SCHRIFTENREIHE SCHIFFBAU

E. Fritzsche und H. Thieme

Neuauswertung der Untersuchungen von Engels, Gebers und Matthias an geschleppten Platten und Prismen

Neuauswertung der Untersuchungen von Engels, Gebers und Matthias an geschleppten Platten und Prismen

Von E. Fritzsche und H. Thieme

Institut für Schiffbau der Universität Hamburg

Ältere Schleppversuchsergebnisse von Platten und Prismen werden in einer den heutigen systematischen Bedürfnissen entsprechenden Form tabellarisch und graphisch wiedergegeben. Die Versuche haben Grundlagenwert für die Behandlung von Ruderproblemen, Aufgaben der Steuereigenschaften der Schiffe und Betrachtungen zum allgemeinen Seitenverhalten der Schiffe. Da die z. T. bei Schräg- und Queranströmung durchgeführten Messungen sich nicht nur auf Widerstand, Querkraft und Giermoment von aus- und eintauchenden Körpern verschiedenen Seitenverhältnisses erstrecken, sondern auch z.T. in sehr genauer Weise das Rollmoment erfaßt ist, kann durch Anwendung dieser - bisher weitgehend unbekannt gebliebenen -Alteren Ergebnisse manche Lücke in der Sammlung neuerer Untersuchungen zumindest gemildert werden.

Gebiet weiter entwickelten Methodik der Darstellung entspricht, daß die entscheidenden Aussagen der Ergebnisse dadurch heute verloren zu gehen drohen.

Bei den vor etwa 50 Jahren von Engels, Gebers und Matthias veröffentlichten Ergebnissen ihrer Versuche mit Platten und Prismen im getauchten und austauchenden Zustand (Schrifttums-Verzeichnis: [1], [2] und [3] trifft es nun zweifellos zu, daß die Ergebnisse heute weitgehend unbekannt sind und daß die heute ungewohnte Form der Wiedergabe ihre bequeme Nutzung beeinträchtigt. Außerdem sind diese alten Jahrgänge der Zeitschrift "Schiffbau" heute nur noch wenig verbreitet und zugänglich, so daß eine Art Neuveröffentlichung dieser Ergebnisse sicherlich im Interesse fast aller derer liegen dürfte, die sachlich mit dem Problem des Seitenverhaltens der Schiffe (Ruder, Steuereigenschaften und Querstabilität unter Wirkung von Lateralkräften) befaßt sind.

Die hier nun vorgelegte "Neuauswertung", die sich vor allem auf gewisse Umrechnungen, Bildung dimensionsloser Verhältniswerte und graphische Darstellungen erstreckt, wurde durchgeführt im Rahmen der Forschungsvorhaben für Ruder- und Steuereigenschaften, die durch die umsichtige Hilfe der Deutschen Forschungsgemeinschaft und des Bundesministeriums für Verkehr am Institut für Schiffbau der Universität Hamburg durchgeführt werden. Im Rahmen der genannten Vorhaben werden neben neuen eigenen Untersuchungen in erheblichem Malle auch andere, fremde Ergebnisse ausgewertet und zum Teil verarbeitet. Es kann daher aus eigener Übersicht festgestellt Werden, daß die hier bearbeiteten Ergebnisse von Engels, Gebers und Matthias ungeachtet ihrer zurückliegenden Entstehungszeit in keiner Weise etwa überholt oder uninteressant geworden sind. Im Gegenteil, der überwiegende Teil der Versuche besitzt - soweit das hier bei einiger aufgewandter Mühe bekannt ist überhaupt keine Parallele in irgendwelchen anderen Untersuchungen. Diese Feststellung betrifft die Untersuchung über den Einfluß der Froudezahl auf die Kräfte an schräg und quer geschleppten Platten und auch ganz besonders die Feststellung der Druckmittelpunkts - Hochlagen solcher Platten. Dieser Punkt berührt die Untersuchungen über die Stabilitätsbeeinflussung durch das Auftreten von hydrodynamischen Seitenkräften, also z. B. die Probleme der Stabilitätsgefährdung durch Wind, schräg oder quer laufenden Strom und beim Drehen. Damit hat die hier ausgewertete Arbeit von Engels, Gebers und Matthias außer ihrem allgemeinen Grundlagenwert auch noch eine ausgesprochen

A. Einführung

- B. Untersuchte Modelle und Anordnungen
- C. Versuche von Matthias
- D. Versuche von Engels und Gebers
- E. Ergebnisse der Versuche mit schräg und quer geschleppten Platten
- F. Ergebnisse der Versuche mit quer geschleppten Platten
- G. Ergebnisse der Versuche mit geschleppten Prismen
- H. Schrifttum
- J. Symbole

A. Einführung

Zur Erarbeitung von Unterlagen für bestimmte Aufgaben technischen Interesses wird man ökonomischer Weise bestrebt sein, möglichst viele der auf dem betreffenden Gebiet bereits erzielten wesentlichen Arbeitsergebnisse kennen zu lemen, tim diese nach kritischer Betrachtung für die eigene Arbeit als positiven Beitrag nutzen oder auch als negative Erfahrung beachten zu können. Wenn soldie - also fremden - Arbeitsergebnisse bereits in erkennbarer Form veröffentlicht oder in anderer geeigneter Weise niedergelegt sind, so genügt im allgemeinen ein Zitat oder allenfalls eine auszugsweise erneute Wiedergabe im Rahmen eines Vergleiches mit neuen - also etwa den eigenen - Ergebnissen. Ausnahmen von diesem Gebrauch erscheinen nur dann sinnvoll und nützlich, wenn die früheren Ergebnisse an praktich unzugänglicher Stelle veröffentlicht sind, weitgehend unbekannt und somit unbeachtet geblieben sind oder schließlich die Form der Originalveröffentlichung so wenig der inzwischen auf diesem

aktuelle Bedeutung für eine unmittelbare Anwendung. Es erscheint darum also lohnend, derart wertvolle Ergebnisse, die auch Ausgangspunkt für ergänzende neue Untersuchungen gleicher Art sein werden, in heute üblicher Form der Darstellung ausgewertet, neu zu veröffentlichen, wie dies mit vorliegender Ausarbeitung geschehen soll.

B. Untersuchte Modelle und Anordnungen

Es wurden dünne Platten von verschiedenem Seitenverhältnis ($\Lambda=2$ T/L bei den austauchenden, und $\Lambda=H/L$ bei den getauchten) sowie Prismen von quadratischem "Hauptspantquerschnitt" und verschiedenen Längen untersucht. Die Prismen — getaucht und austauchend — wurden nur bei Längsanströmung ($\alpha=0^{\circ}$) untersucht. Die Plattenuntersuchung erstreckte sich in jedem Falle auf die Queranströmung ($\alpha=90^{\circ}$) und im Falle der von Matthias geschleppten getauchten Platten auch auf Schräganströmung mit den Winkeln $\alpha=75^{\circ}$, 60°, 45°, 30° und 15°. Sänttiche Versuche wurden in der heute nicht mehr bestehenden Versuchanstalt Dresden-Übigau durchgeführt, wo ein Tank von 3,6 m Tiefe, 6,5 m Breite und 88 m Länge (zusätzlicher Frimmtank von 7 m Länge) mit entsprechendem Schleppwagen zur Verfügung stand.

Abb. 1: Definitionsskizzen

Eine weitere Modellskizzierung erübrigt sich, da sämtliche interessanten Abmessungen mit der Erläuferung durch Abb. 1 aus den Tabellen 1 und 2 hervorgehen. Die Plattenmessungen — Lfd. Nr. (1), (6), (13), (17) — stammen von Matthias, alle anderen, einschließlich sämtlicher Prismen - Untersuchungen von Engels und Gebers.

Hinsichtlich der Meßapparaturen sei auf die Originalarbeiten verwiesen; sie haben heute keine beispielhafte Bedeutung mehr.

C. Versuche von Matthias

Sämtliche Platten Lfd. Nr. (1), (6), (13), (17) mit den Seitenverhältnissen A=4; 1; 1; und 0,25) sind mit einer Lage der Plattenoberkante von 200 mm unter Wasser geschleppt worden. Es sollte damit der Einfluß der freien Oberfläche ausgeschaltet werden, was zwar nicht einwandfrei gelungen ist, aber gerade dadurch heute von besonderem Interesse ist.

Aus der nicht sehr einfachen, aber im Ergebnis erstaunlich genauen Meßmethodik von Matthias ergibt sich der Widerstand W, das Giermoment M_z und das Rollmoment M_x . Für die außerdem noch besonders interessierende Querkraft und die Normalkraft ergeben sich

$$Q = W \cdot \cot \alpha - T/\sin \alpha$$

$$N = W/\sin \alpha - T \cdot \cot \alpha$$

Da die Untersuchung auf dünne Platten und endliche Anstellwinkel a beschränkt ist, kann das Glied mit der Tangentialkraft T als klein vernachlässigt werden, so daß — freilich nur als Näherungswert — sich einfach ergibt

$$Q = W \cdot \cot \alpha \text{ und } N = W / \sin \alpha$$

Aus Gründen der Systematik der weiteren Verwendung im Zusammenhang mit der Stabilitätshelastung von Schiffskörpern durch Lateralkräfte (z. B. Wind) wird das Rollmoment in Form einer Druckpunktshochlage $\mathbf{e}_{\mathbf{z}}$ (vgl. Abb. 1) angegeben

$$e_z = M_x/N$$

D. Versuche von Engels und Gebers

Die Versuche von Engels und Gebers sind mit verschiedenen Variationen der Eintauchung ins Wasser ausgeführt und sollten gerade den Einfluß der Wasseroberfläche deutlich zeigen. Darin liegt auch der ganz besondere Wert dieser Versuche mit Platten und Prismen.

Die Messeeinrichtung war eine andere als die von Matthias und beschränkte sich darauf, den Widerstand des längs- oder quergestellten Körpers zu liefern und dazu den Druckpunkt in seiner Höhenlage etwa zu ermitteln. Letztere Messung ist nur bei den Platten ausgeführt worden. Die Meßwerte sind also der Querwiderstand W_Q und das Rollmoment M_x bei den Platten und der Widerstand W bei den Prismen. Das Rollmoment ist aus den unter C genannten Gründen wieder als $\mathbf{e}_Z = \mathbf{M}_X/W_Q$ angegeben worden.

Für die Platten wurden zwei Versuchsreihen durchgeführt (I und II in den Tabellen bezeichnet). Die getauchten Platten wurden einmal im Winter (I) bei 5,5° C Wassertemperatur geschleppt und dann nochmal im Sommer (II) bei 17° C Wassertemperatur wiederholt. Die Platten im austauchenden Zustand wurden im Frühjahr geschleppt, beide Versuchsreihen bei einer Temperatur von 7,5° C. Bei der Platte H/L = 1 und L = 100 mm wurde die zweite Versuchsreihe bei 18,8° C gefahren. Der Widerstand der Halteorgane ist ebenso wie bei den Ergebnissen von Matthias vor der Wiedergabe abgezogen worden. Für die Kurvenauftragung sind immer die Meßreihen II verwendet worden. Die in den Diagrammen als zweite Abszisse oder als Kurvenpunkt-Parameter angegebenen Reynolds Zahlen entsprechen den Wassertemperaturen der Meßreihen II.

E. Ergebnisse der Versuche mit schräg und quer geschleppten Platten

Diese von Matthias gewonnenen Ergebnisse sind tabellarisch in Tabelle 3 bis 6 und in den Abb. 2 bis 17 und auch 19 und 23 in Diagrammform niedergelegt. In Kurvenform sind die Beizahlen cw, cq und cm sowie das Verhältnis ex/12 angegeben. Die Darstellungen zeigen — besonders auch bei der Druckspunkts-Hochlage — einen ausgesprochen sauberen und sicheren Verlauf für die etwas größeren Froudezahlen.

Abb. 2: Widerstand schräg geschleppter Platte $\Lambda = H/L = 4$, H/T = 0.66

Teb. 1

Médellenordnungen der Redstedigletten

Lfd. Nr.	L	В	н	Λ=	Т	Н/Т	æ		Ergebnisse in
	mm	MAGA	ma		, mm	_	¢۰	Tab.	Abb.
(1)	100	3	400	H/L = 4	~ 800	0,66	15—90	8	2, 6, 10, 14
(2)	300		800	2T/L = 2	300	2	90	7	18, 22
(3)	200		300	2T/L = 2	200	2,5	99	8	18, 22
(4)	100		400	2T/L = 2	100	4	′90	9	18, 22
(5)	300	·	300	H/L = 1	400	9,75	:90	7	19, 23
(6)	400	4	400	#/L = 1	600	0,96	15—90	4	3, 19, 7, 11, 15, 23
(7)	200		200	H/L = L	300	9,96	90	8	19, 23
(8)	300		500	H/L = 1	300	0,5	90	7	19, 23
(9)	300		300	H/L=1	®00	€,5	190	7	19, 20, 23, 24
(10)	200		200	H/L = 1	-400	4,5	190	18	19, 20, 23, 24
(11)	100	_	100	H/L = 1	200	-0,5	190	9	19, 29, 23, 24
(12)	200]	200	H/L = 1	500	19,4	90	8	19, 23
(13)	100	1,5	100	H/L = 1	300	●,33	1590	5	4, 19, 8, 12, 16, 28
(14)	100	_	160	H/L = 1	300	9,33	90	9	19, 23
(15)	100	_	100	H/L = 1	400	0,25	90	.9	19, 23
(16)	500		400	2T/L = 0.4	100	4	96	10	18, 22
(17)	400	3	100	H/L = 0.25	300	9,33	1590	6	5, 9, 13, 17
(18)	500	_	100	H/L = 0.2	200	9,5	90	10	21, 27
(19)	500	-	100	H/L = 0.2	300	0,33	90	10	21, 25
(20)	500	1 -	100	H/L = 0.2	400	0,25	90	10	21, 25

Tab. 2 $\label{eq:modellanerdnung} \mbox{ Modellanerdnung der Prismen} \\ \mbox{ B = 100 mm; } \alpha = 0^{\circ}$

Lfd. Nr.	L	Н	Λ =	т	H/T	Erg	rebnisse in
	mm	mm	-	mm	_	Tab.	Abb.
(21)	100	100	H/L = 1	200	0,5	12	27
(22)	100	100	H/L = 1	300	0,33	12	29
(23)	100	100	H/L = 1	400	0,25	12	31
(24)	200	100	H/L = 0.5	200	0,5	12	27
(25)	200	100	H/L = 0.5	300	0,33	12	29
(26)	200	100	H/L = 0.5	400	0,25	12	31
(27)	500	>T	2 T/L = 0.4	100	>1	11	26
(28)	1000	>T	2 T/L = 0.2	100	>1	11	26
(29)	500	100	H/L = 0.2	200	0,5	12	27
(30)	500	100	H/L = 0.2	300	0,33	12	29
(31)	500	100	H/L = 0.2	400	9,25	12	31
(32)	2000	>T	2 T/L = 0,1	180	>1	111	26
(33)	1000	100	H/L = 0.1	200	0,5	12	28
(34)	1000	100	H/L = 0.1	306	0,33	12	-30
(35)	1000	100	H/L = 0.1	400	0,25	12	32
(36)	3000	>T	2 T/L = 0,006	100	>1	11	26
(37)	2000	100	H/L = 0.05	300	0,5	12	28
(38)	2000	100	H/L = 0,95	300	0,33	12	30
(39)	2000	100	H/L = 0,65	400	0,25	12	. 32
(40)	3000	100	H/L = 0.033	200	0,5	12	28
(41)	3000	100	H/L = 0.033	390	0,33	12	30
(42)	3000	100	H/L = 0.083	460	0,25	18	32

Yab. 8: Schiffig goodsleppto Platte A = H/L = 4, H/T = 0.05

(1)

	V	V ⁸					e,		¥	V ^a			0		0,
	[m/s]	$(\mathbf{g} \cdot \mathbf{T})$	¢₩.	co	сй	c.M	Ħ		[m/s]	$(\mathbf{g} \cdot \mathbf{T})$	C₩	co	сM	CM.	H
a = 90°	0,2	0,0068	1,3	_	1,3		- 9,0795	a = 450	9,2	0,0048	0,6076	0,6676	0,9724	0,0564	0,0695
	0,4	0,0272	1,276		1,276		me 6.9236	["	0,4	0,0272	0,7950	0,7050	1,1254	0,0763	0.02355
	9,6	0,0612	1,316	_	1,316		# 0.9075	1	9.8	0,0612	0,8236	0,8236	1,1647	0,079	+ 0.01
	9,8	0,1987	**		1,344	-44	+ 0.0362	1	0,8 1,0	9,1097 0,1699	0,8429 0,8482	0,8426 0.8462	1,1921 1.1996	0.0 052 8.0000	+ 0,0205 + 0,0363
	1,0 1,2	0,1000 0.2445	1.37		1,354 1,35	-	+ 0.0076	ł		9.2446	0.3458	0.8458	1.1901	0.0000	+ 0,0363
	1.4	0.323	1,349		1,342		+ 0.0302	ł	1,2	0.303	0.8407	0.8407	1.1890	0,0000	+ 0.0413
	1,6	0,4346	1.31		1,319		+ 0.0015	1	1.0	0.3545	9,8244	0,8244	1,1959	0,0880	+ 0,042
	1,8	9,3666	1		1,200		+ 0.9430	1	1,8	0,3565	0,9119	0,812	1,1483	0,0004	+ 0,0433
	2,0	0.0798	1.797		1,267		+ 0,0405	ſ	2,0	0,4700	4,7920	0,7929	1,1043	0,0070	+ 0,0136
= 759	0,2	9.0000	1.278	9,3418	1,3200	0,0346	0,07 675	$\alpha = 300$	6,2	0,0068	0,500	0,8815	1,0179	0,0737	0,0675
	6,4	0,0275	2700	0,3300	1,2796	0,0420	Q,0250	i	0,4	0,0273	0,4004	0,8652	0,9001	0,0823	0,0243
	₩,6	0,0613	1,2780	0,3413	1,31.86	0,04902	+ 9,4006	1	0.6	0.0012	0,5120	0,8676	1,0252	0,0063	+ 0,0006
	6.8	0,1007	1,3007	9,3486	1,3457	0,0474	+ 0.0230 + 0.033	1	0.8	0,1007	0,5 26 5 0,5 33 6	0,9102 8,923 8	1,0510	0,0031	+ 6,0233
	1, 0 1,2	0,1 889 0,2446	1,313 1,3666	0,3518 0,3501	1,3504 1,3527	0.0517	+ 0,033	1	1.0 1.2	0,1 000 0,2446	0,5276	6.9131	1,0669 1.0544	0,0977 0,0976	+ 0,0325 + 0,0380
	1,4	0.339		0,3481	1,345	0,00305	+ 9,040	1	1,4	0,333	0.5241	9.9077	1,0601	0,0001	+ 0.0390
	1,6	0,4349		0.3417	1,3203	0.0519	± 6,0018	1	1,6	0,4340	0,5151	0.8021	1,0301	0,0970	+ 9,0428
	1,8	0,5505	1,2554	0,3364	1,2000	0,0012	+ 8,5423	ł	1,8	0,5306	0,5000	4,8777	1,0135	0,0007	+ 0,0450
	3 ' 6	9,6796	1,226	0,3265	1,2605	0,0901	+ ♦.0433	ł	2,0	0,67 0 6	0,4061	0,8502	0,9921	0,0040	+ 0,0443
a = 909	0.2	0,0006	9,9702	0,6440	1,2006	0,05904	- 0,0 02 5	a = 150	6.3	9,9000	0,2300	0,0000	0,8005	0.1026	0,0618
	6,4	0,0272	1,1073	0,6363	1,2786	0,0697	0,0236	1	0,4	0,0272	0,2209	0,8566	0,0066	0,1135	0,0255
	0,6	6,0612	1,1111	0,6416	1,2831	0,0726	+ 0,0086	i	0,6	0.0612	0,2405	0,8074	6,9291	0,1226	+ 0,0093
	6,0	0,10 67 6,1699	1,1371 1.13 05	0,65 66 0,6574	1,3131 1,3147	0,074 0 0,076 0	± 0,0238 ± 0,0332	ł	9,8	0,1967	9,2140	0,9136	0,9462	0,1285	+ 0,0238
	1,0 1,2	0,1009	1,1419	0.6596	1,3176	0.0775	+ 0.0332	1	1,0 1,2	0.1698	0,2471 0,2453	0,9220 0,9154	0,9546 0.9477	0,1321 0,1330	+ 0,0320 + 0.0400
	1,4	6.333	1.1343	9.6540	1.3098	0.0773	₩ 8.0405	1	1.4	0.333	0,2430	0,9134	0.9421	0,1344	+ 0.0430
	1,6	0,4349	1,1137	0,043	1,206	0,0700	+ 0.04125	(1,6	0,4340	9,2400	0.8957	0,8273	0,1346	+ 0.0415
	1.8	0.5505	1,0021	0,0132	1,264	0,0759	+ 0,04325	(4)	1,8	0.5005	0,2350	0.8003	0,9111	0,1336	+ 0,0420
	2,0	8,9796	1,4621	0,6133	1,2365	0,0760	+ 6,9455	l .	2,●	0,6796	0,2305	0,3003	4,4007	0,1312	+ 9,0456

Tah. 4: Scholig geschloppte Platte A = H/L = 1, H/T = 0.06

(6)

	•	V ^a		_			e,		₩	V-B					O _X
	[m/s]	$(g \cdot T)$	CM	CQ.	ck	c [™]	H		[m/s]	(g·T)	сW	co .	cM	cM.	H
s = 90°	0,2	0,0068	1,400		1,486	_	- 0,0013	a = 45°	0,2	0,0000	1,0448	1,0446	1,4770	9,6724	0,0700
	0.4	0,0272	1,201		1,291		0.0235	Γ	0,4	0.0272	0,9063	0.9083	1,2845	0.0772	0,0245
	0,6	0,0612	1,27	_	1,27	_	+ 0.4045	1	0.6	0.0612	0.8017	0.0917	1,2611	0.0700	+ 0,0003
	0,8	0,1067	1,265		1,295		+ 0.0240	1	0.8	0.1007	0.8001	0,8691	1,2574	0,0017	+ 0,0233
	1,0	0,1600	1,246		1,256		+ 0.0325	1	1,0	0,1999	0,8010	0,8810	1,2460	0,06296	+ 0,0344
	1,2	0,2446	1,246		1,246		+ 0,0360	1	1,2	0,2446	0,8740	0,8740	1,2373	0,0040	+ 0,0375
	1,4	0,33 3	1,235	-	1,235	-	+ 0,0415	1	1,4	0,333	0,8601	0,8001	1,2164	0,0838	+ 0,0395
= 75°	0,2	0,0088	1,4573	0,3905	1,5000	0,0323	0,9636	2 - 300	0,2	0,0000	0,7000	1,2294	1,4196	0,0849	0,0810
	0,4	0.0272	1.2645	0.3366	1,3001	0.6350	0.0245	1	0,4	0,4372	0,6196	1.0733	1,2394	0.0095	0,0263
	0,6	0,0612	1,2401	6,3323	1,2639	0.0392	+ 0,0005	j	0,6	0.0012	0.6665	1,0504	1.2120	6,0934	+ 0,0075
	0,8	0,1087	1,2365	0,3313	1,2002	0,0414	+ 0,0233	1	0,0	0.1067	0,6020	1,0440	1.2055	0.0072	+ 9,0256
	1,6	0,1689	1,2253	0,3283	1,2606	0,0426	+ 0,0332	1	1.0	0,1000	0,5001	1,0377	1,1902	0,1004	+ 0,0325
	1,2	0,2446	1,2156	0,3257	1,2505	0,0434	+ 0,0302	1	1.2	0,2446	9,5956	1,0316	1,1912	0,1004	+ 0,0382
	1,4	0,333	1,1974	0,3200	1,2307	0,0436	+ 0,0400	1	1,4	0,333	0,5037	1,0110	1,1674	0,00023	+ 0,0400
a = 00°	0,2	0,0066	1,3002	0,7507	1,5014	0,0547	0,0792	a = 150	0,2	0,0000	0,3460	1,3036	1,3406	0,1293	0,0655
	0.4	0.0272	1,1363	0.0526	1,3052	0.0643	0.0256	ſ	0.4	0.0272	0.3024	1,1286	1.1604	0,1330	0,0249
	0,6	0,0612	1,1106	0,6414	1,2827	0,06606	+ 0,0050	[0.0	0.0012	0,2065	1,1064	1,1455	0,1432	+0,0080
	0,8	0,1067	1,1050	0,6300	1,2777	0,00007	+ 0,0236	1	0,8	0,1007	0,2000	1,1046	1,1436	0,1401	+ 0,0240
	1,0	0,1600	1,0006	0,6340	1,2006	0,0705	+ 0,0830	1	1,0	0,1699	0,2935	1,0955	1,1342	0,1514	+ 0,0320
	1,2	9,2446	1,0004	0,829	1,250	0.0712	+ 0,0305	ı	1,2	0,2446	0,2012	1,0007	1,1251	0,1526	+ 0,0363
	1,4	6,333	1.0736	9,6199	1,2307	0.0710	+ 0.0400	1	1.4	0,333	4,2000	1,0670	1,1000	0,1501	+ 0,0405

Abb. 3: Widerstand schräg geschleppter Platte A = H/L = 1, H/T = 0.08

Abb. 4: Widerstand schrilg geschleppter Platte A = H/L = 1, H/T = 0.33

A = H/L = 1, H/T = 0.33

	v [m/s]	$\frac{\mathbf{v}^{\mathbf{g}}}{(\mathbf{g}\cdot\mathbf{T})}$	cw	cQ	cN	c _M	- e _z		v [m/s]	$\frac{\mathbf{v^2}}{(\mathbf{g}\cdot\mathbf{T})}$	c₩	cQ	cn	c _M	e _z H
α = 90°	0,3	0,0306	1,266		1,260		- 0,630	α = 45°	0,3	0,0300	0,8952	0,8992	1,2660	0,0778	0,038
•	0,5	0.0852	1,270		1,270		+ 0,018	1	0,5	0,0852	0.8890	0.8890	1.2586	0.0858	+ 0.050
	1,0	0,341	1,203		1,203		+ 0,043	1	1.6	0.341	0.8472	0.8472	1.1982	0.0848	+ 0.039
	1.5	0.764	1,149		1.149		+ 0.052	1	1,5	0,764	0.8092	0.8092	1,1444	0,0067	+0.040
	2,0	1.36	1,120		1.120		+ 0.057	l.	2,0	1,36	0,7864	0,7864	1,1122	0,0868	+ 0,058
	2,5	2,13	1,108		1,100		+ 0,063	11	2,5	2,13	0,7787	0,7767	1,1014	0,06 66	+0.063
	3,0	3,06	1,198		1,100		+ 0,064	1	3,0	3,00	0,7790	0,7780	1,1002	0,0069	+ 0,068
	3,5	4,14	1,103		1,103		+ 9,060	1	3,5	4,14	0.7745	0,7745	1,0953	0,0868	+ 0,069
	4,0	5,43	1,094		1,094		+ 9,071	1	4,0	5,43	0,7609	0,7689	1,0874	0,0863	+ 0,069
y = 75°	0,3	0,0300	1,1813	0,3165	1,2230		0,030	$\alpha = 30^{\circ}$	0,3	9,0306	0,6115	1,0591	1,223	0,0937	+ 0,004
	0,5	0,0852	1,246	0.3339	1,2903	0.0453	+ 0.036		0,5	0.0852	0.6325	1,0448	1.2065	0.09917	+ 0.033
	1,0	0.341	1,1735	0,3144	1,2150	0.0441	+ 0.041	1	1,0	0.341	0,569	0,9855	1,138	0.10083	+ 0,043
	1,5	0.764	1,1219	0,3006	1,1616	0,0445	+ 0,656	1	1,5	0,764	0,5475	0,9492	1,095	0,1045	+ 0,053
	2,0	1,36	1,0956	0,2925	1,1301	0.0447	+ 0,066	ł	2,0	1,36	0,532	0.9214	1.064	0,1019	+ 0,053
	2,5	2,13	1,0799	0,2693	1,1100	0,0444	+ 0,062	1	2,5	2,13	0,5274	0,9135	1,055	0,1019	+ 0.066
	3,0	3,06	1,0806	0,2896	1,1191	0.0443	+ 0,066	ł	3,0	3,06	0.528	0.9144	1,056	0,1026	+ 0,065
	3,5	4,14	1,0749	0,2660	1,1129	0,0443	+ 0.060	1	3,5	4,14	0,5262	0,9113	1,052	0,1031	+0.066
	4,0	5,43	1,0661	0,2657	1,1036	0,0441	+ 8,070	1	4,0	5, 43	0,5219	0,9038	1,044	0,1027	+ 0,071
a = 60°	0,3	0,0306	1,1350	0,6558	1,3116	0,0696	0,027	$\alpha = 150$	0,3	0,0306	0,2837	1,059	1,0964	0,1414	0,130
	0,5	0.0952	1.1031	0.6369	1,2738	0.0708	+ 0.048	1	6,5	0.0052	0.2975	1,1102	1.1494	0,1534	+0.047
	1.0	0,341	1,0929	0.631	1.2162	0.069	+ 0,044	1	1,0	0,34/1	0,2842	1,0608	1,0963	0,1494	+ 0.043
	1,5	0,764	1.0070	0,581	1,1620	0.0701	+ 0,046	1	1,5	0,764	0,2700	1,0077	1,0433	0,1490	+ 0,050
	2,0	1,36	0,9796	0,5656	1,1312	0.0674	+0.058	1	2,0	1,36	0,2623	0,9790	1,0136	0.1486	+ 0,058
	2,5	2,13	0,9701	0,5601	1,1202	0,8670	+ 0.067	1	2,5	2,13	0,2621	0,9782	1,0127	0,1509	+ 0,065
	3,0	3,06	0,9701	0,5601	1,1202	0,0670	+ 0,960	1 ,	3,0	3,06	9,2500	0,969 6	1,0038	0,1506	+ 0,069
	3,5	4,14	0,9676	0,5507	1,1173	0,0670	+ 0,069	ł	3,5	4,14	0,250	0,9631	0,9971	0,1501	+ 0,064
	4.0	5,43	0,9587	9,5536	1,1071	9,0000	+ 0,960		4,0	5,43	0,2550	0,9553	0,9000	0,1493	+ 0,069

A = H/L = 0.25, H/T = 0.83

							(1	7)			s'				
	v [m/s]	$\frac{\mathbf{v}^{\mathbf{g}}}{(\mathbf{g}\cdot\mathbf{T})}$	c _W	CQ	cN	см	e _s H		v [m/s]	$\frac{\mathbf{v}^{\mathbf{g}}}{(\mathbf{g}\cdot\mathbf{T})}$	cW	cQ	c _N	c _M	$\frac{e_z}{H}$
= 900	0,2	0,0136	1,3		1,3		0,097	a = 45°	0,2	0,0136	0,8705	0,8705	1,2311	0,0609	0,08
	0,4	0,0547	1,210		1,216		0,022	ļ.,	0,4	0,9547	0,8108	0.8198	1,1467	0,0657	 0,0 2
	0,0	0.1223	1,31		1,31		+ 9,004	ł .	0,6	0.1223	0,8781	0,8781	1,2419	0.0769	+ 0.00
	6.8	0,2175	1,346		1,340		+ 0,624	1	0,8	0,2175	0,9046	0,9046	1,2793	0,0833	+ 0.02
	1,0 1,2	0,339 0 0,4 9 93	1,353 1,351		1,353		+ 0,033	1	1,0 1,2	0,3398 0,4 993	0,9079 0,9026	0,9079 0,9028	1,2 84 1,27 67	0,0858 0,0866	+ 0,03 + 0,03
	1,4		1,330		1,351 1,330		+ 0,039 + 0.038	ł	1,4	0,4550	0,3025	0.8028	1,268	0.0875	+ 0.04
	1,6	0.8699	1.320		1,320		+ 0.042	1	1,6	0.8699	0.8867	0.8667	1,254	0.0884	+ 0,04
	1,8	1,1009	1,293		1,293		+ 6,943	1	1,8	1,1000	0.0656	0.8658	1.2244	0.0873	+ 0.04
	2,0	1,3592	1,254		1,284		+ 0,043	l	2,6	1,3502	0,8414	0,8414	1,1900	0,0857	+ 0,04
= 750	0,2	0,0136	1,2758	0,3418	1,3206	0,0263	0,079	$\alpha = 30^{\circ}$	0,2	0,0136	0,5635	0,9759	1,127	0,068	0,08
	0,4	0.0547	1,1827	0,3169	1,2345	0,0336	0,000	i	0,4	0,0547	0,5204	0,9013	1,0408	0,0781	0,02
	0,6	0,1223	1,278	0,3424	1,3231	0,0405	+ 0,002	1	0,6	0,1223	0.5627	0,9745	1,1253	0.0821	+ 0,00
	0,8	0,2175 0,3398	1,3151 1,3199	0,3524	1,3615	0,0436	+ 0,025	1 .	0,8	0,2175	0,5783	1.0016	1,1566	0,0926	+ 0,02
	1,0 1,2	0,4893	1,3167	0,3537 0,3528	1,3665 1,3632	0,04605 0,04676	+ 0,033 + 0,036	i	1,0	0,3360	0,5811	1,0063	1,1622	0.0962	+ 0,03
	1.4	0,6659	1.3070	0.3504	1.354	0.0475	+ 0.041	l .	1,2 1.4	0,4893 0.6659	0,5003 0,5725	1,005 0,9916	1,1 6 05 1,1 4 6	0,1007 0.0993	+ 0.03
	1,6	0,8699	1,2875	0.3449	1.333	0.0475	+ 0,042	•	1.6	0.8698	0,5723	0.9603	1.1326	0.0983	+ 0.04
	1,8	1,1009	1,2626	0,3383	1,3072	0.0477	+ 0.042	ł	1.8	1.1009	0.5547	0.9607	1.1094	0.0987	+ 0,04
	2,0	1,3592	1,2222	0,3275	1,2653	0,0468	+ 0,044	ł	2,0	1,3502	0,5399	0,9350	1,0797	0,0972	+ 0,04
= 60°	0,2	0,0136	1,1261	0,6513	1,3026	0,0474	0,002	$\alpha = 15^{\circ}$	0,2	0,0136	0,3002	1,419	1,469	0,1407	0,09
	0,4	0,0547	1,0447	0,6032	1,2063	0,0548	0.027	j	0,4	0.0547	0,2417	0,9021	0,9339	0,1059	0,00
	0,6	0,1223	1,1367	0,656	1,3126	0,0677	+ 0,008)	0,6	0,1223	0,2631	0,9819	1,0166	0,1271	+ 0,01
	6,8	0,2175	1,1706	0,676	1,3520	0,0735	+ 0,027	1	0,8	0,2175	0,2711	1,0117	1,0474	0,1349	+ 0,03
	1,0	0,3390	1,1740	0,6779	1,3557	0.0756	+ 0,032		1,0	0,3396	0,2721	1,0155	1,0513	0,1399	+ 0,03
	1,2 1,4	0,4893 0,6659	1,1676 1,1610	0,6742 0,6704	1,3483 1,3407	0,07618 0,07613	+ 0,036	1	1,2	0,4 6 93 0,6659	0,2724 0,2667	1,0165 1,0029	1,0524 1,6363	0,1405 0,1407	+ 0.04
	1,6	0,8699	1,1466	0.662	1.3240	0.0764	+ 0,040 + 0,642	i	1,4 1,6	0.8699	0,2661	0.9932	1.0263	0.1403	+ 0,04
	1.8	1.1009	1.1231	0.6485	1,2869	0,0746	+ 0,043	į.	1,8	1,1009	0,2610	0.9741	1.0085	0,1301	+ 0.04
	2,0	1,3592	1,0001	0,6263	1,2565	0,0734	+ 0,043	ł	2,0	1,3592	0,2515	0,9396	0,9719	0,1339	+ 0,03
IIII			11111	11111		111111	1777777)							
		* 1		15. 90		HHH									
		*	1111	3											
		× J		APP	+++++	T			C						Ì
		71111							44		HHHH	1117		+++++	
	! ! ! ! ! ! !	++++		11111	+++++	+++						× 44	7		
		J	+HTF	45					1-1-1		-	W		+4	
				* + +	-×					*		+5 *		46	
		<u> </u>	<u> </u>	+++++	 	+++7+	 		174			× 60	$+\Pi\Pi$	$+\Pi\Pi$	
1111	┝╃┿┺╁╄┧	+++ +++	-11111						11	H-14 14 17		7 7 10	┽╃╅┶┧╏		

Abh. 5: Widerstand schräg geschleppter Platte A = H/L = 0.25, H/T = 0.33

Abb. 6: Querkraft schräg geschleppter Platte A = H/L = 4, H/T = 0.66

Abb. 7: Querkraft schräg geschleppter Platte A = H/L = 1, H/T = 0.66

A = H/L = 1, H/T = 0.66

Abb. 8: Querkraft schräg geschleppter Platte A = H/L = 1, H/T = 0.33

Abb. 12: Giermoment schräg geschleppter Platte $\Lambda = H/L = 1, H/T = 0.3\overline{3}$

Abb. 9: Querkraft schräg geschleppter Platte A = H/L = 0,25, H/T = 0,33

Abb. 13: Giermoment schräg geschleppter Platte $A = H/L = 0.25, H/T = 0.3\overline{3}$

Abb. 10: Giermoment schräg geschleppter Platte A = H/L = 4, H/T = 0.66

Abb. 14: Druckpunkts-Hochlage schräg geschleppter Platte A = H/L = 4, H/T = 0.66

Abb. 15: Druckpunkts-Hochlage schräg geschleppter Platte $\Lambda = H/L = 1, H/T = 0.66$

Tab. 9: Quer geschleppte Platten, a = 90° L = 100 mm

**		c _{WQ} für verschi	edene H/T	
V	(4)	(11)	(14)	(15)
	H/T = 4	H/T = 0.5	H/T = 0.33	H/T = 0.25
m/s	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/T$	$\overline{\mathbf{v^2/(g \cdot T)}} \ \mathbf{c_{WQ}} \ \mathbf{I} \ \mathbf{c_{WQ}} \ \mathbf{II} \ \mathbf{e_z/H}$	v²/(g·T) c _{WQ} I c _{WQ} II e _z /H	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$
0,5 1,5 2,5 3 3,5 4,5 5	0,256 — 1,255 — 1,02 1,530 1,530 —0,017 2,289 1,440 1,490 +0,469 4,08 1,410 1,420 +0,459 9,18 1,360 1,364 +0,378 9,18 1,330 1,331 — 12,5 1,280 1,280 — 16,32 — — — 20,66 — — —	0,1275 — 1,255 — 0,51 1,275 1,316 +0,081 1,1475 1,260 1,240 +0,266 2,04 1,220 1,152 +0,149 3,185 1,190 1,107 +0,302 4,59 1,185 1,099 +0,255 6,25 1,187 1,097 +0,221 8,16 1,200 1,103 +0,499 10,33 1,217 1,100 +0,605 12,75 1,210 1,092 —	0,085	0,0637 0,255 1,275 0,574 1,230 1,02 1,190 1,593 1,145 1,593 1,145 1,150 1,160 1,170 1,170 1,170 1,180 1,170 1,180 1,

Tab. 10: Quer geschleppte Platten, $\alpha = 90^{\circ}$ L = 500 mm

3.1		c _{WQ} für versch	iedene H/T	
₩	(16)	(18)	(19)	(20)
<u> </u>	H/T = 4	H/T = 0.5	$H/T = 0.3\overline{3}$	H/T = 0.25
m/s	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$	$v^2/(g \cdot T) c_{WQ} 1 c_{WQ} II e_z/T$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$
0,5	0,255 — 1,130 —	0,1275 — 1,475 —	0,085 — 1,460 —	0,0637 — 1,443 —
1 1,5	1,02 1,290 1,290 +0,124 2,295 1,380 1,380 +0,242	0,51 1,530 1,500 +0,031 1,1475 1,460 1,453 +0,269	0,34 1,440 1,490 +0,165 0,765 1,435 1,466 +0,195	0,255 1,345 1,420 —0,315 0,574 1,360 1,377 —0,139
2 2.5	4,08 1,380 1,380 +0,191 6,37 1,450 1,450 +0461	2,04 1,330 1,330 +0,213 3,185 1,220 1,226 +0,195	1,36 1,315 1,340 +0,213 2,123 1,220 1,223 -0,008	1,02 1,240 1,285 —0,043 1,593 1,300 1,212 —0,001
2,5 .3 3,5	9,18 1,550 1,546	4,59 1,165 1,157 +0,249	3,06 1,190 1,159 -0,007	2,295 1,235 1,200
.4.	10,32	8,16, 1,126 1,105	5,44 1,145 1,141	4,08 1,175 1,216 —
4,5	20,65	10,393 1,007 -24	8,869 1,182	5,163 - 1,165 -

Abb. 20: Querwiderstand getauchter Platten $\Lambda = H/L = 1$, H/T = 0.5

Abb. 21: Querwiderstand getäuchter Platten $\Lambda = H/L = 0.2$, H/T < 1

später — bei der Anordnung von Matthias dann der Fall war. Die dargestellten Verhältniswerte sind die Querwiderstandsbeizahl cwQ und die Druckpunktshochlage, ez/H im Falle der getauchten Platte und ex/T bei den austauchenden Platten. Die leider unsystematische Verwendung verschiedener Abszissenmaßstäbe besonders bei den Diagrammen dieser Untersuchungsgruppe ist hier in Kauf genommen worden;

Abb. 22: Druckpünkts-Hochlage quer geschleppter, austauchender Platten H/T > 1

Abb. 23: Druckpunkts-Hochlage quer geschleppter, geschlehter Platten $\Lambda = H/L = 1$, H/T < 1

Tab. 9: Quer geschleppte Platten, $a = 90^{\circ}$ L = 100 mm

v		c _{WQ} für verschi	edene H/T	
·	(4)	(11)	(14)	(15)
	H/T = 4	H/T = 0.5	H/T = 0,33	H/T = 0.25
m/s	$\mathbf{v}^{\mathbf{z}}/(\mathbf{g}\cdot\mathbf{T})$ $\mathbf{c}_{\mathbf{WQ}}$ I $\mathbf{c}_{\mathbf{WQ}}$ II $\mathbf{e}_{\mathbf{z}}/\mathbf{T}$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$
0,5 1 1,5 2 2,5 3 3,5 4 4,5 5	0,255 — 1,255 — 1,02 1,530 1,530 —0,017 2,293 1,440 1,490 +0,469 4,06 1,410 1,420 +0,459 9,18 1,330 1,331 — 12,5 1,280 1,280 — 16,32 — — — 20,65 — — —	0,1275 — 1,255 — 0,51 1,275 1,316 +0,091 1,1475 1,260 1,240 +0,266 2,04 1,220 1,152 +0,149 3,185 1,190 1,107 +0,302 4,59 1,185 1,099 +0,255 6,29 1,187 1,097 +0,221 8,16 1,200 1,103 +0,499 10,33 1,217 1,100 +0,605 12,75 1,210 1,092 —	0,085	0,0637 — 0,255 1,275 — 0,574 1,230 — 1,02 1,190 — 1,593 1,145 — 2,295 1,150 — +0,009 3,123 1,160 — +0,289 4,08 1,170 — +0,235 5,163 1,166 — +0,215 6,325 1,154 — —

Tab. 10: Quer geschleppte Platten, $a = 90^{\circ}$ L = 500 mm

	A CONTRACTOR OF THE PROPERTY O	4	The second secon	A STATE OF THE PARTY OF THE PAR
₩	(16)	c _{WQ} für versch (18)	iedene H/T (19)	(20)
-	(20)	(10)		(20)
	H/T = 4	H/T = 0.5	$H/T = 0.3\overline{3}$	H/T = 0.25
m/s	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/T$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$	$v^2/(g \cdot T) c_{WQ} I c_{WQ} II e_z/H$
Ġ,5	0,259 1,130	0,1275 — 1,475 —	0,085 — 1,460 —	0,0637 — 1,443 —
1 1,5	1,02 1,290 1,290 +0,124 2,295 1,380 1,380 +0,242	0,51 1,530 1,500 +0,031 1,1475 1,460 1,453 +0,269	0,34 1,440 1,490 +0,165 0,765 1,435 1,466 +0,195	0,255 1,345 1,420 —0,315 0,574 1,360 1,377 —0,139
2	4,08 1,380 1,380 +0,191	2,04 1,330 1,330 +0,213	1,36 1,315 1,340 +0,213	1,02 1,240 1,285 -0,043
2,5	6,37 1,450 1,450 +0461	3,185 1,220 1,226 +0,195	2,123 1,220 1,223 -0.008	1,593 1,300 1,212 -0,001
3	9,18 1,550 1,546	4,59 1,165 1,157 +0,249	3,06 1,190 1,1590,007	2,295 1,235 1,200 —
3,5	12,5	6,25 1,140 1,120 -	4,167 1,175 1,130 —	3,125 1,204 1,230 —
4.5	16,32 — — — — — — — — — — — — — — — — — — —	8,16. 1,120 1,105 — 10,325 — 1,007 —	5,44 1,145 1,141 — 6,863 — 1,182 —	4,08 1,175 1,216 —
	; 20, 00	10,395 1,007	6,883 1,182	5,163 1,165

Abb. 20: Querwiderstand getauchter Platten A = H/L = 1, H/T = 0.5

Abb. 21: Querwiderstand getäuchter Platten $\Lambda = H/L = 0.2$, H/T < 1

später — bei der Anordnung von Matthias dann der Fall war. Die dargestellten Verhältniswerte sind die Querwiderstandsbeizahl cwQ und die Druckpunktshochlage, e_z/H im Falle der getauchten Platte und e_z/T bei den austauchenden Platten. Die leider unsystematische Verwendung verschiedener Abszissenmaßstäbe besonders bei den Diagrammen dieser Untersuchungsgruppe ist hier in Kauf genommen worden;

Abb. 22: Druckpünkts-Hochlage quer geschleppter, ättstätichender Platten H/T > 1

Abb. 23: Druckpunkts-Hochlage quer geschleppter, getätchter Platten $\Lambda = H/L = 1$, H/T < 1

Abb. 24: Druckpunkts-Hochlage quer geschleppter, getauchter Platten $\Lambda = H/L = 1$, H/T = 0.5

Abb. 25: Dryckpunkts-Hochlage quer geschleppter, getauchter Platten $\Lambda = H/L = 0.2$, H/T < 1

um alle vorliegenden Meßreihen möglichst genau und vollständig darstellen zu können. Bei einer methodischen Weiterverwendung dieser Ergebnisse — besonders im Zusammenhang weiterer neuer Meßreihen — wird man den für die praktische Anwendung besonders interessanten Bereich kleinerer Werte $\mathbf{v}^2/(\mathbf{g} \cdot \mathbf{T})$ bis maximal zu etwa $\mathbf{v}^2/(\mathbf{g} \cdot \mathbf{T}) = 1$ konzentrieren und zur Basis der Darstellung machen.

G. Ergebnisse der Versuche mit geschleppten Prismen

Nach diesen von Engels und Gebers ausgeführten Versuchen sind die für Längsanströmung ($\alpha=0$) gemessenen Widerstände in Form der Beizahl c_{WX} (Hauptspantfläche F_X als Bezugsfläche) in Tabelle 11 und 12 tabelliert und in den Abb. 23 bis 32 in Kurvenform gezeigt. Die Bedeutung dieser Ergebnisse für die unter A beschriebenen Aufgaben des Seitenverhaltens der Schiffe tritt etwas zurück gegenüber der Anwendung etwa als Vergleichsmaterial für die Beurteilung des Schlepleistungsbedarfes extrem völliger Anhänge wie Baggerschuten und Prähme,

Rechts:

Abb. 29: Widerstand getauchter Prismen H/T = 0.33A = H/L = 1; 0.5; 0.2

Abb. 26: Widerstand austauchender Prismen H/T > 1

Abb. 27: Widerstand getauchter Prismen H/T = 0.5A = H/L = 1; 0.5; 0.2

Abb. 28: Widerstand getauchter Prismen H/T = 0.5 $\Lambda = H/L = 0.1$; 0.05; 0.033

Tab. 11: Geschleppte, austauchende Prismen, $\alpha = 0^{\circ}$ B/T = 1

v	(27)	c _w für (28)		$e \Lambda = 2T/L $ (32)		(36)	
m/s	$\Lambda = 0$),4	$\Lambda = 0$),2	$\Lambda = 0$),1	$\Lambda = 0$	066
MUS	v2/(g · L)	C _w	v2/(g · L)	Cw	v2/(g·L)	C _w	v²/(g · L)	C _W
0,5 1 1,5	0.051 0,204 0,459	0 0 42 1,120 1,390	0,0255 0,102 0,23	1,27 1,22 1,37	0,0128 0,051 0,115	1,16 1,374 1,53	0,0085 0,034 0,0765	1,41 1,504 1,660

Tabelle 12: Geschleppte, getauchte Prismen, $\alpha=0^\circ$ B/H = 1 c_w für verschiedene $\varLambda=H/L$ und H/T

	$\Lambda = 1$	(21	(22)	(23)	$\Lambda = 0.5$	(24)	(25)	(26)
w m/s	v2/(g · L)	H/T = 0,5	H/T = 0.33	H/T = 0,25	v²/(g · L)	H/T = 0,5	H/T $= 0,\overline{33}$	H/T = 0,25
0,5 1 1,5 2 2,5 3 3,5 4 4,5	0,255 1,02 2,295 4,09 6,37 9,18 12,5 16,32 20,65 25,15	1,100 0,888 0,965 1,014 1,050 1,053 1,046 1,030 1,010 0,980	1,100 1,030 1,000 1,018 1,015 0,996 0,980 0,965 0,933 0,900	1,100 0,913 0,995 1,074 1,100 1,110 1,100 1,090 1,090	0,1275 0,51 1,1475 2,04 3,185 4,59 6,25 8,16 10,325 12,75	1,100 1,000 0,873 0,819 0,788 0,781 0,780 0,776 0,764 0,750	1,100 0,844 0,860 0,853 0,840 0,830 0,828 0,821 0,808 0,779	1,100 0,940 0,885 0,893 0,857 0,818 0,785 0,768 0,757 0,750
	$\Lambda = 0.2$	(29)	(30)	(31)	$\Lambda = 0,1$	(33)	(34)	(35)
	v2/(g · L)	H/T = 0,5	$H/T = 0,3\overline{3}$	H/T = 0,25	$v^2/(g \cdot L)$	H/T = 0,5	$H/T = 0.3\overline{3}$	H/T = 0,25
0,5 1 1,5 2 2,5 3 3,5 4 4,5	0,051 0,204 0,459 0,816 1,274 1,836 2,5 3,264 4,13 5,1	1,100 1,070 1,030 0,967 0,913 0,891 0,822 0,863 0,805	1,100 0,962 0,933 0,928 0,913 0,908 0,912 0,915 0,820	1,100 1,030 0,978 0,964 0,935 0,922 0,908 0,899	0,0255 0,102 0,2295 0,408 0,637 0,910 1,25 1,632 2,065 2,515	1,100 0,920 0,950 0,970 0,980 0,980 0,955 0,924 0,890 0,850	1,100 0,990 1,000 0,980 0,960 0,965 0,983 1,010 1,020	1,100 1,050 1,065 0,960 0,940 0,960 0,920 0,910 0,900
	1 = 0,05	(37)	(38)	(39)	$\Lambda = 0.03\overline{3}$	(40)	(41)	(42)
	v2/(g · L)	H/T = 0,5		H/T = 0,25	v2/(g · L)	H/T = 0,5		H/T = 0,25
0,5 1 1,5 2 2,5 3 3,5 4 4,5 5	0,0128 0,051 0,1148 0,204 0,3185 0,459 0,625 0,816 1,0325 1,275	1,176 1,200 1,150 1,080 1,050 1,057 1,050 0,994 0,974	1,176 1,150 1,130 1,086 1,070 1,080 1,090 1,087 1,080	1,176 1,100 1,120 1,100 1,060 1,040 1,024 1,030 1,030	0,0085 0,034 0,0765 0,136 0,2123 0,306 0,4167 0,544 0,6883 0,85	1,255 1,295 1,234 1,200 1,180 1,160 1,180 1,170 1,170 1,150	1,320 1,305 1,230 1,184 1,180 1,190 1,184 1,170 1,146 1,123	1,370 1,325 1,250 1,190 1,160 1,140 1,140 1,140 1,145

Abb. 30: Widerstand getauchter Prismen $H/T = 0.3\overline{3}$ $\Lambda = H/L = 0.1; 0.05; 0.03\overline{3}$

Abb. 31: Widerstand getauchter Prismen H/T = 0.25 $\Lambda = H/L = 1; 0.5; 0.2$

Abb. 32: Widerstand getauchter Prismen H/T = 0,25 $\Lambda = H/L = 0,1$; 0,05; 0,33

Abb. 33: Widerstand schräg angeströmter Platte im unbegrenzten Medium, zweidimensional $H/L=\infty$

Abb. 34: Widerstand quer angeströmter Kreisplatten im unbegrenzten Medium

Eine eingehende und nützliche Diskussion dieser Ergebnisse wie auch der unter E. und F. kurz beschriebenen Untersuchungsgruppen erscheint hier nicht am Platze, da dies vernünftigerweise unter Heranziehung heutiger Erkenntnisse dieses Gebietes geschehen müßte, die seinerzeit bei Durchführung der hier beschriebenen Versuche nur erst in ihren ersten Anfängen zur Verfügung gestanden haben mögen. Erst im Zusammenhang mit ergänzenden weiteren experimentellen Arbeiten und mit Hilfe der heutigen theoretischen Ergebnisse sollte eine solche eingehende Analyse dieser ebenso wertvollen wie anregenden Versuche vorgelegt werden.

H. Schrifttum

Wesentliches Ziel dieser Arbeit ist - wie unter Abschnitt A. bereits einleitend ausgeführt ist -, die im allmeinen recht knappen Unterlagen über den Querwiderstand von Schiffs- und Ruder-ähnlichen Körpern etwas zu vermehren. Aus den älteren Arbeiten [1] und [2] mit [3] sind die hier in dieser Form erst jetzt veröffentlichten Ergebnisse gewonnen worden. Die hier unter [4] und [5] aufgeführten Arbeiten enthalten im Zitat Ergebnisse, die hier zu Vergleichszwecken im anschaulichen Sinne verwendet sind, Weiter sind in [6] neben systematischen und einigen theoretischen Hinweisen über den Widerstand quer angeströmter Körper auch eine kleinere Zahl von Schrifttumsangaben enthalten. Zur bibliographischen Ergänzung dieser nun schon etwas zurückliegenden Literaturliste sind unter [7] bis [36] noch weitere neuerdings im älteren und neueren Schrifttum gesammelten Schrifttumsangaben zum Thema anströmung von Platten und Körpern mitgeteilt.

- [1] Matthias, Franz: Untersuchungen über den Druck und Druckmittelpunkt an lotrechten Platten, die recht- und spitzwinklig zur Fahrtrichtung durch Wasser geschleppt werden. Schiffbau 1911/1912, S. 249, 299, 351, 396.
- [2] Engels, H.; Gebers, F.: Der Beiwert k in der Formel $W = k \cdot \gamma \cdot F \cdot \frac{v^2}{2g}$ für den Wasserwiderstand bewegter plattenförmiger und prismatischer Körper. Schiffbau 1907/1908, S. 201, 243.
- [3] Gebers, F.: Ein Beitrag zur experimentalen Ermittlung des Wasserwiderstandes gegen bewegte Körper. Schiffbau 1907/1908, S. 435, 475.
- [4] Prandtl, L.: Strömungslehre. Braunschweig, 1956.
- [5] Schiller, L.: Umströmung von Körpern bei zweidimensionaler Strömung. Umströmung von Körpern bei räumlicher Strömung. "Landolt-Börnstein" 4. Band, 1. Teil, S. 723, 761.
- [6] Thieme, H.: Schleppversuche bei Queranströmung. 283. Mitteilung der HSVA, "Schiff und Hafen" 1954, S. 350.

- [7] Betz, A.: Messungen von Brückenträgern, Erg d.A.V.A.z. Göttingen, III. Lieferg., 1926, S. 146.
- [8] Conrad, W.: Anordnung und Betriebsverhalten von Verholwinden auf Tankschiffen. "Schiff und Hafen" 1954, S. 378.
- [9] Delany, H.; Sorensen, N.: Low-Spead Drag of Cylinders of Various Shapes. NACA Techn. Note 3038, Nov. 1953.
- [10] Doetsch, H.: Dreikomponentenmessungen an Fallschirmkappen verschiedener Form. Luftfahrtforschung 1938, S. 577.
- [11] Eiffel, G.: Der Luftwiderstand und der Flug. Berlin 1912.
- [12] Fage, A.; Johansen, F.: On the Flow of Air Behind an Inclined Flat Plate of Infinite Span. Proc. Roy. Soc., London A., 1927, §. 170; A. R. C. Rep. & Mem. 1104.
- [13] Fail, R.; Owen, T.; Eyre, R.: Prelimenary Low-Speed Wind Tunnel Tests on Flat Plates and Air Brakes. Flow, Vibration and Balance Measurements. A. R. C., C. P. 251, 1956.
- [14] Feifel, E.: Kornform und Fallgesetz. Forschung a.d.G.d. Ingenieurwesens 1951, S. 21.
- [15] Flachsbart, O.: Messungen an ebenen und gewölbten Platten. Erg. d.A.V.A.z. Göttingen, IV. Lieferg., 1932, S. 96.
- [16] Flachsbart, O.: Winddruck auf vollwandige Bauwerke und Giterfachwerke. Abhandlg. I. Band d. Intern. Vereinig, für Brückenbau und Hochbau, Zürich 1932.
- [17] Flachsbart, O.: Die Belastung von Bauwerken durch Windkräfte. Angewandte Hydromechanik (W. Kaufmann), Berlin 1934, S. 269.
- [18] Flachsbart, O.: Der Widerstand quer angeströmter Rechteckplatten bei Reynoldschen Zahlen 1000 bis 6000. ZAMM 1935, S. 32.
- [19] Flachsbart, O.: Winddruck auf Schornsteine. Naturwissenschaften Bd. 19, 1931, S. 759.
- [20] Flügel, G.: Über die Strömung an Platten und plattenähnlichen Körpern. Schiffbau 1929, S. 336.
- [21] Frey, K.: Verminderung des Strömungswiderstandes von Körpern durch Leitflächen. Forschung a.d.G.d. Ingenieurwesens 1933, S. 67.
- [22] Hansen, M.: Untersuchung einer offenen und geschlossenen Halbkugel. Erg. d.A.V.A.z. Göttingen, IV. Lieferg. 1932, S. 108.
- [23] Hughes, G.: Model Experiments on the Wind Resistance of Ships. T.I.N.A. 1930, S. 310.
- [24] Klöppel, K.: Windbelastungsversuche am Modell eines Werkstattgebäudes. Stahlbau 1934, S. 129.
- [25] Krückel, J.: Windkanaluntersuchungen über den Luftwiderstand luftgekühlter Flugmotoren mit sternförmiger Zylinderanordnung. Luftfahrtforschung 1936, S. 239.
- [26] van Lammeren, W.; van Manen, J.; Lap, A.: Scale Effect Experiments on Victory Ships and Models. Int. Shipb. Progress 1956, S. 77.
- [27] Laute, W.: Schwimmstabilität eines kleinen Seeflugzeuges. Jb. d. D. Luftfahrtforschung 1942, S. 492.
- [28] Lindsey, W.: Drag of Cylinders of Simple Shapes. NACA Rep. 619, 1938.
- [29] Nagel, F.: Messungen von Profilträgern. Erg. d.A.V.A.z. Göttingen, III. Lieferg., 1926, S. 151.
- [30] Rouse, H.; Siao, T.: Form Drag of Composite Surfaces. Proc. Second U.S. Nat. Congr. Appl. Mech., 1954. Am. Soc. Mech. Engrs. 1955, S. 743.
- [31] Schirmer, M.: Aerodynamische Modellversuche an deutschen und ausländischen Luftschiff-Baumustern im Windkanal des Luftschiffbau Zeppelin in Friedrichshafen, Z.W.B., F.B. 1647, 1942.
- [32] Seiferth, R.: Messung eines Profils bei Anstellwinkeln von 0 bis 360°. Erg. d.A.V.A.z. Göttingen, III. Lieferg., 1926, S. 78.

- [68] Siao, T.: Drag Coefficients of Multiple Plates as a Function of Solidity Ratio. M.S. Thesis, State University of Iowa. 1950.
- [34] Thieme, H.: Windkanal. Modellmessungen für Querund Seitenstabilität von Seeflugzeugen auf dem Wasser. (Ha 139, DoWal, Do X, He 120). Blohm & Voß, Ae 388, 1942.
- [35] Wieselsberger, C.: Untersuchungen mit kreisrunden Platten und ebenen Tragflächen. Widerstandsmessungen im freien Luftstrahl und im Kanal. Mitteilungen a. d. A.V.A. z. Göttingen, I. Folge, 1915, Nr. 21, S. 54.
- [36] Wieselsberger, C.: Versuche über den Luftwiderstand gerundeter und kantiger Körper. Erg. d. A.V.A. z. Göttingen, II. Lieferg., 1923, S. 22.

J. Symbole

- B = Breite des Körpers,
 in Richtung der y-Achse gemessen
- H = Höhe des Körpers, in Richtung der z-Achse gemessen
- L = Länge des Körpers, in Richtung der x-Achse gemessen
- F_L = Lateralfläche,
 - = L·H bei getauchten Rechteckkörpern
 - = L·T bei austauchenden Rechteckkörpern
- F_X = Hauptspantfläche,
 - = $\vec{B} \cdot \vec{H}$ bei getauchten Rechteckkörpern
 - = B·T bei austauchenden Rechteckkörpern
- M_x = Rollmoment, bezogen auf die Achse durch den Lateralschwerpunkt, rechtsdrehend positiv (Abb. 1)
- M_z = Giermoment, bezogen auf die z-Achse durch den Lateralschwerpunkt, rechtsdrehend positiv (Abb. 1)

- N = Normalkraft (Abb. 1)
- Q = Querkraft (Abb. 1)
- Re = Reynolds Zahl = $v \cdot L/v$
- T = Tiefgang (Abb. 1)
- W = Widerstand
- W_Q = Widerstand bei Queranströmung, α = 90°
- $c_{M} = (c_{Mz} =) M_z/(F_L \cdot v^2 \cdot \varrho/2) = Giermomentenbeizahl$
- $c_N = N/(F_L \cdot v^2 \cdot \varrho/2) = Normalkraftbeizahl$
- $c_Q = Q/(F_L \cdot v^2 \cdot \varrho/2) = Querkraftbeizahl$
- $c_W = W/(F_L \cdot v^2 \cdot \varrho/2) = Widerstandsbeizahl$
- c_{WQ} = Widerstandsbeizahl bei Queranströmung, $\alpha = 90^{\circ}$
- $c_{WX} = W/(F_x \cdot v^2 \cdot \varrho/2) = Widerstandsbeizahl$ auf Hauptspantfläche bezogen
 - $e_x = M_z/N = Druckpunkts-Vorlage (Abb. 1)$
 - $e_z = M_x/N = Druckpunkts-Hochlage (Abb. 1)^2$
 - g = Erdbeschleunigung
 - v = Anströmgeschwindigkeit, relativ
 - x = Längsachse, positiv nach vorn bei $a = 0^{\circ}$
 - y = Querachse, positiv nach rechts
 - z = Hochachse, positiv nach unten

$\Lambda = Seitenverhältnis:$

- H/L = bei getauchten Rechteckkörpern 2 T/L = bei austauchenden Rechteckkörpern
- α = Anstellwinkel, positiv im Sinne der Rechtsdrehung (Abb. 1)
- v = kinematische Zähigkeit
- ϱ = Dichte des Mediums