

Green Liquid Hydrogen Supply Chains for Future Aviation

A techno-economic well to tank assessment

Lucas Sens, Fabian Carels, Ulf Neuling and Martin Kaltschmitt

[1] [2] [3] [4] [5] [6]

Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE) www.tuhh.de/iue

Hydrogen Powered Aviation

[7]

割NE

Onsite Hydrogen Supply Cost

5

- 4

3

2.5

Transportation needed to supply low cost hydrogen to the demand centers

Hydrogen at Standard Temperature and Pressure

EIUE

Compressed Gaseous Hydrogen (CGH₂)

CGH2 = compressed gaseous hydrogen, STP = standard temperature and pressure

BIUE

Compressed Gaseous Hydrogen (CGH₂)

CGH2 = compressed gaseous hydrogen, STP = standard temperature and pressure

BILE

Liquid Hydrogen (LH₂)

CGH2 = compressed gaseous hydrogen, LH2 = liquid hydrogen, STP = standard temperature and pressure

Liquid Organic Hydrogen Carriers (LOHC)

CGH2 = compressed gaseous hydrogen, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen, STP = standard temperature and pressure

EIUE

Ammonia (NH₃)

CGH2 = compressed gaseous hydrogen, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen, NH3 = ammonia, STP = standard temperature and pressure

≣I<u>UE</u>

Liquid Ammonia (LNH₃)

CGH2 = compressed gaseous hydrogen, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

Methanol (CH₃OH)

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

BIUE

Exemplified Hydrogen Production Locations

- Central Germany (LOC): PV ≈ 1,100 AFLH; Onshore Wind ≈ 2,600 AFLH
- North Germany (GER): PV ≈ 1,000 AFLH; Offshore Wind ≈ 5,000 AFLH
- Tunisia (TUN): PV ≈ 1,800 AFLH; Onshore Wind ≈ 3,500 AFLH
- Argentina (ARG): PV ≈ 1,000 AFLH; Onshore Wind ≈ 5,500 AFLH

AFLH = annual full load hours

Supply Chains

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

Methodology

- Depreciation period equals technical lifetime
- Economic scaling functions considering the plant size
- Techno-economic parameters based on literature and cross check with industry

ME

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

ME

□H2 production - only losses

■H2 production - excl losses

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

Liquefaction (decentral)
Transportation
LH2 pumps
Liquefaction (central)
Conversion - excl carrier
Storage

H2 production - only lossesH2 production - excl losses

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

□ Liquefaction (decentral) Conversion - excl carrier ■ H2 production - only losses ■H2 production - excl losses

CGH2 = compressed gaseous hydrogen supply chain; LH2 = liquid hydrogen supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

割UE

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany (Offshore); LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to airport; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to airport

Key Takeaways

- 1. For a supply of liquid hydrogen at airports liquid and gaseous hydrogen supply chains are the lowest cost options
 - ➤ ≈ 5 to 6 €₂₀₂₀/kg_{LH2}
 - \succ ≈ 0.55 kWh_{LH2,LHV}/kWh_{input}
- 2. LOHCs (dibenzyltoluene), ammonia and methanol as a hydrogen carrier appear to be not a viable option for a liquid hydrogen supply due to:
 - heat demand for dehydrogenation/cracking
 - carrier cost (LOHCs and methanol)
 - purification losses (ammonia and methanol)
- 3. The liquid hydrogen supply costs are in a same magnitude for a local, national or international hydrogen supply. Hence factors like land availability and security of supply become even more important

Questions & Remarks

Funding by the Hamburg Authority for Economics and Innovation is thankfully acknowledged (Funding code: LAHH153A).

Hamburg University of Technology (TUHH) Institute of Environmental Technology and Energy Economics (IUE) Eissendorfer Str. 40; D-21073 Hamburg

References

IVE

- Images slide 1, from left to right:
 - [1] https://images.app.goo.gl/q2W7NAgYantkJjKZ9
 - [2] <u>https://images.app.goo.gl/tgVUA1EQwqGEsxhm8</u>
 - [3] https://images.app.goo.gl/emZiwi4GPQbrGvHu6
 - [4] https://images.app.goo.gl/wpf5beDJPAXoCJxF6
 - [5] https://images.app.goo.gl/bD24v1L26ANsmx4n8
 - [6] https://images.app.goo.gl/58YNgjNLviaWJ1rZA
 - [7] <u>https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe</u>

Detailed Supply Chains

 $\eta_{supply chain} = \frac{q_{H2,nozzle}}{q_{overall}}$

 $q_{overall} = q_{production} + q_{conversion} + q_{storage} + q_{transport} + q_{reconversion} + q_{fill}$

 $q_{production} = q_{production,ideal} + q_{production,losses}$

$$q_{compression} = \frac{R_s T_{comp}}{\eta_{comp}} \left[z_{out} \ln \left(\frac{p_{out}}{1.0135 \text{ bar}} \right) - z_{in} \ln \left(\frac{p_{in}}{1.0135 \text{ bar}} \right) \right]$$

ENE

$$c_{overall} = c_{production} + c_{conversion} + c_{storage} + c_{transport} + c_{reconversion} + c_{fill}$$

 $c_{section,i} = \frac{ACAPEX_i + OPEX_i}{m_{H2,fill,annual}}$

$$ACAPEX_{i} = CAPEX_{i} \frac{WACC_{real} (1 + WACC_{real})^{d_{i}}}{(1 + WACC_{real})^{d_{i}} - 1}$$

$$WACC_{real} = \frac{1 + WACC_{nom}}{1 + INFL} - 1$$

LOHC CAPEX

$$c_{LOHC} = \frac{CAPEX_{LOHC}}{Cycle_{LOHC,annual}} \frac{WACC_{real} (1+WACC_{real})^{d_{LOHC}}}{(1+WACC_{real})^{d_{LOHC}}-1}$$

$$cycle_{LOHC,annual} = 8760 \frac{h}{a} / t_{LOHC,cycle}$$

 $t_{LOHC,cycle} = \sum_{i=1}^{n} t_i$

	(De)Hydrogenation Plant			
	Storage			
	Import Ship			
000 0.0	Transportation Truck			
	Refill Station			
	Use HDV			

CAPEX Calculation

$$CAPEX_1 = f_{inst} f_{infl} CAPEX_{ref} \left(\frac{C_1}{C_{ref}}\right)^{\alpha}$$

- $\alpha = \text{scaling factor}$
- $C_1 = capacity of plant 1$
- $C_{ref} = capacity of reference plant$
- $CAPEX_{1,inst} = installed 2020 \in capital expenditure plant 1$
- CAPEX_{ref} = capital expenditure for reference plant
- $f_{infl} = inflation factor (adjustmend to 2020 \in)$
- f_{inst} = installation factor (includes equipment, materials, construction and engineering)

Cost Minimized Hydrogen Production

割NE

	Year	PV	Onshore Wind	Offshore Wind	PEMEL
CAPEX [€ ₂₀₂₀ /kW _{el}]	2030	400 (310 – 570)	1,110 (1,010 – 1240)	1,890 (1,750 – 2,020)	860 (580 – 1,230)
	2050	270 (170 – 350)	990 (860 – 1,140)	1,620 (1,320 – 1,930)	510 (350 – 760)
Efficiency [kWh _{H2,LHV} /kWh _{el}]	2030	-	-	-	67% (63 – 69%)
	2050	-	-	-	71% (67 – 74%)

Seasonal storage capacities:

- Local (LOC) scenario: 15 days
- National (GER) scenario: 30 days
- Import (TUN & ARG) scenario: 60 days

Filling station capacity rate:

- Baseline: 50%
- Progressive: 60%
- Conservative: 40%

