

Barcelona 20th October 2022

12th EASN Conference

Development Scenarios for Drop-In and Non Drop-In Fuel Options

Gunnar Quante, Nils Bullerdiek, Ulf Neuling, Martin Kaltschmitt

Hamburg University of Technology (TUHH) | Institute of Environmental Technology and Energy Economics (IUE) | www.tuhh.de/iue

Reduce aviation's greenhouse gas (GHG) emissions

Use a suitable, renewably sourced fuel

Initial assessment - today

Possible future developments

Assessment – year 2050

Goal: Assessment of scenarios for the development of (Non) Drop-In Aviation Fuels

Initial assessment - today

Selection of fuel options

Selection criteria:

- 1. discussed as renewable aviation fuels
- 2. already produced at scale from renewable sources
- 3. potentially central role for defossilation of overall energy system

Potential renewable fuel options – present state

present production based on renewables [Mt]

sectors with present use

additional sectors with future use

liquid					gaseous		
"Drop-In"		"Non Drop-In"					
Blend SK	Neat SK	Methanol	Ethanol	Butanol	Ammonia	Methane	Hydrogen
< 0.2		< 1	100	-	-	0,1	-
• aviation		chemicaltransport	 chemical pharma-ceutical transport 	chemical	agriculturechemicalpharma- ceutical	energy chemical	energychemical
				chemicaltransport	 agriculture chemical pharmaceutical energy (storage) 	energy (storage)chemicaltransport	 energy (storage) chemical production (e.g. steel)

Static criteria – energy density

Energy density: ♦ Synthetic Kerosene □ Alcohols ○ Gases

Dynamic criteria – fuel provision cost

Potential renewable fuel options – present state

Future Developments

Derivation of aviation energy demand scenarios

higher

Challenges for mitigation

SSP5 – Fossil-fueled development

SSP1 – Sustainability

Energy System: IEA Net Zero Emissions Scenario (NZE)

Air Transport System: 1%/a) efficiency gains in balance 1%/a demand growth → "Low"

SSP3 – Regional Rivalry

SSP2 – Middle of the Road

Energy System: **IEA Stated Policies Scenario** (STEPS)

Air Transport System: 1%/a efficiency gains and 4,5 %/a growth → "Moderate" no efficiency improvements and 、5%/a growth → "High"

SSP4 – Inequality

lower

Challenges for adaptation

higher

Insignificant shares of renewably sourced energy for aviation

Increasing shares of renewably sourced energy for aviation

[1, 2]

Assessment 2050

Scenarios for synthetic kerosene

Scenarios for hydrogen

Conclusions

Renewable Fuel Options – 2050

Socio-Economic Preconditions

SSP1

- improved resource efficiency
- reduced overall energy use

SSP₂

- sustainable development goals are slowly achieved
- overall intensity of resource and energy use declines

Air Transport System's Preconditions

Hydrogen

- global logistics infrastructure
- provision at several airports
- development of a hydrogen aircraft

Synthetic Kerosene

use without fossil blending component

Key Lever

- 1. development of aviation's energy demand more important than availability of renewables
 - 2. ramp-up of production capacities
 - 3. willingness to cover the cost of the energy transition

References

References

- [1] Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O'Neill, Brian C.; Fujimori, Shinichiro et al. (2017): The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. In Global Environmental Change 42, pp. 153–168. DOI: 10.1016/j.gloenvcha.2016.05.009.
- O'Neill, Brian C.; Kriegler, Elmar; Ebi, Kristie L.; Kemp-Benedict, Eric; Riahi, Keywan; Rothman, Dale S. et al. (2017): The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. In Global Environmental Change 42, pp. 169–180. DOI: 10.1016/j.gloenvcha.2015.01.004.
- [3] IEA (2021): World Energy Outlook 2021. International Energy Agency. Available online at https://www.iea.org/reports/world-energy-outlook-2021, checked on 4/11/2022.
- [4] Staples, Mark D.; Malina, Robert; Suresh, Pooja; Hileman, James I.; Barrett, Steven R.H. (2018): Aviation CO2 emissions reductions from the use of alternative jet fuels. In *Energy Policy* 114, pp. 342-354. DOI: 10.1016/j.enpol.2017.12.007.
- [5] Mission Possible Partnership (2022): Making Net-Zero Aviation Possible. Energy Transitions Commission, RMI, World Economic Forum, McKinsey & Company. Available online at https://missionpossiblepartnership.org/action-sectors/aviation/, checked on 28.09.22.
- [6] ICF (2021): Fueling Net Zero. How the aviation industry can deploy sufficient sustainable aviation fuel to meet climate ambitions. Air Transport Action Group, ICF. Available online at https://www.icf.com/insights/transportation/deploying-sustainable-aviation-fuel-to-meet-climate-ambition, checked on 28.09.22.
- [7] FlightGlobal (2018): World Airliner Census. Eastern promise. flightglobal.com. Available online at https://www.flightglobal.com/reports/world-airliner-census-2018/136423.article, checked on 11.10.22.

Image credits (creative commons):

Ethanol molecule – Adrien Coquet, (https://thenounproject.com/icon/ethanol-4374571/)

Gas bottle - Cédric Villain, (https://thenounproject.com/icon/gas-cylinder-2349041/)

Snow flake - Landan Lloyd, (https://thenounproject.com/icon/cold-1421093/)

Droplet – Bharat, (https://thenounproject.com/icon/liquid-1478805/)

Gunnar Quante

Technische Universität Hamburg (TUHH)
Institut für Umwelttechnik und Energiewirtschaft (IUE)
Eißendorfer Str. 40, D-21073 Hamburg
+49 40 42878 4831 | gunnar.quante@tuhh.de | www.tuhh.de/iue

Static criteria – fuel conversion efficiency

Motivation – aviation energy demand scenarios

Challenges for mitigation low → high

SSP5 - Fossil-fueled development

Increasing faith in competitive markets

- Global markets are increasingly integrated
- Push for economic and social development is coupled with the exploitation of abundant fossil fuel resources and the adoption of resource and energy intensive lifestyles around the world

SSP1 - Sustainability

- Emphasis on economic growth shifts towards a broader emphasis on human well-being
- Consumption is oriented toward low material growth and lower resource and energy intensity

SSP2 - Middle of the Road

- Social, economic and technological trends do not shift markedly from historical patterns
- Development and income growth proceeds unevenly
- Slow progress in achieving sustainable development goals
- Overall intensity of resource and energy use declines
- Global population growth is moderate and levels off in the second half of the century

SSP3 - Regional Rivalry

- Resurgent nationalism, concerns about competitiveness and security and regional conflicts push countries to increasingly focus on domestic/regional issues
- Focus on achieving energy and food security goals within their own regions

SSP4 – Inequality

 A gap widens between an internationallyconnected society that contributes to knowledge and capital intensive sectors of the global economy and a fragmented collection of lower-income, poorly educated societies that work in a labor-intensive, lowtech economy

Insignificant shares of renewable sourced energy for aviation

Increasing shares of renewable sourced energy for aviation

Challenges for adaptation low → high

(5, 6)

Matching Socioeconomic and Energy Scenarios

Socio-economic scenario

Scenario for energy availability

Scenario for energy required

SSP1 – Sustainability

- Emphasis on economic growth shifts towards a broader emphasis on human well-being
- Consumption is oriented toward low material growth and lower resource and energy intensity

IEA Net Zero Emissions Scenario (NZE)

- Net-zero emissions in 2050
- key energy related UN SDGs are met
- 1,5° goal is achieved with 50% probability

Low

- low demand growth and energy efficiency improvements balance each other
- → constant aviation energy required

SSP2 - Middle of the Road

- Social, economic and technological trends do not shift markedly from historical patterns
- Slow progress in achieving sustainable development goals
- Overall intensity of resource and energy use declines

IEA Stated Policies Scenario (STEPS)

- Trends based on existing and policies under development
- Development without any additional major steer from policy
- → economic growth outpaces energy efficiency improvements
- → aviation energy demand increases

Moderate

- 4,5 %/a demand growth
- 1,0 %/a fuel efficiency improvements

High

- 5 %/a demand growth
- fuel efficiency diminish (0 %/a)

UN SDG. United Nations Sustainable Development Goal