
tu
bd

ok
–1

08
43

TUHHTUHHInstitute of TelematicsInstitute of Telematics

Hamburg University of TechnologyHamburg University of Technology

Technical Report
urn:nbn:de:gbv:830–tubdok–10843

Java Transactional Domain
Programmers Guide V 0.2

Holger Machens
Institute of Telematics

Hamburg University of Technology
Hamburg, Germany

machens@tuhh.de

February 2011

Table of Contents

1 Introduction 1

2 Disclaimer 3

3 Installation 5
3.1 Unix . 5
3.2 Windows . 6
3.3 Manual Installation . 7
3.4 Check Installation . 8

4 Programming Transactional Domains 11
4.1 Project Setup . 12
4.2 Programming Rules . 13
4.3 Privatization Support . 14
4.4 Running and Debugging . 15
4.5 Export . 16

Bibliography 17

i

TABLE OF CONTENTS

ii

Chapter1Chapter1

Introduction

Transactional memory is promoted as a promising solution to ease parallel programming

by solving common problems with deadlocks and scalability. Unfortunately, transactional

memory introduces its own problems for programmers due to its rollback and retry behaviour

such as inconsistencies when switching between shared protected and local unprotected use of

data (privatization [SMDS07]), as well as problems with irrevocable operations such as I/O or

blocking in transactions for example to wait for a condition.

One solution to this dilemma is the use of a programming model which prevents the

programmer from those problems. The Institute of Telematics of the Hamburg University of

Technology analyses the use of a generic programming model [MT11] conforming to this

requirement and especially considering transaction-enabled data models to be separated in

modules (e.g. libraries) without making demands on the application using that data model

(such as instrumentation of each data access).

Java Transactional Domain (JTD) is an adaption of this generic programming model to Java.

It consists of a set of programming rules for Java and a prototypical toolchain supporting the

validation and automated source code instrumentation. The instrumentation tool and runtime

library consist of a modified version of the AtomJava STM system [HG06]. The modified

AtomJava compiler and runtime library supports even privatization and local use of data

[ATLM+06] to demonstrate automated optimizations as well as manual optimization by the

use of lower level APIs for expert programmers.

This document contains the programmers guide providing information to install and use the

JTD toolchain.

1

1 INTRODUCTION

2

Chapter2Chapter2

Disclaimer

The Java Transactional Domain Development Toolkit is a research prototype in beta stage. The

source is published under GPL v3 [Fou07]. Thus, the Institute of Telematics and the Hamburg

University of Technology does not provide any warranty to anything anyhow related to the

JTD and the JTD toolchain.

3

2 D ISCLAIMER

4

Chapter3Chapter3

Installation

3.1 Unix

Preconditions

You have to install the following software (if not already installed):

� Eclipse 3.6.1 with Java Development Toolkit (JDT) plug-in installed.

� Sun Java 1.6.

� Apache Ant 1.7.

Installation Procedure

1. Download jtd-2.0.0.tgz if not already done.

2. Extract jtd-2.0.0.tgz to a directory of your choice.

> tar xzf jtd-2.0.0.tgz

This will create a directory with the name JTD which we will call installation root

directory from now on.

3. Enter installation root directory: > cd JTD

4. Open ./install.sh script and customize the variables as explained there.

5. Start the build process by typing: > ./install.sh. This automatically gathers re-

quired packages atomjava 0.1 and polyglot 1.3.4 from directory thirdparty, applies

all patches and runs a build using ant. After that you have:

5

3 INSTALLATION

� The plugin readily build and zipped into de.tuhh.jtd.dt_2.0.0.zip

� All sources gathered and patched in the installation directory.

6. Unzip the file de.tuhh.jtd.jar_2.0.0.zip to your Eclipse plugin directory

$ECLIPSE_HOME/plugins.

7. (Re-)Start your Eclipse instance with eclipse -clean.

3.2 Windows

Preconditions

You have to install the following software (if not already installed):

� Eclipse 3.6.1 with Java Development Toolkit (JTD) plug-in installed.

� Sun Java 1.6.

� Apache Ant 1.7.

� Cygwin to execute the build script (using bash). Cygwin is no longer needed when the

installation is done.

Installation Procedure

1. Download jtd-2.0.0.tgz if not already done.

2. Extract jtd-2.0.0.tgz to a directory of your choice.

> tar xzf jtd-2.0.0.tgz

This will create a directory with the name JTD which we will call installation root

directory from now on.

3. Enter installation root directory: > cd JTD

4. Open ./install.sh script in an editor and customize the variables as explained

there.

5. Start the build process by typing: > ./install.sh. This automatically gathers re-

quired packages atomjava 0.1 and polyglot 1.3.4 from directory thirdparty, applies

all patches and runs a build using ant. After that you have:

� The plugin readily build and zipped into de.tuhh.jtd.dt_2.0.0.zip

� All sources gathered and patched in the installation directory.

6

3.3 MANUAL INSTALLATION

6. Unzip the file de.tuhh.jtd.jar_2.0.0.zip to your Eclipse plugin directory

$ECLIPSE_HOME/plugins.

7. (Re-)Start your Eclipse instance with eclipse -clean.

3.3 Manual Installation

Preconditions

� Eclipse 3.6.1 with Java Development Toolkit (JTD) plug-in installed.

� Sun Java 1.6.

� Apache Ant 1.7.

� Some adequate replacement for the Unix tool patch.

Installation Procedure

You will need the following software to be installed:

1. Download jtd-2.0.0.tgz if not already done.

2. Download Polyglot version 1.3.4 from http://www.cs.cornell.edu/projects/

polyglot/.

3. Download AtomJava version 0.1 (atomjava0.1.tar.gz)from http://wasp.

cs.washington.edu/wasp_atomjava.html.

4. Download the patch atomjava0.1-polyglot-1.3.4-src-patch from http:

//wasp.cs.washington.edu/wasp_atomjava.html.

5. Extract jtd-2.0.0.tgz to a directory of your choice.

> tar xzf jtd-2.0.0.tgz

This will create a directory with the name JTD which we will call installation root

directory from now on.

6. Extract polyglot-1.3.4-src.tar.gz. This creates directory polyglot-1.

3.4-src.

7. Apply the patch atomjava0.1-polyglot-1.3.4-src-patch to the directory

polyglot-1.3.4-src.

7

http://www.cs.cornell.edu/projects/polyglot/
http://www.cs.cornell.edu/projects/polyglot/
http://wasp.cs.washington.edu/wasp_atomjava.html
http://wasp.cs.washington.edu/wasp_atomjava.html
http://wasp.cs.washington.edu/wasp_atomjava.html
http://wasp.cs.washington.edu/wasp_atomjava.html

3 INSTALLATION

8. Extract atomjava0.1.tar.gz in the directory polyglot-1.3.4-src/src/

polyglot/ext. This result in a new directory polyglot-1.3.4-src/src/

polyglot/ext/atomjava.

9. Apply the patch JTD/polyglot-1.3.4-patch to the file polyglot-1.3.

4-src/build.xml.

10. Cleanup the polyglot build directory by running

> ant clobber.

11. Remove the following files and directories from the directory polyglot-1.3.

4-src/src:

� polyglot/ext/atomjava/runtime/AMain.java

� polyglot/ext/atomjava/runtime/AThread.java

� polyglot/ext/atomjava/runtime/wrapper/java/io/.

#PrintStream.java.1.3

� polyglot/ext/atomjava/visit/CurrentThreadSharer.java

� ppg/test

12. Apply the patch JTD/JTD-0.1-atomjava-0.1-src-patch to the directory

polyglot-1.3.4-src/src.

13. Copy all files from polyglot-1.3.4-src/src to JTD/atomjava. At this stage,

you have created the complete build environment for the JTD Eclipse plugin. You can

even import the project located in JTD into Eclipse if you have the Plugin Development

Environment installed.

14. Build the plugin by calling ant zip.plugin. This creates a zip file named de.

tuhh.jtd.jar_2.0.0.zip in the directory JTD.

15. Unzip the file de.tuhh.jtd.jar_2.0.0.zip to your Eclipse plugin directory

$ECLIPSE_HOME/plugins.

16. (Re-)Start your Eclipse instance with eclipse -clean.

3.4 Check Installation

To check if the installation of the JTD Plug-in was successful open the overview of in-

stalled plug-ins via Help -> About Eclipse SDK -> Installation Details

8

3.4 CHECK INSTALLATION

-> Plug-ins. You should find a plug-in called Java Transactional Domain Development

Toolkit (see Figure 3.1).

�� Figure 3.1: Expected entry in overview of installed plug-ins

9

3 INSTALLATION

10

Chapter4Chapter4

Programming Transactional
Domains

The concept of a transactional domain is to create data models which are protected by

transactions and separated from the remaining software to prevent errors. In means of

Java Transactional Domain a transactional domain consists of the set of all transactional

objects. The transactional objects in JTD guarantee protection and deadlock freedom in

concurrent use by multiple threads through the use of Transactional Memory. Declared

transactional objects are automatically instrumented by the instrumentation tool of the JTD

toolchain. The programmer declares transactional objects simply by inheritance of the interface

de.tuhh.jtd.runtime.Transactional (see Listing 4.1).

1 package org.acme.dining.philosophers;

2 import de.tuhh.jtd.runtime.Transactional;

3

4 public class Philosopher implements Transactional {

5

6 public void eat() {

7 getForks();

8 eating();

9 putForks();

10 }

11 public void think() {

12 // wise thinking ...

13 }

14

15 // ...

16 }

�� Listing 4.1: Declaration of transactional objects

11

4 PROGRAMMING TRANSACTIONAL DOMAINS

To provide the guaranteed protection the programmer must follow a given set of program-

ming rules given in Section 4.2. The conformance to this programming rules is automatically

checked by the validation tool of the JTD toolchain. Violations of rules are displayed as errors

in the Java editor.

4.1 Project Setup

To develop Java Transactional Domains you can choose one of two ways:

� Create a JTD project: Just select the menu entry File-> New->Project and

choose the Java Transactional Domain Project wizard (Figure 4.1) to create your new

project.

� Enhance an existing Java project: Select the Java project in the Project Explorer and

choose the entry “Add/Remove Java Transactional Domain Nature” from the context

menu (right click).

�� Figure 4.1: Project creation wizard

Important: Set Compiler compliance level to Java 1.4! because AtomJava does not support

levels higher or equal to 1.5.

Either way for each created project (say master project) a so-called slave project is created

which is used by JTD to instrument and compile transactional objects (see Figure 4.2). The

original source files (those you are editing during development) will remain in the master

project and will never be modified by the JTD system.

Files containing transactional classes or interfaces are indicated by a red and yellow plate

on its icon in the project explorer. The master project automatically validates those classes

and interfaces declared to be transactional and transfers them to the slave project to get

instrumented versions of them.

12

4.2 PROGRAMMING RULES

�� Figure 4.2: Master and slave project in the project explorer

4.2 Programming Rules

As mentioned in the introduction of this chapter transactional domains must conform to the set

of programming rules provided in this section. The set of programming rules is automatically

checked prior to each build in any project with the JTD nature (see Section 4.1).

Rules

The following list contains even rules for Java 1.5 but the current version of JTD supports
only Java 1.4 due to restrictions in AtomJava!

1. Instance variables of transactional classes must be private unless they are final.

2. Instance variables of transactional classes must be of primitive type, of type String, or

references on transactional objects.

3. Any code of a transactional class runs inside a transaction. This includes methods,

constructors, instance or class variable initializations and instance or class initialisation

blocks.

4. Code of transactional classes does not access any non-transactional objects. Prohib-

ited access includes method calls, constructor calls, direct variable access or class

initialisation.

5. Parameters of transactional methods must be of primitive type, of type String or transac-

tional.

6. Arrays as types of parameters or return values of transactional methods are prohibited.

13

4 PROGRAMMING TRANSACTIONAL DOMAINS

7. Base classes/interfaces as well as derived classes/interfaces of transactional classes/in-

terfaces must be transactional as well.

8. Type arguments of transactional generic classes must be either of type String or transac-

tional.

9. Use of thread suspension (e.g. wait, notify, synchronized) or native meth-

ods in transactional classes is prohibited.

Rule 1 grants access to member variables of transactional objects to its own code only which

implicitly starts a transaction (see rule 3). Rule 2 prevents a programmer from temporary

saving and accessing non-transactional data inside the transactional domain which does not

support recovery. Primitive types are allowed because in Java primitives are returned by

value and strings are constants. This makes modifications of both kinds of internal data

impossible. Rule 3 guarantees, that transactional data is accessed by transactions only. Rule 4

prevents from breaking up strong isolation by getting access to non-transactional data inside a

transactional method. Rule 5 prevents from sharing non-transactional data with a transaction.

Parameters provided to a method might be modified in the transaction and therefore need

to support transactions as well. For parameters of primitive type, Java has a call-by-value

semantics. Thus, the method is working on its own copy and needs no concurrency control.

Strings are immutable and need no concurrency control either. Rule 6 restricts the use of

arrays because they do not support transactions. Arrays have to be replaced by a transactional

wrapper class provided by the STM and supporting access to an underlying array. Rule 7

prevents a programmer from calling non-transactional methods of the base class or sub-class

when expecting guaranteed consistency. It also allows to declare any implementation of an

interface to be transactional. Methods of the common super class Object are overridden by

transactional methods of the STM system or prohibited when final. Rule 8 restricts the use of

type arguments for generic transactional classes. To fulfil this requirement, all type arguments

of a transactional generic class declaration must have at least one transactional type bound (e.g.

<T extends Transactional>) or a type bound of type String. Rule 9 in conjunction

with Rule 4 finally prevents use of blocking and probably irreversible methods.

4.3 Privatization Support

This is an example of an API for experienced programmers supporting optimization of

applications that use transactional memory. This API supports to switch off transactional

behaviour of transactional objects. This slightly improves the performance of transactional

objects.

14

4.4 RUNNING AND DEBUGGING

Privatization aims at reducing the computation effort for transactional objects by turning off

transactional behaviour. A transactional object may be transformed into a privatized object for

one thread by privatization and reversed into a shared transactional object by publication. A

privatized object is accessed by the owner thread only and therefore will not run transactions

on its own. Access to privatized objects by other threads is treated as an error. If a privatized

object is accessed in a transaction it must behave transactional to support a possible rollback.

Thus, it always attaches to running transactions of the same thread.

The API provides the following methods:

� PrivatizationService.privatize(object): Privatize an object for a given thread.

� PrivatizationService.publish(object): Publish a privatized object (i.e. make it shared).

� PrivatizationService.isShared(object): Check if the object is not privatized.

� PrivatizationService.isPrivatized(object): Check if the object is privatized by the

calling thread.

All those methods are transactional to support multiple actions at once such as privatizing/pub-

lishing multiple objects.

4.4 Running and Debugging

�� Figure 4.3: Launch configuration

The beta version of JTD does not support automatic copying of generated binaries in the

master project. Therefore you need to run your java application from the slave project. The

pathes in the slave project are automatically setup to support it. You just need to create a launch

15

4 PROGRAMMING TRANSACTIONAL DOMAINS

configuration (Run –> Run Configurations . . .) which points to the slave project and to the

class containing the main method (which will be located in the master project, cf. Figure 4.3).

You can even use an existing launch configuration which is configured for the master project

and point it to the slave project.

The same launch configuration can be used to debug your application. The debugger will

step through the instrumented version of your transactional objects which might be a bit

confusing if you are not planning to modify the STM system. This is another issue to be

addressed in some release version of JTD.

4.5 Export

If you are planning to export the generated binaries then be aware of the project structure.

Assuming you have compiled classes in master and slave project you can safely start by

copying all class files from the master project to a temporary location and then copy all class

files from the slave project to the same location. The latter step overrides the classes from the

master project with the instrumented class files from the slave project.

When bundeling the exported class files in a jar file the archive can be used without

knowledge of the transactions running inside.

16

Bibliography

[ATLM+06] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeis-
man. Compiler and runtime support for efficient software transactional memory. In
PLDI ’06: Proceedings ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 26–37, New York, USA, 2006. ACM.

[Fou07] Free Software Foundation. GNU GENERAL PUBLIC LICENSE. Free Software Founda-
tion, 2007. http://licenses/gpl-3.0.txt.

[HG06] B. Hindman and D. Grossman. Atomicity via source-to-source translation. In MSPC ’06:
Proceedings Workshop on Memory System Performance and Correctness, pages 82–91,
New York, USA, 2006. ACM.

[MT11] Holger Machens and Volker Turau. Avoiding publication and privatization problems
on software transactional memory. In Proceedings of the Kommunikation in Verteilten
Systemen 2011, Open Access Series in Informatics (OASICS). Dagstuhl Publishing,
2011.

[SMDS07] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization techniques for
software transactional memory. In PODC ’07: Proceedings 26th Annual ACM Symp. on
Principles of Distributed Computing, pages 338–339, New York, USA, 2007. ACM.

17

http://licenses/gpl-3.0.txt

	Titlepage
	Table of Contents
	1 Introduction
	2 Disclaimer
	3 Installation
	3.1 Unix
	3.2 Windows
	3.3 Manual Installation
	3.4 Check Installation

	4 Programming Transactional Domains
	4.1 Project Setup
	4.2 Programming Rules
	4.3 Privatization Support
	4.4 Running and Debugging
	4.5 Export

	Bibliography

