret keys (in-
cluding the aggregator’s) but one.
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ciphertext to the aggregator. The aggregator then retrieves the aggregate
result and computes a proof of correctness by aggregating the provided tags.
The verification routine VerifySum checks the validity of the aggregate out-
put, together with the proof of correctness σ and a public verification key
vk. A given PSA construction ensures aggregator unforgeability iff the ag-
gregator can only produce a valid proof when using all of the provided user
tags and when aggregating correctly, i.e. according to the protocol. In what
follows, we denote the aggregate output by Xt and xi,t denotes the result
of randomizing data d with the noise r following notation in [Emu17] and
all other parameters are as in Definition 15.

Definition 17 (Aggregator Unforgeability [Leo+15]). For any PPT adversary
A and a security parameter λ ∈ N, we define the experiment ExpAUA (λ) as follows.

• (param, skA, {ski}ni=1, vk)← Setup(1λ)

• (t∗, Xt∗ , σt∗)← AOenc(param, skA, vk)

• If one of the following holds, then return 1 and 0 otherwise

(Type I): VerifySum(param, t∗, Xt∗ , σt∗ , vkt∗) = 1
∧ No encryption oracle is called at t∗

(Type II): VerifySum(param, t∗, Xt∗ , σt∗ , vkt∗) = 1
∧Xt∗ 6=

∑n
i=1 xi,t∗ mod M

The encryption oracle Oenc takes a tuple (i, t, di,t, ri,t) as the input, and returns
(ci,t, σi,t)← NoisyEnc(param, t, di,t, ri,t, ski).
We say that a PSA scheme is aggregator unforgeable if the advantage AdvAUA (λ) :=
Pr[ExpAUA (λ) = 1] is negligible in λ for any PPT adversary A.

Note that public verifiability refers to the fact that the verification can be
executed by anyone, i.e. the verification routine and the verification key are
public.

3.3.3 Generalized A-LWE and Gaussian Distribution

We generalize the A-LWE problem from the original definition [EDB15] as
described previously, where any function f embeds the message m such
that v = f(m) as long as output v is indistinguishable from random. Hence,
whenever we refer to A-LWE in the context of our PSA scheme, we refer to
our generalized version as defined below. Therefore, we may abuse nota-
tion by reusing symbols from Definition 9. Note that in the following we
refer to the Gaussian parameter αq as σ for better readability. We present
the resulting definition next.

Definition 18 (Generalized A-LWE Distribution (adapted from [EDB15])).
Let κ, λ, q, l, x be integers, where l = dlog qe and λ = x · l. Let f be some function
where the output is indistinguishable from random. Let gT = (1, 2, . . . , 2l−1) ∈
Zlq and G = Iλ/l ⊗ gT ∈ Zλ/l×λq . For s

$← Zκq and A
$← Zκ×λq , define the A-

LWE distribution LA-LWE
κ,λ,σ (m) with m ∈ Zq to be the distribution over Zκ×λq × Zλq

obtained as follows:

• Set v = f(m) ∈ Zλ/lq .

• Sample e← DΛ⊥v (G),σ ∈ Zλq .
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• Return (A,bT ) where bT = sTA + eT .

Note that we only make use of the decision variant of the A-LWE problem
here. The search variants can be defined analogously to Definition 9.

Definition 19 (Generalized decision A-LWE (adapted from [EDB15])). Let
κ, λ, q be integers. Let f be some function with pseudo-random output. The
decision A-LWEfκ,λ,σ problem asks to distinguish in polynomial time (in κ) between
samples (Ai,b

T
i ) ← LA-LWE

κ,λ,σ (m) and uniform random samples from Zκ×λq × Zλq
for a secret s $← Zκq and some m ∈ Zq.
We say that decision A-LWEfκ,λ,σ is hard if all polynomial time algorithms solve
the decision A-LWEfκ,λ,σ problem only with negligible probability.

In order to prove security of the resulting ciphertext we will use Lemma 13,
which states that the A-LWE error term distribution is indistinguishable
from the discrete Gaussian distribution under certain conditions. And in
order to show that our construction fulfills that premise, we will use the
bound provided by Lemma 12. Note that we restate a simplified version as
formulated in [EDB14, Lemma 3].

Lemma 12 (Bound on smoothing parameter [GPV08; EDB14]). Let Λ ⊂ Rn
be a lattice with basis B = b · I and let ε > 0. Then the smoothing parameter ηε(Λ)
is upper bounded as follows: ηε(Λ) ≤ b ·

√
ln(2n(1 + 1/ε))/π.

Lemma 13 ([EDB15]). Let M ∈ Za×bq be an arbitrary full-rank matrix. If the
distribution of v ∈ Zaq is computationally indistinguishable from the uniform dis-
tribution over Zaq , then DΛ⊥v (M),r is computationally indistinguishable from DZb,r
for r ≥ ηε(Λ⊥(M)).

3.4 Shi et al.’s PSA Scheme

We detail the first proposed PSA scheme for sum aggregation from Shi et
al. [Shi+11] as it created the basis for this line of research and will be an
important guideline in evaluating our PSA scheme. Note that the privacy
mechanism in their scheme uses Geometric noise, which is essentially equiv-
alent to a discrete version of the Laplace mechanism (see Definition 13).

Definition 20 (Shi et al.’s PSA Scheme [Shi+11]). Let G be a cyclic group of
prime order p, where Decisional Diffie-Hellman is hard. Let H : Z → G be a
hash function modeled as a random oracle. Let Geom(σ) denote the symmetric
geometric distribution over integer values with the probability mass function at k:
σ−1
σ+1 · σ

−|k|, where σ > 1. Let β ≤ 1.

• (param, {ski}, skA) ← Setup(1κ): A trusted dealer chooses a random gen-
erator g ∈ G, and n + 1 random secrets s0, s1, . . . , sn ∈ Zp such that
s0 + s1 + s2 + . . . + sn = 0. The public parameters param := g. The
aggregator obtains the capability skA := s0, and participant Ui obtains the
secret key ski := si.

• ci,t ← NoisyEnci(param, ski, t, di): Each participant i takes her data di and
adds some noise ri to it, s.t. xi = di + ri mod p ∈ Zp, where ri is sampled
as follows:

ri =

{
0 with probability 1− β
Geom(σ) with probability β.
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She computes the following ciphertext:

ci,t ← gx ·H(t)ski .

• V ← AggrDec(param, skA, t, c1,t, c2,t, . . . , cn,t): Compute

V ← H(t)skA
n∏
i=1

ci,t.

Note that Shi et al. [Shi+11] assume a trusted Setup in order to securely dis-
tribute the generated secret keys. As the authors point out, this can be
achieved in practice by a trusted third party or by leveraging standard se-
cure Multi-Party Computation techniques.

Security. Each user’s noisy value xi is encrypted by placing it in the expo-
nent in a discrete log-style, where security is based on the hardness of the
Decisional Diffie-Hellman problem as stated in Lemma 14.

Lemma 14 ([Shi+11, Theorem 1]). Assuming that the Decisional Diffie-Hellman
problem is hard in group G and that the hash function H is a random oracle,
then the PSA scheme according to Definition 20 satisfies aggregator obliviousness
security in the “encrypt-once” model.

Note that Shi et al.’s [Shi+11] PSA scheme is set up in a time-step based
manner, i.e. the users aggregate values during a certain time-step t and re-
peat the process if they want to share more values later on. The encryption’s
security depends on the current time t, since it serves as fresh randomness.
The ciphertext could be compromised if a user provides multiple encryp-
tions under the same parameters, specifically during the same time-step t.
Therefore, Shi et al. [Shi+11] restrict their security statement to the encrypt-
once model, which ensures that encryption only takes place once per user
and time step.

Correctness. The fact that the product of the ciphertexts ci corresponds to
the sum of the values xi in the exponent ensures correctness. Observe that
the sum of the users’ secret encryption keys and the aggregator’s decryp-
tion key is 0, which cancels out the remaining factor

∏n
i=1H(t)skA+

∑n
i=1 ski

in V during decryption (see AggrDec in Definition 20).
Eventually, the aggregator is left with g

∑n
i=1 xi , which he decrypts by solv-

ing the discrete logarithm of V base g. Shi et al. [Shi+11] suggest a brute-
force approach or Pollard’s lambda method (see e.g. [MOV96]). Note that
for this to be possible, the domain of the input values, i.e. the plaintext
space, has to be significantly restricted. The authors’ [Shi+11] practicality
analysis in fact assumes 1-bit participant inputs.

Privacy. Finally, privacy is preserved by incorporating Geometric noise
into each user’s input. The probability at which each user indeed adds
noise depends mainly on the fraction of assumed uncompromised partici-
pants γ:
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Lemma 15 ([Shi+11, Lemma 1]). Let ε > 0, 0 < δ < 1 and σ = exp(ε/∆),
where ∆ is the width of participant data in Zp. Suppose at least γ fraction of
participants are uncompromised. Then, the aggregate output generated by the PSA
scheme according to Definition 20 is (ε, δ)-DP for β = min{ 1

γn log 1
δ , 1}.

3.5 General LaPS Scheme

The core idea of LaPS that makes it a true PSA scheme that satisfies aggre-
gator obliviousness, is the way we encrypt the user’s plaintext into an ad-
ditively homomorphic ciphertext and essentially wrap this ciphertext into
an A-LWE-term. The latter is a ciphertext in itself and serves as the final
output. Consequently, the aggregator’s decryption capability consists of
two parts. The two aggregator decryption keys can be understood as the
tools to unwrap the encryption layers of the aggregate ciphertext in reverse
order: using the first key the inner ciphertext is recovered from the A-LWE
term and with the second key the plaintext is revealed. Observe that when
the aggregator receives all user ciphertexts, the first key is designed in such
a way that it can only decrypt the sum of all ciphertexts - specifically no
partial sums nor individual ciphertexts.
It is essential that this process can only be executed in this order. Only the
sum of all ciphertexts can be decrypted with the first key. Due to the sum-
mation the contained additively homomorphic ciphertexts - and therefore
the underlying plaintexts - are summed as well. Therefore, the aggregator
can only recover the sum of the plaintexts, i.e. the noisy sum of the user
values.
On a technical level, a user ciphertext is of the form (A,bT ), where A is
a public parameter and bT = sTA + eT . s is the secret key and e is the
error term that is sampled from distribution DΛ⊥v (G),r, where v encodes the
plaintext messagem. Using the public gadget matrix G one can recover the
message via Ge ≡ v mod q.
Based on our generalized version of the A-LWE problem (see Definition
19) the encoding step from m to v can be instantiated with any additively
homomorphic function that produces a pseudo-random output. Therefore,
we view this step as the encryption routine in the cryptographic scheme
AHOM = (Gen,Enc,Dec). We require it to be additively homomorphic
in order to ensure correctness of our PSA scheme and it has to produce
pseudo-random ciphertexts such that v is indeed pseudo-random, as de-
tailed in Definition 21. Note that here we require additive homomorphism
in the sense that the sum of the ciphertexts corresponds to the sum of the
plaintexts, e.g. the discrete log-style encryption as in [Shi+11] could not be
plugged in here.
Altogether, each user i with input di adds privacy-preserving noise ri cre-
ating a noisy version of her data xi = di + ri mod q. Then she encrypts
xi with AHOM.Enc using the public key pk from AHOM.Gen. The resulting
“internal” ciphertext is vi and is additively homomorphic. vi is then uti-
lized to sample the error ei in the A-LWE term ci,A = sTi A + eTi , which
corresponds to the final user ciphertext and output.
Note that si is an individual encryption key that is unique to each user and
kept secret. When summing up all users’ ciphertexts, the aggregate cipher-
text will be an encryption of the sum of the plaintexts under the sum of the
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secret keys. Therefore, in order to ensure that the aggregator can decrypt
(only) the sum of the ciphertexts, his decryption key skA1 corresponds to
the negative sum of the users’ secret keys. By computing skTA1

A and adding
it to the aggregate ciphertext, the aggregator retrieves the sum of the error
terms

∑N
i=1 ei. Using the relation between the gadget matrix G and vi due

to the construction of the error distribution, he retrieves the sum of the vi’s,
i.e. by multiplying G with

∑N
i=1 ei. Finally, the sum of these inner cipher-

texts is decrypted by invoking AHOM.Dec with skA2 , which corresponds to
the secret key generated from AHOM.Gen. It is the second part of the aggre-
gator’s decryption capability.
Observe that in our case the decryption of the A-LWE term is simplified to a
single addition, which essentially eliminates the sTA summand in the term.
El Bansarkhani et al.’s [EDB15] definition of their A-LWE-based generic en-
cryption scheme requires a trapdoor construction in order to recover both
the secret and the error term. This step is the most computationally inten-
sive operation of the scheme and largely determines the overall efficiency
as the authors note [EDB15]. Our construction minimizes the effort to a sin-
gle addition due to the definition of the aggregator’s secret key.
In what follows, we first present the formal definition of our general PSA
scheme LaPS before analyzing correctness, and security and privacy.

Algorithm 1 Algorithm Sample to sample from Λ⊥(gT ) [EDB15]

Require: gT ∈ Zlq, w ∈ Zq, r
Ensure: t = (t0, . . . , tl−1)T ∈ Λ⊥w(gT ) distributed according to DΛ⊥w(gT ),r

a0 := w
for j = 0, . . . , l − 1 do

tj ← D2Z+aj ,r

aj+1 = (aj − tj)/2
end for

Definition 21 (Lattice-based PSA (LaPS)). Let κ be a security parameter, N ∈
N the number of participants and let β ∈ (0, 1]. Let χ be a discrete noise distri-
bution. Let AHOM = (Gen,Enc,Dec) be an asymmetric encryption scheme with
pseudo-random ciphertexts that is additively homomorphic, such that

AHOM.Dec(sk,
N∑
i=1

AHOM.Enc(pk,mi)) = AHOM.Dec(sk,AHOM.Enc(pk,
N∑
i=1

mi)).

A Lattice-based PSA scheme LaPS = (Setup, NoisyEnc, AggrDec) consists of
the following PPT-algorithms:

• ({A,gT , pk}, {si}, (skA1 , skA2)) ← Setup(1κ): Generate the public pa-
rameters A, gT and pk as follows and distribute them to all parties.

– Draw A uniformly at random from Zκ×λq , where l = dlog qe and λ =
x · l for some positive integer x.

– Set vector gT = (1, 2, . . . , 2l−1) ∈ Zlq.
– Generate (pk, sk)← AHOM.Gen and

extract public key pk ∈ (pk, sk).

For all i ∈ {1, . . . , N} draw si
$← Zκq and send it to user i as her secret key.

The aggregator’s secret decryption key is the tuple (skA1 , skA2), where
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– skA1 = −
∑N

i=1 si and

– skA2 = sk ∈ (pk, sk)← AHOM.Gen.

• ci,A ← NoisyEnci({A,gT , pk}, si, di): Each user i takes her data di,A ∈ D
and adds some noise ri to it, such that xi = di + ri mod q ∈ Zq.

– ri is sampled as follows:

ri =

{
0 with probability 1− β
Y with probability β

, where Y ← χ.

– Compute vi = AHOM.Enc(pk, xi) ∈ Zλ/lq .

– Invoke Algorithm 1 for each component of vi:
ei = (Sample(gT , vi1 , σ) , . . . , Sample(gT , viλ/l , σ)). Hence, ei ←
DΛ⊥vi (G),σ ∈ Zλq .

Output the ciphertext ci,A = sTi A + eTi ∈ Zλq .

•
∑N

i=1 xi ← AggrDec({A,gT }, (skA1 , skA2), {c1,A, . . . , cN,A}): Receiv-
ing the users’ ciphertexts {ci} the aggregator computes c =

∑N
i=1 ci,A.

– Compute e =
∑N

i=1 e
T
i = c + skTA1

A.

The aggregator retrieves the noisy sum of the users’ values via

N∑
i=1

xi = AHOM.Dec(skA2 ,G · e mod q),

where G = Iλ/l ⊗ gT ∈ Zλ/l×λq .

Observe that Shi et al.’s [Shi+11] initial notion of PSA schemes provides for a
time-step based aggregation (see Section 3.4). Each time-step t conveniently
also serves as fresh randomness in their scheme, hence it actually has to be
re-sampled for each encryption resulting in the encrypt-once assumption
of their security statement (Lemma 14). In contrast, our scheme does not
require such an assumption: the public matrix A can be re-used across en-
cryptions. In the case where a notion of identifiable time-steps is desired,
one may adapt the scheme in a straightforward way by sampling a set of

matrices (A1
$← Zκ×λq , . . . ,At

$← Zκ×λq ) during Setup with t being the corre-
sponding time-step. From an implementation perspective, this can be done
in a memory-conserving way by solely storing a seed that is used to gener-
ate the matrix Ai on-the-fly. Note that all security notions can be extended,
accordingly.
In the following we state correctness, and security and privacy of our gen-
eral scheme LaPS. Observe that we make minimal assumptions with respect
to the individual building blocks. For instance, security requires semantic
security with pseudo-random ciphertexts of the embedded additively ho-
momorphic encryption scheme AHOM. (ε, δ)-DP of the aggregate output is
based on ε-DP of the used privacy mechanism.
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Correctness of LaPS. AHOM is required to be additively homomorphic.
Therefore, AHOM.Dec(

∑N
i=1 vi) =

∑N
i=1 xi. Finally, due to G · ei mod q =

vi, AggrDec indeed correctly computes

AHOM.Dec(skA2 ,G · e mod q = vi) =

N∑
i=1

xi.

3.6 Security and Privacy of LaPS

3.6.1 Security of LaPS

We show security of our LaPS scheme by first showing semantic security
of each user ciphertext that is produced by NoisyEnc (Theorem 1). We then
proceed to showing aggregator obliviousness security (Theorem 2).

Theorem 1 (Semantic Security). Let the output of AHOM.Enc be indistinguish-
able from random. Then, the ciphertexts generated by NoisyEnc in LaPS according
to Definition 21 are semantically secure for σ ≥ 2

√
κ ≥ 2 ·

√
ln(2n(1 + 1/ε))/π

assuming the hardness of worst-case lattice problems5.

Proof. First, note that due to the above assumption, vi is indistinguish-
able from random. Furthermore, the smoothing parameter ηε(Λ⊥q (G)) can
be bounded from above using Lemma 12, resulting in ηε(Λ

⊥
q (G)) ≤ 2 ·√

ln(2n(1 + 1/ε))/π. Therefore, by construction σ ≥ ηε(Λ⊥q (G)) and Lemma
13 can be applied to matrix G. Then, DΛ⊥vi (G),σ correctly simulates the dis-
crete Gaussian distribution DZλ,σ and the ciphertexts ci represent plain A-
LWEκ,λ,σ samples. Note that in the remainder of this section we assume that
σ and κ are set such that Lemma 13 applies and avoid restating the corre-
sponding parameter restriction for better readability.
Therefore, the statement follows immediately from the hardness of decision
A-LWEfκ,λ,σ, where f := AHOM.Enc: A-LWE samples are indistinguishable
from LWEκ,λ,σ samples due to [EDB15]. Finally, LWE samples are indistin-
guishable from uniform samples based on the hardness of worst-case lattice
problems due to [Reg05].

Aggregator obliviousness entails that the aggregator learns nothing but the
noisy sum of all participants’ values. We show that our general framework
and therefore any instantiation that fulfills the stated requirements of The-
orem 2 provides aggregator obliviousness.

Theorem 2 (Aggregator Obliviousness Security). Let the output of AHOM.
Enc be indistinguishable from random and let σ ≥ 2

√
κ. LaPS according to

Definition 21 satisfies aggregator obliviousness security assuming the hardness
of worst-case lattice problems.

Proof. Note that this property (together with Theorem 1) targets the secu-
rity of the PSA scheme as opposed to its privacy. It is independent of the
used randomization procedure that adds noise to the users’ values. We
therefore assume that a potential adversary can choose the noise ri as part

5Note that for better readability, whenever we refer to “the hardness of worst-case lattice
problems” we mean the hardness of the lattice problems GapSVP and SIVP with parameters
as in Lemma 2, where the lattice dimension corresponds to security parameter κ.
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of the Challenge phase in the respective security game as specified in Def-
inition 16. Concretely, we adopt the notation NoisyEnci(pk,g

T , si,A, di, ri)
to set xi = di+ ri mod q and encrypt xi. This is in line with previous work,
such as Shi et al.’s PSA scheme, which is proven to be aggregator oblivious
independent of the used randomization procedure [Shi+11].
Using Theorem 1 it suffices to show that if there exists a PPT adversary
A that wins the aggregator obliviousness security game, then there exists
a PPT adversary B that can solve the decision A-LWEfκ,λ,σ, i.e. distinguish
an A-LWEκ,λ,σ sample from a uniformly random sample over Zκ×λq × Zλq .
Note that f is defined as AHOM.Enc, where AHOM consists of the routines
(Gen,Enc,Dec) as in Definition 21.
We define the following intermediate game Game1 similar to [Shi+11] that is
indistinguishable from the aggregator obliviousness security game accord-
ing to Definition 16:

• First, we treat any Encrypt query as a Compromise query from the
adversary. Clearly, this makes the adversary more powerful as she
obtains the secret key si and she can compute the ciphertext herself.

• Secondly, we change the Challenge phase to its real-or-random ver-
sion, i.e. instead of having the adversary specify two sets of plaintext-
randomness pairs {(di, ri)} and {(d′i, r′i)} and have her distinguish be-
tween encryptions of either one, we let the adversary pick one set
{(di, ri)} and have her distinguish between a set of valid encryptions
and a set of random values in Zλq .

It is straightforward that any adversary with more than negligible advan-
tage in winning Game1 will also win the aggregator obliviousness security
game with more than negligible advantage. Therefore, it suffices to show
that with a PPT adversary A with more than negligible advantage in win-
ning Game1 we can construct an algorithm B that solves decision A-LWEfκ,λ,σ
with more than negligible advantage.
We proceed to constructing this algorithmB, who is supposed to win Game2,
which consists of solving decision A-LWEfκ,λ,σ with more than negligible ad-
vantage as we detail next:
SupposeB receives the parameters κ, λ, σ and function f and plays the stan-
dard real-or-random game with challenger C who tests B’s ability of solv-
ing the decision A-LWE problem. Hence C possesses an A-LWE distribution
LA-LWE
κ,λ,σ and it can generate A-LWE samples (A,bT = s∗TA + eT ) for some

m ∈ Zq, where s∗ ∈ Zκq is the secret, A is a public matrix in Zκ×λq and the
error term e ∈ Zλq embeds the message m.

• In Game2, B is allowed to make Sample queries, where she provides
an m ∈ Zq to C who generates an A-LWE sample from L accordingly
and returns it to B.

• In the Distinguish phase B picks a new message m∗ ∈ Zq and sends
it to C. Then C flips a random coin b: if b = 0, generate a valid A-
LWE sample embedding m∗ from L, otherwise draw b uniformly at
random from Zλq and send the tuple (A,bT ) to B.

• Finally, B outputs her Guess whether b is 0 or 1.
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She wins the game and hence solves decision A-LWEfκ,λ,σ if her guess of b is
correct.

Setup. B takes A, gT = (1, 2, . . . , 2λ−1) and (pk, sk) ← AHOM.Gen that
she has received from prior interaction with C and sends A,gT and pk to A
as the public parameters. Then, B randomly chooses two distinct indices j
and k from {0, . . . , N}. The chance of picking the right ones is 1

N2 , otherwise
B aborts during the game. She sets

sk := ((bT − eT )A−1)T .

Hence, sk is the secret s∗. Note that sk is unknown to B. B samples the users’

secret keys {si
$← Zκq}

i 6=j
i 6=k and sets

sj := −
∑
i 6=j

si = −(
∑
i 6=j,
i 6=k

si + sk). (3.1)

This comes from the inherent requirement of the PSA protocol
∑N

i=0 si = 0.
Note that sj is also unknown to B.

Lastly, B picks skA1

$← {si}i 6=ji 6=k and sets skA2 := sk. Note that for the first
aggregator key it indeed does not matter which si is chosen, since we en-
sure that

∑N
i=0 si = 0 by choosing sj according to Equation (3.1).

Compromise. On request i from A and if i 6= j, i 6= k, B sends the cor-
responding si to A. If additionally i = 0, B sends (skA1 , skA2). Otherwise,
B aborts. Let K be the set of all compromised users K = {i}.

Challenge. A picks a set of uncompromised users U ⊆ {0, . . . , N}\K
and plaintext-randomness pairs {(di, ri)}i∈U and transmits these to B. Note
that by construction {j, k} ⊆ U . B computes

{ci = NoisyEnc(pk,gT , si,A, di, ri)}i∈U\{j,k}.

Now B enters the Distinguish-phase and sends m = dk + rk mod q
to C who returns the tuple (A,bT ). B sets ck := bT . Note that

∑
i∈U ci +∑

i/∈U sTi ·A =
∑

i∈U ei and that

AHOM.Dec(G ·
∑
i∈U

ei mod q)
!

=
∑
i∈U

di + ri.

Therefore, B first computes a valid encryption of
∑

i∈U di + ri, i.e.

v = AHOM.Enc(pk,
∑
i∈U

di + ri) ∈ Zλ/lq

and then sets
cj := G−1 · v −

∑
i∈U\{j}

ci −
∑
i/∈U

sTi ·A.

Note that we compute the left inverse of G such that G−1 ·G = Iλ. Finally,
B sends all {ci}i∈U to A.
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Guess. If A has more than negligible advantage in winning the aggre-
gator obliviousness security game, she can distinguish the ciphertexts from
random. Specifically, if ck = bT is indeed a valid A-LWE sample it is a valid
encryption of (dk, rk) and A will return 0, otherwise she returns 1. There-
fore, by forwarding A’s output to C as her guess, B wins the game: she can
distinguish bT from random and solve decision A-LWEfκ,λ,σ.

Remark 2. Note that in the case where the adversary compromises all but one par-
ticipant, she inevitably learns the secret key of that participant and can therefore
distinguish between valid encryptions and random values. In this case the defi-
nition of aggregator obliviousness requires that she does not learn any additional
information about that participant. As stated in Definition 16 this requirement
translates into a privacy rather than a security guarantee. Therefore, we address it
in the corresponding Theorem 3.

3.6.2 Privacy of LaPS

We formulated the deployed privacy mechanism, i.e. the type of noise and
the way it is added to the user’s input, as a separate building block within
our scheme LaPS. Therefore, we give a general privacy guarantee based on
the DP-level of the chosen privacy mechanism. Concretely, we show (ε, δ)-
DP of the aggregate output in terms of ε-DP of the privacy mechanism.

Theorem 3 (Privacy). Let Mχ(D, f(·), ε) = f(D) + (Z1, . . . , Zk) denote a
mechanism for some function f : DN → Rk, where Zi are i.i.d. random vari-
ables drawn according to some distribution χ.
IfMχ achieves ε-DP and f(D) =

∑N
i=1 di for D = (d1, . . . , dN ) is a sum query,

then the aggregate output generated by the LaPS scheme according to Definition 21
is (ε, δ)-DP for β = min{ 1

γN ln 1
δ , 1}, where N denotes the number of participants

and γ is the fraction of honest participants.

Proof. The proof follows from [Shi+11, Lemma 1]6 when substituting their
Geometric mechanism byMχ.

3.6.3 Trusted Setup

Similar to other PSA schemes (e.g. [Shi+11; Val16]), we assume a trusted
Setup, where the user encryption keys and the aggregator decryption ca-
pability are distributed and are subsequently assumed to be secret. This
is commonly implemented using a trusted third party that executes Setup.
Note that it is only required once and does not have to be repeated through-
out the protocol, i.e. no more interaction. Additionally, by pre-generating a
set of multiple keys one may extend this across executions of the protocol.
As suggested in [Shi+11] standard secure MPC protocols can be utilized
in order to execute the Setup in a distributed manner among the involved
parties and thereby avoid a trusted third party.

6Note that in [Shi+11] the term distributed differential privacy is specifically coined for
PSA schemes, since the privacy-preserving noise is generated in a distributed manner. For
simplicity, we abuse notation and refer to “differential privacy”.
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3.7 LaPS Instantiation using BGV Scheme and Dis-
crete Laplace Noise

In our example instantiation we utilize an adapted version of the BGV
scheme due to Brakerski et al. [BGV12] as the additively homomorphic ele-
ment. The discrete Laplace mechanism constitutes the privacy mechanism.
We first discuss these two components separately (Section 3.7.1 and Sec-
tion 3.7.2, respectively) before putting them together into an instantiation
of our LaPS scheme (Section 3.7.3).
Note that we use a Ring-A-LWE-based instantiation for efficiency reasons.
We present all definitions in the remainder of this section in the ring setting
to be consistent with our implementation in Section 3.8.2.

3.7.1 Adapted BGV Scheme

The BGV scheme was first introduced by Brakerski et al. [BV11a; BV11b;
BGV12]. This fully homomorphic encryption scheme is LWE-based and it
has seen broad application in many cryptographic constructions [Dam+13;
GHS12; MP12; SV14]. Damgård et al. [Dam+13] for instance leverage a
version of the original BGV scheme from [BGV12] for their MPC protocol,
where they extend the plaintext space beyond binary bits. We adapt their
notation and thereby also take advantage of their proof of correctness that
we adapt in a straightforward way.
Note that we make two modifications to the scheme as it is defined by
Damgård et al. [Dam+13]. Firstly, since our PSA scheme targets sum aggre-
gation, we do not require the multiplication operation of the BGV scheme.
Therefore, we actually reduce it to a somewhat homomorphic scheme, which
also allows for significant efficiency gains, since the scheme is greatly sim-
plified - for instance by eliminating key-switching and multiplication which
is the most computationally intensive operation. Secondly, Damgård et
al. [Dam+13] define their key generation in a distributed manner due to
the MPC context, which we do not require. Consequently, the distributions
and magnitudes of the resulting values are different, as we detail in Sec-
tion 3.7.1.1. Finally, we apply the result from Applebaum et al. [App+09]
(see Section 2.4.4) and securely sample the secret in the R-LWE term from
the error distribution, which lets us optimize the parameter magnitudes.
We utilize the following subroutines due to [Dam+13]:

- ZO(0.5, n): Generate a vector of length n with elements chosen at
random from {−1, 0, 1} such that the probabilities for each coefficient
are p−1 = 1

4 , p0 = 1
2 , p1 = 1

4 .

- DG(σ′2, n): Generate a vector of length n with elements chosen ac-
cording to the discrete Gaussian distribution with variance σ′2.

- RC(0.5, σ′2, n): Generate (v, e0, e1) where v ← ZO(0.5, n) and e0, e1 ←
DG(σ′2, n).

- U(q, n): Generate a vector of length n with elements generated uni-
formly at random modulo q.

Note that in order to control the error that is generated from arithmetic
operations on the ciphertexts, the BGV scheme uses modulus switching. In
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other words, for an input ciphertext that is defined over the modulus q and
a target modulus q′, the SwitchModulus routine outputs a ciphertext that is
defined over the modulus q′ but encrypts the same plaintext as the input
ciphertext.
Different from the original definition, we do not estimate the incurred error
before reducing the modulus - instead, our SwitchModulus routine is equiv-
alent to the function Scale as in [GHS12, Appendix B.2]. It takes an element
x ∈ Rq, modulus q and target modulus q′, and returns an element y ∈ Rq′ .
In coefficient representation it holds that y ≡ x mod p and y is the closest
element to (q′/q) ·x that satisfies this mod-p condition, where p is the plain-
text modulus (adapted from [GHS12]). We refer to [GHS12, Appendix D]
for details on the evaluation representation. Next, we define our adapted
version of the BGV scheme.

Definition 22 (Adapted BGV [BGV12; Dam+13]). Let R = Z[X]/Φm(X) and
Rq = (Z/qZ)[X]/Φm(X) for some cyclotomic polynomial Φm(X) and integer q,
where φ(m) is the degree of R over Z. Let σ′ be the Gaussian standard deviation.
The plaintext space is Rp for some prime p and ciphertexts are tuples in Rq1×Rq1 ,
which get reduced (in the decryption process) to tuples in Rq0 × Rq0 for the two
moduli q0 and q1.
Set q0, q1 such that q0 = p0 and q1 = p0 · p1 for some primes p0, p1, where
q0, q1 > p.

• BGV.Gen: Generate a← U(q1, φ(m)). Draw s, ε← DG(σ′2, φ(m)). Com-
pute b = a · s + p · ε and output (a, b) as the public key and s as the secret
key.

• BGV.Enc(pk, µ ∈ Rp): Using modulus q1, choose a “small” polynomial,
i.e. with 0, ±1 coefficients, and two polynomials with Gaussian coefficients
(v, e0, e1) ← RC(0.5, σ′2, φ(m)). Then set c0 = b · v + p · e0 + µ, c1 =
a · v + p · e1 and output ciphertext c = (c0, c1) ∈ Rq1 ×Rq1 .

• BGV.Dec(sk, c): For input ciphertext c defined modulo q1, invoke Switch-
Modulus(c, q1, q0), which produces a new ciphertext c′ = (c′0, c

′
1) defined

modulo q0 such that(
(c′0 − s · c′1) mod q0 ≡ (c0 − s · c1) mod q1

)
mod p.

Decryption of c′ is performed by setting µ′ = (c′0 − s · c′1) mod q0 and
outputting µ′ mod p.

Remark 3. We fix the following parameter setting following [Dam+13]: with m
as a power of 2, we have that φ(m) = m/2. Select R = Z[X]/(Xm/2 + 1) and
p = 1 mod m, i.e. Rp ' Fm/2p and ring constant cm = 1.

As mentioned previously, we can take advantage of the proofs of security
and correctness due to Damgård et al. [Dam+13] for their BGV scheme after
applying our modifications. We state semantic security and correctness of
our Adapted BGV scheme below.

Theorem 4 (BGV: Semantic Security). The BGV scheme according to Defini-
tion 22 is semantically secure with pseudo-random ciphertexts assuming the hard-
ness of decision Ring-LWE.
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Proof. The proof follows from [Dam+13, Theorem 2] except that in our case
the secret key is not generated in a distributed manner. Therefore, we do
not require the circular security assumption. Note that the ciphertexts are
simply Ring-LWE samples as in Definition 11 and are thus indistinguishable
from uniform samples as long as decision Ring-LWE is hard to solve.

3.7.1.1 Correctness of Adapted BGV

Following the parameter analysis in [GHS12] and [Dam+13], we first an-
alyze the expected magnitudes of values sampled from the distributions
listed above Definition 22 before estimating the noise generated in each part
of the scheme. This analysis allows us to formulate the correctness require-
ment of the Adapted BGV scheme (i.e. Inequality 3.5).
For our particular ring setting, where R = Z[X]/Φm(X) and m is set as a
power of 2, we bound the p-norm of a ring element x ∈ R using its canon-
ical embedding can(x) : R → Cφ(m), i.e. ||x||∞ ≤ ||x||can∞ ≤ ||x||1, where
||x||can∞ = ||can(x)||∞. can maps a ring element x to a φ(m)-vector, where
each coefficient is an evaluation of x on the complex primitive m-th root of
unity ζim over all i ∈ (Z/mZ)∗.
Sampling x ∈ R from ZO(0.5, φ(m)) generates a random variable with
variance VarZ = 1

2φ(m). With distribution DG(σ′2, φ(m)) we get VarG =

σ′2 · φ(m) and U(q, φ(m)) yields VarU = q2

12 · φ(m).
By the law of large numbers, ||x||can∞ is bounded by 6 ·

√
Vari w.h.p., since

erfc(6) ≈ 2−55, where i ∈ {Z,G,U} depending on which distribution x is
sampled from. For two such elements x, y ∈ R with variances Var(can(x))
and Var(can(y)) respectively, we bound the product ||x · y||can∞ by

16
√

Var(can(x)) ·
√
Var(can(y)),

since erfc(4)2 ≈ 2−50. Consequently, we get the following bounds on the
secret key s and the public key components a and ε from the key generation
routine BGV.Gen according to Definition 22:

Var(can(a)) = VarU =
q2

1

12
· φ(m),

Var(can(s)) = VarG = σ′2 · φ(m),

Var(can(ε)) = VarG = σ′2 · φ(m).

As in [Dam+13] we define the noise of a ciphertext c = (c0, c1) as an upper
bound on ||c0 − s · c1||can∞ .

In the following we look at the noise from “fresh” ciphertexts, i.e. those
generated by BGV.Enc, and the noise in reduced ciphertexts, i.e. outputs
of SwitchModulus that is invoked during decryption in BGV.Dec bounded
according to Definition 22.

Fresh ciphertexts. If c = (c0, c1) = BGV.Enc(pk, µ), then the noise in c is
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bounded by

||c0 − s · c1||∞ ≤ ||c0 − s · c1||can∞
= ||(a · s+ p · ε) · v + p · e0 + µ− s · (a · v + p · e1)||can∞
= ||µ+ p · (ε · v + e0 − e1 · s)||can∞
≤ ||µ||can∞ + p · (||ε · v||can∞ + ||e0||can∞ + ||e1 · s||can∞ )

≤ φ(m) · (p− 1) + p ·
(

16 ·
√
σ′2 · φ(m) · 1

2
· φ(m) +

6 ·
√
σ′2 · φ(m) + 16 ·

√
σ′2 · φ(m) · σ′2 · φ(m)

)
= φ(m) · (p− 1) + 2pσ′ · ((8 + 4

√
2) · φ(m) + 3 ·

√
φ(m))

= Bclean.

Reduced ciphertexts. If input ciphertext c has noise ν then output cipher-
text c′ = SwitchModulus(c0, c1) has noise ν ′, where ν ′ = q0

q1
· ν + Bscale =

ν
p1

+Bscale. Recall that q0 = p0 · p1.
Bscale captures overhead noise from the rounding error caused by reducing
to modulus q1 = p1. Let τ = (τ0, τ1) be the rounding error, i.e. (τ0, τ1) =
(c′0, c

′
1)− q0

q1
(c0, c1). Then, can(τi) is roughly distributed according to a com-

plex Gaussian with variance p2

12 · φ(m). Therefore,

||τ0 + τ1 · s||can∞ ≤ 1√
3
· p · (3 ·

√
φ(m) + σ′ · φ(m)) = Bscale.

Sum of ciphertexts. Summing ciphertexts c1, . . . , cN with noises ν1, . . . , νN
respectively, results in the total noise ν =

∑N
i=1 νi.

BGV.Dec takes a sum of some N ciphertexts c =
∑N

i=1 ci as input, where
each ci ← BGV.Enc is a fresh ciphertext. Then c is reduced to c′ using
SwitchModulus(c, q1, q0) and the plaintext is retrieved via (c′0−s ·c′1 mod q0)
mod p. Therefore, in order to decrypt correctly

ν ′ <
q0

2
=
p0

2
, (3.2)

where ν ′ is the noise associated to c′. We can bound ν ′ using the bounds
given above:

ν ′ ≤ N ·Bclean
p1

+Bscale (3.3)

=
N ·

(
φ(m) · (p− 1) + 2pσ′ · ((8 + 4

√
2) · φ(m) + 3 ·

√
φ(m))

)
p1

+
1√
3
· p · (3 ·

√
φ(m) + σ′ · φ(m)). (3.4)

3.7.1.2 Parametrization for Correctness and Security

Combining Inequalities (3.2) and (3.3) from our analysis above yields the
following correctness requirement:

N ·Bclean
p1

+Bscale <
q0

2
=
p0

2
, (3.5)
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where Bclean and Bscale are defined based on parameters φ(m), p and σ′ as
in Equation (3.4).
Following Lindner and Peikert’s [LP11] bit-security estimations we get the
following security requirement:

φ(m) ≥ (k + 110) · ln(q1/σ
′)

7.2
(3.6)

for bit-security level k, where φ(m) is the ring degree, q1 is the modulus
and σ′ is the Gaussian parameter.

3.7.2 Discrete Laplace Mechanism

The privacy mechanism within our LaPS scheme is also formulated as an
individual building block. For our instantiation here, we use the discrete
Laplace mechanism, which is essentially the discrete version of the Laplace
mechanism MLap as in Definition 13. As noted previously, the Laplace
mechanism is a standard differential privacy mechanism, which we dis-
cretize in order to make it suitable for our cryptographic application as is
common practice. We restate the definition of the underlying discrete dis-
tribution next, before defining the mechanism and stating its ε-DP.

Definition 23 (Discrete Laplace (DLap) [IK06]). The discrete Laplace distribu-
tion with scale ς > 1 and parameter p = exp(−1/ς) ∈ (0, 1) is the distribution
supported on Z with probability mass function

DLapς(x) =
1− p
1 + p

p|x| =
1− exp (−1

ς )

1 + exp (−1
ς )

exp
(
− |x|

ς

)
.

This distribution is denoted by DLapς .

Definition 24 (DLap-Mechanism MDLap [GRS09]). Given any function f :
Dn → Rk, the discrete Laplace mechanism is defined as:

MDLap(D, f(·), ε) = f(D) + (Y1, . . . , Yk)

where Yi are i.i.d. random variables drawn from DLapς as in Definition 23 with
ς = ∆f/ε.

Observe that MDLap is equivalent to the Geometric mechanism [GRS09]
that Shi et al. [Shi+11] use in their PSA scheme. While they do not explicitly
prove ε-DP, it is reflected in [Shi+11, Fact 1]. We state ε-DP of MDLap for
completeness.

Lemma 16 (DLap-Mechanism: ε-DP). The discrete Laplace mechanismMDLap

preserves ε-DP.

Proof. The proof follows a standard structure that is common in differential
privacy literature, see e.g. [DR14, Theorem 3.6]. In fact, it is analogous to
the widely known continuous version of the Laplace mechanism, i.e.MLap

as in Definition 13, with the exception of having a discrete function and dis-
tribution range.
Let D0 ∈ Dn and D1 ∈ Dn be adjacent databases, let f(·) be some func-
tion f : Dn → Rk and let the l1-norm of a database D be denoted ‖D‖1,
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where ‖D‖1 =
∑|D|

i=1 |Di| and D denotes the universe of records. Let ∆f =
maxD0,D1 adjacent ‖f(D0)− f(D1)‖1 according to [DR14].
Comparison at some arbitrary point z ∈ Rk yields

Pr[MDLap(D0, f, ε) = z]

Pr[MDLap(D1, f, ε) = z]
=

k∏
i=1

(
exp(− ε|zi−f(D0)i|

∆f )

exp(− ε|zi−f(D1)i|
∆f )

)

=
k∏
i=1

exp

(
ε(|zi − f(D1)i| − |zi − f(D0)i|)

∆f

)

≤
k∏
i=1

exp

(
ε|f(D0)i − f(D1)i|

∆f

)

= exp

(
ε‖f(D0)− f(D1)‖1

∆f

)
≤ exp(ε)

Similarly, Pr[MDLap(D1,f,ε)=z]
Pr[MDLap(D0,f,ε)=z]

≥ exp(−ε) by symmetry.

3.7.3 Putting It Together

By leveraging the Adapted BGV scheme from Section 3.7.1 as the additively
homomorphic element and utilizing the Discrete Laplace Mechanism as
discussed in Section 3.7.2 as the scheme’s privacy mechanism and plug-
ging these components into Definition 21, we can now assemble a complete
instantiation of our LaPS scheme. In the remainder of this section, we cover
some preliminary definitions of the scheme’s underlying algebra - particu-
larly pertaining to the fact that our definitions are in the ring setting - before
stating the full definition of our resulting instantiation.
Due to our “layered” approach, particularly in the encryption, we use sev-
eral moduli throughout the scheme: prime p is the plaintext modulus and
q1 is the final ciphertext modulus, i.e. corresponding to the users’ outputs.
When the aggregated ciphertext is decrypted by the aggregator, BGV.Dec
internally reduces the modulus to q0. Moduli q0, q1 > p are set such that
q0 = p0 and q1 = p0 · p1 for some primes p0, p1.
The BGV routines produce and process internal ciphertexts and the final
user outputs and aggregator inputs of the PSA scheme are external cipher-
texts. We define the resulting rings as: the plaintext space Rp = (Z/pZ)[X]/
Φm′(X), the internal key and ciphertext space Rint = (Z/q1Z)[X]/Φm′(X)
and the external key and ciphertext space Rext = (Z/q1Z)[X]/Φm(X) for
some cyclotomic polynomials Φm(X) and Φm′(X).
Setting m′ to be a power of two and p such that p mod m′ ≡ 1, yields
φ(m′) = m′

2 as the degree of Rp and Rint. Note that the only difference be-
tween Rint and Rext is the dimension: namely choose7 φ(m) s.t. φ(m) =
2 · φ(m′) · l, where l = dlog q1e.
In order to transform from Rext to Zq1 , particularly for the utilization of
Algorithm 1, we define the following mappings:

7Note that φ(m) can also be made larger than 2 ·φ(m′) · l by slightly tweaking the defined
mappings Z2R and R2Z: simply fill up the coefficient representation with 0’s to pad up to
the desired length φ(m) in order to get a ring element in Rext and remove the same number
of 0’s when transforming that ring element back to Z2·φ(m′)·l

q1 .
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- z2Rq,m : Zq → Rq: takes a scalar x over the q-ary field and produces
a vector y = (x, 0, . . . , 0) of dimension φ(m), where y is coefficient
representation for the output ring element.

- R2zq,m : Rq → Zq: takes a ring element and outputs the first element
of its coefficient representation.

- R2Zq,m : Rq → Zφ(m)
q : outputs a vector of size φ(m) by copying the

entries of the coefficient representation of the input ring element.

- Z2Rq,m : Zφ(m)
q → Rq: interprets the input vector as the coefficient

representation of a polynomial in Rq and outputs the corresponding
ring element.

We state the complete definition of the example instantiation of our LaPS
scheme next. Note that addition and multiplication operations of ring ele-
ments are performed component-wise and that parameters of BGV-routines
and internal ciphertexts are denoted with bars above the variable names for
better readability.

Definition 25 (LaPS using BGV and MDLap). Let κ be a security parameter,
N ∈ N the number of participants, γ the fraction of uncompromised participants
and let ς > 1. Fix the rings Rp, Rint and Rext with the corresponding parameters
p, p0, p1, q0, q1, m, m′, l as described above. Let κ = φ(m)/l.

• ({a,gT , pk}, {si}, (skA1 , skA2))← Setup(1κ): Generate the public param-
eters a, gT and pk as follows and distribute them to all parties.

1. Draw a uniformly at random from Rext.
2. Set vector gT = (1, 2, . . . , 2l−1) ∈ Zlq1 .
3. Generate ((ā, b̄), s̄) ← BGV.Gen and extract public key pk as pk =

(ā, b̄) ∈ Rint ×Rint.
4. For all i ∈ {1, . . . , N} draw si ← Rext and send it to user i as her

secret key.
5. The aggregator’s secret decryption key is the tuple (skA1 , skA2), where

– skA1 = −
∑N

i=1 si and
– skA2 = s̄ ∈ ((ā, b̄), s̄)← BGV.Gen ∈ Rint.

• ci,a ← NoisyEnci({a,gT , pk}, si, di): Each user i takes her data di,a ∈ D
and adds some noise ri to it, such that xi = di + ri mod p ∈ Zp.

1. ri is sampled as follows:

ri =

{
0 with probability 1− β
Y with probability β

,

where Y ← DLapς and β = 1
γN log(1

δ ).
2. Set x̄i = z2Rp,m′(xi) ∈ Rp and

compute c̄ = (c̄0, c̄1)← BGV.Enc(pk, x̄i).

3. Set vi = (R2Zq1,m′(c̄0)||R2Zq1,m′(c̄1)) ∈ Z2·φ(m′)
q1 , where || denotes

concatenation.
4. Invoke Algorithm 1 for each component of vi:

ei = (Sample(gT , vi1 , σ), . . ., Sample(gT , vi2φ(m′) , σ)). Hence, ei ←
DΛ⊥vi (G),σ ∈ Z2·φ(m′)·l

q1
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5. Transform to the ring by ei = Z2Rq1,m(ei). Note that since φ(m) =
2 · φ(m′) · l, ei ∈ Rext.

6. Output the ciphertext ci,a = a · si + ei ∈ Rext.

•
∑N

i=1 xi ← AggrDec({a,gT }, (skA1 , skA2), {c1,a, . . . , cN,a}): Receiving
the users’ ciphertexts {ci,a} the aggregator computes c =

∑N
i=1 ci,a.

1. Compute e =
∑N

i=1 ei = c+ a · skA1 .

2. Set e = R2Zq1,m(e) ∈ Zφ(m)
q1 .

3. Compute v = G · e mod q1 ∈ Z2·φ(m′)
q1 , where G = Iφ(m)/l ⊗ gT ∈

Z
φ(m)
l
×φ(m)

q1 . Again, note that φ(m)/l = 2 · φ(m′) and that v is the
sum of the individual vi’s from NoisyEnci.

4. Parse v as a tuple of vectors v = (v′,v′′) ∈ Zφ(m′)
q1 × Zφ(m′)

q1 .

5. Decrypt: x̄ = BGV.Dec(skA2 , (Z2R(v′),Z2R(v′′))) ∈ Rp. Note that
x̄ is the sum of the individual x̄i’s from NoisyEnci.

6. The aggregator retrieves the noisy sum of the users’ values with∑N
i=1 xi = R2zp,m′(x̄) ∈ Zp.

As an instantiation of our general framework, above scheme inherits the se-
curity and privacy guarantees of the general LaPS scheme (see Section 3.6.1
and 3.6.2, respectively). This means that we essentially only need to show
that the requirements of Inequality (3.5) for correctness, Theorem 2 for ag-
gregator obliviousness and Theorem 3 for privacy are satisfied.

3.7.3.1 Correctness of LaPS using BGV andMDLap

The overall PSA scheme is correct as long as the internal BGV Scheme is cor-
rect, since the users’ noisy sum is recovered using BGV.Dec. Therefore, cor-
rect decryption through the AggrDec routine is ensured iff Inequality (3.5)
is met with respect to Rint, i.e. fixing σ′ = 3.2 as in [GHS12; Dam+13]8

N ·Bclean
p1

+Bscale <
q0

2
=
p0

2
, (3.7)

where Bclean = φ(m′) · (p− 1) + 6.4p · ((8 + 4
√

2) · φ(m′) + 3 ·
√
φ(m′)) and

Bscale = 1√
3
· p · (3 ·

√
φ(m′) + 3.2 · φ(m′)).

3.7.3.2 Security of LaPS using BGV andMDLap

Theorem 5 (Semantic Security). Let σ′ ≥ ω(1), ε = negl(κ). The ciphertexts
generated by NoisyEnc in the PSA scheme according to Definition 25 are seman-
tically secure for σ ≥ ω(

√
log(κ)) · (κN/ log(κN))

1
4 assuming the hardness of

worst-case lattice problems.

Proof. Suppose, vi that is generated in NoisyEnc in Step (3), is indistin-
guishable from random. Then, by Lemma 13 DΛ⊥vi (G),σ correctly simu-
lates the discrete Gaussian distribution DZφ(m),σ for σ ≥ ηε(G). Note that

8Gentry et al. [GHS12] originally choose this value according to the parameter analysis
from Micciancio and Regev [MR09].
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G = Iφ(m)/l ⊗ gT . Adopting El Bansarkhani et al.’s [EDB15] argumenta-
tion, G induces the lattice Λ⊥q1(G) = {x ∈ Zφ(m)|Gx ≡ 0 mod q1} with

generator matrix S = Iφ(m)/l ⊗ Sl ∈ Zφ(m)/l×l
q1 , where

Sl =


2 0
−1 2

. . . . . .
0 −1 2

 ∈ Zl×lq1 .

Using Lemma 12, which states an upper bound on the smoothing parame-
ter ηε(Λ) of a given lattice Λ and its basis, the smoothing parameter ηε(Λ⊥q1)

is bounded from above by ||S|| ·
√

ln(2φ(m)
l (1 + 1

ε ))/π ≤ 2 ·
√
φ(m)/l. By

definition κ = φ(m)/l and hence ηε(Λ⊥q1) ≤ 2 ·
√
κ.

Consequently, Lemma 13 applies and the ciphertexts ci,a represent plain
Ring-A-LWE samples. Observe that the hardness of decision A-LWE carries
over to the ring setting in a straightforward manner9 as shown in [EDB14].
Therefore, the statement follows immediately from the hardness of decision
Ring-A-LWE: Ring-A-LWE samples are indistinguishable from R-LWE sam-
ples due to Lemma 7 when applied to the ring setting. decision R-LWE is as
hard as worst-case lattice problems [PRSD17]. The latter holds as long as
σ ≥ ω(

√
log(κ)) · (κN/ log(κN))

1
4 , which is given by assumption. Observe

that this parameter constraint arises from [PRSD17, Corollary 7.3], which
states the hardness of solving decision Ring-LWE with spherical error. Note
that the main theorem in [PRSD17] is not applicable here as the error terms
resulting from the sampling routine Sample are spherical [SD17].
Finally, note that vi in Step (3) is the ring-transform of internal ciphertext c̄
from Step (2). Semantic security and pseudo-randomness of internal cipher-
texts follows from Theorem 4 assuming the hardness of Ring-LWE. Since
σ ≥ ω(1), hardness of decision Ring-LWE is satisfied according to Theorem
6.2 in [PRSD17] and vi is indeed indistinguishable from random and sub-
sequently the claim follows.

Aggregator obliviousness is also inherited from aggregator obliviousness
of the general LaPS scheme (see Section 3.6.1). The corresponding Theo-
rem 2 requires pseudo-randomness of the internal ciphertexts. This prop-
erty comes with the semantic security of the NoisyEnc routine in our LaPS
instance, which we indeed show in Theorem 5. Therefore, aggregator obliv-
iousness of our example instantiation follows immediately. We state the
resulting theorem below.

Theorem 6 (Aggregator Obliviousness Security). Let parameters be as in The-
orem 5. Then, the PSA scheme according to Definition 25 satisfies aggregator
obliviousness security assuming the hardness of worst-case lattice problems.

Proof. This follows directly from aggregator obliviousness of LaPS due to
Theorem 2 when applied to the ring setting and semantic security of the
NoisyEnc routine in our LaPS instance, which follows from Theorem 5.

9See [EDB14, Section 4.5] for an example of a BGV-based encryption scheme that is re-
duced to the ring variant of A-LWE.
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3.7.3.3 Privacy and Accuracy of Aggregate Output

Following Shi et al.’s [Shi+11] argument, suppose all user values from the
data domainD are inside an interval of width ∆ in Zp. If γN users each add
noise of magnitude Θ(∆

ε ), where γ is the fraction of uncompromised users,
then the total accumulated noise in the aggregate output has magnitude
roughly O(∆

ε

√
N). We state the resulting privacy and accuracy guarantees

of the scheme next.

Theorem 7 (Privacy & Accuracy). Let ε > 0, 0 < δ < 1, ∆ ≥ ε
3 , γ ≥ 1

N ln(1
δ )

and ς = ∆/ε. The output of AggrDec as in Definition 25 is (ε, δ)-DP.
Moreover, the aggregate achieves (4∆

ε

√
1
γ ln(1

δ ) ln( 2
η ), η)-accuracy for all η such

that ln( 2
η ) ≤ 1

γ ln(1
δ ).

Proof. With the chosen parameters it is straightforward to recognize the
randomization procedure in NoisyEnc according to Definition 25 as a ran-
domized Discrete Laplace mechanism MDLap as in Definition 24, where
the function f is the sum function. (ε, δ)-DP of the aggregate thus follows
immediately from ε-DP ofMDLap due to Theorem 16 and DP of LaPS due to
Theorem 3. Lastly, (α, β)-accuracy follows from utility of Shi et al.’s [Shi+11]
randomization procedure.

3.8 Experimental Results

In this section we evaluate several parameter sets that satisfy the secu-
rity and correctness requirements of Inequality (3.7), Theorem 5 and In-
equality (3.8). Furthermore, we present experimental results from imple-
menting the example instantiation of our LaPS scheme as in Definition 25.
We also put these results into context by discussing how our scheme per-
forms in comparison to previous schemes due to Shi et al. [Shi+11] and Val-
ovich [Val16], which are the most closely related constructions from previ-
ous work.

3.8.1 Example Parameters

The BGV parameters corresponding to a certain bit-security level (see Sec-
tion 3.7.1.2) apply to any (Ring-)LWE-based construction. Therefore, from
Inequality (3.6) we get the following requirement for the parameters of our
example instantiation (i.e. Rext and Gaussian parameter σ):

φ(m) ≥ (k + 110) · ln(q1/σ)

7.2
, (3.8)

where k is the bit-security level and all other parameters are as in Defini-
tion 25. Finally, Inequality (3.7), Theorem 5 and Inequality (3.8) yield the set
of parameter constraints for correctness, semantic security and bit-security,
respectively. We give an overview of possible valid parameter sets for dif-
ferent bit-security levels k, plaintext modulus p and number of participants
N .
Note that the previous constraints result in some circular dependencies of
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the parameters. Hence, we fix σ = 0.1q1 and first choose p1 before pick-
ing10 φ(m′). Finally, we plug these parameters into Inequality (3.7), which
yields p0 and consequently q1 since q1 = p0 · p1. Our results are shown in
Tables 3.1, 3.2 and 3.3.

N log(p0 = q0) log(q1 = p0 · p1)

100 31 36
1000 34 39
10000 38 43

TABLE 3.1: Parameters for plaintext modulus p ≈ 216, bit-security
level k = 80, ring degrees φ(m′) = 32 and φ(m) ≈ 211,

where N is the number of participants and p1 ≈ 25 [BGZ18].

Comparing these parameters to Damgård et al.’s [Dam+13] instantiation of
the BGV scheme, our instantiation allows for much smaller moduli, i.e. our
q1 has magnitude 263 for 100 users compared to 2252 in [Dam+13, Appendix
G.4] with the same parameters k, p and φ(m′), see Table 3.2. Observe that
this improvement stems from our much less restrictive correctness require-
ment (i.e. Inequality (3.7)) due to the fact that we do not require correct
evaluation of homomorphic multiplication.

N log(p0 = q0) log(q1 = p0 · p1)

100 48 63
1000 49 64
10000 52 67

TABLE 3.2: Parameters for plaintext modulus p ≈ 232, bit-security
level k = 128, ring degrees φ(m′) = 8192 and φ(m) ≈ 220,

where N is the number of participants and p1 ≈ 215 [BGZ18].

These parameters also show the scalability of our construction in terms of
number of participants: for large enough moduli p and q1 the number of
users can grow to a large extent without significantly affecting the other
parameters, see Table 3.3.

N log(p0 = q0) log(q1 = p0 · p1)

10000 146 196
1015 151 201
1021 171 221

TABLE 3.3: Parameters for plaintext modulus p ≈ 2128, bit-security
level k = 80, ring degrees φ(m′) = 32768 and φ(m) ≈ 224,

where N is the number of participants and p1 ≈ 250 [BGZ18].

3.8.2 Implementation

We present our experimental results from implementing our PSA scheme
as in Definition 25. We conducted our experiments on a MacBook running

10Observe that the first two constraints are dependent on q1 but are easily satisfied as long
as q1 � φ(m′).
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macOS Sierra with a single 2.5 GHz Intel Core i7 and 16GB memory using
part of the HElib C++ library11.

p NoisyEnc (ms) AggrDec (ms)
5 ≈ 22 3.57646 1.86864

(I) 37 ≈ 25 3.61646 1.882
65537 ≈ 216 3.72438 1.96416

(II) 65537 ≈ 216 77.3304 67.6243

TABLE 3.4: Results for N = 1000,
(I) k = 80, φ(m′) = 32, φ(m) = 2048,

(II) k = 128, φ(m′) = 512, φ(m) ≈ 215, q1 ≈ 244 [BGZ18].

With setting (I) we select the parameter set satisfying correctness and secu-
rity requirements with bit-security level k = 80 according to Table 3.1 and
different plaintext spaces p <∼ 216. For completeness, we also select another
parameter setting (II) for bit-security level k = 128 and plaintext space
p ≈ 216.
We list the results in Table 3.4, where we measured the average encryption
and decryption runtime over 1000 runs each for N = 1000 participants in
milliseconds. For example, for 1000 people under 65 years old12 this can be
used to compute their average age.
For target DP-parameters ε = 1, δ = 0.1, we have γ ≥ 0.0023, i.e. at least
3 out of 1000 participants should be uncompromised. Subsequently, we
achieve (400 ·(p−1), 2/ exp(10))-accuracy due to Theorem 7 when choosing
η = 2/ exp(10), where the accumulated sum does not exceed 1000 · (p− 1).

3.8.3 Evaluation

In order to put our experimental results into context, we discuss perfor-
mance results from previous work. It is noteworthy that to the best of our
knowledge no other comparable13 PSA scheme is equipped with an imple-
mentation. We focus on Shi et al.’s [Shi+11] as well as Valovich’s [Val16]
works, as they specify high-level guidelines in evaluating the accuracy and
performance of their schemes. We will use their findings as a benchmark
for our results.

Accuracy. Valovich and Alda [VA15] analyze how different noise distribu-
tions perform in terms of accuracy when used in privacy mechanisms. In
their comparison the accuracies of the Geometric mechanism, i.e. MDLap

as in Definition 24, and of the Skellam mechanism, which Valovich utilizes
in his PSA scheme [Val16], are about the same. In contrast, the Binomial
mechanism performs much worse.

Runtime. Shi et al. [Shi+11] estimate the NoisyEncrypt routine of their PSA
scheme to take 6 ms for a classic Diffie-Hellman group modular a 1024-bit

11https://github.com/shaih/HElib
12According to [Bur15] the majority of Americans, i.e. 85.9 %, is under 65 years of age.
13One may consider Li and Cao’s [LC13] work an exception as the authors indeed provide

runtime results. However, their scheme is not comparable to ours as it accounts for dynamic
user leaves and joins, which our scheme does not currently support.

https://github.com/shaih/HElib
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prime. According to the authors, this decreases to about 0.6 ms when us-
ing high-speed elliptic curves. Our scheme does outperform the former (see
setting (I) in Table 3.4) but comes short of the latter by a factor of roughly 6.
For the decryption operation, the authors [Shi+11] estimate that a brute-
force approach-based implementation of their scheme would take around
0.3 s for 1000 participants. Our decryption is more than 150 times faster.
Furthermore, Shi et al.’s [Shi+11] results assume that the plaintext space is
limited to a single bit - in contrast, our example scheme implementation
allows for the encryption of up to 16 bits, i.e. the plaintext space is much
larger. On a final note, though we cannot compare these results to any pre-
vious work, our measurements for the 128-bit security level also indicate
practical runtimes. Note that due to the limited availability of PSA scheme
implementations - in fact, this is the first implementation of a lattice-based
PSA scheme - these results can only give an idea of the possible perfor-
mance of our schemes.

3.9 Extensions

Shi et al. [Shi+11] consider certain modifications of their PSA scheme that
extend beyond summation. For instance, evaluating the user data distribu-
tion, allowing for public access of the aggregate result, which would elim-
inate the need for an explicit aggregating party, or aggregating subsets of
the user data that can be accessed through hierarchical access control. We
expect the authors’ suggestions to be also applicable to our construction.
Our scheme currently does not support user failures, i.e. we require each
user to submit a ciphertext, otherwise the protocol has to start over, which
is also the case for Shi et al.’s [Shi+11] PSA scheme. Chan et al. [CSS12] pro-
pose a solution, where the users are essentially grouped into sub-groups
along a binary tree. Consequently, their construction tolerates some dy-
namic joins and leaves of users at the cost of decreased accuracy of the ag-
gregate output and added communication overhead. We expect that this
approach also applies to our construction in a straightforward manner.
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Chapter 4

Privacy-Preserving Social
Media Advertising
Architecture (SOMAR)

In this chapter we look at an application of the LaPS scheme. We construct
an architecture, which allows for social media advertising while preserving
the privacy of the users. The guarantees of privacy and verifiability are de-
rived from the underlying PSA scheme.
We proceed by first explaining the problem context within social media ad-
vertising, i.e. the challenges of affiliate marketing in its current form, and
why existing solutions from the field of Online Behavioral Advertising are
not applicable or insufficient. Then, we introduce the details of our archi-
tecture SOMAR. Note that SOMAR is formulated in terms of generic build-
ing blocks and it can be thus instantiated based on the application’s specific
requirements. Finally, we present an instantiation of the architecture using
a LaPS-instance and discuss experimental results from our implementation,
which show evidence of the practicality of our construction. The content of
this chapter was presented in [BGZ17a; BGZ17b].

4.1 Affiliate Marketing Model

Social media has created a new way for businesses and brands to advertise
their products on the Internet. A study in 2011 revealed that 74% of con-
sumers based their buying decision on social media content [Ben11] - it has
become a multi-billion dollar business. At the same time, the amount and
sensitivity of personal data that is being collected along the way has grown
substantially and increased the associated privacy risks for end users.
Influencers are individuals with a significant following on their social me-
dia profiles [TBB10; Lan14; Hit15; Bow09], e.g. 3.4 million people “like”
Pamela Reif ’s posts on Instagram [Rei] and Estee Lalonde has 1.2 million
subscribers1, who watch her videos on YouTube [Lal]. Advertisers seek to
leverage the popularity of such influencers in order to promote products to
their followers, who are typically between 15 and 30 years old2 and are also
referred to as millennials. This particular group of people is an especially
attractive target group as they constitute “about 80 million people who spend
by some accounts over one trillion dollars per year” [Rad15]. Therefore, product
merchants and their marketing teams have increasingly focused on social

1Numbers as of Feb 2018.
2There exist several notions that put the age limits in a slightly different range - this is

the common intersection [Rap14; RH15; Deu16; Gol17].



60 Chapter 4. Privacy-Preserving Social Media Advertising

media advertising as a means to reach this target group.
While there are numerous ways of turning likes and follows into profit
[PMF12; KM12; Ma15], they are generally kept away from the public eye,
i.e. the involved processes and agreements remain unclear or hidden. How-
ever, considering that they commonly involve the processing of privacy-
sensitive user data, this lack of transparency directly translates into privacy
risks for the end user. On the other hand, their data is highly valuable to ad-
vertisers [Tuc14] as it allows for precise characterization of the target group,
therefore the data hunger of the advertisement industry will only continue
growing. The revelations around how Facebook data from 50 million users
was utilized for “psychographic targeting” [Val18] by the firm Cambridge An-
alytica is a recent example of this development [RCC18; CGH18; Val18].
We are concerned with a particularly interesting marketing model, called
affiliate marketing. Here, influencers advertise certain merchants’ products
to their social media followers in return for receiving a share of the gener-
ated revenue [KM12; Cab17; FC01]. We discuss the associated privacy risks
and how to solve the resulting problems.
The remainder of this chapter is organized as follows. In Section 4.2 we
give an overview of existing solutions for traditional digital advertising. To
the best of our knowledge, this is the first solution for privacy-preserving
advertising in the particular context of social media marketing. We discuss
the privacy risks related to the affiliate marketing model as well as existing
trust assumptions between influencers and merchants as our problem state-
ment. Subsequently, we propose the SOMAR architecture as a solution and
discuss its building blocks (Section 4.3). Finally, we analyze the efficiency
of our solution (Section 4.4).

4.2 Related Work

Most existing solutions address privacy concerns around digital advertis-
ing on a general level, i.e. to the best of our knowledge there are no other
propositions specifically designed for social media advertising. In fact,
a significant body of related work focuses on Online Behavioral Advertis-
ing (OBA) or targeted advertising [BRT11; Liu+13; LS16; Men+16], where
through consistent tracking and evaluation of user’s online browsing be-
havior, certain advertisements can be selected for an individual user that
are deemed personally interesting or relevant to her.
In practice, tools like persistent cookies save the activities of a user across
different visited websites (see [Aca+14] for an overview of tracking meth-
ods) and the collected information is reported back to the broker, who is the
entity selecting the set of ads that are displayed on certain websites based
on the extracted preferences of their audiences. The publisher is essentially
the party representing the website where ads are placed, and the advertiser is
the brand3 or company providing ads for their products. Note that these in-
stances can be far more nuanced in practice, e.g. a creative agency creating
an ad would be distinguished from the marketing team that determines its
placement, however for the purposes of OBA analysis as discussed above,
both would be considered part of the advertiser party.

3In the following we use the terms “brand” and “merchant” interchangeably. In the
traditional advertising model, they would correspond to the “advertiser”.
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The goal of privacy-preserving OBA solutions is to conceal every individ-
ual user’s preferences while still providing targeted ads. One may consider
applying these concepts to social media advertising by defining the influ-
encer as a combination of the broker and the publisher, since he selects and
displays ads on his own site. Finally, the brand would be viewed as the
advertiser. The overall objective then translates into hiding any individual
user’s personal information, e.g. age and gender, while still allowing the
influencer to compute statistics over his followers’ attributes. The latter is
essential to the influencer in order to shape a social media marketing strat-
egy that is suited to his audience.
In general, the literature around privacy-preserving OBA and targeted ad-
vertising can be divided into client-side solutions, solutions that are de-
ployed on an additional layer that is best described as a “middleware” layer,
and finally server-side solutions. In the remainder of this section we discuss
a selection of representative solutions from each category and their limita-
tions when deployed in the social media advertising model.

Client-side OBA solutions. Solutions that aim to keep all sensitive data
at the user’s end, where each user locally executes the algorithms that select
relevant ads, are considered client-side solutions [Tou+10; HHB10; GCF11;
NAB11; DFL14]. Regardless of how user privacy is concretely achieved,
the fact that the advertiser is supposed to gain no information about the
users at all, is what makes these solutions (see [BRT11] for an overview of
client-side solutions) problematic in the social media setting: the sacrifice
in functionality would significantly affect the influencer who relies on user
data as his main source of information - social media advertising in general
heavily relies on the availability of user information. We discuss concrete
examples next.
In Privad [GCF11] each user runs software that locally determines relevant
ads based on the user’s profile and an additional party, called the dealer,
serves as a proxy for all user data that is anonymized before being sent to
the broker. In this step, the authors distinguish between user interests and
demographics with sensitive and non-sensitive attributes, e.g. age is sensi-
tive while gender and location is considered non-sensitive. The dealer thus
removes any sensitive information from the communicated user data and
subsequently subscribes to ads from the broker that correspond to the set
of non-sensitive attributes, which combined with broad demographic data
determine a set of interest groups. This grouping is also essential in allow-
ing reasonable efficiency, since each determined interest attribute results in
a separate communication channel between the broker and the respective
users. Hence, the additional demographic filter reduces the ad load and
improves bandwidth efficiency.
In the social media setting, full user anonymity would lead to hiding any
information that is collected during a user’s purchase on the merchant’s
website. Furthermore, user groups would essentially have to subscribe to
a subset of ads on the influencer’s site that correspond to certain product
categories based on user interests. The latter would be achieved through
the user’s computation of the type of ads that she would like to see and the
dealer would send (anonymized) requests to the influencer with the result-
ing user interests.
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Although anonymization preserves user privacy, this approach may be lim-
ited from a practical point of view: for instance, advertising products that
a given user is currently unaware of or not yet interested in would be-
come impossible as in the Privad model a user can only express interest
in product types that she is already interested in. This fact inhibits the sale
of new products which the customer finds through social media advertis-
ing in the first place4. Additionally, the anonymization of user informa-
tion prevents the influencer from learning the attributes of his “average
follower”, as noted before. In contrast, our architecture does not have these
shortcomings since we provide user privacy by using privacy-preserving
aggregation rather than anonymization. Furthermore, we consider all in-
dividual user information to be sensitive. In short, our solution does not
create a trade-off between privacy and functionality but provides both in-
dependently.
On the other hand, Privad enables client-side fraud detection by utilizing
the dealer as a monitor of the users’ click and view behavior, who reports
suspicious activities to the broker. This concept could be implemented
in our setting by adding a trusted third party, which monitors the user’s
behavior on the merchant’s website and communicates to the influencer,
where applicable. SOMAR however provides cryptographic proofs of cor-
rectness without the need for a trusted third party. Note that these proofs
allow for the detection of both fraudulent merchants as well as fraudulent
influencers while in above model only client-side fraud is detected.
In the Adnostic [Tou+10] system a set of random advertisements is pre-
loaded, the user selects relevant ads locally and the user’s choice, i.e. her
views and clicks, are not revealed to the broker or the advertiser. Some-
what similar to our architecture, cryptographic tools are utilized in order
to allow the broker to charge publishers and advertisers correctly: during
defined billing cycles billing-relevant data is encrypted into homomorphic
ciphertexts, equipped with a zero-knowledge proof of accuracy, and sent
to a trusted third party, which at the end of a period decrypts the aggre-
gated result and relays it to the broker. Green et al. [GLM16] additionally
improve the scheme by utilizing cryptographic voting schemes, which re-
sults in higher scalability. This type of system could be used in our prob-
lem setting in order to eliminate trust assumptions between merchant and
influencer, however this would require an additional trusted third party
compared to our architecture.

Middleware OBA solution. An example for a middleware kind solution
is P3 [NAB11] that sits between users and advertisers and concentrates on
recommendation-based services by locally serving targeted ads to users
without revealing the users’ behavior to the advertisers. In our context,
one may formulate an aggregating party as a middleware layer between
users and the influencer, which preserves user privacy while serving ag-
gregate data to the influencer. In contrast, our solution achieves the same
goal without the need for an additional middleware layer.

4A prominent example for such products is the so-called “fidget spinner”, whose popu-
larity is largely attributed to social media, e.g. YouTube videos [Bul17].
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Server-side OBA solution. ObliviAd [Bac+12] is a server-side solution,
which places a trusted hardware device at the broker’s end. The authors
call this device a secure coprocessor (SC). It processes encrypted user prefer-
ences in order to retrieve ads from the broker using oblivious RAM tech-
niques, which ensures that the users’ preferences remain hidden. Similar
to Adnostic, encrypted tokens are accumulated by the SC, which decrypts
and mixes the results for privacy-preserving billing. One may adopt this
solution by using a trusted hardware device like the SC at the influencer’s
end in order to allow for privacy-preserving aggregation. SOMAR yields
the same outcome without an additional hardware device.

The LSBS schemes [Her+14] solve the problem of sharing the location of
users with other groups of users, i.e. their friends, without revealing user
location information to the service provider. The schemes that use identity-
based encryption also provide privacy-preserving aggregate statistics to the
service provider, i.e. where he can compute aggregate statistics over user
locations in a privacy-preserving manner. While this problem appears sim-
ilar to our aggregation task within social media advertising, LSBS provides
aggregation of individual user information, e.g. the number of times a par-
ticular user appeared at a certain location, as opposed to aggregation of
data across all users as is required in our setting. Therefore, we solve a
conceptually different problem. Moreover, our architecture appears5 to be
several orders of magnitude more efficient in terms of runtime and band-
width efficiency.

In summary, although some of the discussed solutions can be applied in or-
der to provide privacy-preserving social media advertising, they all come at
the cost of functionality detrimental to the advertisers’ interests. Addition-
ally, existing solutions around OBA typically do not target a formal privacy
guarantee such as DP. Therefore, their application to our problem would
yield aggregated data that is susceptible to DP-attacks. Furthermore, none
of the solutions were able to eliminate the trust assumption between mer-
chants and influencers without the need for a trusted third party.
Looking at related work in the more general scope of computing statistics
over distributed privacy-sensitive user data, i.e. not necessarily only when
applied to digital advertisements, we also find a number of works [Che+12;
CAF13] that rely on trusted third parties. As pointed out previously, this is
disadvantageous compared to our solution as it would require introducing
an additional party between users, merchant and influencer. The same is-
sue arises with solutions like Prio [CGB17], where a set of dedicated servers
obliviously compute aggregates of user data, which guarantees privacy as
long as at least one server is honest. Note that this system does not provide
privacy on a DP level in its initial form but can be extended to such guar-
antee [CGB17, Section 7].
Bilogrevic et al. [Bil+14] on the other hand, introduce an aggregation model
that does not rely on a trusted third party and achieves DP of the end user
data. Concretely, the data aggregator is defined as an external party that
executes the aggregation but is not trusted by the users. Their model also

5The authors [Her+14] use a different platform, therefore a direct comparison is not pos-
sible. However, broadcast encryption is known to be a less efficient primitive than the com-
bination of single public-key encryption and aggregation operations.
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includes a customer party, which does not communicate to the users and
instead formulates queries to the aggregator in order to retrieve certain ag-
gregates. Indeed this system could be applied to social media advertising
by defining the merchant as the aggregator and viewing the influencer as
the customer. However, their system does not account for verifiability, i.e.
the influencer still has to place trust in the merchant. In contrast, our solu-
tion provides verifiability through the use of proofs of correctness. Observe
that due to the modular design of our construction, this functionality can
be removed if it is not needed for a given application. In that case, one
may deploy an aggregation model like Bilogrevic et al.’s [Bil+14] within our
architecture. Hence, one may view SOMAR as a generic framework for
aggregation models.

4.3 Providing Privacy and Proofs of Correctness: SO-
MAR Architecture

Figure 4.1 illustrates the following scenario: I is an Instagram influencer
with a large group of followers {Ui}Fi=1. Note that in practice also metrics
other than number of followers are considered when defining an influencer,
e.g. number of likes (see e.g. [Gou14]). Suppose, his posts are around food
and cooking, which attracts the interest of brand S, who is a meal kit sub-
scription service. Therefore, S sends I a free meal kit per month and in
return I showcases S’s product on his account together with a link where
users can become new subscribers. When a certain subset of I’s followers
{Ui}Ni=1, where N ≤ F , are indeed influenced into subscribing, they click
on the provided link and complete the purchase on S’s website. Up to this
point, the purchasing process is rather intuitive and does arguably not im-
pose any additional privacy risks compared to a regular purchase on S’s
website.

…

S

I

click, like, follow, 
e.g. via Instagram, 
Facebook

- Trust S to receive x% of all sales
- Use data {d’i} to answer stat. 

questions about avg. follower, 
e.g. What is the avg. age?

- Hold user data {di} that is 
required for financial transaction

- Notify I of each purchase + data
d1

d2
dN

d’1 d’2 d’N

UN

age: 17
male
…

U1

age: 18
female
…

U2

age: 21
female
…

FIGURE 4.1: Current social media marketing model,where S sponsors
I to present products to social media users {Ui}

[BGZ17a; BGZ17b].
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However, in the affiliate marketing model, I additionally receives a cer-
tain percentage of the sales revenue from S, which was generated from the
product’s advertisement on I’s page. More specifically, S forwards each and
every purchase confirmation i - containing both the price and all personal
data provided by Ui. Therefore, Ui’s data is not only collected by S in order
to facilitate the financial transaction but is also left with I by extension and
likely without the knowledge of the user.
For the user, this results in increased privacy concerns, especially with re-
spect to risk of data breaches as her data is stored on both S’s and I’s
servers. In fact, taking into account that social media users typically fol-
low more than one influencer and considering their respective agreements
with brands like S, this makes the user’s data more vulnerable.
At the same time, I and S are faced with a different set of problems in this
situation: on the one hand, I cannot be sure that the data provided by S
is complete and accurate, i.e. that indeed d′i = di for all i ∈ {1, . . . , N} in
Figure 4.1. On the other hand, S has no way of proving his honest behav-
ior. Forwarding individual purchase confirmations gives I a rough idea of
the generated revenue but it is by no means a guarantee as this information
could be modified by S. Observe that ultimately, I is interested in aggre-
gate data, e.g. the total sales revenue, average age of his followers, etc. He
is looking to understand the attributes of his average follower, which allow
him to shape his content and marketing strategy accordingly. Therefore, the
data {d′i} is provided in a somewhat inappropriate form, as it gives more
details than I needs while not giving any accuracy guarantees.

4.3.1 Building Blocks

SOMAR aims to solve the previously detailed problems and it provides
the means for privacy-preserving social media advertising with verifiable
data aggregation. Our architecture is based on aggregator unforgeable PSA
schemes (see Section 3.3.2.2) in order to ensure end user data privacy and
to compute proofs of correctness for the generated data aggregates.
Figure 4.2 shows how the building blocks of SOMAR are combined in our
architecture. Concretely, each user Ui implements some DP-mechanism
M, which transforms the user’s raw data di into a noisy version xi, i.e.
xi := M(di). She also implements an encryption module Enci that en-
crypts xi into a ciphertext ci, which constitutes part of the user’s final out-
put (ci, σi). The combination of privacy mechanism and encryption can be
thought of as the components of the NoisyEnc routine in a PSA scheme as
in Definition 15. The user’s final output is completed by an authentication6

tag σi that is computed by the authentication module Authi and allows for
the verification of the overall aggregate result.
An aggregator unforgeable PSA scheme (see Section 3.3.2.2) inherently pro-
vides exactly the above set of functionalities and therefore it serves as the
underlying structure for our architecture. On a high level, the influencer
takes the role of the aggregator: he receives the noisy user data in the form
of ciphertexts, aggregates it and retrieves the noisy aggregate xagg using a
decryption routine Dec. Finally, this result can be verified together with a
proof of correctness σagg and a public verification key vk using the public

6Note that we refer to authentication as a means for data integrity and not in the sense
of authentication of identities.
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S

I

DP M
Enc1 Auth1

Agg

Dec

Agg

…
DP M DP M

U1 U2 UN

Ver
Enc2 Auth2 EncN AuthN

FIGURE 4.2: Structure of SOMAR [BGZ17a; BGZ17b].

verification module Ver, where the proof of correctness is computed by ag-
gregating the individual users’ authentication tags σi.
Therefore, each user implements privacy mechanismM, encryption mod-
ule Enci with an individual secret encryption key and the authentication
module Authi with an individual secret authentication key. Merchant S
implements the aggregation routine Agg, which essentially constitutes the
execution of the desired aggregation function fagg. Finally, influencer I also
aggregates using Agg and decrypts using Dec and his secret decryption key.
In SOMAR we treat each module as an individual building block (see Fig-
ure 4.2). This allows for the instantiation of each module based on the in-
dividual needs of the application, e.g. the plug-and-play deployment of a
certain privacy mechanism that provides a desired privacy-accuracy trade-
off without affecting the other building blocks.
In contrast to the standard model (see Figure 4.1), privacy-sensitive user
data is only sent from users {Ui}Ni=1 to merchant S (straight-line edges) and
S only shares DP-aggregate data with I (double-edged arrow). Assuming
that each user has access to some trusted device, e.g. on a computer with
a trusted browser extension, that invokes the user operations and stores
secret keys, the performed actions are transparent to the human user (for
simplification, we still refer to the “user” executing that action). These user
operations only communicate encrypted data, i.e. ciphertexts and authen-
tication tags, to other parties (dashed edges).
We detail the individual computations of each party with respect to the de-
fined building blocks next. Figure 4.3 shows an overview.

User. After user Ui has clicked the link in I’s post, she is directed to S’s
website, where she makes a purchase - this is where our solution kicks in:
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FIGURE 4.3: Detailed computations
(a) User, (b) Merchant, (c) Influencer, (d) Verification [BGZ17a].

Ui applies privacy mechanism M to her data di, e.g. age, gender7, which
generates the noisy value xi. Encrypting xi using Enc yields ciphertext ci
as ci := Enc(skEi , xi), where skEi is Ui’s secret encryption key. She uses
the authentication routine Auth with her authentication key skTi in order
to generate the authentication tag σi as σi := Auth(skTi , xi). Finally, each
user holds the tuple (di, xi, skEi , skTi , ci, σi) and shares (di, xi, σi) with S
and (ci, σi) with I , respectively.

Both S and I receive N sets of user data, which they simultaneously accu-
mulate. S’s input is the users’ raw and noisy data and authentication tags
{(di, xi, σi)}Ni=1 and I receives encrypted noisy user data and authentica-
tion tags {(ci, σi)}Ni=1.

Merchant. S performs the desired aggregation function fagg on the users’
noisy values x(S)

agg = fagg({xi}Ni=1). He also aggregates the individual au-
thentication tags σi in order to compute his proof of correctness σ(S)

agg =

fagg({σi}Ni=1). Eventually, S holds (x
(S)
agg, σ

(S)
agg).

Influencer. I receives {(ci, σi)}Ni=1 as input and aggregates the ciphertexts,
which yields the aggregated ciphertext cagg. He retrieves the aggregate
result by decrypting cagg using his decryption capability skA, i.e. xagg =

Dec(skA, cagg). Finally, he computes his proof of correctness σ(I)
agg as σ(I)

agg =
fagg({σi}Ni=1). Note that as long as the underlying PSA scheme is aggregator
oblivious and since I is the aggregator in this setting, he can only decrypt
the aggregated ciphertext cagg. More concretely, he cannot decrypt any in-
dividual user ciphertext and no information about any individual user is
leaked to I . He now holds (x

(I)
agg, σ

(I)
agg), i.e. the noisy aggregate output and

the proof of correctness.

Verification. When S provides I with x(S)
agg and claims that this value cor-

responds to the noisy aggregate of user data, I can now check whether

x
(S)
agg

?
= x

(I)
agg. If either S or I were dishonest, these values will be different.

7Information like age and gender is typically optional when filling out a form for online
purchases. Generally, one may think of any privacy-sensitive information that is collected
during the purchasing process.



68 Chapter 4. Privacy-Preserving Social Media Advertising

In that case, the public routine Ver can be used for verification: providing
xagg together with the proof of correctness σagg, Ver will only return accept
for the correct input and reject, otherwise. It will always fail for incorrect
inputs based on the aggregator unforgeability guarantee of the underlying
PSA scheme.

Remark 4. Note that the verification key vk has to be published by the party that
generates the input authentication tags, i.e. the user. Consequently, the party that
attempts to get their value verified, e.g. S, cannot provide a fake verification key to
the verifier, e.g. I , and thereby falsely obtain acceptance. In practice, this could be
achieved by establishing a public register within the architecture, where any new
verification key is published once it is generated.

Influencer I can also use the generated proofs of correctness in order to
prove accuracy of certain aggregate data to other merchants. For instance,
merchants that look to promote their products to a target group with cer-
tain statistical attributes can verify that I’s followers indeed have these at-
tributes. I would simply present the aggregate data together with a proof
of correctness and the interested merchants can verify it using the public
verification routine.

Remark 5. Compared to the social media marketing model as shown in Figure 4.1,
our architecture requires each party to implement the modules as specified previ-
ously - in particular, S has to set up the Agg operation and I has to additionally
implement the decryption module Dec. While providing end user privacy, this nat-
urally incurs additional cost compared to before. However, note that this also serves
S’s and I’s individual interests: on the one hand, merchant S benefits from their
clients’ increased privacy as added brand value and recognition and it minimizes
the risk of future data compromises. On the other hand, the influencer I can now
rely on correct aggregate data.

4.3.2 SOMAR Instantiation

In order to achieve the two goals of our architecture of user privacy and
data reliability in practice, we combine DP tools and encryption with proofs
of correctness - namely through the use of aggregator unforgeable PSA
schemes. Note that each of these components corresponds to individual
steps in the underlying PSA scheme as in Definition 15 and constitutes a
separate module in our architecture. The combination of DP-mechanism
M and encryption module Enc naturally corresponds to NoisyEnc; the ag-
gregation module Agg is the aggregation function f and together with the
decryption module Dec, they constitute AggrDec.

Tags/Signature In our architecture users generate authentication tags that
can be aggregated into a proof of correctness for the overall aggregate re-
sult. In practice, this can be implemented using a homomorphic aggregate
signature scheme [TDB16]. Here, each authentication tag σi is produced as a
signature of the noisy user value xi - due to the homomorphic nature, it can
be aggregated and the final output σagg corresponds to a valid signature of
the underlying aggregated messages xagg. Hence, the aggregate signature
serves as the proof of correctness and our verification module Ver corre-
sponds to the verification routine in the signature scheme.
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Bundling an aggregator oblivious PSA scheme with proofs of correctness,
for instance by using a homomorphic aggregate signature scheme, yields an
aggregator unforgeable PSA scheme. By satisfying this notion the scheme
provides all desired functionalities: the aggregate output, i.e. the noisy ag-
gregate user data provided to influencer I , does not leak any information
about any individual user Ui and can be verified using an aggregate proof
of correctness. Hence, I is not forced to place trust in S nor vice-versa.

Using LaPS. Existing proposals for aggregator unforgeable PSA schemes
[Leo+15; Emu17] are based on the DDH-assumption and consequently have
the same limitations as Shi et al.’s [Shi+11] scheme (see Section 3.4). In con-
trast, our LaPS scheme can be extended to aggregator unforgeability in a
straightforward way by combining it with a homomorphic aggregate sig-
nature scheme, as detailed above.
Jing’s [Jin14] HAS scheme is a particularly good fit as it is a lattice-based
homomorphic aggregate signature scheme and therefore maintains conjec-
tured post-quantum security. It also performs best among other homomor-
phic aggregate signature schemes in terms of efficiency [TDB16] and thus
aligns well with our LaPS scheme with respect to performance. Hence,
taking LaPS as the underlying aggregator oblivious PSA scheme and for
instance using the example instantiation that we have presented in Sec-
tion 3.7, lets us define moduleM as the discrete Laplace mechanism, mod-
ule Enc as a combination of A-LWE- and BGV-based encryption, and Dec as
the corresponding decryption routine. Note that for this LaPS instance Agg
corresponds to the sum function. Finally, adding the HAS scheme yields
aggregator unforgeability and completes the SOMAR instantiation, where
the HAS signature routine constitutes the Auth module and the HAS verifi-
cation routine represents the Ver module.

4.4 Experimental Results

We base our runtime estimations for all parties, i.e. user Ui, merchant S,
and influencer I , on an instantiation of SOMAR with our PSA scheme LaPS
when combined with the homomorphic aggregate signature scheme HAS
due to Jing [Jin14]. In fact, we use the exact form of LaPS that we have
presented in Section 3.7, where a reduced version of the BGV scheme is the
additively homomorphic element and the discrete Laplace mechanism is
used as the privacy mechanism, i.e. the LaPS instance according to Defini-
tion 25. Consequently, the desired aggregation is the sum.

M Enc Agg Dec

User 3.72 - -
Merchant - - 0.02 -
Influencer - - 1.96

TABLE 4.1: Runtime results in ms for 1000 users, 80-bit security level
and ≈ 216 plaintext space [BGZ17a].

Note that by combining certain building blocks in our architecture we get
the subroutines of the LaPS scheme. Therefore, we can reuse the runtime
measurements of our LaPS scheme (see Section 3.8.2) for the runtimes of
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privacy mechanism and encryption and aggregation and decryption in this
SOMAR instantiation. We estimate the runtimes for the remaining building
blocks of authentication tagging and verification based on results from El
Bansarkhani and Buchmann [EB13].

Auth Ver

User 15.4
Merchant - 3.1
Influencer -

TABLE 4.2: Estimate runtimes in ms for 1000 users, 80-bit security
level and ≈ 216 plaintext space based on [EB13].

Our results are summarized in Tables 4.1 and 4.2 and they are shown per
operation and executing party. Recall that the verification routine is acces-
sible to anyone. Note that we separate our runtime results from the esti-
mations based on El Bansarkhani and Buchmann’s [EB13] results as their
implementation was conducted on a different platform (see [EB13, Section
5]) than ours8.
We assume N = 1000 participants and target a bit-security level of 80 bits
with a plaintext space of roughly 216 (as in Section 3.8.2). In the following,
we discuss the basis for our estimations and subsequently detail the deriva-
tion of our results for the individual building blocks of our architecture and
their combination.
According to our results in Table 3.4, the execution of the NoisyEnc rou-
tine within our LaPS scheme takes 3.72 ms. This includes both invoking
the privacy mechanism, i.e. the discrete Laplace mechanism asM, and en-
crypting, i.e. executing Enc, hence:

M+ Enc⇒ 3.72 ms. (4.1)

The user generates an authentication tag σi for their noisy value xi by sign-
ing it using the Sign routine of the HAS scheme [Jin14]. The latter is defined
as computing a homomorphic hash value of xi and running the pre-image
sampling algorithm SamplePre, which outputs the signature.
The signature routine in Gentry et al.’s [GPV08] GPV signature scheme has
the same structure except that a general hash function is used instead of
a homomorphic one. El Bansarkhani and Buchmann [EB13] improve over
the original GPV scheme and present a particularly efficient implementa-
tion of this signature scheme using Micciancio and Peikert’s [MP12] trap-
door construction. Since the signature routines are thus comparable, we
use El Bansarkhani and Buchmann’s [EB13] experimental results as the ba-
sis for our runtime estimation of the tag generation in the Auth routine.
The homomorphic hash according to [Jin14] is computed by first determin-
ing a set of common vectors {αj}, which are (regular) hash values of some
public values {j}, and then multiplying each vector {αj} with the input,
say message m, i.e. {〈αj ,m〉}. The final homomorphic hash of m is the
combination of these results into a column vector. Regarding the compu-
tational effort, there is one additional operation compared to the GPV sig-
nature scheme, where a set of scalar products between two vectors is com-
puted.

8Note that our platform details are as detailed in Section 3.8.2.
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El Bansarkhani and Buchmann [EB13] break down the computation time
of the signature routine into its individual parts: their results indicate that
the computation of such scalar products occupies about 10% of the total
computation time. Therefore, we estimate that the execution of our Auth
module amounts to roughly 110% of the runtime of the GPV signature rou-
tine as implemented in [EB13]. Their runtime result is 14 ms for parameters
n = 256 and k = 27, which yields 80-bit security, hence

Auth⇒ 14 ms · 1.1 = 15.4 ms. (4.2)

Note that the implementation in [EB13] is set in the ring setting, which is in
line with our LaPS instance.
The targeted aggregation operation here is the sum, therefore Agg computes
the sum of the input values. Our runtime measurements indicate for num-
ber of participants and plaintext space as before:

Agg⇒ 0.02 ms. (4.3)

Observe that this result is also applicable to the summation of ciphertexts
and authentication tags as the individual additions of vector elements can
be entirely parallelized. AggrDec in the LaPS scheme contains both the ag-
gregation of the input ciphertexts, i.e. Agg, and their decryption, i.e. Dec.
Therefore, aggregation and decryption take

Agg + Dec⇒ 1.96 ms. (4.4)

With these results at hand, we now estimate the overall runtime for each
involved party:

User. The user applies the privacy mechanism M, which results in the
noisy value xi, encrypts using Enc, and authenticates using Auth. Assum-
ing that xi can be accessed from the authentication routine (which consid-
ering that it is all part of one “user routine” is a reasonable assumption), the
user’s overall runtime corresponds to the sum of the runtimes for these in-
dividual building blocks, which based on results (4.1) and (4.2) is practical.

Merchant. The aggregation using Agg is the only task of the merchant,
which takes 0.02 ms according to (4.3). Note that the aggregation of cipher-
texts and authentication tags can be optimized into one operation using
parallelization.

Influencer. The influencer aggregates both input ciphertexts and authen-
tication tags, which as before can be accounted for as one aggregation op-
eration, and subsequently decrypts the aggregate ciphertext. Therefore, his
total runtime corresponds to result (4.4), i.e. 1.96 ms.

Verification. Analogous to the authentication routine, the verification Ver
corresponds to the verification method in the HAS scheme [Jin14]. This
algorithm is in fact identical to the Verify routine in the GPV signature
scheme [GPV08] except for the hashing step as detailed before. Therefore,
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we again take El Bansarkhani and Buchmann’s [EB13] runtime result but
this time for the verification, which equals 1.7 ms, and add 1.4 ms for the
additional operation due to the computation of a homomorphic hash in-
stead of a general one. The latter corresponds to the estimate for comput-
ing scalar products based on the runtime of the signing routine in the GPV
scheme. Hence,

Verify⇒ 1.7 ms + 1.4 ms = 3.1 ms. (4.5)

As stated previously, the verification routine can be invoked by any party
that wants to verify some aggregate data.
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Chapter 5

Summary

In this chapter we summarize our findings and discuss potential future re-
search directions.

5.1 Conclusions

We have applied LWE-based encryption to the problem of privacy-friendly
data aggregation and our results have shown that this application indeed
leads to improvements in performance. We have also provided a solution
for privacy-preserving social media marketing and thereby resolved a prob-
lem that has not been considered before. We summarize our contributions
in the following.

Lattice-based PSA. We introduced a new lattice-based PSA scheme called
LaPS, which improves over previous schemes in several ways: we resolved
the main limitation from Shi et al.’s [Shi+11] scheme with regards to the
plaintext size restriction based on the high bandwidth efficiency of the un-
derlying LWE-based construction. We were also able to remove previously
required assumptions, i.e. the encrypt-once model, and provide an overall
stronger security guarantee due to conjectured post-quantum hardness of
worst-case lattice problems, which constitutes our underlying assumption.
Moreover, we achieved significant performance improvements in terms of
both plaintext space (roughly 66000 times larger) and runtime (about 150
times faster decryption) compared to Shi et al.’s [Shi+11] PSA scheme.

Privacy-preserving social media marketing. We also presented SOMAR,
which is a privacy-friendly social media marketing architecture that bene-
fits from the DP- and security guarantees of PSA schemes. In fact, we are
the first to consider this problem. We showed how instantiating SOMAR
with our LaPS scheme allows for an efficient solution that provides both
end user data privacy and public verifiability of the produced data aggre-
gates. Again, based on the underlying assumption we may conjecture post-
quantum security and as our experimental results showed, our solution is
practical.

Summarizing, with our schemes and constructions we were able to show
that lattice-based and particularly LWE-based systems have intriguing pro-
perties that allow for efficient implementation in practice. In particular,
privacy-preserving data aggregation, which has been the main focus of this
work, can indeed be realized in an efficient manner when using an LWE-
based construction.
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It is our hope that our contributions to advancing the state-of-the-art in ap-
plying LWE-based schemes will inspire a more differentiated view of effi-
ciency in the context of certain applications and will reinforce the consider-
ation of LWE as a hardness assumption beyond the need for post-quantum
hardness.

5.2 Future Work

The effort to establish compelling evidence for the unique suitability of
LWE for certain (pre-quantum era) applications is a significant one and our
contributions can only be understood as steps in that direction. Neverthe-
less, we can now formulate a set of potential future research directions that
will help continue this effort. We start by listing a number of interesting
follow-up questions that arose directly from our work on our PSA-scheme
LaPS (Chapter 3) and our SOMAR architecture (Chapter 4) and end on a
more general note around (A-)LWE-based systems.

• Support richer statistics. In our discussion of LaPS and PSA schemes
in general we focused our view on the most basic case of aggregation,
i.e. the sum. It would be valuable to support other operations using a
lattice-based scheme, such as computing the aggregate product.

• User failures. Our construction currently assumes that all N parti-
cipants submit an input. If only one user ciphertext is missing, the
overall aggregation process has to start over. Therefore, allowing for
dynamic joins and leaves would tolerate such user failures. We have
indicated potential ways of realizing these in Section 3.9.

• Aggregator unforgeability. The notion of aggregator unforgeability
(see Section 3.3.2.2) extends aggregator obliviousness in that it pro-
vides public verifiability of the aggregate result. Hence, when the ag-
gregator is not trusted to accurately publish the computed result, this
notion is appropriate. For our scheme LaPS, this could be achieved
by combining it with a homomorphic aggregate signature scheme,
e.g. the HAS scheme [Jin14] as detailed in the instantiation of our
architecture SOMAR (see Section 4.3.2).

• Guarantees for malicious users. SOMAR is clearly a user-centric ar-
chitecture. We assume that it is in the user’s interest to ensure her data
privacy and therefore she will not only accept the task of encrypting
her data and communicating it to the other parties but also follow
the protocol honestly. Therefore, an interesting problem would be to
design schemes where the user is not trusted. For instance, one may
consider a variation of SOMAR, where parties other than the user are
(perhaps jointly) responsible for ensuring end user data privacy.

• Avoid user-merchant collusion. Similarly to the case of malicious
users, when a merchant secretly agrees with users to provide false
data, our architecture in its current form does not provide correct-
ness guarantees to the influencer. This may be of interest in practice,
especially when the merchant offers a financial incentive such as a
discount.
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• Formal security model for SOMAR instantiation. Our development
of the SOMAR architecture is mainly based on the security notion of
the underlying PSA scheme, i.e. aggregator unforgeability. In a more
general treatment of the problem of privacy-preserving social media
marketing, it would be worth considering a dedicated formal security
(and privacy) model for this problem statement. Besides allowing for
a rigorous evaluation of solutions, this may also expand the potential
bases for appropriate instantiations beyond aggregator unforgeable
PSA schemes.

• Further applications of A-LWE. Based on our contributions, it would
be intriguing to explore more applications that can benefit from A-
LWE as a hardness assumption on a general level, both from a secu-
rity as well as an efficiency perspective. For example, realizing a com-
putational fuzzy extractor based on A-LWE as opposed to traditional
LWE (see e.g. [FMR13; Hut+17]).





77

Bibliography

[AAS14] Markku Antikainen, Tuomas Aura, and Mikko Särelä. “Denial-
of-Service Attacks in Bloom-Filter-Based Forwarding”. In:
IEEE/ ACM Trans. Netw. 22.5 (2014), pp. 1463–1476. DOI:
10.1109/TNET.2013.2281614. URL: https://doi.
org/10.1109/TNET.2013.2281614.

[Aca+14] Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juárez, Arvind Narayanan, and Claudia Díaz. “The Web Never
Forgets: Persistent Tracking Mechanisms in the Wild”. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7,
2014. 2014, pp. 674–689. DOI: 10.1145/2660267.2660347.
URL: http : / / doi . acm . org / 10 . 1145 / 2660267 .
2660347.

[AD97] Miklós Ajtai and Cynthia Dwork. “A Public-Key Cryptosys-
tem with Worst-Case/Average-Case Equivalence”. In: Proceed-
ings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997. 1997, pp. 284–
293. DOI: 10.1145/258533.258604. URL: http://doi.
acm.org/10.1145/258533.258604.

[AG11] Sanjeev Arora and Rong Ge. “New Algorithms for Learning in
Presence of Errors”. In: Automata, Languages and Programming
- 38th International Colloquium, ICALP 2011, Zurich, Switzerland,
July 4-8, 2011, Proceedings, Part I. 2011, pp. 403–415. DOI: 10.
1007/978-3-642-22006-7_34. URL: https://doi.org/
10.1007/978-3-642-22006-7_34.

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. “Si-
multaneous Hardcore Bits and Cryptography against Memory
Attacks”. In: Theory of Cryptography, 6th Theory of Cryptogra-
phy Conference, TCC 2009, San Francisco, CA, USA, March 15-17,
2009. Proceedings. 2009, pp. 474–495. DOI: 10.1007/978-3-
642-00457-5_28. URL: https://doi.org/10.1007/
978-3-642-00457-5_28.

[Ajt05] Miklós Ajtai. “Representing hard lattices with O(n log n) bits”.
In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005. 2005, pp. 94–
103. DOI: 10.1145/1060590.1060604. URL: http://doi.
acm.org/10.1145/1060590.1060604.

[Ajt96] Miklós Ajtai. “Generating Hard Instances of Lattice Problems
(Extended Abstract)”. In: Proceedings of the Twenty-Eighth An-
nual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996. 1996, pp. 99–108. DOI: 10.

http://dx.doi.org/10.1109/TNET.2013.2281614
https://doi.org/10.1109/TNET.2013.2281614
https://doi.org/10.1109/TNET.2013.2281614
http://dx.doi.org/10.1145/2660267.2660347
http://doi.acm.org/10.1145/2660267.2660347
http://doi.acm.org/10.1145/2660267.2660347
http://dx.doi.org/10.1145/258533.258604
http://doi.acm.org/10.1145/258533.258604
http://doi.acm.org/10.1145/258533.258604
http://dx.doi.org/10.1007/978-3-642-22006-7_34
http://dx.doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1145/1060590.1060604
http://doi.acm.org/10.1145/1060590.1060604
http://doi.acm.org/10.1145/1060590.1060604
http://dx.doi.org/10.1145/237814.237838
http://dx.doi.org/10.1145/237814.237838


78 BIBLIOGRAPHY

1145/237814.237838. URL: http://doi.acm.org/10.
1145/237814.237838.

[Alb+14] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick,
and Ludovic Perret. “Lazy Modulus Switching for the BKW
Algorithm on LWE”. In: Public-Key Cryptography - PKC 2014 -
17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Pro-
ceedings. 2014, pp. 429–445. DOI: 10.1007/978- 3- 642-
54631-0_25. URL: https://doi.org/10.1007/978-
3-642-54631-0_25.

[App] Apple Differential Privacy Technical Overview. Tech. rep. Apple
Inc.

[App+09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sa-
hai. “Fast Cryptographic Primitives and Circular-Secure En-
cryption Based on Hard Learning Problems”. In: Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings. 2009, pp. 595–618. DOI: 10.1007/978-3-642-03356-
8_35. URL: https://doi.org/10.1007/978-3-642-
03356-8_35.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the con-
crete hardness of Learning with Errors”. In: J. Math. Cryptol. 9.3
(2015), pp. 169–203. DOI: 10.1515/jmc-2015-0016. URL:
https://eprint.iacr.org/2015/046.pdf.

[Ash+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran
Tromer, Vinod Vaikuntanathan, and Daniel Wichs. “Multi-
party Computation with Low Communication, Computation
and Interaction via Threshold FHE”. In: Advances in Cryptology
- EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cam-
bridge, UK, April 15-19, 2012. Proceedings. 2012, pp. 483–501.
DOI: 10.1007/978-3-642-29011-4_29. URL: https:
//doi.org/10.1007/978-3-642-29011-4_29.

[Ass+16] Julian Assange, Jacob Appelbaum, Andy Muller-Maguhn, and
Jrmie Zimmermann. Cypherpunks: Freedom and the Future of the
Internet. OR books, 2016.

[Bab85] László Babai. “On Lovász’ Lattice Reduction and the Near-
est Lattice Point Problem (Shortened Version)”. In: STACS 85,
2nd Symposium of Theoretical Aspects of Computer Science, Saar-
brücken, Germany, January 3-5, 1985, Proceedings. 1985, pp. 13–
20. DOI: 10.1007/BFb0023990. URL: https://doi.org/
10.1007/BFb0023990.

[Bac+12] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina.
“ObliviAd: Provably Secure and Practical Online Behavioral
Advertising”. In: IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California, USA. 2012,
pp. 257–271. DOI: 10 . 1109 / SP . 2012 . 25. URL: https :
//doi.org/10.1109/SP.2012.25.

http://dx.doi.org/10.1145/237814.237838
http://dx.doi.org/10.1145/237814.237838
http://doi.acm.org/10.1145/237814.237838
http://doi.acm.org/10.1145/237814.237838
http://dx.doi.org/10.1007/978-3-642-54631-0_25
http://dx.doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-54631-0_25
https://doi.org/10.1007/978-3-642-54631-0_25
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1515/jmc-2015-0016
https://eprint.iacr.org/2015/046.pdf
http://dx.doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/BFb0023990
https://doi.org/10.1007/BFb0023990
https://doi.org/10.1007/BFb0023990
http://dx.doi.org/10.1109/SP.2012.25
https://doi.org/10.1109/SP.2012.25
https://doi.org/10.1109/SP.2012.25


BIBLIOGRAPHY 79

[Bau+16] Bela Bauer, Dave Wecker, Andrew J. Millis, Matthew B. Hast-
ings, and Matthias Troyer. “Hybrid Quantum-Classical Ap-
proach to Correlated Materials”. In: Phys. Rev. X 6 (3 2016),
p. 031045. DOI: 10 . 1103 / PhysRevX . 6 . 031045. URL:
https://link.aps.org/doi/10.1103/PhysRevX.6.
031045.

[Ben11] Shea Bennett. The Business Of Social Media. http : / / www .
adweek . com / digital / business - social - media /
?red=at. 2011, Retrieved Aug 9 2017.

[Ber09] Daniel J. Bernstein. “Introduction to post-quantum cryp-
tography”. In: Post-quantum cryptography. Ed. by Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen. Springer
Berlin Heidelberg, 2009, pp. 1–14. ISBN: 978-3-540-88702-7. DOI:
10.1007/978-3-540-88702-7.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
“(Leveled) fully homomorphic encryption without bootstrap-
ping”. In: Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012. 2012, pp. 309–325.
DOI: 10.1145/2090236.2090262. URL: http://doi.
acm.org/10.1145/2090236.2090262.

[BGZ17a] Daniela Becker, Jorge Guajardo, and Karl-Heinz Zimmermann.
“SOMAR: Privacy-Preserving SOcial Media Advertising AR-
chitecture”. In: Proceedings of the 2017 on Workshop on Privacy in
the Electronic Society, Dallas, TX, USA, October 30 - November 3,
2017. 2017, pp. 21–30. DOI: 10.1145/3139550.3139563.
URL: http : / / doi . acm . org / 10 . 1145 / 3139550 .
3139563.

[BGZ17b] Daniela Becker, Jorge Guajardo, and Karl-Heinz Zimmermann.
“Towards a new privacy-preserving social media advertising
architecture (invited position paper)”. In: 2017 IEEE Conference
on Communications and Network Security, CNS 2017, Las Vegas,
NV, USA, October 9-11, 2017. 2017, pp. 45–457. DOI: 10.1109/
CNS.2017.8228712. URL: https://doi.org/10.1109/
CNS.2017.8228712.

[BGZ18] Daniela Becker, Jorge Guajardo, and Karl-Heinz Zimmermann.
“Revisiting Private Stream Aggregation: Lattice-Based PSA”.
In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, 18th Febru-
ary - 21st February 2018. 2018.

[Bil+14] Igor Bilogrevic, Julien Freudiger, Emiliano De Cristofaro, and
Ersin Uzun. “What’s the Gist? Privacy-Preserving Aggregation
of User Profiles”. In: Computer Security - ESORICS 2014 - 19th
European Symposium on Research in Computer Security, Wroclaw,
Poland, September 7-11, 2014. Proceedings, Part II. 2014, pp. 128–
145. DOI: 10.1007/978-3-319-11212-1_8. URL: https:
//doi.org/10.1007/978-3-319-11212-1_8.

http://dx.doi.org/10.1103/PhysRevX.6.031045
https://link.aps.org/doi/10.1103/PhysRevX.6.031045
https://link.aps.org/doi/10.1103/PhysRevX.6.031045
http://www.adweek.com/digital/business-social-media/?red=at
http://www.adweek.com/digital/business-social-media/?red=at
http://www.adweek.com/digital/business-social-media/?red=at
http://dx.doi.org/10.1007/978-3-540-88702-7
http://dx.doi.org/10.1145/2090236.2090262
http://doi.acm.org/10.1145/2090236.2090262
http://doi.acm.org/10.1145/2090236.2090262
http://dx.doi.org/10.1145/3139550.3139563
http://doi.acm.org/10.1145/3139550.3139563
http://doi.acm.org/10.1145/3139550.3139563
http://dx.doi.org/10.1109/CNS.2017.8228712
http://dx.doi.org/10.1109/CNS.2017.8228712
https://doi.org/10.1109/CNS.2017.8228712
https://doi.org/10.1109/CNS.2017.8228712
http://dx.doi.org/10.1007/978-3-319-11212-1_8
https://doi.org/10.1007/978-3-319-11212-1_8
https://doi.org/10.1007/978-3-319-11212-1_8


80 BIBLIOGRAPHY

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. “Noise-
tolerant learning, the parity problem, and the statistical query
model”. In: J. ACM 50.4 (2003), pp. 506–519. DOI: 10.1145/
792538.792543. URL: http://doi.acm.org/10.1145/
792538.792543.

[BL16] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography
for long-term security, PQCRYPTO ICT-645622 - presentation. ISO
27 meeting, Tampa, USA, 2016. URL: http://pqcrypto.eu.
org/slides/iso-liaison.pdf.

[Blu+05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi
Nissim. “Practical privacy: the SuLQ framework”. In: Pro-
ceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 13-15, 2005,
Baltimore, Maryland, USA. 2005, pp. 128–138. DOI: 10.1145/
1065167.1065184. URL: http://doi.acm.org/10.
1145/1065167.1065184.

[Bow09] Chris Bowler. Can Social Ads Do Better Than Display Ads?
http://faculty.cbpp.uaa.alaska.edu/afef/SIM-
Razorfish.pdf. 2009, Retrieved Aug 9 2017.

[BR18] Abigail Beall and Matt Reynolds. What are quantum computers
and how do they work? WIRED explains. http://www.wired.
co.uk/article/quantum-computing-explained. 2018,
Retrieved Mar 20 2018.

[Bra+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Re-
gev, and Damien Stehlé. “Classical hardness of learning with
errors”. In: Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 2013, pp. 575–
584. DOI: 10.1145/2488608.2488680. URL: http://doi.
acm.org/10.1145/2488608.2488680.

[BRT11] Mikhail Bilenko, Matthew Richardson, and J Tsai. “Targeted,
Not Tracked: Client-side Solutions for Privacy-Friendly Be-
havioral Advertising”. In: Fourth Hot Topics in Privacy Enhanc-
ing Technologies Symposium (HotPETS 2011) (2011), pp. 1–20.
URL: https : / / petsymposium . org / 2011 / papers /
hotpets11-final3Bilenko.pdf.

[Bul17] Paul Bullock. How is Digital Aiding The Rise of Fidget Spinners?
https://fastweb.media/articles/blog/how-is-
digital-aiding-the-rise-of-the-fidget-spinner.
2017, Retrieved Mar 20 2018.

[Bur15] U.S. Census Bureau. American FactFinder. Tech. rep. 2015.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully
Homomorphic Encryption from (Standard) LWE”. In: Electro-
nic Colloquium on Computational Complexity (ECCC) 18 (2011),
p. 109. URL: http://eccc.hpi-web.de/report/2011/
109.

http://dx.doi.org/10.1145/792538.792543
http://dx.doi.org/10.1145/792538.792543
http://doi.acm.org/10.1145/792538.792543
http://doi.acm.org/10.1145/792538.792543
http://pqcrypto.eu.org/slides/iso-liaison.pdf
http://pqcrypto.eu.org/slides/iso-liaison.pdf
http://dx.doi.org/10.1145/1065167.1065184
http://dx.doi.org/10.1145/1065167.1065184
http://doi.acm.org/10.1145/1065167.1065184
http://doi.acm.org/10.1145/1065167.1065184
http://faculty.cbpp.uaa.alaska.edu/afef/SIM-Razorfish.pdf
http://faculty.cbpp.uaa.alaska.edu/afef/SIM-Razorfish.pdf
http://www.wired.co.uk/article/quantum-computing-explained
http://www.wired.co.uk/article/quantum-computing-explained
http://dx.doi.org/10.1145/2488608.2488680
http://doi.acm.org/10.1145/2488608.2488680
http://doi.acm.org/10.1145/2488608.2488680
https://petsymposium.org/2011/papers/hotpets11-final3Bilenko.pdf
https://petsymposium.org/2011/papers/hotpets11-final3Bilenko.pdf
https://fastweb.media/articles/blog/how-is-digital-aiding-the-rise-of-the-fidget-spinner
https://fastweb.media/articles/blog/how-is-digital-aiding-the-rise-of-the-fidget-spinner
http://eccc.hpi-web.de/report/2011/109
http://eccc.hpi-web.de/report/2011/109


BIBLIOGRAPHY 81

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. “Fully Homomor-
phic Encryption from Ring-LWE and Security for Key Depen-
dent Messages”. In: Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 14-18, 2011. Proceedings. 2011, pp. 505–524. DOI: 10.1007/
978-3-642-22792-9_29. URL: https://doi.org/10.
1007/978-3-642-22792-9_29.

[Cab17] Pauline Cabrera. 5 Creative Ways To Earn Money On Instagram.
http://www.twelveskip.com/guide/making-money/
1228/ways-to-earn-money-on-instagram. 2017, Re-
trieved Aug 9 2017.

[CAF13] Ruichuan Chen, Istemi Ekin Akkus, and Paul Francis. “SplitX:
High-Performance Private Analytics”. In: Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM. 2013, pp. 315–
326. ISBN: 9781450320566. DOI: 10.1145/2486001.2486013.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, Robust,
and Scalable Computation of Aggregate Statistics.” In: 14th
USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2017, Boston, MA, USA, March 27-29, 2017. 2017,
pp. 259–282.

[CGH18] Carole Cadwalladr and Emma Graham-Harrison. “Revealed:
50 million Facebook profiles harvested for Cambridge Analyt-
ica in major data breach”. In: The Guardian (2018, Retrieved Mar
26 2018).

[CGW14] Daniel Cabarcas, Florian Göpfert, and Patrick Weiden. “Prov-
ably secure LWE encryption with smallish uniform noise and
secret”. In: ASIAPKC’14, Proceedings of the 2nd ACM Workshop
on ASIA Public-Key Cryptography, June 3, 2014, Kyoto, Japan.
2014, pp. 33–42. DOI: 10.1145/2600694.2600695. URL:
http://doi.acm.org/10.1145/2600694.2600695.

[Che+12] Ruichuan Chen, Alexey Reznichenko, Paul Francis, and Jo-
hannes Gehrke. “Towards Statistical Queries over Distributed
Private User Data”. In: Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012. 2012, pp. 169–182.

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice
Security Estimates”. In: Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, Decem-
ber 4-8, 2011. Proceedings. 2011, pp. 1–20. DOI: 10.1007/978-
3-642-25385-0_1. URL: https://doi.org/10.1007/
978-3-642-25385-0_1.

[CSS12] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. “Privacy-
Preserving Stream Aggregation with Fault Tolerance”. In:
Financial Cryptography and Data Security - 16th International Con-
ference, FC 2012, Kralendijk, Bonaire, February 27-March 2, 2012,
Revised Selected Papers. 2012, pp. 200–214. DOI: 10.1007/978-
3-642-32946-3_15. URL: https://doi.org/10.1007/
978-3-642-32946-3_15.

http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
http://www.twelveskip.com/guide/making-money/1228/ways-to-earn-money-on-instagram
http://www.twelveskip.com/guide/making-money/1228/ways-to-earn-money-on-instagram
http://dx.doi.org/10.1145/2486001.2486013
http://dx.doi.org/10.1145/2600694.2600695
http://doi.acm.org/10.1145/2600694.2600695
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-32946-3_15
http://dx.doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1007/978-3-642-32946-3_15


82 BIBLIOGRAPHY

[Dam+06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen,
and Tomas Toft. “Unconditionally Secure Constant-Rounds
Multi-party Computation for Equality, Comparison, Bits and
Exponentiation”. In: Theory of Cryptography, Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings. 2006, pp. 285–304. DOI: 10 . 1007 /
11681878 _ 15. URL: https : / / doi . org / 10 . 1007 /
11681878_15.

[Dam+12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Za-
karias. “Multiparty Computation from Somewhat Homomor-
phic Encryption”. In: Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2012. Proceedings. 2012, pp. 643–662. DOI: 10.1007/
978-3-642-32009-5_38. URL: https://doi.org/10.
1007/978-3-642-32009-5_38.

[Dam+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P. Smart. “Practical Covertly Secure
MPC for Dishonest Majority - Or: Breaking the SPDZ Limits”.
In: Computer Security - ESORICS 2013 - 18th European Sympo-
sium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings. 2013, pp. 1–18. DOI: 10.1007/978-3-
642-40203-6_1. URL: https://doi.org/10.1007/978-
3-642-40203-6_1.

[Dan+13] George Danezis, Cédric Fournet, Markulf Kohlweiss, and San-
tiago Zanella Béguelin. “Smart meter aggregation via secret-
sharing”. In: SEGS’13, Proceedings of the 2013 ACM Workshop on
Smart Energy Grid Security, Co-located with CCS 2013, Novem-
ber 8, 2013, Berlin, Germany. 2013, pp. 75–80. DOI: 10.1145/
2516930.2516944. URL: http://doi.acm.org/10.
1145/2516930.2516944.

[Deu16] Julia Deutsch. Millennials Are Changing The World Of Advertis-
ing. https://www.digitaldoughnut.com/articles/
2016/may/millennials-are-changing-the-world-
of-advertising. 2016, Retrieved Aug 9 2017.

[DFL14] Drew Davidson, Matt Fredrikson, and Benjamin Livshits.
“MoRePriv: mobile OS support for application personaliza-
tion and privacy”. In: Proceedings of the 30th Annual Com-
puter Security Applications Conference, ACSAC 2014, New Or-
leans, LA, USA, December 8-12, 2014. 2014, pp. 236–245. DOI:
10.1145/2664243.2664266. URL: http://doi.acm.
org/10.1145/2664243.2664266.

[DM13] Nico Döttling and Jörn Müller-Quade. “Lossy Codes and a
New Variant of the Learning-With-Errors Problem”. In: Ad-
vances in Cryptology - EUROCRYPT 2013, 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings. 2013,
pp. 18–34. DOI: 10.1007/978-3-642-38348-9_2. URL:
https://doi.org/10.1007/978-3-642-38348-9_2.

http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/11681878_15
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1145/2516930.2516944
http://dx.doi.org/10.1145/2516930.2516944
http://doi.acm.org/10.1145/2516930.2516944
http://doi.acm.org/10.1145/2516930.2516944
https://www.digitaldoughnut.com/articles/2016/may/millennials-are-changing-the-world-of-advertising
https://www.digitaldoughnut.com/articles/2016/may/millennials-are-changing-the-world-of-advertising
https://www.digitaldoughnut.com/articles/2016/may/millennials-are-changing-the-world-of-advertising
http://dx.doi.org/10.1145/2664243.2664266
http://doi.acm.org/10.1145/2664243.2664266
http://doi.acm.org/10.1145/2664243.2664266
http://dx.doi.org/10.1007/978-3-642-38348-9_2
https://doi.org/10.1007/978-3-642-38348-9_2


BIBLIOGRAPHY 83

[DN03] Irit Dinur and Kobbi Nissim. “Revealing information while
preserving privacy”. In: Proceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 9-12, 2003, San Diego, CA, USA. 2003, pp. 202–210.
DOI: 10.1145/773153.773173. URL: http://doi.acm.
org/10.1145/773153.773173.

[DN04] Cynthia Dwork and Kobbi Nissim. “Privacy-Preserving Data-
mining on Vertically Partitioned Databases”. In: Advances in
Cryptology - CRYPTO 2004, 24th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 2004,
Proceedings. 2004, pp. 528–544. DOI: 10.1007/978-3-540-
28628-8_32. URL: https://doi.org/10.1007/978-3-
540-28628-8_32.

[DR14] Cynthia Dwork and Aaron Roth. “The Algorithmic Founda-
tions of Differential Privacy”. In: Foundations and Trends in The-
oretical Computer Science 9.3-4 (2014), pp. 211–407. DOI: 10 .
1561/0400000042. URL: https://doi.org/10.1561/
0400000042.

[Dwo+06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D.
Smith. “Calibrating Noise to Sensitivity in Private Data Anal-
ysis”. In: Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Pro-
ceedings. 2006, pp. 265–284. DOI: 10.1007/11681878_14.
URL: https://doi.org/10.1007/11681878_14.

[Dwo06] Cynthia Dwork. “Differential Privacy”. In: Automata, Langua-
ges and Programming, 33rd International Colloquium, ICALP 2006,
Venice, Italy, July 10-14, 2006, Proceedings, Part II. 2006, pp. 1–12.
DOI: 10.1007/11787006_1. URL: https://doi.org/10.
1007/11787006_1.

[Dwo08] Cynthia Dwork. “Differential Privacy: A Survey of Results”.
In: Theory and Applications of Models of Computation, 5th Inter-
national Conference, TAMC 2008, Xi’an, China, April 25-29, 2008.
Proceedings. 2008, pp. 1–19. DOI: 10.1007/978- 3- 540-
79228-4_1. URL: https://doi.org/10.1007/978-
3-540-79228-4_1.

[EB13] Rachid El Bansarkhani and Johannes A. Buchmann. “Improve-
ment and Efficient Implementation of a Lattice-Based Signa-
ture Scheme”. In: Selected Areas in Cryptography - SAC 2013 -
20th International Conference, Burnaby, BC, Canada, August 14-16,
2013, Revised Selected Papers. 2013, pp. 48–67. DOI: 10.1007/
978-3-662-43414-7_3. URL: https://doi.org/10.
1007/978-3-662-43414-7_3.

[EDB14] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes A.
Buchmann. “Augmented Learning with Errors: The Untapped
Potential of the Error Term”. In: IACR Cryptology ePrint Archive
2014 (2014), p. 733. URL: http://eprint.iacr.org/2014/
733.

http://dx.doi.org/10.1145/773153.773173
http://doi.acm.org/10.1145/773153.773173
http://doi.acm.org/10.1145/773153.773173
http://dx.doi.org/10.1007/978-3-540-28628-8_32
http://dx.doi.org/10.1007/978-3-540-28628-8_32
https://doi.org/10.1007/978-3-540-28628-8_32
https://doi.org/10.1007/978-3-540-28628-8_32
http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
http://dx.doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
http://dx.doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-540-79228-4_1
http://dx.doi.org/10.1007/978-3-662-43414-7_3
http://dx.doi.org/10.1007/978-3-662-43414-7_3
https://doi.org/10.1007/978-3-662-43414-7_3
https://doi.org/10.1007/978-3-662-43414-7_3
http://eprint.iacr.org/2014/733
http://eprint.iacr.org/2014/733


84 BIBLIOGRAPHY

[EDB15] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes A.
Buchmann. “Augmented Learning with Errors: The Untapped
Potential of the Error Term”. In: Financial Cryptography and
Data Security - 19th International Conference, FC 2015, San Juan,
Puerto Rico, January 26-30, 2015, Revised Selected Papers. 2015,
pp. 333–352. DOI: 10.1007/978-3-662-47854-7_20. URL:
https://doi.org/10.1007/978-3-662-47854-7_20.

[Emu17] Keita Emura. “Privacy-Preserving Aggregation of Time-Series
Data with Public Verifiability from Simple Assumptions”. In:
Information Security and Privacy - 22nd Australasian Conference,
ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceedings,
Part II. 2017, pp. 193–213. DOI: 10 . 1007 / 978 - 3 - 319 -
59870-3_11. URL: https://doi.org/10.1007/978-3-
319-59870-3_11.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
“RAPPOR: Randomized Aggregatable Privacy-Preserving
Ordinal Response”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scotts-
dale, AZ, USA, November 3-7, 2014. 2014, pp. 1054–1067. DOI:
10.1145/2660267.2660348. URL: http://doi.acm.
org/10.1145/2660267.2660348.

[FC01] Frank Fiore and Shawn Collins. Successful Affiliate Marketing
for Merchants. QUE. Indianapolis, IN, USA: Pearson Education,
2001. ISBN: 0789725258.

[FMR13] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. “Compu-
tational Fuzzy Extractors”. In: Advances in Cryptology - ASIA-
CRYPT 2013 - 19th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Bengaluru, India,
December 1-5, 2013, Proceedings, Part I. 2013, pp. 174–193. DOI:
10.1007/978-3-642-42033-7_10. URL: https://doi.
org/10.1007/978-3-642-42033-7_10.

[Fol14] Janos Follath. “Gaussian sampling in lattice based cryptogra-
phy”. In: De Gruyter 60 (2014), pp. 1–23. DOI: 10.2478/tmmp-
2014-0022.

[Gal13] Steven D. Galbraith. Space-efficient variants of cryptosystems based
on learning with errors. 2013, Retrieved Mar 20 2018. URL: https:
//www.math.auckland.ac.nz/~sgal018/compact-
LWE.pdf.

[GCF11] Saikat Guha, Bin Cheng, and Paul Francis. “Privad: Practi-
cal Privacy in Online Advertising”. In: Proceedings of the 8th
USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2011, Boston, MA, USA, March 30 - April 1, 2011.
2011, pp. 169–182.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-
Key Cryptosystems from Lattice Reduction Problems”. In:
Advances in Cryptology - CRYPTO ’97, 17th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings. 1997, pp. 112–131. DOI: 10.

http://dx.doi.org/10.1007/978-3-662-47854-7_20
https://doi.org/10.1007/978-3-662-47854-7_20
http://dx.doi.org/10.1007/978-3-319-59870-3_11
http://dx.doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-319-59870-3_11
https://doi.org/10.1007/978-3-319-59870-3_11
http://dx.doi.org/10.1145/2660267.2660348
http://doi.acm.org/10.1145/2660267.2660348
http://doi.acm.org/10.1145/2660267.2660348
http://dx.doi.org/10.1007/978-3-642-42033-7_10
https://doi.org/10.1007/978-3-642-42033-7_10
https://doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.2478/tmmp-2014-0022
http://dx.doi.org/10.2478/tmmp-2014-0022
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
http://dx.doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/BFb0052231


BIBLIOGRAPHY 85

1007/BFb0052231. URL: https://doi.org/10.1007/
BFb0052231.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. “Homomorphic
Evaluation of the AES Circuit”. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings. 2012, pp. 850–
867. DOI: 10 . 1007 / 978 - 3 - 642 - 32009 - 5 _ 49. URL:
https://doi.org/10.1007/978-3-642-32009-5_49.

[GLM16] Matthew Green, Watson Ladd, and Ian Miers. “A Protocol for
Privately Reporting Ad Impressions at Scale”. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016. 2016,
pp. 1591–1601. DOI: 10 . 1145 / 2976749 . 2978407. URL:
http://doi.acm.org/10.1145/2976749.2978407.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to
Play any Mental Game or A Completeness Theorem for Pro-
tocols with Honest Majority”. In: Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, 1987, New York, New
York, USA. 1987, pp. 218–229. DOI: 10.1145/28395.28420.
URL: http://doi.acm.org/10.1145/28395.28420.

[GN08] Nicolas Gama and Phong Q. Nguyen. “Predicting Lattice Re-
duction”. In: Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Pro-
ceedings. 2008, pp. 31–51. DOI: 10.1007/978-3-540-78967-
3_3. URL: https://doi.org/10.1007/978-3-540-
78967-3_3.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. “Lattice
Enumeration Using Extreme Pruning”. In: Advances in Cryp-
tology - EUROCRYPT 2010, 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 - June 3, 2010. Proceedings. 2010, pp. 257–278.
DOI: 10.1007/978-3-642-13190-5_13. URL: https:
//doi.org/10.1007/978-3-642-13190-5_13.

[Gol+10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. “Robustness of the Learning with Errors
Assumption”. In: Innovations in Computer Science - ICS 2010,
Tsinghua University, Beijing, China, January 5-7, 2010. Proceed-
ings. 2010, pp. 230–240. URL: http://conference.itcs.
tsinghua . edu . cn / ICS2010 / content / papers / 19 .
html.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Ba-
sic Applications. Cambridge University Press, 2004. ISBN: 0-521-
83084-2.

[Gou14] Lauren Gould. 10 Important Measurements in Influencer Mar-
keting: Instagram. https : / / business . experticity .
com/10-important-measurements-in-influencer-
marketing-instagram/. 2014, Retrieved Aug 9 2017.

http://dx.doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1145/2976749.2978407
http://doi.acm.org/10.1145/2976749.2978407
http://dx.doi.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/19.html
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/19.html
http://conference.itcs.tsinghua.edu.cn/ICS2010/content/papers/19.html
https://business.experticity.com/10-important-measurements-in-influencer-marketing-instagram/
https://business.experticity.com/10-important-measurements-in-influencer-marketing-instagram/
https://business.experticity.com/10-important-measurements-in-influencer-marketing-instagram/


86 BIBLIOGRAPHY

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trap-
doors for hard lattices and new cryptographic constructions”.
In: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, 2008.
2008, pp. 197–206. DOI: 10.1145/1374376.1374407. URL:
http://doi.acm.org/10.1145/1374376.1374407.

[Gre16] Andy Greenberg. Apple’s ‘Differential Privacy’ is about collect-
ing your data – but not your data. https : / / www . wired .
com / 2016 / 06 / apples - differential - privacy -
collecting-data/. 2016, Retrieved Mar 26 2018.

[GRS09] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan.
“Universally utility-maximizing privacy mechanisms”. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. 2009,
pp. 351–360. DOI: 10.1145/1536414.1536464. URL: http:
//doi.acm.org/10.1145/1536414.1536464.

[Her+14] Michael Herrmann, Alfredo Rial, Claudia Díaz, and Bart Pre-
neel. “Practical privacy-preserving location-sharing based ser-
vices with aggregate statistics”. In: 7th ACM Conference on Se-
curity & Privacy in Wireless and Mobile Networks, WiSec’14, Ox-
ford, United Kingdom, July 23-25, 2014. 2014, pp. 87–98. DOI: 10.
1145/2627393.2627414. URL: http://doi.acm.org/
10.1145/2627393.2627414.

[HHB10] Hamed Haddadi, Pan Hui, and Ian Brown. “MobiAd: Private
and Scalable Mobile Advertising”. In: Proceedings of the Fifth
ACM International Workshop on Mobility in the Evolving Inter-
net Architecture. MobiArch ’10. Chicago, Illinois, USA: ACM,
2010, pp. 33–38. ISBN: 978-1-4503-0143-5. DOI: 10 . 1145 /
1859983.1859993. URL: http://doi.acm.org/10.
1145/1859983.1859993.

[Hit15] Lucy Hitz. 2015 Influencer Marketing Guide. Tech. rep. Simply-
Measured, 2015.

[HKM18] Gottfried Herold, Elena Kirshanova, and Alexander May. “On
the asymptotic complexity of solving LWE”. In: Des. Codes
Cryptography 86.1 (2018), pp. 55–83. DOI: 10.1007/s10623-
016-0326-0. URL: https://doi.org/10.1007/s10623-
016-0326-0.

[HM17] Gottfried Herold and Alexander May. “LP Solutions of Vecto-
rial Integer Subset Sums - Cryptanalysis of Galbraith’s Binary
Matrix LWE”. In: Public-Key Cryptography - PKC 2017 - 20th
IACR International Conference on Practice and Theory in Public-
Key Cryptography, Amsterdam, The Netherlands, March 28-31,
2017, Proceedings, Part I. 2017, pp. 3–15. DOI: 10.1007/978-
3-662-54365-8_1. URL: https://doi.org/10.1007/
978-3-662-54365-8_1.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU:
A Ring-Based Public Key Cryptosystem”. In: Algorithmic Num-
ber Theory, Third International Symposium, ANTS-III, Portland,

http://dx.doi.org/10.1145/1374376.1374407
http://doi.acm.org/10.1145/1374376.1374407
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
http://dx.doi.org/10.1145/1536414.1536464
http://doi.acm.org/10.1145/1536414.1536464
http://doi.acm.org/10.1145/1536414.1536464
http://dx.doi.org/10.1145/2627393.2627414
http://dx.doi.org/10.1145/2627393.2627414
http://doi.acm.org/10.1145/2627393.2627414
http://doi.acm.org/10.1145/2627393.2627414
http://dx.doi.org/10.1145/1859983.1859993
http://dx.doi.org/10.1145/1859983.1859993
http://doi.acm.org/10.1145/1859983.1859993
http://doi.acm.org/10.1145/1859983.1859993
http://dx.doi.org/10.1007/s10623-016-0326-0
http://dx.doi.org/10.1007/s10623-016-0326-0
https://doi.org/10.1007/s10623-016-0326-0
https://doi.org/10.1007/s10623-016-0326-0
http://dx.doi.org/10.1007/978-3-662-54365-8_1
http://dx.doi.org/10.1007/978-3-662-54365-8_1
https://doi.org/10.1007/978-3-662-54365-8_1
https://doi.org/10.1007/978-3-662-54365-8_1


BIBLIOGRAPHY 87

Oregon, USA, June 21-25, 1998, Proceedings. 1998, pp. 267–288.
DOI: 10.1007/BFb0054868. URL: https://doi.org/10.
1007/BFb0054868.

[Hut+17] Christopher Huth, Daniela Becker, Jorge Guajardo, Paul Du-
plys, and Tim Güneysu. “Securing Systems With Indispensable
Entropy: LWE-Based Lossless Computational Fuzzy Extractor
for the Internet of Things”. In: IEEE Access 5 (2017), pp. 11909–
11926. DOI: 10.1109/ACCESS.2017.2713835. URL: https:
//doi.org/10.1109/ACCESS.2017.2713835.

[Ibm] What is quantum computing? Tech. rep. IBM Q, IBM Corpora-
tion.

[IK06] Seidu Inusah and Tomasz J. Kozubowski. “A discrete analogue
of the Laplace distribution”. In: J. Stat. Plan. Inference 136 (2006),
pp. 1090–1102. DOI: 10.1016/j.jspi.2004.08.014.

[Jin14] Zhengjun Jing. “An efficient homomorphic aggregate signa-
ture scheme based on lattice”. In: Mathematical Problems in En-
gineering 2014 (2014).

[Jun+13] Taeho Jung, XuFei Mao, Xiang-Yang Li, Shaojie Tang, Wei
Gong, and Lan Zhang. “Privacy-preserving data aggregation
without secure channel: Multivariate polynomial evaluation”.
In: Proceedings of the IEEE INFOCOM 2013, Turin, Italy, April 14-
19, 2013. 2013, pp. 2634–2642. DOI: 10.1109/INFCOM.2013.
6567071. URL: https://doi.org/10.1109/INFCOM.
2013.6567071.

[KF15] Paul Kirchner and Pierre-Alain Fouque. “An Improved BKW
Algorithm for LWE with Applications to Cryptography and
Lattices”. In: CRYPTO ’15 9215 (2015), pp. 43–62.

[KM12] V. Kumar and Rohan Mirchandani. “Increasing the ROI of So-
cial Media Marketing”. In: MIT Sloan Management Review Fall
(2012), pp. 1–21.

[Lal] Estee Lalonde. essiebutton. YouTube. URL: https : / / www .
youtube.com/user/essiebutton.

[Lan14] Brian M. Landry. Influence at Scale. Tech. rep. 2014, pp. 735–744.
DOI: 10.1145/2783258.2783334.

[LC13] Qinghua Li and Guohong Cao. “Efficient Privacy-Preserving
Stream Aggregation in Mobile Sensing with Low Aggregation
Error”. In: Privacy Enhancing Technologies - 13th International
Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013.
Proceedings. 2013, pp. 60–81. DOI: 10.1007/978- 3- 642-
39077-7_4. URL: https://doi.org/10.1007/978-3-
642-39077-7_4.

[LCP14] Qinghua Li, Guohong Cao, and Thomas F. La Porta. “Efficient
and Privacy-Aware Data Aggregation in Mobile Sensing”. In:
IEEE Trans. Dependable Sec. Comput. 11.2 (2014), pp. 115–129.
DOI: 10.1109/TDSC.2013.31. URL: https://doi.org/
10.1109/TDSC.2013.31.

http://dx.doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1109/ACCESS.2017.2713835
https://doi.org/10.1109/ACCESS.2017.2713835
https://doi.org/10.1109/ACCESS.2017.2713835
http://dx.doi.org/10.1016/j.jspi.2004.08.014
http://dx.doi.org/10.1109/INFCOM.2013.6567071
http://dx.doi.org/10.1109/INFCOM.2013.6567071
https://doi.org/10.1109/INFCOM.2013.6567071
https://doi.org/10.1109/INFCOM.2013.6567071
https://www.youtube.com/user/essiebutton
https://www.youtube.com/user/essiebutton
http://dx.doi.org/10.1145/2783258.2783334
http://dx.doi.org/10.1007/978-3-642-39077-7_4
http://dx.doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4
https://doi.org/10.1007/978-3-642-39077-7_4
http://dx.doi.org/10.1109/TDSC.2013.31
https://doi.org/10.1109/TDSC.2013.31
https://doi.org/10.1109/TDSC.2013.31


88 BIBLIOGRAPHY

[Leo+15] Iraklis Leontiadis, Kaoutar Elkhiyaoui, Melek Önen, and Re-
fik Molva. “PUDA - Privacy and Unforgeability for Data Ag-
gregation”. In: Cryptology and Network Security - 14th Interna-
tional Conference, CANS 2015, Marrakesh, Morocco, December 10-
12, 2015, Proceedings. 2015, pp. 3–18. DOI: 10.1007/978-3-
319-26823-1_1. URL: https://doi.org/10.1007/978-
3-319-26823-1_1.

[Liu+13] Bin Liu, Anmol Sheth, Udi Weinsberg, Jaideep Chandrashekar,
and Ramesh Govindan. “AdReveal: improving transparency
into online targeted advertising”. In: Twelfth ACM Workshop
on Hot Topics in Networks, HotNets-XII, College Park, MD,
USA, November 21-22, 2013. 2013, 12:1–12:7. DOI: 10.1145/
2535771.2535783. URL: http://doi.acm.org/10.
1145/2535771.2535783.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László
Lovász. “Factoring polynomials with rational coefficients”. In:
Mathematische Annalen 261.4 (1982), pp. 515–534.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. “Generalized
Compact Knapsacks Are Collision Resistant”. In: Automata,
Languages and Programming, 33rd International Colloquium,
ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
II. 2006, pp. 144–155. DOI: 10 . 1007 / 11787006 _ 13. URL:
https://doi.org/10.1007/11787006_13.

[LN13] Mingjie Liu and Phong Q. Nguyen. “Solving BDD by Enumer-
ation: An Update”. In: Topics in Cryptology - CT-RSA 2013 - The
Cryptographers’ Track at the RSA Conference 2013, San Francisco,
CA, USA, February 25-March 1, 2013. Proceedings. 2013, pp. 293–
309. DOI: 10.1007/978-3-642-36095-4_19. URL: https:
//doi.org/10.1007/978-3-642-36095-4_19.

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and At-
tacks) for LWE-Based Encryption”. In: Topics in Cryptology - CT-
RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011,
San Francisco, CA, USA, February 14-18, 2011. Proceedings. 2011,
pp. 319–339. DOI: 10.1007/978-3-642-19074-2_21. URL:
https://doi.org/10.1007/978-3-642-19074-2_21.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On
Ideal Lattices and Learning with Errors over Rings”. In: Ad-
vances in Cryptology - EUROCRYPT 2010, 29th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings.
2010, pp. 1–23. DOI: 10.1007/978-3-642-13190-5_1.
URL: https://doi.org/10.1007/978-3-642-13190-
5_1.

[LS16] Yang Liu and Andrew Simpson. “Privacy-preserving targeted
mobile advertising: requirements, design and a prototype im-
plementation”. In: Softw., Pract. Exper. 46.12 (2016), pp. 1657–
1684. DOI: 10.1002/spe.2403. URL: https://doi.org/
10.1002/spe.2403.

http://dx.doi.org/10.1007/978-3-319-26823-1_1
http://dx.doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-319-26823-1_1
https://doi.org/10.1007/978-3-319-26823-1_1
http://dx.doi.org/10.1145/2535771.2535783
http://dx.doi.org/10.1145/2535771.2535783
http://doi.acm.org/10.1145/2535771.2535783
http://doi.acm.org/10.1145/2535771.2535783
http://dx.doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
http://dx.doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-642-36095-4_19
http://dx.doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1002/spe.2403
https://doi.org/10.1002/spe.2403
https://doi.org/10.1002/spe.2403


BIBLIOGRAPHY 89

[Ma15] Alexandra Ma. “How To Make Money On Instagram”. In: Huff-
ington Post (2015).

[Men+16] Wei Meng, Ren Ding, Simon P. Chung, Steven Han, and Wenke
Lee. “The Price of Free: Privacy Leakage in Personalized Mo-
bile In-Apps Ads”. In: 23rd Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. 2016.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice
Problems: A Cryptographic Perspective. Vol. 671. The Kluwer In-
ternational Series in Engineering and Computer Science. Bos-
ton, Massachusetts: Kluwer Academic Publishers, 2002.

[Mic02] Daniele Micciancio. “Generalized Compact Knapsacks, Cyclic
Lattices, and Efficient One-Way Functions from Worst-Case
Complexity Assumptions”. In: 43rd Symposium on Founda-
tions of Computer Science (FOCS 2002), 16-19 November 2002,
Vancouver, BC, Canada, Proceedings. 2002, pp. 356–365. DOI:
10.1109/SFCS.2002.1181960. URL: https://doi.org/
10.1109/SFCS.2002.1181960.

[Mic18] Daniele Micciancio. On the Hardness of Learning With Errors with
Binary Secrets. 2018. URL: http : / / cseweb . ucsd . edu /
~daniele/papers/BinLWE.pdf.

[MM11] Daniele Micciancio and Petros Mol. “Pseudorandom Knap-
sacks and the Sample Complexity of LWE Search-to-Decision
Reductions”. In: Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2011. Proceedings. 2011, pp. 465–484. DOI: 10 . 1007 /
978-3-642-22792-9_26. URL: https://doi.org/10.
1007/978-3-642-22792-9_26.

[MOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Handbook of Applied Cryptography. CRC Press, 1996. ISBN:
0-8493-8523-7.

[MP12] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices:
Simpler, Tighter, Faster, Smaller”. In: Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings. 2012, pp. 700–718. DOI: 10.
1007/978-3-642-29011-4_41. URL: https://doi.org/
10.1007/978-3-642-29011-4_41.

[MP13] Daniele Micciancio and Chris Peikert. “Hardness of SIS and
LWE with Small Parameters”. In: Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2013. Proceedings, Part I. 2013,
pp. 21–39. DOI: 10.1007/978-3-642-40041-4_2. URL:
https://doi.org/10.1007/978-3-642-40041-4_2.

[MR04] Daniele Micciancio and Oded Regev. “Worst-Case to Average-
Case Reductions Based on Gaussian Measures”. In: 45th Sym-
posium on Foundations of Computer Science (FOCS 2004), 17-19
October 2004, Rome, Italy, Proceedings. 2004, pp. 372–381. DOI:

http://dx.doi.org/10.1109/SFCS.2002.1181960
https://doi.org/10.1109/SFCS.2002.1181960
https://doi.org/10.1109/SFCS.2002.1181960
http://cseweb.ucsd.edu/~daniele/papers/BinLWE.pdf
http://cseweb.ucsd.edu/~daniele/papers/BinLWE.pdf
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26
https://doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-40041-4_2


90 BIBLIOGRAPHY

10.1109/FOCS.2004.72. URL: https://doi.org/10.
1109/FOCS.2004.72.

[MR09] Daniele Micciancio and Oded Regev. “Lattice-based Cryp-
tography”. In: Post-Quantum Cryptography. Ed. by Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen. Berlin, Hei-
delberg: Springer-Verlag Berlin Heidelberg, 2009, pp. 147–191.
ISBN: 978-3-540-88702-7. DOI: 10.1007/978-3-540-88702-
7_5. URL: https://doi.org/10.1007/978-3-540-
88702-7_5.

[MR17] Brendan McMahan and Daniel Ramage. Federated Learning:
Collaborative Machine Learning without Centralized Training Data.
Tech. rep. Google LLC, 2017.

[NAB11] Animesh Nandi, Armen Aghasaryan, and Makram Bouzid.
“P3: A privacy preserving personalization middleware for
recommendation-based services”. In: Fourth Hot Topics in Pri-
vacy Enhancing Technologies Symposium (HotPETS 2011). 2011.

[Ngu99] Phong Q. Nguyen. “Cryptanalysis of the Goldreich - Gold-
wasser - Halevi Cryptosystem from Crypto ’97”. In: Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings. 1999, pp. 288–304. DOI: 10.1007/3-540-
48405-1_18. URL: https://doi.org/10.1007/3-540-
48405-1_18.

[Nie+14] Frank Niedermeyer, Simone Steinmetzer, Martin Kroll, and
Rainer Schnell. “Cryptanalysis of Basic Bloom Filters used for
Privacy Preserving Record Linkage”. In: J. Priv. Confidentiality
6.2 (2014), pp. 59–79.

[Nov17] Jordan Novet. Following Apple, Google is exploring differential
privacy in Gboard for Android. https : / / venturebeat .
com/2017/04/06/following-apple-google-tests-
differential-privacy-in-gboard-for-android/.
2017.

[NR06] Phong Q. Nguyen and Oded Regev. “Learning a Parallele-
piped: Cryptanalysis of GGH and NTRU Signatures”. In:
Advances in Cryptology - EUROCRYPT 2006, 25th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceed-
ings. 2006, pp. 271–288. DOI: 10.1007/11761679_17. URL:
https://doi.org/10.1007/11761679_17.

[Pei10] Chris Peikert. “An Efficient and Parallel Gaussian Sampler for
Lattices”. In: Advances in Cryptology - CRYPTO 2010, 30th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 15-
19, 2010. Proceedings. 2010, pp. 80–97. DOI: 10.1007/978-3-
642-14623-7_5. URL: https://doi.org/10.1007/978-
3-642-14623-7_5.

http://dx.doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1109/FOCS.2004.72
http://dx.doi.org/10.1007/978-3-540-88702-7_5
http://dx.doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
http://dx.doi.org/10.1007/3-540-48405-1_18
http://dx.doi.org/10.1007/3-540-48405-1_18
https://doi.org/10.1007/3-540-48405-1_18
https://doi.org/10.1007/3-540-48405-1_18
https://venturebeat.com/2017/04/06/following-apple-google-tests-differential-privacy-in-gboard-for-android/
https://venturebeat.com/2017/04/06/following-apple-google-tests-differential-privacy-in-gboard-for-android/
https://venturebeat.com/2017/04/06/following-apple-google-tests-differential-privacy-in-gboard-for-android/
http://dx.doi.org/10.1007/11761679_17
https://doi.org/10.1007/11761679_17
http://dx.doi.org/10.1007/978-3-642-14623-7_5
http://dx.doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5


BIBLIOGRAPHY 91

[Pei16] Chris Peikert. “A Decade of Lattice Cryptography”. In: Foun-
dations and Trends in Theoretical Computer Science 10.4 (2016),
pp. 283–424. DOI: 10.1561/0400000074. URL: https://
doi.org/10.1561/0400000074.

[Pie12] Krzysztof Pietrzak. “Cryptography from Learning Parity with
Noise”. In: SOFSEM 2012: Theory and Practice of Computer Sci-
ence - 38th Conference on Current Trends in Theory and Practice of
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