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Abstract: Ship vibrations excited continually by regular waves are predicted by a potential
method. It takes into account the interaction of the oscillatory flow with the steady flow due to
the ship’s forward speed, including steady ship waves and squat, but it excludes non-linear
oscillatory wave forces. A three-dimensional Rankine source patch method is used both for the
steady and the oscillatory flow. Vibration damping by an immersed transom, wave radiation,
bilge keels, propeller, and hatch cover friction are approximated. Application to a large
containership demonstrates that, in this example, damping is mostly attributable to the
transom.
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1 INTRODUCTION

Springing designates continually excited vibrations of

the total ship hull induced by the seaway. Whipping

(slam-induced) vibrations and local (plate and

panel) vibrations are not treated here. The paper is

further restricted to excitations and responses

depending linearly on wave height, in spite of the

fact that in some ships, especially those with strongly

flared sections, non-linear excitations are often

predominant. Only transfer functions, i.e. springing

amplitudes in regular waves of unit amplitude, are

considered. These allow the significant amplitude of

springing in natural seaways to be predicted accord-

ing to the usual practice for any linear response.

The ship hull structure is modelled as a straight

Timoschenko beam discretized by finite elements

(FE). Thus, bending and shear stiffness are taken into

account, but warping and local deformations are

excluded. This appears appropriate for the lower

modes of vertical bending; for horizontal bending

this is appropriate only for ships with small or no

hatch openings.

The correct determination of the excitation is both

important and difficult. Older methods, e.g. those

given in references [1] and [2], and even several

modern ones use adaptations of the strip method to

springing. Because substantial linear springing re-

sponses are excited by short waves only, the

excitation cannot accurately be determined from

the two-dimensional (2D) flow around ship sections

in planes x5 constant, as is typical for the strip

method. Instead, Newman’s ‘reverse flow theorem’

[3] was sometimes used. However, this mathemati-

cally elegant method is not directly applicable to

ships with an immersed transom, and the correction

proposed for this case in reference [2] appears

questionable.

Today it seems appropriate to use either three-

dimensional (3D) potential flow methods or RANS

methods [4] to predict springing. The latter appear

good for highly involved investigations and for

verifying other methods, but too slow for routine

application. Therefore a potential flow method is

described here. It uses Rankine sources, which do

not automatically satisfy the free surface boundary

condition. Instead, the high-frequency limit w5 0 of

the exact free surface boundary condition is satisfied

here by using a mirror sink above the water surface

for each original source below the water surface. The

patch method [5] is used to discretize the source

distribution.

Interactions between the regular, periodical

waves, and the stationary (in a ship-fixed reference

system) waves owing to forward speed are taken into
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account both for excitation and motion-dependent

pressures. Especially the stern wave may have

substantial influence on eigenfrequencies, excita-

tion, and damping. Therefore the steady flow

problem is solved first, satisfying the steady, fully

non-linear free-surface boundary conditions.

Whereas for the steady flow a panel mesh both on

the wetted hull and on part of the free surface is

used, the periodical flow requires only panels on the

hull. For both flows the same set of triangular hull

panels is used.

The free-surface condition w5 0 eliminates damp-

ing by wave radiation. Thus without adding empiri-

cal damping the response would be excessive at

resonance. To correct that, damping by various

processes is discussed, and approximate formulae

for it are developed.

2 MOTION EQUATION

A coordinate system x, y, z with axes directed

forward, to starboard and downward, respectively,

is used. Its origin is at the intersection of the midship

section, the symmetry plane, and the undisturbed

water surface.

Only harmonic vibrations of frequency ve, the

encounter frequency between ship and waves, are

considered

~uu x, tð Þ~Re ~̂uu~uu xð Þeivet
� �

ð1Þ

Here and in the following the hat symbol (as in ~̂uu~uu)

designates a complex amplitude. Its real part is the

value at the instant when a wave trough is at the

coordinate origin, and the imaginary part is the value

one quarter period earlier (if ve. 0) or later (if

ve, 0).

The motion equation of the body may be written

in the form

K ~uu xð Þ½ �zD _~uu~uu xð Þ
h i

zM €~uu~uu xð Þ
h i

~ ~FF xð Þ ð2Þ

K is the stiffness operator, i.e. the outer force

distribution required to produce the deformation
~uu xð Þ if the body had only stiffness, but no damping

and mass. Correspondingly D and M are the

damping and mass operators, respectively. ~FF xð Þ is

the distribution of excitation forces and moments

caused, here, by the periodical part of the pressure

distribution on the wetted hull.

Inserting equation (1) into equation (2) and using

the fact that K, D, and M are linear operators results

in the equation

KziveD{v2
eM

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
{V

~̂uu~uu xð Þ~ ~̂FF~FF xð Þ

thus

V ~̂uu~uu xð Þ
h i

z ~̂FF~FF xð Þ~0 ð3Þ
When it is not convenient to separate the motion-
dependent forces into stiffness, damping, and mass
contributions, the operator V (for vibration-depen-
dent force matrix) will be used. V comprises
contributions from the structural stiffness and the
ship’s mass (VS), the added mass effect of the
surrounding water (Vp), the weight distribution

(VW ), and various damping effects.

3 FE DISCRETIZATION

The continuous function ~̂uu~uu xð Þ is represented by a

vector ûu. Its components are the translations in y

and z direction and the rotations of the cross-

sections around the x, y, and z axes at all FE nodes of

the Timoschenko beam. Longitudinal vibrations are

omitted because their eigenfrequencies are quite

high, and because their coupling with the transverse

and vertical bending is small.

The equation of motion (3) can be transformed

into the FE equation

KziveD{v2
eM

� �
ûu~F̂F ð4Þ

whereK,D, andM are the stiffness, damping, andmass

matrices, respectively, and F̂F is the excitation vector.

4 USE OF APPROXIMATE MODES

The operators K, D, and M, and the FE matrices K,

D, and M as well, depend on the mode shape. For

example, in K the shear lag is responsible for a

reduction of the bending stiffness EI depending on

the mode. Similarly, the added-mass contribution to

M is smaller for higher modes than for lower ones.

Thus, in the following the quantities K, D, and M are

written with an index j indicating a certain mode.

This is one reason for introducing mode vectors wj

fromwhich the actual deformation u is superimposed

ûu~
XJ
j~1

wjv̂vj ð5Þ
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J is the number of modes taken into account. wj are

real vectors designating the translations of the nodes

and the rotations of the cross sections inmode j. v̂j are

complex scalars: the superposition factors of the

different modes when solving the equation for forced

vibrations in a wave.

Using equation (5), the motion equation (4)

becomes

XJ
j~1

KjziveDj{v2
eMj

� �
wjv̂vj~F̂F ð6Þ

If J is smaller than the number of degrees of freedom

of the FE system, this is an overdetermined system

for the unknown amplitudes v̂j. To obtain a system

of equations having as many equations as un-

knowns, and approximately to decouple the equa-

tions, equation (6) is multiplied from the left by wT
k ,

where T indicates the transpose, and k is a mode

index (1( k( J)

XJ
j~1

wT
kKjwjzivew

T
kDjwj{v2

ew
T
kMjwj

� �
v̂vj~wT

k F̂F ,

k~1 . . . J ð7Þ
For fixed k and j, the expression wT

kKjwj is a real

scalar: the virtual work produced by the stiffness

forces Kjwj and the virtual deformations wk. For the

different possible values of k and j, these J2 scalars

are combined to the J6J matrix K

K~ wT
kKjwj, k~1 . . . J, j~1 . . . J

� � ð8Þ

Correspondingly for D and M

D~ wT
kDjwj, k~1 . . . J , j~1 . . . J

� �
;

M~ wT
kMjwj, k~1 . . . J, j~1 . . . J

� �
ð9Þ

F̂ is the column vector the components of which are

wT
k F̂F

F̂F~ wT
k F̂F , k~1 . . . J

� �
ð10Þ

This gives the following matrix equation

KziveD{v2
eM

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
{V

v̂v~F̂F ð11Þ

where the matrices are square J6J matrices, and the

column vectors v̂ and F̂ have J components.

If wj were the exact mode shapes, and if K and M

were the same for all modes, then K and M were

diagonal matrices. However, the mode vectors and

the matrices K and M cannot be determined

independently. Thus an iteration is required to

determine the exact mode shapes. To avoid this

complication, here approximate mode vectors wj are

used. They are determined by an eigenvalue analysis

from the equation for free, undamped vibrations

K{v2
eM

� �
w~0 ð12Þ

where K and M are estimations of the stiffness and
mass matrix. K is determined from the structural
stiffness for the 2-node bending mode and the
hydrostatical restoring force, and M from the solid
mass distribution together with added masses
determined from 2D added masses and a reduction
factor of 0.75 for 3D effects. These approximations
are used only to determine wj; the springing
vibrations are determined from the correct, j-
dependent stiffness, damping and mass matrices as
a superposition of the approximate mode shapes.

Withoutanysupports thebeamrepresenting the ship

structure may perform rigid-body motions as well as

vibrations. Here the ‘rigid-body motions’ are included

as low-frequency modes. They describe not exactly

rigid motions, and their eigenfrequencies are not zero,

owing to the effect of hydrostatic pressures, which

contribute to the stiffness matrix. For vertical vibra-

tions, the lowest twomodes are, usually, not heave and

pitch because both motions are coupled; instead the

lowest two modes give two different superpositions of

heave and pitch motions, including slight bending.

5 CONTRIBUTION OF THE SHIP STRUCTURE
AND OF SHIP MASS

The current programme is restricted to vertical

vibrations. For these, the structural part of the

stiffness matrix is assembled from the following beam

element stiffness matrices taken from reference [6]

KE~
EI

1zkð Þl3E

12 {6lE {12 {6lE

4l2E 6lE 2l2E

12 6lE

4l2E

0
BBBBB@

1
CCCCCA

2
666664

zk

0 0 0 0

1l2E 0 {1l2E

0 0

1l2E

0
BBBBB@

1
CCCCCA

3
777775 ð13Þ
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with EI designating bending stiffness, GAs shear

stiffness, lE element length and

k~
12EI

GAsl
2
E

ð14Þ

(The lower-left part of the symmetrical matrices is

omitted.)

Correspondingly the mass element matrix is

ME~
1

1zkð Þ2
mlE
420

156 {22lE 54 13lE

4l2E {13lE {3l2E

156 22lE

4l2E

0
BBBBB@

1
CCCCCA

2
666664

z
kmlE
120

84 {11lE 36 9lE

2l2E {9lE {2l2E

84 11lE

2l2E

0
BBBBB@

1
CCCCCA

z
k2mlE
120

40 {5lE 20 5lE

1l2E {5lE {1l2E

40 5lE

1l2E

0
BBBBB@

1
CCCCCA

z
�mm

30lE

36 {3lE {36 {3lE

4l2E 3lE {1l2E

36 3lE

4l2E

0
BBBBB@

1
CCCCCA

z
k�mm

6lE

0 3lE 0 3lE

1l2E {3lE {1l2E

0 {3lE

1l2E

0
BBBBB@

1
CCCCCA

z
k2�mm

6lE

0 0 0 0

2l2E 0 1l2E

0 0

2l2E

0
BBBBB@

1
CCCCCA

�

with m5 solid mass per length and m̄5 solid mass

moment of inertia around the y axis per length. The

above expressions result from the assumptions of

constant mass density and stiffness within each

finite element, and from a relation between cross-

section rotation at the element ends and along the

element, which is correct for statical deformations.

The total structural stiffness matrix KS and the

total ship mass matrix MS are built from the above

element matrices as usual in FE computations. From

these matrices KS and MS are determined using

equations (8) and (9) analogously.

6 CONTRIBUTION OF THE SHIP’S WEIGHT

For this small contribution the ship’s mass is

assumed to be the sum of point masses ml at

locations ~xxl. The weight forces ~GGl~ 0, 0, gmlð Þ are

constant over time and, thus, have no influence on

vibrations. But for a vibration of mode j the

moments of the weight force have an oscillatory

part. For v̂j5 1 it has the amplitude

~wwj|~GGl ð16Þ

Together with the virtual motion of mode k this

moment produces the virtual work

VWkj~
X
l

~xxk ~wwj|~GGl

� �
~
X
l

~GGl ~xxk|~wwj

� � ð17Þ

where ~xxk designates the rotation angle around x, y,

and z axes of the beam cross-sections in mode k at

the location ~xxl, and ~wwj is the translation of the ship-

fixed point ~xxl~ x, y, zð Þ in mode j

~wwj ~xxð Þ~~wwj ~xx0ð Þz~xxj| ~xx{~xx0ð Þ ð18Þ

z0 is the z coordinate of the beam axis. ~xx0 is the

vector having components x, 0, z0. At the FE nodes,
~wwj ~xx0ð Þ is equal to certain components of the node

deformation vector wj; between the nodes,
~wwj x, 0, z0ð Þ and ~xxk are interpolated.

The second form in equation (17) is simpler to

evaluate because only the z component of ~xxk|~wwj is

required. Combining VWkj for all modes k and j to a

matrix VW gives the weight contribution VW to V in

equation (11).

7 CONTRIBUTION OF THE HULL PRESSURE

The water around the ship generates a pressure

distribution on the wetted part of the hull. In

equation (11), the part of the pressure distribution

due to the ship vibrations is represented by the

contribution VP to V, whereas the part owing to the

waves is represented by the excitation vector F̂.

To determine VP and F̂, the unit normal vector ~~nn~nn

on the hull is needed. ~~nn~nn contains a stationary and an

oscillatory part

�

�
��
��
��

(15)
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~~nn~nn~~nnz~aa|~nn ð19Þ

~nn is the normal vector for the non-oscillating ship.

The tilt vector ~aa of the hull normal due to its

oscillations is superimposed from the modes j

~aa~Re
X
j

~aajv̂vje
ivet

 !
ð20Þ

The modal contributions ~aaj differ from the modal

contributions to the tilt vector of the cross sections,

~xxj, owing to the shear deformation; for the most part

of the ship a better approximation than ~xxj is

~aaj~ xjx, {w’jz, w’jy
� �

~ xjx, {w’jz x, 0, z0ð Þ
�
{x’jxy, w’jy x, 0, z0ð Þ{x’jx z{z0ð Þ

�
ð21Þ

Here the indices x, y, z designate vector components,

and 9 designates a (partial for wj) derivative with

respect to x. The last expression given in equation

(21) results from introducing (18).

VP is determined, corresponding to the equations

(8) and (9), as the virtual work produced by:

(a) the complex amplitude of the oscillating pres-

sure p̂pj ~xxð Þ owing to the hull motion ~wwj ~xxð Þ, times;

(b) the hull motion ~wwk in the direction of the

pressure force, i.e. normal to the hull

VP~

ð
S

~wwk ~xxð Þ p̂pj ~xxð Þ~nn ~xxð Þz ~aaj ~xxð Þ|~nn ~xxð Þ� �
p 0ð Þ

h i
dS,

�
k~1 . . . J , j~1 . . . JÞ ð22Þ

where~xx designates points on the wetted hull surface S.

The oscillatory change of this surface due to the

exciting waves and due to springing need not be taken

into account because its contribution depends quad-

ratically on wave amplitude. p(0) is the stationary

pressure at the hull, including the hydrostatic pres-

sure, but excluding the air pressure because the latter

acts also on the interior side of the hull.

The corresponding equation for the excitation

vector is

F̂F~

ð
S

~wwk ~xxð Þ p̂pwzp̂pd
� �

~nn ~xxð Þ dS, k~1 . . . j

� �
ð23Þ

Here p̂w is the complex amplitude of the pressure

owing to the wave, and p̂d is the complex amplitude

of the diffraction pressure, i.e. the change of the

oscillatory pressure due to the presence of the non-

vibrating ship

The pressure distributions p̂j and p̂d follow from

the radiation potential wj and the diffraction poten-

tial wd of the water flow around the ship, respectively.

8 DETERMINATION OF FLOW POTENTIALS

The flow potentials are determined here by a 3D

Rankine panel method. Because of the quadratical

terms in the Bernoulli equation, interactions between

the stationary and the oscillatory flow around the ship

contribute to the oscillatory pressure even to first

order. Thus it is necessary to have the total potential

wt~w 0ð ÞzRe ŵwwzŵwdz
XJ
j~1

ŵwjv̂vj

 !
eivet

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
w 1ð Þ

ð24Þ

ŵw, ŵd, and ŵj are the complex amplitudes of the

oscillatory potentials of the wave, the diffraction,

and the radiation for unit motion of mode j,

respectively. Determining ŵd is the main difficulty

in springing predictions. Emphasis on the accurate

determination of ŵj, including, e.g. effects of the

forward speed of the ship.

The potential of the steady flow around the ship is

w(0). It is determined by the non-linear Rankine

source method contained in the program GLRan-

kine. The main features of this method are described

in reference [7].

The wave potential ŵw is well known. Its complex

amplitude is (for deep water)

ŵww~{ic e~nn
:~xx with ~nn~ik {cos m, sin m, ið Þ ð25Þ

Here c5 g/v is the wave celerity, k5v2/g the wave

number, and m is the wave direction (0 for following

waves). g is the gravity acceleration. Wave frequency

v and encounter frequency ve are related by

ve~v{kU cos m ð26Þ

where U is ship speed.

For linear springing, substantial amplitudes occur

only for wave encounter frequencies near to one of

the vibration eigenfrequencies. For large ships, the

lowest of these frequencies is, typically, around

0.5Hz. The wave length corresponding to this

encounter frequency is too short to be resolved by
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a surface panel grid. Thus, for determining ŵd and ŵj

the linearized boundary condition at the water

surface

gŵwz~ {U
L
Lx

zive

� �2

ŵw ð27Þ

is substituted by its high-frequency limit

ŵw~0 ð28Þ

In case of a plane water surface this condition is

easily satisfied by arranging, above the water surface,

mirror images of the sources below the water

surface, and by giving each mirror source the

negative source strength of the original source.

However, here the free-surface boundary condition

shall be satisfied at the water surface including

steady ship waves. In this case mirror sources can

satisfy the condition ŵ5 0 only approximately.

However, the error appears negligible if the mirror

sources are arranged according to the local height of

the waterline at the respective x coordinate. Because

the free-surface condition is satisfied in this way,

albeit approximately, no panel grid on the free

surface is required, in contrast to Rankine panel

methods to determine steady ship waves or rigid-

body motions in waves.

The source strengths are determined from the

body boundary condition

~~nn~nn ~xxð Þ ~vv ~xxz~wwð Þ{ _~ww~ww ~xxð Þ
h i

~0 ð29Þ

The condition expresses the fact that there is no flow

through the hull; thus the normal component of the

fluid flow speed~vv is equal to the normal component

of the hull velocity _~ww~ww.

In equation (29), the argument ~xxz~ww of ~vv takes

account of the fact that, owing to the vibrations, the

hull moves through the flow field represented by the

potential wt. If higher than first-order terms are omitted

~vv ~xxz~wwð Þ~+w 0ð Þ
z ~ww+ð Þ+w 0ð Þ

z+w 1ð Þ ð30Þ

where all potentials are evaluated at point~xx. Inserting

this into equation (29) and using equations (19) and

(20) gives the hull boundary condition in the form

~nnz~aa|~nnð Þ +w 0ð Þ
z ~ww+ð Þ+w 0ð Þ

z+w 1ð Þ
{ _~ww~ww ~xxð Þ

h i
~0

ð31Þ
The stationary term in this condition is zero due to
the hull boundary condition of w(0). Keeping only the

first-order oscillatory terms gives, after rearrangement
of the first term

~ww ~nn+ð Þ+w 0ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
~mm

z~nn+w 1ð Þ
{~nn _~ww~wwz ~aa|~nnð Þ+w 0ð Þ

~0 ð32Þ

where ~mm is the so-called m-term. Inserting

~ww~
XJ
j~1

~wwj ~xxð Þvj tð Þ~Re
XJ
j~1

~wwj ~xxð Þv̂vjeivet

 !
ð33Þ

and the expression given in equation (24) for w(1) gives
a boundary condition for the complex amplitudes

~nn +ŵwwz+ŵwd
� �

z
X
j

~nn+ŵwjz~wwj ~mm{ive~nnð Þ
h

z ~aaj|~nn
� �

+w 0ð Þ
i
v̂vj~0 ð34Þ

The condition is satisfied for arbitrary v̂j by using for

the diffraction potential ŵd the hull boundary condi-

tion

~nn +ŵwwz+ŵwd
� �

~0 ð35Þ

and for each of the mode radiation potentials ŵj the

condition

~nn+ŵwjz~wwj ~mm{ive~nnð Þz ~aaj|~nn
� �

+w 0ð Þ~0 ð36Þ

In reference [8] hull boundary conditions for rigid-body

motions in waves are given. It can be shown that the

conditions (35) and (36) result in these rigid-body

conditions if one takes rigid-body motions as mode

shapes.

9 DETERMINATION OF THE PRESSURE AT
POINTS MOVING WITH THE SHIP

Consider a point at average position �~xx~xx. If the point

moves with the hull, it has an actual position in the

inertial reference frame of

~xx~ �~xx~xxz~ww ð37Þ

At this hull-fixed point the difference between the

fluid pressure and the air pressure is, according to

Bernoulli’s equation and up to first order

p ~xxð Þ~ 1

2
r U2{ +w 0ð Þ

� �2� 	
{r+w 0ð Þ+w 1ð Þ

{r _ww 1ð Þzrgzz~ww+p �~xx~xx
� � ð38Þ
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where r is fluid density. Elaborating the term ,p

gives, up to first order

p ~xxð Þ~ 1

2
r U2{ +w 0ð Þ

� �2� 	
{r+w 0ð Þ+w 1ð Þ

{r _ww 1ð Þzrgz{r~ww +w 0ð Þ+
� �

+w 0ð Þzrgwz ð39Þ

Separating the stationary pressure p(0) from the

oscillatory pressure p(1) gives

p 0ð Þ~
1

2
r U2{ +w 0ð Þ

� �2� 	
zrgz ð40Þ

p 1ð Þ~{r+w 0ð Þ+w 1ð Þ
{r _ww 1ð Þ

{r~ww +w 0ð Þ+
� �

+w 0ð Þ
zrgwz ð41Þ

From equation (41) follows the complex amplitude

of the pressure

p̂p~r {+w 0ð Þ+ŵw 1ð Þ
{iveŵw

1ð Þ
h
{~̂ww~ww +w 0ð Þ+

� �
+w 0ð Þ

zgŵwz

i
ð42Þ

To obtain p̂w+ p̂d one has to insert ŵw + ŵd for ŵ(1).

This gives

p̂pwzp̂pd~r {+w 0ð Þ +ŵwwz+ŵwd
� �

{ive ŵwwzŵwd
� �h i

ð43Þ

To obtain p̂j one inserts ŵjv̂j for ŵ
(1). This gives

p̂pj~r {+w 0ð Þ+ŵwj{iveŵw
j

h
{~̂ww~wwj +w 0ð Þ+

� �
+w 0ð Þ

zgŵwjz

i
v̂vj ð44Þ

p̂j together with p(0) from (40) and p̂w + p̂d are used in

equations (22) and (23), respectively, to determine

the pressure terms VP and ~FF .

10 SOME NUMERICAL DETAILS

The m-term in equation (32) and equation (44)

contain second derivatives of the stationary potential

w(0). In normal panel methods these terms cause

difficulties because second derivatives do not con-

verge (for decreasing panel dimensions) to the

correct values due to irregularities of the flow caused

by discontinuities of the source distributions. Here

the patch method [5] is used. In this modification of

the panel method one determines only averages of

the second derivative terms over panels. These

averages converge much better than the values at

collocation points. Thus the panel averages of the m

terms can be computed directly from the potential

and its normal derivative at the three vertices of each

triangular panel. On the other hand, the panel

averages of (,w(0),),w(0) in equation (44) are

determined from the averaged first derivatives of

w(0) at the three neighbour panels. Details of this

procedure are explained in reference [8] for comput-

ing rigid-body motions. The same method proved

applicable here.

Equation (25) for the linear wave potential also

requires some comments: there is a superposition of

steady ship waves with periodical waves. Adding the

potential of both kinds of waves, owing to the

function e2kz for the dependence of the periodical

wave quantities on the depth coordinate z, larger

(maybe tremendously larger) wave amplitudes are

obtained on a crest of the stationary waves than in a

stationary wave trough. In principle, this effect

would be cancelled approximately by the diffraction

potential. However, this would require a very

accurate determination of the diffraction potential

using the exact free-surface boundary condition; the

mirror source method used here to approximate the

free-surface boundary condition is not sufficient for

this. Therefore, in equation (25) instead of the

position vector ~xx the modified vector (x, y, z2 zst)

is used, where zst is the height of the stationary wave

along the hull at coordinate x. This corresponds to

the approximation that, along the ship’s deformed

waterline, the amplitude of the incoming waves

(without diffraction) is the same on crests and in

troughs of the stationary wave field.

11 EXAMPLE

The method is applied to a container ship described

in Table 1. Figure 1 shows the panel grids on hull

and free surface used for the steady-flow calculation

and the free-surface deformation. For the ship

without forward speed, the transom is not im-

mersed, and the waterline is shorter and pointed at

the ship’s stern. The parts of the hull which are

submerged only due to stern wave and squat are

responsible for much of the springing excitation,

because most of the other hull regions are deeply

submerged, so that wave pressure oscillations are

extremely small for the short waves responsible for

springing excitation. Thus, without stern wave and

squat the excitation is grossly underpredicted.

Computation of springing transfer functions 297

JEME158 Proc. IMechE Vol. 223 Part M: J. Engineering for the Maritime Environment



Figure 2 shows the deformation contours of the

first six approximate modes used for the computa-

tion. For comparison, the springing vibration shapes

determined at the first two resonance frequencies in

head waves are shown also.

Figure 3 illustrates springing excitation general-

ized force and springing transfer function at the

foremost FE node in the neighborhood of the 2-node

eigenfrequency for two wave angles. Figure 4 shows

corresponding transfer functions around the second

vibration eigenfrequency. The excitation does not

show the extreme variations between minima and

maxima as found, e.g. in reference [2], using strip

theory in combination with Newman’s reverse-flow

theorem [3].

Besides the original panel mesh A (Fig. 1) having

3064 panels on one side of the hull, two coarser

meshes B and C consisting of 1522 (B) and 819

triangles (C) were used. They gave slightly different

resonance frequencies; for the first bending reso-

nance

A : 3:307 rad=s;

B : 3:335 rad=s;

C : 3:364 rad=s

However, the excitation differs substantially between

these two meshes (Fig. 5). The mesh of intermediate

fineness gives the smallest excitation. Thus even the

fine mesh may be not fine enough to determine the

excitation accurately, and even finer meshes will

have to be examined.

From the non-dimensional breadth of the reso-

nance peak 2Dv at half of the maximum response

Table 1 Main particulars of the ship used as example

Lpp 304m Draft at AP 13.69m
Breadth 42.8m Draft at FP 12.56m
Total mass 115 500 t Investigated speed 20 knots

Fig. 1 Panel grids and free surface deformation; height contours in 0.1m steps

Fig. 2 Mode approximations (full) and deformations
at resonance peaks for m5 180u (broken lines)

Fig. 3 Springing amplitude of bow point and modal
excitation near 2-node vibration resonance for
wave directions 160 (broken) and 180u (con-
tinuous lines)
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one can estimate the damping ratio j (i.e. actual

damping/critical damping 5 logarithmic decrement/

2p) for the respective mode according to the for-

mula valid for a 1-degree-of-freedom system with

small damping

j~
Dvffiffiffi
3

p
vmax

ð45Þ

The formula gives j5 0.41 per cent for the 2-node

mode (Fig. 3) and j5 0.23 per cent for the 3-node

mode (Fig. 4) for mesh A. This result is unexpected

because the theory described in the foregoing, which

was used to derive these results, seems not to

include any ‘net damping’. The imaginary part of V

in equation (11) defines damping forces, and it is

certainly non-zero. However, it was expected that

the imaginary parts of the elements of V, which are

partly positive, partly negative, would only produce a

slight coupling between the approximate modes, but

no damping of the really occurring vibrations,

because physical processes which extract energy

from the vibration are not contained in the theory:

(a) the damping owing to an immersed transom is

not covered by the theory because the oscilla-

tory flow was computed without introducing a

Kutta condition at the transom and without

assuming vortices behind the transom;

(b) the damping owing to wave radiation is not

covered because the simplified free-surface

condition w5 0 was used;

(c) propeller, bilge keels, etc. were not modelled.

Thus the positive damping found might be

ascribed to discretization or rounding errors of the

numerical method. To eliminate rounding errors, the

programme was alternatively run with double pre-

cision variables. However, the differences were tiny

at the resonance frequency and negligible otherwise

(dotted lines in Fig. 3). To test for discretization

errors, damping ratios were determined for the 2-

node bending mode from results for meshes A, B,

and C. The results were

A : j~0:41 per cent;

B : j~0:23 per cent;

C : j~0:07 per cent:

Discretization errors, however, are expected to be

larger for coarsermeshes. Thus the damping indicated

by the method still needs to be clarified. The larger

damping produced by known physical processes, on

the other hand, is approximated as explained below

and added on the main diagonal of matrix V.

Fig. 4 Springing amplitude of bow point near 3-node
vibration resonance for wave directions 160
(broken) and 180u (continuous lines)

Fig. 5 Excitation (arbitrary unit) of the 2-node bending mode depending on encounter
frequency for meshes A (continuous), B (fine broken), and C (coarse broken line) for
wave angles m5 180u (left) and m5 160u (right)
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12 DAMPING

Vibration damping of ship hull girders is the topic of

ship dynamics in which, apparently, the physics is

understood least, and erroneous conclusions are

published frequently. Most of the relevant publica-

tions agree that material (steel) damping is pre-

dominant. But listening to the sound of a tuning fork

or a piano string demonstrates that the material

damping of steel is extremely small if the stress

amplitudes are far below the yield stress, as is typical

for ship springing. The damping ratio j of, e.g., a

tuning fork is orders of magnitude lower than the

observed damping ratio of the lower vertical vibra-

tion modes of ships. Their damping ratios are,

typically, in the range of 1 or a few per cent. For

instance, Price [9] shows vibratory response mea-

surements of a frigate (p. 296) and of the motor

vessel ‘City of Plymouth’ (p. 381) after whipping

events. The decay of these vibrations indicates

damping ratios of about 0.9 per cent and 1.2 per

cent, respectively. For the vessel of Table 1, damping

ratios between 1.76 per cent and 5.08 per cent were

found [10] by using the same method. (On ships

without forward speed in sheltered water much

smaller damping ratios are found, but these are

irrelevant here.) Other processes causing damping of

vertical hull-girder vibrations are therefore dis-

cussed. For horizontal vibrations, corresponding

considerations have not yet been made.

12.1 Transom effect

If the transom moves vertically, the fluid around it

contains a vertical momentum which remains in the

water when the water separates smoothly at the

transom contour. The change in periodical vertical

momentum between the inflow (in front of the ship,

excluding waves) and the outflow behind the vibrat-

ing ship corresponds to a vertical oscillatory force

distribution on the hull which causes the damping.

The vibration energy is transfered to the kinetic

energy of the vertical oscillatory fluid motion behind

the transom. A strip-theory-like approximation of

this force results in the expression for the transom

contribution to ImVjj

ImVjjT~Uvjw
2
jTmzT ð46Þ

where U5 ship speed, wjT5 vertical component of
~wwj at the transom, vj5 eigenfrequency of mode j,

and mzT5 2D added mass of the transom cross-

section in vertical motion. For springing frequencies

mzT is well approximated as

mzT~rpB2
T

�
8 ð47Þ

where BT is the waterline breadth at the transom.
Off-diagonal damping terms in V are less important.

Notice that the transom damping is proportional

to U, and that the factor B2
T causes a strong

sensitivity to the draft at the aft perpendicular, the

stern wave, and to the relative vertical motion

between transom and water surface owing to low-

frequency oscillatory waves; the latter will cause

variations of the transom damping in the frequency

range of the rigid-ship motions.

From equation (46) follows the transom contribu-

tion to the damping ratio of mode j as

jjT~
ImVjjT

2v2
j

Ð
L w

2
jzm dx

ð48Þ

where m is the sum of ship mass and added mass for

vertical motion, both per length and as functions of

x. A corresponding equation holds for the other

contributions to damping.

12.2 Wave radiation effect

Contrary to the 3D case, in two dimensions the

condition (27) (with U5 0) can easily and accurately

be satisfied for the frequencies of interest here, for

instance by the method [11]. However, an extremely

fine discretization is required near the waterline. The

resulting vertical damping force amplitude per

vertical velocity amplitude and per length can be

approximated roughly as

n33~
rg

ffiffiffiffi
A

p
tan a

0:75v
ð49Þ

with A5 section area and a5 flare angle (between

vertical and contour tangent) at the waterline. From

n33, determined either by the method presented in

reference [11] or by equation (49), the wave radiation

contribution (index R) to ImVjj can be estimated in

analogy to the strip theory

ImVjjR~vj

ð
L

w2
jzn33 dx ð50Þ

In the relevant literature the wave radiation effect

on damping is held negligible. The reason for this

seems to be that n33 was computed or estimated for

sections with small or zero flare angle, e.g. for Lewis
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sections or other conformal mappings of a semi-

circle, which all have a flare angle of zero; or that

methods or section discretizations were used which

are not applicable to the high frequencies of spring-

ing.

The formulae given here show that substantial

damping is produced only by ship sections which

have an extreme flare at the waterline. In merchant

ships extreme section flare at the waterline may

occur only in front of the transom for a certain range

of aft draft. Thus also the wave radiation damping is

extremely sensitive to the draft at the aft perpendi-

cular, to the stern wave, and to relative motions

between water surface and ship at the stern.

Relatively large wave radiation damping occurs if

the waterline (including ship waves) is slightly below

the transom, but then the transom damping is zero.

Thus, depending on the stern wave contour, either

transom damping or wave radiation damping can be

substantial, but not both at the same time. For

waterlines deeply below the transom both kinds of

damping are negligible.

12.3 Bilge keel effect

In the relevant literature the vibration damping

effect of bilge keels is sometimes mentioned, but

held to be negligible. The reason for this is, probably,

that the interaction between springing and rigid-

body ship motions was neglected, which is decisive

here.

To estimate the effect roughly, the downward drag

force per length, d, of a ship section moving upward

relative to the water is approximated as

d~
1

2
rCdBv

2
rel ð51Þ

where vrel is the time-varying relative motion

between the water (if it were undisturbed by the

ship) and the ship in the range of the bilge keels. Cd

is a resistance coefficient. Only in upward relative

motion of the section a broad wake can be produced

by flow separation at the bilge keels; thus for

downward motion the drag forces are neglected.

Notice also that the ship’s breadth B appears in

equation (51), not twice the height of the bilge keels,

because the bilge keels cause a wake the breadth of

which is approximately B.

The velocity vrel is the sum of a larger, slowly

varying contribution vrel1 owing to ship heaving,

pitching and wave orbital motion, and a small

contribution vrel2 due to springing. Inserting this

sum into equation (51) gives

d~
1

2
rCdB v2rel1z2vrel1vrel2zv2rel2

� � ð52Þ

Only the middle term between parentheses produces

a substantial force in phase with the vibration

velocity, thus contributing to vibration damping

d~rCdBvrel1vrel2 ð53Þ

The ratio d/vrel25 force per length and per vibration

velocity corresponds to the damping coefficient n33

of the previous subsection. Thus, in analogy to

equation (50), the bilge keel effect on ImVjj is

ImVjjB~vj

ð
B

w2
jzrCdBvrel1 dx ð54Þ

Here
Ð
B means integration over the length range of

the bilge keels. In estimating Cd, one has to take into

account that the resistance in oscillatory flow (in the

frequency range of the rigid-body ship motions) will

be smaller than in stationary flow; thus a value of 0.8

may be assumed tentatively until further informa-

tion is available. Owing to the slow frequency change

of vrel1, the bilge keel vibration damping depends on

time. If vrel1 is a Gauss process with variance v, the

time-averaged value of |vrel1| is 0:8
ffiffiffi
v

p
. However,

because substantial forces are held to occur only in

upward motion, a value of 0:4
ffiffiffi
v

p
has to be used in

equation (54) to obtain the time-averaged damping.

12.4 Propeller effect

In reference [12] the following expression for the

damping force of a screw propeller in transverse or

vertical vibration is given

n33P~0:248rnPDP2AE=A0 ð55Þ

where nP is number of revolutions per time, D

diameter, P pitch and AE/A0 the expanded blade

area ratio of the propeller. The formula is based on

lifting-line computations. Nearly the same formula

(without AE/A0 and 0.25 instead of 0.248) is given in

reference [6], however based on measurements [13]

of the stationary force on a propeller in oblique

flow.

A further test of the validity of equation (55) is

made by using results of attentive RANSE calcula-

tions [14]. For a model propeller (D5 0.25m, P/

D5 0.959, AE/A05 0.588) in oblique flow of various
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angles c at J5 0.53 the time-averaged transverse

force coefficient was determined as

�KKy~
�YY

rn2
PD

4
~0:09c ð56Þ

On the other hand, formula (55) gives for this

propeller model, using c5 vy/VA and Ȳ5n33Pvy

�KKy~0:248 P=Dð Þ2J AE=A0ð Þc~0:071c ð57Þ

The coincidence appears reasonable.

A formula analogous to equation (50) gives the

propeller contribution to ImVjj

ImVjjP~vjw
2
jzPn33P ð58Þ

where wjzP is the z component of the eigenform wj at

the location of the propeller.

The influence of the tilt of the propeller owing to the

w’jzP is, especially for the 2-node vibrationmode,much

smaller than that due to wjzP and is omitted here.

12.5 Effect of hatch cover friction

In ships carrying containers on the hatch covers, the

friction between hatch covers and coamings pro-

duces vibration damping which may be worthwhile

discussing here. Substantial motion between hatch

cover and coaming can appear if the stoppers, which

fix some points of the cover relative to the coaming,

and their clearings are designed to avoid that

substantial longitudinal stresses are transferred from

the hull to the hatch cover. Such a construction

seems to be applied in most cases [15].

If there were only hull deformations due to spring-

ing, the friction between hatch coaming and cover

would eliminate relative motions between cover and

coaming for small vibration amplitudes. On the other

hand, for very large amplitudes the relative motion

amplitude would approximate the value

Dx~el ð59Þ

where e is the longitudinal strain amplitude of the

hatch coaming and l the hatch length. For the modal

vibration j the strain amplitude is, according to the

beam approximation

e~x’j zH{z0ð Þ ð60Þ

where zH and z0 are the z coordinates of the hatch

coaming and of the beam axis, respectively, and x’j is

the x derivative of the the rotation angle of the beam

cross-sections in mode j for motion amplitude v̂j5 1.

Owing to shear lag, actual strains in the hatch

coaming will be somewhat smaller.

If substantial low-frequency wave strains are super-

imposed to the springing strains, relative motions in

phase with the vibration will occur even in case of

small springing amplitudes. Thus the relative motion

between cover and coaming depends on the ampli-

tudes of springing strain, of the low-frequency strain

amplitude, the cover loading gmH where mH is the

mass stowed on the cover, and on the friction

coefficient m, for which different authors give values

between 0.15 and 0.6 [15]. To obtain a rough estimate

of the hatch cover damping, a reduction factor r with

0( r( 1 is applied in equation (59)

Dx~rel ð61Þ

From the definition of matrix V it can be deduced that

the time-averaged damping power due to an element

Vjj on the main diagonal of V is, for a modal vibration

with v̂j5 1

P~
1

2
vjIm Vjj

� � ð62Þ

On the other hand, the time-averaged damping power

due to hatch cover friction is

P~
2r ej jlmgmH

2p
�
vj

ð63Þ

Combining equations (62) with (63) and using

equation (60) gives the hatch friction contribution to

ImVjj as

ImVjjH~
X

all hatches

2

p
r x’j zH{z0ð Þ
��� ���lmgmH ð64Þ

12.6 Other causes of vibration damping

Depending on the case, noticeable springing damp-

ing may be produced by the cargo of certain ships,

especially by cars (in ferries and car carriers) and

possibly by certain kinds of bulk cargo.

12.7 Numerical results

For the ship of Table 1 the above approximate

damping formulae were applied, using the following

data (most of them estimated)
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1. For the propeller: diameter 8m, pitch 6.8m, and

advance coefficient 0.54.

2. For the bilge keels: Cd5 0.8, time-average of

|vrel|5 0.75m/s, and bilge keel length 86m.

3. For the hatches: number 20, length 12.3m, r5 0.3,

m50.25, zh2 z0518m, and hatch load within each

bay 1500 t for the aft and middle hatches, less for

the forward hatches; total hatch load 28000 t.

These data produced the damping ratios of

Table 2. It shows that, in this example, the transom

damping is dominant, followed by the wave radia-

tion damping. Bilge keel, propeller and hatch cover

damping are negligible here. In other cases, how-

ever, especially for ships without an immersed

transom in a heavy seaway, bilge keel and propeller

damping were found noticeable.

The total damping of the 2-node vibration is in the

lower range of damping values given in reference

[10] for the same ship.
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APPENDIX

Notation

A hull section area

AE expanded blade area of propeller

AS shear area of cross-section

A0 area of propeller circle

B breadth of waterline

Cd resistance coefficient

D ~ wT
kDjwj, k~1 . . . J , j~1 . . . J

� �
D propeller diameter

Table 2 Damping ratios j in per cent for the ship of Table 1 owing to different damping processes for 2-node until
7-node bending modes

Number of nodes 2 3 4 5 6 7
Approximate eigenfrequency (Hz) 0.505 1.040 1.578 2.067 2.636 3.061

Transom 1.850 0.910 0.580 0.580 0.300 0.210
Wave radiation 0.400 0.075 0.028 0.016 0.007 0.004
Bilge keels 0.080 0.034 0.027 0.021 0.022 0.016
Propeller 0.030 0.022 0.006 0.004 0.001 0.001
Hatch cover friction 0.006 0.003 0.002 0.001 0.001 0.001

Sum 2.366 1.044 0.643 0.622 0.331 0.232
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D damping operator

D damping matrix

E Young’s modulus

F̂ FE excitation vector

F̂ ~ wT
k F̂F , k~1 . . . J

� �
F excitation

g gravity acceleration

G shear modulus
~GG weight force

i imaginary unit

I cross-section moment of inertia

around y-axis

J number of modes taken into account

J propeller advance ratio

K ~ wT
kKjwj, k~1 . . . J , j~1 . . . J

� �
K stiffness matrix

K stiffness operator

l hatch length

lE length of finite element

mH mass stowed on hatch cover

M ~ wT
kMjwj, k~1 . . . J, j~1 . . . J

� �
M mass matrix

M mass operator

n propeller number of revolutions per

time

n33 damping force per length for vertical

motion
~nn normal vector on hull; time average
~~nn~nn normal vector on hull; instantaneous

p pressure

P propeller pitch

r reduction factor

S wetted hull surface

t time
~uu vibrational translation

û FE node translation vector

U ship speed

v̂j mode superposition factor

vrel relative motion between water and

bilge keel

V virtual work

V ~{ KziveD{v2
eM

� �
V ~ {KziveD{v2

eM
� �

wj FE node translations and section

rotations of mode j

x, y, z Cartesian coordinates directed

forward, to starboard, downward
~xx position vector

Ȳ average transverse propeller force

z0 z coordinate of beam axis

a flare angle at waterline
~aa rotation of hull normal

d vertical damping force per length

e strain in coaming

m friction coefficient

m solid mass per length

m wave angle

m̄ solidmassmomentof inertiaper length

mz added mass per length of a ship

section in vertical motion
~nn wave vector ik(2cos m, sin m, i)

j damping ratio

r water density

w flow potential
~xx rotation vector of cross-sections

ve wave encounter frequency

ˆ designates complex amplitudes

Lower indices

B bilge keel

H hatch coaming

j mode index

k mode index

l index of mass item

P pressure

T transom

W weight

P propeller

R wave radiation

S structure

Upper indices

d diffraction

w wave

(0) steady flow owing to ship speed
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