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Abstract

In [2] Conca et al. stated two inclusion theorems for quadratic eigenvalue problems
the proof of which are not complete. In this note we demonstrate by simple examples
that the assertions as they stand are false. Taking advantage of an appropriate
enumeration for eigenvalues of nonlinear eigenproblems we adjust the results.
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1 Introduction

In [3], [2], [1] Conca, Duran and Planchard studied the vibrations of a solid structure
immersed in a viscous incompressible fluid whose velocity field and pressure satisfy the
steady Stokes equations. The eigenfrequencies and eigenmodes satisfy a quadratic eigen-
value problem

Ru− λu+ λ2Su = 0 (1)

where the zero order term R is a bounded selfadjoint positive operator acting on a Hilbert
space of infinite dimension, and the second order term S is a selfadjoint operator of finite
rank. In [1] it was proved that this problem has a countable sequence of eigenvalues which
converge to zero, and only a finite number of eigenvalues can have a nonzero imaginary
part. These nonreal eigenvalues play a very important rôle, since they correspond to
unstable vibratory eigenmodes.

In [2] Conca et al. proved that the maximum number of nonreal eigenvalues can not
exceed twice the rank of S, and [3] contains a numerical example demonstrating that
this upper bound is actually attained. The proof is based on the fact that the set of
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eigenvalues of (1) is countable, and a comparison result for a finite dimensional analogue
of (1)

Au− λu+ λ2Bu = 0 (2)

where A and B are Hermitean n×n-matrices, A is positive definite and B is non-negative
with r := rankB < n. Namely, they prove that each of the intervals [αj, αj+r], j =
1, . . . , n − r, contains an eigenvalue λj of the quadratic eigenvalue problem (2), where
α1 ≤ α2 ≤ . . . ≤ αn denote the eigenvalues of the linear problem Au = αu. Moreover,
they claim that this λj is the j-smallest real eigenvalue of the quadratic eigenproblem
(2), and that a corresponding inclusion holds for the infinite dimensional problem (1).
However, the proves of these two statements are not complete, and indeed they are false.

In this note we demonstrate by examples that the inclusion theorems for (1) and (2)
as stated in [2] are not correct. Taking advantage of an appropriate enumeration of the
real eigenvalues of problems (1) and (2) that was exploited in [5] and [4] when proving
variational characterizations of eigenvalues of nonlinear nonoverdamped eigenproblems we
adjust the statements.

2 Inclusion results for quadratic eigenproblems

2.1 Finite dimensional case

Consider the finite dimensional quadratic eigenproblem

Au− λu+ λ2Bu = 0 (3)

where A and B are Hermitean n × n-matrices, A is positive definite and B is positive
semidefinite with r := rankB < n. Transforming (3) into a linear eigenproblem of
dimension 2n it is easily seen that there exist exactly n + r eigenvalues (not necessarily
distinct) of problem (3).

Conca et al. [2] proved the existence of n − r real eigenvalues of (3) in the following
way. Denote by α1 ≤ α2 ≤ . . . ≤ αn the eigenvalues of the linear problem Au = αu, and
for τ ≥ 0 the eigenvalues of Cτ := A+ τB by µ1(τ) ≤ µ2(τ) ≤ . . . ≤ µn(τ). Then for each
j, µj(τ) is a continuous, monotonely non-decreasing function of τ ∈ [0,∞), and by the
maxmin characterization of Courant and Fischer the following inclusions hold for every
τ ≥ 0

αj ≤ µj(τ) ≤ αj+r for j = 1, . . . , n− r, αj ≤ µj(τ) for j = n− r + 1, . . . , n. (4)

Since for every fixed j = 1, . . . , n− r the function µj(τ) is bounded, and µj(0) = αj > 0,
it is obvious that there exists τ̂j > 0 such that µj(τ̂j) =

√

τ̂j. Hence, if u denotes an
eigenvector of Cτ̂j

corresponding to µj(τ̂j) then

(A+ τ̂jB)u = (A+ µ2
j(τ̂j)B)u = µj(τ̂j)u,

and µj(τ̂j) is an eigenvalue of the quadratic problem (3) satisfying αj ≤ µj(τ̂j) ≤ αj+r.
In particular this proves the existence of n−r real eigenvalues of (3), and thus problem

(3) has at most 2r nonreal eigenvalues. However, it does not prove that λj := µj(τ̂j) is
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the j-smallest eigenvalue of (3) as claimed by Conca et al. [2]. The following example
demonstrates that this statement actually is false.
Example 1: Let

A = diag {
2

3
, 3, 4} and B = diag {

1

3
, 0, 0},

then n = 3, r = 1. The eigenvalues of problem (3) ordered by magnitude are λj = j,
j = 1, 2, 3, 4, and the eigenvalues of Au = αu are α1 = 2

3
, α2 = 3 and α3 = 4. Hence, the

inequality 3 = α2 ≤ λ2 ≤ α3 = 4 is violated.
The statement can be adjusted by employing an appropriate enumeration of the eigen-

values of (3). Every real eigenvalue λ ∈ R is a real eigenvalue of the linear Hermitean
eigenproblem

(A+ λ2B)u = µu (5)

the eigenvalues of which are all real.
Definition: A real eigenvalue λ ∈ R of (3) is called a k-th eigenvalue, if λ is the k-smallest
eigenvalue of the linear problem (5).
Theorem 1: Let λ ∈ R be a k-th eigenvalue of the quadratic eigenproblem (3), and let
α1 ≤ α2 ≤ . . . ≤ αn be the eigenvalues of the linear problem Au = αu. Then it holds

αk ≤ λ ≤ αk+r (where αm =∞ for m > n). (6)

Proof: Since λ is the k-smallest eigenvalue of (5) the minmax characterization of Poincaré
yields the existence of a k dimensional subspace W of Cn such that

λ = min
V⊂Cn, dimV =k

max
x∈V

xH(A+ λ2B)x

xHx
= max

x∈W

xH(A+ λ2B)x

xHx
.

Therefore

αk = min
V⊂Cn, dimV =k

max
x∈V

xHAx

xHx
≤ max

x∈W

xHAx

xHx
≤ max

x∈W

xH(A+ λ2B)x

xHx
= λ,

which proves the left inequality of (6).
Let u1, . . . , uk−1 be an orthonormal system of eigenvectors of (5) corresponding to the

(k−1) smallest eigenvalues. Then it follows from the maxmin characterization of Courant
and Fischer for k + r ≤ n

αk+r = max
dimV≤k+r−1

min

{

xHAx

xHx
: xHy = 0 for every y ∈ V, x 6= 0

}

≥ min

{

xHAx

xHx
: xHuj = 0, j = 1, . . . , k − 1, Bx = 0, x 6= 0

}

= min

{

xH(A+ λ2B)x

xHx
: xHuj = 0, j = 1, . . . , k − 1, Bx = 0, x 6= 0

}

≥ min

{

xH(A+ λ2B)x

xHx
: xHuj = 0, j = 1, . . . , k − 1, x 6= 0

}

= λ.

In Example 1 we have A− λ1I + λ2
1B = diag {0, 2, 3}, A− λ2I + λ2

2B = diag {0, 1, 2},
A − λ3I + λ2

3B = diag {2/3, 0, 1} and A − λ4I + λ2
4B = diag {2,−1, 0}. Hence, λ1, λ2

and λ3 are first eigenvalues, and λ4 is a second eigenvalue, and in correspondence with
Theorem 1 it holds α1 ≤ λj ≤ α2 for j = 1, 2, 3 and α2 ≤ λ4 ≤ α3.
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2.2 Infinite dimensional case

Let H be a separable Hilbert space of infinite dimension. Assume that R : H → H is
compact, selfadjoint and positive definite with eigenvalues ξ1 ≥ ξ2 ≥ . . . > 0, and let
S : H → H be a selfadjoint, continuous and non-negative operator of finite rank r. For
the quadratic eigenvalue problem

Ru− λu+ λ2Su = 0 (7)

Conca et al. [2] in a similar way as for the finite dimensional case proved that problem
(7) admits at most 2r nonreal eigenvalues, and that for every j there exists an eigenvalue
λj of (7) such that

ξj ≤ λj ≤ ξj−r (where ξm =∞ for m ≤ 0).

Moreover, they claim that λj is the j-largest real eigenvalue of problem (7). Example 2
demonstrates that this statement is false, too.
Example 2: Let u1, u2, . . . be a Hilbert basis of H, let R and S be defined by

R(uj) =
1

j2
uj, j ∈ N, and S(uj) =

{

3
16
u1 for j = 1
0 for j > 1

.

Then ξj = 1
j2
, and λ1 = 4, λ2 = 4

3
and λj = 1

(j−1)2
for j ≥ 3, and the inequality

ξ2 ≤ λ1 ≤ ξ1 is violated.
As in the finite dimensional case the statement can be adjusted if the number of a real

eigenvalue λ of (7) is inherited from its number as an eigenvalue of the linear problem
(R + λ2S)u = µu. Namely, λ ∈ R is defined to be a k-th eigenvalue of the quadratic
problem (7) if

λ = max
V⊂H, dimV =k

min
x∈V

〈(R + λ2S)x, x〉

‖x‖2
.

With this enumeration the following inclusion theorem can be proved analogously to
Theorem 1.
Theorem 2: If λ is a k-th eigenvalue of the quadratic problem (7) then it holds

ξk ≤ λ ≤ ξk−r (where ξm =∞ for m ≤ 0).
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