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Abstract

Error-free transmission is among the utmost goals of modern communication sys-
tems. By means of information theory, fundamental, theoretical limits for error-free
transmission can be determined depending on the transmission conditions. In prac-
tice, however, application-specific limitations often prevent the use of theoretically
optimum algorithms. Especially in wireless transmission, often strict requirements
for latency, energy consumption and available computing power of mobile devices
exist. Therefore, the information to be processed at the receiver usually has to be
quantized very coarsely to enable efficient signal processing.

This work investigates the use of machine learning methods for reliable transmission
despite coarsely quantized soft information at the receiver. Machine learning is often
used synonymously with deep learning using neural networks. However, this thesis
takes a more holistic approach and looks at respective problems from an information
theoretical perspective. Based on these investigations, appropriate machine learning
methods are chosen. It is shown that very powerful error correction is possible
despite coarse quantization if the relevant information is maximized. However, this
requires an interdisciplinary approach based on the interplay of information theory,
machine learning, and communications engineering. A special focus is put on the
information bottleneck method. The information bottleneck method is a clustering
framework from the field of classical, model-based machine learning.

First, the information bottleneck method is presented in detail and compared with
other approaches to quantization in information theory. New algorithms are de-
signed which are particularly suitable for signal processing problems. In addition,
two necessary extensions of the method are presented, i.e., information bottleneck
graphs and message alignment.

In this thesis, the single elements of a receiver are first replaced by coarsely quantized
building blocks designed with the information bottleneck method. Here, a particular
focus lies on the design of modern channel decoding methods using the information
bottleneck method for very reliable transmission. In particular, decoders for different
variants of low-density parity-check codes are studied. Interestingly, the designed
coarsely quantized signal processing units achieve almost the same performance in
terms of reliability as conventional non-quantized methods.

In the second part of the thesis, the idea of mutual-information-based signal pro-
cessing is extended to data-based learning methods. It is shown that by means of
representation learning using autoencoders, transmitter and receiver can be opti-
mized together to maximize the relevant information over the entire transmission
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chain. In contrast to the first part of the work, mutual-information-based signal
processing units are developed without detailed knowledge of the model. However,
the neural networks are not considered as black boxes. Instead, the correspond-
ing loss functions will be designed according to information-theoretical quantities to
maximize the relevant information.
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Chapter 1

Introduction

"The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point."

Claude E. Shannon, 1948

This general definition by Claude E. Shannon inspired communication engineers over
the last decades to build more and more evolved communications systems providing
seamless connectivity for people all over the world. Shannon is often called the
father of information theory and founder of the information age. Information theory
enables to quantify and process information and derive fundamental limits of reliable
information exchange.

The permanent exchange and immediate access to information, as well as constant
availability, have become an elementary, inevitable component of our modern society.
Especially the advances in mobile communications, i.e., broadband access to the
internet everywhere at any time, induced a vast amount of new opportunities but also
challenges. For the first time, the latest generation of mobile communications, i.e.,
the 5th generation (5G), explicitly focuses on the wireless connection of machines.
This lays the foundation for the internet of things and massive machine-to-machine
communication. At the same time, the rise of tiny, mobile, battery-powered devices
demands more energy-efficient, resource-saving communication algorithms than ever
before.

In turn, modern wireless communication engineering needs to balance three crucial
parameters namely:

Latency The latency, i.e., the end-to-end delay from transmission until recovery, is
not only related to the overall system throughput but also impacts the age of
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information, which is especially crucial in remote-controlled applications and
autonomous driving [Yat20]. Often, the computational burden of complicated
baseband signal processing largely impacts the latency.

Reliability The reliability measures the success rate of the transmission. It can be
controlled by appropriate choice of modulation and channel coding schemes.
An unsuccessful transmission requires a retransmission that increases the la-
tency. However, especially modern channel decoding to increase the reliability
of the transmission is itself the most computationally demanding signal pro-
cessing block.

Resources Finally, available hardware resources like battery, chip area, and com-
putational capabilities often prohibit the implementation of the most powerful
signal processing units.

This work presents a novel approach to reliable, low-complexity communication
under coarse quantization based on the interplay of applied information theory,
machine learning, and communications engineering. These three interdisciplinary
pillars form the basis for the so-called mutual-information based signal processing.
Table 1.1 provides a brief timeline of this journey towards mutual-information-based
signal processing, which started around 2002 with the work by Ma et al. [MZY+02].
Mutual-information-based signal processing aims to design signal processing units
which learn to preserve the relevant information. In turn, the internal resolution,
i.e., the bit-width, of the signal processing units can be reduced without signifi-
cantly deteriorating the system performance. This reduction in resolution, i.e., a
coarse quantization typically reduces the implementation complexity. Hence, this
approach promises an optimum trade-off between very reliable transmission and high
resource and energy efficiency. The works summarized in Table 1.1 will be described
in more detail in the next chapters. It will be shown that the information bottleneck
method appears as an attractive framework to design mutual-information-based sig-
nal processing. The information bottleneck method was introduced by Tishby et
al. in [TPB99]. This framework allows extracting relevant information from a high-
resolution observation and representing this relevant information very compactly.

A collection of own publications is depicted in dark blue in Table 1.1 which also serves
as an outline of this thesis. The major contributions of this work are threefold:

1. The information bottleneck method is investigated in the context of communi-
cations engineering. The method itself is compared in great detail to existing
approaches in information theory and machine learning. Furthermore, new al-
gorithms within the generic information bottleneck framework are presented.
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Table 1.1 Timeline Mutual-Information-Based Signal Processing.

Year • Advances in Mutual - Information - Based Signal Processing

2002 • Quantizer Design that Maximizes Mutual Information [MZY+02]

2003 • Belief Propagation Decoding with Mutual Information Maximizing
Operations [Tho03a; LT05]

2008 • Discrete Density Evolution [KYK08]

• Relaying and Network Coding [ZKB+08]

2011 • Mutual-Information Optimized Quantization for LDPC Decoder for
Flash [WCS+11]

2012 • Quantization of Channels with Memory [ZSK12]

2015 • LDPC Decoding using Mutual-Information Maximizing Look-up Tables
[MBB+15; RK15; LB15; RK16; LSB16b]

2016 • General Receiver Design [LSB16a]

2017 • Channel Estimation [LSB17]

• Quantizers for Higher Order Modulation [LSB17]

2018 • Irregular LDPC Decoding with Message Alignment [SLB18b]

• Construction of Polar Codes [SSB18]

• Two-bit Message Passing Decoding [YSM+19]

2019 • Decoding Non-Binary LDPC Codes [SBL+19]

• Decoding of Polar Codes [SSB19]

• Min-LUT Decoding of LDPC Codes [MMB20]

• Computational Domain Decoding [HCM19]

2020 • Decoding Punctured Rate-Compatible LDPC Codes [SWB+20]

• Neural Information Bottleneck Decoding [SLB20]

• Trainable Communication Systems [CAD+20]



4 Chapter 1. Introduction

These algorithms are investigated with respect to their suitability for common
problems in communications. The method itself is generalized for very com-
plicated statistical inference tasks resulting in the so-called information bot-
tleneck graphs. Furthermore, the original information bottleneck method was
designed as a clustering framework. This work presents a further extension
to the method, i.e., message alignment which enables the coarsely quantized
exchange of information in irregular, random graphs, for example, distributed
sensor networks or irregular channel coding schemes.

2. This work studies the problem of channel decoding under coarse quantiza-
tion for very modern channel codes. In particular, many different variants of
so-called low-density parity-check (LDPC) codes are considered. Please note
that the presented approach is also applicable to other modern channel cod-
ing techniques like polar codes [SSB18; SSB19]. It will be shown that the
presented mutual-information-based signal processing offers extremely com-
petitive performance despite very coarse quantization and very simplified op-
erations. Extensive numerical simulation and real hardware implementations
are conducted to underline the superiority of the presented approach compared
to state-of-the-art techniques.

3. The information bottleneck method itself belongs to the class of model-based
machine learning techniques which require very accurate models. Often these
models cannot capture the entire reality, or implementing the models becomes
practically infeasible. Thus, in the third part of this thesis, a data-driven
approach towards mutual-information-based signal processing is outlined. In
particular, deep learning using neural networks is interpreted as an instance of
the information bottleneck method that focuses solely on preserving relevant
information. Detailed information-theoretical reasoning is provided, which
allows adjusting the training process of neural networks resulting in capacity-
achieving end-to-end communication.

In general, this thesis investigates the applicability of mutual-information based
signal processing and the information bottleneck method in the broad context of
reliable communication under coarse quantization.

Chapter 2 briefly reviews fundamentals of information theory, Bayesian statistics
and channel coding.

This thesis aims to provide deep insides to the information bottleneck method and
contributes extensions and generalization of this framework always with respect to
applications in mutual-information based signal processing. Hence, the information
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bottleneck method and its relations to other quantization methods are investigated
in detail in Chapter 3. Here, the example of mutual-information-based channel
output quantization for different channel models is used as a running example.

Chapter 4 presents an essential extension to the classical information bottleneck
setup, i.e., message alignment. Within the discussion of message alignment another
scenario is considered, i.e., joint quantizer design for distributed sensing. Further-
more, Chapter 4 presents the problem of coarsely quantized maximum-a-posteriori
multiple symbol detection for differential modulation over phase noise channels to
introduce the developed concept of information bottleneck graphs.

Afterwards, Chapter 5 presents the design of decoders for LDPC codes using the
information bottleneck method. These information bottleneck decoders enable reli-
able transmission even under coarse quantization. Many different families of LDPC
codes exist. Starting with regular LDPC codes, the decoder design is generalized to
arbitrary irregular LDPC codes. In the most recent 5G communication standard,
LDPC codes are used for mobile broadband. The selected LDPC codes belong to the
very flexible class of rate-compatible LDPC codes. It will be shown how the design
of information bottleneck decoders differs for these standardized 5G LDPC codes.
Furthermore, Chapter 5 provides a detailed comparison of recent alternative LDPC
decoder designs for coarse quantization which build upon the information bottle-
neck decoder approach. Finally, a brief analysis of hardware aspects for different
hardware architectures closes Chapter 5.

A fundamentally different class of LDPC codes are so-called non-binary LDPC codes
studied in Chapter 6. These error-correction codes show very strong error-correcting
capabilities especially in the short blocklength regime. However, so far these codes
are often ignored in practical systems due to their extremely high computational
complexity. This motivates the use of the information bottleneck method to con-
struct a low-complexity decoder which shows error-correction performance similar
to state-of-the-art techniques but with much lower computational complexity.

Chapter 7 presents data-driven mutual-information-based signal processing design.
Starting from limits of the model-based approach identified in Chapter 5 and Chap-
ter 6, the neural information bottleneck decoder is presented. This decoder is a
purely data-driven approach towards coarsely quantized channel decoding. A super-
vised and unsupervised decoder is presented which learns to preserve and maximize
relevant information without explicit knowledge of the entire statistical dependen-
cies. In the second part of Chapter 7, the entire communication chain is described by
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neural networks. It is shown that so-called autoencoders inherently focus on maxi-
mizing the mutual information. Thus, to some extend, end-to-end learning is natural
to mutual-information based signal processing as studied in previous chapters. As
this thesis, aims to integrate and analyze different notions of mutual-information
based signal processing, end-to-end learning is studied in information theoretical
means and compared to the information bottleneck method.

To conclude, Chapter 8 summarizes the findings of this thesis, discusses open ques-
tions and proposes possible future research directions.



Chapter 2

Fundamentals of Probability Theory,
Bayesian Statistics and Information
Theory

This chapter defines the notations used throughout this thesis. Therefore, the most
important theoretical concepts and definitions from statistics and information theory
are reviewed. Section 2.1 introduces the concept of random variables, probabilities,
and probability distributions.

The main focus of this thesis is on the design of mutual-information based signal
processing units. Most mutual-information-based signal processing units can be
related to high-dimensional inference problems. In decision theory, such complicated
decision problems are often tackled with so-called factor graphs. Using factor graphs,
the inference problem can be solved very efficiently using the sum-product algorithm,
sometimes referred to as message passing in literature [KFL01]. These concepts are
described in Section 2.2.

Section 2.3 recalls information-theoretical measures like entropy and mutual infor-
mation. It will be shown that a more vivid and illustrative perspective on informa-
tion theory termed information geometry proves constructive in understanding the
information bottleneck method and related algorithms.

Finally, this chapter reconsiders Shannon’s channel coding theorem and linear block
codes in Section 2.4.
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2.1 Fundamentals of Probability Theory

The definitions used in this thesis follow mainly those in [Cov06] and [PP02]. First,
random variables and related concepts like sample space, joint and conditional prob-
ability distributions are defined for discrete and continuous random variables like-
wise.

2.1.1 Discrete and Continuous Random Variables

In general, a random variable is a function that maps the outcome of a random
experiment to a real number [PP02]. This thesis denotes random variables by capital
sans serif letters, for example, X or Y. The sample space of the random variable
is denoted X and realizations of the random variable are defined by x ∈ X . One
distinguishes between discrete and continuous random variables.

Discrete Random Variables

A discrete random variable has a finite number of realizations given by |X |, i.e., the
cardinality of the sample space. Furthermore, Pr(X = x) is the probability that a
certain realization x is observed. Please note that for discrete random variables

Pr(X = x) > 0,∀x ∈ X . (2.1)

Recording the probabilities for all x ∈ X allows us to determine the probability
distribution pX(x), also referred to as probability mass function. For ease of notation,
the subscript X is dropped and the probability distribution of X is denoted as p(x).
By definition, ∑

x∈X

p(x) =
∑
x∈X

Pr(X = x) = 1 (2.2)

which is often termed the law of total probability [PP02].

Continuous Random Variables

Continuous random variables cover a broader class of random experiments than
discrete random variables as the number of realizations is infinite. In turn, the
sample space of continuous random variables is a subset of the real numbers. This
thesis represents continuous random variables by capital sans serif letters with an
additional tilde as an accent, i.e., X̃ to distinguish between continuous and discrete
random variables. To fully describe a continuous random variable a more general
concept, i.e., the cumulative distribution function is required to derive the proba-
bility distribution p(x̃), also referred to as probability density function.
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Let Pr(X̃ ≤ x̃) be the probability that experimental outcomes smaller or equal x̃ are
observed. As Pr(X̃ ≤ x̃) is a function of x̃, F (x̃) defines the cumulative distribution
function where

F (x̃) = Pr(X̃ ≤ x̃),−∞ < x̃ <∞. (2.3)

Thus, in contrast to discrete random variables, Pr(X̃ = x̃) is zero for continuous
random variables. However, considering the limit Pr(X̃ ∈ {x̃, x̃ + ∆}) with ∆ → 0,
one can derive the differential quotient

p(x̃) = lim
∆→0

F (x̃+ ∆)− F (x̃)

∆
(2.4)

termed probability density function. Similar to the discrete case, the law of total
probability from (2.2) is given by∫ ∞

−∞
p(x̃)dx̃ = 1. (2.5)

In general, one concludes that probability density functions and probability mass
functions are closely related. Thus, the general term probability distribution is used
in this thesis if no distinction is needed. Furthermore, other concepts presented in
this chapter will only be introduced for discrete random variables for ease of notation
as an application to continuous random variables is straightforward.

2.1.2 Joint, Conditional and Marginal Distributions

Having defined random variables and probability distributions, in this section further
concepts from statistics involving multiple random variables are discussed.

Joint Probability Distribution

Given two random variables X with x ∈ X and Y with y ∈ Y the probability that x
and y are observed together is given by Pr(X = x,Y = y). Recording the respective
probabilities for all pairs (x, y) ∈ X × Y , where X × Y = {(x, y)|x ∈ X , y ∈ Y}
denotes the Cartesian product, yields the joint probability distribution p(x, y). For
the joint probability distribution∑

x∈X

∑
y∈Y

p(x, y) = 1 (2.6)

holds.
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Marginal Probability Distribution

Given a joint distribution p(x, y) the individual marginal distributions p(x) and p(y)

are found by marginalizing, i.e., summing out the other variable

p(x) =
∑
y∈Y

p(x, y) (2.7)

p(y) =
∑
x∈X

p(x, y) . (2.8)

In Section 2.2, the process of computing the marginals will also be referred to as
the sum-rule of probabilities [Bis09]. Interestingly, it can be observed that applying
the sum-rule is irreversible, i.e., it is possible to obtain p(x) and p(y) given p(x, y).
However, in general, it is not possible to derive p(x, y) given p(x) and p(y). This is
only possible in the special case that X and Y are so-called independent.

Conditional Probability Distribution

In the previous section, the special case of independent random variables was men-
tioned. This property is closely related to the question:

"How likely is a certain event given that another event was observed?"

In statistics, this relation is described using the concept of conditional probability
distributions p(y|x). The conditional probability distribution is defined by all prob-
abilities Pr(Y = y|X = x),∀(x, y) ∈ X × Y indicating how likely y will be observed
given x. By applying the product-rule of probabilities [Bis09], every joint distribu-
tion can be written as the product of the conditional distributions and marginals

p(x, y) = p(y|x)p(x) = p(x|y)p(y). (2.9)

Given that Y and X are independent, i.e., that observing y is independent of obser-
vations of x, one obtains

p(x, y) = p(y|x)p(x) = p(y)p(x). (2.10)

Information Geometry

Often it is very convenient to investigate joint and conditional distributions from a
graphical perspective. This perspective is especially useful when investigating differ-
ent information bottleneck algorithms in Chapter 3. In general, probability distribu-
tions can be visualized using points in a |X |− 1-dimensional manifold [Ama16]. For



2.1. Fundamentals of Probability Theory 11

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p1(x) = [1, 0, 0]T

p2(x) = [0, 1, 0]T p3(x) = [0, 0, 1]T

p4(x) = [0.45, 0.35, 0.2]T

Figure 2.1: Probability simplex for ternary random variables.

discrete random variables, the probability manifold is an |X |−1-dimensional simplex,
the probability simplex. For a binary random variable, the respective simplex is just
a line. Fig. 2.1 shows the probability simplex for a ternary random variable X. For
ease of notation, let us denote the discrete probability mass function of the ternary
random variable X in vector form, i.e., p(x) = [Pr(X = 0),Pr(X = 1),Pr(X = 2)]T

with X = {0, 1, 2}. The elements of this vector can be interpreted as coordinates of
the probability mass function in the simplex.

The following four probability distributions

p1(x) = [1, 0, 0]T

p2(x) = [0, 1, 0]T

p3(x) = [0, 0, 1]T

p4(x) = [0.45, 0.35, 0.2]T

of the exemplary ternary random variables X1, X2, X3 and X4 are plotted as points
in the respective simplex.

2.1.3 Moments of Random Variables

Probability distributions fully describe the properties of random variables. However,
sometimes scalar quantities characterizing random variables are of interest, so-called
moments. Let f(x) define an arbitrary function of the random variable X. The most
common moment is the expectation of f(x), denoted E [f(x)], which defines the
average value of the function f(x) given the probability distribution p(x) [Bis09]. For
a discrete random variable X and transformation f(x) the expectation is computed
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as
E [f(x)] =

∑
x∈X

f(x)p(x) . (2.11)

In Chapter 7, deep learning using sample based training will be performed. In the
context of data-driven machine learning it is common to approximate the expecta-
tion as

E [f(x)] ∼=
1

N

N∑
i=1

f(x(i)) , (2.12)

where N denotes the total number of samples x(i). The expectation can also be
generalized to joint distributions and conditional distributions involving multiple
random variables, e.g., X and Y. Here, a subscript indicates for which random
variable the average is computed, i.e.,

EX [f(x, y)] (2.13)

denotes that the expectation is computed using p(x) and

EX|Y [f(x)] =
∑
x∈X

f(x)p(x|y) (2.14)

is the conditional expectation.

In addition to the expectation, the variance var [X] of a random variable X is of
great interest. The variance is computed as

var [X] = E
[
X2
]
− E [X]2 . (2.15)

2.1.4 Bayesian Statistics and Bayes Rule

Given the definitions from Section 2.1.2 it is possible to introduce the so-called
Bayesian perspective on probabilities or Bayesian statistics. Bayesian statistics will
play a fundamental role in all topics discussed in this thesis and is thus reviewed in
more detail in this section. Bayesian statistics, named after Thomas Bayes, stands in
clear contrast to the frequentist perspective on probabilities [Bis09], which is briefly
reviewed first.

The frequentist perspective on probabilities only holds for very well-defined random
experiments, like playing cards, rolling dices, etc. Here, the probability of an event
is determined based on the relative frequency of a particular event after many trials
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of the random experiment. It is assumed that in the limit, the relative frequency
converges to the true probability of the event.

However, for some uncertain events like the rise of the sea level due to global warming
or the spreading of a new virus, it is impossible to repeat these events many times
to determine their probabilities from a frequentist perspective. Nevertheless, in
general, there exists some a-priori knowledge about X, where p(x) is called the a-
priori distribution or simply prior on X. Based on new evidence Y, for instance,
measurements, the so-called a-posteriori distribution p(x|y), or posterior, can be
computed, which describes the new belief on X based on the observations Y. The
conditional distribution p(y|x) is termed likelihood. These three quantities fully
describe the Bayesian perspective on probabilities and form Bayes rule

p(x|y) =
p(y|x)p(x)

p(y)
(2.16)

posterior ∝ likelihood · prior (2.17)

which follows directly from the product rule of probabilities.

2.2 High-Dimensional Inference Using Factor Graphs

and the Sum-Product Algorithm

So far, the concepts introduced in Section 2.1.2 were restricted to two random
variables X and Y. Clearly, it is possible to extend these concepts to multivari-
ate settings involving the multivariate random variables X = [X1,X2, . . .XN ] and
Y = [Y1,Y2, . . .YN ]. The realizations of theses multivariate random variables are
the tuples x = (x1, x2, . . . , xN) ∈ X and y = (y1, y2, . . . , yN) ∈ Y , where X =

X1 × X2 × . . .XN and Y = Y1 × Y2 × . . .YN . Similar to Eq. (2.2), Eq. (2.7) and
Eq. (2.9) one obtains:

General rules of probability distributions

Total law of probabilities: ∑
x∈X

∑
y∈Y

p(x,y) = 1 (2.18)
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Marginalization (sum-rule):

p(xi) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xN

∑
y

p(x,y) (2.19)

General chain rule (product-rule):

p(x,y) =p(x1|x2, . . . , xN ,y)p(x2|x3, . . . , xN ,y) · · · p(y1|y2, . . . , yN)

· · · p(yN−1|yN)p(yN) (2.20)

Any joint distribution can be factorized as shown in Eq. (2.20). However, in some set-
tings, certain random variables are independent or conditionally independent, which
allows simplifying Eq. (2.20). A common visual tool to display the factorization of
joint distributions and reveal independencies between random variables are factor
graphs [KFL01].

Often it is convenient to describe mathematical concepts using graphs [Bis09]. An
undirected graph G = (V , E) consists of a set of nodes (sometimes called vertices) V
and a set of edges E connecting these nodes, where all the edges are bidirectional.
In a bipartite graph, the set of nodes can be split into two disjoint subsets of nodes.
Further, edges are only allowed to connect vertices from different subsets.

Factor graphs are a particular instance of bipartite graphs. The general construction
of a factor graph starts with a global function g(.), e.g., g(x1, x2, x3, x4), which is
decoupled into local functions fi(.), for instance as

g(x1, x2, x3, x4) = f3(x4, x3, x1)f2(x2, x1)f1(x1) . (2.21)

The two disjoint subsets of nodes in a factor graph are called variable nodes and
factor nodes. Variable nodes are depicted by circles and drawn for each variable
in the global function. Factor nodes are represented by filled squares in the factor
graph and drawn for each local function. In the last step, variable nodes and factor
nodes are connected through edges if a respective variable is part of a local function.
Fig. 2.2 shows the factor graph of Eq. (2.21). The following example provides a more
detailed description of decomposing a global function and constructing the factor
graph for a particular application.
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f1

x1

f3

x4

x2

f2

x3

Figure 2.2: Factor graph of the decoupled global function from Eq. (2.21).

Example 2.1: Factor Graph of a Markov Chain

Let us assume the following example. During his Ph.D., a Ph.D. student
travels to several IEEE conferences and other research trips. These ran-
dom locations are x′t = {Los Angeles (LAX),Paris (CDG),Hamburg (HAM),
Dubai (DUB), Shanghai (PVG), Seoul (ICN)} defining the sample space of the
random variables X′t where t = 1, 2, . . . , 6 denotes the time. Further let the random
variable Xt describe the latitude associated with a respective location. The loca-
tion of the student is monitored by GPS, unfortunately only noisy measurements
yt of the latitude exist, i.e., yt = xt+nt, where nt describes the measurement noise.
Fig. 2.3 shows all possible locations x′t and their geographical coordinates. The
joint distribution p(x,y), where x = [x1, x2, · · · , x6]T and y = [y1, y2, · · · , y6]T,
fully defines the random experiment. Application of the general chain rule (cf.
Eq. (2.20)) yields

1 2 3 4 5 6
Los Angeles

34◦ 3’ N

Paris

48◦ 51’ N

Hamburg

53◦ 33’ N

Dubai

25◦ 12’ N

Shanghai

31◦ 13’ N

Seoul

37◦ 33’ N

Figure 2.3: World map with six possible locations and their respective coordinates.
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p(x,y) =p(x1|x2, . . . , x6, y1, . . . , y6)p(x2|x3, . . . , x6, y1, . . . , y6)

· · · p(y1|y2, . . . , y6) · · · p(y5|y6)p(y6) . (2.22)

However, in this example, it is further assumed that the measurements at time t
only depend on the location xt. Furthermore, let us assume a first order Markov
chain. Thus, the next location xt+1 only depends on the location xt at time t. In
turn, utilizing these conditional independencies allows to rewrite Eq. (2.22) as

p(x,y) =
6∏
t=1

p(yt|xt)
5∏
t=1

p(xt+1|xt)p(x1) . (2.23)

The respective factor graph is constructed as follows:
1. Draw a variable node for each variable, i.e., x1, x2, . . . , x6, y1, y2, . . . , y6.
2. Draw a factor node for each distribution in Eq. (2.22).
3. Draw edges connecting each variable node to a factor node if the variable is

part of this factor.
and depicted in Fig. 2.4 where the prior p(x1) was intentionally excluded.

x1

p(x2|x1)

p(y1|x1)

y1

x2

p(y2|x2)

y2

p(x3|x2)
x3

p(y3|x3)

y3

p(x4|x3)
x4

p(y4|x4)

y4

p(x5|x4)
x5

p(y5|x5)

y5

p(x6|x5)
x6

p(y6|x6)

y6

Figure 2.4: Factor graph for the distribution in Eq. (2.23).

2.2.1 Sum-Product Algorithm (Belief Propagation)

A typical inference task is to determine arg max
xi

p(xi|y),∀i = 1, . . . , N , i.e., the

arg max of each marginal posterior distribution. Assuming Xi is a discrete ran-

dom variable and |Xi| = |X|, a naive approach would require a marginalization over
|X|N−1 terms for each i. Given a factor graph, it is possible to efficiently compute all
marginals by applying the sum-product algorithm, sometimes called belief propaga-
tion [KFL01]. The update rules of the sum-product algorithm are reasonably simple
and are different if a message or belief is passed from a variable node to a factor node
µx→f (x) or from a factor node to a variable node µf→x(x). The variable-to-factor
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message is computed as [KFL01]

µx→f (x) =
∏

h∈N(x)\f

µh→x(x) , (2.24)

where N(x) denotes the neighborhood of the variable node x, i.e., all factor nodes
connect to x. In turn, the variable-to-factor message is the product of all incoming
messages received over edges from connected factor nodes, except the message re-
ceived from the factor node to which an updated belief is sent. The factor-to-variable
message is computed as

µf→x(x) =
∑
∼{x}

f(N(f))
∏

y∈N(f)\x

µy→f (y) (2.25)

where N(f) denotes the neighborhood of the factor node f and
∑
∼{x} indicates

that the marginalization is over all variables connected to the factor node except x.
Hence, the updated belief conveyed from a factor node to a variable node is computed
based on all messages, except the message from the target variable node, multiplied
by the local function followed by a marginalization. The messages exchanged in the
factor graph are often only proportional to valid probability distributions. Thus,
typically the messages are normalized after each update. In a cycle-free factor
graph, the sum-product algorithm is terminated if all variable nodes have received
messages from all connected factor nodes. Then, the actual marginal distribution
is proportional to the product of all incoming messages at the respective variable
node, i.e.,

p(xi) ∝
∏

f∈N(xi)

µf→x(xi) . (2.26)

The following example continues Example 2.1 and applies the sum-product algo-
rithm to solve a trajectory-tracking task.

Example 2.2: Sum-Product Algorithm for a Hidden Markov Model

Considering Example 2.1, let us assume that the task at hand is to recover
the most likely points x̂t using the maximum a posteriori (MAP) estimate
x̂t = arg max

xt

p(xt|y), t = 1, . . . , 6 of the trajectory of the Ph.D. student’s journey

x, given the noisy measurements y = [y1, y2, · · · , y6]T of the latitudes. It is
assumed that the measurement noise is additive white Gaussian noise (AWGN),
i.e, yt = xt +nt, where nt ∼ N (0, σ2

N) are independent and identically distributed
(i.i.d.) samples of a zero-mean Gaussian distribution with variance σ2

N . In this
example, the variance of the measurements noise is set to σ2

N = 9. This is
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depicted in Fig. 2.5.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

LAX

CDG

HAM

DUB

PVG

ICN

p(yt|xt)

Latidude

Figure 2.5: Measurement model p(yt|xt) of the measured latitudes.

Furthermore, the transition probability p(xt+1|xt), i.e., the probability of moving
depends on the distance between two locations. It is modeled by an exponential
distribution and it is not allowed to stay at the same location. Using the correct
distances based on the coordinates from Fig. 2.3, this results in the following
transition model

p(xt+1|xt) =



xt\xt+1 LAX CDG HAM DUB PVG ICN

LAX 0. 0.202 0.203 0.106 0.165 0.324

CDG 0.121 0. 0.423 0.215 0.118 0.123

HAM 0.116 0.406 0. 0.218 0.127 0.132

DUB 0.074 0.251 0.265 0. 0.210 0.199

PVG 0.105 0.125 0.140 0.191 0. 0.440

ICN 0.186 0.118 0.132 0.163 0.399 0.


.

(2.27)
Fig. 2.6 shows the factor graph from Example 2.1 together with arrows indicating
the message passed when applying the sum-product algorithm.
The sum-product algorithm starts from the leaf nodes y1 and y6, resulting in
a forward path and a backward path. Hence, the application of the sum-
product algorithm on the considered factor graph is sometimes referred to as
the forward-backward algorithm or Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm.
The forward-path messages are denoted ϑi (cf. blue arrows) and the messages of
the backward path are denoted βi (cf. green arrows), respectively.
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Figure 2.6: Factor graph for the distribution in Eq. (2.23).

The messages m1, m2, m3, m4, m5, m6 shown in red are proportional to the
likelihood functions p(yt|xt) and given as

m1 =



0.00

0.55

0.45

0.00

0.00

0.00


m2 =



0.00

0.46

0.54

0.00

0.00

0.00


m3 =



0.13

0.00

0.00

0.38

0.48

0.01


m4 =



0.00

0.42

0.58

0.00

0.00

0.00


m5 =



0.42

0.00

0.00

0.02

0.44

0.12


m6 =



0.31

0.00

0.00

0.00

0.06

0.63


(2.28)

in the considered example.
First let us consider the forward path. The message ϑ1 = µx1→f2(x1) is found by
application of the variable-to-factor update rule (cf. Eq. (2.24)):

µx1→f2(x1) = ϑ1 = m1p(x1) ∝ p(x1|y1) (2.29)

where it is assumed that p(x1), i.e., the a priori distribution is known and equals
p(x1) = [0.0, 0.0, 1, 0.0, 0.0, 0.0]T, i.e., the starting point is known to be Hamburg.
Please note that the multiplication of the messages involves an element-wise mul-
tiplication followed by a normalization. In turn, ϑ1 = [0.0, 0.0, 1, 0.0, 0.0, 0.0]. The
message ϑ2 = µf2→x2(x2) is computed by application of the factor-to-variable rule
(cf. Eq. (2.24)) as

µf2→x2(x2) =
∑
x1

f2(x1, x2)µx1→f2(x1) = ϑ2 =
∑
x1

p(x2|x1)ϑ1 (2.30)
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which yields

ϑ2 =



0.116

0.406

0.0

0.218

0.127

0.132


.

In the next step, ϑ3 = µx2→f4(x2) is computed by application of the variable-to-
factor rule as

µx2→f4(x2) = µf3→x2(x2)µf2→x2(x2) = ϑ3 = m2ϑ2 ∝ p(x2|y1, y2). (2.31)

It can be observed that the forward messages ϑ2t−1 = µxt→f2t(xt) are always
proportional to p(xt|y1, . . . , yt), i.e., the information about xt gained by the com-
bination of all previous measurements. For the considered example, the messages
ϑ2t−1 are found as

ϑ1 =



0.00

0.00

1.00

0.00

0.00

0.00


ϑ3 =



0.00

1.00

0.00

0.00

0.00

0.00


ϑ5 =



0.10

0.00

0.00

0.52

0.37

0.01


ϑ7 =



0.00

0.41

0.59

0.00

0.00

0.00


ϑ9 =



0.40

0.00

0.00

0.04

0.43

0.12


. (2.32)

Now, let us consider the backward path. The message β1 = µx6→f10(x6) can be
found using the variable-to-factor update rule. However, it is assumed that the
final location is unknown. Thus, p(x6) =

[
1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6

]T. In turn,

µx6→f10(x6) = µf11→x6(x6)p(x6) = β1 ∝ p(x6|y6) . (2.33)

Technically, the message computations for the backward path are similar to the
forward path, i.e, the messages β2(N+1−t)−1 = µxt→f2(t−1)

(xt) are found using the
variable-to-factor rule and the messages β2(N−t) = µf2t→xt(xt) are computed based
on the factor-to-variable update rule. Again it can be observed that the mes-
sages β2(N−t) = µf2t→xt(xt) are proportional to p(xt|yt+1, . . . , yN) and the mes-
sages β2(N+1−t)−1 = µxt→f2(t−1)

(xt) are proportional to p(xt|yt, . . . , yN). Given the
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measurements from Eq. (2.28), one obtains

β1 =



0.31

0.00

0.00

0.00

0.06

0.63


β3 =



0.26

0.00

0.00

0.02

0.65

0.07


β5 =



0.00

0.41

0.59

0.00

0.00

0.00


β7 =



0.10

0.00

0.00

0.52

0.38

0.01


β9 =



0.00

0.45

0.55

0.00

0.00

0.00


. (2.34)

The target marginal distribution p(xt|y) can be found by multiplication of a for-
ward message µxt→f2t(xt) and a backward message µf2t→xt(xt), that is,

p(xt|y) ∝ µxt→f2t(xt) · µf2t→xt(xt) = ϑ2t−1β2(N−t) (2.35)

with N = 6 in the considered example for random measurements y.
Application of the arg max operator yields the estimated trajectory. This trajec-

tory is compared to the true trajectory, the maximum likelihood decisions on the
measurements only, and the maximum likelihood decision on the backward path
and the forward path individually. Detection errors are highlighted in dark red.

True Path : [HAM,CDG,DUB,HAM,PVG, ICN]T (2.36)

arg max
xt

p(yt|xt) : [CDG,HAM,PVG,HAM,PVG, ICN]T (2.37)

Forward Path : [HAM,CDG,DUB,HAM,PVG, ICN]T (2.38)

Backward Path : [CDG,HAM,DUB,HAM,PVG, ICN]T (2.39)

arg max
xt

p(xt|y) : [HAM,CDG,DUB,HAM,PVG, ICN]T (2.40)

It can be observed that the maximum likelihood decision on the individual mea-
surements performs worst, as three locations are wrongly detected. In contrast,
the MAP solution derived using the sum-product algorithm detects the trajec-
tory error-free. It is interesting to observe that already in the forward path no
errors occur as the prior knowledge about the starting point helps to resolve the
first locations. In contrast, the backward path has no prior knowledge about the
first locations causing an error. The provided examples 2.1 and 2.2 were used
to illustrate the concepts of factor graphs and the sum-product algorithm. The
considered scenario will also serve as a running example in the next chapters.
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2.3 Fundamentals of Information Theory

In addition to statistics and decision theory, many concepts of the broad field of
information theory will be used throughout this thesis. This section reviews the
most important concepts to quantify information properly. For a more detailed
introduction to information theory, the interested reader is referred to [Cov06]. This
section considers only discrete random variables. However, all present mathematical
concepts are also applicable to continuous random variables.

2.3.1 Entropy, Joint and Conditional Entropy

As defined in Section 2.1, a random variable X is associated with a sample space X
and each element of the sample space, i.e., the event x ∈ X appears with a certain
probability summarized in the probability mass function p(x). The entropy H (X) is
a measure of uncertainty of the random variable X and defined as

H (X) = −
∑
x∈X

p(x) log2 (p(x)) . (2.41)

The entropy is sometimes referred to as expected self-information, as the so-called
self-information i(x) of event x is defined as

i(x) = log2

(
1

p(x)

)
= − log2 (p(x)) . (2.42)

The entropy is bounded by [Cov06]

0 ≤ H (X) ≤ log2 (|X|) . (2.43)

If the logarithm is to the base 2, the entropy and the self-information are measured
in bits. Please note that the entropy of a binary random variable X with equally
likely outcome, i.e., Pr(X = 0) = Pr(X = 1) = 0.5 is exactly one bit as

H (X) = −
∑
x∈X

p(x) log2 (p(x)) = −0.5 · log2 (0.5) + (−0.5 · log2 (0.5)) = 1 . (2.44)

If the base of the logarithm is e, the entropy is measured in nats.

The entropy can easily be computed for more than one random variable. First, let
us consider the pair of random variables X and Y. Then, the joint entropy of this
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pair of random variables is defined as

H (X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 (p(x, y)) (2.45)

and likewise the conditional entropy is defined as

H (Y|X) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 (p(y|x)) . (2.46)

Combining conditional and joint entropy allows to derive the chain rule for entropy
given the random variables X1,X2, . . . ,XN as

H (X1,X2, . . . ,XN) =
∑
i

H (Xi|Xi−1, . . . ,X1) . (2.47)

2.3.2 Relative Entropy and Mutual Information

Based on the fundamental ideas of information theory, i.e., entropy and self-information,
more enhanced concepts which are inevitable for this thesis shall be derived. Through-
out this thesis, compression and clustering techniques and machine learning algo-
rithms will be applied to derive coarsely quantized mutual-information-based signal
processing units.

To determine meaningful clusters, quantifying the similarity of probability distribu-
tions is crucial for any clustering approach. Furthermore, as this thesis also focuses
on machine learning algorithms exploiting sample-based training and learning, mea-
sures to evaluate how well a learned distribution q(x) approximates an unknown
distribution p(x) are integral.

Here, the so-called relative entropy or Kullback-Leibler divergence DKL {p(x)||q(x)}
is a very useful concept defined as [Cov06]

DKL {p(x)||q(x)} =
∑
x∈X

p(x) log2

(
p(x)

q(x)

)
. (2.48)

Given the probability distributions p(x) and q(x), DKL {p(x)||q(x)} ≥ 0 which holds
with equality if and only if p(x) = q(x) [Cov06].

Although the Kullback-Leibler divergence is not symmetric in its argument, it is of-
ten useful to think of the Kullback-Leibler divergence as a distance measure [Cov06;
Ama16].
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One symmetric generalization of the Kullback-Leibler divergence is the Jensen-
Shannon divergence DΠ

JS {p(x)||q(x)} defined as

DΠ
JS {p(x)||q(x)} = π1DKL {p(x)||p̄(x)}+ π2DKL {q(x)||p̄(x)} (2.49)

where π1 +π2 = 1, 0 < π1, π2 < 1 and p̄(x) = π1p(x) +π2q(x) [Slo02; Cov06]. Chap-
ter 3 exploits the Jensen-Shannon divergence to derive cost functions for information
bottleneck algorithms.

Closely related to the entropy and the Kullback-Leibler divergence, the most crucial
information-theoretical measure for this thesis is Shannon’s mutual information. In
his landmark paper [Sha48], Shannon tried to answer the question

"Given two random variables X and Y, what is the amount of uncertainty
about X removed by knowing Y and vice versa."

This leads directly to the definition of the mutual information I(X; Y) of X and Y as

I(X; Y) = H (X)− H (X|Y) (2.50)

= H (Y)− H (Y|X) (2.51)

=
∑
x

∑
y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(2.52)

= DKL {p(x, y)||p(x)p(y)} (2.53)

where the entropy H (X), respectively H (Y), serves as a measure of uncertainty and
the conditional entropy H (X|Y) indicates the remaining uncertainty about X by
knowing the other observed variable Y [Cov06].

Following [Cov06], the mutual information I(X; Y) is bounded by

0 ≤ I(X; Y) ≤ min(H (X) ,H (Y)) (2.54)

where I(X; Y) = 0 if X and Y are independent.

Interestingly, Eq. (2.52) states that given two independent random variables X and
Y, observing Y provides no knowledge about X.

The concept of mutual information can also be extended to more than two ran-
dom variables, e.g., X and Y1, . . . ,YN . In this case, the mutual information can be
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rewritten using the chain rule for mutual information as

I(X; Y1, . . . ,YN) =
N∑
i=1

I(Yi; X|Y1, . . . ,Yi−1) (2.55)

where I(Yi; X|Y1 . . . ,Yi−1) denotes the conditional mutual information

I(Yi; X|Y1, . . . ,Yi−1) =
∑
x

∑
y1

· · ·
∑
yN

p(x, yi|y1, . . . , yi−1)·

log2

(
p(x, yi|y1, . . . , yi−1)

p(x|y1, . . . , yi−1)p(yi|y1, . . . , yi−1)

)
.

(2.56)

In the special case that random variables form a Markov chain [Cov06], e.g.,

X↔ Y↔ T (2.57)

the joint distribution p(x, y, t) factorizes as

p(x, y, t) = p(t|y)p(y|x)p(x), (2.58)

i.e., the conditional distribution of T depends only on Y and is conditionally inde-
pendent of X. Interestingly, it can be shown that no processing of Y can increase
the information of Y about X, which is formalized by the data processing inequal-
ity [Cov06]. The date processing inequality states that given the Markov chain
X↔ Y↔ T of the random variables X, Y and T

I(X; Y) ≥ I(X; T) . (2.59)

The data processing inequality will be essential to derive bounds on the informa-
tion bottleneck setup derived in Chapter 3, as the random variables defining the
information bottleneck form a Markov chain.

2.4 Channel Coding Theorem and Linear Block Codes

Based on the definition of mutual information, in his landmark paper [Sha48], Shan-
non derived under which conditions an error-free transmission over a noisy channel
is possible. This requires advanced channel coding schemes which will be of great
interest in Chapter 5 and Chapter 6.
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Encoder Mapper Channel Demapper Decoder
u c x y û

Figure 2.7: Illustration of a transmission chain between a source and a sink.

Fig. 2.7 depicts a transmission chain for the special case of block-wise transmission,
where

Uncoded message u: u = [u1, u2, . . . , uK ]T ∈ FKq denotes the uncoded message.
In this thesis, the elements ui, i = 1, . . . , K are taken from a finite field Fq (cf.
Section 2.4.1),

Coded message c: The uncoded message is fed into the encoder. The output of
the encoder is the coded message c = [c1, c2, . . . , cN ]T ∈ FNq .

Transmit message x: The coded message is mapped onto complex transmit sym-
bols xi ∈ C by the mapper. All transmit symbols are summarized in the vector
x = [x1, x2, . . . , xM ]T ∈ CM .

Receive message y: The transmit symbols are sent over a discrete channel defined
by the transition probability p(y|x). In this thesis, most channels are discrete
memoryless channels [Cov06], i.e.,

p(y|x) =
M∏
i=1

p(yi|xi) . (2.60)

The outputs of the channel are the received symbols yi ∈ C pooled in y =

[y1, y2, . . . , yM ]T ∈ CM .

Decoded message û: The decoded message û ∈ FKq is the output of the decoder
which was fed by the demapped received symbols.

Clearly, the aim of any communication system is to successfully reconstruct the
uncoded message u at the output of the transmission chain û with a negligible
probability of error. A valuable quantity to determine the fundamental limits of
error-free communication is Shannon’s channel capacity. The channel capacity C

for a discrete memory-less channel p(y|x) is defined as [Cov06]

C = max
p(x)

I(X; Y) (2.61)

where the maximum is taken over all possible input distributions p(x). The chan-
nel capacity determines the so-called maximum transmission rate, measured in
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bits / channel use, at which error-free transmission over the channel p(y|x) is pos-
sible. This leads to Shannon’s channel coding theorem stated in Theorem 1.

Theorem 1 (Channel coding theorem). For a discrete memory-less channel, all
rates below the channel capacity C are achievable. Specifically, for every rate R < C,
there exists a channel code with rate R and code word length N with a maximum
error probability pe → 0 for N →∞.

Proof. The proof of the channel coding theorem can be found in great detail in
[Cov06, Section 7.7]

The definitions of rates and achievable rates and characteristics of channel codes
used in Theorem 1, will be clarified in Section 2.4.2. Beforehand, the concept of
finite fields is reviewed.

2.4.1 Finite Fields

In general, the sample space of the information symbol ui could be any discrete
space U . However, considering channel coding applications, a set of elements U
with a well defined algebraic structure is beneficial as it allows to perform arithmetic
computation with the elements of the set. Such algebraic structures are, e.g., groups
and finite fields [LC01]. Let u1, u2, u3 be elements of the set U . Furthermore, +

and · denote operations [LC01].

The algebraic structure (U ,+) forms a group if the following properties hold [LC01]:

1. Closure under +, i.e., u1 + u2 ∈ U ,∀u1, u2 ∈ U

2. Associativity, i.e., u1 + (u2 + u3) = (u1 + u2) + u3,∀u1, u2, u3 ∈ U

3. Additive identity, i.e., ∃0 ∈ U : 0 + u1 = u1,∀u1 ∈ U

4. Invertibility, i.e., ∃(−u1) ∈ U : u1 + (−u1) = 0, ∀u1 ∈ U

The algebraic structure (U ,+) forms an Abelian group if the following additional
property holds [LC01]:

5. Commutativity, u1 + u2 = u2 + u1 ∈ U ,∀u1, u2 ∈ U

Furthermore, the algebraic structure (U ,+, ·) forms a field if also

6. Associativity under multiplication, i.e., u1·(u2·u3) = (u1·u2)·u3,∀u1, u2, u3 ∈ U

7. Multiplicative identity, i.e., ∃1 ∈ U : 1 · u1 = u1,∀u1 ∈ U
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8. Distributive property, i.e., u1 · (u2 + u3) = u1 · u2 + u1 · u3, ∀u1, u2, u3 ∈ U

9. Multiplicative inverse, i.e., ∃(u−1
1 ) ∈ U : u1 · u−1

1 = 1,∀u1 ∈ U\{0},

hold [LC01].

Fields with a finite number q of elements are called finite fields Fq or Galois fields of
order q, i.e., GF(q). In the special case that the field order q can be written as pm,
where p is a prime, the Galois field GF(pm) is an extension field. These extension
fields will be integral in Chapter 6 where non-binary LDPC codes and their decoding
are presented. This thesis mostly resorts to Galois fields which are extension fields
with prime 2, i.e., GF(2m).

Finite fields are constructed using so-called primitive polynomials f(x). The polyno-
mial f(x) of degree m is said to be primitive if it is irreducible, i.e., it is not divisible
by any polynomial over GF(2m) of degree less than m but greater than zero, and
the smallest positive integer n for which f(x) divides xn − 1 is n = pm − 1 [LC01;
CJ08].

The 2m elements of the GF(2m) are given as {0, 1, α, α2, . . . , α2m−2} = F2m , where
α is called primitive element. The following example describes the construction of
the Galois fields in more detail.

Example 2.3: Construction of Galois fields GF(2m)

Galois Field GF(2)

First, let us consider the Galois field GF(2). As the field order is a prime, one
finds F2 directly as F2 = {0, 1}.

Galois Field GF(4)

For higher order Galois fields we require a primitive polynomial f(x). For the
Galois field GF(4), one possible primitive polynomial is f(x) = x2 +x1 +1 [CJ08].
Furthermore, α2 = α + 1 is a root of the polynomial, which yields

Primitive Element Sum Representation Binary Vector Representation
0 0 00
1 1 01
α α 10
α2 α + 1 11

.

More details about the sum representation and the respective binary vector repre-
sentation can be found in [CJ08]. Please note that for the GF(4) the binary vector
representation of the field elements corresponds to the binary representation of the
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decimal element index. However, in general, this is not the case as shown for the
GF(8).

Galois Field GF(8)

For the Galois field with 8 elements, i.e., GF(8) = GF(23) one possible primitive
polynomial is f(x) = x3 + x + 1 [CJ08]. Furthermore, one finds α3 = α + 1 as
root of f(x). With this observation we obtain the following table:

Primitive Element Sum Representation Binary Vector Representation
0 0 000
1 1 001
α α 010
α2 α2 100
α3 α + 1 011
α4 α2 + α 110
α5 α3 + α2 = α + 1 + α2 111
α6 α4 + α3 = α2 + 1 101

To derive the addition and multiplication rules in the respective GF(2m) one uses
the vector representation of the field elements or the exponent representation of the
field elements respectively.

Addition The addition in GF(2m) is simply the element-wise binary addition, i.e.,
the xor-operation, of the vector representations of the elements.

Multiplication The multiplication is determined by addition of the exponents of
the primitive elements followed by a modulo-m operation. For example, for
m=4, α6 · α13 = α(6+13) mod 24−1 = α(6+13) mod 16−1 = α19 mod 15 = α4.

Example 2.4: Arithmetic in Galois fields GF(2m)

Galois Field GF(2)

First, let us reconsider the Galois field GF(2). Here, the addition and multiplica-
tion can be found as
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Table 2.1: Addition GF(2)

ci

cj
0 1

0 0 1

1 1 0

Table 2.2: Multiplication GF(2)

ci

cj
0 1

0 0 0

1 0 1

Galois Field GF(4)

In the Galois field GF(4) the addition and multiplication becomes

Table 2.3: Addition GF(4)

ci

cj
0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

Table 2.4: Multiplication GF(4)

ci

cj
0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

Galois Field GF(8)

Finally, given the binary representations of the primitive elements and the
primitive elements itself from Example 2.3 yields

Table 2.5: Addition GF(8)

ci

cj
0 1 α α2 α3 α4 α5 α6

0 0 1 α α2 α3 α4 α5 α6

1 1 0 α3 α6 α α5 α4 α2

α α α3 0 α4 1 α2 α6 α5

α2 α2 α6 α4 0 α5 α α3 1

α3 α3 α 1 α5 0 α6 α2 α4

α4 α4 α5 α2 α α6 0 1 α3

α5 α5 α4 α6 α3 α2 1 0 α

α6 α6 α2 α5 1 α4 α3 α 0
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Table 2.6: Multiplication GF(8)

ci

cj
0 1 α α2 α3 α4 α5 α6

0 0 0 0 0 0 0 0 0

1 0 1 α α2 α3 α4 α5 α6

α 0 α α2 α3 α4 α5 α6 1

α2 0 α2 α3 α4 α5 α6 1 α

α3 0 α3 α4 α5 α6 1 α α2

α4 0 α4 α5 α6 1 α α2 α3

α5 0 α5 α6 1 α α2 α3 α4

α6 0 α6 1 α α2 α3 α4 α5

2.4.2 Linear Block Codes

Linear block codes are a special class of block codes and used throughout this thesis.
As the name implies, block codes partition the information sequence into blocks of
information u ∈ FKq with defined length K (cf. Fig. 2.7). The encoder maps this
information block onto a codeword c ∈ FNq consisting of N code symbols. Another
essential property of the code is the code rate Rc defined as

Rc =
log2

(
qK
)

N
=
K

N
log2 (q) . (2.62)

The (K,N) block code C is called a linear block code if the |C| = qK codewords
form a K-dimensional subspace of FNq , i.e., the addition of two codewords is again
a valid codeword c1 + c2 = c ∈ C,∀c1, c2 ∈ C. The code C is defined by the set
of codewords, the so-called codebook. These codewords, however, can be obtained
by different encoders. For block codes, it is convenient to resort to a vector-matrix
description of the encoding process. Let G ∈ FN×Kq denote the generator matrix of
a respective encoder for code C. The generator matrix consists of K independent
column vectors gi, i = 1, 2, . . . , K, which span the K-dimensional subspace of FNq .
In turn, the codewords are computed as [LC01]

C =
{
c ∈ FNq : c = Gu,u ∈ FKq

}
. (2.63)

Alternatively, the code can be defined using the parity check matrix H ∈ FN×(N−K)
q ,

which summarizes the (N −K) parity check equations used to compute the parity
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bits which carry redundant information. In general, the syndrome s has to be the
all-zeros vector 0, if c is a valid codeword, i.e.,

s = HTc = 0,∀c ∈ C . (2.64)

Hence,
C =

{
c ∈ FNq : HTc = 0

}
. (2.65)

As elementary operations on the columns of the generator matrix, i.e., permutations,
scaling with non-zero weights, and addition do not change the code but only the en-
coder, it is possible to construct encoders with preferable properties. In particular,
so-called systematic encoders are often used in practice [LC01]. In general, system-
atic generator matrices can be derived for any generator matrix G using Gaussian
elimination [LC01]. Systematic encoders ensure that the information symbols u are
an explicit part of the codeword c. This is achieved by constructing a generator
matrix which can be split in a K ×K identity matrix I and a (N −K)×K parity
matrix P, i.e.,

Gsys =

[
I

P

]
. (2.66)

Clearly, combining Eq. (2.63) and Eq. (2.66) yields

c =

[
u

p

]
=

[
I

P

]
u = Gsysu , (2.67)

where u is an explicit part of the codeword c.

2.4.3 Decoding Metrics, Error Rates and Achievable Rates

The last block in the transmission chain depicted in Fig. 2.7 is the decoder. For a
given channel code C with generator matrixG, which has to be known to the decoder,
the decoder aims to recover û based on the noisy received samples y. In this thesis,
the focus is solely on maximum a posteriori (MAP) decoders, which compute the
most likely information sequence u based on the MAP decision criterion, i.e.,

û = arg max
u

p(u|y) (2.68)

= arg max
u→x

p(x|y) (2.69)

Furthermore, in this thesis, only soft decoding is considered, where soft-information,
i.e., reliability about the received sample is fed into the decoder.
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As we will see later in Chapter 5 and Chapter 6, the application of Eq. (2.69) is
straightforward if the decoder works directly on the mapped symbols x ∈ X . This
is possible if |X | = |Fq|, i.e., the number of distinct symbols x is equivalent to
the field order of the Galois field of the information symbols. In this case, symbol-
metric decoding is performed [LC01]. Please note that if |X | > 2, this might require
non-binary codes, as discussed in Chapter 6.

Otherwise, the so-called bit-metric decoding is commonly employed if binary codes
are paired with higher-order modulation schemes, i.e., ui, ci ∈ F2 and |X | > 2.
Here, first demapping from the symbols onto a binary representation denoted by
p(x|[c1, . . . , cM ]) is required, whereM = log2 (|X |). This resorts to a marginalization
over all transmit symbols except ci, i.e.,

p(y|ci) =
∑
x

∑
∼ci

p(y|x)p(x|c1, . . . , ci, . . . , cM) (2.70)

and for discrete memory-less channels Eq. (2.69) becomes

û = arg max
u

p(u|y) (2.71)

= arg max
u→c

N∏
j=1

p(yj|xj)p(xj|cj) (2.72)

where cj denotes the code bits mapped onto transmit symbol xj. Bit metric decoding
and demapping of higher-order modulations will be revisited in Section 4.2.3 when
respective mutual-information-based signal processing units are derived. Further-
more, in Chapter 7 entire mutual-information maximizing transmission chains using
autoencoders and deep learning are derived. It will be shown that for symbol-metric
decoding and bit-metric decoding, the loss-function has to be chosen accordingly to
achieve optimum end-to-end performance.

The choice of symbol-metric or bit-metric decoding also impacts the maximum
achievable rate of the transmission chain. For symbol-metric decoding, the max-
imum achievable rate is determined using Shannon’s channel coding theorem (cf.
Theorem 1), i.e.,

R = I(X; Y) . (2.73)

However, for bit-metric decoding, the maximum achievable rate is

RBICM =
M∑
k=1

I(Ck; Y) (2.74)
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known as bit-interleaved coded modulation (BICM) capacity derived in [CTB98].

In this thesis, the actual performance of a decoder is evaluated either using the bit
error rate (BER) respectively symbol error rate (SER) defined as

BER =
1

K

K log2(q)∑
i=1

Pr(B̂i 6= Bi) (2.75)

SER =
1

K

K∑
i=1

Pr(Ûi 6= Ui) (2.76)

where B denotes a binary random variable and U can be any discrete random variable
with |U| = q. Alternatively, the frame error rate (FER) defined as

FER = Pr(Û 6= U) . (2.77)

is considered.



Chapter 3

The Information Bottleneck Method

This chapter serves as a gentle introduction to the information bottleneck method.
The information bottleneck method is a general information theoretical framework
with roots in machine learning and information theory. Starting with a historical
overview, this chapter aims to provide insights into which ideas and research direc-
tions in various academic societies existed and how they relate to the information
bottleneck method. Furthermore, it will be sketched how these streams and ideas
merged into what was recently referred to as mutual-information-based signal pro-
cessing. A more mathematical description of the information bottleneck method
itself is deferred to the second part of this chapter. This second part also reviews
another framework in more detail, i.e., rate-distortion theory, which is very closely
related to the information bottleneck method. Thereafter, different information
bottleneck algorithms and their extensions developed in this thesis are described.

3.1 The Information Bottleneck Method and its No-

tions

When referring to coding in an information-theoretical sense, at least two notions
exist, i.e., source coding and channel coding. Shannon’s separation theorem, as
described in [Cov06], directly leads to the conclusion that source coding and channel
coding should be treated independently. At the same time, however, it is of crucial
importance to remember Shannon’s following observation [Sha59]:

"There is a curious and provocative duality between the properties of
a source with a distortion measure and those of a channel [...] if we
consider channels in which there is a "cost" associated with the different
input letter. [...] This problem amounts, mathematically, to maximizing
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R(D) = min
p(û|u):E[d(u,û)]<D
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Figure 3.1: Duality between source and channel coding.

a mutual information [...]. In a somewhat dual way, evaluating the rate-
distortion function for a source amounts, mathematically, to minimizing
a mutual information [...]." -Claude E. Shannon

Following this observation and given Fig. 3.1, one concludes that given a source,
there exists a trade-off between rate R and distortion D. However, given a channel,
the trade-off is between capacity C and efficiency, i.e., the gap between code rate
and capacity [Cov06]. We will see later that the information bottleneck method
exactly treats this min-max-optimization problem of mutual information. However,
the main focus of this section is also to provide a detailed timeline of advances in
information theory and machine learning which are closely related to the information
bottleneck method. This timeline can be found in Table 3.1.

Somewhat natural, already in the early seventies, right after Shannon’s landmark pa-
pers, many works in the information theory society related to rate-distortion theory,
i.e., source compression, were presented. Given the theoretical bounds derived by
Wyner and Ziv [WZ71], both Blahut [Bla72] and Arimoto [Ari72] proposed nearly at
the same time and independently practical algorithms which achieved these bounds.

Still, with a focus on source coding, Witsenhausen, Wyner, and Ziv investigated a
slightly extended rate-distortion scenario involving three random variables, namely
X, Y, and Z [WW75; WZ76]. Here, the focus is on source coding of X to Z with
side-information provided by Y. We will see later, that the bounds derived for this
rate-distortion problem with side-information matches exactly respective bounds
for the information bottleneck problem [GNT03]. However, despite the mathemati-
cally rigorous investigations and derivations, Witsenhausen and Wyner proposed no
closed-form solution nor an algorithm to solve this problem.

Inline with Shannon’s view on information theory and the duality of channel coding
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Table 3.1 A brief history of the information bottleneck method.

Year • Information Theory Machine Learning/
Pattern Recognition

Information Bottleneck

1971 • Rate Distortion
Theory [Ber71]

• Bounds of Rate
Distortion Theory
[WZ71]

1972 • Blahut-Arimoto
Algorithm [Bla72;
Ari72]

1975 • Entropy Bound for
Pair of Random
Variables [WW75]

1975 • Rate Distortion
with
Side-Information
[WZ76]

... •
...

...
...

1991 • Generalized distance
measures for parti-
tioning [Cho91]

1992 • Minimum impurity
partitions [BPK+92]

1999 • Optimal partitions
for concave impurity
measures [CHH99]

The Information Bottle-
neck Method [TPB99]

2000 • Word clustering [ST00b]

2003 • Connecting information
bottleneck and infor-
mation theory stream
[GNT03]

2014 • Globally optimal
quantization of
general binary-input
channels [KY14]

2017 • Connecting informa-
tion bottleneck and
minimum impurity
partitions [Kur17]
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and source coding, the information theory stream was eligible for proving fundamen-
tal limits and deriving achievable regimes. This often assumed a-priori knowledge of
the statistics of the source. Another stream, driven by the machine learning society,
focused on clustering and classification of empirical data instead of on compression
of theoretical source models. Due to this fairly different emphasis on clustering
data and learning models, this chapter treats this stream as independent from the
information theory stream. This is also depicted in the timeline in Table 3.1.

In general, clustering describes the process of discovering groups of similar examples
within a data set. In a machine learning context, this problem relates to unsupervised
learning. Whereas in supervised learning a ground truth is required in addition to
the data set such that a particular performance metric between the learned function
and the ground truth can be optimized, unsupervised learning relies only on the data
set itself. However, clustering, i.e., assigning similar examples within a data set to
the same group, depends on the so-called distance measure. Possible choices of this
distance measure, or discriminant function and the effect on the respective cluster-
ing were reviewed in [Cho91]. Chou also tried to answer the question which distance
measure results in the optimal partitioning given an optimization criterion, e.g., the
mutual information between clusters and a random variable of interest. Interest-
ingly, Chou proposed the Kullback-Leibler divergence as a distance measure for this
purpose. As we will see in Section 3.2.5 and as shown in [Kur17], assigning samples
within a data set to clusters such that the Kullback-Leibler divergence between sam-
ple and cluster representative is minimized results in an optimal clustering in the
information bottleneck sense. Please note that Chou [Cho91], Burshtein [BPK+92]
and later papers in this stream use the term minimizing impurity, whereas in the in-
formation bottleneck literature, the term minimizing irrelevant information is used.
Burshtein’s work from 1992, i.e., [BPK+92], investigates the overall structure and
shape of optimal partitions which minimize impurity. It is shown that the optimal
partitioning is convex and there exist separating hyperplanes between the clusters.
This fact will be used in Section 3.3 to obtain computationally-simplified informa-
tion bottleneck algorithms. Despite the theoretical proof, it turned out to be fairly
difficult to design algorithms that determine the globally optimum solution [CHH99].
Finally, in 2014, Kurkoski presented an efficient way to determine a globally optimal
quantization of general binary-input channels [KY14].

The third stream in the timeline is the most important one for this thesis and
this chapter, i.e., the information bottleneck stream. In 1999, Tishby, Pereira and
Bialek proposed a generic information-theoretical framework called the information
bottleneck method. They introduce the information bottleneck as an unsupervised
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learning technique, i.e., a clustering framework, which considers explicitly and solely
information theoretical measures, i.e., the mutual information. They argued that
the main drawback of existing frameworks like rate-distortion theory is the need
for an appropriately chosen distortion measure. Instead, the information bottle-
neck method distinguishes between relevant and irrelevant information. Thus, the
information bottleneck method offers an inherent trade-off between accuracy and
complexity or, in other words, a trade-off between compression and distortion. As
shown in [GNT03], formally, this setting is pretty similar to the one sketched in
[WW75; WZ76]. However, Tishby et al. derived an implicit solution to the infor-
mation bottleneck problem and thus proposed algorithms that find locally optimal
solutions. In addition, due to the neat interpretation of the involved information-
theoretical quantities, they created a self-consistent generic framework described in
more detail in the next section. The information bottleneck stream developed in-
dependently from the second stream including the works by Burshtein, Chou and
Kurkoski. However, in 2017, again Kurkoski pointed out the relation between the
algorithms and distance measures described by Chou [Cho91] and their applicability
in the information bottleneck framework [Kur17].

3.2 Rate-Distortion Theory and the Information Bot-

tleneck Setup

This section introduces rate-distortion theory and the information bottleneck method
more formally.

3.2.1 Rate-Distortion Theory

Rate-distortion theory is a well known theoretical framework to derive limits and
achievable rates R of compression in source coding with respect to a distortion
measure D [Cov06]. As depicted in Fig. 3.1, source coding typically involves two
steps. First, the process of compactly representing a source U is called encoding and
defined by an encoding function

f : U 7→
{

1, 2, . . . , 2R
}
. (3.1)

Eq. (3.1) indicates that the source is represented using R bits. Please note that in
general, source sequences Un of length n are encoded, i.e.,

fn : Un 7→
{

1, 2, . . . , 2nR
}
.
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The second step is reconstructing the source based on the respective compact rep-
resentation called decoding defined by

g :
{

1, 2, . . . , 2R
}
7→ Û . (3.2)

As we will see later, it is convenient to refer to the regions f(u) as clusters associated
with a cluster index t ∈ T . The element û = g(t) = g(f(u)) is called representative
and all elements û = g(t),∀t ∈ T form the codebook. Given the encoding function,
the representatives and a predefined distortion measure d(u, û) the average distortion
yields

E [d(u, û)] =
∑
u∈X

d(u, û) p(û|t)︸ ︷︷ ︸
g(t)

p(t|u)︸ ︷︷ ︸
f(u)

p(u) . (3.3)

In rate-distortion theory, the rate refers to the mutual information between the
original source U and its reconstructed estimate Û, i.e., I(U; Û). As the reconstruction
function is bijective, I(U; Û) = I(U; T), where T is called compressed random variable.

The aim of rate-distortion theory is to determine the smallest possible rate for a
source such that the average distortion is below a given distortion D. As a conse-
quence, this allows to define the rate-distortion function R(D) as

R(D) = min
p(û|u):E[d(u,û)]<D

I(U; Û) . (3.4)

3.2.2 The Information Bottleneck Method

The information bottleneck method introduced by Tishby et al. in [TPB99] treats
a slightly extended setting compared to the plain rate-distortion formulation dis-
cussed in Section 3.2.1. Similar to source coding with side information [WZ76], the
information bottleneck resorts to a scenario with three random variables termed

• relevant random variable X, x ∈ X

• observed random variable Y, y ∈ Y

• compressed random variable T, t ∈ T .

Furthermore, the pairwise mutual information between the respective random vari-
ables is referred to as

• original mutual information I(X; Y)

• relevant information I(X; T)



3.2. Rate-Distortion Theory and the Information Bottleneck Setup 41

observed random
variable Y

relevant random
variable X

compressed random
variable T

I(X; Y)
p(x, y)

I(Y; T)
p(t|y)

I(X; T)
p(x|t)

Figure 3.2: Illustration of the information bottleneck setup, where I(X; T) denotes
the relevant information, I(X; Y) denotes the original mutual information and I(Y; T)
denotes the compressed information.

• compression information I(Y; T).

The involved random variables in an information bottleneck setup form a Markov
chain, i.e.,

X↔ Y↔ T . (3.5)

The three random variables and their respective mutual information form a well-
defined setup as illustrated in Fig. 3.2.

In its general definition, the information bottleneck method is a generic clustering
framework closely related to rate-distortion theory. However, to emphasize how
this setup differs from rate-distortion theory as introduced in Section 3.2.1, let us
consider the simple example of channel quantizer design as depicted in Fig. 3.3 and
analyzed in more detail in Example 3.1.

Example 3.1: Channel Output Quantization as an Information Bottle-
neck Problem

The task of a channel quantizer is to determine a compact representation T of the
possibly continuous channel output Y. Inline with classical rate-distortion theory,
an optimum compression would be achieved if the found encoding, or mapping,
p(t|y) yields

min
p(t|y):E[d(t,y)]<D

I(Y; T) (3.6)

for a given distortion measure, e.g., the mean squared error. However, as depicted,
in Fig. 3.3, an information bottleneck channel quantizer also relates to the relevant
random variable that is, in this case, the channel input X. Thus, the side-constraint
when minimizing the compression information I(Y; T) is the relevant information
I(X; T), which should be above a particular value. Consequently, the respective
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I(Y; T)

Figure 3.3: The information bottleneck setup from a channel quantization perspec-
tive.

formulation for an information bottleneck problem yields

min
p(t|y):I(X;T)>D̂

I(Y; T) . (3.7)

As discussed in Example 3.1, in contrast to rate-distortion theory, the information
bottleneck method does not rely on a predefined distortion measure. Instead, the
objective is inherent in the setup itself, namely to preserve a specified amount of
relevant information I(X; T). Hence, closely related to the rate-distortion function
(cf. Eq. (3.4)), the relevance-compression function [TPB99] can be defined as

R̂(D̂) = min
p(t|y):I(X;T)>D̂

I(Y; T) . (3.8)

To emphasize the close relation between rate-distortion theory and the information
bottleneck method, Eq. (3.4) and Eq. (3.8) are summarized in one line as

R(D) = min
p(t|y):E [d(y, t)] < D

I(Y; T) R̂(D̂) = min
p(t|y): I(X;T) > D̂

I(Y; T)

where the small but crucial difference between the objectives is highlighted in orange.

In addition to the relevance-compression function, it is often convenient to formalize
Eq. (3.7) as a concave optimization problem [KY14], i.e.,

LIB(p(t|y)) = I(Y; T)− βI(X; T) (3.9)

where the Lagrangian multiplier β is introduced as a trade-off parameter between
compression and preservation of relevant information. As derived in [Slo02], possible
values for β range from β = 0 to β → ∞. According to [Slo02], β = 0 corresponds
to a pure minimization of the compression information, i.e., maximum compression,
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I(X; Y)

|T | � |Y|

min {H (T) , I(Y; T)}
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Figure 3.4: Exemplary relevance-compression curve R̂(D̂) shown in orange and an
exemplary relevance-compression curve R̂(D̂) with an additional constraint on the
maximum cardinality of the compressed random variable to be much smaller than
the cardinality of the observed random variable, i.e., |T | � |Y| (shown in gray).

whereas when β → ∞, the focus is solely on preserving of relevant information.
However, it follows from the data processing inequality that β → ∞ does not nec-
essarily imply I(X; Y) = I(X; T) as compression can be achieved by constraining the
cardinality of the compressed random variable T to |T | � |Y|. In the extreme case
of |T | = 1, i.e., only one cluster exists, I(Y; T) = 0. Alternatively, when |T | = |Y|
no compression is achieved and there will be a one-to-one mapping resulting in
I(Y; T) = H (Y). Thus, combining the Markov chain described by the information
bottleneck setup and the data processing inequality yields

0 ≤ I(X; T) ≤ I(X; Y) (3.10)

0 ≤ I(X; T) ≤ min {H (T) ,H (X)} (3.11)

0 ≤ I(Y; T) ≤ I(X; Y) . (3.12)

The relevance-compression curves for these two settings are shown in Fig. 3.4.
First, the orange curve depicts the classical relevance-compression curve R̂(D̂) as
defined in Eq. (3.8). For β = 0, i.e., maximum compression, the relevant information
approaches zero, whereas I(X; Y) ≈ I(X; T) for β → ∞. On the other hand, if the
compressed random variable is constrained to a maximum cardinality, i.e., |T | �
|Y|, it is shown that the maximum achievable relevant information is significantly
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smaller, even as β → ∞. As shown in the next section, for β → ∞ the optimum
mapping p(t|y) becomes deterministic. Thus, I(Y; T) is bounded by

0 ≤ I(Y; T) ≤ H (T)− H (T|Y)︸ ︷︷ ︸
0 for deterministic mappings

= H (T) . (3.13)

Before continuing the discussion on stochastic and deterministic clustering based
on the formal solution to the information bottleneck functional from (3.9), the
following section determines a respective channel output quantizer derived using
rate-distortion theory and a channel output quantizer that maximizes the relevant
information I(X; T).

3.2.3 Channel Output Quantizers for Binary-Input Additive

White Gaussian Noise Channels

Reconsidering Fig. 3.3 and Example 3.1, a crucial problem in signal processing
is the design of channel quantizers. First, a quantizer leveraging rate-distortion
theory is computed. Second, an information-bottleneck-channel-output quantizer
is determined. In this section, a binary-input additive white Gaussian noise (BI-
AWGN) channel is considered, i.e.,

y = x+ n, (3.14)

where x are i.i.d. uniformly distributed samples of a binary random variable X with
sample space X = {−1,+1}. Furthermore, n are i.i.d. samples drawn from a
normal distribution N (0, σ2

N) with zero mean and variance σ2
N . Consequently,

p(x, y) =
1√

2πσ2
N

e
− (x−y)2

2σ2
N · p(x) =

1

2
√

2πσ2
N

e
− (x−y)2

2σ2
N . (3.15)

The conditional distribution p(y|x) for a BI-AWGN is shown in Fig. 3.5. Further-
more, in Fig. 3.5 exemplary quantization thresholds (dashed lines) and respective
quantization regions are sketched that maximize the relevant information I(X; T).

3.2.3.1 Scalar Lloyd-Max Quantizer

The rate-distortion optimal quantizer for a mean squared error distortion measure
is the Lloyd-Max quantizer [Llo82]. In the scalar case, the Lloyd-Max quantizer
optimizes the boundaries, so-called thresholds, that partition the sample space of the
observed random variable, i.e., Y into convex sets. Thus, according to Section 3.2.1,
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Figure 3.5: Conditional distribution of a BI-AWGN with exemplary quantization
thresholds (cf. dashed lines). The numbers in each quantization region correspond
to the respective cluster index t.

the mapping t = f(y) maps the channel outputs into clusters t ∈ T , where the
elements t ∈ T called cluster indices are unsigned integers, i.e., T = {1, 2, . . . , |T |}.
The cluster index associated with a quantization region increases for increasing
y as depicted in Fig. 3.5. The boundaries of each cluster t are denoted τt, t =

1, 2, . . . , |T |−1 as there exist only |T |−1 boundaries and ŷt are the cluster centroids.

In turn, the Lloyd-Max algorithm closely related to the K-Means algorithm [Bis09]
resorts to two simple update rules after an initial choice of the thresholds τt, i.e.,

(1) : ŷt =

∫ τt+1

τt
p(y) · y dy∫ τt+1

τt
p(y) dy

,∀t ∈ T (3.16)

(2) : τt =
1

2
(ŷt + ŷt+1)2 , t = 1, 2, . . . , |T | − 1 (3.17)

which are repeated iteratively. Here, the distortion measure is the squared Euclidean
distance between ŷ and y. Inline with rate-distortion theory, the Lloyd-Max quan-
tizer only considers the marginal distribution p(y) instead of the entire joint distribu-
tion p(y, x). The rate-distortion optimal quantization boundaries and quantization
regions for a BI-AWGN channel with different noise variances σ2

N and |T | = 16 are
shown in Fig. 3.6.

3.2.3.2 Information Bottleneck Channel Quantizer

In contrast to rate-distortion theory, the information bottleneck setup processes the
entire joint distribution p(x, y). In the context of mutual-information-based signal
processing, the idea is to preserve the maximum of relevant information I(X; T) given
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Figure 3.6: Quantization boundaries for a BI-AWGN channel for the Lloyd-Max
quantizer and the information bottleneck quantizer which maximizes the relevant
information I(X; T).

a constraint for the cardinality |T |, i.e., we choose β →∞. Hence, the information
bottleneck setup for channel quantizer design can be reformulated as

max
p(t|y)

I(X; T) . (3.18)

For this application, the so-called linearized symmetric information bottleneck algo-
rithm proposed in [LB15] and discussed in more detail in Section 3.3 is applied. The
quantization boundaries for this quantizer are also shown in Fig. 3.6. Interestingly,
it can be observed that the quantization regions for mean-squared-error-based rate-
distortion theory and the information bottleneck method look very different. The
quantization boundaries of the Lloyd-Max quantizer are mainly centered around the
maxima of the two Gaussians (cf. also Fig. 3.5). This observation can be explained
directly considering the objective of rate-distortion, which is to minimize the average
distortion. Thus, those events y ∈ Y that appear most often should be represented
more precisely than very unlikely events.

In contrast, the information bottleneck quantizer places the quantization regions in
the area of highest uncertainty, i.e., the area with the highest conditional entropy
to maximize the relevant information. For the channel at hand, this is close to
the origin as X is uniformly distributed, and the noise variance is the same for
both inputs. The difference in the quantization regions also translates into different
amounts of relevant information preserved by the two approaches.



3.2. Rate-Distortion Theory and the Information Bottleneck Setup 47

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

σ2
N

I(X; .)
IIB(X; T)
IRD(X; T)
I(X; Y)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

σ2
N

I(X; .)
IIB(X; T)
IRD(X; T)
I(X; Y)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

σ2
N

I(X; .)
IIB(X; T)
IRD(X; T)
I(X; Y)

Figure 3.7: Preserved relevant information of the information bottleneck quantizer
IIB(X; T) and the rate-distortion quantizer (Lloyd-Max) IRD(X; T) compared to the
original input mutual information I(X; Y).

Fig. 3.7 displays the relevant information preserved by the information bottleneck
quantizer IIB(X; T) and the Lloyd-Max quantizer IRD(X; T) in comparison to the
original input mutual information I(X; Y). It can be observed that for the chosen
cardinality, i.e., |T | = 16, the information bottleneck quantizer has only a negligible
loss in information for the entire range of investigated noise variances. In contrast,
especially for low noise variances, the rate-distortion quantizer fails to preserve the
maximum amount of relevant information, as indicated by the gap between the
input mutual information curve and the IRD(X; T) curve (cf. left magnification class
in Fig. 3.7).

Example 3.2: Channel Output Quantizer for Flash Memory Cells

Although this thesis mainly focuses on applications of mutual-information-based
signal processing in modern wireless communication systems, it shall be empha-
sized that the derived techniques can be applied to a broad range of problems.
Thus, this brief example will generalize the idea of BI-AWGN channel output
quantizer design to asymmetric channels, as typically seen in the context of flash
memory cells. NAND flash memory cells are crucial for any modern storage sys-
tems as they pair lower latency (high read/write speeds), higher reliability, and
lower power consumption than classical hard disk drives [MCH19]. The informa-
tion in a flash memory cell is indicated by the number of charges stored in the cell.
In turn, the data can be read out by measuring the respective voltage of the cell
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p(y|X = 0) p(y|X = 1)
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y
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)

(a) Conditional distribution for a NAND memory cell with parameters summarized in
[MCH19].
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Figure 3.8: Quantization boundaries and preserved mutual information for an asym-
metric channel used to model a NAND flash memory cell for the Lloyd-Max quantizer
and the information bottleneck quantizer, which maximizes the relevant information
I(X; T).
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and comparing it to predefined thresholds. As described in [MCH19], the flash
cell voltages are affected by noise, e.g., due to programming, erasing and aging of
the cell, i.e., leakage of charges. The resulting overall voltage distribution is given
as a Gaussian mixture distribution

p(x, y) = p(y|X = 1) Pr(X = 1) + p(y|X = 0) Pr(X = 0) (3.19)

p(y|X = 1) ∼ N
(
µV1 ; σ2

N,V1

)
(3.20)

p(y|X = 0) ∼ N
(
µV0 ; σ2

N,V0

)
(3.21)

where µV0 and µV1 are the actual reference voltages for a memory cell storing a
zero respectively a one and σ2

N,V1
, σ2

N,V2
denote the respective variances. A detailed

derivation of the noise affects of NAND flash memory cells is beyond the scope of
this thesis. Assuming the parameters of a realistic NANDmemory cell summarized
in [MCH19] yields the conditional channel probability density function shown in
Fig. 3.8a. For the rest of this example we assume σ2

N,V1
= 7 · σ2

N,V1
.

Again the Lloyd-Max quantizer and an information bottleneck quantizer are de-
signed for |T | = 16. The boundaries and preserved mutual information for each
quantizer are also shown in Fig. 3.8. Again it can be observed that the information
bottleneck quantizer places the boundaries between the peaks of the Gaussian dis-
tributions, whereas the Lloyd-Max quantizer places the boundaries exactly around
these peaks. Furthermore, the comparison of the preserved relevant information
reveals that the information bottleneck quantizer shows superior performance com-
pared to the rate-distortion-optimal Lloyd-Max quantizer.

3.2.4 Implicit Solution of the Information Bottleneck Func-

tional

The previous section highlighted the different objectives of rate-distortion theory
and the information bottleneck method. This section focuses more on the formal
solution of the information bottleneck functional defined in Eq. (3.9). Again it
will be observed that the formal solution and its derivation presented in [TPB99]
are closely related to the implicit solution to the rate-distortion problem, i.e., the
Blahut Arimoto algorithm [Bla72].
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Blahut-Arimoto Algorithm

In [Bla72], an algorithm to determine the rate-distortion function Eq. (3.4) was
presented. First, Eq. (3.4) was rewritten as a Lagrangian optimization problem by
the introduction of a Lagrangian multiplier β̂ as

LRD(p(t|y)) = I(Y; T)− β̂E [d(y, t)] . (3.22)

In [Bla72], the solution to the rate-distortion problem was derived. For the rate-
distortion functional the optimal mapping p(t|y) which satisfies

∂LRD
∂p(t|y)

= 0 (3.23)

is given by

p(t|y) =
p(t)

Z(β, y)
exp

(
−β̂d(y, t)

)
(3.24)

where Z(β, y) is a normalization function to ensure that p(t|y) is a valid probability
distribution [Bla72].

Based on the determined implicit solution in Eq. (3.24), [Bla72] proposed an iterative
algorithm starting from a random mapping p(0)(t|y)

(1) : p(i)(t) =
∑
y

p(i−1)(t|y)p(y) (3.25)

(2) : p(i)(t|y) =
p(i)(t)

Z(β, y)
exp

(
−β̂d(y, t)

)
(3.26)

where i = 1, 2 . . . denotes the iteration index. As the optimization is done over
the convex sets of the normalized distributions, it was shown in [Csi84] that global
convergence is assured.

Self-Consistent Information Bottleneck Equations

In contrast to rate-distortion theory, the information bottleneck method uses the
relevant information I(X; T) as sort of distortion measure. Unfortunately, reusing
the result obtained in rate-distortion theory is not feasible, as I(X; T) depends non-
linear on p(t|y) [Slo02] and no distortion measure is defined in advance. Hence,
the information bottleneck functional from Eq. (3.9) shall be optimized. This leads
directly to the self consistent information bottleneck equations.
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For the information bottleneck functional the optimal mapping p(t|y) which satisfies

∂LIB
∂p(t|y)

= 0 (3.27)

is given by

p(t|y) =
p(t)

Z(β, y)
exp (−βDKL {p(x|y)||p(x|t)}) (3.28)

where Z(β, y) is a normalization function to ensure that p(t|y) is a valid probability
distribution [TPB99].

Thus, according to Eq. (3.28) the self-consistent information bottleneck equations
are found as

p(t|y) =
p(t)

Z(β, y)
exp (−βDKL {p(x|y)||p(x|t)}) (3.29)

p(t) =
∑
y

p(t|y)p(y) (3.30)

p(x|t) =
1

p(t)

∑
y

p(t|y)p(x, y) . (3.31)

Please note that interestingly the Kullback-Leibler divergence DKL {p(x|y)||p(x|t)}
in Eq. (3.28) emerged during the derivation and was not assumed as a distortion
measure in advance. Furthermore, at first glance, there is a close relation between
Eq. (3.28) and Eq. (3.24). Nevertheless, in contrast to Eq. (3.24), the optimization
problem of the information bottleneck setup has a convex/concave structure. Thus,
it cannot be guaranteed that a global optimum is found by iterating between the
self-consistent equations. Hence, the presented algorithms in Section 3.3 need to be
performed multiple times with different, randomly chosen, initial conditions.

The solution to the information bottleneck problem follows directly from the in-
formation bottleneck functional. However, as outlined in Section 3.1, the same
self-consistent equations can also be obtained under different premises, for instance,
by choosing the Kullback-Leibler divergence DKL {p(x|y)||p(x|t)} as distortion mea-
sure in a rate-distortion setting, as done for indirect source coding under logarithmic
loss in [CW14; HT07].

The Meaning of a Cluster

Due to the Markov chain X↔ Y↔ T, the third distribution, i.e., p(x|t) appears in
the self-consistent information bottleneck equations. In this thesis, this distribution
is referred to as the meaning of a particular cluster t ∈ T . The meaning can be
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interpreted as a belief on the relevant variable X expressed by a particular cluster.
Thus, in contrast to rate-distortion theory, where each cluster is associated with a
deterministic representative, the information bottleneck provides a rather soft rep-
resentative. It is important to highlight that the mapping p(t|y) maps observations
from a possibly physical domain into somehow distinguishable clusters without any
natural or interpretable ordering, respectively meaning. Thus, the meaning of a
cluster provided by p(x|t) is crucial to perform inference on X knowing the cluster
index t.

Nevertheless, as it will be shown in subsequent chapters, mutual-information-based
signal processing often considers the meaning of a cluster only in the design and
detection steps. In contrast, the internal processing is often done based on the
compact cluster indices t alone, which reduces the computational complexity of
mutual-information-based signal processing units.

3.2.5 Compression vs. Relevance - Soft Clustering vs. Hard

Clustering

In information theory and signal processing, different notions of compression ex-
ist. From an information-theoretical perspective, the compression rate is given by
I(Y; T). Thus, as

I(Y; T) = H (T)− H (T|Y) (3.32)

compression in a purely information theoretical sense can be already achieved if
H (T|Y) > 0 although |T | = |Y| and H (T) = H (Y). This is easily achieved if p(t|y)

is a so-called stochastic mapping, sometimes called soft clustering.

In contrast, in signal processing, compression and quantization refer to the process
of compactly representing an observation with fewer bits, i.e., |T | << |Y|. Further-
more, for ease of implementation, in signal processing, deterministic quantizers are
preferred which map a particular observation y ∈ Y into a particular cluster t ∈ T
with probability one, i.e.,

p(t|y) =

1 if y ∈ Yt
0 if y /∈ Yt

(3.33)

where Yt is a subset of Y and contains all observations y ∈ Y mapped into cluster
t. In turn, it can be shown that

H (T|Y) = −
∑
y

p(y)
∑
t

p(t|y) log2 (p(t|y)) (3.34)

= 0 (3.35)
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for deterministic clusterings as

p(t|y) log2 (p(t|y)) =

1 · log2 (1) = 0 if y ∈ Yt
0 · log2 (0) = 0 if y /∈ Yt

. (3.36)

In its origin, the information bottleneck method is an information-theoretically in-
spired clustering framework. Hence, it primarily resorts to the information-theoretical
perspective on compression where the trade-off parameter β allows to choose between
relevance and compression. In mutual-information-based signal processing, the fo-
cal aim is to preserve the maximum amount of relevant information. As shown in
Fig. 3.4, this is achieved by choosing β → ∞. According to Eq. (3.28) and by
application of simple calculus, it can be observed that in the limit

lim
β→∞

p(t|y) = lim
β→∞

p(t) exp (−βDKL {p(x|y)||p(x|t)})∑
t p(t) exp (−βDKL {p(x|y)||p(x|t)})

(3.37)

=

1 for t = arg min
t∗

DKL {p(x|y)||p(x|t∗)}

0 else
. (3.38)

Hence, for β → ∞ the information bottleneck method yields a deterministic clus-
tering. However, to achieve compression in the signal processing sense, |T | << |Y|.

In this thesis, the aim is the design mutual-information-based signal processing units
under coarse quantization. Hence, according to the previous discussions, we restrict
ourselves to β → ∞ which leads to deterministic clusterings and compression due
to a constraint on the cardinality of the compression variable, i.e., |T | << |Y|. This
leads to the following consequences:

1. The original information bottleneck objective for the mapping p(t|y) is refor-
mulated as

p∗(t|y) = arg max
p(t|y)

I(X; T) (3.39)

with a constraint on |T |.

2. According to Eq. (3.32), the compression rate is given as

I(Y; T) = H (T) = H (Y)− H (Y|T) .
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3. It is more convenient to describe the mapping p(t|y) by the Kronecker-delta
function

p(t|y) = δ(t− f(y))⇔ t = f(y) (3.40)

δ(t− f(y)) where f(y) is a deterministic function f : Y 7→ T . In general, the
deterministic function f(y) could be implemented as lookup table (LUT). Pos-
sible alternative implementations will be presented and discussed for example
in Chapter 5 and Chapter 7.

3.3 Information Bottleneck Algorithms and Devised

Extensions

In the previous section, the basic concepts of the information bottleneck method
were introduced. Furthermore, an implicit solution of the information bottleneck
functional Eq. (3.9) was derived, resulting in Eq. (3.28). In this section, different
algorithms solving the information bottleneck problem are introduced.

As outlined in [Slo02; KY14; Cov06], I(X; T) is itself a convex function of p(t|y) for
a given p(y). However, as the objective for deterministic clustering is formulated as

p∗(t|y) = arg max
p(t|y)

I(X; T) (3.41)

the optimization problem resorts to the class of convex maximization problems. As
I(X; T) is not a convex function of p(x|t), the optimization of the self-consistent
information bottleneck equations is, in general, neither concave nor convex [KY14].
Hence, finding a deterministic quantizer that maximizes mutual information is typ-
ically an NP-hard problem [PR86], and most algorithms discussed in this chapter
rely on heuristics. Thus, it cannot be guaranteed that a global optimum is found.
Hence, these greedy algorithms need to be performed multiple times with different,
randomly chosen, initial conditions to increase the probability that the found local
optimum is sufficiently close to the global optimum. In the end, the found clustering
which preserves the most relevant information is selected.

However, as shown later in Section 3.4.1 and proposed in [KY14], for the special
case of binary-input discrete memoryless channels, the globally optimum solution
can be found using dynamic programming.

In general, a large variety of information bottleneck algorithms exists [Slo02; LB18;
SLB19; CGT+05]. Table 3.2 provides an overview of the algorithms discussed in
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Information Bottleneck
Algorithm

p(x, y)

|T |

β

p(t|y)

p(x|t)

p(t)
p(x, t)

Figure 3.9: General input-output relation of an information bottleneck algorithm.

X discrete X continuous

T discrete
• iterative (Section 3.3.1)
• agglomerative (Section 3.3.2)
• sequential (Section 3.3.3)
• KL-Means (Section 3.3.4)

• parametric (Section 3.4.3)

T continuous - • Gaussian (Section 3.4.2)

Table 3.2: Overview of selected information bottleneck algorithms for the relevant
random variable, respectively compressed random variable being discrete or contin-
uous.

this chapter. As depicted in Fig. 3.9, every information bottleneck algorithm re-
quires the joint distribution p(x, y) as input. Further inputs are the cardinality of
the compressed random variable |T |, which defines the number of clusters and, in
general, also the trade-off parameter β, which is fixed to β → ∞ if a determinis-
tic clustering is desired. Clearly, any information bottleneck algorithm outputs the
clustering p(t|y). In addition, the meaning of a cluster, i.e., p(x|t) and the marginal
cluster probability p(t) is provided.

As shown in Table 3.2, the information bottleneck algorithms can be classified ac-
cording to the relevant, respectively compressed, random variable being continuous
or discrete. However, algorithms optimized for continuous compressed random vari-
ables are mainly of theoretical interests as this thesis focuses solely on coarsely
quantized systems where T is discrete.

3.3.1 Iterative Information Bottleneck Algorithm

The iterative information bottleneck algorithm was first presented in [TPB99] and
followed directly from the self-consistent information bottleneck equations. The al-
gorithm is summarized in Algorithm 1. First, the algorithm is initialized with a ran-
dom mapping p(t|y) and a proper choice of β and |T |. Afterwards, the algorithm
iterates between the self-consistent information bottleneck equations (Eqs. (3.29)
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Input : p(x, y), β and |T |
Output: p(t|y), p(x|t) and p(t)

begin
i← 0;
p(i)(t|y) randomly initialize mapping;
p(i)(t)←

∑
y p(t|y)(i)p(y) ;

p(i)(x|t)← 1
p(t)(i)

∑
y p(t|y)(i)p(x, y) ;

while no convergence do
p(i+1)(t|y)← p(t)(i)

Z(β,y)
exp

(
−βDKL

{
p(x|y)||p(x|t)(i)

})
;

p(i+1)(t)←
∑

y p(t|y)(i+1)p(y) ;
p(i+1)(x|t)← 1

p(t)(i+1)

∑
y p(t|y)(i+1)p(x, y) ;

i← i+ 1;
end

end
Algorithm 1: Information Bottleneck Algorithm [TPB99].

to (3.31)). In each iteration i, the relevant information I(X; T) can be computed
for the current mapping p(i)(t|y). Again the superscript (i) is used to denote the
distributions in iteration i. The algorithm stops either if the relevant information
I(X; T) stops increasing or if p(i)(t|y) = p(i−1)(t|y), i.e., the mapping does not change
anymore. As described above, convergence to the global optimum can not be guar-
anteed. Hence, the iterative algorithm is reinitialized with several different initial
mappings and the solution which preserves the most relevant information is selected.

3.3.2 Agglomerative Information Bottleneck Algorithm

The iterative algorithm tends to become numerically unstable for the extreme case
β →∞. Thus, different algorithms optimized for deterministic clustering have been
proposed in the literature. Here, the agglomerative information bottleneck algorithm
proposed in [ST00a] marks a straightforward greedy approach for deterministic clus-
tering. The algorithm starts from a trivial clustering where |T |(0) = |Y|, i.e., each
observation is assigned to an individual cluster. In the next steps, always those two
clusters ti and tj are merged into a new cluster t̄ which have the smallest merger
costs. The merger costs for the two clusters ti and tj are defined as

∆LIB = p(t̄) · d̄(ti, tj), (3.42)

i.e., the loss in relevant information due to the merge for deterministic clusterings
[ST00a], where p(t̄) = p(ti)+p(tj) denotes the membership probability of the possible
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Step 1: initialize ⇒ 1 2 3 4 5 6 7 8 ⇒ update merger costs

Step 2: merge ⇒ 1 2 3 4 5 6 7 ⇒ update merger costs

Step 3: merge ⇒ 1 2 3 4 5 1 6 ⇒ update merger costs

Step 4: merge ⇒ 1 2 3 4 1 5 ⇒ update merger costs

Step 5: merge ⇒ 1 2 3 1 4 ⇒ update merger costs

y: 1 2 3 4 5 6 7 8

Figure 3.10: Schematic illustration of the agglomerative information bottleneck al-
gorithm.

new class t̄ and

d̄(ti, tj) = DΠ
JS {p(x|ti)||p(x|tj)}+

1

β
DΠ

JS {p(y|ti)||p(y|tj)} . (3.43)

where DΠ
JS {.||.} denotes the Jensen-Shannon divergence from Eq. (2.49).

Merging is repeated until the target number of clusters |T | is reached. This is
schematically illustrated in Fig. 3.10 for |Y| = 8 and a target cardinality |T | = 4.
The clusters are color-coded and the number of colors reduces in each step. The
algorithm is purely greedy and works only on the empirical distribution. As the
computation of the merger cost is deterministic, and the algorithm does not start
with a particular random clustering, it will always converge to the same solution.
However, as it is known that only a local optimum solution is found, the agglomer-
ative algorithm can get stuck easily in a bad local maximum and thus often shows
the worst performance across all information bottleneck algorithms. Furthermore,
especially if |T | � |Y| the algorithm has to perform many sequential merging steps
until the desired number of clusters is reached. Hence, the algorithm has a high
runtime and also large memory requirements.

3.3.3 Sequential Information Bottleneck Algorithm

In contrast to the agglomerative information bottleneck algorithm, the sequential
information bottleneck algorithm starts with an initial random clustering p(t|y)

[Slo02]. In an iterative procedure, always one observation y is removed from its
associated cluster and put into a singleton cluster. In the next step, the merger costs
of this singleton cluster to all other clusters are computed. Similar to Eq. (3.42),
the merger costs are computed as

∆LIB = p(t̄) · d̄(ts, tj) (3.44)



58 Chapter 3. The Information Bottleneck Method

Step 1: initialize ⇒

⇒ compute merger costs

Step 2: assign ⇒

Step 3: assign ⇒

Step 4: assign ⇒
...

Step |Y|: assign ⇒

y:
Iteration 1

1 2 3 4 5 6 7 8

Iteration 2

Step 1: assign ⇒
...

Figure 3.11: Schematic illustration of one iteration of the sequential information
bottleneck algorithm which is repeated until the algorithm has converged.

where ts denotes the singleton cluster and tj for j = 1, . . . , |T | denotes the cluster
index of all existing clusters. This is schematically shown in Fig. 3.11 again for
|Y| = 8 and |T | = 4. The singleton cluster will be assigned to the cluster with the
smallest merger costs. The sequential information bottleneck algorithm requires |Y|
merger costs calculations and assignments per iteration as each observation y ∈ Y is
dragged and assigned. In contrast to the agglomerative algorithm, this assignment
and computation procedure is repeated iteratively until a stable solution is found,
i.e., the relevant information is not increasing anymore or the mapping remains
constant over several iterations.

3.3.4 KL-Means Algorithm

The KL-Means algorithm is closely related to the K-Means algorithm well known
in machine learning [Jai08] but has a wisely chosen distortion measure. The KL-
Means algorithm was presented in [Kur17; ZK16] and related to the information
bottleneck problem. In contrast to the previous algorithms, the derivation of the
KL-Means algorithm does not start from the self-consistent equations, respectively,
the information bottleneck functional. Instead, the design objective

max
p(t|y)

I(X; T) (3.45)
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serves as a starting point that is valid for deterministic clustering. This objective
can be reformulated as

min
p(t|y)

(I(X; Y)− I(X; T)) (3.46)

as the aim of mutual-information-based clustering is to minimize the loss between the
original mutual information I(X; Y) and the relevant information I(X; T). Eq. (3.46)
can be reformulated as

min
p(t|y)

(I(X; Y)− I(X; T)) = min
p(t|y)

DKL {p(x|y)||p(x|t)} . (3.47)

This reveals that the process of mutual-information-based clustering can be rewrit-
ten as a minimization of the Kullback-Leiber divergence between the posterior dis-
tribution p(x|y) referred to as backward channel in [Kur17; ZK16; KY14] and the
cluster meanings.

As a result, the KL-Means algorithm consists of two steps, an assignment step and
an update step which are repeated iteratively. In the assignment step, the KL-Means
algorithm assigns events to a cluster according to

t∗ = arg min
t
DKL {p(x|y)||p(x|t)} , ∀y ∈ Y . (3.48)

Then, the cluster meanings are updated after each assignment according to

p(x|t) =
1

p(t)

∑
y∈Y

p(t|y) · p(x, y), (3.49)

which can be rewritten as

p(x|t) =
1

p(t)

∑
y∈Yt

p(x|y)p̄t(y), (3.50)

where Yt is the set of events which belong to cluster t and p̄t(y) = p(y)∑
y∈Yt

p(y)
denotes

the normalized event probability. This iterative update-assignment procedure is
illustrated in Fig. 3.12.

The computational complexity of the KL-Means algorithm is basically affected by
the required computation of the Kullback-Leibler divergence matrix to find the min-
imum KL-divergence between each observation and each cluster meaning. The com-
plexity of evaluating the Kullback-Leibler divergence is affected by the cardinality of
X. In most applications of the information bottleneck method in communications,
the relevant variable is binary or has a small finite cardinality.
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1 2 3 4 5 6 7 8 ⇒

initialize p(x|t)

initialize p(t|y)

1 2 3 4 5 6 7 8

arg min
t

DKL {p(x|y)||p(x|t)}

y :

t :

⇒ 1 2 3 4 5 6 7 8

update p(x|t)

iterate

Figure 3.12: Schematic illustration of the KL-Means algorithm.

In contrast to the sequential information bottleneck algorithm, all cost computa-
tions of one iteration can be done in parallel. Thus, the runtime of the KL-Means
algorithm is often smaller compared to the sequential information bottleneck algo-
rithm.

3.3.5 A Brief Comparison of Information Bottleneck Algo-

rithms

In general, a brute-force search for the global optimum deterministic quantizer has
complexity |T ||Y|, which is infeasible already for moderate |Y| and |T |. As shown
in [BPK+92], it is possible to exploit convexity, reducing the complexity of a brute-
force search to |Y||T |. However, consider the output of an AWGN channel with
fine quantization, i.e., |Y| = 1000 which shall be clustered to |T | = 16, i.e., 4 bit
resolution. In turn, the convexity-constraint brute-force search is about 100016 =

1048 possible quantizers. Thus, greedy information bottleneck algorithms are of
considerable practical interest.

This section provides a brief overview and comparison of the presented information
bottleneck algorithms in terms of runtime, memory complexity, and numerical sta-
bility. The total runtime depends on factors like architecture and implementation.
Thus, only qualitative conclusions can be drawn. The computational complexity
is measured by the number of required Kullback-Leiber divergence computations,
respectively Jensen-Shannon divergence computations. Thus, the dependency on
|X | is neglected in the overview presented in Table 3.3.

The iterative and sequential information bottleneck algorithm and the KL-Means
algorithm require cost computations for each observation and with respect to each
cluster, i.e., O(i · |T ||Y|) where i denotes the number of iterations until convergence.
In contrast, the agglomerative information bottleneck algorithm starts with |Y| sin-
gleton clusters, thus, the first step requires |Y|2 merger cost computations. Due
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Algorithm Mapping Comp. Complexity Runtime
iterative stochastic/deterministic O(i · |T ||Y|) fast

agglomerative deterministic O
(

3|Y|2−|T |2−|Y|+|T |
2

)
fast

sequential deterministic O(i · |T ||Y|) slow
KL-Means deterministic O(i · |T ||Y|) very fast

Table 3.3: Comparison of selected information bottleneck algorithms.

to the merge operations,
∑|Y|−|T |

k=1 |Y| − k = |Y|2−|T |2−|Y|+|T |
2

further computations
are required. Hence, in total the complexity is O

(
3|Y|2−|T |2−|Y|+|T |

2

)
. Especially for

large |Y| this quadratic dependency on |Y| is unfavorable. Furthermore, Table 3.3
summarizes the type of mapping, i.e., deterministic or stochastic and the runtime.

In the following example, further details and analysis of the algorithms are provided.

Example 3.3: Text Clustering using the Information Bottleneck
Method

Let us consider a non-communication-related example, i.e., text clustering, re-
spectively, author classification. Assume that one is provided with text snippets
of three German authors, i.e., Johann Wolfgang Goethe, Thomas Mann and Franz
Kafka. The aim is to determine very informative words in these texts which are
representative for a particular author. Hence, a relevant-information-preserving
clustering shall be found where the relevant random variable is the author, i.e.,
x ∈ {Goethe(G),Kafka(K),Mann(M)}. The sample space of the observed ran-
dom variable Y comprises all words in the books

• Faust by Johann W. von Goethe
• Buddenbrooks by Thomas Mann
• Brief an den Vater (Letter to His Father) by Franz Kafka.

The words are counted and related to the author to construct p(x, y), i.e., the
input distribution fed into the information bottleneck algorithms. All these words
are points in the probability simplex, as shown in the top left plot of Fig. 3.13.
The points are shown only once as they do not change over the iterations but
only the clusterings vary. Snapshots of the found mappings in different iterations
for the sequential information bottleneck algorithm, agglomerative information
bottleneck algorithm, and the KL-Means algorithm are shown in Fig. 3.13. The
number of clusters is set to |T | = 16. The initial mapping is always the left-
most plot and the right-most plot depicts the final mapping. As the sequential
algorithm works sequentially on each observation, the cluster associated with an
observation is color-coded for each point in the probability simplex. Furthermore,
the convex hull of the clusters is shown. It can be observed that after the initial
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Start Intermediate End

Goethe Mann

Kafka

(a) Seq. inf. bot. algo.

Goethe Mann

Kafka

(b) Aggl. inf. bot. algo.

Goethe Mann

Kafka

(c) KL-Means inf. bot. algo.

Figure 3.13: Information bottleneck algorithm applied to Example 3.3 where the
initial mapping is shown left and the last mapping is shown on the right and an
intermediate mapping is displayed in the center.



3.3. Information Bottleneck Algorithms and Devised Extensions 63

5 10 15 20 25

0.2

0.25

0.3

|T |

I(X; T)

agglomerative
KL-Means
sequential

Figure 3.14: Comparison of preserved mutual information for different information
bottleneck algorithms and the input distribution from Example 3.3.

iteration of the sequential information bottleneck algorithm the clusters are not
necessarily convex. Nonetheless, the overall mapping changed significantly over
the iterations until a local optimum is found. The agglomerative information bot-
tleneck algorithm always merges two clusters in each step. A cluster is indicated
by its colored convex hull. It can be observed in Fig. 3.13b that clusters overlap
in the final clustering. This indicates that probably only a bad local optimum is
found as not all events are assigned to clusters meanings p(x|t) with their respec-
tive minimum Kullback-Leibler divergence. In contrast, the KL-Means algorithm
finds such convex clusters right from the start but optimizes these convex cluster
over the iterations. The preserved relevant information as a function of the num-
ber of clusters is displayed in Fig. 3.14. As expected, it can be observed that the
sIB algorithm and the KL-Means algorithm show the smallest loss in mutual infor-
mation, whereas especially for a small number of clusters, i.e., coarse quantization,
the agglomerative algorithm performs worst among the investigated algorithms.
For curiosity it is also interesting to analyze the words assigned to certain clusters.
For example, applying the KL-Means algorithm yields the following mapping:
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cluster
index

excerpt of words meaning

1 fromm (pious), schleicht (sneak),
geheimnisvoll (mysterious), Zauberei
(magic), Seelen (souls), lernt (learned),
Wette (bet), Menschheit (mankind)

p(X = G|t) = 0.982

p(X = K|t) = 0.014

p(X = M |t) = 0.004


7 Erfolg (success), Ironie (irony),

Tyrannei (tyranny), Rettung (rescue),
verletzt (hurt), Bosheit (malice),

Misstrauen (mistrust)

 p(X = G|t) = 0

p(X = K|t) = 0.973

p(X = M |t) = 0.027


16 V Villa (villa), Billards (billiards),

Geschäftsfreund (business partner),
Lehrer (teacher), Hausfrau
(housewife), Strand (beach),

Kaufmann (merchant), Kaffee (coffee),
Firma (company)

p(X = G|t) = 0.001

p(X = K|t) = 0.039

p(X = M |t) = 0.960



Interestingly, one notes that this clustering is indeed a fairly meaningful and in-
teresting compression with respect to the considered works of the authors.

3.4 Extensions and Variants of the Information Bot-

tleneck Setup

The information bottleneck method is a very generic information-theoretic frame-
work. Depending on the application, different specialized streams evolved, which of-
ten exploit only a particular fraction of the method’s capabilities. One such stream
is mutual-information-based signal processing, as considered in this thesis, where
the focus is on the design of signal processing units that preserve the maximum
amount of relevant information under coarse quantization. Another stream is the
so-called Gaussian information bottleneck. The Gaussian information bottleneck
investigates analytical bounds of the information bottleneck method for the special
case of jointly-Gaussian relevant and observed random variables.

In this section, a brief overview of these streams is provided and already introduced
concepts are compared to these variants of the information bottleneck setup.
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3.4.1 Optimal Relevant-Information-Preserving Channel Out-

put Quantizer for Binary-Input Discrete Memoryless

Channels

As described in Section 3.2.3 the design of mutual-information-maximizing chan-
nel quantization received renewed research interest after 2002 due to the several
interesting works in literature [TPB99; BPK+92; MZY+02; Tho03a]. However, as
discussed in Section 3.3 the information bottleneck method falls within the class
of convex maximization problems which are NP-hard to solve in general and thus
most greedy algorithms find only local solutions [KY14]. However, inspired by the
work of Burshtein et al. [BPK+92] proposing the structure of optimal quantizers,
Kurkoski proposed a dynamic programming approach for the design of quantizers
for arbitrary binary-input discrete memoryless channel which guarantees to find the
global optimal solution [KY14].

For clarity and a better understanding, Theorem 1 from [BPK+92] shall be restated
verbatim but with renamed variables as used in the context of this thesis.

Theorem 2. Let φ : T ×X 7→ R be a concave function in its second argument and
let V = E [X|Y] be a random variable. For any quantizer Q, there exists Q : X 7→ T
such that Φ(Q̃(V)) ≤ Φ(Q(V)) and such that Q̃−1(t) is convex for all t ∈ T .

This theorem allows to reduce the search space for brute-force from |T ||Y| to |Y||T |

[KY14].

Interestingly, as described in [KY14], Kurkoski et al. showed that an optimal convex
quantizer for the backward channel p(x|y) of the quantizer can be found. However,
this does not imply that a convex quantizer can also be found for the forward chan-
nel p(y|x) [KY14]. Furthermore, it was shown that the backward channel should be
ordered. For a binary-input channel, an ordering with respect to the log-likelihood
ratios is possible. Given the ordered sample space, the proposed algorithm in [KY14]
leverages dynamic programming to determine the optimal convex quantizer of the
backward channel. The resulting algorithm is shown to have computational com-
plexity O(|Y|3) which is typically much smaller than O

(
|Y||T |

)
.

For an ordered event space and binary relevant variables, convex sets can be easily
obtained by partitioning the sample space using clustering thresholds. The algorithm
determines all combinations of boundaries of possible convex quantizers elegantly.
For a binary relevant random variable, the optimization can be visualized as a Trellis
diagram [KY14]. This is schematically sketched for |Y| = 5 and |T | = 3 in Fig. 3.15.
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S1(1)

S1(2)

S1(3)

S2(2)

S2(3)

S2(4)

S3(5)

Figure 3.15: Schematic illustration of the optimal quantizer design for binary-input
discrete memoryless channels.

The states St(y) in Fig. 3.15 define the partial mutual information if the observations
1 to y are assigned to the quantization regions 1 to t. Thus, the state value can be
found by recursion [KY14], i.e.,

St(y) = max
y′

(St−1(y′) + ι(y → y′)) (3.51)

where ι(y → y′) denotes the partial information defined as

ι(y → y′) =
∑
x∈X

y∑
ȳ=y′+1

p(x, ȳ) log2

( ∑y
ȳ′=y′+1 p(ȳ

′|x)∑
x′∈X

∑y
ȳ′=y′+1 p(x

′, ȳ′)

)
. (3.52)

As shown in Fig. 3.15, several paths can arrive at a particular state. As these paths
have different histories but the same future, only the incoming path which preserved
most partial information will be pursued. The other path is ignored, as indicated
by the dashed line in Fig. 3.15. The pseudocode of the algorithm can be found in
great detail in [KY14].

3.4.1.1 Symmetric Modified Sequential Information Bottleneck Algo-
rithm for Binary Relevant Random Variables

Also inspired by Burshtein’s theorem (cf. Theorem 2 ), in [LB18] Lewandowsky et al.
proposed a modified version of the sequential information bottleneck algorithm from
Section 3.3.3 which also optimizes only over convex quantizers for a sorted sample
space. In contrast to the sequential information bottleneck, its modified version is
initialized with a convex cluster, i.e., only neighboring, contiguous events can be
assigned to the same cluster. Afterwards, instead of computing the merger costs for
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Step 1: initialize ⇒

⇒ compute merger costs

Step 2: assign ⇒

Step 3: assign ⇒

Step 4: assign ⇒

y:
Iteration 1

1 2 3 4 5 6 7 8

Iteration 2

Step 1: assign ⇒
...

Figure 3.16: Schematic illustration of one iteration of the modified sequential infor-
mation bottleneck algorithm proposed in [LB18] which is repeated until the algo-
rithm has converged.

each element, the processing is simplified to merger cost computations only for the
border elements. This is equivalent to an optimization of the quantizer boundaries.
In line with the sequential structure of the original algorithm, each boundary is
optimized one after the other. The procedure is repeated iteratively until a stable
solution is found. Similar to the schematic illustration in Fig. 3.11 the processing
of the information bottleneck algorithm from [LB18] is depicted in Fig. 3.16 . The
algorithm in [LB18] is originally proposed for symmetric binary input channels,
i.e., the quantizer only works on half of the sample space and mirrors the solution
to the other half. However, an extension to non-symmetric input distributions is
straightforward.

3.4.1.2 Modified KL-Means Algorithm for Binary Relevant Random
Variables

In this thesis, also a modified version of the KL-Means algorithm is proposed and
compared to the algorithms proposed in [KY14] and [LB18]. As depicted in Fig. 3.17,
the KL-Means algorithm can be forced to optimize only over contiguous clusters by
a proper choice of the initial clustering, respectively by a proper design of the initial
meanings p(x|t). If the initial meanings for binary input channels with ordered event
space, i.e.,

log
p(X = 0|y)

p(X = 1|y)
< log

p(X = 0|y′)
p(X = 1|y′)

, ∀y < y′ (3.53)
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1 2 3 4 5 6 7 8 ⇒

initialize p(x|t)

initialize p(t|y)

1 2 3 4 5 6 7 8

arg min
t

DKL {p(x|y)||p(x|t)}

y :

t :

⇒ 1 2 3 4 5 6 7 8

update p(x|t)

iterate

Figure 3.17: Schematic illustration of KL-Means algorithm with ordered initializa-
tion for contiguous clusters.

are chosen such that,

log
p(X = 0|t)
p(X = 1|t)

< log
p(X = 0|t′)
p(X = 1|t′)

, ∀t < t′ (3.54)

the optimization is restricted to contiguous clusters as the Kullback-Leibler diver-
gence itself is convex. Furthermore, if also

log
p(X = 0|t)
p(X = 1|t)

= log
p(X = 1|t′)
p(X = 0|t′)

, ∀t = |T | − t′ (3.55)

holds the KL-means algorithm is enforced to consider only symmetric clusters if and
only if at the same time

log
p(X = 0|y)

p(X = 1|y)
= log

p(X = 1|y′)
p(X = 0|y′)

, ∀y = |Y| − y′ . (3.56)

In contrast to the symmetric sequential information bottleneck algorithm, the KL-
means algorithm works solely on the input distribution and does not assume sym-
metry of p(x|y). Thus, if p(x|y) is not symmetric, the algorithm is not forced to
resort to symmetric clusterings but inherently converges to an optimal asymmetric
clustering.

3.4.1.3 Investigation and Analysis of Binary-Input AWGNChannel Quan-
tizers

Let us reconsider channel quantizer design for binary input channels, as discussed in
Section 3.2.3, where the difference between rate-distortion and mutual-information-
maximizing quantization was highlighted. In this section, presented information
bottleneck algorithms are compared for the same setting.

Fig. 3.18 shows the preserved mutual information and the quantization boundaries
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(c) Quantization boundaries for |T | = 15.

0.2 0.4 0.6 0.8 1

10−4

10−3

10−2

10−1

|T | = 31

|T | = 15

|T | = 7

|T | = 3

σ2
N

∆I

[LB18]
mod. KL-Means

(d) Loss in relevant information for different
odd numbers of clusters and algorithms.

Figure 3.18: Quantization boundaries and preserved mutual information for a sym-
metric binary-input AWGN channel for different even and odd numbers of clusters
and different algorithms.
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for different settings. First, let us consider an even number of clusters, as shown in
the upper part of Fig. 3.18. Interestingly, it can be observed that the quantization
boundaries for |T | = 16 (cf. Fig. 3.18a) are identically for the optimal quantizer
proposed in [KY14], the modified sequential information bottleneck algorithm from
[LB18] and the modified KL-Means algorithm presented in Section 3.4.1.2. Similarly,
the loss in mutual information, i.e.,

∆I = I(X; Y)− I(X; T)

depicted in Fig. 3.18b shows that for |T | = 4, 8, 16 no difference in performance for
the algorithms can be observed. Interestingly, for |T | = 32 the KL-Means algorithm
shows a small performance gap to the algorithm from [KY14] and [LB18]. This is also
reported in literature for other applications [HWD17] where it was shown that for
a large number of clusters the KL-Means algorithm is very sensitive to the random
initialization. However, as this thesis targets mostly very coarsely quantized signal
processing, i.e., |T | < 5bit, all investigated algorithms can be considered equally
good in terms of preserved relevant information.

In general it seems natural to use an even number of clusters as |T | = 2bits typically
where the number of bits is a positive integer. However, as shown in Fig. 3.18b, this
implies that the log-likelihood ratio (LLR)=0 is not an explicit part of a cluster but
the boundary instead. In some applications, however, LLR=0 plays a crucial role.
Thus, mid-step quantizers instead of mid-rise quantizers can be of interest. Hence,
secondly quantizers with an uneven number of clusters are considered. Fig. 3.18c
and Fig. 3.18d depict the boundaries and mutual information loss for this setting. It
can be observed that the boundaries are around the origin. It should be emphasized
that for binary-input AWGN channel quantization the mid-step quantizer always
preserves less mutual information than the mid-step quantizer for the same bit
resolution. This seems intuitive as one cluster less can be used, i.e., |T | = 2bits − 1.

3.4.2 Gaussian Information Bottleneck

The Gaussian Information Bottleneck proposed in [CGT+05] is a primarily theoret-
ical extension of the information bottleneck setup. It allows to derive an explicit,
analytical, closed-form solution to the information bottleneck problem for the spe-
cial case of a multivariate, jointly Gaussian relevant and observed random variable,
i.e., (X,Y) ∈ CNx × CNy with covariance matrices Σx, Σy. It is shown that in this
setting, the compressed random variable is found over the linear transform

T = AY + η, η ∼ N (0,Ση) (3.57)
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and is also Gaussian, i.e., T ∼ N (0,Σt) with Σt = AΣyA
T+Σζ . The transformation

matrix A is composed of the eigenvectors of Σy|xΣ
−1
y . For a more detailed derivation

and discussion the interested reader is referred to [CGT+05; ZES20].

This result has mostly theoretical implications since the compressed random variable
is continuous and jointly Gaussian distributed with Y, i.e., |T | and |Y| are both
infinite. Instead, only the compression information I(Y; T) is minimized, meeting
the information-theoretical notion of compression. A discrete compressed random
variable T with a small, finite sample space |T | is desirable to design relevant-
information-preserving signal processing units.

Due to the nature of the solution of the Gaussian information bottleneck problem
and according to [WM14], one concludes that the Gaussian information bottleneck
in its pure form is of limited interest for most communication-related problems,
although it has a closed-form solution. Interestingly, Winkelbauer and Matz derived
the rate-information function I(R) for the scalar Gaussian information bottleneck
problem as

I(R) =
1

2
log

1 + ρ

1 + 2−2Rρ
(3.58)

where ρ denotes the signal-to-noise ratio (SNR) and showed that this expression
is equivalent to the optimal rate-information trade-off achievable by rate-distortion
theory [WM14]. Furthermore, Winkelbauer analyzed the performance of a Lloyd-
Max quantizer with respect to these optimum bounds.

For this thesis, a novel information bottleneck algorithm was developed and proposed
in [SLB19] which allows to efficiently design discrete clustering for Gaussian relevant
random variables and Gaussian mixture distributions. This algorithm is presented
in the next section.

3.4.3 Parametric Information Bottleneck Algorithms for Gaus-

sian Relevant Random Variables and Gaussian Mixture

Distributions

Most applications of the information bottleneck method are restricted to discrete de-
cision problems due to the lack of appropriate deterministic information bottleneck
algorithms for problems involving continuous relevant random variables. In general,
one approach is to use a very fine discretization of the continuous sample space of the
observed and relevant random variable. In turn, well-known information bottleneck
algorithms could be applied directly but at the cost of drastically increased runtime
and complexity. This motivates to develop an information bottleneck algorithm that
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broadens the range of application of the information bottleneck method to contin-
uous relevant random variables but discrete clusterings (cf. Table 3.3). Therefore,
for this thesis a parametric information bottleneck algorithm suitable for relevant
random variables being Gaussian or Gaussian mixtures was devised and proposed
in [SLB19] which requires only the involved means and variances.

The parametric information bottleneck algorithm builds upon the KL-Means al-
gorithm presented in Section 3.3.4. For the special case of a relevant variable X
following a Gaussian distribution it is possible to utilize the closed-form expression
[HO07]

DKL {p||q} =
1

2

(
σ2
p

σ2
q

+
(µp − µq)2

σ2
q

− 1 + log

(
σ2
q

σ2
p

))
, (3.59)

for P ∼ N (µp, σ
2
p) and Q ∼ N (µq, σ

2
q ) in the assignment step of the KL-Means

algorithm, i.e., Eq. (3.48). This results in the parametric information bottleneck
algorithm. The great advantage of this algorithm is that instead of storing and
processing approximated and huge numerical representations of distributions p(x, y)

and p(x, t) to deal with continuous variables, only the respective means µ and vari-
ances σ have to be stored and processed in the algorithm. It will be shown later,
that this approach has a drastic impact on the complexity.

Assuming a Gaussian likelihood p(y|x), i.e., a system model y = x + n, x ∼
N (µx, σ

2
x), n ∼ N (0, σ2

N), the posterior distribution p(x|y) is also Gaussian with

µx|y = µx +
σ2
x

σ2
N + σ2

x

· (y − µx) (3.60)

σ2
x|y =

σ2
x · σ2

N

σ2
N + σ2

x

. (3.61)

This yields the respective means and variances of p(x|t) and p(x|y) denoted µx|t and
σ2
x|t respectively µx|y and σ2

x|y required to compute Eq. (3.59).

However, p(x|t) is not Gaussian but a weighted sum of Gaussians, also called Gaus-
sian mixture distribution with mean

µx|t = E [X|T = t] =
∑
y∈Yt

p̄t(y)E [X|Y = y]

=
∑
y∈Yt

p̄t(y)µx|y (3.62)

σ2
x|t = Var [X|T = t] =

∑
y∈Yt

p̄t(y) · ((µx|y − µx|t)2 + σ2
x|y) . (3.63)
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Input : Posterior mean and variance, i.e., µx|y and σ2
x|y, p(y), |T | and tol.

Output: Cluster mean and variance µx|t and σ2
x|t, p(t) and the mapping p(t|y),

i.e., the boundaries of the quantizer.

p(t|y)← randomly initialize convex sets with variable size

p̄t(y)← p(y)∑
y p(y)

,∀y ∈ Yt
µx|t ←

∑
y∈Yt p̄t(y)µx|y σ

2
x|t ←

∑
y∈Yt p̄t(y) · ((µx|y − µx|t)2 + σ2

x|y)
k ← 0
Ik(X; T)← h(X)− h(X|T)

while Ik(X; T)− Ik−1(X; T) > tol do
k ← k + 1
t∗ ← arg mintDKL{p(x|y)||p(x|t)}) ; .Assign

p̄t(y)← p(y)∑
y p(y)

, ∀y ∈ Yt ; .Update
µx|t ←

∑
y∈Yt p̄t(y)µx|y σ

2
x|t ←

∑
y∈Yt p̄t(y) · ((µx|y − µx|t)2 + σ2

x|y)

Ik(X; T)← h(X)− h(X|T)
end
Algorithm 2: Parametric information bottleneck algorithm for Gaussian rele-
vant random variables.

Following [HO07], the Gaussian mixture is unimodal, i.e., it is sufficient to approx-
imate the Gaussian mixture as Gaussian distribution with mean µx|t and variance
σ2
x|t. Thus, one can resort to Eq. (3.59). The resulting parametric information

bottleneck algorithm for Gaussian random variables is summarized in Algorithm 2.

The algorithm stops if the preserved relevant information I(X; T) does not increase
in further iterations. Interestingly, also the preserved relevant information I(X; T)

can be computed in closed form as

I(X; T) = h(X)− h(X|T) . (3.64)

where
h(X) = −

∫ ∞
−∞

p(x) log p(x)dx =
1

2
log2(2πeσ2

x) (3.65)

denotes the differential entropy and h(X|T) = 1
2

log2(2πeσ2
x|t).

The performance of the developed algorithm is shown in Fig. 3.19a by investigating
the achieved points in the relevance-compression plane. For comparison, the perfor-
mance of the original KL-Means algorithm is shown. Since well-known information
bottleneck algorithms, like the KL-Means algorithm, are not applicable to contin-
uous relevant and observed random variables, the sample spaces are finely binned,
i.e., |X | = |Y| = 4000 when fed into the KL-Means algorithm. Furthermore, the the-
oretical Gaussian information bottleneck (GIB) bound, i.e., Eq. (3.58), is included
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Figure 3.19: Investigation of the Parametric information bottleneck algorithm com-
pared to the Gaussian information bottleneck bound and the finely binned KL-
Means algorithm.

in Fig. 3.19a.

It can be observed that the parametric information bottleneck algorithm handles the
trade-off between compression and maximum preservation of relevant information
very well as all points lie very close to the theoretical bound. Please note that the
remaining negligible gap between the Gaussian information bottleneck bound and
the points achieved with our algorithm arises from the fact that the compression
variable T is not continuous but discrete and has a small, finite event space.

Interestingly, not only the parametric information algorithm but also the KL-Means
algorithm using a discretized input distribution operates very closely to the bound.
However, Fig. 3.19b reveals the superiority of the parametric information bottleneck
algorithm as it has a much smaller runtime compared to the KL-Means algorithm
and shows only a moderate linear increase in runtime for an increasing number of
clusters.

In the previous section, relevant random variables with Gaussian distribution were
considered. A much broader class of distributions is Gaussian mixture distributions.
Especially in statistical learning, these Gaussian mixture models play an essential
role, e.g., in the Expectation-Maximization-algorithm, speaker recognition, or sup-
port vector machines.
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As defined earlier a Gaussian mixture is the weighted sum of normal distributions

p(x|w,µ,σ2) =
∑
i

wiN (µi, σ
2
i ), (3.66)

where the vector w pools all weights wi, with
∑

iwi = 1, the vector µ pools all
component means µi and the vector σ2 pools all component variances σ2

i .

To extend the parametric information bottleneck algorithm to Gaussian mixture
models a parametric form of the posterior p(x|y) is required. Again we assume a
Gaussian likelihood p(y|x) but this time a Gaussian mixture as prior p(x). Using
Bayes rule, it can be shown that a mixture prior results in a mixture of posteriors, i.e.,
p(x|y) =

∑
i pi(x|y)w̃i, where pi(x|y) denotes the posteriors of the components, pi(y)

the marginals of the components and w̃i are their new weights found by w̃i = pi(y)·wi
p(y)

.

According to Eq. (3.60) and Eq. (3.61), a Gaussian likelihood and different Gaussian
priors the posterior pi(x|y) results in a Gaussian distribution with parameters

µ̃i,x|y = µi +
σ2
i

σ2
N + σ2

i

· (y − µi) (3.67)

σ̃2
i,x|y =

σ2
i · σ2

N

σ2
N + σ2

i

. (3.68)

Hence, in this setting p(x|y) and p(x|t) are Gaussian mixture distributions that need
to be considered when computing the Kullback-Leibler divergence to assign events
to clusters. Since p(x|t) and p(x|y) are Gaussian mixtures, an approximation of
the Kullback-Leibler divergence as proposed in [HO07] is needed. For two Gaussian
mixtures f =

∑
awafa and g =

∑
bwbgb this approximation can be written as

DKL,GMM{f ||g} ≈
∑
a

wa log

∑
a′ wa′ · exp(−DKL {fa||fa′})∑
bwb · exp(−DKL {fa||gb})

, (3.69)

where fa and fa′ denote different Gaussian components from the mixture f . Re-
placing the Kullback-Leibler divergence computation in Algorithm 2 with its closed
form expression yields a parametric information bottleneck algorithm for relevant
variables with a Gaussian mixture distribution.

An illustrative example of the parametric information bottleneck algorithm for Gaus-
sian mixtures is provided in Example 3.4

To summarize, in contrast to classical information bottleneck algorithms the para-
metric information bottleneck algorithm requires only the posterior means, variances
and the marginals p(y) and p(x) which are both Gaussian. The cluster means can
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Figure 3.20: (a) Temperature distribution in Berlin since 1766 approximated by
a Gaussian mixture with two components. (b) Achieved points in the relevance-
compression plane of the considered algorithms including the upper bound I(X; Y)
using a Gaussian mixture prior.

be computed and used to determine the Kullback-Leibler divergence between p(x|y)

and p(x|t) based on the posterior means and variances. Due to the closed-form
expression in Eq. (3.59), evaluating this term is very fast.

Example 3.4: Coarsely Quantized Temperature Sensors

Let us consider the design of a mutual-information based temperature sensor with
coarse quantization. Here, the temperature is the relevant variable X and the
observation Y is the temperature plus additive Gaussian noise. Please note that
such a simple system could hardly be solved with existing information bottleneck
algorithms directly, due to the continuous nature of the relevant variable, i.e., the
temperature. As a starting point, one requires the marginal distribution of the
relevant random variable, i.e., the temperature. The histogram in Figure 3.20a,
shows the distribution of the average temperature in Berlin since 1766 [KWJ+16].
As illustrated in Figure 3.20a, the temperature distribution can be approximated
quite well using a Gaussian mixture with two components and the parameters
µ = [17.30, 4.85]T, w = [0.34, 0.66]T and σ2 = [13.7, 40.70]T.
In the next step, it is assumed that due to additive Gaussian measurement noise
the continuous, sensed value equals

y = x+ n, n ∼ N (0, σ2
N) . (3.70)
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By application of the parametric information bottleneck algorithm the aim is to
efficiently determine the quantizer which maximizes the relevant information. In
contrast to the purely Gaussian case, a theoretical bound for Gaussian mixtures
cannot be computed in closed form. Hence, the comparison of the achieved points
in the relevance-compression curve only illustrates the original mutual information
I(X; Y) for the considered example. The number of clusters was varied in the range
from 8 to 64 clusters.
The presented simulation results show that the achieved points of the paramet-
ric information bottleneck proposed algorithm are nearly the same as the ones
obtained by using the KL-Means algorithm with a finely discretized input dis-
tribution. Furthermore, the achieved points for a sufficiently large |T | are very
close to the maximum obtainable mutual information I(X; Y), i.e., nearly all rele-
vant information is preserved while compressing. In turn, also in this example, the
parametric information bottleneck algorithm yields a significantly shorter runtime
than the KL-Means algorithm.

3.4.4 Deterministic Information Bottleneck

Another variant of the information bottleneck is the deterministic information bot-
tleneck (detIB) proposed by Strouse et al. [SS17], which can be easily confused with
the information bottleneck objective for deterministic clusterings (cf. Section 3.2.5).
However, the detIB approach does not necessarily consider the extreme case β →∞.
Instead the information bottleneck functional in [SS17] is reformulated as

LdetIB(p(t|y)) = H (T)− βI(X; T) (3.71)

to achieve a deterministic clustering but to keep the trade-off parameter β. Please
note that, Eq. (3.71) follows directly from Eq. (3.9) as

LdetIB(p(t|y)) = I(Y; T)− βI(X; T) (3.72)

= H (T)− H (T|Y)︸ ︷︷ ︸
0 for deterministic mappings

−βI(X; T) (3.73)

⇒ LdetIB(p(t|y)) . (3.74)

In turn, according to Eq. (3.71) the trade-off in the detIB setting is not between
compression information and relevant information but between the entropy of the
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compressed random variable and the relevant information.

Strouse et al. motivate their modified objective with the observation in the lit-
erature that the iterative information bottleneck algorithm converges to uniformly
distributed clusters, i.e., H (T) is maximized, for small β [SS17]. This is in line with
the information-theoretic perspective on compression, as a stochastic mapping can
reduce the compression information. Thus, I(Y; T) can be reduced without reducing
H (T) directly. Please note that the reformulation in [SS17] does not necessarily
imply that the number of clusters is reduced, i.e., a compression in the signal pro-
cessing sense is achieved. Instead, only if the entropy of the compressed random
variable suffice H (T) < 1

|T | additional source coding can be applied which in turn
might reduce |T |.

Interestingly, in [SS17], only the iterative information bottleneck algorithm is consid-
ered which is known to produce stochastic clustering for finite β (cf. Section 3.2.5).
In this section, a brief further comparison of the detIB approach to the deterministic
information bottleneck algorithms discussed in Sections 3.3.2 to 3.3.4 is provided.

Fig. 3.21 depicts the relevance-compression curve and the entropy-compression curve
used in [SS17] for the example of a channel output quantizer for a binary-input
AWGN channel as considered in Section 3.4.1.3. As outlined in [SS17], it can
be observed that the iterative information bottleneck algorithm and the detIB ap-
proach show the same performance in terms of the relevance-compression trade-off
(cf. Fig. 3.21a) but at the expense of a higher entropy of the compressed random
variable for the iterative information bottleneck algorithm (cf. Fig. 3.21b).

However, if also the deterministic information bottleneck algorithms discussed in
Sections 3.3.2 to 3.3.4 are taken into consideration, it can be observed that also
the entropy of the compressed random variable is similar for a particular preserved
relevant information (cf. Fig. 3.21b). Please note that for the detIB and the iter-
ative information bottleneck algorithm β is changed (cf. blue and orange arrow in
Fig. 3.21b), whereas for the deterministic information bottleneck algorithms from
Sections 3.3.2 to 3.3.4, |T | is varied as β →∞ for these algorithms (cf. black arrow
in Fig. 3.21b).

This thesis focuses on the design of coarsely quantized signal processing units. Thus,
it is more important to consider the number of required clusters to achieve a par-
ticular amount of relevant information instead of the entropy and additional source
coding. Fig. 3.21c shows the number of non-empty clusters, i.e., clusters t with
p(T = t) > 0 for different information bottleneck algorithms with respect to the
associated relevant information. It can be observed that the detIB always requires
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Figure 3.21: Comparison of the deterministic information bottleneck (detIB) ap-
proach to the classical information bottleneck setting. In subfigure (c) the iterative
information bottleneck algorithm is not shown as it yields stochastic mappings for
finite β.
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more clusters to achieve the same relevant information preserved by the information
bottleneck algorithms discussed in Sections 3.3.2 to 3.3.4. In turn, the provided
investigation reveals that the detIB approach proposed in [SS17] allows reducing
the number of clusters needed for a particular relevant information compared to
the iterative information bottleneck algorithm. In contrast, the analysis also reveals
that the deterministic algorithms discussed in Sections 3.3.2 to 3.3.4 are preferable
for the objectives of this thesis as for the same |T | more relevant information can
be preserved.

3.5 Summary

This chapter served as a gentle introduction to the area of mutual-information based
signal processing under coarse quantization. The information bottleneck method was
reviewed and analyzed in great detail. Furthermore, the information bottleneck ap-
proach was compared to different quantization approaches related to rate-distortion
theory. Especially the close relation and the main difference between rate-distortion
theory and the information bottleneck method were presented in detail. Variants
and notions of the information bottleneck method were discussed, including a broad
overview of advances and proposals in different research communities.

This chapter presented detailed graphical and mathematical explanations and dis-
cussed many information bottleneck algorithms able to solve the information bot-
tleneck problem. These algorithms will be used in the remainder of this thesis to
construct powerful mutual-information-based signal processing units. It was shown
that deterministic information bottleneck algorithms are the preferred choice for
the applications discussed in this thesis. In particular, the sequential information
bottleneck algorithm and the KL-Means algorithm will be leveraged as efficient im-
plementations exist, which yield a short runtime.

Furthermore, leveraging the illustrative example of channel quantization for binary-
input AWGN channels, different algorithms, and techniques were compared and
investigated. Many, also non-communication-related, examples were provided to
vividly illustrate the idea of preservation of relevant information and clustering.
It was shown that compared to rate-distortion theory the information bottleneck
method is able to preserve a higher amount of relevant information.

New information bottleneck algorithms were devised and proposed for symmetric
and non-symmetric binary-input channels and enhanced scenarios like continuous
relevant random variables. The parametric information bottleneck algorithm was
presented with versatile applications in settings where the relevant and observed
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random variable are jointly Gaussian, or the relevant random variable is a Gaussian
mixture distribution.

Finally, this chapter introduced and reviewed extensions of the information bot-
tleneck setting like the deterministic information bottleneck setting introduced by
[SS17] and contributed a detailed comparison to other information bottleneck al-
gorithms. It was revealed that by the application of deterministic information
bottleneck algorithms designed for the original information bottleneck setup, the
extension proposed in [SS17] contributes no further advantages for the design of
mutual-information-based signal processing units and is thus not considered in the
following chapters.





Chapter 4

Information Bottleneck Graphs and
the Message Alignment Problem

As emphasized in Chapter 3, the information bottleneck method is a compelling
framework to design coarsely quantized, relevant-information-preserving signal pro-
cessing units. However, especially if an entire communication chain or more complex
signal processing consisting of many subproblems shall be developed, capturing the
multivariate relations between possibly different relevant and observed random vari-
ables could be tedious. Hence, a visual framework closely related to factor graphs
introduced in Section 2.2 was developed in the scope of this thesis and also published
in [LSB16a]. This framework is called information bottleneck graphs. Information
bottleneck graphs allow us to control the flow of relevant information in a coarsely
quantized signal processing design using the information bottleneck method. The
first section of this chapter introduces information bottleneck graphs in more detail.

In the second part of this chapter we devise the so-called message alignment problem.
The close connection of the message alignment problem to the information bottle-
neck setup will be highlighted. The solution to the message alignment problem
is identified as a crucial enabler for mutual-information-based signal processing in
random graphs. Applications of message alignment in such random graphs include
sensor networks and channel output quantization of higher-order modulation which
we published [SLB18c] and [LSB17], respectively. Furthermore, message alignment is
an integral part of the design of information bottleneck decoders for irregular LDPC
codes [SLB18b] as discussed in Chapter 5. Furthermore, we used message alignment
in the design of information bottleneck list decoders for polar codes [SSB19].
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Figure 4.1: Illustration of a simple information bottleneck graph.

4.1 Information Bottleneck Graphs

As discussed in Chapter 3, the information bottleneck method aims to preserve the
maximum relevant information I(X; T) if the observed random variable is squeezed
through a compact bottleneck, i.e., the observation is represented by the compressed
random variable T. This requires access to the joint distribution between the rel-
evant and observed random variable. Especially in more advanced communication
units, the observed random variable is often multivariate, i.e., Y = [Y1,Y2, . . .YN ]

(cf. Section 2.2). In such scenarios solving the information bottleneck problem can
become tedious as the computational complexity of most information bottleneck
algorithms depends largely on |Y| (cf. Section 3.3.5). In statistical inference, factor
graphs as introduced in Section 2.2 are a powerful framework which exploits condi-
tional independences between random variables to determine simpler subproblems.

Inspired by the concept of factor graphs, so-called information bottleneck graphs
were developed in the scope of this thesis and first published in [LSB16a]. Similar
to factor graphs, information bottleneck graphs are bi-partied graphs consisting of

1. variable nodes

2. information bottleneck nodes.

Here the information bottleneck node illustrates compression mappings p(t|y), which
were designed with the information bottleneck method to preserve information about
X. The information bottleneck node is represented by a trapezoid, where a vector
of observations y = [y1, y2, . . . , yN ]T is connected to all but the shortest sides and
the compression variable is connected to the shortest side. The relevant variable is
written in the center of this node. This is depicted in Fig. 4.1.

The transformation of a factor graph into an associated information bottleneck graph
is described more vividly in Example 4.1.
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Figure 4.2: Constellations of higher order modulation for 8-PSK and 16-QAM with
Gray labeling.

Example 4.1: Higher-Order Modulation Symbol Quantizer Design

Let us consider the problem of channel output quantization for an AWGN channel
and higher-order modulation. Higher-order modulation schemes are characterized
by M constellation points in the complex plane, the so-called transmit symbols.
Each symbol carries log2 (M) bits. Two common constellations, i.e., 16-quadrature
amplitude modulation (QAM) and 8-phase-shift keying (PSK) are depicted in
Fig. 4.2 with respective Gray labeling.
In contrast to binary phase-shift keying (BPSK) modulation, the symbols and
thus also the received samples are complex. Hence, one can model the complex
AWGN channel as

y = yre + jyim = s+ n = sre + jsim + n , (4.1)

where n are i.i.d. samples from a complex zero-mean Gaussian distribution with
variance σ2

N .
In this example, the joint distribution fed into the information bottleneck algo-
rithm is p(s, yre, yim). However, one observes that for any M -QAM the real and
imaginary parts are independent as exploited in [LSB17], i.e.,

p(s, yre, yim) = p(yre|sre)p(yim|sim)p(s). (4.2)

From Eq. (4.2) and the corresponding factor graph in Fig. 4.3, one observes that
for 16-QAM, two independent information bottleneck quantizers, namely one for
the real part p(tre|yre) and one for the imaginary part p(tim|yim), can be designed
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Figure 4.3: Transformation of the respective factor graph into an information bot-
tleneck graph for (a) 8-PSK and (b) 16-QAM.

without any performance degradation. One calls this process opening of the in-
formation bottleneck node.
Please note that such a simple decomposition is not possible for the 8-PSK modula-
tion. Here, a vector quantizer p(t|yim, yre) has to be designed using an information
bottleneck algorithm.
Fig. 4.3a and Fig. 4.3b also illustrate the transformation from a factor graph into
an information bottleneck graph. In Fig. 4.3a, it can be observed that the variable
node for the relevant random variable S vanishes and instead, a variable node for
the compressed random variable T is drawn. However, the information bottleneck
node is labeled with the respective relevant random variable to indicate that the
particular clustering was designed to maximize I(X; T).
The trapezoid symbol which represents the information bottleneck node can also
be interpreted as a pointer indicating the direction of the flow of relevant infor-
mation.
Fig. 4.4 shows the loss in mutual information due to quantization for different noise
variances and different |T | for 16 QAM. As expected, opening the information
bottleneck node, i.e., designing an independent quantizer p(tre|yre) for the real part
and p(tim|yim) for the imaginary part did not result in a performance degradation
compared to the closed information bottleneck node, i.e., p(t|yim, yre). In addition,
the mutual-information loss ∆IRD(X; T) for the Lloyd max quantizer is shown for
comparison, which is always larger, i.e., the rate-distortion quantizer looses more
mutual information.

Example 4.1 illustrates a case where it was possible to open, i.e., decompose, the
information bottleneck node without any performance degradation to reduce the
computational complexity. However, in some applications, for example, the sum-
product algorithm, it is sometimes necessary to open the information bottleneck
node to achieve manageable computational complexity but concatenate several lossy
information bottleneck clusterings. In such cases, the preserved mutual information
of the opened node will be smaller than the mutual information of the closed node.
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Figure 4.4: Loss in mutual information for a 16-QAM quantizer for the opened and
closed information bottleneck node compared to the Lloyd Max quantizer.

Nevertheless, it turns out that it is often possible to design highly meaningful flows
of relevant information using information bottleneck graphs that are implementable
in practice and preserve a significant amount of relevant information.

This is discussed in more detail in the next section, where a coarsely quantized
multiple-symbol detector for differential modulation is presented, which implements
mutual-information-based message passing similar to the forward-backward algo-
rithm introduced in Section 2.2, also termed BCJR algorithm [BCJ+74].

4.1.1 Maximum A-Posterior Multiple Symbol Detection for

Phase Noise Receivers

In this section, a more complex mutual-information based signal-processing unit
with coarse quantization is presented, i.e., a maximum a-posterior multiple symbol
detector for differential modulation under phase noise.

The M-PSK and M-QAM constellations, as shown in Fig. 4.2, encode the conveyed
information in the phase and amplitude. So far, only AWGN channels have been
considered. However, in practice, additional channel perturbations are observed
which are typically modeled by complex channel coefficients h = |h|ejφh ∈ C, i.e.,

y = hs+ n . (4.3)

The complex coefficient h causes a phase rotation and an amplitude change of the
original transmit symbol s.
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In communications engineering, two common approaches exist to cope with these
random and unknown phase rotations and amplitude changes. These approaches
are called coherent and non-coherent detection [Gol05]. Coherent demodulation
requires a precise channel estimation to compensate for the channel impact. How-
ever, this estimate might be difficult to obtain or notably increases the complexity
of the receiver. In the scope of this thesis, coarsely quantized channel estimators
were designed using the information bottleneck method which have a manageable
implementation complexity and ensure near-optimum detection performance. These
developed channel estimators use information bottleneck graphs [LSB16a; LSM+17].

In contrast, non-coherent demodulation does not require a coherent phase reference
with respect to the transmitted signal [Gol05]. Instead, non-coherent modulation
and demodulation relies on differential encoding. In differential modulation, the
information is not conveyed by a constellation point s as shown in Fig. 4.2 directly
but encoded by the transition between two subsequent constellation symbols sk and
sk−1 where k denotes the discrete-time index. This technique is commonly used
for M-PSK modulation where the information is solely expressed by the phase, i.e.,
sk = ejφs,k . Differential modulation is done as follows. First, the information is
mapped onto the PSK symbol uk = ejφu,k . In the next step, this current symbol is
multiplied with the previous modulation symbol, i.e.,

sk = uksk−1 = ej(φu,k+φs,k−1) = ej(φs,k) . (4.4)

Assuming hk ≈ hk−1 at the receiver, the demodulator computes

yk
yk−1

=
hke

j(φs,k) + nk
hk−1ej(φs,k−1) + nk−1

= ej(φs,k−φs,k−1) = ej(φu,k) (4.5)

and recovers uk without knowledge of the complex channel coefficient hk for the
noise-free case. However, it can be observed that differential modulation is prone
to error-propagation as one wrongly recovered phase can lead to two erroneous in-
formation symbols [Gol05]. This performance gap to coherent detection can be
reduced using a multiple-symbol detector which considers a sequence of modulation
symbols instead of only two subsequent symbols. Let s = [s0, s1, . . . , sk, . . . , sN ]T

denote the transmit vector of N subsequent samples and the initial reference sym-
bol s0. Likewise, y = [y0, y1, . . . , yk, . . . , yN ]T denotes the receive vector and u =

[u1, u2, . . . , uk, . . . , uN ]T contains the information symbols which shall be transmit-
ted. Hence, the modulation symbol sk can be computed as

sk = e
∑k
i=1 φu,k+φs,0 . (4.6)
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For ease of notation the phase of the initial modulation symbol is set to φs,0 = 0.

Non-coherent detection and thus differential modulation is of large interest in low-
cost Internet-of-Things (IoT) devices which have only limited computational and
energy resources [NML+19]. Thus, non-coherent detection is also an interesting ap-
plication for coarsely quantized mutual-information-based signal processing design,
as considered in this thesis. Furthermore, multiple symbol detection shall serve as
a further illustrative example to introduce the concept of information bottleneck
graphs.

As discussed in [NML+19], low-cost devices often suffer from additional phase noise
due to cheap oscillators. This phase noise θk can be modeled as random-walk using
the Wiener model [NML+19], i.e.,

θk = θk−1 + ∆θk (4.7)

where ∆θk ∼ N (0, σ2
∆). In turn, the phase of the received symbol is found as

arg yk = arg
{
eφs,keθk + nk

}
= arg

{
eψk + nk

}
(4.8)

where nk ∼ N (0, σ2
N) and hk = 1. For ease of notation, we introduce the auxiliary

variable ψk = φs,k + θk. The multiple symbol detector aims to determine

ûk = arg max
uk

p(uk|y) . (4.9)

The corresponding factor graph is shown in Fig. 4.5 and is fairly similar to the factor
graph in Example 2.1. Furthermore, the schedule of the sum-product algorithm is
also similar to the processing described in Example 2.2. Thus, the working principle
of the forward-backward algorithm to solve Eq. (4.9) shall not be reviewed but can
be found in great detail also in [KFL01]. In later comparisons, this approach is
referred to as conventional detector.

The respective information bottleneck detector design requires the transformation of
the factor graph from Fig. 4.5 into an information bottleneck graph. Without loss
of generality, only the design of the forward path is presented as the backward path
can be designed analogously.

Let us first consider the factor nodes f2k+1 at the bottom of Fig. 4.5 representing
p(yk|ψk). These factor nodes can be transformed into an information-bottleneck
quantizer which preserves the maximum amount of relevant information about ψk
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Figure 4.5: Factor graph of a MAP multiple differential symbol detector. The
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Figure 4.6: Information bottleneck graph of a MAP multiple differential symbol
detector for the forward path.

(cf. Fig. 4.6). At the first glance, it might seem counter-intuitive to chose a rele-
vant random variable which contains the actual phase plus undesired phase noise.
However, the phase noise can only be eliminated by combining forward and back-
ward path together. Thus, when considering the forward path, the relevant in-
formation about ψk = φs,k + θk has to be preserved. Assuming an uniform prior
on ψk, the joint distribution p(yk, ψk) can be computed directly. Please note that
in this application, the intermediate relevant random variable is actually continu-
ous. However, as discussed in [DS90] discretizing ψk to ψk ∈

[
0, 2π

L
, . . . , 2π

]T with
L = 8 · |Uk| does not harm the performance of the detection algorithm. In gen-
eral, every information bottleneck algorithm discussed in Section 3.3 can be used to
find the clustering p(tch,k|yk). In addition to p(tch,k|yk), the information bottleneck
algorithm provides p(ψk|tch,k), i.e., the meaning of each cluster. Please note that
this meaning will be required in the design of the next step. However, once all
mutual-information-maximizing mappings were found, it is sufficient to pass only
the cluster indices instead of the entire distribution. In turn, the actual processing
can be implemented with a limited precision defined by the cardinality of compressed
random variable T. As these indices can be nicely represented as integers, mutual-
information-preserving message passing designed using the information bottleneck
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is also termed integer-based message passing [LSB16b]. We discussed the close re-
lation between the sum-product algorithm and integer-based message passing more
formally in [LSB16a; LSB16b].

As described in Section 4.1, the shape of the information bottleneck node already
indicates the direction of the flow of relevant information. However, this flow is
emphasized by the blue and red arrows in Fig. 4.6. Here, the red arrow highlights
the relevant information preserved by the quantizer and gathered in the current
timestep. In M-PSK the amplitude of the received sample encodes no information,
thus, only the phase is considered and quantized which simplifies the receiver de-
sign. Following [Gol05] and with further mathematical reformulation, the impact of
AWGN on the phase of the received sample is computed as

p(yk, ψk) =
1

π
e
− cos(ψk) sin(ψk)

2

σ2
N · 1

2
e
−
(

cos(ψk)

2σ2
N

)2

p(ψk) (4.10)

by coordinate transformation. This joint distribution is fed into the information
bottleneck algorithm to design the mutual information preserving channel output
quantizer.

In contrast, the blue arrow indicates the relevant information about the current state
gathered in the past. Extracting relevant information based on past observations, is
the task of the information bottleneck nodes at the top of Fig. 4.6. This node fuses
p(ψk−1|tch,k−1) and p(ψk−1|tk−1) to obtain p(ψk|tk). Here, p(ψk|tk) is closely related
to the analog distribution p(ψk|y0, . . . , yk) in the forward-backward algorithm (cf.
Section 2.2 and Example 2.2). Internally, this information bottleneck also contains
the transition distribution p(ψk|ψk−1, uk), i.e., except for k = 0 the overall joint
distribution processed in the information bottleneck node yields

p(ψk, tk−1, tch,k−1) =
∑
ψk−1

∑
uk

p(ψk|ψk−1, uk)p(ψk−1|tch,k−1)p(ψk−1|tk−1)p(uk) (4.11)

where in the forward path p(uk) is assumed to be unknown, i.e., uniformly dis-
tributed. Following the schedule of the sum-product algorithm, all factor nodes in
Fig. 4.5 are replaced by information bottleneck nodes in Fig. 4.6, i.e., all arithmetic
operations in the nodes are replaced by relevant-information preserving mappings.
These mappings could be implemented, for instance, as lookup tables.
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Figure 4.7: BER performance of the sum-product algorithm (SPA) and the informa-
tion bottleneck detector (IBD) for MAP multiple-symbol detection for phase noise
channels and differential 8-PSK modulation. The internal message representation
of the coarsely quantized information bottleneck detector was 6 bits.

The computation of the joint distributions p(ψk−1, tk, tch,k) to find relevant-information
preserving mappings for the backward path is similar to Eq. (4.11), i.e.,

p(ψk−1, tk, tch,k) =
∑
ψk

∑
uk

p(ψk−1|ψk, uk)p(ψk|tch,k)p(ψk|tk)p(uk) . (4.12)

In the following analysis of the presented application, 8-PSK and phase noise with
σ2

∆ = 1◦ respectively σ2
∆ = 2◦ is considered as proposed in [DS90; NML+17;

NML+19; Col12]. Furthermore, the length of the receive sequence was set to N = 2,
i.e., classical differential demodulation and N = 5, i.e., MAP multiple-symbol detec-
tion. The uncoded BER over the AWGN variance σ2

N is plotted in Fig. 4.7. Please
remember that the mutual-information-based, coarsely-quantized message passing
algorithm (termed information bottleneck symbol detector (IBD) in the legend of
Fig. 4.7) passes only integers and performs lookup operations. To construct the mes-
sage mappings the KL-means algorithm was used. For comparison, the performance
of the double-precision sum-product algorithm (SPA) is shown. In both cases, the
received samples were quantized with 6 bits by the information bottleneck channel
output quantizer. The information bottleneck symbol detector (IBD) passes only
one 6 bit integers per message, whereas the beliefs in the sum-product algorithm were
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represented by a probability vector µ ∈ RL with L = 64 double-precision entries.
Interestingly and despite this remarkably coarse quantization of the exchanged mes-
sages from 64·64 = 4096 bits to 6 bits per message and the replacement of arithmeti-
cal node operations with table lookups, the presented integer-based detector shows
only a fairly small performance gap of less than 0.5 dB at a BER of 10−3. This
gap could be reduced even further by increasing |T |. Please note that as µ ∈ RL, a
comparable implementation would either require to represent each entry in µ with
6/L = 6/64 = 0.09 bit, which is impossible or to perform hard-decision detection.
As a remark, it should be noted that as expected, the multiple-symbol detector with
N = 5 outperforms the classical differential demodulator which considers solely two
adjacent symbols by around 2 dB.

4.2 Message Alignment

So far, we restricted ourselves to factor graphs where all exchanged beliefs were
easily tractable. However, in communications, often so-called random graphs are
needed to appropriately describe a certain scenario. Such settings often involve
distributed wireless sensor networks [SLB18c; SK19], iterative turbo detection and
decoding with interleavers but also channel decoding of the so-called irregular low-
density parity check codes that are discussed in detail in Chapter 5. In general,
the sum-product algorithm can be applied to these settings without further modi-
fications. However, this work reveals that for the design of the respective coarsely
quantized mutual-information-maximizing signal processing, an intermediate design
step is integral. This intermediate step termedmessage alignment and the respective
message alignment problem is discussed in detail in this section. We also published
parts of this section in [SLB18c; LSB17; SLB18b].

4.2.1 Design of Coarsely Quantized Distributed Sensor Nodes

using Message Alignment

Let us first motivate the message alignment problem considering a distributed wire-
less sensor network, as depicted in Fig. 4.8 and proposed in [SLB18c]. The sensors
s1 to sK gather noisy observations of the same binary relevant random variable X.
The measurement noise σ2

N,k of each sensor k differs. In general, the measurement
model suffice

yk = x+ nk (4.13)

where nk ∼ N (0, σ2
N,k). For each sensor, an independent information bottleneck

quantizer is designed, described by pk(t|y), which preserves the maximum relevant
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Figure 4.8: Several distributed nodes s1, ..., sN measure the same quantity X and
forward their compressed belief over a network to the fusion center, where the rele-
vant quantity X is recaptured from the incoming beliefs.

information I(X; Tk). The subscript k is introduced, indicating that the mapping
pk(t|y) and the respective joint distributions pk(x, y) is associated with sensor k.
These compressed observations are forwarded to a fusion center. The links are
assumed to be error-free for a particular rate but the channel access of the senors is
random and the transmitting sensor is unknown to the fusion center as depicted in
Fig. 4.8. As the mappings pk(t|y) are different for each sensor, due to the different
σ2
N,k, also the meaning of the clusters pk(x|t) differ. This is exemplarily shown in

Fig. 4.9a for three sensors with σ2
N,1 = 2, σ2

N,2 = 0.5 and σ2
N,2 = 0.25 and |T | = 16

where the LLRs, i.e., Lk(x|t) = log pk(X=0|t)
pk(X=1|t) are plotted.

As the transmitting sensor is unknown to the fusion center, the sensor index k

shall from now on be seen as a realization of the random variable K. Hence, for
ease of notation, it is more convenient to rewrite the distributions pk(t|y), pk(x|t)
and pk(x, y) as p(t|y, k), p(x|t, k) and p(x, y|k), respectively and Pr(K = k) is the
probability that sensor k transmits a message to the fusion center. Not knowing the
conveying sensor equals a marginalization over k, i.e.,

p(x|t) =
∑
k

p(x|t, k)p(k) . (4.14)

In turn, also the overall mutual information I(X; T,K) is reduced to I(X; T) due to
the marginalization. Application of the chain rule yields

I(X; T,K) = I(X; K|T) + I(X; T) (4.15)

assuming that I(X; K|T) > 0, where I(X; K|T) can be interpreted as the extra in-
formation gained over the relevant variable X by knowing K if the quantization
index T is already known. In the absence of any further design steps, the respective
mutual-information-based signal processing system would always loose I(X; K|T).
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Figure 4.9: Log-likelihood ratios of coarsely quantized sensor outputs for σ2
N,1 = 2,

σ2
N,2 = 0.5 and σ2

N,2 = 0.25 and |T | = 16.

Vividly, this loss in information can also be seen in Fig. 4.9a, where it can be observed
that each sensor k maps a different LLRs onto the same cluster index t which is not
surprising as all quantizers used the same sample space T but faced different input
distributions. Interestingly, it can be observed that similar LLRs can be found in
different clusters at different sensors. This is highlighted by the dashed horizontal
line in Fig. 4.9a where one finds that the red cross marker for tuple (k = 2, t = 14)

and the orange triangle marker for (k = 3, t = 13) have a smaller Euclidean distance
than the red cross marker for tuple (k = 2, t = 14) and the orange triangle marker
for (k = 3, t = 14). This observation also holds for other pairs of cluster indices as
depicted in Fig. 4.9b where the LLRs of all sensors are sorted with respect to their
magnitude. Hence, the meanings of the clusters are said to be not aligned.

In the following proposition, the difference between log-likelihood ratios is related to
a more information-theoretic measure of similarity of meanings p(x|ti, kj), i.e., the
similarity of probability distributions, namely the Kullback-Leiber divergence.

Proposition 4.2.1. Let us assume two meanings p(x|ti, kj) and p(x|tn, km) where
i, n ∈ {1, . . . , |T |} and j,m ∈ {1, . . . , N}. For a binary relevant random variable X,
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the Kullback-Leibler divergence DKL {p(x|ti, kj)||p(x|tn, km)} can be approximated as

≈



(1 + p0) (|Lm(x|tn)| − |Lj(x|ti)|) , Lj(x|ti) ≤ 0, Lm(x|tn) ≤ 0

(2− p0) |Lm(x|tn)| − (p0 − 1) |Lj(x|ti)| , Lj(x|ti) ≤ 0, Lm(x|tn) > 0

(1 + p0) |Lm(x|tn)| − (2− p0) |Lj(x|ti)| , Lj(x|ti) > 0, Lm(x|tn) ≤ 0

(2− p0) (|Lm(x|tn)| − |Lj(x|ti)|) , Lj(x|ti) > 0, Lm(x|tn) > 0

(4.16)

where p0 = p(X = 0|ti, kj), Lm(x|tn) = L(x|tn, km), Lj(x|ti) = L(x|ti, kj).

Proof. See Appendix A.1

Hence, from Proposition 4.2.1, one concludes that approximately those meanings
shall be assigned to similar clusters that have the smallest pairwise absolute dif-
ference considering their respective log-likelihood ratios. This observation leads
directly to the message alignment problem [LSB17]. Starting from this graphical
perspective on the message alignment problem and the connection between LLRs
and the Kullback-Leibler divergence, it is also possible to investigate the message
alignment problem from a more information-theoretical perspective.

In Eq. (4.15), it was shown that I(X; T,K) is the mutual information on X conveying
the index of the transmitting sensor node and the cluster index together. From
an information-theoretic point of view, I(X; K|T) = 0 implies that knowing the
sensor node index K in addition to the cluster index yields no information gain
about X. In this case, the meanings would be perfectly aligned. Thus, to solve the
message alignment problem, a novel message mapping p(z|t, k) for each sensor node
is required, which minimizes I(X; K|T) such that exchanging the sensor index k in
addition to the cluster index T yields approximately no information gain.

Reformulation of I(X; K|T) yields

I(X; K|T) =
∑
t∈T

∑
k

p(t, k)DKL {p(x|t, k)||p(x|t)} (4.17)

= Et,k [DKL {p(x|t, k)||p(x|t)}] . (4.18)

Introducing a mapping p(z|t, k) can be interpreted as a reordering strategy that
yields p(x|z, k), i.e., the mapping of the aligned clusters. Please note that due to
the introduction of the aligned random variable Z, p(z|t, k) should be determined as

min
p(z|t,k)

Ez,k [DKL {p(x|z, k)||p(x|z)}] ,∀k (4.19)
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Figure 4.10: Illustration of a message alignment mapping p(z|t, k).

to inherently achieve I(X; K|Z) ≈ 0 and thus

I(X; K,Z) = I(X; K|Z) + I(X; Z) ≈ I(X; Z) . (4.20)

As discussed in [SLB18b], Eq. (4.19) can be solved in an iterative manner using an
algorithm closely related to the KL-Means algorithm, which consists of the following
two update equations

z∗ = arg min
z
DKL {p(x|t, k)||p(x|z)} , ∀(t, k) ∈ T × K (4.21)

p(x|z) =
1

p(z)

∑
(t,k)∈T ×K

p(z|t, k) · p(x, t, k) . (4.22)

The respective message alignment for the example depicted in Fig. 4.9b is shown in
Fig. 4.10 where also the new aligned cluster labels z associated with the tuple (t, k)

are highlighted.

Concluding the example and underlining the importance of message alignment,
Fig. 4.11 shows the detection performance of the fusion center in the considered
distributed scenario with random channel access. In Fig. 4.11, the detection error
rate is plotted versus the averaged SNR 1/σ̄2

N . Please note that the averaged SNR
in this example is assumed as 1

σ̄2
N

= 1
1/K

∑
k σ

2
N,k

. The fusion center receives quantized
observations from all sensors but in a random, unknown order. The optimum bench-
mark is the MAP-detector where the observations are not quantized and thus no
alignment is needed (cf. green curve). The continuous MAP-detector in the fusion
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Figure 4.11: Detection error rate for two conventional benchmark systems and
mutual-information-based signal processing units designed with and without mes-
sage alignment.

center solves
x∗ = arg max

x
p(x|y1, . . . , yk) . (4.23)

This requires exact knowledge about k and also σ2
N,k at the fusion center. The second

benchmark system relies on hard decisions, i.e., the observations are quantized with
1 bit (cf. blue curve). Two relevant-information-preserving systems with coarse
quantization are evaluated. The first system is designed with message alignment
and the second system is designed without message alignment. Here, one assumes
that the fusion center solves

x∗ = arg max
x

p(x|t1, . . . , tk) (4.24)

where the actual processing is replaced by a lookup table. The red curve shows the
performance of the system with message alignment where |T | = |Z| = 16. Interest-
ingly, only a very small performance degradation compared to the double-precision
benchmark system is observed. Further, the big gap between the system with and
without message alignment reveals that the presented message alignment problem
needs to be taken care of in the design of coarsely quantized mutual-information-
based signal processing units to avoid significant performance degradation in random
graphs. Further, the presented results show that the solution to the message align-
ment problem devised during this thesis can successfully align mismatched meanings
of independently designed quantizers.
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Figure 4.12: Illustration of the message problem as information bottleneck setup,
where I(X; Z) denotes the relevant information, I(X; T,K) denotes the original mutual
information and I(T,K; Z) denotes the compressed information.

4.2.2 Message Alignment as Information Bottleneck Problem

As introduced in the previous section, the message alignment problem arises nat-
urally in many applications of coarsely-quantized mutual-information-based signal
processing units. So far, message alignment has been regarded as an independent
problem and has been described in information theoretic terms in Eq. (4.17). How-
ever, the message alignment objective from Eq. (4.20) can also be formulated as

I(X; K,T) = I(X; K,Z) = I(X; K|Z) + I(X; Z)
!
≈ I(X; Z) . (4.25)

under the assumption that p(z|t, k) describes a deterministic mapping. Thus, the
optimal deterministic mapping p(z|t, k) satisfies

min
p(z|t,k)

I(X; K,T)− I(X; Z) (4.26)

which equals
max
p(z|t,k)

I(X; Z) . (4.27)

Interestingly, this formulation is inherently in line with the design objective of
mutual-information-based signal processing units using the information bottleneck
method (cf. Eq. (3.39)). Further, Eq. (4.27) reveals that the message alignment
problem can be related to a multivariate information bottleneck problem, where the
tuple (T,K) forms the multivariate observed random variable, X is the relevant ran-
dom variable, and Z takes the role of the compressed random variable. Hence, in the
notion of an information bottleneck problem, message alignment aims to preserve
the maximum relevant information about X if the combination of cluster index and
sensor index can only be represented by a single scalar random variable. This is also
depicted in Fig. 4.12.
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Figure 4.13: Illustration of a 16-QAM constellation which can be interpreted as
two orthogonal 4-ASK constellations, i.e., one for the real and one for imaginary
dimension.

This relation between the information bottleneck and message alignment is of large
practical interest as it allows to apply the powerful tools and algorithm of the infor-
mation bottleneck framework also to the message alignment problem.

4.2.3 Design of Bitwise-Mutual-Information-Based Channel

Quantizer for Higher Order Modulation

The application in Section 4.2.1 introduced the message alignment problem in ran-
dom factor graphs. Further, in Example 4.1, the design of relevant-information-
preserving channel quantizers using the information bottleneck method was pre-
sented. In this section, it is shown that the message alignment problem often ap-
pears exactly at this interface between channel quantization and message-passing
over factor graphs. Especially if bit-metric decoding with coarse quantization, as
discussed in the next chapter, is paired with higher-order modulation schemes to
increase the spectral efficiency of the transmission, the message alignment problem
can appear.

Without loss of generality, let us consider the 16-QAM constellation depicted in
Fig. 4.13a. Please note that any M-QAM constellation with Gray coding can also be
treated as two orthogonal

√
M -ASK constellations, as shown in Fig. 4.13b [Gol05].

Thus, we restrict our further investigations to 4-ASK constellations. In bit-metric
decoding, soft information about the bits and not about the symbols is fed into the
subsequent channel decoder (cf. Section 2.4.3). In Example 4.1, a channel quantizer
design that preserves the relevant information about the constellation symbol was
presented. However, the demapping of the symbol onto the respective bit sequence
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Figure 4.14: Illustration of the message alignment problem for the design of a channel
output quantizer for higher order modulation. The arrows indicate the optimum
reordering of the meanings found using message alignment to ensure I(B; T,K) ≈
I(B; Z).

reveals that the meaning conveyed by a cluster index differs for each information
bit. For example, consider the two constellation points in the middle of the 4-ASK
constellation in Fig. 4.13b encoded by the bit sequence b1 = [b1, . . . , bk, blog2(

√
M)] =

[0, 1] and b2 = [1, 1]. These two bit sequences differ only in one bit, i.e., for the
same received sample also the respective bit reliabilities of the two bits differ.

Fig. 4.14 shows the reliability of a particular bit associated with a cluster index



102 Chapter 4. Information Bottleneck Graphs and Message Alignment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

loss due to no alignment

σ2
N

I(B; .)

I(B; Z), |Z| = 16
I(B; T), |T | = 16
I(B; T,K)

Figure 4.15: Loss in relevant information about the bit of a 4-ASK quantizer with
(cf. I(B; Z)) and without message alignment (cf. I(B; T)) for |Z| = |T | = 16.

for the first bit (cf. Fig. 4.14a) and the second bit, respectively (cf. Fig. 4.14b).
Designing an integer-based message-passing algorithm for this setting would be cum-
bersome as the input distribution used to design the lookup tables depends on the
bit position in the symbol. Hence, the bit position has to be taken into account
resulting in a largely increased complexity of the lookup table design. However,
message alignment can also be used in this setting to harmonize the cluster mean-
ings. Resorting to the observation from Section 4.2.2 that any message alignment
problem can be treated as a multivariate information bottleneck problem similar
to Fig. 4.12, in this application, the cluster index T and the bit index K serve as
observed random variable and B is the relevant random variable.

Fig. 4.14c shows the equivalent joint optimization problem where all combinations
of meanings, i.e., their respective LLRs, are plotted in ascending order. Further,
Fig. 4.14c shows the reordered meanings after application of message alignment,
also highlighted by the arrows connecting a cluster meaning before and after message
alignment. Please note that in this scenario, an application of message alignment
aims I(B; Z) ≈ I(B; T,K). This is shown for transmission over an AWGN channel
and different noise variances in Fig. 4.15. In Fig. 4.15, I(B; T,K) is shown as upper
bound. It can be observed that a straightforward marginalization without message
alignment would destroy nearly all relevant information about the bits preserved
by the mutual-information-based symbol channel output quantizer. In turn, with
message alignment nearly all relevant information can be preserved. The impact
of message alignment on the performance of a subsequent channel decoder will be
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investigated in more detail in the next chapter.

4.3 Summary

In this chapter, two integral tools for the mutual-information-based signal processing
design devised in the scope of this thesis were presented. First, information bottle-
neck graphs were introduced. Exemplary, using a practically relevant application,
i.e., maximum a-posterior multiple symbol detection for differential modulation over
phase noise channels, the concept of the flow of relevant information was introduced.
Further, it was outlined how information bottleneck graphs can be used to decom-
pose complex untraceable inference tasks into smaller sub-problems, which can be
turned into relevant-information-preserving building blocks using the information
bottleneck method. The resulting message passing algorithm exchanged only inte-
ger values cluster indices, and the actual arithmetic operation degenerate to simple
lookup operations. Provided numerical simulations showed that this system suffers
only from a small performance degradation compared to double precision bench-
mark systems despite the very coarse quantization. It shall be emphasized that
the information bottleneck graphs themselves are a very generic and universal tool
with roots in factor graphs and high-dimensional inference. Throughout this thesis,
information bottleneck graphs will be utilized in various applications but are not
limited to those applications. The concept of information bottleneck which we first
published in [LSB16a] was also reused by authors in literature for example in [KK17]
or [ZK16] which proposed further interesting applications of information bottleneck
graphs.

Second, message alignment was presented as another crucial tool. Starting from
a scenario including distributed sensors nodes, an information-theoretic description
of the message alignment problem was provided. Later, message alignment was
connected to a multivariate information bottleneck problem, which is an integral
finding of this chapter and will be exploited extensively in the next chapters. It
was presented that message alignment can be interpreted as an additional mapping
that reorders the clusters indices of independently designed information bottleneck
mappings in a relevant-mutual-information-preserving manner. As a second practi-
cal problem, a coarsely quantized channel output quantizer design for higher-order
modulation was considered. It was shown that to enable bit-metric decoding the
meanings of clusters of different bits have to be aligned to prevent a significant loss
in relevant information.





Chapter 5

Decoding Binary Low-Density
Parity-Check Codes Using the
Information Bottleneck Method

The previous chapters already sketched the potential of mutual-information-based
signal processing design in terms of coarse quantization paired with negligible per-
formance degradation. In this chapter, this design approach is extended to the
most inevitable but also most resource-consuming part in baseband signal process-
ing in modern communication systems, i.e., channel decoding. In particular so-called
LDPC codes have received considerable attention and became part of several modern
standards for instance IEEE 802.11 (WLAN) [IEE16], 802.16e (WiMAX)[IEE18],
DVB-S2 [Bro14] and 5G [3GP18] due to their stunning error-correction capabilities
[RSU01]. Although Gallager already proposed LDPC codes in [Gal62], it should
last until the 1990s when MacKay [Mac99] rediscovered them. Due to the improved
computing power compared to the 1960s, the decoding of LDPC codes became im-
plementable and practically relevant. Significantly boosted by the pioneering work
by Richardson et al. [RSU01; CFR+01], where it was shown that so-called irregu-
lar LDPC codes could approach Shannon’s postulated achievable channel capacity
within 0.0045 dB, LDPC codes turned into an inevitable building block of mod-
ern communication systems. First, this chapter reviews state-of-the-art decoding
of LDPC codes using the sum-product algorithm and the so-called Tanner graph.
Further, it will be outlined that message-passing decoding of LDPC codes is com-
putationally very complex. To fully exploit the error-correction capabilities of these
codes with conventional decoders, high precision belief propagation is required.

However, increased data rates and support for low-latency communication place
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tight constraints on the computational complexity of channel decoders especially
in the most current 5G communications standard. Here, the classical decoding
approach comes with two main challenges. First, the messages that carry the soft
information are exchanged iteratively between the check nodes and variable nodes
in the Tanner graph and require a high resolution to convey the belief on a codeword
bit precisely. As a result, the message transfer becomes a major bottleneck as the
block length increases [KHW18]. Second, realizing the correct check node operation,
i.e., the box-plus operation requires several computationally complex operations.

Thus, practical LDPC decoder implementations use message-passing decoding with
finite precision and approximated node operations to reduce the computational bur-
den compared to double-precision belief propagation decoding [JDE+05]. Often,
the precision has to become very coarse as complexity is more severely constrained.
In turn, also the performance of finite-precision state-of-the-art LDPC decoders de-
grades as the precision becomes more coarse.

Pursing the information bottleneck method and the idea of mutual-information-
based design, this chapter presents the so-called information bottleneck decoder.
This decoding approach allows us to coarsely quantize the exchanged messages and
replace the complex arithmetic node operations with simple lookup operations in
optimized message mappings. In more detail, this chapter contains the following
main contributions:

1. Review of the information bottleneck decoder design for regular LDPC codes
proposed by Lewandowsky et al. in [LB18] (Section 5.2).

2. Extension of the decoder construction framework from [LB18] to arbitrary
irregular LDPC codes (Section 5.3).

• Derivation of underlying information-theoretic problem formulation and
explanation how the intermediate optimization technique called message
alignment can be incorporated.

• Detailed investigation of the designed decoders for a large variety of code-
rates, different bit-width and code length from different standards.

• The presented decoders are shown to perform very close, i.e., within 0.1
dB, to double-precision belief propagation despite the coarse quantization
of the messages and the node operations being simple lookup operations.

3. Extension of the information bottleneck decoder design to enhanced LDPC
code structures including puncturing and rate-compatibility, in particular for
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protograph-based raptor-like (PBRL) LDPC codes, which is inevitable for er-
ror correction codes in modern communication standards (Section 5.4).

• Reformulation of message alignment as an information bottleneck prob-
lem, facilitating designs for irregular LDPC codes. The new interpre-
tation of message alignment allows reuse of tables across the entire rate
range allowing a compact rate-compatible IB decoder for an entire PBRL
code family.

• Investigation of several message alignment implementations and their ef-
fect on the decoder performances.

• Detailed investigation of the designed decoders where 4-bit information
bottleneck decoders for a PBRL code family designed using the devised
construction approach outperforms a 6-bit normalized-min-sum decoder
and performs very close to double-precision belief propagation decoding.

4. Investigation of the hardware complexity of the proposed information bottle-
neck decoder (Section 5.6).

• Optimization of the lookup table scheduling and introduction of a novel
tree-like lookup pattern. In turn, the relation between the number of
lookup operations required per iteration and the node degree changes
from linear to logarithmic, which is important for LDPC codes with highly
irregular node degree distributions.

• Derivation and investigation of alternative implementations of the mutual-
information-maximizing lookup tables.

Interestingly, the idea to design mutual-information based channel decoders dates
back to Thorpe [Tho03a], where only a rough sketch of this decoding approach was
presented without generic algorithms or enhanced design concepts. However, several
streams towards a coarsely quantized LDPC decoder were pursued with versatile
assumptions and approximations always tailored to specific needs. A collection of
such approaches from the literature is schematically illustrated in a decision tree
in Fig. 5.1. Furthermore, the actual branch pursued in this thesis is additionally
highlighted in Fig. 5.1. At the end of this chapter, the very generic design-concept
using the information bottleneck method presented in this thesis is used as a starting
point and considered as baseline to discuss, evaluate and relate the other decoding
approaches summarized in Fig. 5.1. Please note that although not explicitly shown
in Fig. 5.1, the finite-alphabet iterative decoding (FAID) approach presented in
[PDD+11; CZD+14; DVP+13; PDD+13] which also deals with lookup table based
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Figure 5.1: Tree of a selection of available LDPC decoders in literature depending
on the choice of node operations, channel quantizer resolution and precision of the
exchanged messages which also serves as an illustration of the structure of this
chapter. The information bottleneck decoding approach devised in this thesis is
highlighted.

LDPC decoding for regular LDPC codes, will be reviewed in the context of regular
information bottleneck decoders in Section 5.2 and Section 5.5.1.

5.1 Preliminaries on Binary Low-Density Parity-Check

Codes

In general, binary LDPC codes belong to the class of linear block codes as described
in Section 2.4. In particular, LDPC codes are defined by a sparse Nc × Nv parity
check matrix H, where Nv denotes the number of so-called variable nodes and Nc

denotes the number of check nodes, respectively. These terms follow directly from
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v1 v2 v3 v4 v5 v6

c1 c2 c3 c4

dv,1 = 3 dv,2 = 3 dv,3 = 2 dv,4 = 3 dv,5 = 2 dv,6 = 2

dc,1 = 4 dc,2 = 4 dc,3 = 4 dc,4 = 3

Figure 5.2: Tanner graph for an irregular LDPC code.

a graphical perspective on LDPC codes employing Tanner graphs [Joh10]. Tanner
graphs are bipartite graphs with Nv variable nodes, Nc factor nodes, which are called
check nodes in the context of Tanner graphs. Such a Tanner graph is exemplarily
shown in Fig. 5.2 for the exemplary parity check matrix

HT =


1 1 0 1 1 0

1 1 1 0 0 1

0 1 1 1 1 0

1 0 0 1 0 1

 . (5.1)

An edge connecting a variable node vj and a check node ci exists, if the parity-check
matrix element hi,j = 1. The number of edges associated with a respective node
defines its degree, i.e., dv,j and dc,i are the node degrees of vj and ci, respectively.

5.1.1 LDPC Code Ensembles

As shown later, for the asymptotic analyses of LDPC codes and the design of in-
formation bottleneck decoders, it is often convenient to resort to the so-called code
ensembles [Gal62]. Instead of considering a particular LDPC code with parity check
matrix HT, the code ensembles comprise all realizations of LDPC codes with one
specific check node degree distribution and variable node degree distribution [Joh10].

In literature, one distinguishes between a node and edge perspective on the ensemble
characteristics. However, as shown later, it is more appropriate to focus on the
degree distribution from an edge perspective, referred to as edge-degree distribution
in this thesis. Thus, the connections between the two sets of nodes are characterized
probabilistically by the polynomials [RL09]

λ(ζ) =

dmax
v∑
j=1

λjζ
j−1 ρ(ζ) =

dmax
c∑
i=2

ρiζ
i−1, (5.2)
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where λj denotes the fraction of edges connected to variable nodes with degree j and
ρi denotes the fraction of edges connected to check nodes with degree i. Further,
dmax
c and dmax

v denote the maximum check node degree and variable node degree
respectively.

The code rate can be computed based on the edge-degree distributions as [Joh10]

R =
K

N
= 1−

∑dmax
c
i=2 ρi/i∑dmax
v
j=1 λj/j

. (5.3)

Example 5.1: Analysis of an Irregular LDPC Code

For the exemplary LDPC code with the parity-check matrix given in Eq. (5.1),
the coefficients λj of λ(ζ) are determined as

λ = [λ1, λ2, . . . , λmax]
T =

[
0,

6

15
,

9

15

]T
(5.4)

as highlighted in Fig. 5.2. Similarly, for the check nodes, the coefficients ρi of ρ(ζ)

are found as

ρ = [ρ2, ρ3, . . . , ρmax]
T =

[
0,

3

15
,
12

15

]T
. (5.5)

Using, Eq. (5.3) the respective code rate of the LDPC code is determined as

R =
K

N
= 1−

∑dmax
c
i=2 ρi/i∑dmax
v
j=1 λj/j

(5.6)

= 1−
0 · 1

2
+ 3

15
· 1

3
+ 12

15
· 1

4

0 · 1
1

+ 6
15
· 1

2
+ 9

15
· 1

3

(5.7)

= 1−
4
15
6
15

= 1− 4

6
(5.8)

=
1

3
. (5.9)

If the node degree is dv for all variable nodes and dc for all check nodes, the LDPC
code is called regular and otherwise irregular. For a regular LDPC code Eq. (5.3)
simplifies to [Joh10]

R = 1− dv
dc
. (5.10)

Another important property of a particular LDPC code within the code ensemble is
the length of the shortest cycle in the Tanner graph, i.e., the so-called girth [Joh10].
As explained later in Section 5.1.2 and Section 5.1.3, to analyze and decode LDPC
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codes it is assumed that the exchanged messages are independent. For a large
number of iterations, this assumption is typically violated due to cycles in the Tanner
graph. Thus, it is beneficial to avoid short cycles in the code design resulting in a
large girth [Joh10].

5.1.1.1 Structured LDPC Code Ensembles

If the code ensemble is only described by the edge-degree distributions and no fur-
ther constrains are employed, the ensemble is said do be unstructured. Thus the
entire Tanner graph is constructed to satisfy certain code characteristics like the
degree distribution. To ensure a good error correction performance under iterative
message passing decoding, a large girth in inevitable. It is hard to guarantee a
sufficiently large girth in the unstructured scenario as the construction methods are
based on randomness. Thus, Thorpe [Tho03b; DDJ+09] introduced LDPC codes
constructed from a protograph. A protograph is a small Tanner graph that describes
the connectivity of the overall LDPC code Tanner graph and serves as a blueprint
[Tho03b]. Based on this protograph, the performance of the overall LDPC code is
easily analyzed. A copy and permute operation applied to the protograph termed
lifting obtains the full LDPC parity check matrix [Tho03b]. In turn, there exists
some kind of structure in the parity check matrix.

Another practical purpose of structured ensembles relates to the encoding process.
For arbitrary unstructured LDPC codes, it is often difficult to derive efficient en-
coders. One common approach is to apply Gaussian elimination to determine a
systematic generator matrix that can be used for encoding. However, in contrast to
the parity check matrix, this generator matrix is often not sparse but relatively dense,
which increases the computational complexity of the encoding process. Hence, it is
beneficial to impose more structure on an LDPC code to allow efficient encoding.
Mainly, so-called repeat-accumulate codes constitute an essential class of practical
LDPC codes due to their low complexity encoding, which are also part of many
practical communication standards like WLAN and DVB-S2 [Joh10].

In Section 5.3, coarsely quantized LDPC decoders designed using the information
bottleneck for both structured and arbitrary unstructured LDPC code ensembles
are proposed.

Protograph-Based-Raptor-Like (PBRL) LDPC Codes

In the 5G communication standard, so-called PBRL LDPC codes first proposed in
[CVD+15], are considered for enhanced mobile broadband. This family of codes
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Highest-rate code Incremental redundancy code

Figure 5.3: Protograph of a PBRL LDPC code where the shaded node depicts a
punctured variable node in the highest-rate code and the partial shade indicates
that degree-one variable nodes can be punctured to adapt the rate.

builds upon the protograph concept but is tailored for another integral characteris-
tic of modern channel coding schemes, i.e., rate-compatibility. Such rate-compatible
LDPC codes can easily be paired with hybrid automated repeat request for ef-
ficient retransmission and support a large range of code rates. Starting from a
common base matrix which defines the highest-rate code (HRC) protograph, an
incremental-redundancy code (IRC) protograph is derived. Fig. 5.3 shows the pro-
tograph structure of a PBRL code as described in [CVD+15; RDW19]. In general,
the protomatrix of the protograph shown in Fig. 5.3 is given as

HT =

[
HT

HRC 0

HT
IRC I

]
, (5.11)

where HHRC denotes the parity check matrix of the highest rate code, HIRC denotes
the parity check matrix of the incremental redundancy code and 0 and I represent
the all-zeros matrix and the identity matrix, respectively. Hence, the overall PBRL
protograph can be interpreted as the concatenation of the highest-rate LDPC code
and a low-density generator matrix (LDGM) code having the systematic generator
matrix [CVD+15]

GLDGM =

[
I

HIRC

]
.

In general, a greedy procedure determines the rows of
[
HT

IRC I
]
corresponding to

the incremental-redundancy code such that the decoding threshold for the respective
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code rate is minimized. As a design principle of PBRL codes, one or two variable
nodes in the HRC remain punctured for all supported code rates [CVD+15], which
is indicated by the HRC variable node filled in black in Fig. 5.3. For the highest
code rate, all of the IRC variable nodes are punctured. The IRC provides lower rates
as more of its variable nodes are transmitted, starting from the top, i.e., degree-one
variable nodes are added to the protograph as the rate is lowered. Hence, a degree-
one variable node might be punctured depending on the code rate, as indicated by
the partial shade of the degree-one variable nodes.

Often, it is convenient to identify the HRC for a family of PBRL codes by the triplet

(nv, nc, np)

where nv denotes number of variable nodes, nc denotes the number of check nodes
and finally np denotes the number of punctured nodes in the highest rate code.
Given this triplet and assuming HHRC is full rank, the supported rates of the PBRL
code are found as

Rc =
nv − nc

nv − np + i
(5.12)

for i > 0 indicating the number of unpunctured degree-one variables nodes of the
incremental redundancy code.

A more detailed introduction to PBRL LDPC codes can be found in [CVD+15;
RDW19].

Encoding of PBRL codes is similar to Raptor codes and resorts to a very efficient
two-step encoding process. First, the information bits u are mapped onto so-called
precoded symbols as

c′ = GHRCu (5.13)

where GHRC denotes the generator matrix of the precode, which is derived from the
parity check matrix of the highest-rate code, i.e., HHRC. Also the second encoding
step, involves only exclusive-or operations to compute

c = GLDGMc
′ =

[
I

HIRC

]
c′ =

[
c′

HIRCc
′

]
. (5.14)

Section 5.4 addresses the issue of designing information bottleneck decoders that
accommodate the puncturing that is inherent to PBRL code families.
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5.1.2 Belief-Propagation Decoding

Decoding LDPC codes resorts to employing the sum-product algorithm on the Tan-
ner graph representation of LDPC codes. However, in contrast to previous appli-
cations of the sum-product, as discussed in Section 2.2.1, Example 4.1 and Sec-
tion 4.1.1, decoding of LDPC codes is an instance of loopy belief propagation as the
graph is not cycle-free [Bis09].

As introduced in Section 2.4.3 for bit-metric decoding, BPSK transmission, and
discrete memory-less channels, the decoding problem can be formalized as

b̂j = arg max
bj

p(bj|y) . (5.15)

Following the factor-graph notation from Section 2.2 each code bit is represented
by a variable node, and the factor nodes are termed check nodes. The name check
node already suggests the local function executed at this node, i.e., evaluating a
single-parity check equation described by the respective rows of HT.

In an iterative decoder, the extrinsic information is exchanged iteratively, and vari-
able node and check node updates are performed, starting with a check node update.
This iterative procedure ends either if all check node operations are satisfied or a
maximum number of decoding iterations imax is reached. As practically LDPC codes
typically do not have cycle-free graphs, the found posterior distribution is only an
approximation of the true distribution. Hence, a convergence of the iterative sum-
product algorithm to the correct solution is not guaranteed.

Please remember that the exchanged messages in the original sum-product algo-
rithm are proportional to probability distributions also termed beliefs. Hence, first
belief propagation decoding is introduced in the probability domain. This domain
is vital for the generalization of belief-propagation decoding to non-binary LDPC
codes discussed in Chapter 6. Second, the probability domain is often the starting
point to derive approximations and simplifications of binary LDPC code decoding
as presented in Section 5.5.4.

Let us denote the message from a variable node vj to check node ci representing a
belief on code bit bj as mvj→ci(bj). Likewise, let mci→vj(bj) denote the message from
a check node ci to variable node vj and thus the belief about bj conveyed by check
node ci. Again, N(ci) denotes the neighborhood of check node ci, i.e., all connected
variables nodes to the check node ci. Likewise, N(vj) denotes the neighborhood of
variable node vj respectively.
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5.1.2.1 Conventional Belief-Propagation Variable Node Operation

The variable node update follows directly from the sum-product algorithm and can
be written as

mvj→ci(bj) =
∏

cl∈N(vj)\{ci}

mcl→vj(bj) . (5.16)

In state-of-the-art belief propagation decoding of binary LDPC codes, the soft-
information is represented by LLRs. At a variable node vj, two types of LLR exist,
the channel log-likelihood ratio Lch,j(bj|y) and the exchanged log-likelihood ratios
Lcl→vj(bj). For ease of notation, we drop the argument and denote the log-likelihood
ratios as Lch,j and Lci→vj , respectively. The log-likelihood ratios are determined as

Lch,j = log

(
p(Bj = 0|yj)
p(Bj = 1|yj)

)
Lci→vj = log

(
mci→vj(Bj = 0)

mci→vj(Bj = 1)

)
. (5.17)

In the log-domain, Eq. (5.16) equals a summation of LLRs. That is, all incoming
LLRs are summed up except the message received over the edge for which extrinsic
information is to be generated. Thus, Eq. (5.16) in the log-domain is formalized as

Lext,j = Lvj→ci = Lch,j +
∑

cl∈N(vj)\{ci}

Lcl→vj . (5.18)

Further, for the final decision on the underlying code bit, i.e., to compute the a
posteriori estimate Lapp,j all messages are considered, which yields

Lapp,j = Lch,j +
∑

cl∈N(vj)

Lcl→vj . (5.19)

5.1.2.2 Conventional Belief-Propagation Check Node Operation

For a check node ci with degree dc, the outgoing message to variable node vj is
computed as [Joh10]

mci→vj(bj) =
∑

v1,v2,...,vdc∈N(ci)\{vj}

f(v1, v2, . . . , vdc)
∏

vl∈N(ci)\{vj}

mvl→ci(b)

=
∑

v1,v2,...,vdc∈N(ci)\{vj}

δ(b1 ⊕ b2 ⊕ · · · ⊕ bdc)
∏

vl∈N(ci)\{vj}

mvl→ci(b)

=
1

2
+ (−1)bj

1

2

∏
vl∈N(ci)\{vj}

1− 2 ·mvl→ci(B = 1) (5.20)
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where the notation N(ci)\{vj} underlines that only extrinsic information shall be
generated in the node update. That is, to compute the outgoing edge, all infor-
mation conveyed by incoming messages received over all edges, except the edge for
which the outgoing message is generated, is considered. Further, the local function
f(v1, v2, . . . , vdc) is replaced by the Kronecker delta function δ(b1 ⊕ b2 ⊕ · · · ⊕ bdc)
which is only one if the parity check equation is satisfied and zero otherwise.

Again, it is more common for binary LDPC codes to work in the log-domain, i.e.,
all exchanged messages are represented by a scalar double-precision representative,
the LLR. We denote the extrinsic LLR for check node ci forwarded to variable node
vi as Lext,i which is computed as [Joh10]

Lext,i = Lci→vj = log

(
mci→vj(Bj = 0)

mci→vj(Bj = 1)

)
= log

(
1
2

+ 1
2

∏
vl∈N(ci)\{vj} 1− 2 ·mvl→ci(B = 1)

1
2
− 1

2

∏
vl∈N(ci)\{vj} 1− 2 ·mvl→ci(B = 1)

)

= 2atanh

 ∏
vl∈N(ci)\{vj}

tanh

(
Lvl→ci

2

) . (5.21)

This can be further reformulated using the box-plus operation [HOP96]. The box-
plus operation � of two LLRs L1 and L2 is defined as

L1 � L2 = log
eL1+L2 + 1

eL1 + eL2
. (5.22)

In turn, the outgoing message of a check node can also be written as

Lext,i = Lci→vj =
∑

v∈N(ci)\{vj}

� Lv→ci , (5.23)

i.e., the box-plus sum of the incoming log-likelihood ratios.

The input-output relation of the box-plus operation is sketched in Fig. 5.4a. The
axes display the possible input values and the contour shows the respective output
value. The evaluation of the exponential and logarithmic functions in the box-
plus operations is extremely numerically complex and requires enhanced arithmeti-
cal units resulting in impractically high implementation complexity. A common
approximation avoiding this high computational burden is the so-called min-sum
approximation. Applying the Jacobian logarithm [Vit98; JDE+05; HEA+01]

log (ex + ey) = max∗(x, y) = max(x, y) + log
(
1 + e−|x−y|

)
, (5.24)
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Figure 5.4: Input-output relation of (a) the box-plus operation, (b) min-sum oper-
ation and (c) offset min-sum operation.

Eq. (5.22) can be written as

L1 � L2 = log
eL1eL2 + 1

eL1 + eL2

= max(L1 + L2, 0) + log
(
1 + e−|L1+L2|

)
−
(
max(L1, L2)− log

(
1 + e−|L1−L2|

))
(5.25)

= sgn (L1) · sgn (L2) ·min (|L1|, |L2|) + log
(
1 + e−|L1+L2|

)
+ log

(
1 + e−|L1−L2|

)
(5.26)

≈ sgn (L1) · sgn (L2) ·min (|L1|, |L2|) . (5.27)

The input-output relation of the min-sum operation is sketched in Fig. 5.4b. Ob-
viously, the non-linearities of the box-plus operation result in bent contour plots,
whereas the min-sum operation cannot capture these curves and produces an edged
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shape instead.

In [JDE+05], two versions of the min-sum operation were proposed. First, the
normalized min-sum decoder weights the minimum LLR by a factor υ which yields

L1 � L2 ≈ sgn (L1) · sgn (L2) · min (|L1|, |L2|)
υ

. (5.28)

This scaling of the LLRs by 1/υ can vastly improve the performance compared to
pure min-sum decoding [JDE+05]. The proper choice of 1/υ can be determined
using density evolution (cf. Section 5.1.3).

Second, instead of multiplying with a constant 1/υ the offset-min-sum decoder sub-
tracts a predetermined constant τ depending on the smallest magnitude of the re-
spective LLRs, i.e.,

L1 � L2 ≈ sgn (L1) · sgn (L2) ·max ((min (|L1|, |L2|)− τ) , 0) . (5.29)

As pointed out in [JDE+05], in contrast to normalized min-sum operation, the
constant τ will set LLRs with small magnitudes to zero, i.e., the contribution of
the conveyed check node messages in the next variable node update vanishes. In
Fig. 5.4c, the input-output relation for an offset-min-sum check node is sketched. In
Fig. 5.4c, the values of τ were set to

τ =


0, for min (|L1|, |L2|) < 1

1, for 1 ≤ min (|L1|, |L2|) < 6

2, for 6 ≤ min (|L1|, |L2|)

. (5.30)

5.1.3 Density Evolution, Extrinsic Transfer Charts and Asymp-

totic Decoding Threshold Analysis

Despite a possible performance degradation due to cycles in practical Tanner graphs,
it is common to base the asymptotic decoding analysis of a particular code on code
ensembles. Thus, it is assumed that for an infinite number of iterations i → ∞, the
graph is cycle-free [Joh10]. Here, the concentration theorem is exploited, which states
that nearly all codes randomly chosen from an ensemble will have an iterative de-
coding performance close to the ensemble average performance [Joh10]. In addition,
assuming also a symmetric input channel model, e.g., p(y|X = +1) = p(−y|X = −1)

for binary-input channels, the so-called density evolution can be performed to predict
the reliability of exchanged messages while decoding using the all-zeros codeword.
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Based on this evolution of the belief and, thus, the error probability p(i)
e in iteration

i, the so-called decoding threshold can be determined. The decoding threshold
determines the channel conditions under which error-free transmission is possible,
i.e.,

lim
l→∞

∫ 0

−∞
p(i)
e (τ)dτ → 0 . (5.31)

Hence, let us define the decoding threshold as [Joh10]

α∗ = sup

{
α : lim

l→∞

∫ 0

−∞
p(i)
e (τ)dτ → 0

}
. (5.32)

The actual derivation of the involved distributions is deferred to Section 5.2 where
discrete density evolution is discussed, which is of integral importance for the mutual-
information-based channel decoders derived in this thesis.

Instead of the density evolution, another very powerful analysis tool tracks the actual
extrinsic information passed in the decoding process [tBKA04]. This tool is termed
Extrinsic Information Transfer (EXIT) charts. EXIT charts belong to the class
of parametric analysis tools as a single parameter, i.e., the extrinsic information
is tracked instead of the entire distribution. Therefore, let us define the mutual
information [tBKA04]

Iv→c = I(V;Lv→c) (5.33)

Ic→v = I(V;Lc→v) (5.34)

Ich = I(V;Lch) (5.35)

as the relevant extrinsic mutual information that is exchanged. As derived in
[tBKA04], the EXIT analysis aims to determine a function fEXIT-VND(Ic→v, Ich) for
the variable node update and fEXIT-CND(Iv→c) for the check node update that predicts
the outgoing extrinsic information based on the respective input mutual information.

In general, it is very challenging to compute these functions in closed form for arbi-
trary channels. Also for the BI-AWGN, which will be used throughout this thesis,
deriving fEXIT-VND(Ic→v, Ich) and fEXIT-CND(Iv→c) in closed form is impossible. How-
ever, ten Brink et al. [tBKA04] proposed an elegant approximation which assumes
that the incoming and i.i.d. messages Lc→v respectively Lv→c are Gaussian dis-
tributed. Besides, also the outgoing messages are assumed Gaussian distributed
with variance σ2

Lc→v
and mean µLc→v = 2σ2

Lc→v
, or σ2

Lv→c
and mean µLv→c = 2σ2

Lv→c
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Figure 5.5: Analysis of the asymptotic decoding performance of the irregular LDPC
code from Example 5.2.

respectively. Further, defining

J(σL) = I(X; L) = 1−
∫ ∞
−∞

1√
2πσ2

L

e
− (x−σ2L)2

2σ2
L log2

(
1 + e−z

)
dz (5.36)

as the mutual information of a BI-AWGN channel one obtains the following EXIT
function for an BI-AWGN channel and for arbitrary irregular LDPC codes [tBKA04]

fEXIT-VND(Ic→v) =

dmax
v∑
dv=1

λdv · J
(√

(dv − 1)J−1(Ic→v)2 + σ2
N

)
(5.37)

fEXIT-CND(Iv→c) =

dmax
c∑
dc=2

ρdc ·
{

1− J
(√

(dc − 1)J−1(1− Iv→c

)}
. (5.38)

Both considered analysis tools are applied in Example 5.2 to derive the decoding
threshold of the irregular LDPC code from the DVB-S2 standard. Although both ap-
proaches were initially proposed for code construction and decoding threshold anal-
ysis, the next sections will utilize density evolution to design and evaluate coarsely
quantized mutual-information based channel decoders for a given code ensemble.
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Example 5.2: Continuous Density Evolution and EXIT chart analysis
of an irregular LDPC code from the DVB-S2 standard

The DVB-S2 standard [Bro14] includes, among others, a standardized irregular
LDPC code with rate Rc = 0.5 codeword length N = 64000 and the degree
distributions

λ = [λ1, λ2, . . . , λmax]
T = [0, 0.2875, 0.25714, 0, 0, 0, 0, 0.4571]T (5.39)

ρ = [ρ2, ρ3, . . . , ρmax]
T = [0, 0, 0, 0, 0, 0.0000264, 0.999735]T . (5.40)

Based on this degree distributions, density evolution can be performed to project
the bit error probability after a maximum number of imax = 1000 iterations. This
is shown in Fig. 5.5a. It can be observed that only a very tiny difference in the
noise variance decides if the analyzed code either achieves error free transmission
(in this example error free transmission is declared if pe ≈ 10−6 is reached) or
does not converge even for a very large number of iterations. Thus, the decoding
threshold for this code can be found as α∗ = σN∗ = 0.9456 which corresponds to
an Eb/N0 = 0.485565 dB. Fig. 5.5b shows the EXIT chart for exactly this channel
condition. The functions fEXIT-VND(Ic→v) and fEXIT-CND(Iv→c) are plotted in red,
which bound the actual decoding trajectory of the belief propagation decoder
depicted in blue. It can be observed that the variable node and check node function
build a very narrow tunnel. However, this decoding tunnel is wide enough for
the belief propagation decoder to pass and reach a final extrinsic information of
approximately one. In cases where no convergence is observed, these two functions
might intersect, which stops the iterative decoder from improving the reliabilities.

5.2 Decoding Binary Regular LDPC Codes Using

the Information Bottleneck Method

The previous section discussed the asymptotic analysis of LDPC using density evolu-
tion. For particular channel models like BSC, BEC and AWGN channels closed-form
solutions or elegant approximations for the density evolution exist.

However, Kurkoski et al. discussed a practically more relevant setting in [KYK08],
i.e., density evolution for arbitrary discrete memory-less channels with coarsely
quantized channel outputs. As example, Kurkoski et al. studied an AWGN channel
with channel output quantization as discussed in Section 3.2.3. Interestingly, for this
scenario deriving closed-form solutions of the tracked distributions is intractable as
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discrete random variables X with arbitrary probability distributions p(x) are consid-
ered where parametric approaches, e.g., Gaussian approximation are not applicable.

Instead, [KYK08] proposed introducing a mutual-information-based compression
that allows restricting the otherwise exponentially growing sample space of the in-
volved random variables but still allows tracing the evolution of the relevant extrinsic
information for asymptotic code ensemble analysis. In the following section, the re-
spective discrete probability distributions for a variable node and a check node in
discrete density evolution are designed as published in [LSB16b] in the scope of this
thesis. Further, the idea to reuse the relevant-information-preserving clusterings to
replace the arithmetic node operations in the LDPC decoder is sketched, resulting
in the so-called information bottleneck decoder [LB18].

5.2.1 Mutual-Information-Based Discrete Density Evolution

As discussed in Section 5.1.3, density evolution leverages the node update operations
from belief propagation decoding for a particular channel output distribution, i.e.,
knowing p(x|tch) to predict the asymptotic decoding performance of a specific LDPC
code ensemble with known degree distributions. In discrete density evolution, it
is assumed that Tch, i.e., the observed random variable describing the quantized
channel output is discrete, i.e., |Tch| is finite.

Discrete Variable Node Update In [LSB16b], we derived the probability mass
function p(x, tin) from the sum-product algorithm similar to [KYK08]. Here, x
denotes the respective relevant code bit and the vector tin = [tinch, t

in
1 , . . . , t

in
dv−1]T

comprises the incoming discrete messages. Let us also assume that tinch represents
the cluster index of the channel output quantizer derived using the information
bottleneck method. The messages tin are some cluster indices representing compact
beliefs conveyed by the check nodes.

Without loss of generality, let us restrict to a dv = 2 variable node and |Tch| = |T |.
By application of the factor-graph rules one obtains [LSB16b]

p(x, tin) =
∑
b1

∑
b2

p(x1, b1, b2, t
in)

=
∑
b1

∑
b2

p(x1, b1, b2, t
in
ch, t

in
1 )

=
∑
b1

∑
b2

p(x1|b1, b2)p(b1, b2, t
in
ch, t

in
1 )
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=
∑
b1

∑
b2

p(x1|b1, b2)︸ ︷︷ ︸
δ(b1−x)δ(b2−x)

p(tinch|b1)p(tin1 |b2) p(b1|b2)︸ ︷︷ ︸
δ(b1−b2)

p(b2)

=
∑

(b1,b2):
b1=b2=x1

p(tinch|b1)p(tin1 , b2) . (5.41)

where the equality constraint at a variable node is exploited such that x = b1 = b2.
Please note that in contrast to Eq. (5.21) and Eq. (5.20), where only conditional
distributions were required to compute the respective LLRs, for mutual-information-
based signal processing and discrete density evolution, it is essential to process the
joint distributions.

Discrete Check Node Update Similar to the variable node, also the probability
mass function p(x, tin) for the check node can be derived. Here, x denotes the respec-
tive result of the modulo-2 sum of the incoming messages and tin = [tin1 , . . . , t

in
dc−1]T

as no additional channel message is processed at a check node.

Without loss of generality, let us consider a dc = 3 check node. In turn, the joint
probability mass function for a discrete check node update is computed as

p(x, tin) =
∑
b1

∑
b2

p(x1, b1, b2, t
in)

=
∑
b1

∑
b2

p(x1, b1, b2, y1, y2)

=
∑
b1

∑
b2

p(x1|b1, b2)p(b1, b2, y1, y2)

=
∑
b1

∑
b2

p(x1|b1, b2)︸ ︷︷ ︸
δ(b1⊕b2⊕x1)

p(y1|b1)p(y2|b2) p(b1|b2)︸ ︷︷ ︸
p(b1)

p(b2)

=
∑

(b1,b2):
b1⊕b2=x1

p(y1, b1)p(y2, b2) . (5.42)

5.2.2 Towards Information Bottleneck Decoding

The previous sections presented the computation of the joint distributions exchanged
in an LDPC code. Interestingly, these distributions can be used to find determin-
istic mappings f(tin), preserving the maximum amount of relevant information and
replacing the conventional computationally demanding node operations in belief
propagation decoding [KYK08; LB15]. In addition, those mutual-information-based
decoders are designed to take a very coarse quantization of exchanged messages into
account already by design. However, deriving those relevant-information-preserving
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mappings is not trivial. Early approaches started with hand-optimized lookup ta-
bles for only very specific channel models resulting in a so-called FAID decoder
[PDD+13; DVP+13]. A more generic framework to derive these mappings is the in-
formation bottleneck method resulting in so-called information bottleneck decoders.
The actual design processes of these decoders are reviewed in the next sections.

5.2.2.1 Mutual-Information-Based Variable Node Operation

In mutual-information-based signal processing, the task is to determine a deter-
ministic function which maps an input vector tin = [tin1 , . . . , t

in
M ]T with M incoming

discrete, integer-valued messages tini , i = 1, . . . ,M onto a discrete output tout. In this
case, the relevant variable X is the codeword bit represented by the variable node.
The clustering is done such that the mutual information between the compressed
observation tout and the relevant codeword bit is maximized. Consequently, the
actual decoding simplifies to an exchange of cluster indices and discrete mappings
or lookup operations. Thus, there is no need to exchange real-valued LLRs and to
perform arithmetic operations. Instead, the challenge is to obtain p(x, tin) such that
the information bottleneck algorithm can find the optimal assignment p(tout|tin) or
tout = f(tin). The distribution p(x, tin) for a discrete variable node was derived in
Eq. (5.41).

5.2.2.2 Mutual-Information-Based Check Node Operation

To determine the relevant-information-preserving mapping at a check node, the joint
distribution p(x, tin) from Eq. (5.42) of the input vector tin pooling discrete, integer
valued messages and the relevant quantity is required. For generation of extrinsic
information at a check node, the relevant variable X is the modulo 2 sum of dc−1 bits
connected to the check node as discussed in Eq. (5.42). Applying the information
bottleneck algorithm yields a discrete input-output mapping tout = f(tin) as depicted
in Fig. 5.6a for tin = [tin1 , t

in
2 ]T. Here, the clusters tin1 and tin2 are sorted according to

their respective LLR. Although not intended to approximate the box plus operation,
the mapping found by the information bottleneck represents the bended contours
of the box plus operations (cf. Fig. 5.4a) much better than the min-sum operation.
Furthermore, one observes that the symmetric properties of the box plus operations
are preserved which allows to reduce the memory need when storing the function
tout = f(tin) as lookup table.

Interestingly, as pointed out in [MBB+15], when the variable node operations are
replaced by mutual-information-maximizing lookup tables, an application of the
min-sum approximation is straightforward if the incoming messages are discrete
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Figure 5.6: Input-output relation of (a) the check node lookup table designed using
the information bottleneck method, (b) the min-sum operation using cluster indices
and (c) the offset min-sum operation using cluster indices.
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cluster indices tin1 and tin2 and not LLRs L1 and L2. This is possible if the natural
ordering of the cluster indices tini represents the ordering of the LLRs Li associated
with tini , where i ∈ {1, . . . ,M} and M denotes the number of processed messages.
This relation can be formalized as

tout = sgn
(
tin1
)
sgn

(
tin2
)

min
{
|tin1 ||tin2 |

}
(5.43)

where

sgn
(
tini
)

=

−1 , tini ≤ |T |/2

+1 , tini > |T |/2
(5.44)

and

|tini | =

|T |/2 + 1− tini , tini < |T |/2

tini − |T |/2 , tini ≥ |T |/2
. (5.45)

The respective input-output relations for min-sum and offset min-sum using clusters
are shown in Fig. 5.6b and Fig. 5.6c, respectively.

5.2.2.3 The Curse of Dimensionality of Nodes with Large Node Degrees

In general, Eq. (5.41) and Eq. (5.42) can be generalized to any node degree. However,
it shall be noted that the sample space and cardinality of the multivariate random
variable for the incoming messages can be found as T in = T in

1 × · · · × T in
M and

|T in| = |T in|M where M = dv for a variable node and M = dc − 1 for a check
node. Clearly, |T in| grows exponentially with the number of inputs. Especially for
irregular LDPC codes discussed in Section 5.3, this dependency can result in an
extremely large sample space. In turn, also the mapping f(tin) becomes impractical
if implemented as a lookup table. Hence, an idea already proposed in [KYK08] was
to split the global function into a concatenation of simpler local two-input functions.
This is shown in Fig. 5.7 for a check node with degree dc = 6. For ease of notation, let
us introduce the vector tl where l indicates the level in the computation tree which
contains the inputs to the intermediate node operations. Hence, t1 = [tin1 , t

in
2 ]T for

the first level and tl = [tl−1, t
in
l+1]T for l > 1. The computation of the intermediate

joint distributions p(x, tl) is equivalent to Eq. (5.41) and Eq. (5.42).

In contrast to classical algebra, where due to the associative law, computing interme-
diate results does not impact the result, opening the node can rather be interpreted
as a concatenation of lossy compression steps due to the application of the informa-
tion bottleneck, which looses a very small amount of relevant information in each
step.
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(b) Check node mapping as concatenation of
two-input mappings.

Figure 5.7: Comparison of different implementations of an exemplary dc = 6 check
node.
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Figure 5.8: Comparison of preserved relevant information for different node struc-
tures, node types and node degrees.

Fig. 5.8 shows the preserved mutual information for different check node degrees and
variable node degrees for both the closed and the opened node. It can be observed
that the loss seems negligible. However, as observed in Section 5.1.3, the decoding
process is highly non-linear. Thus, the impact on the actual iterative decoding per-
formance cannot be directly inferred from the results presented in Fig. 5.8. Hence, a
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Figure 5.9: Comparison of EXIT charts for a regular (3,6) regular LDPC code
ensemble with different information bottleneck decoder node structures.

discrete EXIT chart analysis is provided to investigate the impact of the additional
compression loss in a two-input setting. This is shown in Fig. 5.9 for a (3,6) regular
code ensemble for imax = 50 and corresponding design Eb/N0 = 1.25 dB. Fig. 5.9a
shows the EXIT trajectory for the closed node and Fig. 5.9b shows the EXIT chart
for the opened node, respectively. Interestingly, it can be observed that the informa-
tion bottleneck decoder with an opened node structure gets stuck before a mutual
information of one is reached for the design Eb/N0 = 1.25 dB. Instead, the actual
decoding threshold of this information bottleneck decoder is Eb/N0 = 1.267 dB.
Nevertheless, this loss is negligible in most practical applications. Thus, due to the
negligible loss but the largely reduced complexity of the two-input approach, all
decoders analyzed in this thesis are constructed with this node structure if no other
structure is explicitly mentioned.

5.2.3 Simulation Results and Evaluation

In this section, the performance of the devised information bottleneck decoder is
analyzed for two different regular LDPC codes and compared to state-of-the-art
systems. In this section, the LDPC codes are taken from the public code database
[Mac20]. More precisely, the following codes are considered
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Table 5.1: Simulation parameters of decoder and reference system compared in
Fig. 5.10a for Code 1.

decoder node operation
(check / var.)

precision
exchanged
messages

precision
check node

precision
variable node

channel
quantizer

belief-
propagation
(belief-prop.)

box-plus/
addition 64 bit 64 bit 64 bit 4 bit

min-sum Eq. (5.27)/
addition 4 bit 4 bit 6 bit 4 bit

information
bottleneck

decoder (IB)

lookup table/
lookup table 4 bit 4 bit 4 bit 4 bit

Table 5.2: Simulation parameters of decoder and reference system compared in
Fig. 5.10b for Code 2.

decoder node operation
(check / var.)

precision
exchanged
messages

precision
check node

precision
variable node

channel
quantizer

belief-
propagation
(belief-prop.)

box-plus/
addition 64 bit 64 bit 64 bit 64 bit

min-sum Eq. (5.27)/
addition 4 bit 4 bit 6 bit 4 bit

information
bottleneck

decoder (IB)

lookup table/
lookup table 3-5 bit 3-5 bit 3-5 bit 3-5 bit

1. Code 1: (3,6) - LDPC code with identifier 8000.4000.3.483 from [Mac20] with
code length N = 8000 and code rate Rc = 0.5.

2. Code 2:(4,24) - LDPC code with identifier 4161.731.4.356 from [Mac20] with
code length N = 4161 and code rate Rc = 5/6 ≈ 0.833.

The BER simulation results are shown in Fig. 5.10a and Fig. 5.10b, respectively. In
this section, only the belief propagation decoder and min-sum decoder without any
modification (cf. Eq. (5.27)) are used for comparison. For the first code presented in
Fig. 5.10a, the channel output fed into all decoders is coarsely quantized with 4 bit for
all investigated decoders. The simulation parameters for the decoders decoding code
1 depicted in Fig. 5.10a are summarized in Table 5.1. Both possible implementations
of the internal node structure for the information bottleneck decoder, i.e., an opened
node (open IB) and a closed node structure (closed IB), are analyzed in Fig. 5.10a
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in terms of the respective bit error rate performance. Similar to the theoretical
EXIT chart investigation presented in Section 5.2.2.3, it can be observed that the
performance loss caused by opening the nodes in a practical information bottleneck
decoder results in a performance degradation of less than 0.1 dB. For both decoders,
the design Eb/N0 values determined using the EXIT chart analysis were chosen, i.e.,
a design Eb/N0 = 1.25 dB for the closed node structure and a design Eb/N0 = 1.267

dB for the opened node. Again, this underlines that the practical benefits of an
opened node structure predominates the very small performance degradation.

Compared to the reference systems, the opened-node information bottleneck decoder
operates only around 0.1 dB away from the belief-propagation decoder (dark blue
curve in Fig. 5.10a), which requires high-precision internal messages and very com-
plicated arithmetical node operations, whereas the information bottleneck decoder
had an internal resolution of only 4 bits and all node operations where replaced
by simple lookup tables. Also, the second benchmark system, i.e., the min-sum
decoder (black curve in Fig. 5.10a), works with double-precision internal messages
and (approximated) arithmetical node operations but works significantly worse than
the information bottleneck decoder. In detail, the gap shown in Fig. 5.10a between
belief-propagation decoder and the min-sum decoder is around 0.5 dB.

Furthermore, the investigations for the second code with a significantly higher rate
and decoder parameters summarized in Table 5.2 yield similar observations. The
plot in Fig. 5.10b shows the performance of the reference schemes (please note
that the belief-propagation decoder is not paired with a channel output quantizer)
and the information bottleneck decodes which have an internal resolution and a
channel output quantizer resolution ranging from 3 bit to 5 bit. Interestingly, it can
be observed that a 5 bit information bottleneck decoder performs extremely close
(less than 0.01 dB) to a not-quantized double-precision belief-propagation decoder.
Furthermore, it is shown that a 3 bit information bottleneck decoder outperforms a
4 bit min-sum decoder by a fair margin. Please note that all information bottleneck
decoders for code 2 require an open internal node structure as the check node degree
dc = 24 prohibits the design of closed nodes. The determined design Eb/N0 values
are 3.065 dB (5 bit), 3.115 dB (4 bit) and 3.275 dB (3 bit).

All information bottleneck decoders are only generated once for the particular design
channel conditions and used mismatched in the simulation, i.e., also the channel
quantizer is not adjusted to the actual channel conditions. Thus, only one set of
lookup tables and one channel quantizer is required, and the decoder is also robust
against erroneous SNR estimation.
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(a) Bit error rate simulations for
length 8000 (3, 6) regular LDPC code
with imax = 50 decoding iterations
over AWGN channel with BPSK from
[Mac20] with identifier 8000.4000.3.483.
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(b) Bit error rate simulations for
length 4161 (4, 24) regular LDPC code
with imax = 50 decoding iterations
over AWGN channel with BPSK from
[Mac20] with identifier 4161.731.4.356.

Figure 5.10: Comparison of bit-error simulation results for two different regular
LDPC codes and different decoders.

In total, all these observations motivate to extend the concept of information bot-
tleneck decoders to more enhanced code structures, including irregular LDPC codes
and punctured, rate-compatible ensembles. These extended decoders were developed
in the scope of this thesis and are discussed in the next sections.

5.3 Decoding Binary Irregular LDPC Codes Using

the Information Bottleneck Method

In contrast to regular LDPC codes, irregular LDPC codes are characterized by nodes
with varying degrees. As introduced in Section 5.1, the edge-degree distributions
λ(ζ) and ρ(ζ) are used. For irregular LDPC codes, the outgoing messages depend
on the node degree of the conveying node. Thus, in discrete density evolution for
irregular LDPC codes also the respective joint distributions p(x, tin|d) depend on the
node degree d. Consequently, it is not sufficient to design message mappings only
for variable nodes or check nodes but for variable nodes or check nodes considering
the individual node degrees.
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However, in density evolution a code ensemble is considered instead of a particular
irregular LDPC code with a certain parity check matrix. Hence, the connectivity
between variable and check nodes is only known on average and defined by the
degree distribution.

To construct the required input joint distributions p(x, tin|d), discrete density evolu-
tion from [KYK08; LB18] needs to be extended to consider the degree distribution
of the code ensemble. This section will derive this generalization of the information
bottleneck decoder to arbitrary irregular LDPC codes, which we first published in
[SLB18a; SLB18b].

5.3.1 Mutual-Information-Based Discrete Density Evolution

for Binary Irregular LDPC Codes

Discrete Variable Node Update In Section 5.2.1, we derived the probability
mass function p(x, tin) for discrete density evolution in regular LDPC codes to design
an information bottleneck decoder. These distributions still build the starting point
for the generalization of information bottleneck decoders to irregular LDPC codes.
First, degree-dependent joint distributions p(x, tin|d) are computed for each variable
node degree present in the code ensemble according to Eq. (5.41). Please note that
assuming a trivial, straightforward generalization of information bottleneck decoders
to irregular LDPC codes, one would stop at this point. In this case, lookups in node-
degree-specific tables p(tout|tin, d) would replace the node operations and only integer
valued cluster indices are exchanged. However, this approach is practically infeasible
as each path of an exchanged message through the Tanner graph has to be tracked
independently and no generic decoder design for a code ensemble is possible.

Hence, to incorporate the degree distribution of a code ensemble, one has to average
over all possible degrees resulting in the marginal distribution p(x, tin), i.e.,

p(x, tin) =

dmax
v∑
d=1

λdp(x, t
in|d) . (5.46)

In discrete density evolution, p(x, tout) has to be tracked instead of p(x, tin). We
define the marginal distribution p(x, tout) as

p(x, tout) =

dmax
v∑
d=1

λdp(x, t
out|d)

=

dmax
v∑
d=1

λd
∑

tin∈T vec

p(tout|tin, d)p(x, tin|d) , (5.47)
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where T vec denotes the set of all possible combinations of tin for a node with degree
d. As it will be shown later, this straightforward marginalization is unfavorable for
the mutual-information-maximizing design principle.

Discrete Check Node Update Similar to the variable node, also the degree-
depend probability mass function p(x, tin|d) for the check node can be derived using
Eq. (5.42). Based on the degree distribution, the marginal distribution p(x, tin) for
a check node is found as

p(x, tin) =

dmax
c∑
d=2

ρdp(x, t
in|d) . (5.48)

Again, as we target discrete density evolution where the distribution p(x, tin|d) is
fed into an information bottleneck algorithm to find a very compact representation
of the exchanged relevant information, p(x, tout) has to be computed:

p(x, tout) =

dmax
c∑
d=2

ρdp(x, t
out|d)

=

dmax
c∑
d=2

ρd
∑

tin∈T vec

p(tout|tin, d)p(x, tin|d) . (5.49)

In [SKW06], it was first described that discretized min-sum decoders require a par-
ticular degree distribution λ(ζ), respectively ρ(ζ), in order to not suffer from a large
gap between the decoding threshold of the belief-propagation decoder and that de-
coding threshold of the discretized min-sum decoder. Note that the sample space
T = {1, . . . , |T |} is independent of the node degree d, but in contrast, the par-
ticular meaning p(x|tout, d) depends on the node degree. Thus, from the cluster
indices alone, the check node cannot resolve if a message originates from a vari-
able with a high or a low degree. As the variety of node degrees increases, the
dynamic range of the respective reliabilities also increases. Thus, especially irreg-
ular LDPC codes with high irregularity suffer from large performance degradation
when decoded with coarse quantization and conventional LLR-based decoding, e.g.,
using min-sum decoding. However, in the next subsection, a pre-processing step to
improve the performance of the information bottleneck decoder based on message
alignment is presented.
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5.3.2 The Message Alignment Problem in Discrete Density

Evolution for Irregular LDPC Codes

This section reviews message alignment as introduced in [SLB18b]. In addition to
the approach from [SLB18b], an alternative realization is proposed, which is closely
related to [MMB20].

5.3.2.1 Explicit Message Alignment

As the event space T is independent of the node degree d, but in contrast p(x|tout, d)

depends on the node degree, the marginalization as in Eq. (5.47) averages misaligned
beliefs [SLB18a]. In turn, this marginalization causes an additional loss of relevant
information, i.e., I(X; T,D) > I(X; T). Fig. 5.11a depicts the exemplary distribu-
tions p(x|tout, dv = 2), p(x|tout, dv = 3) and p(x|tout, dv = 8) in terms of their LLR
for an irregular LDPC code taken from the DVB-S2 standard (cf. Example 5.2).
The LLRs of the distribution p(x|tout) resulting from a straightforward marginaliza-
tion is depicted in Fig. 5.11b. It can be observed that especially the more reliable
messages suffer from the marginalization of non-aligned beliefs. Interestingly, this
problem is closely related to the example of bitwise channel output quantizer design
presented in Section 4.2.3, which was solved using message alignment. Hence, it is
beneficial to tackle this problem from an information-theoretical perspective instead
of performing Eq. (5.47) directly.

For the node-degree-dependent information bottleneck design, the information bot-
tleneck setting involves the random variables T,D,X, and Z as depicted in Fig. 5.12.
As visualized in Fig. 5.13, given p(x, tout|d) and λd in the considered example, the
joint distribution of these random variables can be found as p(x, tout, d), with mutual
information I(X; T,D). As the outgoing message shall be restricted to Z, the task
is to find a mapping p(z|tout, d) such that I(X; Z) is maximized. Here, it is assumed
that Z = T . As the mapping p(z|tout, d) can be decomposed and embedded in the
node design, such that the lookup table becomes p(z|tin, d) instead of p(tout|tin, d),
as introduced in Chapter 4, this technique is called message alignment as it ensures
that messages with the same index capture the same belief. This is illustrated in
Fig. 5.11c. Since the alignment relies explicitly on the degree-dependent mappings,
p(tout|tin, d) is referred to as explicit message alignment. The resulting aligned belief
p(x, z) is computed as

p(x, z) =

dmax
v∑
d=1

λd
∑

tin∈T vec

p(z|tout, d)p(tout|tin, d)p(x, tin|d) , (5.50)
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Figure 5.11: Illustration of the message alignment problem for the design of irregular
variable nodes.
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Figure 5.12: Message alignment formulated as an information bottleneck, where
I(X; Z) is the relevant information, I(X; T,D) is the original mutual information and
I(T,D; Z) is the compressed information.
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Figure 5.13: Designing explicit message alignment for a variable node: The joint
distribution p(x, tout, d) used for alignment is composed of the individual output
distributions p(x, tout|d) weighted by the edge-degree distribution.

for a variable node and as

p(x, z) =

dmax
c∑
d=2

ρd
∑

tin∈T vec

p(z|tout, d)p(tout|tin, d)p(x, tin|d) , (5.51)

for a check node, respectively. For the considered example depicted in Fig. 5.11, the
LLRs of resulting aligned distribution p(x|z) are shown in Fig. 5.11e. In contrast to
the LLRs of p(x|tout), i.e., without alignment (cf. Fig. 5.11b), it can be observed that
the actual reliabilities encoded by the node-depended cluster indices are no longer
significantly changed due to the marginalization. This also impacts the amount of
preserved relevant information of the exchanged messages.
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Figure 5.14: Designing implicit message alignment: The joint distribution p(x, tin, d)
used for alignment is now composed of the individual input distributions p(x, tin|d)
of the information bottleneck algorithm weighted by the edge-degree distribution.

Example 5.3: Message Alignment for an Irregular Variable Node

Let us assume an information bottleneck variable node with degree dv = 4, de-
picted in Fig. 5.13 as a concatenation of two-input-lookup tables. In Fig. 5.13,
each lookup table is depicted as an information bottleneck node with the input
vector tin = [tinch, t

in
1 ]T or tin = [touti−1, t

in
i ]T, where i = 2, . . . , dv − 1 and output touti .

As illustrated in Fig. 5.21, the lookup tables for all node degrees dv < 4 are im-
plicitly constructed as they serve as intermediate results for the dv = 4 variable
node. Thus, the overall number of lookup tables depends only on the largest node
degree and not on the variety of node degrees. In turn, the intermediate map-
pings p(tout|tin, d) are fed into the message alignment unit to explicitly construct
a node-degree-independent belief p(x, z).

5.3.2.2 Implicit Message Alignment

Instead of treating message alignment as a post-processing step, it can also be in-
cluded as a design objective immediately in the lookup table design. Here, the
mappings p(z|tin) are designed using p(x, tin|d) directly instead of using p(x, tout|d).
This is depicted in Fig. 5.14. Analog to the message alignment setup from Fig. 5.12,
the random variables T,X,D and Z serve as a starting point. Thus, instead of two
subsequent optimizations, i.e., first to find p(tout|tin, d) and then p(z|tout, d), as in
the explicit message alignment setting, p(z|tin, d) is found in one shot. In analogy to
Eq. (5.50) and Eq. (5.51) the implicitly aligned distributions are found as [SWB+20]

p(x, z) =

dmax
v∑
d=1

λd
∑

tin∈T vec

p(z|tin, d)p(x, tin|d) , (5.52)
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for a variable node and as

p(x, z) =

dmax
c∑
d=2

ρd
∑

tin∈T vec

p(z|tin, d)p(x, tin|d) , (5.53)

for a check node respectively.

5.3.3 Optimized Node Structures Operations for Large Node

Degrees

Especially very powerful irregular LDPC codes often require very high node degrees
to achieve medium to high code rates [RSU01]. For the presented two-input de-
composition discussed in Section 5.2.2.3, the number of required lookup tables and
lookup operations depends linearly on the node degree. However, especially for high
node degrees, a more efficient tree-like decomposition exists, which we published
first in [SLB18a]. In contrast to the approach presented in Section 5.2.2.3, the tree-
decomposition discussed in this section enables more efficient decoding in terms of
space complexity and latency.

First, let us review the sequential decomposition from Section 5.2.2.3 in terms of
memory requirements and the total number of distinct lookup tables. As illustrated
in Fig. 5.15a, M − 1 different tables are required in each iteration and for each node
type due to the sequential concatenation of lookup tables. Since only two incoming
discrete messages are used at a time, the size of the lookup table is |T in|2. Thus,
instead of one large table with |T in|M entries, in total, (M−1) · |T in|2 entries need to
be constructed. In turn, during decoding using the sequential design, M − 1 lookup
operations have to be performed to determine one outgoing message. Especially in
applications where high code rates are required, the check node degrees are very
large. Hence, in these settings, the sequential design is very inefficient in terms of
memory demand and latency due to the large number of required lookup tables.

We presented an alternative decomposition in [SLB18a], which resorts to a tree-
like splitting of the node operation, as shown in Fig. 5.15b. We note that when
using a tree-like pattern, the depth of the information bottleneck graph is reduced
from O(M − 1) to O(2 · blog2(M)c). In case M is not a power of two, at most
2 · blog2(M)c lookup stages are needed, see Appendix A.2 for a detailed derivation.
Table 5.3 contains an overview of the required memory depending on the chosen
node structure.
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Figure 5.15: Illustration of an opened check node, where all M incoming messages
tin1 , ...t

in
M are clustered sequentially (Fig. 5.15a) or in a tree-like manner (Fig. 5.15b).

Table 5.3: Overview of maximum required lookup tables and their sizes depending
on the node structure.

Node Structure Entries
per Table Look-up Tables Total Memory

Demand

closed |T in|M 1 |T in|M
open (sequential) |T in|2 M − 1 (M − 1) · |T in|2

open (tree) |T in|2 ≤ 2 · blog2(M)c ≤ 2 · blog2(M)c · |T in|2

Reusing Intermediate Results In information-bottleneck decoders, the actual
decoding simplifies to lookup operations in the offline-generated tables. To compute
an outgoing message, all incoming messages, except the one received over the edge
connected to the node we generate the outgoing message for, are considered. Hence,
all outgoing messages are computed using a slightly different input vector tin. In a
sequential node decomposition of a check node, this would result in

dc · (dc − 2) = d2
c − 2dc (5.54)

lookup operations.

However, parts of the input vector do not change for several outgoing messages.
Thus, the total number of lookup operations per node can be reduced by a reuse
of intermediate results. Assuming a sequential node structure, we note that, for
example, if only tinM is changed, all ti for i = 1, . . . ,M − 2 previous results could be
reused. Thus, the number of total operations for all outgoing edges for a node with
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Figure 5.16: Evaluation of number of operations and lookup tables for different
internal node structures and reuse patterns.

M incoming messages can be found as

dc · (dc − 2)−
dc−1∑
i=3

(i− 2) = dc · (dc − 2)−
dc−3∑
i=1

i =
(dc − 2)(dc + 3)

2
. (5.55)

By exploiting the proposed tree structure, the number of lookup operations per
node can be reduced even further compared to the sequential approach. Fig. 5.16
depicts the increase in lookup tables and lookup operations for an increasing check
node degree. It can be observed that the tree-like node opening is superior to
the sequential node opening in both the number of operations and lookup tables,
especially for larger node degrees. The actual reuse potential depends largely on the
internal structure of the tree. However, in the worst-case O(Mblog2Mc) operations
per node are required [SLB18a]. Such a reuse in a tree-like structure is illustrated
in Fig. 5.17 for an exemplary dc = 6 check node.

5.3.4 Simulation Results and Evaluation

In this section, the devised information bottleneck decoder design for arbitrary ir-
regular LDPC code ensembles is evaluated. Therefore, the following two codes from
different standards are considered:
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Figure 5.17: Reuse of intermediate lookup results in a tree-like structure to minimize
the total number of lookup operations.

1. Code 3: Rc = 0.5, N = 64000 LDPC code from the DVB-S2 standard with
edge degree distribution:

λ = [λ1, λ2, . . . , λ8]T = [0, 0.2875, 0.25714, 0, 0, 0, 0, 0.4571]T (5.56)

ρ = [ρ2, ρ3, . . . , ρ7]T = [0, 0, 0, 0, 0, 0.0000264, 0.999735]T . (5.57)

2. Code 4: Rc = 0.5, N = 1056 LDPC code from the WiMAX standard with
edge degree distribution:

λ = [λ1, λ2, . . . , λ6]T = [0, 0.28947368, 0.31578947, 0, 0, 0.39473684]T (5.58)

ρ = [ρ2, ρ3, . . . , ρ7]T = [0, 0, 0, 0, 0, 0.63157895, 0.36842105]T . (5.59)

In this section, only information bottleneck decoders with |T | = 16, i.e., 4 bit
quantization, are considered for ease of brevity. A variation of the bit width and code
rate is presented in the next section. Similar to the analysis of information bottleneck
decoders for regular LDPC codes (cf. Section 5.3), a belief-propagation decoder
and a min-sum decoder with parameters presented in Table 5.4 are considered as
benchmark systems.

Impact of Message Alignment in the Decoder Design on the Decoding
Performance First, the impact of the presented message alignment scheme on the
decoding performance shall be analyzed. This investigation utilizes EXIT charts,
i.e., an asymptotic performance analysis tool and actual bit error rate simulations
for code 3, i.e., from the DVB-S2 standard. Fig. 5.18a depicts the EXIT trajecto-
ries for an information bottleneck decoder with message alignment (cf. red curve
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Table 5.4: Simulation parameters of decoder and reference system compared in
Fig. 5.18b for Code 3 and in Fig. 5.19 for Code 4.

decoder node operation
(check / var.)

precision
exchanged
messages

precision
check node

precision
variable node

channel
quantizer

belief-
propagation
(belief-prop.)

box-plus/
addition 64 bit 64 bit 64 bit 4 bit

min-sum Eq. (5.27)/
addition 4 bit 4 bit 6 bit 4 bit

information
bottleneck

decoder (IB)

lookup table/
lookup table 4 bit 4 bit 4 bit 4 bit

in Fig. 5.18a) and without message alignment (cf. dark-green curve in Fig. 5.18a)
for a design Eb/N0 = 0.8 dB. It can be observed that the decoder without message
alignment can not generate sufficiently large extrinsic information. Instead, the
marginalization of misaligned beliefs in the computation of the joint distributions
(cf. Eq. (5.49) and Eq. (5.47)) results in an additional loss of relevant informa-
tion, which harms the overall decoder performance. Interestingly, these observa-
tions from the EXIT chart analysis translate directly into the BER results shown
in Fig. 5.18b. It can be observed that the information bottleneck decoder without
message alignment shows an undesirably high error floor at a bit error rate of around
10−5. In contrast, the presented information bottleneck decoder with message align-
ment achieves higher extrinsic information in the EXIT chart and shows no error
floor in the considered bit error rate range, as shown in Fig. 5.18a and Fig. 5.18b.
Furthermore, comparison to the benchmark decoders reveals that the information
bottleneck decoder can outperform a min-sum decoder by a considerable margin and
operates within a 0.15-0.2 dB gap to double-precision belief-propagation decoding.

Impact of the Design Eb/N0 on the Decoding Performance As the decoder
mappings are generated once offline and used for the entire SNR range, the design
Eb/N0 is a crucial design parameter. Fig. 5.19 depicts the bit error rate performance
for code 4 of several information bottleneck decoders with message alignment for dif-
ferent design Eb/N0 values. It can be observed that there exists a trade-off between
the decoding cliff, i.e., the start of the waterfall region, and the error floor of the
decoder. As the design Eb/N0 is increased, the decoder overestimates the channel
conditions and thus overestimates the reliabilities of received values resulting in a
deteriorated decoding cliff. In contrast, if the design Eb/N0 is decreased, the decoder
underestimates the channel conditions in the high SNR regime resulting in an early



5.3. Decoding Binary Irregular LDPC Codes Using the Information Bottleneck
Method

143

0.0 0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1

Ic→v

Iv→c

IB, mess. align.
IB, no mess. align.

0.0 0.2 0.4 0.6 0.8

0.6

0.7

0.8

0.9

1

Ic→v

Iv→c

IB, mess. align.
IB, no mess. align.

(a) EXIT chart for an information bottle-
neck decoder with and without message
alignment for design Eb/N0 = 0.8 dB for
code 3 from the DVB-S2 standard.
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Figure 5.18: EXIT charts and BER results for an irregular Rc = 0.5 LDPC code
from the DVB-S2 standard (Code 3).
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Figure 5.19: Investigation of the impact of design-Eb/N0 on the decoder performance
for the irregular LDPC code from the WiMAX standard (Code 4).
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Figure 5.20: Investigation of the impact of message alignment on the decoder per-
formance for the irregular LDPC code from the WiMAX standard (Code 4) and
different design-Eb/N0.

error floor as, during the decoder design, very reliable messages were not expected.
In addition, Fig. 5.20 again underlines the importance of message alignment in the
decoder design. It can be observed that without message alignment, the decoding
threshold is deteriorated by around 0.08 dB just due to an unfavorable decoder de-
sign technique. In turn, with message alignment, the performance of the decoder
can be improved notably. However, it should be noted that the derivation of the
proper design Eb/N0 is a delicate task and requires a bisection search to yield the
best decoding performance.

5.4 Information Bottleneck Decoders for PBRL LDPC

Codes Capturing Rate Compatible Design and

Puncturing

As outlined in Section 5.1.1.1, modern communication systems resort to structured
LDPC code ensembles, which support puncturing and inherent rate-compatibility to
adjust to varying transmission conditions quickly. In the most recent 5G standard,
LDPC codes from the protograph-based raptor-like (PBRL) family are considered.

As these PBRL codes rely heavily on puncturing, also the information bottleneck de-
coder design has to be generalized to handle this puncturing in the high-redundancy
code. Additionally, all of the incremental redundancy variable nodes are punctured
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for the highest code rate, but degree-one variable nodes are added to the proto-
graph as the rate is lowered. Thus, a degree-one variable node might be punctured
depending on the code rate. The information bottleneck decoder must be able to
adapt to the induced changes in the degree distributions and the associated changes
in the probability distributions of message reliabilities that occur as the rate is low-
ered. Thus, the respective information bottleneck decoder must support puncturing
to decode PBRL LDPC codes. Puncturing denotes the process of not transmitting
code bits. As a result, the number of information bits per codeword bits, which
is the code rate, can be easily and gradually changed. At the receiver side in a
conventional LLR-based decoder, the punctured bits are represented by LLRs equal
to zero, which are fed into the decoder. Although puncturing itself is a fairly easy
problem for conventional decoders, it is not straightforward for information bot-
tleneck decoders. In the following sections, incorporating punctured nodes in the
decoder design is explained. Therefore, the implications of puncturing on density
evolution are facilitated as a message alignment problem. Furthermore, the next
sections focus on the different notions of puncturing faced in PBRL codes and pro-
vides detailed examples and simulation results. Finally, a rate-compatible decoder
design is devised, which allows reusing lookup tables across a broad range of code
rates. We published parts of this section in [SWB+20; SBW+20].

5.4.1 Puncturing PBRL LDPC Codes as Message Alignment

Problem

As shown in [LB18; RK16; KYK08], to achieve the best performance with mutual-
information-based lookup tables, symmetric input distributions are optimum if the
channel is symmetric. As a result, the LLR zero is originally not covered in infor-
mation bottleneck decoders. An additional cluster might be introduced to tackle
this problem, which explicitly corresponds to the LLR zero. This approach results
in an uneven number of clusters.

This section shows that by using message alignment and the structure of PBRL
codes, mutual-information maximizing lookup tables that support puncturing can
also be designed with an even number of clusters that show close-to-optimum de-
coding performance. First, the effects of puncturing at the variable nodes and check
nodes on the computation of the input joint distributions for the information bot-
tleneck method are investigated.
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tinch p(z1|tinch) z1

tin1 x tout
1 p(z2|tout1 ) z2

tin2 x tout
2 p(z3|tout2 ) z3

tin3 x tout
3 p(z4|tout3 ) z4

dv = 1 dv = 2 dv = 3 dv = 4 Message Alignment

Figure 5.21: Processing in a concatenated lookup table for dv = 4 with message
alignment.

5.4.1.1 Puncturing from a Variable Node Perspective

A variable node can encounter puncturing in two ways. First, the channel mes-
sage which is connected to the variable node can be punctured. Second, a message
from a check node can be essentially punctured, if the respective check node was
connected to a punctured degree-one variable node. We will refer to the first type
as channel-induced puncturing and the second type as check-node-induced punctur-
ing. Irrespective of the origin, a punctured message cannot contribute any relevant
information. As a result, there is no need to process this message.

Example 5.4: Puncturing from a Variable Node Perspective

Let us assume again an information bottleneck variable node with degree dv = 4,
depicted in Fig. 5.21 as a concatenation of two-input-lookup tables. Please remem-
ber that in the unpunctured case, the number of incoming messages was M = 4,
since three messages received over edges connected to check nodes plus the channel
message are processed. If the channel message is punctured, the effective degree
is reduced by one. Thus, the respective input distribution is p(x, tin1 , tin2 , tin3 ). Also,
if the message from a check node is punctured, the effective degree is reduced by
one. Thus, the respective input distribution is, for example, p(x, tinch, tin1 , tin2 ) if tin3
is punctured. Please note that for this joint distribution, it does not matter which
of the messages conveyed by check nodes is punctured, as due to density evolution
and message alignment, all individual distributions p(x, tini ) are the same in each
iteration. In turn, only the number of punctured messages conveyed from the
check nodes matters.

Example 5.4 illustrates that two notions of puncturing exist at a variable node. First,
we introduce the random variable P with event space % ∈{true, false} indicating if
a node is punctured or not. In this context, the puncturing rate equals the fraction
of variable nodes with degree d > 1 that are punctured.
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observed random
variable (T,P)

relevant random
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compressed random
variable Z

I(X; T,P)
p(x, t, %)

I(T; P,Z)
p(z|t, %)

I(X; Z)
p(x|z)

Figure 5.22: Considering puncturing as message alignment problem, where I(X; Z) is
the relevant information, I(X; T,P) is the original mutual information and I(T; P,Z)
is the compressed information.

Channel-Induced Puncturing

As depicted in Fig. 5.21, the channel message is processed in the first stage, for
which the input vector is tin = [tinch, t

in
1 ]T. The resulting joint distribution equals

p(x, [tinch, t
in
1 ]T) =

1

p(x)
p(x, tinch)p(x, tin1 ) . (5.60)

In the next step, p(x, [tinch, tin1 ]T) and thus also p(x|tout1 ) are used which depend on the
statistics of the quantized channel output (cf. Section 3.4.1.3). When incorporating
puncturing, p(x, tinch) differs if the channel message is punctured or not. As a result,
we rewrite (5.60) as

p(x, [tinch, t
in
1 ]T|%) =

1

p(x)
p(x, tinch|%)p(x, tin1 ) . (5.61)

Due to the concatenation of lookup tables, as shown in Fig. 5.21, all subsequent ta-
bles depend on P. Consequently, in a straightforward implementation, the number
of required lookup tables will increase drastically to account for all possible combi-
nations of punctured and non-punctured variable nodes and their respective degrees.
Hence, we propose to make use of the message alignment technique to prohibit such
an increase in the number of lookup tables. The corresponding information bottle-
neck setting is shown in Fig. 5.22. By applying message alignment, one creates the
mapping p(z|t, %) and the meaning p(x|z) such that all subsequently constructed
tables do not depend any longer on the node being punctured or not. This ap-
proach ensures that the number of lookup tables is not increased as compared to an
unpunctured information bottleneck decoder.

Check-Node-Induced Puncturing

Besides the puncturing of the channel message, also a message received from a check
node can be punctured, e.g., if the respective check node is connected to a punctured
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degree-one variable node. This is explained in more detail in Section 5.4.1.2. As
a result, the variable node degree is reduced, i.e., fewer lookup tables need to be
constructed (cf. Fig. 5.21). However, the computation of the joint distributions
remains

p(x, [tinch, t
in
1 ]T) =

1

p(x)
p(x, tinch)p(x, tin1 ) (5.62)

for the first lookup table and

p(x, [touti−1, t
in
i ]T) =

1

p(x)
p(x, touti−1)p(x, tini ) (5.63)

for all subsequent lookup tables i = 2, . . . , dv,max − 1. However, the overall effective
edge-degree distribution λeff will be changed. In turn, this effective edge-degree
distribution has to be considered in message alignment when computing the overall
outgoing aligned belief.

5.4.1.2 Puncturing from a Check Node Perspective

Check nodes are only implicitly affected by puncturing if they are connected to a
punctured degree-one variable node, or in the first iteration if the incoming message
is a punctured channel message. If one incoming message is punctured, i.e., the
relevant information is zero, all outgoing messages will also be punctured, i.e., they
convey no information. Thus, the respective check node is effectively deactivated in
the Tanner graph. This changes the effective edge-degree distribution for the check
nodes ρeff, which has to be considered in the message alignment for the lookup table
construction.

5.4.1.3 Effective Degree Distributions

As discussed in the previous section, puncturing effects the effective degrees of both
the variable nodes and the check nodes. Thus, in contrast to classical density evolu-
tion where the code ensemble is considered, when designing information bottleneck
decoders, the Tanner graph needs to be known to determine the effective edges
in PBRL codes and the corresponding effective degree distributions ρeff 6= ρ and
λeff 6= λ.

5.4.2 Constructing Rate-Compatible Information Bottleneck

Decoders

Rate-compatible codes which allow to efficiently adapt the code rate according to
the channel conditions are a crucial and inevitable part of modern communication
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Figure 5.23: Schematic sketch of reuse of lookup tables for all rates based on the
lookup tables for codes with higher rates.

systems. In contrast to state-of-the-art message-passing decoders, their mutual-
information-based counterparts are not rate-compatible as the set of mutual informa-
tion preserving mappings is matched to a specific rate. In this section, we devise an
approach to reuse the mappings across several rates. In Section 5.4.3.1, the devised
decoder which incorporates puncturing is evaluated. Afterwards, in Section 5.4.3.2,
the impact of the bit resolution on the performance is analyzed. Section 5.4.3.3
discusses the impact of explicit and implicit message alignment (cf. Section 5.3.2)
on the frame error rate performance. Simulation results for the proposed table reuse
strategy from Section 5.4.2 are shown in Section 5.4.3.4. Finally, in Section 5.4.3.5,
alternative implementations of the lookup table approach, as proposed in [MBB+15]
are applied to the proposed design approach. A more detailed discussion of imple-
mentation aspects of the information bottleneck mappings is deferred to Section 5.5
and Section 5.6.

5.4.2.1 Reusing Tables of Information Bottleneck Decoders for Multiple
Rates

As summarized in Section 5.1.1.1, PBRL codes consist of a high-rate code (HRC)
and an incremental redundancy code (IRC). The set of possible rates Ri of a PBRL
LDPC code with full rank HHRC was given in Eq. (5.12). As discussed in the pre-
vious section, puncturing degree-one variable nodes has an impact on the effective
degree-distributions λeff,ρeff and, thus, also the maximum node degree λeff,max de-
pends on the number of punctured degree-one variable nodes. At the lowest rate,
no degree-one variable node is punctured. Thus, one will observe the largest values
λeff,max across all rates Ri for Rimax . On the other hand, λeff,max will be smallest for
R0.
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Proposition 5.4.1. For a fixed PBRL code with full rank HHRC, λeff,max,Ri ≤
λeff,max,Rj ,∀i, j = 0, . . . , imax if Ri > Rj.

Proof. As the IRC adds more redundancy by activating parts in the Tanner graph,
this is equivalent to augmenting HHRC . Hence, the node degree of the variable
nodes can only be increased and not decreased.

Please note that the number of needed lookup tables depends on the node degree
(cf. Fig. 5.21). According to Proposition 5.4.1, designing an information bottleneck
decoder for the highest code rate supported by a PBRL code yields variable nodes
with the smallest number of lookup tables. Thus, similar to the table reuse in an
irregular LDPC code, where a node with a larger degree is obtained by stacking new
tables on top of a node with a lower degree, we propose to use the lookup tables
for the highest rate as a starting point for the design of the lookup tables for lower
rates. This is depicted in Fig. 5.23.

Example 5.5: Table Reuse in Information Bottleneck Decoders for Sev-
eral Code Rates

Let us consider a fixed PBRL code with rates Ri = 2/3, Rj = 1/2, Rk = 1/3

and dv,max,Ri = 9, dv,max,Rj = 15, dv,max,Rk = 27. Please note that dc,max = 19

and is independent of the chosen rate. Without table reuse, mutual-information-
maximizing mappings are designed for each rate for a fixed design-Eb/N0. Sim-
ulation results for such a setting are shown later in Section 5.4.3.1. With the
table reuse, first, the mappings for rate Ri = 2/3 with dv,max,Ri = 9 are designed
for a fixed design-Eb/N0 optimized for this rate. In the second step, the map-
pings derived for Ri = 2/3 are reused for Rj = 1/2 with dv,max,Rj = 15. As
dv,max,Ri − 1 mappings could be reused, only dv,max,Rj − dv,max,Ri = 6 new map-
pings are designed and appended, as shown in Fig. 5.23. These new mappings are
designed for a new design-Eb/N0 optimized for Rj = 1/2. Thus, a subset of map-
pings is used mismatched, i.e., designed for another rate and also different channel
conditions. However, it will be shown in Section 5.4.3 that only a small perfor-
mance degradation is observed. This is due to the fact that message alignment is
adapted to the degree distribution and compensates for the slight imperfections of
the reused mappings. In the next step, the mappings for Rk are designed with a
new design-Eb/N0 optimized for Rk = 1/3 but reusing the dv,max,Ri − 1 mappings
for Ri = 2/3 and the dv,max,Rj−dv,max,Ri mappings optimized for Rj = 1/2. Please
note that message alignment is not shown in Fig. 5.23 explicitly, but it is done for
every code rate successively. In addition, also the mappings in the check nodes
remain unchanged, and only message alignment is updated if needed.
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5.4.3 Simulation Results and Evaluation

In this section, we present and discuss results obtained performing frame error rate
simulations for an exemplary PBRL LDPC code from [CVD+15] which is referred
to as Code 5 in this thesis:

• Code 5: Code from [CVD+15] with K = 1032 information bits code rates Rc

ranging from Rc = 1/3 up to Rc = 4/5.

All involved lookup tables are constructed just once for a fixed design-Eb/N0, which
is optimized for each rate. The constructed lookup tables are then stored and applied
for the entire Eb/N0-range. Hence, the lookup table construction needs to be done
only once and offline.

To evaluate different fascets within the construction of information bottleneck de-
coders for PBRL LDPC codes, this section is split into five subsections. Sec-
tion 5.4.3.1 discusses the frame error rate performance of the PBRL decoder for
particular code rates, i.e., only puncturing but not a rate-compatible design is cov-
ered. Still discarding rate-compatibility Section 5.4.3.2 investigates the impact of
the bit resolution on the decoding performance. Afterwards, Section 5.4.3.3 com-
pares information bottleneck decoders designed with the two different presented
message alignments schemes, i.e., implicit and explicit message alignment. Finally,
Section 5.4.3.4 combines all design steps proposed in the previous sections to analyze
a rate-compatible PBRL LDPC information bottleneck decoder. Furthermore, Sec-
tion 5.4.3.5 investigates alternative implementations to the lookup-table approach
of the relevant-information-preserving mappings.

In general, we consider three reference schemes to compare the performance of our
decoder. The decoding of a codeword is stopped after a maximum number of 100
decoding iterations or earlier if the syndrome check is successful. First, we consider
a double-precision belief propagation decoder with a flooding schedule. The received
samples are not coarsely quantized but represented with double precision, and the
internal operations are additions at the variable node and box-plus at the check
node. Second, we use the normalized min-sum algorithm (NMS) [JDE+05] with
6 bit resolution for the outgoing check node message and 6 bit for the outgoing
variable node message. The internal precision of the node is slightly higher to
prevent overflow. Again the inputs to the decoder, i.e., the channel outputs, are not
coarsely quantized but represented with double precision. The operations here are
additions at the variable nodes, but the normalized min-sum approximation is used
at the check nodes (cf. Eq. (5.28)). Third, we use the offset-min-sum (OMS) decoder
with only 4 bit resolution at the check node and offsets according to Eq. (5.30) and
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Table 5.5: Simulation parameters of decoder and reference system for error rate
simulations for the investigated PBRL LDPC code (Code 5).

decoder node operation
(check / var.)

precision
exchanged
messages

precision
check node

precision
variable node

channel
quantizer

belief-
propagation
(belief-prop.)

box-plus/
addition 64 bit 64 bit 64 bit 64 bit

offset
min-sum
(OMS)

Eq. (5.29)/
addition 4 bit 4 bit 6 bit 4 bit

normalized
min-sum
(NMS)

[JDE+05]

Eq. (5.28)/
addition 6 bit 6 bit 6 bit 64 bit

information
bottleneck

decoder (IB)

lookup table/
lookup table 4 bit 4 bit 4 bit 4 bit

6 bit at the variable node to prevent an overflow when adding the 4 bit messages
received from the channel quantizer. Finally, we designed our proposed information
bottleneck decoder for fully 4 bit integer architecture. This means, starting from the
channel quantizer, which outputs 4 bit integers, the internal messages require only
4 bit and only lookup operations are performed. These lookups do not mimic any
arithmetic function but realize the relevant-information preserving mappings found
using the information bottleneck method.

5.4.3.1 Puncturing Using Message Alignment

In this subsection, we investigate the proposed generalized decoder design to cover
punctured variable nodes. Here, Code 5 was used. Furthermore, in this subsec-
tion, the decoder mappings were designed for each code rate individually with an
individual design-Eb/N0, i.e., the table reuse from Section 5.4.2 is not applied.

The most important parameters of the applied decoders are summarized in Table 5.5
for a quick overview. First, we consider a decoder designed for a fixed rate of
Rc = 0.5. The results are shown in Fig. 5.24a. As expected, the belief-propagation
(BP) algorithm ( -marker) achieves the best frame error rate performance, but at
the same time, has the highest computational complexity (cf. Table 5.5). Although
all applied operations in the information bottleneck decoder ( -marker) are simple
lookups, the decoder performs only less than 0.2 dB worse than the benchmark. The
results are even more remarkable when considering the tremendous gap to the offset-
min-sum and normalized min-sum decoders with an even slightly higher resolution.
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Figure 5.24: Frame error rates for the presented information bottleneck decoder,
and the reference schemes summarized in Table 5.5 for the considered PBRL LDPC
code with code rate (a) Rc = 1/2 (black, solid), (b) Rc = 1/3 (blue, dashed), 2/3
(dark red, dotted), 4/5 (dark orange, dash dot).

Please note that PBRL codes typically have variable nodes with very large degrees.
The gap of 0.75 dB noticed in Fig. 5.24a reveals that a conventional offset-min-sum
decoder, which exchanges only 4 bit messages, cannot be used for PBRL codes with
such a coarse quantization since the dynamic range of the LLRs cannot be captured
appropriately (cf. Section 5.5.2). As indicated by the frame error rate curve for
the 6 bit NMS decoder, choosing a finer resolution can reduce this gap. However,
with the generalized design for information bottleneck decoders, both challenges,
i.e., puncturing and rate-compatible design, can be efficiently tackled to enable fully
4 bit decoders for PBRL codes. Fig. 5.24b shows the results for various other rates.
The belief propagation decoder with double-precision resolution and no channel
quantizer achieves the best performance for all considered rates. However, again
we observe that the proposed information bottleneck decoder operates very close
to this benchmark. Interestingly, the proposed schemes outperform the 4 bit offset
min-sum decoder and the 6 bit NMS decoder for all investigated rates.
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Table 5.6: Simulation parameters of investigated information bottleneck decoders.

exchanged messages check node variable node channel quantizer

3 bit 3 bit 3 bit 3 bit
4 bit 4 bit 4 bit 4 bit
5 bit 5 bit 5 bit 5 bit

5.4.3.2 Impact of the Bit Resolution on the Decoder Performance

For the considered Code 5, this subsection investigates the impact of the chosen bit
resolution on the performance. The respective bit resolutions used are summarized in
Table 5.6. The results are shown in Fig. 5.25. For the sake of clarity, only the results
for Rc = 1/3 are shown and the reference systems are limited to the offset min-sum
decoder and the belief propagation decoder with the parameters from Table 5.5.
However, similar results were obtained for all other code rates. Interestingly, it can
be observed that for a 5 bit information bottleneck decoder, the performance gap
to double-precision belief propagation decoding nearly vanishes. Furthermore, it
can be observed that the proposed 3 bit information bottleneck decoder shows the
same performance as the offset min-sum decoder, which uses 4 bit for the channel
quantizer, 4 bit for the exchanged messages and 6 bit for the variable node operation
(cf. Table 5.5).

5.4.3.3 Impact of Different Implementations of Message Alignment

As proposed in Section 5.3.2, the message alignment approach can be realized ei-
ther based on p(x, tout|d) termed explicit message alignment or based on p(x, tin|d)

referred to as implicit message alignment. In Fig. 5.26, the impact of the selected
message alignment approach on the frame error rate performance is investigated. It
is shown that the performance gain achieved by the implicit approach is 0-0.1 dB
over the explicit message alignment approach. The slight performance degradation
of explicit message alignment is caused by using the compressed representation tout

of tin in the alignment step instead of tin. However, when considering the con-
catenated scheme with reuse, the implicit message alignment approach has slightly
higher memory complexity. The implicit alignment mapping has |T |2 input com-
binations, whereas explicit message alignment works on the compressed random
variable directly and has only |T | input combinations (cf. Fig. 5.13 and Fig. 5.14).

5.4.3.4 Memory Considerations and Table Reuse

Besides supporting puncturing, the proposed generalized decoder design also en-
ables the reuse of lookup tables across several rates. In contrast to state-of-the-art
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Figure 5.25: Frame error rate simulations for the proposed decoder for 3 bit, 4bit
and 5 bit resolution for code rate Rc = 1/3. Only belief propagation decoder and
the offset min-sum decoder are shown as reference, with parameters according to
Table 5.5.
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Figure 5.26: Frame error rate simulations for implicit and explicit message align-
ment.

information bottleneck decoders where one set of tables was designed for only one
particular rate, the devised decoder using the design technique from Section 5.4.2
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Table 5.7: Memory requirements per iteration for information bottleneck decoders
with and without table reuse for a 4 bit decoder.

Rc dc,max check node memory dv,max variable node memory
no reuse reuse no reuse reuse

4/5 19 8.7 kB 8.7 kB 6 2.6 kB 2.6 kB
2/3 19 8.7 kB - 9 4.1 kB 1.5 kB
1/2 19 8.7 kB - 15 7.2 kB 3.1 kB
1/3 19 8.7 kB - 27 13.3 kB 6.1 kB

Total 34.8 kB 8.7 kB 27.1 kB 13.3 kB

requires only one set of tables for all rates. Fig. 5.28 shows the simulation results,
where the information bottleneck decoder optimized for each rate proposed in the
previous section is included as a reference. As described in Section 5.4.2, the de-
coder construction starts with the highest code rate, i.e., Rc = 4/5. Thus, no
difference between the decoders can be observed for this rate. The lookup tables
for all lower code rates are built on top of the lookup tables from the code with a
higher rate. Here, we observe a small performance degradation below 0.1 dB due to
the mismatched table reuse.

According to Section 5.3.3, the memory of one two-input lookup table is given as
|T |2·|T |

8
byte if |Tch| = |T |. Table 5.7 summarizes the overall required memory de-

mand. It can be observed that for the considered PBRL code, the memory per
iteration can be reduced by a factor 3 for the check nodes and by a factor of approx-
imately 1.8 for the variable nodes. Besides the reduction in memory, the table reuse
allows for more efficient implementations as the same set of lookup tables can also
be used for multiple code rates. Please note that the memory requirements given
in Table 5.7 hold only for decoder implementations on a digital signal processor or
software-defined radio where the lookup tables are stored in memory. In general,
the mappings could also be efficiently implemented as a static logic synthesis on
an FPGA or ASIC [GBM+18]. A more detailed discussion concerning hardware
aspects of information bottleneck decoders is provided in Section 5.6.

5.4.3.5 Implementing the Lookup Tables

As described in Chapter 3, the general aim of the information bottleneck is to obtain
a mapping tout = f(tin), which preserves the relevant information. Typically, these
mappings depend on the code rate and iteration. Fig. 5.27 shows the check node
lookup tables in the last step of the cascaded structure of two-input tables for a
code rate Rc = 0.5 and different iterations, i.e., iteration 1, 50 and 100. It can be
observed that tables change over the iterations.
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Figure 5.27: Input-output relation of the check node lookup table designed using
the information bottleneck method at different iterations.

In general, the lookup table implementation is just one way to realize the mapping.
However, the general design concepts discussed in previous sections are crucial for
any implementation of the learned function f(tin). In the literature, alternative
implementations were proposed, which are discussed in detail in the next section.
One possible alternative is the MIN-LUT decoder proposed in [MBB+15], where
the min-sum operation at the check node is performed using the integer-valued
cluster indices as described in Section 5.2.2.2. Simulation results for such a hybrid
approach where the lookup tables replace the variable node operation but the check
node performs the min-sum operation (cf. Fig. 5.6b) are shown in Fig. 5.29. In
turn, the mapping at the check node is fixed for all iterations and does not change.
However, the variable node mappings are still adapted to the evolving densities and,
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Figure 5.28: Frame error rate simulations where one static set of lookup tables is
used for all rates.
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Figure 5.29: Frame error rate simulations where the min-sum update rule replaces
all lookup tables in the check nodes (cf. Fig. 5.6b).
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thus, change in each iteration. Again, only the results for the proposed decoder
with the parameters from Table 5.5 are shown as reference for the sake of clarity.
It can be observed that the performance of the proposed decoder with the min-sum
update rule of Fig. 5.6b is much better than the state-of-the-art offset min-sum
decoder (cf. Fig. 5.24a and Fig. 5.24b), especially for the lowest rate, i.e., Rc = 1/3.
For example, at a FER of 10−4 the offset min-sum decoder shown in Fig. 5.24b is
outperformed by 0.6 dB. This is an interesting observation as the 4 bit min-sum
decoders are typically known to work fairly bad for low code rates. Only if the
resolution is reduced further, e.g., down to 3 bit, the hybrid approach with the min-
sum operation at the check node shows an early error floor as depicted in Fig. 5.29
for code rate Rc = 1/3.

5.5 Brief Overview and Comparison of Coarsely Quan-

tized LDPC Decoders without the Information

Bottleneck Method

In the previous section, the devised information bottleneck decoder was presented
for versatile settings and families of LDPC codes. In literature, following the original
idea of mutual-information-based decoder design from [LT05], different approaches
to quantized decoding developed as summarized in Fig. 5.1 were proposed. This
section focuses only on the most recent advances with a clear connection to the
information bottleneck decoding approach. The main focus of this section is not to
provide a detailed review of these alternative approaches but highlight the different
assumptions in the decoder design.

5.5.1 Finite-Alphabet Iterative Decoding (FAID)

One of the first proposed ways of dealing with coarse quantization is the finite-
alphabet iterative decoding (FAID) approach [PDD+11; PDD+13; DVP+13]. This
approach is conceptually related to the information bottleneck decoder. In the FAID
approach, hand-optimized lookup tables are designed which replace the conventional
node operations. The FAID approach was shown to achieve very competitive per-
formance on a binary symmetric channel with regular LDPC codes, despite coarse
quantization. While similar in operation to the lookup tables developed for the FAID
approach [PDD+11; PDD+13; DVP+13], the tables used in information bottleneck
decoders are designed analytically using density evolution. Furthermore, to the best
of our knowledge, the originally proposed FAID decoders are restricted to regular
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LDPC codes and very specific channel models like binary symmetric channels and
do not support irregular codes, puncturing, or rate-compatibility and are thus not
considered as a benchmark system.

5.5.2 Optimized MIN-LUT Decoders

Starting with regular LDPC codes [MBB+15], Meidlinger et al. developed coarsely
quantized LDPC decoders, which can be interpreted as a hybrid approach between
the information bottleneck decoder and the conventional min-sum decoder. Assum-
ing for cluster indices that are sorted with respect to their associated LLR values,
it was proposed to replace the relevant-information-preserving mapping p(tout|tin)

with a static arithmetic operation, i.e., Fig. 5.6b. However, as discussed in [MMB20],
this approach can not be applied to arbitrary code ensembles but instead requires
optimized codes that avoid certain stopping set conditions. These problems are
well-known for coarsely quantized min-sum decoding and discussed in great detail
in [SKW06]. Please note that this stands in clear contrast to the information bot-
tleneck decoder design with message alignment at the variable and check nodes
presented in this thesis, which works for arbitrary degree distributions and, hence,
irregular LDPC codes. A comparison of the bit error rate performance of both de-
coding approaches is given in Fig. 5.30. The left plot in Fig. 5.30 shows the bit
error rates for the rate Rc = 0.5 from the DVB-S2 standard considered in previous
sections. It can be observed that the MIN-LUT approach shows an early error floor.
For the optimized LDPC code according to [MMB20] (cf. right plot in Fig. 5.30),
the error floor can not be observed, instead only a small performance degradation
due to the approximated check node operation in the MIN-LUT decoder remains
compared to the information bottleneck decoder. For the simulations, a quantiza-
tion of 4 bit was used for the information bottleneck decoder and the MIN-LUT
decoder.

5.5.3 One and Two Bit Message Passing Decoding

A very extreme case of coarse quantization was investigated by Steiner et al. in
[SBM+19]. However, in contrast to information bottleneck decoders, these decoders
assume a double-precision channel log-likelihood ratio, i.e., no channel output quan-
tizer. Further, also the node operations perform the conventional sum-product de-
coding node updates with double-precision internally. Hence, the focus is solely on
the quantization of the exchanged messages. However, the quantization of these mes-
sages follows a mutual-information-preserving design objective with close relations
to the work by Wang et al. [WCS+11].
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Figure 5.30: Comparison of the information bottleneck decoder to the MIN-LUT
decoder presented in [MM17] for an standardized LDPC code and an LDPC code
optimized for MIN-LUT decoding.

5.5.4 Computational Domain Decoding and Reconstruction

Function Decoding

Pointing into a somewhat similar direction as [SBM+19], He et al. proposed to re-
place the mutual-information-based mappings, e.g., implemented as lookup tables,
by simple high-precision arithmetical operations [HCM19]. Here, in contrast to the
actual information bottleneck decoder presented in this thesis, arithmetical opera-
tions are not replaced by simple relevant-information-preserving mappings. Instead,
mutual-information-preserving arithmetical operations are designed. The idea is to
convert the cluster tini indices by a non-linear transformation φc(tini ) into a so-called
computational domain. Within this computational domain, arithmetical operations
related to the belief propagation update are computed. This computational domain
typically has a resolution of 8-10 bits. After performing the respective node opera-
tions in the computational domain, the result is quantized to the desired resolution
of the exchanged messages. The determined node operations in the computational
domain are solely based on additions. This is natural for the variable node as
the converted cluster indices in the computational domain can be interpreted as
LLRs. However, the check node operation in the computational domain decoder
from [HCM19] follows from an approximation of tanh

(
Lv→ci

2

)
in Eq. (5.21) as
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∏
vj′∈N(ci)\{vj}

tanh

(
Lvj′→ci

2

)
=

∏
vj′∈N(ci)\{vj}

p(Bvj′
= 0|y)− p(Bvj′

= 1|y) (5.64)

=

 ∏
vj′∈N(ci)\{vj}

sgn
(
p(Bvj′

= 0|y)− p(Bvj′
= 1|y)

)
· exp

 ∑
vj′∈N(ci)\{vj}

log |p(Bvj′
= 0|y)− p(Bvj′

= 1|y)|


(5.65)

=
∏

vj′∈N(ci)\{vj}

sgn
(
φ∗c(t

in
j′ )
)

exp

 ∑
vj′∈N(ci)\{vj}

−|φ∗c(tinj′ )|


(5.66)

≈

 ∏
vj′∈N(ci)\{vj}

sgn
(
φc(t

in
j′ )
) ∑

vj′∈N(ci)\{vj}

|φc(tinj′ )|

(5.67)

where it is argued in [HCM19] that |φ∗c(tinj′ )| = − log |p(Bvj′
= 0|y)−p(Bvj′

= 1|y)| ≈
1

|Lvj′→ci |
= |φc(tinj′ )| and that the exponential function can be dropped as due to the

subsequent quantization only the relative values instead of the absolute values mat-
ter. The work of [HCM19] is mainly limited to regular LDPC codes. In [WSW+20],
we investigated other reconstruction functions, i.e., different arithmetical operations
within the computational domain, and also applied the approach to irregular LDPC
codes. The information bottleneck decoder and the computational domain decoder
are compared in Fig. 5.31 for the regular (3,6) LDPC code considered in Section 5.2.
It can be observed that the computational domain decoder operates in the small
gap (0.02 dB) between the closed and the opened information bottleneck decoder.
As the closed information bottleneck decoder, the computational domain decoder
does not lose additional relevant information due to the concatenation of two-input
compression steps. However, the computational domain decoder does lose relevant
information due to the imperfect transformation in the computational domain, re-
stricted to 10 bit resolution, and the approximated node operation at the check
node. In contrast to the information bottleneck decoder, the computational decoder
employs a lookup table for the transformation and a high-precision arithmetical
unit which computes a summation. The exchanged messages in both decoders are
restricted to 4 bit. The simulation parameters of the decoders are again summarized
in Table 5.8. It can be concluded that the computational domain decoder provides
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Figure 5.31: Bit error rate simulations for length N = 8000 (3, 6) regular LDPC code
with imax = 50 decoding iterations over AWGN channel with BPSK from [Mac20]
with identifier 8000.4000.3.483 including the computational domain decoder from
[HCM19].

another, hybrid approach towards mutual-information-based decoder design, which
pairs coarse quantization of the exchanged message but high-resolution arithmetical
operations of the internal node operations as in [SBM+19].

5.6 Hardware Aspects of Information Bottleneck De-

coders for LDPC Codes

The review of alternative decoder designs in Section 5.5 already outlined that the
choice of a particular implementation is often closely related to the actual hardware
architecture at hand and the respective hardware capabilities. In this section, fa-
vorable implementations of the learned mappings p(tout|tin) for different hardware
architecture are presented and analyzed. These investigations were conducted in
close cooperation with the Fraunhofer Institute FKIE in Wachtberg [LBT+18] and
the Microelectronic Systems Design (EMS) department at TU Kaiserslautern.

5.6.1 Digital Signal Processor (DSP)

A digital signal processor is the fundamental building block of modern software-
defined radio applications. In contrast to application-specific chip design (cf. Sec-
tion 5.6.2), software-defined radios are a general-purpose signal processing platform
to adjust the units in a communication chain, e.g., channel decoding and modulation,
by simple software updates. The performance of information bottleneck decoders on
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Table 5.8: Simulation parameters of decoders compared in Fig. 5.31 for Code 1.

decoder node operation
(check / var.)

precision
exchanged
messages

precision
check node

precision
var. node

channel
quantizer

belief-
propagation
(belief-prop.)

box-plus/
addition 64 bit 64 bit 64 bit 4 bit

min-sum Eq. (5.27)/
addition 4 bit 4 bit 6 bit 4 bit

information
bottleneck

decoder (IB)

lookup table/
lookup table 4 bit 4 bit 4 bit 4 bit

comp. domain
[HCM19]

LUT+addition/
LUT+addition 4 bit 10 bit 10 bit 4 bit

a DSP was studied in [LBT+18]. On a DSP, the relevant-information-preserving-
mappings are stored in memory. Thus, the conventional node operation simplifies to
a computation of the respective memory address and a memory read. Assuming the
lookup tables lutim for all iterations i, i = 1, . . . , imax and two-input decompositions
m are stored in a single vector

LUT =
[
lut1

0, lut
1
1, . . . , lut

1
M , . . . , lut

imax
M

]
(5.68)

for each node type, the respective memory address of the cluster index t or tout based
on tin = [tin1 , t

in
2 ]T is found as [LBT+18]:

t = LUT
[
(i− 1)M |T |2 + (m− 1)|T |2 + tin1 |T |2 + tin2

]
(5.69)

if |T | = |Tch|.

The overall throughput is mainly affected by the duration of the memory access. As
proposed in [LBT+18], with efficient use of the cache, a superior performance of the
information bottleneck decoder compared to a min-sum decoder by 20%-40% was
achieved in terms of the net throughput.

5.6.2 Field Programmable Gate Array (FPGA)

The first approach to more application-specific hardware implementation, i.e., field
programmable gate array (FPGA) or ASIC, of information bottleneck decoder was
presented in [GBM+18]. For a regular LDPC code and the MIN-LUT decoding
approach from [MBB+15], a fully-parallel unrolled decoder implementation was
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Table 5.9: Exemplary truth table for an information-bottleneck-variable-node-two-
input mapping with |Tc| = 4.

[tin1 , t
in
2 ]T [bin(tin1 ), bin(tin2 )]T bin(tout) tout

[0, 0]T [0, 0, 0, 0]T [0, 0]T 0
[0, 1]T [0, 0, 0, 1]T [0, 0]T 0
[0, 2]T [0, 0, 1, 0]T [0, 0]T 0
[0, 3]T [0, 0, 1, 1]T [0, 1]T 1
[1, 0]T [0, 1, 0, 0]T [0, 0]T 0
[1, 1]T [0, 1, 0, 1]T [0, 1]T 1
[1, 2]T [0, 1, 1, 0]T [0, 1]T 1
[1, 3]T [0, 1, 1, 1]T [1, 0]T 2
[2, 0]T [1, 0, 0, 0]T [0, 1]T 1
[2, 1]T [1, 0, 0, 1]T [1, 0]T 2
[2, 2]T [1, 0, 1, 0]T [1, 0]T 2
[2, 3]T [1, 0, 1, 1]T [1, 1]T 3
[3, 0]T [1, 1, 0, 0]T [1, 0]T 2
[3, 1]T [1, 1, 0, 1]T [1, 1]T 3
[3, 2]T [1, 1, 1, 0]T [1, 1]T 3
[3, 3]T [1, 1, 1, 1]T [1, 1]T 3

proposed, which was 3.1 times more area efficient and two times more energy-
efficient compared to a min-sum decoder with serial message-transfer architecture
[GBM+18].

For an FPGA implementation of the information bottleneck decoder, the mappings
tout = f(tin) are not treated as a lookup table, which is stored in memory. Instead,
a hard-wired logic circuit is generated by a synthesis tool which realizes f(tin) using
Boolean algebra and respective operations. Starting from a large truth table, as
exemplarily shown in Table 5.9, an optimized Boolean expression is derived. As
this optimization is typically NP-hard, several heuristic optimization techniques
exist [BHM+84]. In this thesis, the Espresso multi-valued PLA minimization tool
from the UC Berkely was used for optimization. Please note that in Table 5.9,
T = {0, 1, 2, |T | − 1} to enable a direct conversion into the binary representation of
tin, denoted bin(tin). Fig. 5.32 depicts the optimized logic circuit to represent the
truth table using NAND and NOR gates.

For the synthesis of the entire decoder in cooperation with TU Kaiserslautern, Code
4, i.e., the code from the WiMAX standard is considered with imax = 5. A com-
parison of the chip area of the information bottleneck decoder compared to the
offset min-sum decoder is provided in Table 5.10. Please note that in contrast to
[GBM+18] these results were obtained for an irregular LDPC code and, thus, an
information bottleneck decoder designed using message alignment. The synthesis
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Figure 5.32: Logic circuit comprised of NAND and NOR gates of the optimized
truth table in Table 5.9.

results in Table 5.10 are shown for a dummy codeword size of 24 bit. Furthermore,
Table 5.10 shows that the information bottleneck decoder for 3 bit is generally
smaller and faster than a 6 bit offset min-sum decoder. In particular, the 3 bit
information bottleneck decoder with the static min-LUT check node operation is
approximately 43% smaller and 14% faster.

Fig. 5.33 depicts the bit error rate performance for different decoders for code 4 and
imax = 5. As the focus is on the comparison of practically implementable decoders,
the performance of double-precision belief propagation decoding is not shown in
Fig. 5.33. In turn, it can be observed that the information-bottleneck decoder with
the static check node mapping (IB/min) and an internal 4 bit resolution performs
best. This decoder outperforms a 4 bit min-sum decoder significantly and is also su-
perior to the 6 bit min-sum decoder. However, from the synthesis report summarized
in Table 5.10 we conclude that this decoder has a larger core area. Nevertheless,
the information bottleneck decoder with 3 bit internal resolution performs similar
to the 6 bit min-sum decoder. Please remember that the 3 bit information bottle-
neck decoder with min-LUT check node operation was 43% smaller and 14% faster.
Furthermore, Fig. 5.33 also underlines that for a 3 bit min-sum decoder the quanti-
zation is too coarse resulting in a significantly deteriorated performance. Thus, one
concludes that especially for LDPC decoder implementations which require a very



5.7. Summary 167

Table 5.10: Comparison of hardware complexity of a min-sum decoder and the
information bottleneck decoder for Code 4 and imax = 5.

Architecture Offset Min-Sum
(6 bit)

IB
(4 bit)

IB/min
(4 bit)

IB
(3 bit)

IB/min
(3 bit)

Frequency
(MHz) 571 559 500 671 662

Throughput
(Gbps) 13.7 13.4 12.0 16.1 15.9

Core Area
(µm2) 122567 294032 179396 92034 70222
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Figure 5.33: Bit error rate performance for Code 4 and imax = 5.

coarse quantization, either due to routing and wiring constraints or latency require-
ments, the presented 3 bit information bottleneck decoder appears as an appealing
decoding approach.

5.7 Summary

In this chapter, the so-called information bottleneck decoder was presented for a
large variety of LDPC code families. Starting with regular LDPC codes, the con-
cept of discrete density evolution was introduced to track the evolution of discrete
probability mass functions while decoding iteratively. These distributions served as
input to the information bottleneck method returning highly informative compres-
sion mappings which preserve the maximum amount of relevant information. The
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mappings were used to replace the arithmetical node operations in conventional de-
coders. As these mappings are only generated once and offline for a fixed design
Eb/N0, it was described how this crucial design parameter is obtained utilizing EXIT
charts. In turn, an LDPC decoder was designed, which exchanges only integer-valued
cluster indices representing the exchanged soft information in an effective manner.
Provided simulation results revealed that practically relevant conventional decoders,
e.g, a min-sum decoder with 4 bit precision, were outperformed even with a fully
3 bit information bottleneck decoder. Also, the gap to the double-precision bench-
mark system, i.e., a belief-propagation decoder, was very small (≈ 0.1 dB for a 4
bit information bottleneck decoder).

The size of the mappings of the information bottleneck decoders increases exponen-
tially with the node degree. Therefore, different node decompositions were proposed
and compared to the so-called closed node.

It was identified that the design of coarsely quantized decoders for irregular LDPC
codes is itself a very fundamental and challenging problem. Generalizing the infor-
mation bottleneck decoder design principle to irregular LDPC codes, a connection to
the message alignment problem in the decoder design was established. It was shown
that with the application of message alignment, the decoder performance could be
significantly improved.

In the next step, the problem of puncturing and rate compatible design was tackled.
Considering a particular LDPC code family, i.e., PBRL code, which is also con-
sidered in the 5G standard, the information bottleneck decoder design was further
generalized. It was revealed that different notions of puncturing have to be treated
differently but again can be interpreted as an instance of the message alignment
problem. Exploiting the incremental structure of PBRL codes, a very efficient reuse
pattern of mappings across code rates was presented which reduces the number of
distinct lookup tables to be stored significantly.

Afterwards, it was shown that in literature, many decoding approaches exist which
build upon the universal decoder design framework devised in this chapter that
leverages the relevant-information-maximizing design objective. Most of these ap-
proaches employ approximations or modifications of the theoretical information-
optimum design presented in this chapter to satisfy very application-specific as-
sumptions and constraints. Nonetheless, bit error rate simulations proved that the
presented information bottleneck decoding design principle is theoretically superior
to all analyzed approaches.
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Finally, hardware aspects of the information bottleneck decoders were studied. Here,
two different architectures, i.e., a DSP and FPGA, were considered. As a result,
it was shown that for both architectures information bottleneck decoders could be
designed with a reduced implementation complexity and increased throughput com-
pared to state-of-the-art decoder implementations.





Chapter 6

Decoding Non-Binary Low-Density
Parity-Check Codes Using the
Information Bottleneck Method

In the previous chapter, we applied the information bottleneck to the design of
coarsely-quantized channel decoders, which preserve the maximum amount of rel-
evant information. Different types of channel codes, i.e., regular, irregular, and
rate-compatible LDPC codes, were studied under bit-metric decoding, i.e., also if
higher-order modulation schemes would be used for transmission as shown in [LSB17]
the actual decoder operates on the information bits rather than on the information
symbols. Here, so-called non-binary LDPC codes are of large interest.

The generalization of binary LDPC codes to non-binary symbol alphabets over
higher-order Galois fields with field order q was proposed right after the rediscovery
of binary LDPC codes by MacKay [Mac99]. However, the decoding of these codes
using sum-product decoding is computationally much more expensive than decoding
their binary counterparts, as explained in the next section.

Despite many very important works [Sav08; DF07; DF05; WSM04], the develop-
ment of efficient decoding methods for non-binary LDPC codes continues to be an
interesting subject of current research for practical purposes as non-binary LDPC
codes have better error correction properties for short block lengths than binary
LDPC codes. The latter unfold their capacity approaching behavior only for very
large codeword lengths [RL09]. Therefore, especially in 5G related scenarios such
as massive-machine-type communications and ultra-reliable low latency communi-
cation (uRLLC), non-binary LDPC codes could be promising candidates if decoders
with affordable complexity were available.
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In this chapter, the design of information bottleneck decoders for symbol-metric
decoding using non-binary LDPC codes is presented, which was devised in the scope
of this thesis. We published parts of this chapter in [SBL+19]. First, preliminaries
on non-binary LDPC are reviewed, and the differences to binary LDPC codes are
highlighted. Afterwards, the design of information bottleneck decoders for non-
binary LDPC codes is presented. It will be shown that different design objectives
can be pursued based on the available memory complexity at the receiver. In more
detail, the chapter contains the following contributions:

• A so-called channel combiner is devised which allows to fuse the relevant
information spread across multiple channel uses.

• Relevant-information-preserving variable and check node operations using the
information bottleneck method resulting in an information bottleneck decoder
for non-binary LDPC codes are presented.

• A fully symbol-metric decoding receiver is presented, which pairs higher-order
modulation schemes and the respectice non-binary LDPC decoder.

6.1 Preliminaries on Non-Binary Low-Density Parity-

Check Codes

Closely related to binary low-density parity-check codes, non-binary LDPC codes
are defined using a sparse parity-check matrix H with dimension Nc×Nv. However,
in contrast to binary LDPC codes, the entries hk of the parity check matrix are not
only zero and one but can be any field element from GF(q). Still, each row of H
represents a parity-check equation. Such an equation has the form

dc−1∑
k=0

hkck︸︷︷︸
c′k

= 0, (6.1)

where ck are the corresponding codeword symbols and dc denotes the node degree.
As ck and hk are elements from GF(q), the addition and multiplication according to
the respective field arithmetic have to be applied. The arithmetic in Galois fields was
discussed in detail in Section 2.4.1. Thus, in contrast to the binary case, the check
node operations do not equal a mod 2 sum but require addition and multiplications.
In this chapter, we restrict ourselves to extension fields, i.e., GF(q) = GF(2m). A
Tanner graph similar to Fig. 5.2 is depicted in Fig. 6.1 for the non-binary regime,
where crossed circles illustrate the additional multiplications by weights hk.
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Figure 6.1: Tanner graph for an non-binary LDPC code.

6.1.1 Sum-Product Decoding of Non-Binary LDPC Codes

Sum-product decoding relies on the exchange of soft-information. In non-binary de-
coding, this soft-information can be represented either in the probability domain or
in a corresponding log-domain [WSM04]. In the probability domain, the exchanged
messages equal probability mass functions and are represented as probability vectors

mci→vj(cj) =
[
Pr(C = 0),Pr(C = 1),Pr(C = α), . . . ,Pr(C = αq−2)

]
. (6.2)

An alternative representation is the log-likelihood vector (LLR-vector)

Lci→vj =

[
log

Pr(C = 1)

Pr(C = 0)
, log

Pr(C = α)

Pr(C = 0)
, . . . , log

Pr(C = αq−2)

Pr(C = 0)

]
(6.3)

where all entries are normalized with respect to Pr(C = 0). Hence, the dimension
of the LLR-vector is q − 1. Furthermore, please allow the slight abuse of notation
as Lci→vj denotes a vector and not a matrix.

6.1.1.1 Non-Binary Check Node Operations in Sum-Product Decoding

In sum-product decoding of non-binary LDPC codes, the symbol probabilities are
passed to the check nodes either in the probability domain or the log-domain.
Each check node performs three tasks according to its parity-check equation (cf.
Eq. (6.1)). This is exemplarily depicted in Fig. 6.2 for a dc = 5 check node.

1) Multiplication by Edge Weights c′k = hkck

First, the incoming probability vectors for the incoming symbols ck are transformed
into the probability vectors for the products c′k incorporating the appropriate edge
weight hk. According to the multiplication rules described in Section 2.4.1, this
corresponds to a cyclic shift of the last 2m − 1 entries in the probability vectors
[CJ08].
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mv1→c1(c1)
h1

mv2→c1(c2)
h2

h−15

mc1→v5(c5)

mv3→c1(c3)
h3

mv4→c1(c4)
h4

1

2 3

Figure 6.2: Illustration of a non-binary check node operation for dc = 5.

2) Summation

Once all entries of p(c′k) are obtained, the check node computes the convolution of
dc − 1 probability vectors p(c′k) to account for the summation of the involved c′k in
c′i =

∑
k 6=i c

′
k which follows from Eq. (6.1). This convolution is usually implemented

as a fast convolution using FHT, resulting in the complexity O(dc2
m log2 2m).

3) Multiplication by Inverse Edge Weights ci = h−1
i c′i

In the last step of the check node update, the outgoing message passed to a connected
variable node is again found by a cyclic shift of the last 2m − 1 entries of p(c′i)
according to the inverse edge weight h−1

i .

Log-Max Approximation The main computational burden of the decoding of
non-binary LDPC codes is the required convolution of probability distributions at
the check nodes. As described above, one possible reduced-complexity implemen-
tation in the probability domain is the fast Walsh-Hadamard transform (FHT).
Another alternative is the log-max decoder proposed in [WSM04], which can be
seen as a generalization of the min-sum decoder. This idea was pursued further in
[DF05] and proposed as extended min-sum decoder. Let us consider the two messages
Lvk→ci and Lvk′→ci with weights hk and hk′ .

In the log-domain, each vector entry m of outgoing message Lci→vj ,m is found as

Lci→vj ,m = log

(
e
L
vk→ci,h

−1
k

αm + e
L
vk′→ci,h

−1
k′

αm

+
∑

x∈GF (q)\{h−1
k αm}

e
Lvk→ci,x+L

vk′→ci,h
−1
k′

(αm+xhk)

)
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− log

1 +
∑

x∈GF (q)

e
Lvk→ci,x+L

vk′→ci,h
−1
k′

hkx

 . (6.4)

The log-max decoder simplifies this expression applying the Jacobian logarithm from
Eq. (5.24) as [WSM04]

Lci→vj ,m = max
(
Lvk→ci,h

−1
k αm

,max
(
Lvk′→ci,h

−1
k′ αm

,max (. . .)
))

−max
(

0,max
(
Lvk→ci,x + Lvk′→ci,h

−1
k′ hkx

,max (. . .)
))

, (6.5)

which requires recursion, resulting in a complexity of O(q2dc). However, in the
log-max decoders, only simple max-operations and no multiplications are required.
In addition, the extended min-sum decoder [DF05] neglects the least reliable q − l
entries in the LLR-vector. This allows reducing the complexity to O(qldc).

6.1.1.2 Non-Binary Variable Node Operations in Sum-Product Decod-
ing

In sum-product decoding of non-binary LDPC codes, each variable node receives
dv probability vectors from its connected check nodes, where dv is the degree of
the variable node. To generate extrinsic information that is passed back to the
check nodes during decoding, dv−1 messages from the check nodes and the channel
message (cf. Eq. (6.6)) are multiplied element-wise followed by a normalization
to ensure that the exchanged message is a valid probability mass function. This
results from the equality constraint of a variable node, i.e., all incoming messages are
probability vectors for the same codeword symbol. In the log-domain, the variable
node update equals an element-wise addition of the LLR-vectors.

6.1.2 The Channel Combiner for Higher-Order Galois Fields

Naturally, non-binary LDPC codes are paired with higher-order modulation schemes.
In these scenarios, the information bottleneck channel output quantizer from Exam-
ple 4.1 can be employed as the first building block in a coarsely-quantized, mutual-
information-based, non-binary LDPC decoder.

However, in the literature, it is more common to resort to BPSK transmission of
the codeword symbols ck [CJ08]. Hence, in the first part of this chapter, we con-
sider a non-binary LDPC encoded transmission over a quantized output, symmetric
additive white Gaussian noise (AWGN) channel with binary phase shift keying mod-
ulation (BPSK). In the applied scheme, m BPSK symbols are transmitted for each
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tinch,k,1

(bk,1, bk,2) tk,1
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ck tout
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tinch,k,3

(bk,3, bk,4) tk,2

tinch,k,4
arg max

p(tout
k |t

in
ch,k)

I(Ck; Tout
k )

Figure 6.3: Information bottleneck graph of lookup table p(toutk |tinch,k).

codeword symbol ck. At the receiver, the received signal is first quantized. The
quantizer delivers m outputs tinch,k = [tinch,k,1, t

in
ch,k,2, . . . , t

in
ch,k,m]T for each codeword

symbol ck. The bit width of the applied quantizer is denoted w, such that the
outputs tinch,k,j are from the alphabet {1, 2, . . . , 2w = |Tch|}.

The first step in the conventional sum-product decoder of non-binary LDPC codes
is the calculation of the symbol probabilities

p(ck|tinch,k) =
p(ck)

p(tinch,k)

m∏
j=1

p(tinch,k,j|bk,j), (6.6)

where bk,j denotes the bits in the binary representation of ck. For each symbol,
this corresponds to a probability vector which is used as channel knowledge for
sum-product decoding.

In contrast, the proposed information bottleneck decoder does not use any proba-
bility vector but processes a single quantization index toutk ∈ {1, . . . , |T out|} instead.
Intuitively, this quantization index should be highly informative about ck. Such an
index toutk can be obtained from tinch,k using a mutual-information-maximizing map-
ping p(toutk |tink ), which is constructed with the information bottleneck method. The
required joint distribution p(ck, t

in
ch,k) to construct the table follows directly from

Eq. (6.6). As a by-product, we obtain p(ck, t
out
k ), which will be used for the con-

struction of subsequent lookup tables. The size of the lookup table can be reduced
by using a decomposition into two-input lookup tables, as exemplified in Fig. 6.3
for m = 4 inputs. As this unit fuses the information spread across several BPSK
symbols, we call this unit channel combiner.
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Interestingly, we observe that in contrast to previous instances of mutual-information-
bottleneck units, the inputs to the channel combiner do not carry redundant infor-
mation about the same relevant random variable, which can be compressed. Instead,
the channel combiner gathers independent partial information. Thus, the original
mutual information I(Ck; Tin

ch,k) yields

I(Ck; Tin
ch,k) =

∑
m

I(Bk,m; Tin
ch,k,m) (6.7)

by application of the chain rule of mutual information. Table 6.1 summarizes the
preserved relevant information for different intermediate cardinalities |T |, channel
output cardinalities |Tch| and output cardinalities |T out| for ck ∈ GF(16) as depicted
in Fig. 6.3 and also for ck ∈ GF(4) and ck ∈ GF(8). It can be observed that
due to the independent partial information spread across the individually transmit-
ted bits, the channel combiner looses a substantial fraction of relevant information
if log2 (|T out|) � q log2 (|Tch|), especially for large field orders. Thus, it is more
common in the literature to measure the quantization of the soft information in
non-binary LDPC decoding in the pseudo-unit bits

field element = bits
FE [WSM04]. Hence,

the overall number of bits needed to represent an exchanged message depends largely
on the field order. Especially for large field orders like GF(256), an extremely coarse
quantization of 1 bit

FE results in 256 bits per message. Furthermore, as all information
bottleneck algorithms presented so far require access to the entire joint distributions,
in this thesis, only LDPC codes over GF(4) and GF(16) are considered in the next
sections to maintain a manageable memory and implementation complexity.

6.2 Decoding Non-Binary LDPC Codes Using the

Information Bottleneck Method

In the previous chapter on binary LDPC codes, the relevant variable X for a check
node is the modulo 2 sum of the bits connected to the check node. Thus, the mutual-
information-maximizing lookup table serves as an integer-based replacement for the
well-known box-plus operation for log-likelihood ratios. This section presents all
the required steps to generalize the information bottleneck decoder construction
from binary to non-binary LDPC codes. This generalization is not straightforward,
and the challenges are versatile. The main reason is the much more sophisticated
arithmetic in higher-order Galois fields.

In this section, it is described how a lookup table based decoder for non-binary LDPC
codes is built. In particular, the relevant-information-preserving mappings replacing
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Table 6.1: Selection of different channel output cardinalities, channel combiner car-
dinalities for various Galois fields and the associated ratio of relevant and original
mutual information.

GF(q) |Tch| |T | |T out| bits
FE

I(Ck;Tout
k )

I(Ck;Tin
ch,k)

GF(4) 8 - 8 0.75 0.91
GF(4) 8 - 32 1.25 0.98
GF(4) 16 - 16 1.0 0.96
GF(4) 16 - 64 1.5 0.99
GF(8) 8 16 64 0.75 0.96
GF(8) 8 32 128 0.875 0.98
GF(8) 16 32 128 0.875 0.97
GF(8) 16 64 256 1.0 0.99
GF(16) 8 16 64 0.375 0.90
GF(16) 8 128 512 0.5625 0.97
GF(16) 16 32 128 0.4375 0.94
GF(16) 16 64 1024 0.625 0.98

check and variable node operations in the sum-product algorithm are devised.

6.2.1 Non-Binary Check Node Operations from the Informa-

tion Bottleneck Method

Similar to Section 6.1.1.1, the non-binary check node operation in a respective infor-
mation bottleneck decoder is comprised of three steps, corresponding to multiplica-
tion, summation, and inverse multiplication. As in the binary case (cf. Chapter 5),
the information bottleneck method requires access to the correct joint distributions
capturing the stochastic input-output relations.

This section aims to replace all of the operations from Section 6.1.1.1 with mutual-
information-maximizing lookup tables to tackle the impractically high implemen-
tation complexity of conventional non-binary LDPC decoder. Furthermore, the
exchanged soft-information shall be represented using a single scalar cluster index
instead of a double-precision probability vector or LLR vector. The entire workflow
of the check node design with the information bottleneck method is exemplified in
Fig. 6.4 for a degree dc = 5 check node. This check node processes dc − 1 = 4

incoming quantization indices tink to determine one outgoing quantization index tout1

which is passed back to the variable node replacing the probability vector p(c1) in
the sum-product algorithm. Please note that the message tin1 for c1 is excluded since
extrinsic information on c1 shall be generated. Message generation has to be carried
out using an equivalent structure for all other cj.
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0 |yin1 ,h1,...,yin4 ,h4,h
−1
0 )

I(C0;T out
0 )

Figure 6.4: Information bottleneck graph of the relevant-information-preserving
mapping p(tout1 |tin2 , h2, . . . , t

in
5 , h5, h

−1
1 ) for dc = 5.

We provide a step-by-step derivation of the joint distributions required as inputs for
the information bottleneck algorithms to generate the respective mutual-information-
maximizing mappings.

1) Multiplication by Edge Weights c′k = hkck

In Fig. 6.4, the multiplication equivalent mapping is depicted in the box labeled 1 .
Obviously, since all incoming quantization indices tink are just unsigned integers, no
shift of any probability vector is possible. However, this is not required since we
are only interested in preserving the information on the relevant random variable
C′k given the input tuple (hk, t

in
k ). Therefore, we need to determine the joint distri-

bution p(c′k, hk, t
in
k ) to design a mutual-information-maximizing mapping with the

information bottleneck method. According to the general chain rule of probabilities
and given the independence of tink and hk,

p(c′k, hk, t
in
k ) =

∑
ck∈GF(2m)

p(c′k|hk, ck)p(ck, tink )p(hk) . (6.8)

In Eq. (6.8), p(c′k|hk, ck) reflects the multiplication arithmetic c′k = hkck in GF(2m).
Mathematically, p(c′k|hk, ck) = δ(c′k + hkck), i.e., it is 1 if c′k = hkck and 0 other-
wise. In the first decoding iteration, p(ck, tink ) is given by p(ck, tinch,k) with tink = tinch,k
since all incoming tink are obtained directly from the channel combiner (cf. Sec-
tion 6.1.2). Feeding the joint distribution from Eq. (6.8) to an information bot-
tleneck algorithm with output cardinality |Tmult| delivers the clustering p(t′k|hk, tink ),
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where t′k ∈ {1, 2, . . . , |Tmult|} and I(C′k; T
′
k)→ max for the given cardinality |Tmult|.

2) Summation

To account for the summation c′1 =
∑

k 6=1 c
′
k, in Fig. 6.4, the convolution equivalent

lookup table is depicted in the box labeled 2 . Again since only unsigned integers
t′k are processed instead of probability vectors, a new t′1 given (t′2, t

′
3 . . . , t

′
dc

) has to
be generated which is highly informative about c′1 =

∑
k 6=1 c

′
k. Therefore, the joint

distribution p(c′1, t′2, t′3 . . . , t′dc) is required. Similarly as in (6.8) one finds

p(c′1, t
′
2, t
′
3, . . . , t

′
dc) =

∑
c′2,c
′
3,...,c

′
dc

p(c′1|c′2, c′3, . . . , c′dc)
dc∏
k=2

p(t′k, c
′
k) . (6.9)

In Eq. (6.9), p(c′1|c′2, c′3, . . . , c′dc) reflects the sum arithmetic c′1 =
∑

k 6=1 c
′
k in GF(2m).

Mathematically, p(c′1|c′2, c′3, . . . , c′dc) = δ(c′1+
∑

k 6=1 c
′
k). Feeding the joint distribution

(Eq. (6.9)) to an information bottleneck algorithm with output cardinality |Tconv|
delivers a mapping p(t′1|t′2, t′3, . . . , t′dc), where t

′
1 ∈ {1, 2, . . . , |Tconv|} and I(C′1; T′1)→

max for the given cardinality |Tconv|.

Similar as in Section 5.2.2.3, we note that a two-input decomposition of lookup
tables can be applied to reduce the size of the lookup table p(t′1|t′2, t′3, . . . , t′dc).

3) Multiplication by Inverse Edge Weights c1 = h−1
1 c′1

The multiplication equivalent by the inverse edge label h−1
1 is also implemented as

a mutual-information-maximizing mapping p(tout1 |h−1
1 , t′1) and depicted in the box

labeled 3 in Fig. 6.4. The joint distribution p(c1, h
−1
1 , t′1) for designing the Fin-

volved lookup table can be obtained equivalently as explained for the multiplication
equivalent by h1 using Eq. (6.8). The final output tout1 ∈ {1, 2, . . . , |Tprod|} is passed
to a connected variable node.

6.2.2 Non-Binary Variable Node Operations from the Infor-

mation Bottleneck Method

In the following, we consider an arbitrary node that belongs to a codeword symbol
c. Here, again the idea is to replace the described variable node operation with a
relevant-information-preserving mapping. This mapping is depicted in Fig. 6.5 and
it processes dv − 1 incoming quantization indices tink received from the check nodes
and a channel index tinch from the channel output quantizer to determine one outgoing
quantization index tout1 which is passed back to a check node. Please note that the
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tinch

tin2 c tout
1

tin3

Figure 6.5: Information bottleneck graph of lookup table p(tout1 |tinch, tin2 , tin3 , . . . , tindv)
for dv = 3.

message tin1 is excluded at the input on the left since extrinsic information shall be
generated. Message generation has to be carried out with the same structure for all
other connected edges. The joint input distribution to design the depicted mapping
in Fig. 6.5 is given by

p(c, tinch, t
in
2 , t

in
3 , . . . , t

in
dv) = p(c)p(tinch|c)

dv∏
l=2

p(tinl |c). (6.10)

This joint distribution reflects the aforementioned equality constraint of the variable
node. Feeding the joint distribution from Eq. (6.10) to an information bottleneck
algorithm with output cardinality |Tvar| yields p(tout1 |tinch, tin2 , tin3 , . . . , tindv), where tout1 ∈
{1, 2, . . . , |Tvar|} and I(C; Tout

1 ) → max. The unsigned integer tout1 is passed back to
the connected check node on the target edge in the next decoding iteration.

Finally, one notes that a two-input decomposition of lookup tables can be applied
to reduce the variable node lookup table size.

6.2.3 Discrete Density Evolution for Non-Binary Codes and

Fixed Lookup Tables

It is important to remember that the distributions of the exchanged messages evolve
over the iterations. Therefore, to cope with this evolution, it is appropriate to design
updated lookup tables for each decoding iteration using the appropriate distribu-
tions. These joint distributions correspond to the by-products p(c, tout) of the applied
information bottleneck algorithm. Using these output distributions as inputs of the
next applied information bottleneck to construct lookup tables, we inherently track
the evolution of these joint input distributions. This is entirely analogous to the
discrete density evolution scheme for binary LDPC codes described in Chapter 5.
As an interesting consequence, the decoding performance for a considered regular
ensemble under the proposed lookup table based decoding scheme can be investi-
gated. We note that performing efficient density evolution for non-binary LDPC
codes is an open problem that is inherently tackled by the proposed lookup table
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construction scheme. However, further investigations of this interesting finding and
implications on the code design of non-binary LDPC codes are beyond the scope of
this thesis.

Finally, all involved lookup tables are constructed just once for a fixed design-Eb/N0.
The created lookup tables are then stored and applied for all Eb/N0. Hence, the
lookup table construction has to be done only once and offline.

6.3 Simulation Results and Evaluation

In this section, results from bit error rate simulations, respectively symbol error
rate simulations, are presented and discussed for two different settings involving two
different non-binary LDPC codes, i.e.,

1. Setting 1: BPSK transmission combined with the respective channel combiner
from Section 6.1.2 is paired with a non-binary LDPC code over Galois field
GF(4). The code was taken from [Mac20] and has length Nv = 816, code rate
Rc = 0.5, variable node degree dv = 3 and check node degree dc = 6 and
identifier 816.3.174.

2. Setting 2: 16 QAM transmission combined with the respective information
bottleneck channel output quantizer from Example 4.1. Here, the non-binary
code is an ultra-sparse LDPC code with an optimized girth, N = 38, Rc =

0.5, variable node degree dv = 2 and check node degree dc = 4 over GF(16)

proposed in [VDP08].

Setting 1: BPSK Transmision and Non-Binary Code over GF(4)

The obtained bit error rates for sum-product decoding using FHT [DF07] with
check node complexity O(dcq(log2 q + dc)), log-max decoding [WSM04] with check
node complexity O(dcq

2), and the information bottleneck based decoding with check
node complexity O(dc) are depicted in Fig. 6.6. The channel quantizer described in
Section 6.1.2 was used with an output cardinality |Tchan| = 128 corresponding to 7
bit quantization, i.e., 1.75 bits

FE . For the belief-propagation decoder and the log-max
decoder, the symbol probabilities p(ck, tinch,k) were used for decoding. In contrast, the
information bottleneck decoder worked directly on the quantization indices tinch,k.

All decoders performed a maximum of imax = 40 iterations. The information bot-
tleneck decoder was constructed for a design-Eb/N0 of 1.5 dB, which was found by
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Figure 6.6: Bit error rate performance of our proposed decoder and reference systems
with properties summarized in Table 6.2, Setting 1 and imax = 40.

a bisection search as optimum design parameter. The most important parameters
of the applied decoders are summarized in Table 6.2 for a quick overview.

In the information bottleneck decoder, only integer-valued indices from the sets Tmult

and Tvar are used as messages instead of probability vectors. Thus, the cardinalities
summarized in Table 6.3, correspond to a very coarse quantization of 2-2.25 bits per
field element (cf. Table 6.2).

In Fig. 6.6, the belief-propagation algorithm serves as a benchmark with the best
bit error rate performance, but at the same time, it has the highest computational
complexity (cf. Table 6.2). Although all applied operations in the information
bottleneck decoder are simple lookups, the decoder performs only 0.15 dB worse than
the benchmark. Although the log-max decoder uses conventional arithmetic and
double-precision message representation, it is clearly outperformed by the proposed
information bottleneck decoder. In summary, the proposed decoder for non-binary
codes achieves a similar result in terms of bit error rate performance as for the binary
counterpart from the previous chapter. It shall be emphasized that the applied
lookup tables for the non-binary case completely replace all arithmetical operations
such as convolution of probability vectors and multiplication. The processing of
probability vectors simplifies to lookups of scalar integers in pre-generated tables.
For the considered GF(4) LDPC code, the amount of memory required to store
the lookup tables is provided in Table 6.3. It can be seen that for the considered
decoder, 215.00 kB are needed per iteration in a respective DSP implementation.
The vast savings in computational complexity can justify this amount of memory
required.
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Table 6.2: Simulation parameters of decoder and reference system compared in
Fig. 6.6 for Setting 1.

decoder node operation
(check / var)

precision
exchanged
messages

precision
check node

precision
variable node

channel
quantizer

belief-
propagation
(belief-prop.)

FHT+
multiplication /
multiplication

64 bits
FE 64 bits

FE 64 bits
FE 1.75 bits

FE

log-max
[WSM04]

max∗()/
addition 64 bits

FE 64 bits
FE 64 bits

FE 1.75 bits
FE

information
bottleneck

decoder (IB)

lookup table/
lookup table 2.25 bits

FE 2.25 bits
FE 2.25 bits

FE 1.75 bits
FE

Table 6.3: Total memory amount of lookup tables in the information bottleneck
decoder per iteration.

lookup table cardinality table size

check node 1 , 3 |Tmult| = 256 = 2bits
FE 3.04 kB

check node 2 |Tconv| = 512 = 2.25bits
FE 129.02 kB

variable node |Tvar| = 512 = 2.25bits
FE 82.94 kB

total 215.00 kB

Setting 2: 16 QAM Transmision and Non-Binary Code over

GF(16)

In the previous setting, the non-binary field elements were transmitted as BPSK
symbols. However, in practice, non-binary LDPC codes are often coupled with
higher-order modulation schemes. In such application, it is more appropriate to
match the field order of the Galois field and the modulation order. In this second
example, we consider non-binary codes over GF(16) and imax = 10. Furthermore,
a 16 QAM modulation as discussed in Example 4.1 is considered. Here, we use an
information bottleneck channel output quantizer with 4 bit per dimension, i.e., 8 bit
resolution. In turn, |Tchan| = 256 which equals a theoretical resolution of 0.5bits

FE .

Again, let us consider a belief-propagation decoder and the log-max decoder as
reference. The simulation parameters are summarized in Table 6.4. As discussed in
Section 6.1.2, the required total number of bits required per message increases with
the field order. For ease of implementation let us restrict the internal resolution
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Table 6.4: Simulation parameters of decoder and reference system compared in
Fig. 6.7 for Setting 1.

decoder node operation
(check / var)

precision
exchanged
messages

precision
check node

precision
variable node

channel
quantizer

belief-
propagation
(belief-prop.)

FHT+
multiplication /
multiplication

64 bits
FE 64 bits

FE 64 bits
FE 0.5 bits

FE

log-max
[WSM04]

max∗()/
addition 1 bits

FE 1 bits
FE 1 bits

FE 0.5 bits
FE

information
bottleneck

decoder (IB)

lookup table/
lookup table 0.5 bits

FE 0.5 bits
FE 0.5 bits

FE 0.5 bits
FE

of the information bottleneck quantizer to |Tmult| = |Tvar| = |Tconv| = 256= 8 bit,
i.e., again 0.5 bits

FE . Only since the information bottleneck decoder represents the
entire vector by a single index, it is possible to achieve a quantization being a
fraction of a bit per field element. Thus, the information bottleneck decoder learns
a compression across the vector elements, which is an interesting observation. In
a conventional decoder, this is not possible, as all elements have to be represented
with at least 1 bit

FE . Thus, for a more appropriate comparison, we limit the internal
resolution of the log-max decoder to exactly 1 bit

FE . The performance in terms of
symbol error rate is depicted in Fig. 6.7. Despite the extremely coarse quantization
of the information bottleneck decoder, the performance is only 1 dB worse than
the double-precision belief propagation decoder, which exchanges entire probability
vectors and performs complicated arithmetical operations in the nodes. Comparing
the log-max decoder with 1 bit

FE message resolution and the information bottleneck
decoder with 0.5 bits

FE message resolution is even more important. It can be observed
that the log-max decoder loses 9 dB compared to the belief-propagation benchmark
and 8 dB compared to the information bottleneck decoder. Thus, we concluded
that the log-max decoder is impractical for such coarse quantization, whereas the
information bottleneck decoder still works reasonably well.

Comparing Setting 1 and Setting 2 it can be observed that the loss in decoding per-
formance of the coarsely quantized decoding schemes is noticeably larger. This is
caused by two main factors. First, the overall quantization is much coarser quanti-
zation in Setting 2 compared so Setting 1. Second, the field order of the non-binary
code is much higher in Setting 2 compared to Setting 1. Thus, the design of the
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Figure 6.7: Bit error rate performance of our proposed decoder and reference systems
with properties summarized in Table 6.4, Setting 2 and imax = 10.

mutual-information-maximizing node operations is more sensitive to a coarse quan-
tization which yields a larger gap in decoding performance compared to a double-
precision benchmark system.

6.4 Summary

Especially in massive machine-type communication, reliable and low-energy signal
processing is required. Theoretically, non-binary LDPC codes are compelling chan-
nel coding schemes also for very short packages. However, the decoding complexity
of state-of-the-art decoders for non-binary LDPC codes often prohibits practical
applications.

This chapter leveraged the information bottleneck’s ability to preserve relevant infor-
mation to overcome the main computational burdens of non-binary LDPC decoding.
Motivated by the results for binary LDPC codes presented in Chapter 5, a complete
framework to design check node and variable node operations which replace all arith-
metic operations using only lookups in non-binary LDPC decoders was presented.
A step-by-step conversion of the conventional sum-product algorithm resulting in
relevant-information-preserving mappings yields an information bottleneck decoder,
which performs only 0.15 dB worse than the sum-product algorithm and outper-
forms the log-max algorithm for a BPSK transmission and GF(4). Furthermore,
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we combined the higher-order modulation quantizer from Chapter 4 with an infor-
mation bottleneck decoder for non-binary LDPC codes over GF(16). It was shown
that the presented decoder is superior to state-of-the-art decoders with comparable
quantization.

It was observed that the presented discrete density evolution scheme might be used
for code construction of non-binary LDPC, which is an active field of research.
However, as code construction is not the primary focus of this thesis, possible inves-
tigations are left for further research.





Chapter 7

Data-Driven
Mutual-Information-Based Signal
Processing

Recently, deep learning received considerable attention in academia but also in in-
dustry. The tremendous research interest in neural networks is mainly induced by
an ongoing shift from classical, model-based machine learning towards data-driven
machine learning. This shift is mainly caused by several observations in different
disciplines where deriving analytical, closed-form models to capture realistic real-
world processes is cumbersome or often even infeasible. Hence, prevalent, robust,
and mathematically well-understood machine-learning techniques like support vec-
tor machines, Gaussian processes, or naive Bayes classifiers are more-and-more re-
placed by a very generic and universal function approximator called neural network.
However, it shall be emphasized that besides the outstanding success in computer
science, image processing, etc., the hope that neural networks can achieve stunning
results without any domain knowledge or fundamental understanding of the func-
tional relation to be modeled turned out to be unrealistic [OH17]. Instead, many
applications of neural networks, especially in communications, showed that a solid
domain knowledge is crucial to tweak the architecture of neural networks accordingly
to yield an optimum performance [OH17; DCH+18; AH18; NBB16; SDW17].

In [SDW17; CAD+20], detailed examples are sketched where domain knowledge
helps to turn known communication system designs into a neural network equiva-
lent. A common approach is unfolding [BS19]. Like in an unrolled LDPC decoder
implementation, an iterative algorithm is unfolded and turned into a sequential
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structure. Here, the neural network replaces the state-of-the-art operations. Es-
pecially if the classical operations are derived based on mismatched models, which
do not capture the reality well, the neural network might learn more appropriate
operations. Further benefits and applications are discussed in great detail in [BS19].

This chapter leverages an information-theoretical perspective on neural networks
as proposed in [Sim18]. Especially for communications engineering problems that
solve a classification problem, it is possible to investigate the neural networks us-
ing well-known information-theoretical quantities like the mutual information or
the Kullback-Leibler divergence. Interestingly, as pointed out in [TZ15], it is also
possible to measure the mutual information inside the neural network. Besides,
[TZ15] revealed close relations to the information bottleneck method. However, in
[SBD+19], the promising findings from [TZ15] could not be confirmed, and there
is an ongoing debate about the role of the information bottleneck method to inter-
pret neural networks. Nonetheless, it turned out that the information bottleneck
functional itself is a compelling and robust loss function in representation learning
[AFD+19].

All previous chapters resort to the classical perspective on the information bottleneck
method, which we, from now on, term a model-based perspective. The model-based
perspective assumes that all distributions fed into the information bottleneck are
traceable, nicely described, and can be modeled perfectly.

However, in some applications, the distribution might be unknown or changing over
time. Alternatively, like for non-binary LDPC codes with large field orders, the
distribution becomes impractically large and cannot be represented easily.

Thus, this chapter presents a data-driven perspective on the information bottleneck
method. Here, the idea is to learn the distribution based on empirical training data
and employ a trainable function, e.g., a neural network representing the mapping
tout = f(tin). Despite this change in perspective, this chapter still aims to design
signal processing units which maximize the relevant information, i.e.,

max
tout=fθ(tin)

I(X; T) , (7.1)

where fθ(tin) indicates that we resort to trainable functions fθ(tin) with trainable
parameters θ.

In this chapter, two different scenarios are considered. First, the neural information
bottleneck decoder is presented. This decoder tackles the problem of infeasible large
message mappings that are hard to obtain using the model-based perspective in
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information bottleneck decoders for non-binary codes with large field orders and
binary LDPC codes with closed nodes and high node degrees.

The second part of this chapter considers so-called capacity-achieving end-to-end
learning. Here, an entire communication chain, including transmitter and receiver,
is trained to maximize the relevant information and achieve the channel capacity.
Interestingly, this is in line with the information bottleneck objective. It is shown
that a solid information-theoretic understanding is required to derive a meaningful
loss function such that the relevant information is maximized. Different applications
of end-to-end learning are presented. A so-called autoencoder will be derived, which
learns capacity-achieving transmit symbol constellations for arbitrary channels using
constellation and probabilistic shaping. Therefore, well-known loss functions in deep
learning are interpreted from an information-theoretical perspective. This idea is
applied to both symbol-wise and bit-wise learning. The latter reveals that the pro-
posed information-theory-inspired learning yields capacity-achieving bit labelings,
which are generally very difficult to find in practice.

We published parts of this chapter in [SAH19; CAD+20]. First, this chapter provides
a brief introduction to the broad field of neural networks.

7.1 Preliminaries on Neural Networks

In general, the concept of neural networks is old. It was presented already in 1958
in [Ros58] and [Ros61]. Also, the training algorithms to optimize neural networks
are known for quite some time [RHW86]. However, the actual breakthrough was
observed in 2010 with the so-called ImageNet moment where a neural network classi-
fied real-world images with extremely high precision. This breakthrough was mainly
driven by a vast increase in available computational resources in the last decades.
To train a neural network, one needs a considerable amount of training data and
sufficient computational power to compute the large number of gradients backprop-
agating through the network while training. It can be observed that the increase
in computational power and storage capacity directly correlates with the proposed
size and expressive power of neural network architectures. The training of neural
networks itself is described in more detail in Section 7.1.1.

To introduce neural networks and data-driven machine learning more formally the
definition from [Mit05] is recalled:

"A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
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tasks in T , as measured by P , improves with experience E."

In other words, a neural network tries to approximate an unknown function f(x)

sufficiently close by a trainable function fθ(x) with trainable parameters θ. The
quality of this approximation is evaluated by a performance measure termed loss, and
should improve through experience, i.e., if more training data have been observed.

The Task

In general, many kinds of tasks exist. Examples range from regression, translation
to density estimation. However, as many communication tasks fall into the category
of so-called classification problems, this task will be considered in more detail.

In a classification problem the training samples y ∈ Rn, holding the input features,
are mapped onto one out of k classes or onto the probability of the class p(K = k| y).
Thus,

f : Rn 7→ {1, . . . , k} (7.2)

or
f : Rn 7→ [p(K = 1|y), . . . , p(K = k|y)]T (7.3)

for classification problems. Especially, the mapping onto probabilities will turn
out to be very useful later when deriving an information-theoretical perspective on
neural networks.

The Experience

The actual machine learning algorithm makes different experiences during the learn-
ing process. On the one hand, this is due to the observed, actual training data
describing the input-output relation to be learned. On the other hand, experience
also relates to the type of dataset used for learning. Broadly, one can distinguish
between supervised learning and unsupervised learning.

Supervised Learning In a mathematical sense, supervised learning aims to esti-
mate p(x|y), where y is the observed sample and x is the target or label. Thus,
the dataset D always contains the features (or observations) y and the label
x, which are drawn i.i.d. from the joint distribution p(x, y), i.e.,

D = (x, y) ∼
i.i.d

p(x, y) . (7.4)

The term supervised implies that a teacher builds the dataset by assigning the
correct labels to each possible observation. However, as we will see later, if one
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has access to the true data generating distribution p(x, y), the dataset can be
generated without manual labeling. Nonetheless, in most applications, p(x, y)

is unknown, and thus, constructing a correctly labeled dataset is challenging.
The most common neural network architecture to tackle supervised learning
problems is a feed-forward neural network described in more detail in Section
7.1.2.

Unsupervised Learning In contrast to supervised learning, in unsupervised learn-
ing the dataset D only contains the features y, i.e.,

D = y ∼
i.i.d

p(y) . (7.5)

In turn, the goal is to learn useful characteristics of the structure of the dataset.
Often in deep learning, this equals estimating the feature distribution p(y) im-
plicitly or explicitly. A common field of application for unsupervised learning
is dimensionality reduction and clustering, for example, using the K-means al-
gorithm [Llo82]. Another example is the expectation-maximization algorithm
[Mit05]. Furthermore, unsupervised learning can also be used to train neural
networks to mimic p(y). Recently, this was successfully shown using generative
adversarial networks (GANs) [GPM+14].

In brief, unsupervised learning considers only observed samples and tries to find
meaningful representations, for example, by clustering or feature extraction. Su-
pervised learning instead involves observing the pair of observation and associated
label. Nonetheless, supervised and unsupervised learning are not completely distinct
concepts. Especially, when targeting so-called representation learning a proper cate-
gorization is difficult. Representation learning is a very modern field within machine
learning and covers a wider range of problems as deep learning, including so-called
autoencoders [GBC16].

In literature, the information bottleneck method is often termed an unsupervised
learning framework as it is formally a clustering tool. Whereas rate-distortion clearly
falls into the category of unsupervised learning as usually only p(y) is considered,
the information bottleneck is more closely related to representation learning. Thus
an explicit connection to supervised and/or unsupervised learning is difficult as the
information bottleneck method requires access to p(x, y).
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7.1.1 Loss Functions and Training a Neural Network

To evaluate the performance of a neural network, an appropriate performance mea-
sure according to the task has to be chosen. One distinguishes between point es-
timates whereby one aims to obtain a specific value x̂ = fθ(y) and distributional
estimates trying to learn the entire probability mass function p(x|y). In the latter
case, the neuronal network fθ(y) can be interpreted as a trainable approximation of
pθ(x|y) ≈ p(x|y).

If a detector shall provide soft-information for a subsequent soft-input channel de-
coder, the symbol error rate alone is not the best performance criterion. Thus, in-
stead of optimizing a point estimate, the optimization is over distribution the p̂(x|y)

itself. As discussed in 2.3.2, a useful divergence measure to determine the similar-
ity of distributions is the Kullback-Leibler divergence DKL {pθ(x|y)||p(x|y)}. It is
shown in [Sim18] that this expression can be related to the so-called cross-entropy
loss

H(x|y) = E(x,y)∼p(x,y) [− log(pθ(x|y))] (7.6)

that is of integral importance for training neural networks which solve a classification
task.

Considering the standard formulation of supervised learning, it is assumed that
instead of having access to the true data generating distribution p(x, y) directly,
one only has access to a set of samples (x(i), y(i)), i = 1, . . . , N i.i.d. drawn
from p(x, y). Usually, these samples are said to form the training set (xtrain =

[xtrain(1) , xtrain(2) , . . . ]T, ytrain = [ytrain(1) , ytrain(2) , . . . ]T) and test set (xtest = [xtest(1) , x
test
(2) , . . . ]

T,

ytest = [ytest(1) , y
test
(2) , . . . ]

T). Depending on the application, this strict distinction might
not be required.

Offline Learning Offline learning uses a static data set with a finite number of
samples. This can lead to underfitting or overfitting as the network might
learn only to reproduce precisely the trained data but does not generalize
well to unseen data [Sim18]. Thus, the data set is split into samples used
for training, i.e., the training set, and samples used for testing, i.e., the test
set. In general, it is also preferable to have a third set, i.e., the validation set
[GBC16].

Online Learning Online learning does not use a static data set. Instead, it has
direct access to the unknown, data generating distribution p(x, y) to obtain
new samples processed in a streaming fashion continually. As the number of
samples available is infinite, it is not needed to partition the samples into sets.
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Instead, it is sufficient to generate samples during the training phase and then
use newly generated samples for testing.

As the true distribution is unknown, the average loss Ex∼p(x|y) [l(x, fθ(y)] becomes
the so-called empirical risk or empirical loss J(θ) of the training set [Sim18]

J(θ,xtrain,ytrain) =
1

N

N∑
i=1

l(xtrain(i) , fθ(y
train
(i) )) , (7.7)

where l(.) denotes an arbitrary sample loss function.

Please note that all applications considered in this thesis allow online learning.

7.1.1.1 (Stochastic) Gradient Descent Optimization

As defined above, a neural network can be seen as a trainable function with train-
able parameters θ, which minimizes a particular objection or loss function in the
broader sense. The most common optimization technique to adjust the trainable
parameters and thereby minimize the objective function is the gradient descent al-
gorithm [GBC16]. As the optimization relies on training data, the empirical loss
from Eq. (7.7) is commonly used as an objective. Thus, the task of the optimization
algorithm is to determine

θ∗ = arg min
θ
J(θ,xtrain,ytrain) . (7.8)

Gradient descent is a relatively old and well-known first-order iterative optimization
algorithm [Cau47] to find a local minimum of a differentiable function. Starting
with a random initial guess θ0, each iteration updates the solution by moving pro-
portionally in the direction opposite to the gradient ∇θJ(θ,xtrain,ytrain), i.e.,

θk+1 = θk − ε∇θkJ(θk,x
train,ytrain) (7.9)

where ε > 0 is the learning rate and k is the iteration index. The learning rate is a
crucial hyper-parameter controlling the step size. On the one hand, the larger the
step size, the faster the algorithm converges. On the other hand, choosing a too large
step size prohibits to hit the local minimum as the solution is oscillating around the
local minimum instead. Many adaptive algorithms were proposed to optimize the
learning rate. The most common choice is the so-called Adam approach [KB14],
which leverages an adaptive learning rate update and a momentum technique. A
detailed discussion of algorithms to update the learning rate is beyond the scope of
this chapter but can be found in great detail in [GBC16].
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Figure 7.1: Illustration of the gradient descent algorithm to find the minimum of
the function f(x) for two different initial random starting points θ0 and θ̄0.

Equation (7.9) is repeated until a particular stopping criterion is met, e.g., if the loss
is no longer significantly reduced between two iterations. This procedure is shown
in Fig. 7.1 for an exemplary function f(θ) and two random initial starting points θ0

and θ̄0.

As shown in Fig. 7.1, gradient descent is very sensitive to the starting point and
can easily end up in a bad local minimum. Thus, in the past, gradient descent was
not considered as a suitable approach for nonconvex optimization problems [GBC16].
Nonetheless, neural networks where shown to be well trained using gradient descent.
Although sometimes not even a local minimum is found, gradient descent achieves
very low values of the loss function in a computationally efficient manner. One such
efficient implementation is the back-propagation algorithm proposed in [RHW86].

As shown in Eq. (7.7), the actual loss is composed as the sum of the per-sample loss
for all training samples. Clearly, the computational costs of this operation depends
on the number of training samplesN . Easily, a proper data set might contain billions
of training data. Thus, already the computation of a single update step might be
impractically long.

Hence, an extension of gradient descent called stochastic gradient descent is a more
suitable algorithm to train neural networks with large data sets. In contrast to com-
puting the actual gradient, stochastic gradient descent computes just an estimated
gradient using a small subset of the training data. This subset is referred to as
minibatch B [GBC16]. The minibatch is randomly drawn for each gradient step. In
turn, using Eq. (7.7), the gradient is approximated as
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∇θJ(θ,xtrain,ytrain) =
1

|B|
∑
i∈B

∇θl(xtrain(i) , fθ(y
train
(i) )) (7.10)

where |B| is the size of the minibatch. According to [GBC16] the following general
statements hold:

• The larger the minibatch size, the more accurate is the estimate of the gradient.

• The smaller the minibatch size, the larger is the variance of the estimate of the
gradient. Thus, a smaller learning rate is required to ensure stable training.
In turn, many iterations are needed, and the runtime is high. However, due to
the high variance of the estimate, the entire parameter space can be explored
faster and bad local optima can be avoided.

The minibatch size choice is an individual field of research which will not be discussed
in detail here. For a more detailed discussion, the interested reader is referred to
[GBC16].

Stochastic gradient descent optimizes the trainable parameters θ of the neural net-
work. However, to efficiently compute the gradients, the so-called back-propagation
algorithm is used [RHW86; GBC16]. The back-propagation algorithm uses the chain
rule of calculus to recursively calculate the partial derivatives of all trainable pa-
rameters [GBC16]. A more detailed discussion of the back-propagation algorithm
can be found in [Bis09; GBC16; Sim18].

7.1.2 Feedforward Neural Networks (Multilayer Perceptrons)

Following the early ideas presented in [Ros58], the multilayer perceptron (MLP) also
called feed-forward neural network is the most natural neural network architecture
and maybe also the simplest class of neural networks in general. Formally, the feed
forward neural network implements a mapping fθ(γ0) : RN0 7→ RNL of an input
vector γ(0) ∈ RN0 to an output vector γ(L) ∈ RNL , where L defines the depth of the
neural network.

An MLP consists of an input layer, an output layer, and at least one hidden layer
[GBC16]. Such an architecture is shown in Fig. 7.2b. The special case of a neural
network with only one hidden layer is very useful to prove the universal approxima-
tion theorem of neural networks [GBC16].



198 Chapter 7. Data-Driven Mutual-Information-Based Signal Processing

Σ φa

b
γ

(0)
1

γ
(0)
2

γ
(0)
3

γ
(0)
4

w
1

w
2

w3

w 4

φa

(
b+

4∑
i=1

wiγi

)

(a) Single neuron

γ
(0)
1

γ
(0)
2

γ
(0)
3

γ
(0)
4

x

Hidden
layer

Input
layer

Output
layer

(b) Feed-forward neural network

Figure 7.2: Illustration of a single neuron (a) which is embedded in a larger neural
network with one hidden layer.

Each layer consists of several neurons [Ros58], sometimes termed units [GBC16]. In
Fig. 7.2a, a single neuron is shown with four inputs, and the thick lines in Fig. 7.2b
illustrate how the neuron from Fig. 7.2a is incorporated in the neural network.

Each neuron computes the weighted sum of its inputs plus the so-called bias followed
by an activation function φa(κ). Thus, the output of a single neuron is

φa

(
b+

N∑
i=1

wiγi

)
, (7.11)

where wi denotes the trainable weights and b is the trainable bias. The activation
function of the input layer and the output layer is usually linear, i.e, φa(κ) = κ.
However, the activation function of the neurons in the hidden layers is generally
non-linear, which is important for the expressive power of the neural network, as it
allows to easily learn non-linear models. Common non-linear activation functions
are [GBC16]:

Sigmoid function σ(κ) = 1
1+e−κ

Hyperbolic tangent tanh(κ) = eκ−e−κ

eκ+e−κ

Rectified linear unit (ReLU) reLU(κ) = max (0,κ).

These activation functions and their first-order derivatives are shown in Fig. 7.3. The
hyperbolic tangent and sigmoid function are highly non-linear. However, their first-
order derivatives are close to zero for large input values. This results in the so-called
vanishing gradient problem, which is unfavorable for gradient descent optimization
techniques [GBC16]. Thus, despite its only small non-linearity, the rectified linear
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Figure 7.3: Common non-linear activation functions in neural networks.

unit (ReLU) activation turned out to be the most common activation function as
it allows for better training using stochastic gradient descent. First, the ReLU
activation function suffers less from the vanishing gradient problem as the gradient
does not saturate for large positive inputs. Second, it implements a sparse activation
as only positive inputs have a non-zero output. Third, the computation is very
efficient compared to evaluating the hyperbolic tangent and the sigmoid function as
only addition, multiplications, and comparisons are required.

It is often more convenient to use the vector notation to describe the output of an
entire layer instead of a particular neuron. The MLP is called a feed-forward neural
network as the information flows from one layer to the next layer [GBC16]. Hence,
the function fθ(γ(0)) is implemented through L iterative processing steps

γ(l) = f
(l)
θl

(γ l−1) , l = 1, . . . L . (7.12)

Let γ(l) denote the output of layer l. This output is comprised of the previous layer’s
output γ(l−1), multiplied by a weight matrix W(l) ∈ RNl×Nl−1 , added to a bias vector
b(l) ∈ RNl , and then fed into the activation function. The set of parameters for this
layer is θl =

{
W(l),b(l)

}
. In turn, θ = {θ1,θ2, . . . ,θL} is the set of all trainable

parameters of the neural network. Thus, the output can be written as

γ(l) = φ(l)
a (W(l)γ(l−1) + b(l)) . (7.13)

The depth L, the width of each layer Nl, i.e., the number of units, and the activation
functions φ(l)

a are said to form the hyperparameters of the neural network.
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Input Normalization and One Hot Vectors

The MLP takes the feature vector γ(0) ∈ RN0 as input. In a communications sce-
nario, these input features might be received noisy channel output symbols, noisy
distance measures or channel coefficients. In some applications, the neural network
inputs are discrete cluster indices obtained by preprocessing the training data. For
instance, the discrete inputs are described by the indices yi ∈ {1, 2, . . . |Y|} and span
the space YN0 . These labelings are arbitrary, and a meaningful mapping YN0 7→ RN0

might be hard to find. In turn, it is more common to use so-called one-hot encoding
[GBC16]. One-hot encoding represents the decimal indices by a sparse vector which
contains only one non-zero entry indicating the decimal number, i.e., if |Y| = 4

1 7→


1

0

0

0

 2 7→


0

1

0

0

 3 7→


0

0

1

0

 4 7→


0

0

0

1

 . (7.14)

Due to the sparsity, the vector-matrix product in the input layer "selects" only a
particular column of weights, which is then processed in the next layers.

Activation Functions for the Output Layer

The activation function of the output layer depends on the task. Furthermore, the
choice of the activation function of the output layer is closely related to the selected
loss function. As described above, the cross-entropy loss is a common loss function
for classification problems. However, the cardinality of the output variable X also
impacts the choice of the output layer.

Sigmoid Activation for Binary Variables: For a binary variable X, it is suffi-
cient if the neural network outputs Pr(X = 1|y), where y = γ0. Hence, the
neural network output must lie in the interval [0, 1] to be a valid probability.
As shown in Fig. 7.3a, this can be directly achieved by choosing the sigmoid
activation function for the output units. The input to the activation function
is κ = w(L)Tγ(L−1) + b(L). Please note that κ is referred to as logit in the
machine learning literature [GBC16]. Using the definition of the sigmoid func-
tion σ(κ) = 1

1+e−κ it can be shown that for binary variables X, i.e., the logit
is closely related to the LLR,

Pr(X = 1|y) = σ(κ) (7.15)

Pr(X = 1|y) =
1

1 + e−κ
(7.16)
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Pr(X = 1|y)
(
1 + e−κ

)
= 1 (7.17)

Pr(X = 1|y)
(
1 + e−κ

)
= Pr(X = 1|y) + Pr(X = 0|y) (7.18)

Pr(X = 1|y)e−κ = Pr(X = 0|y) (7.19)

e−κ =
Pr(X = 0|y)

Pr(X = 1|y)
(7.20)

κ = − log
Pr(X = 0|y)

Pr(X = 1|y)
. (7.21)

Softmax Activation for Categorial Variables: For discrete random variables
X with n possible values, a generalization of the sigmoid activation is required.
This is the so-called softmax(κ) function. The input to the softmax is the un-
normalized vector of logits κ = W(L)Tγ(L−1) +b(L), i.e., κ = [κ1,κ2, . . . ,κNL ].
Mathematically,

softmax(κ) =

[
exp(κ1)∑NL
j=1 exp(κj)

,
exp(κ2)∑NL
j=1 exp(κj)

, . . .
exp(κNL)∑NL
j=1 exp(κj)

]
, (7.22)

i.e., the softmax function translates the unnormalized log-probabilities into a
proper probability vector p(x|y). As shown in [GBC16], the softmax is a soft
version of the arg max function. In turn, after training, the most-likely output

x̂ can be obtained by computing x̂ = arg max
i

κi, which is computationally

very efficient as it works on the unnormalized logits directly.

7.2 Neural Information Bottleneck Decoding

The ongoing discussion about the future communication standard 6G is dominated
by innovations considering deep learning using neural networks in the communi-
cation system design. In this section neural networks shall be used as universal
function approximator to implement known message mappings tout = f(tin). As
many popular deep learning applications drive the development of dedicated deep
learning hardware, dedicated deep learning processors can be expected to be avail-
able in many future communication devices. Therefore, channel decoders tailored
to such dedicated deep learning circuits might become of great practical interest.

Thus, the approach presented in this section, i.e., neural information bottleneck
decoding, is not intended as a competing approach to unrolled information bottle-
neck decoder architectures from Section 5.6 but rather meant to accompany these
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approaches and support novel architectures.

We first published the idea of neural information bottleneck decoding in [SLB20].
Neural information bottleneck decoding aims to combat the curse of dimensionality
discussed in Section 5.2.2.3 faced by the exponential increase of the lookup tables
if the node degree increases and no decomposition is performed. Therefore, the
idea is to represent the mapping tout = f(tin) as a trainable function fθ(tin), which
can be efficiently implemented using a neural network with parameters θ. The
neural network is trained based on samples and learns both its approximate design
distribution p(x, tin) and the mapping tout = f(tin) during training. With this
approach, even long input vectors tin, which hold a huge number of N incoming
messages, can be processed in one step [SLB20]. Also, especially if not an unrolled
decoding architecture is leveraged, the slight changes in the lookup tables over the
iterations might result in large memory requirements for a very large number of
decoding iterations imax. Thus, the neural network is trained to output all extrinsic
messages generated by a check/variable node in one step, rather than excluding each
respective incoming message from the target edge separately. Further, an iteration-
aware neural network can be designed to take the iteration as additional input
and replace all lookup tables that vary for different iterations in the information
bottleneck decoders presented so far. Please note that the neural network is not
only used to learn to decode the channel code as, e.g., in [NBB16]. Instead, the
focus is to learn message-passing decoding with coarsely quantized messages. This
section proposes two different approaches to neural information bottleneck decoding:

Supervised Neural Information Bottleneck Decoder First, we train neural
networks, which output the outgoing messages tout given the input vectors tin in an
information bottleneck decoder. This requires mappings for the variable and the
check nodes designed using discrete density evolution but without node decomposi-
tions, as described in Section 5.2. Once constructed, we analyze the overall resulting
N -input 1-output mappings tout = f (tin) for each node type and each iteration i,
which have prohibitive complexity for a one-shot implementation in a lookup table.
Then, we train neural networks f (i)

θ (tin) that process all inputs tin of a node in iter-
ation i in one shot for each decoding iterations i. These networks mimic and replace
the iteration depending lookup tables. As generalizations, we also train one network
fθ(t

in, i) for the variable nodes and another one for the check nodes, which take the
iteration index i as additional inputs. Furthermore, these networks implement N -
input N -output mappings that generate all outgoing messages of a variable/check
node at once. In turn, the supervised neural information bottleneck decoder learns
to exploit redundancies and connections among lookup tables for different iterations
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and the computation of the outgoing message within a node. Please note that such
a design-objective is practically infeasible with the model-based approach presented
in previous chapters.

Unsupervised Neural Information Bottleneck Decoder In a second variant
of the neural information bottleneck decoder, the mapping is not known in advance
through discrete density evolution. Instead, the unsupervised neural information
bottleneck decoder learns the coarsely quantized message mappings based on the
training data considering the maximization of relevant information as a training
objective.

7.2.1 Supervised Neural Information Bottleneck Decoder

The supervised neural information bottleneck decoder considers a neural network
with ReLU activation for the hidden layer and a linear activation for the input and
the output layer. The input vector tin and the output cluster tout are represented
by their one-hot equivalents.

Clearly, after one-hot encoding the input to the neural network is very sparse. In
turn, the vector-matrix product in the first hidden layer W(1)tin(i) can be interpreted
as a selection of columns of the weight matrix W(1) of the hidden layer. The final
output is

p(tout|tin) = softmax
(
W(L) max

(
0,W(1)tin

))
= softmax

(
W(L)reLU

(
W(1)tin

))
(7.23)

during training with the softmax activation function as only one hidden layer is
used, i.e., L = 2. This operation is replaced by arg max during decoding. Please
note, that applying arg max yields the integer tout. Thus, in total, the proposed
architecture consists of one selection step, one addition step and a final arg max

operation.

As a second approach, we consider the binary representation of the cluster index
instead of its one-hot encoding. In this case, the exemplary input-output pair (tin =

[0, 2, 3, 0]T, tout = 1) with tin, tout ∈ {0, 1 . . . , 3} is represented as:

0 7→

[
0

0

]
2 7→

[
0

1

]
3 7→

[
1

1

]
0 7→

[
0

0

]
tout 7→

[
1

0

]
. (7.24)
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Although this input is less sparse, the input dimensions are reduced, and, in turn, the
number of neurons and the complexity of the neuronal network is reduced. Further-
more, this input encoding is more common in signal processing and communications
than the one-hot encoding and might be of larger practical interest as it is easier to
integrate in conventional signal processing units.

For training, samples are generated using known lookup tables similar to the design
proposed in [LB18], i.e., the lookup tables designed using an information bottleneck
algorithm and discrete density evolution. As a result, there is no fixed data set,
which is split into a training set and a test set. Instead, samples (tout(i) , t

in
(i)) are

constantly generated by sampling from p(tin|x) and feeding the resulting tin(i) to the
target network. In general, the design of information bottleneck decoders employs a
decomposition of the node operation into a concatenation of two-input lookup tables.
Nonetheless, the concatenation of lossy compression results in a very small overall
additional loss in relevant information compared to the non-decomposed lookup
table design (cf. Section 5.2.2.3). This section shows that a trainable function
can be learned to approximate the non-decomposed lookup table even with fewer
parameters as required by a decomposed design and better performance than the
decomposed design.

As we face only discrete random variables, the neural network fθ(tin) solves a clas-
sification problem. Hence, we choose the cross-entropy loss

H
(
tout|tin

)
= E(tout

(i)
,tin

(i)
)∼p(tout,tin)

[
− log(pθ(t

out|tin))
]

(7.25)

as target function to be minimized during training.

7.2.1.1 Multiple-Output Nodes and Iteration-Aware Neural Network

The architecture discussed in the previous section allows computing one particular
outgoing message tout from the incoming messages tin carrying the extrinsic informa-
tion. However, in message-passing decoding messages for each connected target edge
of a node need to be computed. In information bottleneck decoding, this is usually
achieved by copying the concatenated structure or reusing the respective structure
sequentially with a different removed incoming message received from the target
edge. This either increases the required space or the decoding latency. The first
extension of the proposed approach is a neural network that outputs all outgoing
messages in one shot from all incoming messages. In turn, the neural network learns
to consider only certain incoming messages to generate the extrinsic information and
reuse possible intermediate results. Again we consider only one hidden layer with
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Figure 7.4: Neural network architecture able to output all messages at once (multi-
in-multi-out) and the decoding iteration as additional input (iteration-aware).

ReLU activation. Such an architecture is shown in Fig. 7.4 for an exemplary degree
five check node indicated by the densely dashed area.

In general, the optimum mappings f (i)(tin) for a variable node and for a check node,
respectively, depend on the iteration i. In an unrolled architecture, this iteration-
dependency can be dealt with easily. In some applications, e.g., on a digital signal
processor, it is important that the same mapping is used for all iterations to enable
an efficient implementation. Therefore, an extended neural architecture is consid-
ered, which takes the iteration i as an additional input. Thus, the neural network
represents fθ(tin, i) where i denotes the iteration. Several architecture were investi-
gate in the scope of this thesis and the best found architecture is shown in Fig. 7.4
indicated by the densely dotted area. There the neural network is additionally fed
with the iteration index i, which is again encoded as a one-hot vector.

7.2.1.2 Evaluation

In this section, the performances of the trained neural networks are evaluated in
a two-step process. First, we analyze the neural network’s ability to represent the
node operations designed using the information bottleneck method as in [LB18].
The network’s task is to represent these mappings as accurately as possible in all
decoder iterations to achieve the same performance as the conventional information
bottleneck decoders from [LB18]. We analyze how many parameters θ are required
for an adequate representation and aim for much fewer parameters than lookup
table entries in the original decoders. If adequate representation is possible with
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Figure 7.5: Comparison of a two-input lookup table designed with an information
bottleneck algorithm and two learned mappings, which implement their respective
mappings using neural networks with 8 and 16 hidden nodes.

fewer parameters, the designed decoders should have the same performance as the
lookup table based decoders, as they implement comparable mappings. Therefore,
in a second step, we validate this assumption by analyzing the bit error rates of the
respective decoders. In detail, we consider two architectures all with one hidden
layer. First, a neural network with N · 2q+1 + imax hidden neurons and one-hot
input (one-hot in. NN) is considered. Second, we implement a neural network with
N · q+ imax hidden neurons and binary input (binary in. NN) where q = log2 (|Tch|).

Analysis of the Learned Mappings In order to evaluate if neural networks
can learn to represent information bottleneck decoding mappings, we consider an
illustrative example of a mapping tout = f(tin1 , t

in
2 ) with only two input messages.

Fig. 7.5 shows a comparison of an exemplary two-input mapping from the check
nodes of a q = 4 bit information bottleneck decoder (cf. Fig. 7.5a). The figure also
shows learned mappings using neural networks, which used the lookup table from
the information bottleneck approach as training data (cf. Fig. 7.5b and Fig. 7.5c).

The neural network consists of only one hidden layer. However, the number of neu-
rons in the hidden layer was 8 in Fig. 7.5b and 16 in Fig. 7.5c. Vividly, both networks
can implement the lookup tables, quite well, but the accuracy of the representation
depends on the number of parameters used. Please note that the number N of in-
coming messages tinn to be processed by a check node during decoding is determined
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Table 7.1: Number of trainable parameters of the neural network compared to the
number of lookup table entries for a regular LDPC decoder with, |T | = 16, dc = 6,
dv = 3 and imax = 50 decoding iterations.

decoder No. parameters
check node

No. parameters
var. node

information bottleneck
decoder - opened node

(open inf. bot.)

(dc − 2)|T |2 · dc · imax

= 307, 200
(dv − 1)|T |2 · dv · imax

= 76, 800

information bottleneck
decoder - closed node

(closed inf. bot.)

|T |dc−1 · dc · imax

= 314, 572, 800
|T |dv · dv · imax

= 614, 400

neural information bottleneck
decoder - one-hot input

(one-hot NN)
58,900 20,292

neural information bottleneck
decoder - binary input

(binary-in NN)
16,854 8,710

by its degree dc. Table 7.1 shows the number of trainable parameters for check node
degree dc = 6 and variable node degree dv = 3 and different architectures. Please
remember that we devised a multi-in-multi-out setting and iteration awareness. In
turn, a single neural network replaces the check nodes respectively variable nodes,
that was trained to output all outgoing messages in one step from all incoming mes-
sages and also the iteration index. The architecture was shown in Fig. 7.4. For
ease of brevity, we call the number of lookup table entries of the conventional in-
formation bottleneck decoder also parameters in Table 7.1. As shown in Table 7.1,
the number of parameters required by the neural network is much smaller than a
one-shot lookup table, which shows an exponential increase in m. Interestingly,
considering that imax = 50 decoding iterations are performed, the overall number
of parameters for the neural network is even smaller than for the decomposed node
operation. Thus, the neural network is shown to mimic the information bottleneck
lookup tables accurately with fewer parameters. Similar observations can be made
for the variable nodes. However, it should be noted that the parameters in an in-
formation bottleneck decoder are coarsely quantized and represented by unsigned
integers, whereas the parameters in a neural inform

To investigate the performance of the trained iteration-aware neural network, Code
1 with (dv, dc) = (3, 6) and N = 8, 000 as in Chapter 5 and q = 4 bit decoding
is considered. A maximum of imax = 50 decoding iterations was performed for all
decoders.

Fig. 7.6 shows bit error rate results for LDPC encoded data transmission over an
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Figure 7.6: Bit error rate simulations for Code 1 from Chapter 5 with imax = 50
decoding iterations over AWGN channel with BPSK.

AWGN channel with BPSK modulation. Results are shown for the information bot-
tleneck decoder proposed in [LB18] which harnesses decomposed node operations to
ensure a reasonable memory complexity (open inf. bot). Furthermore, results for the
one-shot information bottleneck algorithm are shown, where one impractically large
lookup table is used to replace the arithmetical node operations. Please note that
the memory requirements would prohibit a practical implementation of this decoder,
but it is provided as a benchmark. It is shown that this decoder shows a slightly bet-
ter bit-error-rate performance compared to the information bottleneck decoder with
concatenated lossy lookup operations. Nonetheless, this decoder is used to generate
the training data for the neural information bottleneck decoder. Provided computer
simulations reveal that the neural information bottleneck decoder is able to mimic
the one-shot information bottleneck decoder perfectly but with practical complexity
and much fewer parameters. It is shown that the performance is superior to the
error-correction capability of the practically relevant sequential information bottle-
neck decoder (open inf. bot.). This holds likewise for the decoder with one-hot input
and binary input. Moreover, a double-precision belief-propagation decoder and a
min-sum decoder serve as references. Interestingly, it can be observed that the pro-
posed neural information bottleneck decoders outperform the min-sum decoder and
approaches the performance of the double-precision belief propagation decoder (be-
lief prop.) nearly as close as the lookup table based information bottleneck decoder,
i.e., up to 0.05 dB over Eb/N0. This holds although fewer parameters are needed,
single iteration-aware neural networks are used for the check, and the variable nodes
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tleneck decoder mapping.

and all outgoing messages of a node are computed in one step during decoding.

7.2.2 Unsupervised Neural Information Bottleneck Decoder

In the previous section, the supervised neural information bottleneck decoder built
upon mappings designed using discrete density evolution. Thus, the neural network
was trained in a supervised manner to exploit redundancy in tables across various
iterations and implement a one-shot mapping that returns all outgoing messages at
once with manageable implementation complexity.

This section extends this idea to unsupervised learning, i.e., no ground-truth lookup
tables exist. Instead, the neural network learns to maximize the relevant informa-
tion I(X; T) directly. It was described in Chapter 3 that deterministic mappings
preserved the highest amount of relevant information. However, the training of neu-
ral networks requires differentiable functions. Thus, it is impossible to embed the
arg max operation in the training process. Hence, the softmax operation is used

as a differentiable alternative. However, this function returns stochastic mappings
p(tout|tin) in the information bottleneck sense. Thus, it is important to include the
trade-off parameter β in the training process to ensure that the mapping is as little
stochastic as possible. In turn, we require the loss function

J(θ) = −Iθ(X; Tout) +
1

β
Iθ(Tin; Tout) (7.26)
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where we compute the relevant information Iθ(X; Tout) as

Iθ(X; Tout) =
∑
x

∑
tout

pθ(x, t
out) log2

(
pθ(x|tout)
p(x)

)
(7.27)

with

pθ(x, t
out) =

∑
tin

pθ(t
out|tin)p(x, tin) (7.28)

=
∑
tin

p(tin)pθ(t
out|tin)p(x|tin) (7.29)

= Ep(tin)

[
pθ(t

out|tin)p(x|tin)
]
. (7.30)

Based on the empirical training data, the empirical mutual information estimate
Ĩθ(X; Tout) for sufficiently large batch size equals

Ĩθ(X; Tout) =
∑
x

∑
tout

p̃θ(x, t
out) log2

(
p̃θ(x|tout)
p(x)

)
(7.31)

with

p̃θ(x, t
out) =

1

|B|
∑
i∈B

pθ(t
out
(i) |tin(i)))p(x|tin(i)) . (7.32)

Thus, the empirical loss function yields

J̃(θ) = −Ĩθ(X; Tout) +
1

β
Ĩθ(Tin; Tout) . (7.33)

Another possible approach is to estimate the mutual information using the mutual
information neural estimator (MINE) from [BBR+18].

7.2.2.1 Evaluation

Having defined a proper loss function, we investigate the mappings vividly and also
in term of preserved relevant information. Therefore, we measure the difference
∆Ĩθ = I(X; Tin) − Ĩθ(X; Tout) over the training process and also compare the result
to the preserved mutual information of the model-based approach as described in
Chapter 5 and termed ∆IIB = I(X; Tin)− IIB(X; Tout) in Fig. 7.8.
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Figure 7.8: Learned check node mappings p(tout|tin1 , tin2 ) for different β and the evo-
lution of the loss in preserved relevant information ∆Ĩθ over the training epochs
compared to the loss in relevant information ∆IIB preserved with the model-based
information bottleneck approach.



212 Chapter 7. Data-Driven Mutual-Information-Based Signal Processing

In Fig. 7.8, three different values for β are considered, i.e., β = 5, 10, 100. As β
increases, the objective changes from compression to the preservation of relevant
information. It can be observed in Fig. 7.8a that the number of used clusters stays
below the possible cardinality |T out| = 16. Furthermore, for small β the unsuper-
vised neural information bottleneck mappings lose a considerable amount of relevant
information as the focus is on compression and not only on the maximization of rel-
evant information. However, for a sufficiently large β we observe that the learned
mapping tends to become deterministic and the gap between the model-based infor-
mation bottleneck mapping from Eq. (5.42) and the unsupervised neural information
bottleneck mapping vanishes. In turn, it can be concluded that the presented neu-
ral network architecture is able to learn relevant-information-preserving mappings
solely based on empirical training data. In this chapter, we restrict our investigations
to binary check node operations for clarity. However, an extension to non-binary
information bottleneck node operations is straightforward.

7.3 Deep Learning of Mutual-Information-Based End-

to-End Communication

It is common in communications engineering to split the communication chain into
individual sub-blocks. However, following Shannon’s view on communication, the
universal design goal is to maximize the end-to-end performance of a communication
system in terms of mutual information, which theoretically requires solely two blocks,
i.e., a transmitter and a receiver as depicted in Fig. 7.9.

Thus, the mutual-information-based end-to-end objective can be formalized as

max
p(x|s)

I(Ŝ; X) (7.34)

which clearly relates to the information bottleneck setup considered throughout this
thesis. Here, Ŝ represents the relevant random variable and the physical constraint
on the cardinality of the modulation scheme, i.e., |X |, defines the latent dimension.
Thus, the constellation symbols x resort to realizations of the compressed random
variable X in an analog information bottleneck setup.

Furthermore, assuming a deterministic mapping p(x|s), Eq. (7.34) can be directly
related to the channel capacity

C = max
p(x)

I(X; Y), (7.35)
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Figure 7.9: A universal transmission chain as an autoencoder architecture.

which underlines that symbol-wise end-to-end communication aims to be capacity-
achieving. In general, finding p(x) maximizing I(X; Y) is a very difficult problem for
several reasons. First, analytical optimization would require knowledge of the statis-
tics of the transmission channel described by the conditional distribution p(y|x).
However, even if p(y|x) is known, the respective integrals are often intractable.
Considering the problem of mapping bits onto transmit symbols and the respective
demapping, two approaches exist to find capacity-achieving constellations. Either
the location of the constellation points in the complex plane itself can be optimized,
i.e., the sample space of X, or the frequency with which certain constellation points
are sent, i.e., p(x). These techniques are referred to as geometric shaping or proba-
bilistic shaping, respectively.

Recently, the concept of autoencoders received considerable interest in the research
community to facilitate end-to-end learning of capacity-achieving communication.
End-to-end learning of communication systems implements the transmitter, channel,
and receiver as a single neural network, referred to as an autoencoder. The autoen-
coder is than trained to reproduce its input at its output [OH17]. This approach
enables joint optimization of the transmitter and receiver for a specific channel model
without extensive mathematical analysis. This idea was pioneered in [OH17] and
has led to many extensions towards channel coding [NBB16], orthogonal frequency-
division multiplexing (OFDM) [FCD+18; AH20], multiple-input multiple-output
(MIMO) [KHH+20] and joint source-channel coding [BBG19]. Moreover, a handful
of techniques were proposed to enable training of the end-to-end systems with-
out a channel model. In [YLJ+18; ORW19; DHC+20; YLL+20], it was proposed
to leverage generative adversarial neural networks to learn a differentiable model
of the channel and then to train the end-to-end system using the learned model.
Autoencoder-based communication systems have subsequently been extended to-
wards other settings, such as optical fiber [KCT+18], optical wireless [ZZC+19],
and molecular communications [MDJ+19].

This section derives an information-theoretical perspective on autoencoders and re-
lates the commonly used symbol-wise categorical cross-entropy to known information-
theoretic quantities [SAH19]. It is derived that this loss function is indeed equivalent
to maximizing the mutual information between the channel input and output. Based



214 Chapter 7. Data-Driven Mutual-Information-Based Signal Processing

on this observation, an end-to-end learning system that learns capacity-achieving
probabilistic shaping and geometric shaping is devised.

However, practical systems usually rely on bit-interleaved coded modulation and
bit-metric decoding at the receiver because of its reasonable complexity. Thus,
the constellation points forming the channel input constellation are labeled by bit
vectors, and bit levels are treated independently. Therefore, the points that form a
constellation learned by an autoencoder optimized on the symbol-wise categorical
cross entropy must be labeled by bit vectors to be used in a practical bit-metric
decoding-based system. This is typically a challenging task, even for low modulation
orders. More importantly, the mutual information between channel input and output
is known to not be a rate achievable by bit-metric decoding [BSS15]. This suggests
that I(X; Y) is not necessarily an appropriate metric for trainable communication
systems leveraging bit-metric decoding. Thus, in the second part of this section, we
generalize the information-theoretic findings related to symbol-wise autoencoders
also to bit-wise autoencoders. In this section, the learned constellation and the
associated bit-labeling are investigated. The superior performance of the learned
end-to-end system over conventional systems in terms of coded bit error rates is
presented.

In general, autoencoders unfold their full potential in combination with unknown
channel models and real over-the-air measurements. We published those investiga-
tions in cooperation with Nokia Bell Labs France and the University Stuttgart in
[CAD+20] but excluded a detailed discussion for ease of brevity. The investiga-
tions showed that the performance improvements observed in numerical computer
simulations can be reproduced in real-word experiments.

7.3.1 Symbol-Wise Autoencoder

Fig. 7.10 shows a symbol-wise autoencoder. It consists of the following main parts:

Transmitter The incoming bit sequence is denoted by b = [b1, . . . , bN ]T and is
of size N and mapped onto hypersymbols s ∈ S. Here, S is the finite, discrete
eventspace of the random variable S. The sequence of hypersymbols denoted by
s = [s1, . . . , sM ]T of size M is fed into a symbol mapper which maps s onto a
sequence of complex transmit symbols x ∈ CM according to p(x|s), whereM can be
seen as the number of channel uses. To perform probabilistic shaping, the trainable
distribution pθS(s) with parameters θS ensures that symbols s ∈ S appear such that
I(X; Y) is maximized. The actual probabilistic shaping, respectively, the learning
procedure to determine pθS(s) is described in Section 7.3.1.1. When considering
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Figure 7.10: Trainable end-to-end communication system for joint geometric and
probabilistic shaping.

geometric shaping, also the mapper is implemented as a neural network fθM with
trainable parameters θM . Both, the mapper and the distribution could be trainable,
resulting in joint probabilistic-geometric shaping. Again, more details regarding the
training of θM are deferred to Section 7.3.1.2.

Channel The channel models the physical transmission medium. It takes the
complex transmit symbols x ∈ CM and outputs M received samples pooled in
y ∈ CM . The possibly unknown transition probability p(y|x) describes the input-
output relation.

Receiver The receiver is comprised of a demapper. The demapper is also imple-
mented as a neural network with trainable parameters θD, which maps each received
sample y ∈ C to a probability vector over the set of symbols S. The mapping de-
fined by the demapper is denoted by p̃θD(s|y), and defines an approximation of the
true posterior distribution p(s|y).

7.3.1.1 Joint Geometric and Probabilistic Shaping

Let us assume a bits-to-symbols mapper which maps the bits from b to symbols
s such that these symbols follow the distribution pθS(s). This can be done, e.g.,
using the algorithm presented in [SB16]. Therefore, we consider a transmitter that
transmits symbols according to pθS(s), and a receiver which aims to reconstruct the
transmitted symbols by approximating the posterior distribution p(s|y). Because
the mapper fθM maps a symbol s ∈ S to a channel symbol vector x ∈ C in a
deterministic manner, the distribution over the channel inputs x equals

pθS ,θM (x) =
M∑
s=1

δ (x− fθM (s)) pθS(s) . (7.36)
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Please recall that the target of probabilistic shaping is to find pθS(s), such that
I(X; Y) is maximized.

Training is performed considering the demodulation as a classification task and using
the categorical cross-entropy as loss function:

J(θS,θM ,θD) , Es,y [− log p̃θD(s|y)] = −
N∑
s=1

pθS(s)

∫
y

p (y|fθM (s)) log p̃θD(s|y)dy .

(7.37)

Rewriting the loss function yields

J(θS,θM ,θD) = −
∫
x

pθS ,θM (x)

∫
y

p(y|x) log p̃θD(x|y)dydx

= −
∫
x

∫
y

pθS ,θM (x, y) log p̃θD(x|y)dydx

= −
∫
x

pθS ,θM (x) log pθS ,θM (x)dx

−
∫
x

∫
y

pθS ,θM (x, y) log
p̃θS ,θM ,θD(x, y)

pθS ,θM (y)pθS ,θM (x)
dydx . (7.38)

It is important to notice that pθS ,θM (x, y) is the true joint distribution of X and
Y, whereas p̃θS ,θM ,θD(x, y) is the joint distribution computed from the posterior
approximated by the demapper p̃θD(x|y) where

pθS ,θM (x, y) = pθS ,θM (x)p(y|x) , (7.39)

pθS ,θM (y) =

∫
x

pθS ,θM (x, y) , (7.40)

p̃θS ,θM ,θD(x, y) = p̃θD(x|y)pθS ,θM (y) . (7.41)

In a next step one finds

J(θS,θM ,θD) = HθS(S)− IθS ,θM (X; Y) + Ey [DKL {pθS ,θM (x|y)||p̃θD(x|y)}] ,
(7.42)

where DKL is the Kullback-Leibler divergence. This is a crucial finding of this sec-
tion as it allows to isolate the mutual information in the loss function. Especially
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if probabilistic shaping is performed, often a collapse of the constellation was ob-
served, i.e., multiple symbols where mapped onto the same constellation point, as
the minimization of the cross-entropy loss in Eq. (7.42) also implies a minimization
of the entropy HθS(S). Hence, a more appropriate loss Ĵ becomes

Ĵ(θS,θM ,θD) , J(θS,θM ,θD)− HθS(S) (7.43)

which ensures a maximization of the relevant information IθS ,θM (X; Y).

Training the end-to-end system by minimizing Ĵ corresponds to maximizing the
mutual information of the channel inputs X and outputs Y while minimizing the
Kullback-Leibler divergence between the true posterior distribution pθS ,θM (x|y) and
the one learned by the receiver p̃θD(x|y). Moreover, the neural network imple-
menting the receiver should approximate the posterior distribution pθS ,θM (x|y) of a
constellation maximizing the mutual information with high precision. This is im-
portant to avoid learning a constellation for which the posterior distribution is well
approximated, but which does not maximize the mutual information.

The challenge of performing probabilistic shaping with machine-learning-based al-
gorithms comes from the difficulty of training a sampling mechanism for symbols s
drawn from the finite set S. Let us address this issue exploiting the Gumbel-Softmax
trick [JGP17], an extension of the Gumbel-Max trick [HJ12]. The Gumbel-Max trick
provides a convenient way to sample a discrete distribution pθS(s) by computing the
samples as follows:

s = arg max
i=1,...,S

(gi + log pθS(i)) (7.44)

where gi are i.i.d. samples drawn from a standard Gumbel distribution. Because
the arg max operator is not differentiable, one cannot train pθS(s) using usual

stochastic gradient descent methods. The key idea of the Gumbel-Softmax trick
is to use the softmax function as a differentiable approximation to arg max. More
precisely, one generates a vector of dimension |S|, denoted by s̃, with components

s̃i =
exp gi + log pθS(i)/τ∑S
j=1 exp gj + log pθS(j)/τ

, i = 1, . . . , |S| (7.45)

where τ is a positive parameter called the temperature. The vector s̃ is a probability
vector where arg max

i
s̃i = s. This is an approximation of the one-hot representa-

tion of s denoted by s. As the temperature goes to zero, samples generated by the
Gumbel-Softmax method become closer to one-hot vectors, and their distribution
becomes closer to pθS(s) [JGP17].
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Figure 7.11: End-to-end architecture for geometric and probabilistic shaping .

Fig. 7.11 shows the architecture of the sampling mechanism. The optimal proba-
bilistic shaping depends on the SNR of the channel over which we transmit, which
therefore must be a priori known by the transmitter [FAB+16]. The SNR in dB
is fed to a neural network with trainable parameters θS. The neural network is
made of two dense layers and generates the logits of the symbols distribution pθS(s).
The logits are the unnormalized log probabilities, and the distribution pθS(s) can
be retrieved by applying a softmax activation to the logits. The first dense layer is
made of 128 units with ReLU activations and the second layer of S units with linear
activations. The number of units was determined empirically. By tuning the neural
network parameters θS one, therefore, optimizes the distribution pθS(s).

The mapper is made of a matrix of dimension |S| × 2 followed by a normalization
layer, as shown in Fig. 7.11. The two columns of constellation matrix are used
to represent the real and imaginary part of the complex constellation points sepa-
rately. The matrix consists of the unnormalized constellation point locations. The
normalized constellation is denoted by C = [c1, . . . , cs, . . . , c|S|]

T where cs ∈ R2, s =

1, . . . , |S|. By taking the product of a one-hot vector s with the sth element set to
one with C, one selects a constellation point x = cs. Normalization is performed to
ensure the average energy per constellation point equals unity, i.e.,∑

s∈S

pθS(s) |xs|22 = 1 . (7.46)

If only probabilistic shaping is performed, the constellation is not trained, and some
fixed constellation, e.g., QAM, is used. When geometric shaping is performed, the
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constellation is trainable and θM = C.

A drawback of the Gumbel-Softmax trick is that the generated vector s̃ is only
approximating a true one-hot vector s. Consequently, taking the product of s̃ and
C results in a linear combination of multiple constellation points cs. To avoid this
issue, we take advantage of the straight-through estimator [BLC13], which uses the
true one-hot vector s when performing the forward path and the approximate one-
hot vector s̃ for the backward path at training.

The trainable demapper consists of three dense layers, as shown in Fig. 7.11. The
first two layers are made of 128 units with ReLU activations, while the last layer
is made of S units with softmax acitvation to output a probability vector over the
set of symbols S. Also, the demapper takes the SNR in dB as input. This was
motivated by the observation that the posterior distribution depends on the SNR,
and it was found experimentally to be crucial to achieve the best performance.

7.3.1.2 Simulation Results Symbol-Wise Autoencoder

In this section, the mutual information of the channel input and output achieved
for the symbol-wise autoencoder is compared to state-of-the-art modulation schemes
considering an AWGN channel. Simulation results for Rayleigh fading channels were
published in [SAH19]. Training of the end-to-end system introduced in the previ-
ous section is performed with respect to the loss function Ĵ defined in Eq. (7.43),
as opposed to previous works, which train autoencoders with respect to the usual
cross-entropy J defined in Eq. (7.42). Using Ĵ as loss function is crucial to enable
probabilistic shaping, as using J would rather lead to a minimization of the source
entropy HθS(S) instead of maximization of the mutual information I(X; Y). The
training was performed with the Adam stochastic gradient descent (SGD) variant,
with batch sizes progressively increasing from 100 to 10,000 and learning rates pro-
gressively decreasing from 10−3 to 10−5. When probabilistic shaping was performed,
the temperature in (7.45) was set to 10. All these parameters were found empiri-
cally through intensive computer simulations and heuristic optimizations. First, the
results that were obtained when both the locations and probabilities of the constel-
lation points are optimized are shown, i.e., joint geometric and probabilistic shaping.
The considered modulation orders N are 16, 64, 256, and 1024.

In this section, both the probability distribution and the geometry are assumed to be
trainable. Pure probabilistic shaping of QAM is studied in great detail in [FAB+16].
It is well known that for an AWGN channel, distributions p(s) from the Maxwell-
Boltzmann family maximize the mutual information I(X; Y) and, thus, achieve the
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Figure 7.12: Mutual information achieved by the reference schemes and the learned
joint probabilistic and geometric shaping on the AWGN channel. Magnification is
done for N = 256.

capacity in a certain regime [FAB+16]. However, when training a symbol-wise au-
toencoder, we do not enforce the learning of distributions from this family. The
following modulation schemes are compared: QAM with no probabilistic shaping
(QAM), trainable geometric shaping (Learned GS), trainable joint probabilistic and
geometric shaping (Learned PS+GS) both optimized as described in the previous
section, and QAM with Maxwell-Boltzmann distribution for probabilistic shaping
as in [FAB+16]. QAM with Maxwell-Boltzmann from [FAB+16] is presented only
for modulation orders of 16, 64, and 256, and the distributions are optimized for
specific SNR values. In Fig. 7.12, the mutual information I(X; Y) achieved by the
proposed joint shaping scheme (cf. red solid curve) is compared to several reference
schemes. It is shown that geometric and probabilistic shaping is superior to all
reference schemes. It is observed that already geometric shaping alone significantly
outperforms QAM. Furthermore, it can be seen that the proposed neural network
learns a joint probabilistic and geometric shaping, which operates very close to ca-
pacity for a wide range of SNRs. From Fig. 7.12, one observes that the achievable
gains enabled by constellation shaping are more significant the higher the modula-
tion order gets. Notice that the proposed approach benefits from training a neural
network that computes optimized shaping distributions over a wide range of SNRs.
In contrast, the Maxwell-Boltzmann distribution from [FAB+16] is only optimized
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Figure 7.13: Learned joint shaping for N = 64. The size of the points is proportional
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for a limited SNR range. This is highlighted in the second magnification for the
SNR range from 19 to 20 dB. There, the black curve for Maxwell-Boltzmann distri-
bution is not shown as in this regime the achievable rate for a 256-ary constellation
already deviates from the theoretical channel capacity curve for a continuous input
alphabet. However, the presented end-to-end learning approach operates extremely
close to the continuous capacity reference and significantly outperforms a QAM con-
stellation. For this evaluation, the sampling mechanism was trained for SNR values
ranging from −2 dB to 40 dB. Notice that the actual channel model was not known
to the autoencoder to achieve this result.

Fig. 7.13 shows the joint probabilistic and geometric constellations for various SNR
values and for M = 64. It can be observed that the learned shaping is similar to a
two-dimensional Gaussian distribution. For lower SNRs, the learned shaping favors
constellation points closer to the origin. Due to the normalization, which ensures
that E{|x|2} = 1, the less frequently transmitted outer points are placed further
apart from the origin. As the SNR increases, the distribution becomes uniform.
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Figure 7.14: Bit-wise autoencoder.

7.3.2 Bit-Wise Autoencoder

Although it appears as a trivial modification at first glance, the transition from
symbol-wise to bit-wise autoencoder-based communication systems turns out to re-
quire a carefully adjusted framework. The main difference in the objective is to
minimize the BER instead of the SER. This immediately leads to the question of
how to find the optimal labeling scheme for the learned constellations, which is not
part of previous autoencoder implementations. The constellation obtained by train-
ing on the symbol-wise cross-entropy needs to be labeled to be used in a conventional
BICM system. However, since the learned constellation points do not usually form
a grid (cf, Fig. 7.13), as in a conventional QAM, finding the optimal labeling is a
combinatorial problem with 2m! possibilities (neglecting symmetries). Therefore, we
can only rely on sub-optimal heuristics to label the constellation points after the
training process, as, e.g., done in [KCT+18].

Fig. 7.14 depicts a bit-wise autoencoder. In the bit-wise autoencoder, the mapper
takes as input a bit vector of length m, and the demapper outputs m logits (one per
bit) which form a vector denoted by l ∈ Rm. Probabilities over the m bits, denoted
by p̃θD(bj|y), j = 1, . . . ,m, are obtained by element-wisel application of the sigmoid
function.

An autoencoder-based communication system is typically trained by minimizing the
categorical cross-entropy between the true posterior distribution pθM (s|y) and the
one learned by the receiver p̃θD(s|y), averaged over all the possible channel outputs y,
i.e.,

Ey [H (pθM (s|y), p̃θD(s|y))] = −Ey

[
2m−1∑
s=0

pθM (s|y) log (p̃θD(s|y))

]
. (7.47)

As shown in the previous section, this is equivalent to maximizing the mutual infor-
mation between the channel input X and output Y. For practical use of a constella-
tion learned by an autoencoder trained on Eq. (7.47) with bit-metric decoding, the
constellation needs to be labeled, i.e., each constellation point needs to be mapped
to a unique bit vector. This task is non-trivial and becomes quickly intractable
even for small modulation orders. Moreover, I(X; Y) is not an achievable rate by
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bit-metric decoding [BSS15]. Therefore, even if optimal labeling is assumed (e.g.,
found by exhaustive search), a constellation learned by minimization of Eq. (7.47)
is not necessarily optimal for practical bit-metric decoding receivers.

An achievable rate by bit-metric decoding is the bit-wise mutual information [Böc18]

R := H (B)−
m∑
j=1

H (Bj|Y) ≤ I(X; Y) (7.48)

where B denotes the multivariate random variable associated with the input bit
vector b of length m.

Optimization of the bit-wise autoencoder is done by minimizing the total binary
cross entropy

J(θM ,θD) =
m∑
j=1

Ey [H (pθM (bj|y), p̃θD(bj|y))] (7.49)

=
m∑
j=1

Ey,bj [− log (p̃θD(bj|y))] (7.50)

which is closely related to the bit-wise mutual information

J(θM ,θD) = H(B)−R +
m∑
j=1

Ey [DKL {pθM (bj|y)||p̃θD(bj|y)}] (7.51)

where pθM (bj|y), j = 1, . . . ,m are the true posterior distributions. Interestingly,
according to [Böc18], (7.49) itself is an achievable rate for an imperfect receiver.
Rewriting (7.49) as (7.51) allows to connect the actual bit-wise mutual information
to the achievable rate for imperfect receivers. In turn, it becomes clear how trainable
communication systems can easily outperform conventional systems with imperfect
receivers. In more detail, the first term on the right-hand side of (7.51), i.e., H(B)

is the entropy of the bit vector generated by the source, which is typically constant
and equals the number of bits m mapped to one symbol (assuming uniformly dis-
tributed bits). The second term, i.e., R, is the bit-wise mutual information, and the
third term is the sum of the Kullback-Leibler (KL) divergences between the true
posterior distributions pθM (bj|y) and the ones learned by the demapper p̃θD(bj|y).
The KL divergences accounts for the sub-optimality of the receiver. Training of
the end-to-end system by minimizing J , therefore, corresponds to maximizing R,
which is suited to bit-metric decoding, while minimizing the KL divergence between
the optimal demapper and the one learned at the receiver. Moreover, because the
mapper assigns each bit vector to a constellation point, joint geometric shaping and
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bit labeling is performed when minimizing J . The neural network implementing the
demapper should approximate the posterior distributions pθM (bj|y) of a constella-
tion maximizing the bit-wise mutual information with high precision. This avoids
learning a constellation where the posterior distributions are well-approximated, but
the bit-wise mutual information is not maximized.

7.3.2.1 Simulation Results Bit-Wise Autoencoder

This section evaluates the bit-wise autoencoder on an AWGN channel. We demon-
strate that training on the bit-wise mutual information allows seamless integration
with practical bit-metric decoding receivers, as well as joint optimization of constel-
lation shaping and labeling. Therefore, a bitstream is fed to an LDPC encoder which
generates codewords c of length n. The number of bits per channel use is m and it
is assumed that n is a multiple of m. Each codeword is broken apart into s = n

m

bit vectors b of length m, i.e., c =
[
bT

1 , . . . ,b
T
s

]T. Each bit vector bi, i = 1, . . . , s, is
mapped into a complex baseband symbol xi ∈ C, and is sent over the channel. On
the receiver side, the demapper processes each received sample yi ∈ C and generates
LLRs li ∈ Rm. Finally, the LLRs of the entire codeword l =

[
l(1)T, . . . , l(s)T

]T are
fed into a belief-propagation decoder.

Like the symbol-wise autoencoder, the mapper in Fig. 7.14 includes a neural network
that generates a continuum of constellations C ∈ C2m that depends on the SNR.
The neural network included in the mapper is made of two dense layers with ReLU
activations and one dense layer with linear activations. Please note again that
the architecture of the mapper was determine empirically. The remaining internal
structure of the mapper and the internal structure of the demapper are similar
to the symbol-wise autoencoder sketched in Fig. 7.11. Please remember that the
learned constellation set is SNR dependent, i.e., mapper and demapper know the
SNR. However, this is just a generalization of the case when re-training per SNR is
performed as for trainable systems, the SNR is always implicitly part of the training
data. In case that feedback of the SNR is not possible, the same setup can be trained
with fixed SNR input at the price of a slightly reduced BER performance. Recall
that in classical communication systems, e.g., in the 5G standard, one typically
defines the modulation and coding scheme based on the SNR.

An irregular LDPC code from the 802.11n standard [IEE16] was considered, with
rate Rc = 0.5 and codeword length N = 1296 bit.

The batch-size |B| for training was set to 500, whereas the learning rate was pro-
gressively decreased from 10−3 to 10−5. For training, the SNR was randomly and
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uniformly selected for each example from a 4 dB range centered on the waterfall
region of the code. Note that, at training, the channel encoder and decoder are not
needed, as the loss function Eq. (7.49) is based on the output of the demapper. For
evaluation, the number of iterations performed by the belief-propagation decoder
was set to 40.

The (coded) BER achieved by the bit-wise autoencoder was compared to the BER
of PSK for m = 3 and to QAM for m = 4, 6, and 8. For the considered baselines,
maximum-likelihood demapping was used. Fig. 7.15a shows the BER achieved by
the compared approaches with the setup presented above. It can be seen that the
schemes learned by the bit-wise autoencoder outperform the baselines. Moreover,
the gains achieved by the learning schemes increase with the modulation order,
reaching 0.8 dB for m = 8, compared to 0.3 dB for m = 3.
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Figure 7.16: Constellations learned for m = 4 bit at varying SNR. The learned
labeling of the bit-wise autoencoder is shown in gray.

To get insight into the learned constellation geometries, Fig. 7.16 shows the constel-
lations learned for m = 4, when leveraging the bit-wise and symbol-wise autoen-
coder, respectively. It can be seen that training on the bit-wise mutual information
(Fig. 7.16a) leads to a constellation that differs significantly from the one obtained
from training on the symbol-wise cross-entropy loss (cf. Fig. 7.16b). Recall that
using the constellation learned with the symbol-wise autoencoder (cf. Fig. 7.16b)
in a bit-metric decoding-based system requires an additional heuristic labeling step,
which is typically not trivial.

Besides the labeling, the optimal position of the constellation points can differ under
different metrics. An intuitive example is depicted in Fig. 7.16, where, for the low
SNR region, the bit-wise optimized autoencoder (Fig. 7.16a) clusters constellation
points into groups that only differ in one bit position. This effectively weakens the
reliability of this bit position while improving the other positions and, thereby, op-
timizes the overall achievable information rate. However, in the alternative symbol-
metric approach, an ambiguity is unavoidable between neighboring symbols and not
taking into consideration during the training. Therefore, a degraded bit-wise perfor-
mance can be observed if the training is done for the symbol-metric approach. When
looking at the corresponding symbol-metric optimized constellation in Fig. 7.16b,
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we see that such a clustering does not occur for the exact same channel parame-
ters after training. While a symbol-wise trained constellation improves the SER,
it degrades the achievable BER as the process of finding optimal bit labels is not
part of the training objective. Fig. 7.15b shows the coded BER performance of a
symbol-wise trained autoencoder system with randomly chosen labels and heuristic
labels compared with a QAM baseline with Gray labeling and a bit-wise optimized
autoencoder. It should be emphasized that the heuristic labeling is not necessarily
optimal but underlines the difficulties in finding such labeling. As it can be seen, the
BER performance of the symbol-wise optimized autoencoder with heuristic labels is
≈ 0.7 dB worse than the conventional QAM baseline and even ≈ 0.8 dB worse than
the bit-wise optimized autoencoder. These results suggest that one should train on
the bit-wise mutual information when using bit-metric decoding. Moreover, in the
case of the bit-wise autoencoder, the learned labeling is also shown in Fig. 7.16a.
One can see that a form of Gray labeling was learned, where two points close to
each other are assigned labels that differ in only one bit.

7.4 Summary

This chapter addressed the recently enforcing shift from model-based to data-driven
system design. We highlighted that mutual-information-based system design is nat-
ural in deep learning and often done implicitly. The opportunities of a data-driven
mutual-information-based system design over a classical model-driven design were
outlined based on two distinct applications. In detail, this chapter discussed the
neural information bottleneck decoder and capacity-achieving end-to-end learning.
The findings in this chapter should be considered as a starting point for intensive
future research as the presented scenarios might only exploit a fraction of the entire
potential of the sketched approaches. In the following, the main findings of this
chapter are summarized.

Previous chapters revealed the excellent performance of information bottleneck de-
coders despite coarse quantization. However, the practical implementation of the de-
rived mappings depends mainly on the available hardware and associated resources.
Currently, many popular deep learning applications drive the development of ded-
icated deep learning hardware. As a result, dedicated deep learning processors
can be expected to be available in many future communication devices. Therefore,
channel decoders tailored to such dedicated deep learning circuits are of great prac-
tical interest. This chapter presented the neural information bottleneck decoder in
a supervised and in an unsupervised manner. The supervised neural information
bottleneck decoder was trained on existing lookup tables but learned very complex
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input-output relations for a multiple-input-multiple-output scenario. Here, a single
iteration-aware neural network was trained, which learns to exploit redundancies in
the computation of the extrinsic messages and also across tables for different iter-
ations. The devised neural network outperforms the open-node information bottle-
neck decoder from Chapter 5 although much fewer parameters where used. However,
the trainable parameters in the neural network were stored with high precision, and
the operations in the neural network rely on multiplications. Therefore, future re-
search on the supervised neural information bottleneck decoder should focus on the
impact of quantization on the performance as well as an efficient implementation of
multiplications. However, these issues are not dedicated to the neural information
bottleneck decoder but are of large practical interest for any application of neural
networks.

In a second step, the unsupervised neural information bottleneck decoder was pre-
sented. This approach can be seen as an instance of a sample-based information
bottleneck. Here, the relevant-information-preserving mapping p(tout|tin) is learned
based on small sample batches during training. It was shown that similar mappings
as for the model-based information bottleneck were found, which had access to the
exact joint distribution in advance. These observations motivate the application
of the unsupervised neural information bottleneck decoder in applications where
the computation of the joint distribution is intractable, e.g., in density evolution for
non-binary LDPC codes with high field orders. Furthermore, in future research, fur-
ther constraints on the mapping, e.g., symmetry, might be included in the training
objective to avoid local optima and reduce the network complexity.

In the last part of this chapter, end-to-end learning using autoencoders was pre-
sented as a generic example of mutual-information-based communication system
design. Instead of optimizing individual blocks, the transmitter and receiver were
jointly optimized to maximize the relevant information given a constraint on the
modulation alphabet’s size, respectively the channel quality. By considering constel-
lation shaping as an instance of end-to-end learning, different shaping variants, i.e.,
geometric and probabilistic shaping, were investigated. Based on an information-
theoretic analysis of common loss functions, the sample-based training in neural
networks is interpreted as a mutual-information-maximization task. Starting from
a symbol-wise autoencoder, which was shown to outperform existing shaping tech-
niques on an AWGN channel, the bit-wise autoencoder was addressed. The training
on bit-wise mutual information enabled seamless integration with bit-metric decod-
ing receivers, widely used in practice. The performance improvements over classic
QAM baselines result from geometric constellation shaping as well as from learning
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of the optimal demapper. Furthermore, it was shown that the bit-wise autoen-
coder could solve the labeling problem in constellation design, which is known to
be very difficult. Thus, learning-based optimization of the full physical layer for a
point-to-point link could be completely automated and may be one of the key in-
gredients of next-generation communication systems. In future work, an extension
to multiuser communications, i.e., multiple access and broadcast channels, should
be investigated. Please note that this chapter mainly focused on the transmission
over an AWGN channel, which can be easily modeled. However, significant gains in
the end-to-end performance were observed already for this channel model compared
to standardized schemes. Nonetheless, the data-driven approaches typically unfold
their full potential if the channel is unknown or difficult to model. However, this
requires access to actual measurement data, for example, of non-linear power am-
plifies or harsh, real-world transmission environments. This was beyond the scope
of this thesis but is an interesting field of future research.





Chapter 8

Conclusion

This dissertation studied machine learning methods for reliable transmission under
coarse quantization. In particular, the information bottleneck method was utilized
in the first part to devise different signal processing units that aim to maximize the
relevant information.

In great detail, the information bottleneck method was connected to different quan-
tization techniques in literature with a primary focus on rate-distortion theory. In
its origin, the information bottleneck method was treated as a clustering tool, for ex-
ample, for document classification. Based on several illustrative examples, the tran-
sition of this abstract clustering framework into the concept of mutual-information-
based signal processing was introduced (Chapter 3).

However, to unfold the full potential of mutual-information-based signal process-
ing, this dissertation enriched the information bottleneck framework with two novel
and essential extensions, i.e., information bottleneck graphs and message alignment
(Chapter 4). These tools are among the most powerful and crucial contributions of
this thesis as they allow to design remarkably enhanced signal processing units for
arbitrary irregular graphical models.

Build upon this theoretical foundation, the decoding of LDPC codes under coarse
quantization was studied in great detail. Error correction codes are the integral
backbone of modern communication systems to ensure reliable transmission. How-
ever, the decoding of such error-correcting codes requires the processing of soft-
information. Especially if this soft-information cannot be represented with high
precision, the decoding performance deteriorates drastically. However, this thesis
showed that the so-called information bottleneck decoder could handle the trade-of
between coarse quantization, i.e., a low bit width of the exchange messages, and
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near-optimum performance extremely well. In addition, the mutual-information-
based design approach allows to replace computationally demanding arithmetical
operations with simple relevant-information-preserving mappings. These mappings
can be implemented in various ways, for example, as lookup tables, static logic cir-
cuits, or neural networks, depending on the available hardware architecture. As
further contributions, this dissertation presented a very general decoder design suit-
able for regular, irregular, punctured, or rate-compatible LDPC codes. In turn, the
presented decoders are applicable in many modern communication standards like
5G, Wifi, DVB-S2, etc. (Chapter 5).

In general, LDPC codes can be constructed for arbitrary finite fields. However,
in practice, the decoding of such non-binary LDPC codes is extremely complex.
In this thesis, the design of non-binary LDPC decoders was investigated for field
orders up to 16. Furthermore, higher-order modulation schemes were combined
with respective non-binary LDPC codes. Using simulations, it was shown that
the presented information bottleneck decoder largely outperforms state-of-the-art
decoders with a comparable quantization (Chapter 6).

The second part of this work extended the generic information bottleneck framework
to data-driven machine learning, including deep learning using neural networks and
autoencoders. The discrete density evolution approach used to construct information
bottleneck decoders can become tedious, especially for high field orders. If the
involved probability distributions cannot be handled by the information bottleneck
algorithms, a data-driven approach is required that relies on training data instead of
traceable models. This approach is the main contribution of the second part of this
dissertation. Using the information bottleneck decoder as a starting point, the neural
information bottleneck decoder is presented, which can be utilized in a supervised or
unsupervised manner. This approach might also enable new fields of research that
are beyond the scope of this thesis, e.g., non-binary LDPC decoder design for large
field orders. In addition, Chapter 7 addresses a more holistic perspective on mutual-
information-based signal processing, i.e., end-to-end learning using autoencoders.
Leveraging information-theoretic quantities, optimized loss functions for data-driven
training were derived to build a theoretically capacity-achieving transmission chain.
Especially the effect of geometric and probabilistic shaping on an AWGN channel
was studied. The promising results motivate further research, including transmission
over unknown channel models, non-linear hardware imperfections, multiple access
schemes, broadcasting, etc.

In summary, one concludes that both proposed approaches, i.e., the model-based
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and data-driven approach, enable a paradigm shift towards mutual-information-
based signal processing where the emphasis is on preserving relevant information as
a holistic design objective. All signal processing blocks presented in the first part of
this dissertation within the broad concept of mutual-information-based signal pro-
cessing process unsigned integer indices, which require only a few bits in hardware.
Despite this coarse quantization, the devised blocks learn to extract the relevant
information without significant losses compared to the optimum conventional signal
processing algorithms with high precision. Furthermore, the presented concept was
generalized to end-to-end learning using autoencoders. Here, the transmitter and
receiver are implemented as two individual neural networks that jointly learn to
maximize the achievable information rate over a possibly unknown channel.





Appendix A

Proofs and Derivations

A.1 Proof of Proposition 4.2.1

Let us assume two meanings p(x|ti, kj) and p(x|tn, km) where i, n ∈ {1, . . . , |T |} and
j,m ∈ {1, . . . , N}. For binary relevant random variable X, the Kullback-Leibler
divergence DKL {p(x|ti, kj)||p(x|tn, km)} can be written as

DKL {p(x|ti, kj)||p(x|tn, km)} (A.1)

= p(X = 0|ti, kj) log
p(X = 0|ti, kj)
p(X = 0|tn, km)

+ p(X = 1|ti, kj) log
p(X = 1|ti, kj)
p(X = 1|tn, km)

(A.2)

= p(X = 0|ti, kj) log
p(X = 0|ti, kj)
p(X = 0|tn, km)

+ (1− p(X = 0|ti, kj)) log
p(X = 1|ti, kj)
p(X = 1|tn, km)

(A.3)

= p(X = 0|ti, kj) ·
(

log
p(X = 0|ti, kj)
p(X = 0|tn, km)

− log
p(X = 1|ti, kj)
p(X = 1|tn, km)

)
+ log

p(X = 1|ti, kj)
p(X = 1|tn, km)

(A.4)

= p(X = 0|ti, kj) (L(x|ti, kj)− L(x|tn, km)) + log
p(X = 1|ti, kj)
p(X = 1|tn, km)

(A.5)

= p(X = 0|ti, kj) (L(x|ti, kj)− L(x|tn, km)) +
(
log 1 + eL(x|tn,km) − log 1 + eL(x|ti,kj)

)
(A.6)

= p(X = 0|ti, kj) (L(x|ti, kj)− L(x|tn, km)) + max(0, |L(x|tn, km)|)

−max(0, |L(x|ti, kj)|) + log 1 + e|L(x|tn,km)| − log 1 + e|L(x|ti,kj |)
(A.7)
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= p(X = 0|ti, kj) (L(x|ti, kj)− L(x|tn, km)) +
|L(x|tn, km)|

2
+
L(x|tn, km)

2

− |L(x|ti, kj)|
2

− L(x|ti, kj)
2

+ log 1 + e|L(x|tn,km)| − log 1 + e|L(x|ti,kj |)
(A.8)

= p(X = 0|ti, kj) (L(x|ti, kj)− L(x|tn, km)) +
|L(x|tn, km)|

2
+
L(x|tn, km)

2

− |L(x|ti, kj)|
2

− L(x|ti, kj)
2

+ log 1 + e|L(x|tn,km)| − log 1 + e|L(x|ti,kj |)
(A.9)

=

(
p(X = 0|ti, kj)−

1

2

)
(|L(x|ti, kj)| − sgn (L(x|ti, kj)) sgn (L(x|tn, km)) |L(x|tn, km)|)

− 0.5 (|L(x|ti, kj)| − |L(x|tn, km)|) + log 1 + e|L(x|tn,km)| − log 1 + e|L(x|ti,kj |)

(A.10)

=

∣∣∣∣p(X = 0|ti, kj)−
1

2

∣∣∣∣ (|L(x|ti, kj)| − sgn (L(x|ti, kj)) sgn (L(x|tn, km)) |L(x|tn, km)|)

− 0.5 (|L(x|ti, kj)| − |L(x|tn, km)|) + log 1 + e|L(x|tn,km)| − log 1 + e|L(x|ti,kj |)

(A.11)

Which yields DKL {p(x|ti, kj)||p(x|tn, km)}

=



p0 (|Lm(x|tn)| − |Lj(x|ti)|) + log 1+e|Lm(x|tn)|

1+e|Lj(x|ti)|
, Lj(x|ti) ≤ 0, Lm(x|tn) ≤ 0

(1− p0) |Lm(x|tn)| − p0 |Lj(x|ti)|+ log 1+e|Lm(x|tn)|

1+e|Lj(x|ti)|
, Lj(x|ti) ≤ 0, Lm(x|tn) > 0

p0 |Lm(x|tn)| − (1− p0) |Lj(x|ti)|+ log 1+e|Lm(x|tn)|

1+e|Lj(x|ti)|
, Lj(x|ti) > 0, Lm(x|tn) ≤ 0

(1− p0) (|Lm(x|tn)| − |Lj(x|ti)|) + log 1+e|Lm(x|tn)|

1+e|Lj(x|ti)|
, Lj(x|ti) > 0, Lm(x|tn) > 0

(A.12)
where p0 = p(X = 0|ti, kj), Lm(x|tn) = L(x|tn, km), Lj(x|ti) = L(x|ti, kj) and
approximately

≈



(1 + p0) (|Lm(x|tn)| − |Lj(x|ti)|) , Lj(x|ti) ≤ 0, Lm(x|tn) ≤ 0

(2− p0) |Lm(x|tn)| − (p0 − 1) |Lj(x|ti)| , Lj(x|ti) ≤ 0, Lm(x|tn) > 0

(1 + p0) |Lm(x|tn)| − (2− p0) |Lj(x|ti)| , Lj(x|ti) > 0, Lm(x|tn) ≤ 0

(2− p0) (|Lm(x|tn)| − |Lj(x|ti)|) , Lj(x|ti) > 0, Lm(x|tn) > 0

(A.13)

for sufficiently large |Lm(x|tn)| and |Lj(x|ti)|.
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Figure A.1: Illustration of a tree-like structure if M (a) is a power of two, (b) not a
power of two.

A.2 Proof of Tree-Like Node Decomposition

A.2.1 Number of Look-Up Stages

The tree-like information bottleneck graph exploits the fact that the look-up tables
are equivalent if the probability distributions of the inputs are equivalent. Hence, the
vector y = [y1, . . . , yM ]T has to be split such that a balanced tree is obtained. This
tree has the minimum depth, i.e. the minimum number of distinct look-up tables
are required. If M , i.e., the number of incoming discrete messages is a power of two,
clearly an optimum split will result in log2M stages (cf. Fig. A.1a). The number of
levels required ifM is no power of two can be obtained from the binary representation
of M , i.e., bM = [bmsb, . . . , blsb]

T. Here, bmsb denotes the most significant bit and blsb
is the least significant bit. Clearly, log2 bM,msb = blog2Mc gives a lower bound on
the required stages. The approach to determine the number of stages s is similar
to the decimal-to-binary conversion algorithm. In the first step, M is divided by
two, since always to inputs shall be combined. The remainder is the least-significant
bit indicating if an extra look-up table is needed, e.g., if M is odd. The quotient is
again divided by two; its remainder becomes the next bit again indicating if an extra
look-up table is needed. This process repeats until a quotient of one is reached. The
number of extra tables, which is equivalent to the number of ones following the most
significant bit, is added to blog2Mc. Thus, at most 2 · blog2Mc stages are needed if
M is not a power of two.
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