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Hydrogen Powered Aviation
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https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe
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Hydrogen at Standard Temperature and Pressure
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STP = standard temperature and pressure
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Compressed Gaseous Hydrogen (CGH,)
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CGH2 = compressed gaseous hydrogen, STP = standard temperature and pressure
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Compressed Gaseous Hydrogen (CGH,)
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CGH2 = compressed gaseous hydrogen, STP = standard temperature and pressure
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Liquid Hydrogen (LH,)
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Liquid Organic Hydrogen Carriers (LOHC)
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CGH2 = compressed gaseous hydrogen, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen,
STP = standard temperature and pressure

@®5HES



Ammonia (NH,)
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Liquid Ammonia (LNH,)
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CGH2 = compressed gaseous hydrogen, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen, LNH3 = liquid ammonia,
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Methanol (CH;0OH)
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CGH2 = compressed gaseous hydrogen, CH30OH = methanol, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen,
LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure
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Exemplified Hydrogen Production Locations

Central Germany (LOC)

Argentina (ARG)

-

+ Central Germany (LOC): PV = 1,100 AFLH; Onshore Wind = 2,600 AFLH
* North Germany (GER): PV = 1,000 AFLH; Offshore Wind = 5,000 AFLH
* Tunisia (TUN): PV = 1,800 AFLH; Onshore Wind = 3,500 AFLH

. Argentina (ARG) PV = 1,000 AFLH, Onshore Wind = 5,500 AFLH AFLH = annual full load hours
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Supply Chains
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CGH2 = compressed gaseous hydrogen, CH30OH = methanol, LOHC = liquid organic hydrogen carrier (here Dibenzyltoluene), LH2 = liquid hydrogen,
LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure
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Methodology

« Annuity methodology for cost quantification
« Depreciation period equals technical lifetime
« Economic scaling functions considering the plant size

« Techno-economic parameters based on literature and cross check with industry

Heat Electricity Capacity Factor
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Liquid Hydrogen Supply Cost in 2050
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Liquid Hydrogen Supply Cost in 2050

LH2 supply cost [€,5,0/kg 2]
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Liquid Hydrogen Supply Cost in 2050
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Liquid Hydrogen Supply Cost in 2050
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Liquid Hydrogen Supply Cost in 2050

LH2 supply cost [€55,0/Kg 1l
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Liquid Hydrogen Supply Cost in 2050

LH2 supply cost [€55,0/Kg 1l
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Liquid Hydrogen Supply Cost in 2050

LH2 supply cost [€,5,0/kg 1]
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Liquid Hydrogen Supply Cost in 2050
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Liquid Hydrogen Supply Cost in 2050
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Liquid Hydrogen Supply Cost in 2050
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Liquid Hydrogen Supply Cost in 2050

LH2 supply cost [€,0,0/kg 2
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Key Takeaways

1. For a supply of liquid hydrogen at airports liquid and gaseous hydrogen supply chains
are the lowest cost options

» =510 6 €,020/K0 12

2. LOHCs (dibenzyltoluene), ammonia and methanol as a hydrogen carrier appear to be
not a viable option for a liquid hydrogen supply due to:

» heat demand for dehydrogenation/cracking
» carrier cost (LOHCs and methanol)
» purification losses (ammonia and methanol)

3. The liquid hydrogen supply costs are in a same magnitude for a local, national or
international hydrogen supply. Hence factors like land availability and security of supply
become even more important
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Questions & Remarks
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Detailed Supply Chains
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Technical Assessment
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Economic Assessment E’ UE

®

Coverall = Cproduction + Cconversion T Cstorage + Ctransport + Creconversion T Cfill

ACAPEX;+O0PEX;

Csection,i —

Mmpya,fill,annual

(1+WACCyeq)%i-1

ACAPEX; = CAPEX;

1+WACCpnom
1+INFL

WACCyeq =

EHEC
2022 32



LOHC CAPEX
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CAPEX Calculation
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Cost Minimized Hydrogen Production
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Key Assumptions

Year PV
CAPEX 2030 400 (310 - 570)
[€2020/kWe)] 2050 270 (170 — 350)
Efficiency 2030
[KWhy L in/KWhe ] 2050

Seasonal storage capacities:

O

T
NOY

Local (LOC) scenario: 15 days
National (GER) scenario: 30 days
Import (TUN & ARG) scenario: 60 days

Onshore Wind Offshore Wind

1,110 (1,010 — 1240) 1,890 (1,750 — 2,020)

990 (860 — 1,140) 1,620 (1,320 — 1,930)

Filling station capacity rate:
+ Baseline: 50%

»  Progressive: 60%

« Conservative: 40%

PEMEL

860 (580 — 1,230)
510 (350 — 760)
67% (63 — 69%)

71% (67 — 74%)
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